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Problem Description
Nonholonomic mechanical systems are of great interest in robot
technology applications and control, in particular robotic locomotion
and robotic grasping. Roughly speaking a mechanical system with
nonholonomic constraints is described by a constrained differential
equation such that the constrains are involving the velocity of the
system and not only the positions. In this project the numerical
simulation of some simple nonholonomic mechanical systems will be
considered. The geometry behind these problems is beautiful and non
trivial.  The aim of the project is understanding the basic
theoretical features of nonholonomically constrained systems,
illustrate them via numerical simulation, and discuss which numerical
approaches are best suited for such problems. In particular classical
Runge-Kutta methods will be first applied to the problems and then
more specific geometric integrators will be also used. A comparison of
the performance of the methods will be part of the presented
results. The student can choose to explore the more theoretical or the
more practical aspects of the considered problems.
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Summary

We study the numerical integration of nonholonomic problems. The problems are for-
mulated using Lagrangian and Hamiltonian mechanics. We review briefly the theoretical
concepts used in geometric mechanics.

We reconstruct two nonholonomic variational integrators from the monograph of Mon-
forte [15]. We also construct two one-step integrators based on a combination of the
continuous Legendre transform and the discrete Legendre transform from an article by
Marsden and West [12]. Initially these integrators display promising behavior, but they
turn out to be unstable.

The variational integrators are compared with a classical Runge-Kutta method. We
compare the methods on three nonholonomic systems: The nonholonomic particle from
[15], the nonholonomic system of particles from an article by McLachlan and Perlmutter
[14], and a variation of the Chaplygin sleigh from Bloch [3].
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Preface

This Master’s thesis was carried out at the Department of Mathematical Sciences at NTNU
in the first half of 2006. It is written at the level of a fourth year student with basic
knowledge of numerics. It should be readable for any final year student in our department.

The aim of this thesis was to study the technique of variational integration, apply
the technique to nonholonomic problems from mechanics, and compare the results to the
results obtained using standard numerical methods.

To achieve a deep understanding of variational integrators a sound background in classi-
cal mechanics is required. There are undoubtedly some oversimplifications of this material
in this thesis; some very interesting aspects of the theory have also been glossed over due
to the limited time available to the author.

I would like to thank my supervisor Elena Celledoni for rekindling my fascination with
the fields of dynamical systems and mechanics, and for introducing me to the equally
fascinating nonholonomic dynamical systems and variational integrators. I would also like
to thank her for her patience and attention to detail.
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Introduction

The aim of this Master’s thesis has been to study the theoretical and practical aspects
of numerical integration of nonholonomic systems. Nonholonomic systems are physical
systems where there are restrictions on the possible velocities of different components.
Classical examples are rolling motion and skating motion. Nonholonomic problems are of
interest in amongst other things robot technology and the steering of satellites.

Geometric integrators are a type of numerical methods that conserve qualitative aspects
of the exact solution in the numerical solution. Because of this, geometric integrators are
suited for long-time integration of physical systems, in which the conservation of energy,
momentum and other quantities play a key role.

Nonholonomic mechanics fits somewhat uneasily into the framework of Lagrangian and
Hamiltonian mechanics, and many of the conserved quantities of the solution to holonomic
problems are no longer conserved in the solution of nonholonomic systems. Still, geometric
integrators that work well for holonomic problems also work well for nonholonomic prob-
lems. The cause of this is that the geometric integrators preserve the structure of evolution
of the solution to nonholonomic problems, even when the exact solution quantities are not
conserved.

Chapter 1 presents the theoretical background needed in order to model and under-
stand the equations of motion of holonomic systems and nonholonomic systems, as well as
of the structures lying beneath the equations of motion. We also present the qualitative
aspects of the solution to holonomic and nonholonomic systems that we wish to preserve.

Chapter 2 presents the theoretical background needed in order to construct classical
and simple geometrical numerical integrators for nonholonomic systems. We introduce
the variational mechanics that lies behind the geometric integrators we construct in this
thesis. We present two concrete two-step methods from [15] and we attempt to construct
a possible framework for one-step methods.

Chapter 3 presents the implementation of a classical Runge-Kutta method applied to
nonholonomic problems, the implementation of the two two-step methods from Chapter
2, and the implementation of two experimental one-step methods related to the one-step
methods of Chapter 2. The methods are then applied to 3 different problems. We plot and
study a selection of the results.
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Chapter 4 is the conclusion to this thesis. We summarize our results and look ahead
at possibilities for further work.

It quickly became apparent to the author that in order to study nonholonomic systems and
their integrators a healthy knowledge of geometrical mechanics and the theory of holonomic
systems is a prerequisite. This is not a part of the curriculum in industrial mathematics
at NTNU. The exposition of this thesis is truthful in the sense that it reflects the material
that the author has had to learn while working on the thesis. Because of this the thesis
may cover more basic theory than others would deem necessary.



Contents

Summary i

Preface iii

Introduction v

1 Mechanics on Manifolds 1

1.1 Differential Equations on Manifolds . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Variational Formulation of Mechanics . . . . . . . . . . . . . . . . . . . . . 4
1.3 Mechanical Systems with Constraints . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Geometry of the Phase Space Flow . . . . . . . . . . . . . . . . . . . . 13

2 Numerical Integrators 17

2.1 Differential-Algebraic Equations and Index Reduction . . . . . . . . . . . . 18
2.2 Mechanical Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Variational Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Experiments 31

3.1 The Nonholonomic Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 McLachlan and Perlmutter’s Particles . . . . . . . . . . . . . . . . . . . . . 45
3.3 The Chaplygin Sleigh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Conclusion 67

Bibliography 70

vii



viii Contents



Chapter 1

Mechanics on Manifolds

Galileo is supposed to have said that “the book of nature is written in the language of math-
ematics”. Maybe Galileo had mechanics in mind, the descriptions of classical mechanics
given by Newton, Lagrange and Hamilton are certainly very well suited for description in
the language of differential equations.

The basic principle we study in this thesis is Newton’s second law “Force = mass ×
acceleration”. The physical principle of determinism states that if we specify the initial
position and velocity (x0, ẋ0) of a particle the particle’s movement is determined forever.
Newton’s second law may be stated as a second order differential equation

{

ẍ(t) = f(x, ẋ)

x(0) = x0, ẋ(0) = ẋ0.
(1.1)

The above equation has a unique solution for any set of initial conditions. The particle
will trace out the curve given by this solution x(t) until the end of time.

Since Newton’s time, equation (1.1) has been generalized a lot. In modern geometrical
mechanics the solution need not represent the path of a particle, but the evolution of a
complex multi-body system in the set of possible configurations.

By simply being able to state the equations of motion of a system we can often gain
considerable insight into the physical problem. The flow of a system, all solutions as a
whole, often has properties that we can study without solving the equations of motion.

In this chapter we aim to introduce the mechanics of Lagrange and Hamilton, and the
constrained versions (holonomic and nonholonomic) of these formalisms. In the end we
will define the flow of a system, and discuss briefly some of the properties of the flow that
we desire to retain in the numerical integration of the system.

1.1 Differential Equations on Manifolds

Taking a very general view, the mathematical structures we study in this thesis are dif-
ferential equations on manifolds. Monforte [15, p. 44] defines a nonholonomic mechanical
problem in the following way:
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2 Chapter 1. Mechanics on Manifolds

Definition (Nonholonomic Lagrangian System). A nonholonomic Lagrangian system on
a manifold Q consists of a pair (L,M), where L : TQ→ R is the Lagrangian of the system
and M is a submanifold of TQ.

It is obvious that some mathematical background is needed to appreciate this definition.
This section and Section 2.2 aims to provide a brief introduction to the mathematics
needed.

Manifolds

A manifold is a mathematical object that which locally looks like an open subset of a
Euclidean vector space. A general definition of a manifold is given in e.g. [2, p. 77]. We
will not give such a general definition of a manifold here, we will consider only submanifolds
of Rn. This will be enough for the purposes of this thesis.

Definition 1.1 (Submanifold of a Vector Space). Consider a vector space Rn and a func-
tion g : Rn → Rm, m < n, with components (g1, g2, . . . , gm). The set of points

M = {x ∈ Rn | g(x) = 0}

is an (n−m)-dimensional submanifold of Rn if the matrix

∇g =

(
∂gj
∂xi

)

i,j

has full rank m for all x ∈M [2, p. 80].

We say thatM is embedded in Rn. It can be shown that every manifold can be embedded
in an Euclidean space of sufficiently high dimension n [2, p. 80].

When we describe a physical system mathematically, the set of all possible configura-
tions will be the configuration manifold Q. Each point in Q will correspond to a particular
configuration of the system.

It is always possible to find a local coordinate system around a given point q ∈ Q
such that a neighborhood of the point q will look like a vector space of dimension Rn−m.
The dimension of this vector space is equal to the degrees of freedom of the system. The
components of q are called generalized coordinates.

Differentiation on Manifolds

Since we are interested in solving differential equations of these manifolds we obviously
need to define what we mean by curves on manifolds and tangents to these curves.

In the same way as we may consider a standard parametric curve in an Euclidean vector
space,

t 7→ x(t) ∈ Rn,
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say the solution of (1.1), we may consider a curve

t 7→ x(t) ∈M

that stays on the manifold; for all times t we have x(t) ∈M . The tangent to a curve x(t)
at t = 0 is

ẋ = lim
t→0

x(t) − x(0)

t
.

The tangent space to a manifold M at a point x0 ∈M is the vector space spanned by the
set of tangents ẋ of all curves x(t) that go through the point x0 at t = 0 [2, p. 80].

Definition 1.2 (Tangent and Cotangent Space of a Submanifold of Rn). Let M a sub-
manifold of Rn defined by the function g(x) = 0 as in Definition 1.1. For each x ∈M , the
tangent space to M at x is the vector space given by [4, p. 66]

TxM =

{

v ∈ Rn
∣
∣
∣
∣

∂gi
∂x

v = 0

}

(1.2)

The cotangent space of M at x is the vector space of all linear functions from TxM to R,

T ∗

xM = {ω : TxM → R |ω is linear} . (1.3)

The cotangent space T ∗

xM is the dual space of TxM [15, p. 14].

If we consider a function f : M → R, we can differentiate it along a curve x(t) ∈ M
and use the chain rule,

d

dt
f
(
x(t)

)
=
∂f

∂x

(
x(t)

)
ẋ(t).

The cotangent space of a point x ∈M is the set of such objects ∂f
∂x

(x) : TxM → R.
For the manifold Rn the tangent and cotangent space are isomorphic to the base space

Rn. For submanifolds M ⊂ Rn the tangent space at the point x is the set of tangent
vectors to curves in Rn that do not point out of the manifold M .

By taking the disjoint union of the tangent spaces and the disjoint union of the cotan-
gent spaces we get the tangent bundle and the cotangent bundle.

Definition 1.3 (Tangent Bundle and Cotangent Bundle). The tangent bundle of M is a
manifold whose underlying set is the union of all the tangent spaces,

TM =
⋃

x∈M

TxM.

The tangent bundle may be endowed with a natural manifold structure via the tangent
bundle projection τM : TM →M, τ−1

M (x) = TxM .
The cotangent bundle T ∗M is a manifold whose underlying set is the union of all

cotangent spaces T ∗

xM ,

T ∗M =
⋃

x∈M

T ∗

xM.

The cotangent bundle may be endowed with a natural manifold structure via the cotangent
bundle projection πM : TM →M, π−1

M (x) = TxM .
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We will specify a point on the tangent bundle TM with coordinates (x, ẋ). The tangent
bundle has twice the dimension of the base manifold. We will not use the manifold structure
of TM or T ∗M in any explicit way in this thesis, it is stated here to emphasize that the
two objects are manifolds.

The tangent bundle TQ to the configuration manifold Q will be given coordinates (q, q̇).
A vector q̇ is called a generalized velocity of the system.

The final object we define in this section is a smooth distribution. We will make the
same assumption as Monforte [15, p. 44] that D is a submanifold of TM .

Definition 1.4 (Smooth Distribution as Submanifold of TM). A smooth distribution D
on a manifold M is a submanifold of the tangent manifold TM such that for each point
x ∈M we have that Dx is a subspace of TxM and that the union D =

⋃

x∈M Dx is a smooth
submanifold of TM .

In this thesis the distribution D will always be generated by a set of functions ω :
TM → R in a very similar way to the that of Definition 1.1:

D = {(q, q̇) ∈ TQ |ω(q, q̇) = 0} (1.4)

The effect of restricting a curve q(t) ∈ Q to D is to require that that the corresponding
curve (q, q̇)(t) ∈ TQ is restricted to D ⊂ TQ. While the curve q(t) may still visit any point
of Q, some directions of movement that are inside TQ are prohibited in each point q.

Differential Equations on Manifolds

We are now in a position to state the meaning of a “differential equation on a manifold”.
A differential equation ẏ = f(y) is on the manifold M if y0 ∈ M implies that y(t) ∈M ∀ t.
Hairer et al. [8, Section IV.5.2] states the following theorem:

Theorem 1.5 (Differential Equation on Manifold). Let M be a submanifold of Rn. The
problem ẏ = f(y) is a differential equation on the manifold M if and only if

f(y) ∈ TyM ∀ y ∈M.

The above theorem has relevance for us. We shall later see that a constrained physical
system may often be stated either in Rn or on a submanifold M ⊂ Rn as in in Definition
1.1. The function g that defines M will be the constraint function.

1.2 Variational Formulation of Mechanics

In this thesis we will study two variational formulations of mechanics, in which Newton’s
laws are replaced with a variational principle. In both formalisms we solve the equations
of motion by finding a curve q(t) on a manifold that extremizes a particular functional or
“energy function”. The material of this section is taken from [2, 11, 21].
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Lagrangian mechanics and the more general Hamiltonian mechanics are formulated on
manifolds, and they are independent of any particular coordinate system. This means the
complexity of the equations can be reduced by a clever choice of coordinates. It is also a
lot easier to model a mechanical system in these two formalisms, and more problems may
solved analytically.

In this section the Lagrangian and Hamiltonian formalisms are briefly outlined in a
constraint-free setting. Later both formalisms will be extended to cater for constrained
systems.

The Lagrangian and Hamilton’s Principle

Lagrange revolutionized mechanics in 1788 when he reformulated Newtonian mechanics by
replacing Newton’s laws by a single relation. Lagrangian mechanics has two components:
The configuration manifold Q, and the The Lagrangian L.

The configuration manifold Q is a set of point in which each point q ∈ Q represents one
possible position or configuration of all the elements in the physical system. For instance,
the position of a point particle is described by a the vector x ∈ R3. To accommodate for
several (say two) particles we may take q = (x1, x2) ∈ R6 where xi ∈ R3. The dimension
of Q will always be equal to the number of degrees of freedom in the system. Each scalar
component of q is called a generalized coordinate.

A point q̇ ∈ TqQ is called a generalized velocity, and a point (q, q̇) ∈ TQ is called a state
of the system. Each state represents the totality of information about both position and
velocity of all elements of the system. When we know that state of the system at a given
time we may find the state at any later time.

The Lagrangian is a function

L : TQ→ R. (1.5)

For most physical problems the Lagrangian is defined by

L(q, q̇) = K(q, q̇) − U(q)

where K is the kinetic energy of the system and U is the potential energy of the system.
The variational Hamilton’s principle now characterizes the evolution of the system and

solution of the problem:

Definition 1.6 (Hamilton’s principle). Consider the set of curves q(t) ∈ Q with fixed
endpoints q0 = q(t0) and q1 = q(t1). Among these curves, the curve that describes the
physically correct evolution of the system will extremize the action functional

G(q) =

∫ t1

t0

L(q(t), q̇(t)) dt (1.6)

where L(q, q̇) is the Lagrangian of the system.
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Hamilton’s principle thus allows one, at least in principle, to find the correct evolu-
tion of the system if we know the initial configuration q0 and the final configuration q1.
For pairs (q0, q1) that are sufficiently close the action functional has a unique extremizer.
By variational calculus we may restate Hamilton’s principle in the form of a differential
equation in q.:

Theorem 1.7 (Euler-Lagrange equations). A curve q(t) that satisfies Hamilton’s principle
also satisfies the Euler-Lagrange equations

d

dt

∂L

∂q̇
−
∂L

∂q
= 0 (1.7)

where L(q, q̇) again is the Lagrangian of the system.

Proof. The fact that the curve q(t) is a minimum of G means that for any curve r(t) in Q,

0 =
d

dε

∣
∣
∣
∣
ε=0

G(q + εr),

=

∫ t

0

d

dε

∣
∣
∣
∣
ε=0

L(q + εr, q̇ + εṙ) dt,

=

∫ t

0

∂L

∂q
(q + εr, q̇ + εṙ)r +

∂L

∂q̇
(q + εr, q̇ + εṙ)ṙ dt

∣
∣
∣
∣
ε=0,

=

∫ t

0

∂L

∂q
(q, q̇)r +

∂L

∂q̇
(q, q̇)ṙ dt.

By partial integration of the last term and using the fact that r(0) = r(t) = 0 we obtain

∫ t

0

(
∂L

∂q
(q, q̇) −

d

dt

∂L

∂q̇
(q, q̇)

)

r(q, q̇) = 0,

so since r was arbitrary the integrand must be identically zero. Thus

d

dt

∂L

∂q̇
−
∂L

∂q
= 0.

The Euler-Lagrange equations thus give a fairly easy way of finding differential equation
on a manifold whose solution is a curve describing the correct evolution of the physical sys-
tem. This was Lagrange’s revolution, it allows previously unsolvable classes of mechanical
problems to be solved with ease and elegance. Examples are given in any book on classical
mechanics, e.g. [2].

In order to model nonholonomic constraints we need to extend the Euler-Lagrange
equations to include physical forces F (q, q̇) that are not derived directly from the potential
energy U(q).
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Definition 1.8 (Lagrange-d’Alembert Principle). Let (L,Q), L : TQ→ R be a Lagrangian
system, and let the system be acted upon by a resultant force F ∈ T ∗Q. Consider set of
curves q(t) ∈ Q with fixed endpoints q0 = q(t0) and q1 = q(t1). The curve that describes
the physically correct evolution of the system is the solution of

δ

∫ t1

t0

L
(
q(t), q̇(t)

)
dt+

∫ t1

t0

F
(
q(t), q̇(t)

)
δq dt = 0.

This version of the Lagrange-d’Alembert principle is from [3, Chapter 3.4]. It can be
shown by variational calculus [11, Chapter 7.8] that the above principle is equivalent to

d

dt

∂L

∂q̇
−
∂L

∂q
= F. (1.8)

Equation (1.8) is called the Euler-Lagrange equations with external forces. It is central in
the modeling of nonholonomic constraints.

Hamiltonian Mechanics

A third formulation of mechanics was put into its final form by Hamilton in 1834. Much in
the same way as the Lagrangian formulation, the Hamiltonian formulation is variational in
nature. Hamilton’s equations are more general than the Lagrangian formulation, and the
Hamiltonian formulation of mechanics is more powerful when it comes to finding analytical
solutions. In physics the Hamiltonian formulation is considered the most powerful, and it
was instrumental in developing quantum mechanics and modern physics in general.

We will only consider mechanical systems that have both Hamiltonian and Lagrangian
formulations. The Legendre transform [3, Chapter 3.3] enables us to state a Lagrangian
system as a Hamiltonian system.

Definition 1.9 (Hamiltonian formulation of a Lagrangian system). Let L be a Lagrangian
on TQ and let the Legendre transformation be given by

FL : TQ→ T ∗Q

(q, q̇) 7→ (q, p)

where the p is the generalized momentum

p =
∂L

∂q̇
(q, q̇). (1.9)

Solving equation (1.9) to express q̇ as a function of (q, p), the Hamiltonian corresponding
to the Lagrangian L is

H(q, p) = pTq̇(q, p) − L
(
q, q̇(q, p)

)
. (1.10)
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We will only consider cases where the Legendre transform is bijective. In geometric
mechanics points (q, p) lie on the cotangent bundle T ∗Q [2, Chapter 3.14], and p is called
generalized momentum.

The Hamiltonian is a function

H : T ∗Q→ R.

Unlike the Lagrangian L, the Hamiltonian has a physical interpretation as the total energy
of the system,

H(q, p) = T (q, p) + U(q),

where T (q, p) is the kinetic energy of the system and U(q) is the potential energy of the
system expressed in coordinates on T ∗Q.

Similarly to the Euler-Lagrange equations in the Lagrangian formalism, Hamilton’s
equations are the equations of motion of a Hamiltonian system. Hamilton’s equations are
first order.

Theorem 1.10 (Hamilton’s Equations). Consider a Hamiltonian system given by (H,Q),
H : T ∗Q → R which is found by the Legendre transformation of a Lagrangian system
(L,Q). The correct evolution of the system is given by Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
. (1.11)

When the Lagrangian formulation exists, Hamilton’s equations are equivalent to the Euler-
Lagrange equations (1.7).

Proof. This proof is taken from [8, Chapter VI.1]. The definition of the Hamiltonian (1.10)
and the generalized momentum (1.9) leads to the following:

∂H

∂p
= q̇T + pT∂q̇

∂p
−
∂L

∂q̇

∂q̇

∂p
︸ ︷︷ ︸

=0 by (1.9)

= q̇,

∂H

∂q
= −

∂L

∂q
+ pT∂q̇

∂q
−
∂L

∂q̇

∂q̇

∂q
︸ ︷︷ ︸

=0 by (1.9)

= −
∂L

∂q
= −

d

dt

∂L

∂q̇
= −ṗ.

where the second last equality is by equation (1.7) and the last equality is by (1.9). In the
final equalities we have dropped the transpose signs.

As in the Lagrangian case we need to extend Hamilton’s equations to include forces.
Marsden and West [12, p. 422] give the forced Hamilton’s equations

q̇ =
∂H

∂q
, ṗ = −

∂H

∂p
+ F (1.12)

The forced Hamilton’s equations are essential in the formulation of nonholonomic Hamil-
tonian systems.
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1.3 Mechanical Systems with Constraints

In this section we shall consider constrained Lagrangian systems. Most of the material is
easily applied to the Hamiltonian case. For simplicity we will assume that the configuration
manifold Q = Rn.

In a Lagrangian system (L,Q) a constraint is a condition

f : TQ→ R, f(q, q̇) = 0

that the solution of the problem myst adhere to. Holonomic constraints are well under-
stood. Nonholonomic constraints are more general and less well known. They are not as
easy to geometrize and historically they have been something of mystery. In both cases
we will attempt to use Lagrangian multipliers to generalize the Euler-Lagrange equations
(Theorem 1.7) and Hamilton’s equations (Theorem 1.10) to include constrained problems.

Holonomic Constraints

A holonomic constraint is a constraint of motion on the configuration manifold.

Definition 1.11 (Holonomic constraint). Consider a Lagrangian system (L,Q) with L :
TQ → R. A holonomic constraint is a restriction of the possible configurations to a
submanifold of Q defined by

g : Q→ R, g(q) = 0.

Holonomic constraints appear when the number of degrees of freedom of the physical
system under consideration is smaller than the dimension of the configuration manifold.

The equations of motion of a holonomic Lagrangian systems can be derived from the
theory of Lagrange multipliers [22, §5.7, §8]. We do not go into that theory here but refer
instead to the proof of Theorem 1.12.

Theorem 1.12 (Equivalent Formulations of Holonomic Problems [12, theorem 3.3.2]).
Consider a configuration space Rn and a constraint function g : Rn → Rm that defines a
manifold Q = {x ∈ Rn | g(x) = 0} , the following is equivalent:

1. The curve q(t) is a solution of the Euler-Lagrange equations (from Theorem 1.7) on
TQ.

2. The curves q(t) and λ(t) are a solution of the constrained Euler-Lagrange equations
on Rn 





∂L

∂x
−

d

dt

∂L

∂ẋ
= ∇g(x)λ,

g(x) = 0.

3. The curve
(
q(t), λ(t)

)
is a solution of the Euler-Lagrange equations for the Lagrangian

L̄(q, λ, q̇, λ̇) = L(q, q̇) −∇g(q)λ

on the manifold Q× Rm.
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The equivalence of Item 2 and Item 3 in Theorem 1.12 show that any Lagrangian system
with configuration manifold Q ⊂ Rn may be considered to be a holonomically constrained
system. This system has configuration manifold Rn and holonomic constraints g(x) = 0,
where g is the function that defines Q as a submanifold of Rn. This formulation of a system
is called extrinsic. Vice versa, all holonomically constrained Lagrangian systems have an
equivalent unconstrained Lagrangian system. In this system the constraints instead are
part of the definition of the configuration manifold Q. The unconstrained system (L,Q) is
called the intrinsic formulation.

By comparing the Euler-Lagrange equations with external forces (1.8) with Item 2 in
Theorem 1.12 we see by comparing the right hand sides that the constraint g manifests
itself as a force

F = ∇g(q)λ, g(x) = 0 (1.13)

on the Lagrangian system. This force is called the constraint force. The constraint force
ensures that the solution x(t) stays on the manifold Q. The Lagrange multiplier λ takes
whatever values are necessary to keep the trajectory of the system x(t) inside Q.

Item 3 in Theorem 1.12 shows that the equations of motion of a holonomic Lagrangian
system are themselves derived from a variational principle from a variational principle.
This principle is the extremization of the action integral Ḡ of the so-called augmented
Lagrangian L̄.

In the rest of this thesis we will consider the constraint function g(q) to be vector valued
so that each holonomic constraint is a component of the function. If we have m constraints
gi(q) = 0, together all the we may write

g(q) =






g1(q)
...

gm(q)




 =






0
...
0




 = 0.

The vector equation g(q) = 0 thus contains all the holonomic constraints.

Nonholonomic Constraints

Nonholonomic constraints are constraints on the tangent space TQ. Nonholonomic con-
straints restricts not only the relative positions of a systems components, but also their
velocities. Nonholonomic constraints appear in e.g. rolling motion.

Definition 1.13 (Nonholonomic constraint). Consider a Lagrangian system (L,Q) with
L : TQ→ R. A nonholonomic constraint is a restriction

ω : TQ→ R, ω(q, q̇) = 0

on the state space TQ that is not the time derivative d
dt
g(x) = 0 of a holonomic constraint.

A nonholonomic constraint restricts the solution of the equations of motion to a distri-
bution D as given in equation (1.4). It has been shown that the equations of motion for
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Figure 1.1: Left: A holonomic constraint is a restriction to a submanifold of Rn. The pendulum
in R2 is constrained to the manifold Q ∈ R2. The configuration manifold is 1-dimensional and
may be parameterized by the angle θ. Right: A nonholonomic constraint involves velocity. For
the cylinder rolling on an incline the velocity of the surface of the cylinder at the point P must
be zero. Because of this the angular velocity ω and the linear velocity v are connected through
the formula v = kω for a constant k.

a nonholonomic Lagrangian system are not possible to derive from a variational principle
[15, Chapter 5].

There is no choice of configuration manifold Q such that the nonholonomic constraints
on Rn restricts the solution to Q. In fact a nonholonomic constraint generally does not re-
strict the configuration manifold at all, it is certain combinations of positions and velocities
that are disallowed.

In this thesis we shall only consider nonholonomic constraints that are linear in the
velocities q̇, so that they can be factored as

ω(q, q̇) = a(q)Tq̇. (1.14)

When there is more than one nonholonomic constraint we express them all in a single
relation. We let the factor ai(q)

T of each constraint ωi(q, q̇) = ai(q)
T q̇ be a row in the

matrix A(q). All the nonholonomic constraints may then be written together as

A(q) q̇ =






· · · a1(q)T · · ·
...

· · ·am(q)T · · ·











q̇1
...
q̇m




 =






0
...
0




 = 0.

The matrix-vector product A(q) q̇ = 0 contains all the nonholonomic constraints. The
nonholonomic constraints now restrict the state space to a submanifold of the tangent
space TQ to a smooth distribution defined by

D = {(q, q̇) ∈ TQ |A(q) q̇ = 0} . (1.15)
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A nonholonomic constraint is not integrable. This means it may not be derived from
a holonomic constraint by differentiation. By differentiating the holonomic constraint in
Definition 1.11 respect to time we can obtain a relation on the form of a nonholonomic
constraint,

d

dt
g(q) = ∇g(q) q̇. (1.16)

We may consider the function g(q) as potential function on Q; this makes ∇g a vector
field over Q. Similarly A(q) may be viewed as a vector field over Q. From vector calculus
we know that A(q) is integrable (i.e. the derivative of a potential function) if and only
if ∇ × A(q) = 0. Thus we see that by differentiation we may obtain a nonholonomic-like
constraint from equation (1.16), but it is not possible to obtain a holonomic constraint
from equation (1.14).

There is no equivalent counterpart of Theorem 1.12 in the case of nonholonomically
constrained systems. The nonholonomic constraint does not restricts the solution of the
equations of motion to a submanifold Q ⊂ Rn. There equations of motion may not be
derived from a variational principle.

The holonomic constraint force (1.13) does have an analogy in nonholonomically con-
strained systems. It is found from the nonholonomic principle [3, Chapter 5.1].

Definition 1.14 (Nonholonomic Principle). Consider a Lagrangian system (L,Q) with
linear nonholonomic constraints given by A(q) q̇ = 0. The nonholonomic principle is the
assumption that

F =

m∑

i=1

λiai(q)
T = A(q)T λ, (1.17)

the resultant force F must be a linear combination of the rows of A(q).

The resultant force F thus is perpendicular to the trajectory x(t) of the system in any
point. Because of this the work done by the constraint forces is zero, and thus energy is
conserved for linear constraints ω(q, q̇) = a(q)T q̇. We can now formulate the equations of
motion of a nonholonomic Lagrangian system. There are two formulations:

Intrinsic Equations of Motion for a Nonholonomic Lagrangian System. Con-
sider a Lagrangian system (L,Q) with L : TQ→ R and a constraint distribution

D = {(q, q̇) ∈ TQ |A(q) q̇ = 0} .

The correct equations of motion are







d

dt

∂L

∂q̇
−
∂L

∂q
= A(q)Tλ,

A(q) q̇ = 0.

(1.18)

The formulation above is suited for theoretical considerations. The extrinsic formulation
below is more suited for numerical integration:
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Extrinsic Equations of Motion for a Nonholonomic Lagrangian System. Con-
sider a Lagrangian system (L,Q) with L : TRn → R where

Q = {x ∈ Rn | g(x) = 0} ,

and a constraint distribution

D = {(q, q̇) ∈ TQ |A(q) q̇ = 0} .

The correct equations of motion is







d

dt

∂L

∂ẋ
−
∂L

∂x
= ∇g(x)λ+ A(x)T µ,

A(x) ẋ = 0,

g(x) = 0.

(1.19)

Bloch [3, Chapter 5] remarks that historically the nonholonomic principle and the
nonholonomic equations of motion have been contested several times, because of the non-
intuitive behavior of systems. The equations (1.18) have been shown to be equivalent to
Newton’s laws for fairly general systems, and they agree with experimental results.

1.4 The Geometry of the Phase Space Flow

The phase space of a system ẏ = f(y) ∈ Rn of first order differential equations is the space
of possible states y in which the system may find itself. They phase space of a constrained
Lagrangian or Hamiltonian system is found by rewriting the system as a set of first order
equations in the way that equation (1.1) may be written as

{

ẋ(t) = u,

u̇(t) = f(x, u).

A holonomic or nonholonomic system may be restated as ẏ = f(y), y ∈ M , a set of first
order differential equations on a manifold M . For a holonomic Lagrangian system we have
M = TQ, for a holonomic Hamiltonian system M = T ∗Q. For a nonholonomic system the
phase space is given by a submanifold of M given by the constraint distribution D.

A point (q, q̇) ∈ TQ completely determines the evolution of the system. A consequence
of this is that each point in TQ is on a unique curve in TQ. The evolution of the system
is reflected by the movement of the system’s point in phase space along this curve.

Definition 1.15 (Flow of a Differential Equation). Consider a dynamical system with an
arbitrary initial state y0, {

ẏ = f(y), y ∈M,

y(0) = y0.
(1.20)
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The flow φ on the phase space M is a collection of maps such that for all times t ≥ 0 and
for any point y0 ∈M we have that

φt(y0) = y(t),

where y(t) is the solution at time t to the differential equation (1.20).

The flow is the concept of all solutions to a differential equations at the same time.
The flow is a group under composition: It is closed and has identity element φ0 and an
inverse element φ−t ◦ φt = id.

Flow lines may not intersect, if they could it would mean that the differential equation
behind the flow does not have a unique solution. For a systems equations of motion this
would break the principle of physical determinism, since the system modeled would have
two possible future evolutions.

We shall discuss some further properties of the flow of holonomic and nonholonomic
mechanical systems in the rest of this section.

Time-Reversibility

All conservative mechanical systems have the property that if you reverse the orientation
of the generalized velocity vector, q̇ 7→ −q̇, and keep the generalized position vector you
reverse the direction of the flow. Time-reversibility is a particular case of ρ-reversibility as
defined in [8, Section V.1].

Definition 1.16 (Reversibility). Consider a system defined by ẏ = f(y), and an invertible
linear transformation ρ. The flow φ of the system is ρ-reversible if

(ρ ◦ φt)(y0) = (φ−t ◦ ρ)(y0)

For a Hamiltonian system (1.11), the system is time-reversible if it is ρ-reversible for
the particular linear transformation ρ(q, p) = (q,−p).

First Integrals and Momentum Maps

Conserved quantities or first integrals are quantities that are conserved as the system
evolves [8, Chapter IV.1]. Physically this means that by knowing the value of a conserved
quantity at the time t0 we also know it at a later time t ≥ t0.

Definition 1.17 (First Integrals). Consider a system ẏ = f(y) with flow φ. A first integral
is a non-constant function I(y) such that for any point y0 in the phase space, and for all
times t we have that

d

dt
I
(
φt(y0)

)
= 0.
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For Hamiltonian systems we have that the Hamiltonian H(q, p) is a conserved quantity,
in the problems we study in this thesis it is equal to the energy of the system. In the case
of linear nonholonomic constraints, i.e. constraints that may be expressed by equation
(1.15), energy is conserved.

For unconstrained or holonomic system, Noether’s theorem links symmetries in the La-
grangian with conserved quantities, which are called momentum maps. Noether’s theorem
is given in any book in classical mechanics, e.g. [2, Chapter 20]. Conserved quantities
such as momentum and angular momentum are momentum maps and may be found via
Noether’s theorem. In nonholonomic mechanics Noether’s theorem does not hold, this is
one of the differences between holonomic and nonholonomic systems.

Another type of first integral is very relevant numerically when the equations are given
in extrinsic form as in 1.19. For a differential equation ẋ = f(x) ∈ Rn and a manifold
M ⊂ Rn as in Definition 1.1, a weak invariant is a function g(x) such that for x0 ∈M

d

dt
g
(
φt(x0)

)
= 0 ∀ φt(x) ∈M.

The function g is only constant if the flow stays in M . If we take g to be the constraint
function of a holonomic Lagrangian system on Q ⊂ Rn, the constraint function is precisely
a weak invariant of the system.

Symplecticity

Writing y = (p, q) as in [9, Section I.14], the unconstrained Hamilton’s equations (1.11)
may be stated as

ẏ = J−1∇H(y), J =

(
0 I
−I 0

)

,

where I is the (n× n) identity matrix. The flow φ of the above equation satisfies
(
∂φt

∂y0

)T

J

(
∂φt

∂y0

)

= J. (1.21)

A mapping that satisfies equation (1.21) is called a symplectic map. Holonomic Hamiltonian
systems have symplectic flows. A consequence of the symplecticity of the flow is that
volume is conserved in the phase space.

Nonholonomic Hamiltonian systems do not have symplectic flows. Together with the
lack of preservation of momentum maps, this is the most important difference between
holonomic and nonholonomic systems from a geometric perspective.

Table 1.1 show that there are major differences between holonomic and nonholonomic
systems. The differences are so big that one might ask whether there is anything to
be gained by forcing nonholonomic systems into the theoretical framework developed for
holonomic systems. The situation is not so bleak as it might appear however, since the
symplectic form and momentum maps evolve in a structured way [15, Section 7.5]. Chapter
2 and 3 show that numerical methods designed for holonomic systems may sometimes be
adapted to the nonholonomic case with great success.
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Holonomic Systems Nonholonomic Systems
Reversibility Conserved Conserved
Energy Conserved Conserved for linear constraints
Weak invariants Conserved Conserved
Momentum Map Conserved Not conserved
Symplectic form Conserved Not conserved

Table 1.1: Flow properties that are conserved by holonomic and nonholonomic systems.



Chapter 2

Numerical Integrators

As we stated in Chapter 1, the solution to a differential equation

{

ẏ(t) = f(y), y ∈M

y(0) = y0

(2.1)

is a function y(t) that is in agreement with equation (2.1) for all times t. From now on we
will refer to this function as the analytical solution. For the kind of problems we study in
this thesis we will assume that the analytical solution exists and is unique.

For most differential equations an explicit expression of the analytical solution is difficult
or impossible to obtain. By solving a differential equation numerically we mean computing
an approximation to the analytical solution at a set of time values {tk}

N
k=0. This set of

approximations is called the numerical solution.
We denote the numerical solution at a particular time tk by yk, and seek a series {yk}

N
k=0

such that

yk ≈ y(tk), k = 0, 1, . . . , N.

The first term of the numerical solution {yk}
N
k=0 is the initial condition y0.

The step length is denoted by hk. The step length is the distance between successive
elements of {tk}

N
k . We always assume that we are solving the equations on the interval

[0, tmax]. We will consider numerical solutions with constant step length,

hk = h =
tmax

N − 1
∀ k,

so the elements of the series {tk}
N
k=0 are given by

tk = kh, k = 0, 1, . . . , N.

A method of obtaining a numerical solution is called a numerical method by mathe-
maticians, an algorithm by computer scientists and an integrator by physicists. We will
use the words method and integrator interchangeably.

17
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Numerical Flow

In the same way that the concept of flow from Section 1.4 facilitates the description of
the analytical solution of (2.1) for any initial value y0, we want to be able to describe of
properties that are common to all numerical solutions obtained with a particular integrator.

The numerical flow, Φ, of a particular integrator is a set of mappings of the type

Φ : M × · · · ×M →M × · · · ×M,

(yk, . . . , yk+i) 7→ (yk+1, . . . , yk+i+1)
(2.3)

that are used to obtain the numerical solution of that integrator.

If the integrator takes a single copy of M as argument, Φ : M → M , the integrator is
called a single-step integrator. A general integrator on the form (2.3) is called a multi-step
integrator. A i-step integrator requires i initial values to produce an approximation to yi+1.
This means that multi-step integrators require several initial values to obtain a numerical
solution. This problem is addressed in Chapter 3.

By repeatedly applying Φ we obtain the sequence numerical solution {qk}
N
k=0 to the

particular problem characterized by initial values y0, . . . , yi. The elements are given by

yi+k = Φk(y0, . . . , yi), k = 1, . . . , N − i, (2.4a)

where

Φk(y0, . . . , yi) =
(

Φ ◦ Φ ◦ · · · ◦ Φ
︸ ︷︷ ︸

k times

)
(y0, . . . , yi) (2.4b)

is the mapping Φ applied k times.

The object of geometric integration is to have the numerical flow Φ approximate the
exact flow φ in such a way that the numerical flow has some of the same geometric properties
as the exact flow. In Section 2.2 we compare the geometric properties of the numerical
flow to the properties of the exact flow from Section 1.4.

2.1 Differential-Algebraic Equations and Index Re-

duction

Rabier and Rheimboldt [18] showed that nonholonomic mechanical systems are suited to
be modeled by differential-algebraic equations.

Since we are interested in solving differential equations on manifolds we need a way to
represent the manifold numerically. We saw in Section 1.1 that the configuration manifold
Q may always be embedded into Rn, in which case Q may be defined as by a constraint
function so that

Q = {x ∈ Rn | g(x) = 0} , g : Rn → Rm.
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and that a nonholonomic problem may be stated in extrinsic form by equation (1.19) which
we restate here: 





d

dt

∂L

∂ẋ
−
∂L

∂x
= ∇g(x)λ+ A(x)T µ,

A(x) ẋ = 0,

g(x) = 0.

(2.5)

There are no explicit differential equations for λ and µ, they have to be found via the
constraint equations g(x) = 0 and A(x) ẋ = 0.

The problem above is a differential-algebraic equation. A differential-algebraic equation
is a system of algebraic equations and differential equations that must be solved together.
Sometimes we will abbreviate the term differential-algebraic equation to DAE.

Index Reduction and the Underlying ODE

The most straightforward approach to solving any differential-algebraic equation is by a
technique known as index reduction. Index reduction involves reducing the the differen-
tiation index, which is the number of times the DAE has to be differentiated to yield an
ODE. Hairer et. al [8, Chapter VII.1] sums this up.

Definition 2.1 (Differentiation Index). An implicit differential equation

F (ẏ, y) = 0 (2.6)

has differentiation index m if m is the minimal number of analytical differentiations

F (ẏ, y) = 0,
d

dt
F (ẏ, y) = 0, · · · ,

dm

dtm
F (ẏ, y) = 0,

of (2.6) such that we may extract by algebraic manipulations an explicit ordinary differen-
tial system ẏ = f(y). This system is called the underlying ODE.

The underlying ODE is a reformulation of the DAE from which it is derived. They
have the same analytical solutions.

The ODE obtained by index reduction will be defined for any set of initial conditions
y0 ∈ Rn. By differentiation the statement g(y) = 0 is equivalent to

∂g

∂y
(y) ẏ = 0, g(y0) = 0, (2.7)

and vice versa (2.7) guarantees that g(y(t)) = 0 ∀ t. This situation always occurs in index
reduction, the original constraint is turned into a constraint and a restriction g(y0) = 0 on
the initial condition.

We now show that a constrained Lagrangian system on extrinsic form is a differential-
algebraic equation of index 3 when the system holonomic constraints only. When the
system has nonholonomic constraints only it has index 2. A system with both types of
constraints has index 3.



20 Chapter 2. Numerical Integrators

We consider equation the extrinsic equations of motion of equation (1.19) as a set of
first order ordinary differential equations by setting

u = ẋ,

and consider a mechanical Lagrangian on the form

L(x, u) = T (x, u) − U(x).

In this case equation (2.5) may be restated as

ẋ = u, (2.8a)

u̇ = f(x, u, λ, µ), (2.8b)

0 = g(x), (2.8c)

0 = A(x) u, (2.8d)

where f(x, u, λ, µ) is given by

∂2T

∂u2
(x, u) f(x, u, λ, µ) =

∂T

∂x
(x, u) −

∂U

∂x
(x) +

∂g

∂x
(x)λ+ A(x)T µ−

∂2T

∂x∂u
(x, u).

We will now show that one may find the underlying ODE of equation (2.8) by differentiating
relevant constraints (2.8c) or (2.8d).

We consider first a Lagrangian system with holonomic constraints only. The system is
given by (2.8a–c). By differentiating both sides of the constraint we obtain

0 =
dg

dt
=
∂g

∂x
u.

We suppress the arguments of g to make the formulas more readable. Two differentiations
of the holonomic constraint gives

0 =
d2g

dt2
=
∂g

∂x
f +

(
d

dt

∂g

∂x

)

u,

where we now suppress the arguments of f and g. The above relation involves λ, since
λ is one of the arguments of f . Thus we expect to obtain an ODE in λ in the third
differentiation of the holonomic constraint:

0 =
d3g

dt3
=
∂g

∂x

(

u
∂

∂x
+ f

∂

∂u
+ λ̇

∂

∂λ
+

d

dt

∂g

∂x

)

f +
d

dt

((
d

dt

∂g

∂x

)

u

)

. (2.8e)

Equation (2.8e) is the result of differentiating the holonomic constraint (2.8c) three times.
It is an ODE in λ. As long as the matrix

∂g

∂x

∂f

∂λ
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is invertible, we have obtained a full set of first order ODEs in (x, u, λ) given by the
equations (2.8a–b,e). This system is the underlying ODE of the holonomic system (2.8a–c).

We now consider a Lagrangian system of differential-algebraic equations with nonholo-
nomic constraints only given by the equations (2.8a–b,d). To simplify the derivation we
state the constraint on the general form ω(x, u) = 0. By differentiating the nonholonomic
constraint we obtain

0 =
dω

dt
=
∂ω

∂x
u+

∂ω

∂u
f,

where we have suppressed the arguments of ω and f to make the formulas more readable.
The above relation involves µ, since µ is one of the arguments of f . Differentiating the
nonholonomic constraint again gives

0 =
d2ω

dt
=

d

dt

(
∂ω

∂x
u

)

+

(
d

dt

∂ω

∂u

)

f +
∂ω

∂u

(

u
∂f

∂x
+ f

∂f

∂u
+ µ̇

∂f

∂µ

)

. (2.8f)

The above equation was obtained by differentiating the nonholonomic constraint (2.8d)
two times. It is an ODE in µ. As long as the matrix

∂ω

∂u

∂f

∂µ

is invertible, we have obtained a full set of first order ODEs in (x, u, µ) given by equations
(2.8a–b,f). This system is the underlying ODE of the nonholonomic Lagrangian system
given by (2.8a–b,d).

For a Lagrangian system that has both holonomic and nonholonomic constraints equa-
tion (2.8c) must be differentiated three times to give an ODE in λ. Therefore the differen-
tiation index will be 3 as in the holonomic case.

Index Reduction and Numerical Integration

Standard numerical methods such as the ones that are part of Matlab solve ordinary
differential equations or differential-algebraic equations of index 1.

When index reduction is applied to an index 3 problem such as a holonomically con-
strained mechanical system one can will see that the numerical solution will drift away
from the constraint manifold Q given by g(x) = 0. The error in the constraint will grow
quadratically, while the derivative of the constraint grows linearly. This phenomenon is
explained in [10, Chapter VII.2]. For index 2 and index 3 DAE the drift is so strong that
the long-time integration of such systems is impossible without using techniques other than
index reduction.

In the numerical experiments of this thesis two “classical” methods based on index
reduction are used to provide a backdrop and a comparison for the mechanical integrators.

Index reduction techniques have the advantage that they are standardized, easy to
implement and may be of high order.
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2.2 Mechanical Integrators

In a numerical simulation of a physical system it can be argued that some errors are more
grave than others. As an example, integrators that do not preserve energy will give totally
wrong solutions to the problems they are integrating. In a simulation of the solar system
an integrator that does not preserve energy in some sense will fail abysmally either by
predicting that all planets fall into the sun, or by predicting that all planets eventually
escape the gravity well of the sun and never return. Classical numerical methods are often
unusable if one wishes to study the long-time behavior of a physical system.

Geometric integrators [8] or mechanical integrators [15] are names used for any numeri-
cal integrator that attempts to “do better” than classical methods by preserving qualitative
properties of the exact flow in the numerical flow.

A simple form of geometric integrator is a reversible integrator. A reversible integrator
has a numerical flow Φ which is a reversible map in the sense of definition 1.16. By applying
a reversible integrator where the exact flow is reversible, we preserve the quantitative trait
of reversibility in the numerical solution. This is the general idea of geometric integrators.

As we saw in Section 1.4 and Table 1.1 in that section, the flow of a holonomic La-
grangian system is characterized by the conservation of energy, the conservation of the
symplectic form, and the conservation of first integrals.

A property of the exact flow such as the conservation of energy may be enforced by
projecting the solution in each step onto a manifold defined by E(x, ẋ) = E(x0, ẋ0), however
in many cases heavy-handedness such as this can completely wreck the numerical solution
instead of improving it! [8, Section IV.4]. This type of problems leads us to rather seek
integrators that naturally conserve geometric invariants of the flow.

It has been shown [23] that finding a fixed-time-step integrator that simultaneously
preserves energy, the symplectic form and momentum equations actually would be the
same as finding the exact flow φ of the system [15, Chapter 7.1]. Since we cannot expect
to be able to obtain the exact solution by a numerical method, we must make a choice
about which quantities of the flow that we desire to preserve.

We shall look at a class geometrical integrators that preserve momentum maps and the
symplectic form, symplectic-momentum integrators. The numerical flow Φ of symplectic-
momentum integrators conserve exactly momentum maps and the symplectic form, so
energy cannot be exactly conserved at the same time.

The choice of a symplectic-momentum integrator for integrating nonholonomic systems,
in which neither the symplectic form nor momentum maps are conserved might seem queer.
The reason for making this choice is that the variational symplectic-momentum integrators
are able to reflect the structure of the evolution of both the symplectic form and the
momentum equations. [15, Chapter 7.5].

These integrators are obtained from a direct discretization Hamilton’s principle. We
shall eventually see that although these integrators do not conserve energy, they actually
conserve energy far better than classical integrators.
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2.3 Variational Integrators

There has been many attempts at the development of a discrete mechanics and corre-
sponding integrators [12, p. 360]. We will follow some of the exposition given in [12] (for
holonomic systems) and [15, Chapter 7] (for nonholonomic systems).

The discrete flow of systems coming from a discrete variational principle enjoy many
of the same characteristics as their continuous counterparts. The aim of this section is
to introduce discrete counterparts to many of the constructions of Lagrangian variational
mechanics, and to find numerical methods which are based on discretizing these principles
themselves instead of the equations of motion that may be derived from e.g. the Lagrangian
via Hamilton’s principle.

We replace the Lagrangian L : TQ→ R with the discrete Lagrangian

Lh : Q×Q→ R. (2.9)

A discrete curve is is defined by a set of points {qk}
N
k=1; it is the counterpart of a continuous

curve q(t), t ∈ [t0, tN ]. The action integral of a continuous curve is replaced by a sum of
values of the discrete Lagrangian evaluated in different points, and Hamilton’s principle
becomes:

Definition 2.2 (Discrete Hamilton’s Principle). Given a set of points {qk}
N
k=0. The correct

evolution of the discrete curve with fixed endpoints q0 and qN is the discrete curve that
extremizes the discrete action sum

S(q0, q1, . . . , qN) =

N−1∑

k=0

Lh(qk, qk+1),

where Lh is the discrete Lagrangian of the system.

The physically correct discrete curve extremizes the action sum, so we must have that

∂S

∂qk
(q0, q1, . . . , qN ) = 0, k = 1, 2, . . . , N − 1. (2.10)

Since the discrete Lagrangian is a function of two points only, each partial derivative of
(2.10) has two terms only. The above equation is therefore equivalent to the set of equations

∂

∂qk
Lh(qk−1, qk) +

∂

∂qk
Lh(qk, qk+1) = 0, k = 1, 2, . . . , N − 1. (2.11)

So far nothing has been said about the relation between the discrete Lagrangian and
the continuous Lagrangian of Section 1.2, and indeed if one is purely interested in studying
discrete mechanics there need not be a connection.

We, however, are interested in turning this approach into a numerical integrator. We
consider as in [12, Section 1.6] a particular discrete Lagrangian which we call the exact
discrete Lagrangian.
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Given a continuous Lagrangian L(q, q̇), the corresponding exact discrete Lagrangian is

LE
h(qk, qk+1) =

∫ tk+1

tk

L(q, q̇) dt.

For the exact discrete Lagrangian the action sum becomes

S(q0, q1, . . . , qN ) =
N−1∑

k=0

LE
h(qk, qk+1)

=

N−1∑

k=0

∫ tk+1

tk

L(q, q̇) dt

=

∫ tN

t0

L(q, q̇) dt

= G(q).

The action sum of the exact discrete Lagrangian equals the action integral of the corre-
sponding continuous Lagrangian. This means that a point of the discrete curve {qk}

N
k=0

must lie on the corresponding exact solution curve, and that

qk = q(tk), k = 0, 1, . . . , N.

We now consider as in [12, Section 1.1] a discrete Lagrangian that approximates the
action integral on the curve segment of the exact solution given by q(t), t ∈ [tk, tk+1]:

Lh(qk, qk+1) ≈

∫ tk+1

tk

L(q, q̇) dt.

We expect that for small time-steps h = tk+1 − tk, the action sum will be approximately
equal to the action integral,

G(q) ≈ S(q0, q1, . . . , qN).

This is the general idea behind variational integrators.
Equation (2.11) leads itself to an integrator

Φ : Q×Q→ Q×Q,

(qk−1, qk) 7→ (qk, qk+1),
(2.12a)

in which qk+1 is implicitly given by

∂Lh
∂qk

(qk, qk+1) +
∂Lh
∂qk

(qk−1, qk) = 0. (2.12b)



2.3. Variational Integrators 25
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Figure 2.1: The exact solution curve q(t) of the continuous Lagrangian and the sequence {qE
k }

N
k=0

obtained from the exact discrete Lagrangian coincide in the sense that qE
k = q(tk). An approxi-

mate solution {qk}
N
k=0 based on a discrete Lagrangian and the integrator (2.12) is also displayed.

Assuming that equation (2.12) has a solution, we may use it as a numerical integrator.
Given the starting values (q0, q1) we can find qk+1 from equation (2.4). By solving the
implicit equation (2.12b) in each time-step we find {qk}

N
k=2 from (qk, qk+1) = Φk(q0, q1).

Monforte [15, Section 7.4] presents two simple discretizations of a continuous La-
grangian. A simple discrete Lagrangian with a free parameter α is

Lαh(qk, qk+1) = hL

(

(1 − α)qk + αqk+1,
qk+1 − qk

h

)

. (2.13)

This discretization approximates the action integral on the interval [tk, tk+1] by evaluating
the continuous Lagrangian at a single point. Figure 2.2 gives a graphical interpretation of
the approximation.

Another “symmetric” possibility is

Lsym
h (qk, qk+1) =

h

2
L

(

qk,
qk+1 − qk

h

)

+
h

2
L

(

qk+1,
qk+1 − qk

h

)

. (2.14)

This discretization approximates the action integral by evaluating the continuous La-
grangian in two points. Figure 2.2 gives a graphical interpretation of the approximation.

So far we have not considered nonholonomically constrained systems. For that we need
a discretization Dh of the constraint distribution D and a discretization of the Lagrange-
d’Alembert principle as well as a discretization of the Lagrangian. The discrete constraint
distribution is given by

Dh = {(qk, qk+1) ∈ Q×Q |ωh(qk, qk+1) = 0} . (2.15)
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qi+α qi qi+1

q(t) q(t)

R R

t

qi qi+1

t

Figure 2.2: Approximation to the action integral G(q) on the interval [tk, tk+1] by the discrete
Lagrangians Lαh and Lsym

h . (Left): Lαh approximates q(t) by a the constant qi+α = (1 − α)qk +
αqk+1. (Right): Lsym

h approximates q(t) by a linear function through qk and qk+1. Both method
approximate q̇(t) by the constant (qk+1 − qk)/h.

We will postpone the precise definition of ωh to the next section. Monforte [15, Section
7.3] states the discrete Lagrange-d’Alembert principle:

Definition 2.3 (Discrete Lagrange-d’Alembert Principle). Consider a discrete Lagrangian
system (Lh, Q) with Lh : Q × Q → R, a smooth distribution D and a discretization Dh

of D, and a discrete curve {qk}
N
k=0 with fixed endpoints q0 and qN . The discrete curve

that describes the physically correct evolution of the system is the curve that extremizes the
action sum

S(q0, q1, . . . , qN ) =

N−1∑

k=0

Lh(qk, qk+1)

amongst the variations that satisfy δqk ∈ D and (qk, qk+1) ∈ Dh.

The discrete Lagrange-d’Alembert principle is equivalent to the following set of equa-
tions: 





∂Lh
∂qk

Lh(qk, qk+1) +
∂Lh
∂qk

Lh(qk−1, qk) = λk ω(qk),

ωh(qk, qk+1) = 0.

(2.16)

The above relation is the basis of all the variational nonholonomic integrators in this thesis.
Note that both D and Dh, ω and ωh are used in Definition 2.3 and equation (2.16).

We shall now take a closer look closer at what is required for the discrete constraint
space and the discrete Lagrangian to make a coherent whole.

Compatibility of Dh and Lh

The process of obtaining an integrator from from a discrete Lagrangian becomes more obvi-
ous if we consider the discrete Lagrangian to be composition of the continuous Lagrangian
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L and a set of functions Ψi
h so that

Lh =
∑

i

βi(L ◦ Ψi
h). (2.17)

In the case of a discrete Lagrangian Lh : Q×Q→ R the functions Ψi
h are on the form

Ψh : Q×Q→ TQ,

they use the pair (qk, qk+1) ∈ Q×Q to approximate the exact solution (q, q̇) ∈ TQ.
Considering the function

Ψα
h(qk, qk+1) =

(

(1 − α)qk + αqk+1,
qk+1 − qk

h

)

,

the discrete Lagrangians Lαh and Lsym
h may be stated on the form of (2.17) as

Lαh = L ◦ Ψα
h, (2.18a)

and

Lsym
h =

1

2
L ◦ Ψ0

h +
1

2
L ◦ Ψ1

h. (2.18b)

We want the discrete constraint functions ωh to reflect the particular discretization of Lh.
We require that for a general discrete Lagrangian (2.17), the corresponding discretiza-

tion of the constraint is given by

ωh =
∑

i

βi(ω ◦ Ψi
h).

This is called the compatibility condition between the discretization of the Lagrangian and
the discretization of the constraints. The compatibility condition gives

ωαh = ω ◦ Ψα
h ,

ωsym
h =

1

2
ω ◦ Ψ0

h +
1

2
ω ◦ Ψ1

h.

The compatibility condition ensures that the resulting integrators have the correct order.
[15, p. 146].

We are now in a position to create a variety of two-step integrators based on







∂Lh
∂qk

(qk, qk+1) +
∂Lh
∂qk

(qk−1, qk) = A(qk)
Tλ,

ωh(qk, qk+1) = 0.

(2.19)

In Chapter 3 we implement two algorithms based on (2.19) and the discrete Lagrangians
Lαh and Lsym

h . They are previously presented in [15, Chapter 7].
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One-Step Methods and the Discrete Legendre Transformation

The numerical flow of the multi-step methods that we obtain from (2.19) are determined
by pairs of values (q0, q1) ∈ Q × Q, while the trajectories in the flow of the continuous
Lagrangian system are given by a single point (q, q̇) ∈ TQ.

In implementations one-step methods are often easier to implement than multi-step
methods. It is easier to specify a point in TQ than several points in Q, to specify q1

with enough accuracy to obtain a high order integrator requires that one uses another
integrator to go from (q0, q̇0) ∈ TQ to (q0, q1) ∈ Q×Q, this can defeat some of the purpose
of a multi-step integrator.

In [12], Marsden and West use a device known as the discrete Legendre transformation
to find one-step variational integrators for holonomic Lagrangian systems. The discrete
Legendre transformation can be used to restate an integrator on the form (2.12) as a
one-step method. The discrete Legendre transform is also mentioned in [8, Chapter VI.6].

Definition 2.4 (Forced Discrete Legendre Transforms). The forced discrete Legendre
transform is given by

F+ : Q×Q→ T ∗Q,

(qk, qk+1) 7→ (pk+1, qk+1),

pk+1 =
∂Lh
∂qk+1

(qk, qk+1) + f+
h (qk, qk+1),

(2.20a)

and

F− : Q×Q→ T ∗Q,

(qk, qk+1) 7→ (pk, qk),

pk = −
∂Lh
∂qk

(qk, qk+1) − f−

h (qk, qk+1).

(2.20b)

The discrete forces f− and f+ are defined in [12, Section 3.2]. In our case they are
given by

f− = A(qk)
Tλk,

f+ = A(qk+1)Tλk+1.

By analogy with the integrator defined in [12, p. 446] and from the nonholonomic principle
this gives a possible general one-step integrator







pk = −
∂Lh
∂qk

(qk, qk+1) + A(qk)
T λk,

pk+1 =
∂Lh
∂qk+1

(qk, qk+1) − A(qk+1)T λk+1,

0 = A(qk+1)q̇k+1.

(2.21)
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The first equation of (2.21) must be solved implicitly to find qk+1. The second and third
equations must be solved together for pk+1 and λk+1. In the constraint equation we have
chosen to use the continuous Legendre transform (1.9) to find q̇k+1.

We remark that the article [12] considers holonomic systems exclusively, and we have
not seen any attempt to reformulate the two-step nonholonomic integrators of type (2.19)
as one-step integrators. In Chapter 3 we construct and test two one-step integrators based
on equation (2.21) and the discrete Lagrangians of equation (2.13) and (2.14).
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Chapter 3

Experiments

In this chapter we aim to compare the performance of a classical Runge-Kutta method
with the variational integrators of Section 2.3. We shall begin by detailing four variational
integrators and one classical integrator, as well as the algorithm we will use as the bench-
mark for the other integrators. We shall compare the performance of these integrators on
three problems.

Since we do not know the exact solutions of the problems, it is useful to have a high
accuracy numerical solution that we may regard as exact. To obtain this “exact” solution
we use another numerical method, run with a very small step-length.

We use Matlab, version 6.5 (R13), for all computations.

Classical Integrators

We use two classical integrators in this thesis. The first is ode15s, which is one of the
standard methods of Matlab:

Algorithm ode15s. This is one of Matlab’s built-in methods for solving ordinary dif-
ferential equations. ode15s integrates ODEs and index 1 DAE. Generally problems must
be presented on the form

M(y)ẏ = f(t, y). (3.1)

The matrix M(y) may be singular—then equation (3.1) is a DAE.

Monforte [15, sect. 7.6] uses another of Matlab’s built-in integrators, ode113, as
a benchmark with which to compare the nonholonomic integrators. We prefer to use
ode15s since it accepts index 1 DAE, which leads to less work in the implementation. The
integrator has high order and it is run with a very low error tolerance. For the purposes of
these experiments we may regard the integrator as exact. The algorithm behind ode15s is
detailed in [20].

To apply ode15s we reduce the index of the system’s equations of motion until we get
an index 1 DAE. For the problems we study that have only one nonholonomic constraint
and no holonomic constraints, this means differentiating the nonholonomic constraint one

31
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time. This is elaborated upon in the description of each numerical experiment in the next
sections.

Algorithm RK4. Consider an ordinary differential equation ẏ = f(y) ∈ Rn and a point
yk ∈ Rn. Find yk+1 by solving the set of explicit equations







gi = f
(

t0 + cih, y0 + h

s∑

j=1

Aijgj

)

y1 = y0 + h
s∑

i=1

bigi

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(3.2)

where the table on the right side is the Butcher-tableaux containing the coefficients of the
method c, A and bT.

The other classical algorithm used in this thesis is the a standard 4th order Runge-
Kutta method. It is explained in any book on the numerical solution of ODEs, e.g. [9,
p. 138]. To apply RK4 we reduce the index of the equations of motion of the system until
we have the underlying ODE. For the problems we study this means differentiating the
nonholonomic constraint twice. We shall show these calculation in the description of each
experiment in the next sections.

Multi-Step Variational Integrators

We now present two multi-step algorithms based on equation (2.19) and the discrete La-
grangians of equation (2.13) and (2.14). They are taken from [15, Chapter 7].

Algorithm Ld. Consider a nonholonomic Lagrangian system L : TQ → R with a con-
straint distribution given by A(q) q̇ = 0. From (2.19) and Lαh , with α = 1/2 from (2.13) we
get

qk−1/2 =
qk + qk−1

2
, q̇k−1/2 =

qk − qk−1

h
,

qk+1/2 =
qk+1 + qk

2
, q̇k+1/2 =

qk+1 − qk
h

,

and
(
h

2

∂

∂q
−

∂

∂q̇

)

L(qk+1/2, q̇k+1/2) +

(
h

2

∂

∂q
+

∂

∂q̇

)

L(qk−1/2, q̇k−1/2) = A(qk)
T λ,

A(qk+1/2) q̇k+1/2 = 0.

The above expressions determine the numerical flow Φ : Q × Q → Q × Q. The equations
must be solved implicitly for qk+1.

We also construct a symmetric algorithm based on the discrete Lagrangian Lsym
h . The

algorithm is otherwise similar to Ld.
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Algorithm LdS. Consider a nonholonomic Lagrangian system L : TQ → R with a con-
straint distribution given by A(q) q̇ = 0. From (2.19) and (2.14) we get a numerical flow
Φ given by

q̇k−1/2 =
qk − qk−1

h
, q̇k+1/2 =

qk+1 − qk
h

,

and

1

2

(
∂

∂q
−

1

h

∂

∂q̇

)

L(qk, q̇k+1/2) −
1

2h

∂L

∂q̇
(qk+1, q̇k+1/2)

+
1

2h

∂L

∂q̇
(qk−1, q̇k−1/2) +

1

2

(
∂

∂q
+

1

h

∂

∂q̇

)

L(qk, q̇k−1/2) = A(qk)
T λ,

1

2

(

A(qk) q̇k+1/2 + A(qk+1) q̇k+1/2

)

= 0.

The above equations must be solved implicitly for qk+1.

The integrators Ld and LdS are second order accurate if the integrators are initialized
with second order accurate values (q0, q1). We will use the integrator ode15s with a small
time-step to initialize the methods. This is sufficient to obtain second order convergence.

Single-Step Variational Integrators

We now present two one-step methods which are based on equation (2.21) and the discrete

Lagrangians L
1/2
h and Lsym

h .
In the single-step formulations the continuous Legendre transform is also needed to

express p as a function of (q, q̇). This can be found either by solving the expression of
the Legendre transform for q̇, or by using the Legendre transform on the Hamiltonian
formulation of the system. The relevant equations are equation (1.9) and (1.11):

p =
∂L

∂q̇

(
q, q̇

)
and q̇ =

∂H

∂p

(
q, p

)
. (3.5)

Algorithm Hd. Consider a nonholonomic Lagrangian system L : TQ→ R with constraints
given by A(q) q̇ = 0. From equation (2.21) and the discrete Lagrangian L

1/2
h of (2.13) we

get a numerical flow Φ : TQ→ TQ given by

qk+1/2 =
qk+1 + qk

2
, q̇k+1/2 =

qk+1 − qk
h

,

and

pk =

(

−
h

2

∂

∂q
+

∂

∂q̇

)

L(qk+1/2, q̇k+1/2) + A(qk)
T λk,

pk+1 =

(
h

2

∂

∂q
+

∂

∂q̇

)

L(qk+1/2, q̇k+1/2) − A(qk+1)T λk+1,

0 = A(qk+1) q̇k+1.
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where q̇k+1 is the generalized velocity in the point (qk+1, pk+1), found analytically from the
Legendre transform as in equation (3.5). qk+1 and q̇k+1 are found from solving the above
equations.

We also construct a symmetric algorithm based on the discrete Lagrangian Lsym
h . The

algorithm is otherwise similar to Hd:

Algorithm HdS. Consider a nonholonomic Lagrangian system L : TQ → R with con-
straints given by A(q) q̇ = 0. From equation (2.21) and the discrete Lagrangian Lsym

h of
(2.14) we get a numerical flow Φ : TQ→ TQ given by (2.14),

q̇k+1/2 =
qk+1 − qk

h
(3.7a)

and

pk =

(

−
h

2

∂

∂q
+

1

2

∂

∂q̇

)

L(qk, q̇k+1/2) −
1

2

∂L

∂q̇
(qk+1, q̇k+1/2) + A(qk)

T λk, (3.7b)

pk+1 =
1

2

∂L

∂q̇
(qk, q̇k+1/2) +

(
h

2

∂

∂q
+

1

2

∂

∂q̇

)

L(qk+1, q̇k+1/2) − A(qk+1)T λk+1, (3.7c)

0 = A(qk+1) q̇k+1. (3.7d)

where q̇k+1 is the generalized velocity in the point (qk+1, pk+1), found analytically from the
Legendre transform as in equation (3.5).

qk+1 and q̇k+1 are found from solving the above equations. equations (3.7c–d) to find
pk+1 and λk+1.

Solving Nonlinear Systems of Equations

In the variational algorithms Ld, LdS, Hd and HdS the values qk+1 and/or q̇k+1 are found
by solving implicit equation of type f(yk, yk+1) = 0 for yk+1. We use Matlab’s implicit
equation solver fsolve to solve these equations. fsolve is part of Matlab’s “Optimiza-
tion Toolbox”; its inner workings are beyond the scope of this thesis. We simply state
that fsolve finds the solution to possibly nonlinear equations on the form f(y) = 0 within
a prescribed tolerance. In this thesis the tolerance has been set to tol = 10−12 and we
consider the output to be exact. Reasonable variations of tol does not affect the results
given in this thesis.

The fsolve algorithm is described in Matlab’s documentation, the Optimization
Toolbox User’s Guide [13, p. 7-98–7-111] and the references therein.
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3.1 The Nonholonomic Particle

The nonholonomic particle is a particularly simple example of a nonholonomic system. We
consider a point particle in Euclidean space R3. The nonholonomic particle is used as an
example thorough [15, sect. 4.2, 4.4, 7.6]. We aim here to reproduce the results of [15, sect.
7.6.1].

Because we are in R3 it is convenient to switch between the generalized coordinate
notation and the standard coordinates names, we say that q = (x, y, z) and q̇ = (ẋ, ẏ, ż)
and use these notations interchangably.

The nonholonomic particle has kinetic energy which depends only on velocity, and
moves in a quadratic potential. The kinetic energy K(q̇) and the potential energy U(q)
are given by

K(q̇) =
1

2
q̇Tq̇, U(q) = x2 + y2.

The system’s Lagrangian becomes

L(q, q̇) =
1

2
q̇Tq̇ − (x2 + y2). (3.8a)

The particle is subject to a nonholonomic constraint given by

0 = ż − yẋ =
(
−y 0 1

)
q̇. (3.8b)

Index Reduction

To integrate this system with RK4 and ode15s the equations of motion must first be stated
as a differential-algebraic equation. We use the Lagrange-d’Alembert principle to obtain
the constrained equations of motion







ẍ = −2x− λy,

ÿ = −2y,

z̈ = λ,

(3.9a)

where λ is given by the constraint

0 = ż − yẋ. (3.9b)

The system (3.9a–b) is an index 2 DAE.

To obtain an index 1 formulation of (3.9) we differentiate (3.9b), which yields a relation
in λ,

0 = λ− ẏẋ+ 2xy + λy2. (3.9c)

The equations (3.9a,c) form an index 1 DAE. By using the standard techniqur of rewriting
the equations of motion as a first order system we obtain a system on form Mẏ = f(y) is
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obtained from (3.9a) and (3.9c):












1
1

1
1

1
1

0

























ẋ
ẏ
ż
u̇
v̇
ẇ

λ̇













=













u
v
w

−2x− λy
−2y
λ

λ− uv + 2xy + λy2.













This system is used in the integrator ode15s.
By differentiating (3.9c) we find and ODE in λ given by

0 = (1 + y2)λ̇+ 4(ẋy + xẏ) + 3λyẏ,

or by solving for λ̇,

λ̇ = −
4(ẋy + xẏ) + 3λyẏ

1 + y2
. (3.9d)

The equations (3.9a,d) are the underlying ODE of the particle problem. We may now
integrate this problem as an index 0 problem. We obtain a set of ODEs from equations
(3.9a) and (3.9d):













ẋ
ẏ
ż
u̇
v̇
ẇ

λ̇













=













u
v
w

−2x− λy
−2y
λ

− (4uy + 4xv + 3λyv) /(1 + y2).













This system is used in the integrator RK4.

Variational Integration

The variational integrators Ld, LdS, Hd and HdS do not require the system to be formulated
as an ODE or DAE. Instead we must provide the partial derivatives of the Lagrangian

∂L

∂q
=





−2x
−2y

0



 , and
∂L

∂q̇
= q̇, (3.10)

and the matrix
A(q) =

(
−y 0 1

)
(3.11)

from the constraint ω(q, q̇) = A(q) q̇ = 0.
The one-step methods also require that we use the Legendre transform to find q̇ since

the one-step methods store (q, p) but not q̇. We find from equation (3.5) that the Legendre
transform is given by

p = q̇. (3.12)
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Numerical Experiments

We plot some of the results of two numerical experiments on the nonholonomic particle.
First we wish to verify the order of the methods.

Experiment Setup 3.1 (Order Verification in the Nonholonomic Particle Problem). We
integrate the nonholonomic particle problem given by (3.13) over a constant interval using
20 different step sizes.

We pick the initial condidions

q0 =
(
1 0 0

)T
, q̇0 =

(
0 1 0

)T
, λ0 = 0,

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 5.

We test each integrator with k = 20 different numbers of steps in increments between
N1 = 20 and Nk = 1000. The step sizes hi are given by

hi =
tmax − t0
Ni − 1

.

The numbers of steps Ni are chosen so that they will appear equispaced on a logarithmic
scale as in Figure 3.1.

Ni = bαi−1N1c, α = k−1
√

Nk/N1, i = 1, 2, . . . , k.

We run Experiment 3.1 with each of the integrators Ld, LdS, Hd, HdS as well as the
classical integrator RK4. For each step size hi we compare the generalized coordinates
found in the final time-step qN ∈ Q with the nearly exact value of q(tmax) we obtain from
running the ode15s run with a tolerance tol = 10−12. We plot the error of each method in
Figure 3.1. The plot shows clearly that for this example all the variational integrators are
sencond order. The plot focuses on the work-presicion curves of the variational integrators,
so the graph of the Runge-Kutta method RK4 is not shown in it’s entirety.

We remark that RK4 is of order 4 in all the variables (q, q̇, λ), and that the one-step
methods Hd and HdS are of second order in both q and p of (q, p) ∈ T ∗Q. We still do only
plot the error in the generalized coordinates q ∈ Q of each integrator. This is because the
generalized coordinates are the only quantities that are found by the 2-step methods Ld and
LdS. Because of this they are the only quantities that may be used to make comparisons
between all the methods.

We next study, as in [3, sect. 7.6], a long-time integration of the nonholonomic particle.

Experiment Setup 3.2 (Long-Time Integration of the Nonholonomic Particle Problem).
We integrate the nonholonomic particle problem given by (3.13) over a long time interval
in order to study the geometric properties of the different integrators.
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in Experiment 3.1.
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We pick the initial condidions

q0 =
(
1 0 0

)T
, q̇0 =

(
0 1 0

)T
, λ0 = 0,

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 250.

We set the number of timesteps
N = 1250

and thereby the step length
h = 0.2.

We present the results of this experiment in several plots:
Figure 3.2 shows the solution curve in Q obtained from RK4. The plot of each component

of q shows some structure.
Figure 3.3 shows that the constraint (3.8b) is not exactly conserved by RK4, which is

to be expected since there is no special mechanism that enforces the constraint in each
time-step. Also the conservation of energy along the flow is not preserved.

Figure 3.4 shows the solution obtained from the algorithm Ld. This plot shows an
apparent periodicity of the solution which was not present in Figure 3.2. The plots of the
solution curve obtained from the high-accuracy solution found by ode15s and the plots of
the solution curves of LdS, Hd and HdS are so similiar to Figure 3.4 that we omit them.
Instead we compare the constraint satisfaction and energy conservation properties of the
variational integrators.

Figure 3.5 and Figure 3.6 show that the variational integrators conserve the constraint.
The small fluctuations seen in the constraint function are noise-like, and they are a conse-
quence of the fact that the stepping equations of the algorithms are solved by an implicit
equation solver.

Energy is not exactly conserved by the variational integrators, but we observe that the
energy still is well behaved—it remains close to the initial energy.
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Figure 3.2: Long-time integration of the nonholonomic particle by RK4. (Top): The solution
is plotted as a curve in R3. There is no clear structure apparent. (Bottom): The generalized
coordinate componets of the solution plotted individually. A clear structure is apparent. The
setup behind this plot is explained in Experiment 3.2.
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nonholonomic particle. (Top): The nonholonomic constraint is not enforced by the algorithm,
it does however appear bounded. (Bottom): Energy is not conserved by the classical algorithm.
The energy fluctuates along with the z-component of q, and there is a net loss of energy. The
setup behind this plot is explained in Experiment 3.2.
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Figure 3.4: Long-time integration of the nonholonomic particle by Ld. (Top): The solution
plotted as a curve in R3. A clear structure is apparent, the solution must remain on a subset
of Q determined by the initial conditions. (Bottom): The components of the solution plotted
individually. A clear structure is apparent in the plot, and each component of the solution appears
bounded. The setup behind this plot is explained in Experiment 3.2.
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Figure 3.5: Constraint satisfaction and energy by Ld and LdS in the long-time integration of the
nonholonomic particle. (Top): The nonholonomic constraint is enforced in each time-step. The
numerical solutions show small and essentially noise-like variations. (Bottom): The variational
integrators Ld and LdS do not conserve energy exactly, but still have good energy conservation
properties. Both algorithms display a jump in energy in the first time-step, then they fluctuate
around a constant value. This type of behaviour is also seen in [3, chapter 7]. The setup behind
this plot is explained in Experiment 3.2.
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Figure 3.6: Constraint satisfaction and energy by Hd and HdS in the long-time integration of the
nonholonomic particle. (Top): The nonholonomic constraint is enforced in each time-step. The
numerical solutions show small and essentially noise-like variations. (Bottom): The variational
integrators do not conserve energy exactly, but still have good energy conservation properties.
The energy fluctuates but appears to be bounded. The setup behind this plot is explained in
Experiment 3.2.



3.2. McLachlan and Perlmutter’s Particles 45

3.2 McLachlan and Perlmutter’s Particles

McLachlan and Perlmutter [14] give a higher-dimensional example of a nonholonomic sys-
tem on Hamiltonian form. The configuration space is R2n+1; we will denote the generalized
coordinate components by q = (x, y1, . . . , yn, z1, . . . , zn), and the generalized momentum
components by p = (px, py1 , . . . , pyn

, pz1, . . . , pzn
). The system is time-reversible and energy

is conserved [14].
The energy of the system is given by the Hamiltonian

H(q, p) =
1

2

(

pTp + qTq + z2
1z

2
2 +

n∑

i=1

y2
i z

2
i

)

. (3.15a)

There is a single nonholonomic constraint

px +
n∑

i=1

yipzi
=

(
1 0 · · · 0 y1 · · · yn

)
p = 0. (3.15b)

In [14] it is shown that the numerical flow integrators that are reversible may exhibit a
drift in energy E(q, p) = H(q, p) that is comparable to a diffusion process. By testing the
same system with variational nonholonomic integrators we want to show that variational
integrators outperform integrators that are only reversible, by approximately conserving
the energy over long time intervals.

Index reduction

Hamilton’s equations gives the set of first oder equations

q̇ = p

ṗx = −x + λ,

ṗyi
= −yi − yiz

2
i , i = 1, . . . , n

ṗzi
=







−z1z
2
2 − z1 − y2

1z1 + λy1, i = 1

−z2
1z2 − z2 − y2

2z2 + λy2, i = 2

−zi − y2
i zi + λyi, i = 3, . . . , n.

(3.16a)

and the constraint

px +
n∑

i=1

yipzi
= 0. (3.16b)

The system (3.16a–b) is an index 2 DAE.
To obtain an index 1 formulation of (3.16) we differentiate the constraint (3.16b). This

yields an expression involving λ,

(

1 +

n∑

i=1

y2
i

)

λ = x + y1z1z
2
2 + y2z

2
1z2 +

n∑

i=1

(

y3
i zi + yizi − pyi

pzi

)

. (3.16c)
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The equations (3.16a,c) form an index 1 DAE which is used in the integrator ode15s.
By differentiating (3.16c) we obtain

(

1 +
n∑

i=1

y2
i

)

λ̇+
( n∑

i=1

2yipyi

)

λ =

px + (z1z
2
2py1 + y1z

2
2pz1 + 2y1z1z2pz2) + (z2

1z2py2 + 2y2z1z2pz1 + y2z
2
1pz2)

+
n∑

i=1

(

3y2
i zipyi

+ y3
i pzi

− ṗyi
pzi

− pyi
ṗzi

+ zipyi
+ yipzi

)

. (3.16d)

Equations (3.16a,d) are the index 0 formulation of the problem and are used in the inte-
grator RK4.

Variational Integration

The system is given on Hamiltonian form so the Legendre transformation must be used to
express the system on Lagrangian form. Because the Legendre transform (3.5) is simple:

q̇ =
∂H

∂p
= p, (3.17)

it is easy to find the Lagrangian formulation of (3.15a):

L(q, q̇) =
1

2
q̇Tq̇ −

1

2

(

qTq + z2
1z

2
2 +

n∑

i=1

y2
i z

2
i

)

. (3.18)

The constraint (3.15b) becomes

(
1 0 · · · 0 y1 · · · yn

)
q̇ = 0.

The partial derivatives of the Lagrangian are

∂L

∂x
= −x,

∂L

∂yi
= −yi − yiz

2
i , i = 1, . . . , n

∂L

∂zi
=







−z1z
2
2 − z1 − y2

1z1, i = 1

−z2
1z2 − z2 − y2

2z2, i = 2

−zi − y2
i zi, i = 3, . . . , n,

and
∂L

∂q̇
= q̇

for all components of the velocity vector q̇ = (ẋ, ẏ1, . . . , ẏn, ż1, . . . , żn).
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Numerical Experiments

As in Section 4.1 we start by verifying the order of the numerical methods. We start with
a simple example taking Q = R5, which is the lowest value accepted by the problem.

Experiment Setup 3.3 (Order Verification in McLachlan & Perlmutter’s problem). We
integrate the problem given by (3.15) over a constant interval using 20 different step sizes.

We pick the configuration manifold Q = R5 and initial conditions

q0 =
(
1 0 0 0 0

)T
, q̇0 =

(
0 1 −1 1 1

)T
, λ0 = 1.

We let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 2.

As in Experiment 3.1, we test each integrator with k = 20 different numbers of steps in
increments between N1 = 20 and Nk = 1000. The step sizes hi are given by

hi =
tmax − t0
Ni − 1

.

The numbers of steps Ni are chosen so that they will appear equispaced on a logarithmic
scale (see Figure 3.7).

Ni = bαi−1N1c, α = k−1
√

Nk/N1, i = 1, 2, . . . , k.

Experiment Setup 3.4 (Integration of McLachlan & Perlmutter’s Problem). We inte-
grate the problem given by (3.15) over a long time interval in order to study the geometric
properties of the different integrators. We pick the configuration manifold Q = R5 and
initial conditions

q0 =
(
1 0 0 0 0

)T
, q̇0 =

(
0 1 −1 1 1

)T
, λ0 = 1,

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 10,

We set the number of time-steps
N = 1000

and thereby the step length
h = 0.2.

Figure 3.8 show the components of q found by ode15s. The solutions found by the
other integrators are visually indistinguishable from this plot. We present the results of
this experiment in several plots: Figure 3.8 shows the components of each particle. Figure
3.9 shows the energy conservation and constraint satisfaction of the integrator RK4. Figure
3.10 shows the constraint satisfaction and energy conservation of the variational integrators.

We now want to test the variational integrators on a complex problem where we ex-
pect the variational integrators to show qualitatively correct solutions while the classical
integrator RK4 fails:
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Figure 3.7: Work-Precision plot for McLachlan and Perlmutter’s particle problem. The integra-
tors Ld and LdS are clearly of order 2. The algorithms Hd and HdS display a curious fluctuation
between two lines that converge of order 2. The integrator RK4 is of order 4. The setup behind
this plot is explained in Experiment 3.3.
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and the energy error are small but increase rapidly. The setup behind this plot is explained in
Experiment 3.4
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Figure 3.10: Energy and constraint satisfaction of the variational integrators Ld, LdS, Hd and
HdS. The constraint is satisfied as should be expected. The energy of the two-step methods Ld

and LdS appears bounded. The energy of the methods Hd and HdS oscillate wildly but appear
bounded. The setup behind this plot is explained in Experiment 3.4
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Experiment Setup 3.5 (Long-Time Integration of 26-Variable McLachlan and Perlmut-
ter’s problem). We integrate the problem given by (3.15) over a long time interval in
highlight the qualitative properties of the variational integrators.

We pick the configuration manifold Q = R13 and initial conditions

x0 = 1, y0 =
(
0 −1 0 1 −1 1

)
, z0 =

(
0 1 1 1 0 0

)
,

ẋ0 = 0, ẏ0 =
(
1 0 −1 1 0 −1

)
, ż0 =

(
0 1 −1 1 1 1

)

q0 =
(
x0 y0 z0

)T
, q̇0 =

(
ẋ0 ẏ0 ż0

)T
, λ0 = 0

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 100,

We set the number of time-steps
N = 400

and thereby the step length
h = 0.25.

Figure ?? shows all 26 components of q for RK4 and HdS. The numerical solution com-
puted by RK4 oscillates more and more. For longer integrations the step size has to be
reduced, otherwise the method will fail by blowing up. The variational integrators seems
unaffected by this kind of blowup.
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Figure 3.11: Long-time integration of the 26-variable McLachlan and Perlmutter’s problem. We
compare the numerical solutions of RK4 and HdS. It is obvious that the solution by RK4 displays
more powerful oscillations as time increases, while HdS does not amplify the oscillations. This
indicates that the energy error of RK4 has a significant influence on the solution in this problem.
The setup behind this plot is explained in Experiment 3.5.
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Figure 3.12: Energy error and constraint error by RK4, Ld and HdS in the long-time integration
of 26-Variable McLachlan and Perlmutter’s problem. This plot compares the performance of RK4
and the variational integrators in the same scale of the axes. The lack of constraint satisfaction
of RK4 is very clear. The energy plot shows that even though Ld and HdS do not conserve energy
exactly, their energy-conserving properties are far better than RK4. The energy conservation of
RK4 has failed totally. The setup behind this plot is explained in Experiment 3.5.
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3.3 The Chaplygin Sleigh

The Chaplygin sleigh is a classical example in nonholonomic mechanics and is described
in e.g. [3, 17]. The sleigh is a rigid body supported on a surface by three points. One
of these is a knife edge that only allows motion along the edge, so any skidding motion
perpendicular to the knife edge is not allowed. The other two points allow motion in any
direction. A drawing of the Chaplygin sleigh is given in [3, p. 26].

The Lagrangian of the Chaplygin sleigh is composed of of momentum and angular
momentum terms,

L =
1

2
m(ẋ2

C + ẏ2
C) +

1

2
Iθ̇2 − U(xC, yC, θ),

where (xC, yC) is the sleigh’s centre of mass and θ is the orientation of the sleigh. The
constants I, m and a are the sleigh’s moment of inertia, the mass of the sleigh, and the
distance between the centre of mass and the knife edge.

We follow the approach of [3] by rewriting the Lagrangian in terms of the knife edge
coordinates,

x = xC − a cos θ,

y = yC − a sin θ.

This gives a Lagrangian with mixed terms,

L(q, q̇) =
1

2

(

m(ẋ2 + ẏ2) + (I +ma2)θ̇2 + 2maθ̇(ẏ cos θ − ẋ sin θ)
)

− U(x, y, θ). (3.22a)

The configuration manifold of the sleigh is Q = R2 × S1. As in equation (3.22a) we will
denote a point of q ∈ Q by (x, y, θ) or by q depending on what is more convenient.

The constraint of motion given by the knife edge becomes the nonholonomic constraint

ẏ cos θ − ẋ sin θ = 0. (3.22b)

We consider the sleigh to be on an inclined plane, so the potential energy U(xC, yC)
becomes

U(xC, yC, θ) = U(x + a cos θ, y + a sin θ, θ) = mg(y + a sin θ). (3.22c)

The Chaplygin sleigh is an example of a system with rotational symmetry. Because of
the nonholonomic constraint we still do not have conservation of angular momentum. The
nonholonomic constraint (3.22b) means that angular momentum and linear momentum
interconnected. Taking v as the velocity of the sleigh at the knife edge, a balance of linear
and angular momentum gives this momentum equation for angular momentum:

v̇ = aθ̇2,

θ̈ = −
ma

I +ma
vθ̇.

The energy of the system is conserved. It is given by

E(q, q̇) =
1

2

(

m(ẋ2 + ẏ2) + (I +ma2)θ̇2 + 2maθ̇(ẏ cos θ − ẋ sin θ)
)

+ U(x, y, θ).
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Index Reduction

The equations of motion of the system may be found through the Lagrange-d’Alembert
principle,







ẍ− a cos θθ̇2 − a sin θθ̈ = −λ/m sin θ − Ux,

ÿ − a sin θθ̇2 + a cos θθ̈ = λ/m cos θ − Uy,

(I +ma2)θ̈ +maθ̇(ẋ cos θ + ẏ sin θ) = −Uθ.

(3.23a)

As always λ is found from the constraint (3.22b), restated here on matrix-vector form,

(
− sin θ cos θ 0

)
q̇ = 0. (3.23b)

The system of equations (3.23a–b) is an index 2 DAE. By differentiating the constraint
(3.23b) we get an expression involving λ,

λ

m
=

I

I +ma2
θ̇ (ẋ cos θ + ẏ sin θ) −

a

I + ma2
Uθ + cos θUy − sin θUx. (3.23c)

The equations (3.23a,c) form an index 1 DAE. By using the standard technique of rewriting
the equations of motion as a first order system we form an index 1 system on the form
M(y)ẏ = f(y) from equations (3.23a,c). The system is given by













1
1

1
1 −a sin θ

1 a cos θ
I +ma2

a 0

























ẋ
ẏ

θ̇
u̇
v̇
ω̇

λ̇













=













u
v
ω

−λ/m sin θ + aω2 cos θ − Ux
λ/m cos θ + aω2 sin θ − Uy

−maω(u cos θ + v sin θ) − Uθ
λ/m− ω(u cos θ + v sin θ) − Uy cos θ + Ux sin θ.













These equations are used in the integrator ode15s.

By differentiating (3.23c) we find and ODE in λ given by

λ̇ =
Im

I +ma2

(
−maθ̇(ẋ cos θ + ẏ sin θ) − Uθ

I +ma2

(
ẋ cos θ + ẏ sin θ

)
)

+
Im

I +ma2
θ̇
(

aθ̇2 − Ux cos θ − Uy sin θ − ẋθ̇ sin θ + ẏθ̇ cos θ
)

+
d

dt

(
−am

I +ma2
Uθ +mUy cos θ −mUx sin θ

)

. (3.23d)
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The equations (3.23a,d) are the underlying ODE of the equations of motion of the Chap-
lygin sleigh. We restate the equations as













1
1

1
1 −a sin θ

1 a cos θ
I +ma2

1

























ẋ
ẏ

θ̇
u̇
v̇
ω̇

λ̇













=













u
v
ω

−λ/m sin θ + aω2 cos θ − Ux
λ/m cos θ + aω2 sin θ − Uy

−maω(u cos θ + v sin θ) − Uθ
Equation (3.23d).













This system is used in the classical integrator RK4. We remark that although this system
is stated on the form M(y)ẏ = f(y), the matrix M(y) is not singular, and thus we might
equivalently state ẏ = M−1(y)f(y). The notation above is for convenience only and is due
to the length of the formulae.

Variational Integrators

The partial derivatives of the Lagrangian are

∂L

∂q
=





0
0

−maθ̇(ẋ cos θ + ẏ sin θ)





and

∂L

∂q̇
=





m(ẋ− aθ̇ sin θ)

m(ẏ + aθ̇ cos θ)

(I +ma2)θ̇ −ma(ẋ sin θ − ẏ cos θ).





The Legendre transform of (3.5) gives

p =
∂L

∂q̇
=





m(ẋ−maθ̇ sin θ)

m(ẏ +maθ̇ cos θ)

(I +ma2)θ̇ −ma(ẋ sin θ − ẏ cos θ)





so by solving for q̇ we get an expression of the type q̇ = M(q) p with

M =
1

Im





I +ma2 −ma2(cosθ)2 −ma2 sin θ cos θ ma sin θ
−ma2 sin θ cos θ I +ma2(cos θ)2 −ma cos θ

ma sin θ −ma cos θ m.



 (3.24)

The transformation is never singular since the determinant of M is

det(M) =
I +ma2 −ma2(sin θ)2 −ma2(cos θ)2

I2m2
=

1

Im2
.
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Numerical Experiments

As with the nonholonomic particle we present two numerical experiments. To verify the
order of the methods we integrate over a short time period, and to study the geometric
properties of the integrators we integrate over a long time interval.

Experiment Setup 3.6 (Order Verification in the Chaplygin Sleigh Problem). We in-
tegrate the Chaplygin sleigh problem given by (3.22) over a constant interval using 20
different step sizes.

We pick the initial conditions

q0 =
(
1 0 0

)T
, q̇0 =

(
0 0 0

)T
, λ0 = 1/20,

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 5.

We test each integrator with k = 20 different numbers of steps in increments between
N1 = 10 and Nk = 1000. The step sizes hi are given by

hi =
tmax − t0
Ni − 1

.

The numbers of steps Ni are chosen so that they will appear equispaced on a logarithmic
scale,

Ni = bαi−1N1c, α = k−1
√

Nk/N1, i = 1, 2, . . . , k.

As with the previous two problems we run experiment 3.6 with each of the integrators
Ld, LdS, Hd, HdS and RK4, and compare the solution to the solution of the high-precision
ode15s. The error

∥
∥ΦN

h (q0) − φtN (q0)
∥
∥ of each method against the number of steps Ni. The

result is displayed in Figure 3.13. The plot shows that while all the geometric integrators
have order 2, the single-step integrators Hd and HdS do not appear as well behaved as the
2-step integrators. The error of each single-step integrators lies on two straight lines, each
of which converges with order 2.

To study the geometric properties of the integrators we consider the a system that is
again in the initial state given by the next experiment:

Experiment Setup 3.7 (Long-Time Integration of the Chaplygin Sleigh Problem). We
integrate the Chaplygin sleigh problem (3.22) over a long time interval in order to study
the geometric properties of the different integrators.

We pick the initial conditions

q0 =
(
1 0 0

)T
, q̇0 =

(
0 0 0

)T
, λ0 = 1/20,

and let the integration take place over the time interval [t0, tmax] given by

t0 = 0, tmax = 30.
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Figure 3.13: Work-Precision plot for the Chaplygin sleigh. The integrators Ld and LdS are
clearly of order 2. The algorithms Hd and HdS display a curious fluctuation between two lines
that converge of order 2. The integrator RK4 is of order 4. The setup behind this plot is explained
in Experiment 3.6.
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Figure 3.14: Long-time integration of the Chaplygin sleigh by ode15s (Left): The generalized
coordinate components of the solution plotted individually. (Right): The solution is plotted as a
curve in R2. The down direction of the incline is in the negative y direction. The constraint is
clearly visible at the top of the trajectory, where the sleigh initially is oriented perpendicular to
the incline direction. After a short time the sleigh goes into a free fall-like trajectory. The setup
behind this plot is explained in Experiment 3.7.

We set the number of time-steps

N = 250

and thereby the step length

h = 0.12.

We present the results of this experiment in several plots:

Figure 3.14 shows the solution curve in Q obtained from ode15s. After a short time
the solution settles into a “free fall” trajectory where q̇ is increasing. The results from RK4

and the multi-step integrators Ld and LdS are indistinguishable from Figure 3.14 so they
are omitted.

The single-step integrators display some very surprising behavior. Figure 3.15 shows
that Hd does not enter a state of stable velocity. Where the exact solution settles down, the
numerical solution of Hd begins to oscillate. When the oscillations lessen and disappear,
the solution is following a completely different trajectory. The behaviour is similar in the
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symmetric single-step integrator HdS. Reducing the time-step makes the oscillations smaller
but the “jump” to a different trajectory still happens.

Figure 3.16 show the constraint error and the energy error of of Hd and HdS. The
constraint error is negligible as we have come to expect from a variational integrator. The
energy error is negligible except around the time when the numerical solution undergoes
heavy oscillations. Around the oscillations phase of the solutions both integrators display
a big dip in energy. Energy error can be used as an indicator of total error in variational
integrators, so this plot can be considered a warning that something is wrong.

Figure 3.17 shows that the constraint (3.8b) is not exactly conserved by RK4, which we
should expect by now since there is no special mechanism that enforces the constraint in
each time-step. Also the conservation of energy along the flow is not preserved. After the
trajectory of the sleigh has stabilized the energy seems to settle on a constant value, while
the constraint error grows linearly.

Figure 3.18 shows the constraint satisfaction and energy conservation of the integrators
Ld and LdS. In this integration of the Chaplygin sleigh problem the classical method RK4

displays far better energy conservation than the variational methods.
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Figure 3.15: Long-time integration of the Chaplygin sleigh by Hd. (Left): The generalized
coordinate components of the solution plotted individually. (Right): The solution is plotted as
a curve in R2. The down direction of the incline is in the negative y direction. Something very
bad obviously happens at t ≈ 16, the solution curve becomes unstable, oscillates, and eventually
settles on a completely different physically correct trajectory around t ≈ 20. The setup behind
this plot is explained in Experiment 3.7.
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Figure 3.16: Constraint satisfaction and energy by Hd and HdS in the long-time integration of
the Chaplygin sleigh. (Top): The nonholonomic constraint is enforced in each time-step. The
numerical solutions show small and essentially noise-like variations. (Bottom): A big dip in the
energy error is displayed by both methods in the same time that the numerical solution undergoes
oscillations. Anomalies like this in the energy error can be indicators of the fact that something
is not right in the solution. When the trajectory of the solution ceases to oscillate, the energy is
back to normal. So in fact energy is conserved even when the computed trajectory is completely
wrong. The setup behind this plot is explained in Experiment 3.7.
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Figure 3.17: Constraint satisfaction and energy by RK4 of in the long-time integration of the
Chaplygin sleigh. (Top): The nonholonomic constraint is not enforced by the algorithm. When
the trajectory of the sleigh has stabilized the constraint error appears to grow linearly. (Bottom):
As the trajectory of the sleigh stabilizes the energy appears to settle at a constant value. The
setup behind this plot is explained in Experiment 3.7.
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Figure 3.18: Constraint satisfaction and energy by Ld and LdS in the long-time integration of
the Chaplygin sleigh. (Top): The nonholonomic constraint is enforced in each time-step. The
constraint error is large early on when the constraint force has the most influence over the solution.
(Bottom): The variational integrators Ld and LdS display the same initial jump as we have seen
in the earlier examples. The energy does not oscillate as it did in the previous examples. The
setup behind this plot is explained in Experiment 3.7.
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Chapter 4

Conclusion

We shall attempt to draw some tentative conclusions and look at some possibilities for
further work.

Classical Methods v.s. Two-Step Methods

For short time intervals, the absolute accuracy of the classical integrator outperforms every
variational method. One might have expected that the method RK4 would indeed display
convergence of order 4, but that the error would still be much larger than the error of the
variational integrators. This is clearly not the case.

For long-time integration the situation is different. While the solution may in one sense
be totally wrong for all the integrators, the solution computed by the functioning variational
integrators will not exhibit behavior that is totally inconsistent with the underlying physics.
Variational integrators do open new problems to long-time numerical integration.

Variational integrators may be more treacherous than classical methods in the sense
that the output of a geometric integrators looks correct at a casual glance. Fortunately
the behaviour of the energy of the solution can be taken as an indication of the correctness
of the method.

The 26-dimensional system of particles integrated in Section 3.2 is the heaviest test of
the integrators in this thesis. While it is not possible to say that any of the variational
integrators preserve the solution, it is obvious that the lack of energy conservation of the
classical method will eventually lead to disaster. Figure 3.11 shows that the amplitude of
the solution increases for RK4, while the variational integrators do not cause any increase in
amplitude. Reducing the size of the time-steps will only postpone this phenomenon. The
variational integrators on the other hand show very agreeable energy conservation results.

The Chaplygin sleigh is the only problem where the potential is not quadratic. It
appears that a quadratic potential that gives rise to smooth oscillatory motion leads to
problems where the variational integrators outperform classical methods. This can be
understood intuitively in the sense that quadratic potentials lead to trajectories that con-
stantly curve, in which case classical methods require short step lengths in order to perform

67
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well. The trajectory in the Chaplygin problem, on the other hand, settles into a quasi-
stable state where the constraint forces are weak and do not influence the system greatly.

Instability in the One-Step Methods

The Chaplygin sleigh problem uncovers a crippling problem with the one-step integrators
we have experimented with in this thesis. Already in the Work-Precision plot in Figure
3.13 there is evidence of instability in the one-step integrators. The fact that the instability
in the solution appears for both one-step integrators indicate that there is some theoretical
difficulty involved in formulating a one-step method for nonholonomic systems, rather than
a bug in the implementation.

Furthermore the Work-Precision plot of McLachlan and Perlmutter’s particles (Figure
3.7) shows a similar behaviour of the one-step methods as the Work-Precision plot of the
Chaplygin sleigh problem (Figure 3.13). This indicates that there may be problems with
the one-step integrator in this problem as well.

The instability uncovered by the Chaplygin problem means that the one-step integrator
may not be trusted to solve any problem at all correctly. The error in the solution need
not always be as spectacular as in the integration of the Chaplygin problem.

The instability in Hd and HdS takes longer to appear when the step length is decreased,
but we found that the instability would always appear in long-time integration. The
oscillations would also be smaller when the time-step was smaller, but the “jump” to a
different trajectory would be similar in violence.

Further Work

Further work with the material of this thesis may take several directions.

• Finding the trouble with one-step methods. Finding out whether the instabil-
ity of the one-step methods is due to an unknown theoretical difficulty or is due to a
bug in the implementation of the methods. This would have been the first priority
of the author. It would have required a deeper understanding of discrete mechanics
and of stability criteria for numerical integrators.

• Simulating problems with several holonomic and nonholonomic constraints.

The algorithms constructed require no change to simulate systems with multiple non-
holonomic constraints, and very little change in order to accommodate problems with
both holonomic and nonholonomic constraints.

• Optimization of the methods. It must be said that the classical integrator RK4

is exceedingly faster than than the variational integrators. Partly this is because
of the high accuracy required of the implicit equation solver fsolve. It would be
interesting to increase the error tolerance of fsolve and see how that would affects
the geometric properties of the flow. Alternatively Newton’s method with a small
fixed number of iterations in each time-step could be considered.
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