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Abstract

This thesis seeks to establish a methodology to reveal whether the risk appetite held by
investors is dependent on the macroeconomic environment and, if present, to quantify
this dependency.

To do so a generic model is built and a case study is carried out with data from
DnBNOR. The available data consists of the daily pro�t and losses together with the
number and volume of transactions made in a currency portfolio owned by DnBNOR
and some selected timeseries on exchange rates, all against NOK. Also, timeseries on the
gross national product and consumer price index are collected from Statistics Norway

(SSB).
In the process of building the model, the thesis sets out the theoretical foundation for

di�erent risk measurement concepts and gives a presentation of the theory on business
cycles as this is used to classify and measure the macroeconomic environment. The model
is built with a Bayesian approach and implemented in WinBUGS. The use of Bayesian
statistics is motivated by di�erent time resolution of the data; some of the data is observed
every day while other parts are observed each quarter.

The thesis' main idea is to decompose the relevant part of the economy in one micro-
economic and one macroeconomic state. The microeconomic state is unique for each day
while the macroeconomic state accounts for one quarter; together they give the expected
risk appetite for each day.

In this way the impact from the macroeconomic state is quanti�ed and the results
show that the macroeconomic state is statistically signi�cant for the risk appetite. As this
is a case study one needs more data and research before any universal valid conclusions
can be made.
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Chapter 1

Introduction

The objective of this thesis is to establish a methodology whose intention is to reveal
whether the risk appetite held by investors is dependent on the macroeconomic environ-
ment and, if present, to quantify this dependency. The dependency is of interest, both
to academics and practitioners, as some suggest that changes in asset prices are due to
exogenous changes in the risk appetite. There also exist trading strategies that are based
on the idea that it is possible to quantify the movements in asset prices that are due to
changes in risk appetite.1

The literature does not always make clear distinctions between the terms �risk ap-
petite� and �risk aversion�. The trend is that the �nancial community uses �risk appetite�
while academics prefer �risk aversion�. This thesis will in particular discuss the de�nition
used by Gai & Vause (2006) who attempt to make a clear distinction between the two
terms. This distinction implies that the risk appetite, the willingness of investors to bear
risk, is a�ected by both the degree of which investors dislike uncertainty about their future
consumption possibilities, i.e. their risk aversion, and the level of this uncertainty which
is determined by the macroeconomic environment.

To answer whether the risk appetite is dependent on the macroeconomic environ-
ment, a statistical model is built and applied with data collected from one portfolio in a
case study. The model is based upon the idea that it is possible to describe the economy
relevant for the portfolio at hand with the use of two states; one describing the macroeco-
nomic environment and one describing the microeconomic environment. Both of these
may or may not a�ect the risk appetite held by the portfolio administrator. This idea is
incorporated by a Bayesian approach where several microeconomic states belong to the
same macroeconomic state. The latter is described by a business cycle estimated with a
Hodrick-Prescott �lter.

Because this thesis do not follow a standard approach it gives a thorough presentation
of all steps taken towards the complete model. All programmed code for all treatment
and adjustment made to any part of the data can be found in the appendix or in the
text itself. The thesis assumes that readers have some background in economics and
statistics, although all key concepts are introduced in a way that does not demand a
speci�c background.

The empirical �ndings in this thesis partly support Gai & Vause's (2006) assumption
as the risk appetite is found to be dependent on the macroeconomic environment. At the
same time the causality behind this dependency is questioned as one might suspect that
the macroeconomic environment does not only a�ect the level of uncertainty surrounding

1See for instance Misina (2003).
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future consumption, but perhaps also the degree of which investors dislikes such uncer-
tainty, i.e. their risk aversion. However, as this is a case study is it impossible to state
any universal valid conclusions.

The following chapter concentrates on market risk and how it should be measured.
Chapter 3 lay out the theoretical foundations used to classify and measure the macro-
economic environment in the terms of business cycles. The collected data is presented
in chapter 4 before chapter 5 constructs the model and explains its statistical attributes.
The latter chapter also contains some theoretical aspects on Bayesian statistics and risk
concepts such as risk aversion and risk appetite. In chapter 6 the results from the model
is presented and interpreted. Chapter 7 concludes and states the necessary reservations
about the �ndings. Figure 1.1 illustrates the structure of this thesis with its main parts
and model approach.
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Market risk
(chp. 2)

Macroeconomic
environment
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• Consumer Price Index (CPI)

Risk appetite
• see chp. 5.3.1

Microeconomic state
• eqn. (5.12)

Macroeconomic state
• see eqn. (5.1)

Activity (A)
• A = N * V
• see chp. 5.3.2

• Exchange rates

see eqn. (5.9)

Expected shortfall; 
see chp. 2.2.4

The Hodrick-Prescott filter; see
procedure 4.1 and eqn. (3.5)

see eqn. (5.14) and (5.15) see eqn. (5.14) and (5.15)

CASE STUDY

Figure 1.1: The structure of the thesis with its main parts and model approach.
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Chapter 2

Market Risk

As this thesis sets out to establish a possible dependency between the risk appetite and
the macroeconomic environment, there is an apparent need to establish an understanding
of �nancial risk and how it should be de�ned and measured. This is the intention in the
present chapter.

This chapter starts out with an overview of di�erent approaches to risk measurement;
risk measures based on the loss distribution receives most attention. After measures
such as Value at Risk (VaR) and Expected Shortfall (ES) is de�ned and exempli�ed,
a quick introduction on how to estimate di�erent risk measures is given. De�nitions
and discussions surrounding risk concepts such as risk appetite, risk aversion and risk
premium is left out here as it is introduced in the building of the model in chapter 5.1.

2.1 Financial Risk

John F. Kennedy once pointed out that

�When written in Chinese the word crisis is composed to two characters. One
represents danger, and the other represents opportunity�.1

This is very much like the concept of risk; there is an upside and a downside. In �nance,
like in every aspect of life, one tries to minimize the downside while maximizing the
upside; one wants to minimize the risk and maximize the returns.

Financial risk is often divided into three main categories: Market risk, credit risk
and operational risk. The former is the risk of a change in the value of a portfolio due
to changes in the value of its underlying components. These components can be stocks,
bonds, exchange rates, etc. Credit risk is the risk that your counter party will not be able
to ful�l his promised repayments, also called the default of the borrower. Operational risk
is de�ned by The Basel Committee on Banking Supervision as �the risk of loss resulting
from inadequate or failed internal processes, people and systems or from external events.�2

The three categories are not mutually exclusive, and in addition two other types of risk
are likely to be present: Model risk and liquidity risk. The former is the risk related to
using an inaccurate or misspeci�ed model for measuring risk. Liquidity risk is the risk,

1According to http://quotations.about.com/.
2This is a group within The Bank for International Settlements and the publication where this

de�nition is written can be found at http://www.bis.org/publ/bcbs118.htm.

http://quotations.about.com/
http://www.bis.org/publ/bcbs118.htm
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roughly speaking, that one cannot sell or buy an investment quickly enough (to minimize
a loss) due to lack of marketability.

It is desirable to measure risk for a number of reasons. First and foremost because it
can, by de�nition, result in big losses. Regulation of risk is also demanded by law as the
society today is depending on stable �nancial institutions; there are several examples on
how devastating the lack of risk management can be, see e.g. Jorion (2001, chapter 2) for
a collection. And in some businesses, in particular the insurance business, risk measuring
is an absolute necessity because the companies' income (the premiums) results from a
transaction of risk from a counter part.

2.2 Di�erent Risk Measures

According to McNeil, Frey & Embrechts (2005) there are four di�erent categories of
approaches to risk measurement: the notional-amount approach, factor-sensitivity mea-
sures, risk measures based on the loss distribution and risk measures based on scenarios.

The notional-amount approach is the simplest of the four. This approach measure risk
as the sum of the notional values in the portfolio where each notional value can possibly
be weighted with a factor that determines how risky each of the underlying securities
are. Its advantage is the simplicity, but the disadvantages are several. First, this kind of
risk measure will not take netting e�ects into account; e.g. risk stemming from short and
long positions in the same security will be counted separately. Diversi�cation e�ects in
the portfolio are also ruled out. The approach also has problems with risk connected to
derivatives, whereas the notional amount of the underlying and the value of the derivative
position can di�er widely.

Factor-sensitivity measures give the change in portfolio value for a given predeter-
mined change in one of the underlying risk factors. The �Greeks�, famous from option
pricing, are examples of factor-sensitivity measures.3 The advantage of factor-sensitivity
measures is that they give important information about how robust the value of a portfo-
lio is with respect to changes in risk factors, but they do not actually measure the overall
riskiness of a position. They also, like the notional-amount approach, have problems
aggregating risk; e.g. one cannot add the Greeks from the derivatives in a portfolio.

Risk measures based on loss distribution are the most modern approach and subject
of much recent research. They measure risk as the statistical quantities describing the
loss distribution of the portfolio over some predetermined time horizon. Examples on
this �loss-distribution-approach� are Value-at-Risk (VaR) and Expected Shortfall (ES),
both derived and explained below. This way of measuring risk overcomes most of the
disadvantages of the other two methods above; it measures risk in a single statistic and
can also be aggregated across portfolios.4 The use of loss distributions is justi�ed as the
worrying part of risk is without doubt connected to losses and not so much the pro�t one
can make. Other facts supporting the choice of the loss distribution approach, is that it
make sense on all levels of aggregation, it re�ects netting and diversi�cation e�ects and it
can be compared across portfolios. The loss distribution is formalized in a mathematical
notation below as it will be used extensively throughout this thesis.

Scenario-based risk measures are, as the names says, concerned about future scenarios
with insulated or simultaneous changes in the risk factors; e.g. a x% rise in an exchange

3A concise explanation of the Greeks can be found in Crouchy, Galai & Mark (2001, page 186) while
Wilmott (2001, chapter 10) gives a more detailed presentation of the subject.

4This does not apply to VaR calculated the in traditional way, see chapter 2.2.3 below.



2.2. DIFFERENT RISK MEASURES 5

rate with a y% fall in some stock market index. In this way a worst case scenario can be
found and the risk, measured as the possible loss, emerges. The risk of the portfolio is
then measured as the maximum loss of the portfolio under all scenarios, where the most
extreme ones can be weighted down if appropriate.

2.2.1 The Loss Distribution

Let the value, measured at time t, of a portfolio be denoted by Vt. The loss of a portfolio
over the period from t to t + 1 can then be de�ned as

Lt+1 = −(Vt+1 − Vt). (2.1)

In �nancial literature it is common to regard the portfolio's value to be dependent on one
or more risk factors. If the d numbers of risk factors are denoted as the random vector
Zt = (Zt,1, Zt,2, . . . , Zt,d)′, then the value of a portfolio at time t can be written as

Vt = f(t, Zt), (2.2)

where Zt is assumed observable at time t. How to choose the risk factors and the function
f will depend on the portfolio at hand; an example of such a risk factor can be the price
on a stock in a portfolio at time t, St, such that Zt = (St,1, St,2, . . . , St,d)′ when the
portfolio has d stocks.

Further, it is the changes in these risk factors that will determine the risk (of losses).
This makes it convenient to de�ne a new random vector Xt = Zt −Zt−1 such that the
loss over one period now becomes

Lt+1 = −(f(t + 1,Zt+1)− f(t, Zt)) = −(f(t + 1,Zt + Xt+1)− f(t, Zt)) (2.3)

because Xt+1 = Zt+1 − Zt. A �rst-order approximation, L∆
t+1, to the loss in equation

(2.3) is

L∆
t+1 = −

(
ft(t, Zt) +

d∑
i=1

fZi(t, Zt)Xt+1,i

)
(2.4)

provided that the function f is di�erentiable. The subscripts to f denote partial deriv-
atives. Equation (2.4) is handy because the losses now becomes a linear function of the
risk factors. But still, this is a approximation and its quality depends on the time reso-
lution (the changes in the risk factors are likely to be small if the time horizon is short)
and, of course, to what degree the portfolio's value actually is linear in the risk factors.
One can also note that the �rst term, ft(t, Zt), is often dropped when the horizon is
short. An application of equation (2.4) is found below in example 2.1.

Example 2.1 Consider a portfolio consisting of stocks in d companies. The price for stock
i at time t is denoted St,i and the number of stocks in company i is λi. The value of the

portfolio at time t is therefore Vt =
∑d

i=1 λiSt,i. Standard �nancial theory says that the
risk factors are the log transformed stocks prices such that Zt = (lnSt,1, . . . , lnSt,d), which
makes Vt =

∑d
i=1 λie

Zt,i and Xt+1,i = ln St+1,i− lnSt,i = ln(St+1,i/St,i). Then the loss of
the portfolio at time t is
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Lt+1 = −(Vt+1 − Vt)

= −

(
d∑

i=1

λiSt+1,i +
d∑

i=1

λiSt,i

)

= −
d∑

i=1

λiSt,i(eXt+1,i − 1),

and the linearized loss becomes

L∆
t+1 = −

(
∂

∂t
f(t, Zt,i) +

d∑
i=1

∂

∂Zi
f(t, Zt,i)

)

= −

(
0 +

d∑
i=1

λiSt,iXt+1,i

)
.

Here the time horizon is assumed so small that ft(t, Zt,i) = 0. Instead of counting the stocks

with λ, one can write wt,i = λiSt,i

Vt
, i.e. w is the weight (proportion) of stock i in the portfolio

at time t, such that

L∆
t+1 = −Vt

d∑
i=1

wt,iXt+1,i.

Further, suppose that X comes from a distribution with mean vector µ and covariance
matrix Σ. Then, using the expectancy operator E(·) and general rules for the mean and
variance of linear combinations, one get

E(L∆
t+1) = −Vt

d∑
i=1

wt,iE(Xt+1,i)

= −Vtw
′µ

and

var(L∆
t+1) = var(−Vtw

′X)
= V 2

t w′Σw.

2.2.2 Coherent Risk Measures

�A coherent risk measure� is an attempt to answer the question �What is a good risk
measure?�. It originates from Artzner, Delbaen, Eber & Heath (1999) who present four
desirable properties for measures of risk; if all four are met the risk measure in question
is labelled �coherent�.

The four properties are posted as axioms. Here, the presentation of these axioms is
done with a notation similar to the one used by McNeil et al. (2005).5 In order to present
these axioms in a consistent way, a formal de�nition of a risk measure is needed:6

5This notation di�ers from Artzner et al.'s (1999) notation as the former concentrate on losses while
the last on the future value, of a portfolio.

6This is the de�nition used by McNeil et al. (2005).
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De�nition 2.1 Let ∆ represent the time horizon and �x some probability space (Ω,F , P ).7

Denote by L0(Ω,F , P ) the set of all random variables on the measurable space (Ω,F).
Financial risks are represented by a set M ⊂ L0(Ω,F , P ) of random variables, which is
interpreted as portfolio losses over a time horizon ∆. Further, assume that M is a convex
cone, i.e. that L1, L2 ∈M implies that L1 +L2 ∈M and λL1 ∈M for every λ > 0. Then,
risk measures are real-valued functions ρ : M→ R.

The interpretation of ρ(L) is the capital that should be added to a position with loss
given by L, so that position again becomes acceptable to an external or internal risk
controller. The axioms that a risk measure should possess to be called coherent, are
listed below (axioms 2.1 - 2.4).

Axiom 2.1 For all L ∈ M and every l ∈ R we have ρ(L + l) = ρ(L) + l. This axiom is
called �translation invariance�.

Axiom 2.2 For all L1, L2 ∈M we have ρ(L1 + L2) ≤ ρ(L1) + ρ(L2). This axiom is called
�subadditivity�.

Axiom 2.3 For all L ∈ M and every λ ≥ 0 we have ρ(λL) = λρ(L). This axiom is called
�positive homogeneity�.

Axiom 2.4 For all L1, L2 ∈M such that L1 ≤ L2 almost surely8 we have ρ(L1) ≤ ρ(L2).
This axiom is called �monotonicity�.

De�nition 2.2 A risk measure ρ whose domain includes the convex cone M is called
coherent if it ful�lls axioms 2.1-2.4.

Axiom 2.1 is quite intuitive; adding or subtracting a sure initial amount l to a po-
sition with loss L alters the capital requirements with exactly l. The short example 2.2
illustrates this:

Example 2.2 Consider a position which has experienced a loss L. Adding an amount ρ(L)
to this position results in the adjusted loss L̃ = L−ρ(L) such that ρ(L̃) = ρ(L)−ρ(L) = 0.

Because axiom 2.2 rules out Value at Risk (see below) as a coherent risk measure, this
is the most debated one. But there are several aspects that speaks in favour of this axiom:
First; if you merge two separate portfolios, standard theory tells you that this should not
create additional risk (but it could reduce overall risk). Second; if a risk measure fails to
comply with axiom 2.2, it could not been used in centralized risk management; this is
exempli�ed in example 2.3. Third; if a risk measure did not comply with axiom 2.2, it
could be possible for a broker to meet demands from internal or external risk managers
by dividing the portfolio in as many sub-portfolios needed because this would reduce the
aggregated risk.

Example 2.3 A risk manager is responsible to oversee that the risk of the overall loss
ρ(L) = ρ(L1 + L2) ≤ M where M is an upper limit. If the risk measure ful�ls axiom 2.2 he
can do this by allocating upper risk limits, M1 and M2, to each of his two brokers such that
M1 + M2 ≤ M and ρ(Li) ≤ Mi, i = 1, 2. Then ρ(L1 + L2) ≤ M1 + M2 ≤ M .

If axiom 2.2 holds, it is easy to verify axiom 2.4: Subadditivity implies that

7The probability space with its components is de�ned in appendix A.1.
8�Almost surely� can be read as �with probability one�; this terminology is used in much of the

literature, see for instance Øksendal (2003).
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ρ(nL) = ρ(L + · · ·+ L) ≤ ρ(L) + ρ(L) + · · ·+ ρ(L) = nρ(L)

for n ∈ N. Because there are no netting or diversi�cation between losses in this portfolio,
it would seem reasonable to claim that equality should hold in the equation above, leading
to positive homogeneity.

Axiom 2.4 states that positions leading to higher losses in every state of the world
requires more capital. One can also note that subadditivity and positive homogeneity
together implies that ρ is convex, i.e. that

ρ(λL1 +(1−λ)L2)
Axiom 2.2
≤ ρ(λL1)+ ρ((1−λ)L2)

Axiom 2.3= λρ(L1)+ (1−λ)ρ(L2) (2.5)

for all L1, L2 ∈ M and λ ∈ [0, 1]. Some argue that for large values of λ it would
be reasonable to have that ρ(λL) ≥ λρ(L) to penalize a concentration of risk and the
possible liquidity problems. This is Föllmer & Schied's (2002) idea:

�In many situations, however, the risk of a position might increase in a nonlin-
ear way with the size of the position. For example, an additional liquidity risk
may arise if a position is multiplied by a large factor. This suggests to relax the
conditions of positive homogeneity and of subadditivity and to require, instead of
[axiom 2.2] and [axiom 2.3], the weaker property of convexity [equation (2.5)].
Convexity means that diversi�cation does not increase the risk, i.e., the risk of a
diversi�ed position [λL1 + (1 − λ)L2] is less or equal to the weighted average of
the individual risks.�

where the brackets [...] mean that their notation has been adjusted to �t the one used
in this thesis.

Below this thesis will present di�erent risk measures and �rst out is one that is very
popular among practitioners; Value at Risk.

2.2.3 The Value-at-Risk (VaR) Measure

VaR, as we know it today, is quite new. It was born in Global Derivatives Study Group
(1993) and soon became a branch standard. Roughly speaking it tells you, in monetary
terms, how much of your portfolio you risk to loose with a given con�dence level in a
given time period. The formal de�nition is:

De�nition 2.3 Given the con�dence level α ∈ (0, 1), V aRα of a portfolio at con�dence
level α is the smallest amount l such that the probability that the loss L exceeds l is no larger
than (1− α). In mathematical terms:

V aRα = inf {l ∈ R : P (L > l) ≤ 1− α} = inf {l ∈ R : FL(l) ≤ α} (2.6)

where FL(l) = P (L ≤ l).

De�nition 2.3 states that V aRα is simply a quantile of the loss distribution. Typical
values for α is 0.95 or 0.99 and the time horizon, which is not explicitly stated in the
de�nition but implied in the loss distribution, is often chosen to one day or one week
when applied to market risk (more on the choice of time horizon and time scaling can
be found in appendix A.2). In credit and operation risk management the time horizon
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normally is longer, often one year. Example 2.4 together with �gure 2.1 shows how
the V aRα measure is computed when the risk factors, and therefore also the losses, are
normally distributed.

Example 2.4 Assume that the loss distribution is normally distributed, i.e. FL ∼ N(µ, σ2),
over some (unspeci�ed) time horizon ∆. Then

V aRα = µ + σΦ−1(α) (2.7)

where µ is the expected loss, σ2 its variance and Φ is the distribution function (making
Φ−1(α) the α-quantile of Φ). This can be seen from the fact that

FL(V aRα) = P (L ≤ V aRα = l) = P

(
L− µ

σ
≤ Φ−1(α)

)
= Φ(Φ−1(α)) = α

.
The procedure is illustrated in �gure 2.1, with µ = 0 and σ2 = 1, where the V aRα

measure is shown as the vertical full line. Here V aRα=0.99 is 2.326, i.e. if the losses are
measured in million dollars this says that there is a 1 % risk that the loss over the period ∆
will be greater than 2.326 MILL USD.9

Figure 2.1: Illustration
of the risk measures Value
at Risk (see example 2.4)
and Expected Shortfall (see
equation (2.9)). Assumes
standard normally distrib-
uted losses, L ∼ N(0, 1)
and uses α = 0.99.
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Another thing one should note is that V aRα does not give any information about
the distribution of losses beyond the V aRα-value; that is also the reason for V aRα not
beeing a coherent risk measure as it does not comply with axiom 2.2, subadditivity.10 A
graphical illustration of a loss distribution that points the necessity of coherency is found
in �gure 2.2. A measure that does classify as a coherent risk measure is the Expected
shortfall (ES) measure.

2.2.4 The Expected Shortfall (ES) Measure

The ES measure is based on the VaR measure, but unlike VaR it succeeds to take the
whole distribution into account. De�nition 2.4 de�nes ES.11

9This is not completely true; McNeil et al. (2005) points out that this interpretation does not account
for model or liquidity risk.

10Though, in (McNeil et al. 2005, Theorem 6.8, page 242) it is shown that if the risk factors is elliptically
distributed, then the V aRα measure will be coherent.

11This is McNeil et al.'s (2005) de�nition.
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Figure 2.2: Stylized ex-
ample of a loss distribution
that makes the V aRα mea-
sure non-subadditive. Here
the loss distribution has a
�bump� in its right tail
which makes the ESα mea-
sure more trustworthy than
the V aRα measure with the
same con�dence level.

Loss0

E(L) VaRα ESα

De�nition 2.4 For a loss L with E(|L|) < ∞ and distribution function FL the expected
shortfall at con�dence level α ∈ (0, 1) ESα is de�ned as

ESα =
1

1− α

∫ 1

α
qu(FL)du (2.8)

where qu(FL) is the (general) quantile function of the loss distribution FL.

ES is closely connected to V aR; this becomes obvious when the quantile function is
written qu(FL) = V aRu(L). Then the ES measure is written as

ESα =
1

1− α

∫ 1

α
V aRudu.

So, instead of �xing the α, one calculates the average of V aRα over all levels α ≤ u ≤ 1.
And this opens for an alternative interpretation of ESα as the average loss, given that
this loss is greater than V aRα. The ESα measure, given that FL ∼ N(0, 1), becomes

ESα = µ + σ
φ(Φ−1(α))

1− α
(2.9)

where φ is the density function for the standard normal distribution. Its value is shown
in �gure 2.1 as the vertical dotted line.

2.2.5 Other Risk Measures

Besides VaR and ES there exist other risk measures based on the loss distribution such
as its variance and lower and upper partial movements.

The former has been, and still is, extensively used in both theory and practice; this
is to a large degree due to the work on portfolio theory by Harry M. Markowitz.12 The
variance is well understood as an analytical tool, but it has some drawbacks as it e.g.
assumes that the second moment of the loss (or �pro�t-and-loss-distribution�, PnL) exists
and that the distribution is symmetrical. Later in this thesis, a variance measure will be
used for the risk appetite; see equation (5.9).

12See for instance Markowitz (1952).
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Partial moments measures of risk focus on the upper and lower part of a distribution.
With the sign convention in this thesis it is natural to look at the upper tail of the loss
distribution and therefore put the attention on the upper partial moments, UMP:

UPM(k, q) =
∫ ∞

q
(l − q)kdFL(l)

where q is a reference point and k gives the weight on the losses deviations from q.
Two special cases are obtained when one choose k = 0 ⇒ UPM(k, q) =

∫∞
q dFL(l) =

P (L ≥ q); with k = 2 and q = E(L) a risk measure called the upper semivariance of L
is obtained.13

2.3 Estimating Market Risk

There are three standard methods for estimating market risk measures; the variance-
covariance method; historical simulation and the Monte Carlo approach, each with its
strengths and weaknesses. These methods are presented below.

2.3.1 The Variance-Covariance Method

The variance-covariance method is a parametric method which assumes that the risk
factor changes is multivariate normally distributed, Xt+1 ∼ Nd(µ,Σ), where µ is the
mean vector and Σ is the variance (or variance-covariance) matrix. Further, it assumes
that the linearization in equation (2.4) is su�ciently accurate such that

L∆
t+1 = −(ct + b′tXt+1) (2.10)

for some constant ct and constant vector bt, both assumed known at time t. This means
that

L∆
t+1 ∼ N(−ct − b′tµ, b′tΣbt) (2.11)

which makes it is easy to calculate V aRα and ESα from equations (2.7) and (2.9) re-
spectively.

To make a practical procedure out of this, estimates on the expected loss and the
covariance matrix are needed. Such estimates can be found using historical risk factor
changes, Xt−n+1, . . . ,Xt, and unbiased estimators of µ and Σ.

The strength of the variance-covariance method is its simplicity, but the lineariza-
tion of losses in respect of the risk factor changes and the normality assumption makes
it a crude method for prediction as both these assumptions generally are inadequate
approximations.

An application of the variance-covariance method can be found in chapter 5.3.2 below.

2.3.2 Historical Simulation

The historical simulation procedure is di�erent from the variance-covariance method
as it does not assume any particular distribution for the risk factor changes. Instead
it concentrates on the empirical distribution of data Xt−n+1, . . . ,Xt. Based on these
historical observations one can construct historically simulated losses L̃s:

13For papers concerned with partial moments, see Unser (2000) and Price, Price & Nantell (1982).
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{L̃s = −(f(t + 1,Zt + Xs)− f(t, Zt)) : s = t− n + 1, . . . , t} (2.12)

where n is the number of historical observations. Then these values (L̃s) show what
would happen to the current portfolio if the risk factor changes on day s were to recur.

Normally V aRα and ESα are estimated with the use of empirical quantile estimation;
for instance, if n = 1000 one would calculate L̃t=1, . . . , L̃t=1000, sort them and use tenth
largest value as an estimate of V aRα=0.99. The ESα=0.99 would be the mean of the ten
largest values.

This method is easy to implement and assumes nothing about the distribution of the
risk factor changes. But, its downside is the need for very large quantities of data.

2.3.3 The Monte Carlo Method

The �rst step in the Monte Carlo approach is to �t the collected data on risk factor
changes to a parametric model. Then one draws realizations from this model and in this
way one gets an empirical distribution of the loss in the next period. More precisely:

Algorithm 2.1 The Monte Carlo Method

Fit the data Xt−n+1, . . . ,Xt to some parametric distribution D(θ)
for i = 1, . . . ,m do

Draw X
(i)
t+1 ∼ D(θ)

Calculate L̃
(i)
t+1 = −(f(t + 1,Zt + X

(i)
t+1)− f(t, Zt))

end for

return L̃t+1

where L̃t+1 is the vector of all realizations with length m. Then one can use this vector
to estimate V aRα and ESα as in the historical simulation method.

Because this method assumes some parametric model the results will of course depend
on just how good this model �ts reality. It also has large computational costs as every
simulation requires a revaluation of the portfolio in question. But, on the bright side, this
method allows m to be chosen much larger than n in the historical simulation method
such that the estimated empirical quantile will be more accurate.

2.4 Relevant Literature

There are several textbooks on risk management on the market. This chapter is mainly
based on McNeil et al. (2005). This is relatively technical and requires some statistical
and mathematical background from the reader. Less technical, but still useful, presen-
tations can be found in e.g. Jorion (2001), Crouchy et al. (2001) and Holton (2003).
Glasserman (2004) provides a introduction to simulation techniques used in �nance.

One important issue not treated in the text above, that still deserves a comment, is
the di�erence between the unconditional and conditional loss distribution. The latter
gives origin to e.g. (G)ARCH14 models which, in general, has shown to provide more
accurate predictions than models build on the unconditional loss distribution (see for
instance McNeil et al. (2005, chapter 2.3.6)). An introduction to GARCH models is
given in for example Brooks (2002, chapter 8) and McNeil et al. (2005, chapter 4).

14(Generalized) AutoRegressive Conditionally Heteroscedastic.
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Chapter 3

The Macroeconomic Environment

As the last chapter concentrated on di�erent aspects surrounding market risk measure-
ment, this chapter will concentrate on how to de�ne and measure the macroeconomic
environment. This is essential to answer the question posed in the introduction: Is the
risk appetite dependent on the macroeconomic environment, in what way and to what
extent.

There is no standard approach to de�ne and measure �the macroeconomic environ-
ment�. This thesis argues that one possible solution is to use the theory and terminology
from the research on business cycles as this provides an generic, but precise, terminology
of the macroeconomic performance of an economy.

The analysis of business cycles is an important and much debated �eld within eco-
nomics and is subject of extensive research. This chapter will not give a full business
cycle analysis, but limit itself to a more descriptive decomposition of the Norwegian
gross domestic product (GDP)1 by using the framework from the theory on business
cycles. The results from this decomposition will be used as explanatory variables in the
forthcoming model.

3.1 Terminology and De�nitions

Even though this thesis not will produce a complete business cycle analysis, some termi-
nology must be introduced. This thesis follows Johansen & Eika (2000) who de�nes the
di�erent states of the economy as shown in �gure 3.1.

Figure 3.1 (a) shows, in a stylized way, the development of an economy, measured
by its GDP, over time. The most distinctive attribute is that the GDP grows as time
passes. This is an empirical fact for developed economies, but its cause will not be
discussed here.2 The trend in the GDP is shown in red and it is the deviation from this
trend that is used as measures of the business cycles. The trend can be interpreted as
an estimate on the activity in the economy when all resources are fully exploited.3

The de�nitions of the di�erent stages in the business cycles are found in �gures 3.1(a-
b): When the economy is above (below) its trend, we talk about a boom (recession) and

1�Bruttonasjonalprodukt (BNP)� in Norwegian.
2Growth theory today owes much to the work of Solow and Swan in the 1950s, see e.g. Heijdra &

van der Ploeg (2002) for a graduate textbook approach on growth theory.
3Some macroeconomic models, included the one used by Statistics Norway (SSB), called KVARTS,

assumes that a steady growth path will exploit the resources better and therefore also give a higher growth
over time.
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Figure 3.1: (a): Stylized path of growth de�ning terminology used in this thesis. (b): An
abstract phase diagram of a business cycle.

when the growth in the actual GDP is smaller (higher) than the trend growth, this is
called a cyclical downturn (upturn). Also, when the deviation between the actual GDP
and the trend (within one cycle) is at its maximum (minimum), this is called a peak
(trough). At these extreme points the actual growth equals trend growth.

Figure 3.1 (b) shows the phase diagram where the state of the economy is classi�ed
with respect to its deviation from trend and deviation from trend growth: When there
is a boom and the economy is still growing faster than the trend growth, this is called
overheating, but as soon as the the actual growth becomes smaller than the trend growth,
the economy is said to enter a period with cooling. When the actual GDP drops below
its corresponding trend value, the economy is said to enter a contraction and this will
continue until the growth in actual GDP becomes larger than the trend growth; then the
economy is catching up before the same cycle starts again.

It is important to emphasize that the business cycles are not deterministic cycles
which means that how one chooses to calculate the trend is of great importance to the
results. Below the Hodrick-Prescott �lter (HP-�lter), which is a method for extracting
this trend, is introduced and later implemented in chapter 4.2.4

3.2 The Hodrick-Prescott Filter

The HP-�lter was �rst published in a working paper in 1981 by Robert J. Hodrick and
Edward C. Prescott and later published as Hodrick & Prescott (1997). In short; this �lter
decomposes a data series, in this case a series of GDP �gures, into a trend component
and a cyclical component as shown in equation 3.1 below:

yt = gt + ct for t = 1, . . . , T. (3.1)

4See for instance Kydland & Prescott (1990) for an application of this �lter to the US economy.
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In the equation above yt is the (observed) GDP and gt is the trend (sometimes referred to
as �growth�) component (unobserved) while ct is the cyclical components (unobserved),
all on logarithmic form.5 The �lter itself is the solution to the (convex) optimization
problem:6

min
{gt}T

t=1

{
f(yt, gt) =

T∑
t=1

c2
t + λ

T−1∑
t=2

[(gt+1 − gt)− (gt − gt−1)]2
}

. (3.2)

Here (gt+1 − gt)− (gt − gt−1) is recognized as ∆2gt+1 and ct = yt − gt.
7

3.2.1 How to choose the correct λ?

λ is often referred to as a smoothing parameter and it determines the relative weight that
is put on the second di�erence in the minimization problem (as 1 is the weight put on the
cyclical components); as λ becomes larger the estimated trend curve becomes smoother.8

In (Hodrick & Prescott 1997, page 4) it is written that

�If the cyclical components and the second di�erences of the growth components
were identically and independently distributed, normal variables with means zero
and variances σ2

1 and σ2
2 (which they are not), the conditional expectation of the gt,

given the observations, would be the solution to equation (3.2) when
√

λ = σ2
1/σ2

2�.
... Our prior view is that a 5 percent cyclical component is moderately large, as
is a one-eight of 1 percent change in the growth rate in a quarter. This led us to
select

√
λ = 5/(1/8) = 40 or λ = 1600 as a value for the smoothing parameter.�

They also performed a sensitivity analysis on the λ and found that the results are quite
consistent even if the smoothing parameter varies between 400 and 6400, i.e. λ can vary
quite a lot while the trend estimate remains stable.

Johansen & Eika (2000) argues that the Norwegian economy is more volatile and
therefore needs a larger λ; in (Johansen & Eika 2000, page 27, footnote 4) it is written
that

�Given the deep and long recession in the Norwegian economy that took root to-
wards the end of the 1980s, a high weight (λ = 40000) has been applied to the
straight line in order to obtain a trend that is reasonably consistent with under-
lying developments in the supply of resources during the period (capital stock and
working-age population). This weight also results in a relationship between reces-
sions/booms in the 1980s and 1990s, which is fairly consistent with our a priori
perceptions of the business cycles in this period.�

5Here capital letters are reserved for variables that has not been transformed in any way and small
letters are denote variables that has undergone a logarithmic transformation (yt = ln(Yt)).

6This particular formulation is found in Reeves, Blyth, Triggs & Small (2000) and di�ers from the
original article, Hodrick & Prescott (1997), in the four endpoints. If one were to use the original

formulation, min{gt}T
t=1

nPT
t=1 c2

t + λ
PT

t=1 [(gt+1 − gt)− (gt − gt−1)]
2
o
, the resulting vector with trend

estimates, g, would be four elements shorter than the input vector, y; i.e. data would be �lost� with the
original formulation. With the data used in this thesis the two methods gives approximately the same
answer.

7∆2 being the second di�erence operator: ∆2gt = ∆(gt − gt−1) = (gt − gt−1)− (gt−1 − gt−2).
8When λ → ∞ all e�ort is put on making the second di�erence as small as possible. Since this is a

quadratic term the best result the �lter can give is zero and this is the same as saying that the derivative
should be constant which implies that the trend is estimated as a straight line.
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This thesis' implementation of the HP-�lter will choose to follow Johansen & Eika
(2000) with λ = 40000. This is because, besides what is said in the quote above, the GDP
data used in this thesis also includes the petroleum sector, a sector which is left out in
the GDP numbers used by Johansen & Eika (2000). This makes the cyclical components
in the unadjusted data used here, even more volatile than Johansen & Eika's (2000).9

To see the actual e�ects of di�erent λ's when the HP-�lter is applied to the GDP data
presented in the next chapter, look at �gure A.3 in appendix A.5.

3.2.2 The Solution of the HP-�lter

The �rst order conditions (FOC) for the minimization problem (3.2) are derived by

solving ∂f(y,g)t

∂gt
= 0 for each t = 1, . . . , T :

c1 = λ(g1 − 2g2 + g3)
c2 = λ(−2g1 + 5g2 − 4g3 + g4)
ct = λ(gt−2 − 4gt−1 + 6gt − 4gt+1 + gt+2) for t = 3, 4, 5, . . . , T − 2

cT−1 = λ(gT−3 − 4gT−2 + 5gt − 2gt)
cT = λ(gT−2 − 2gT−1 + gT ).

This can be written in a more compact way using matrix notation:

c = λFg, (3.3)

where F is a quadratic T × T matrix,10

F =



1 −2 1 0 . . . . . . . . . . . . . . . . . . . . . . 0
−2 5 −4 1 0 . . . . . . . . . . . . . . . . . . 0
1 −4 6 −4 1 0 . . . . . . . . . . . . . 0
0 1 −4 6 −4 1 0 . . . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 . . . . . . . . 0 1 −4 6 −4 1 0
0 . . . . . . . . . . . . . 0 1 −4 6 −4 1
0 . . . . . . . . . . . . . . . . . . 0 1 −4 5 −2
0 . . . . . . . . . . . . . . . . . . . . . . 0 1 −2 1


such that

y = (λF + I)g. (3.4)

The estimated growth is then

ĝ = (λF + I)−1y. (3.5)

9In (Johansen & Eika 2000) the GDP data is adjusted for value added from the petroleum sector and
ocean transport and the results called �GDP mainland Norway�. Johansen & Eika (2000) defends this
adjustment with an argument claiming that the petroleum sector can experience large �uctuations in
activity without this resulting in corresponding �uctuations in other sectors. Here this is assumed to be
of minor signi�cance and no adjustment is made.

10One can note that the sum of each column in the F-matrix is zero,
PT

t=1 ct = 0, as it should.
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3.3 Extensions of the Business Cycle Analysis

The procedure above is normally just the �rst step in an analysis of the business cycle.
In e.g Johansen & Eika (2000) the main part of the analysis is to �nd what drives the
business cycles, in this thesis the intent is merely to classify the state of the economy
using the same framework.

It is possible to decompose the economy in many di�erent ways. In Johansen &
Eika (2000) the business cycles in the Norwegian economy are decomposed in �ve main
factors or impulses (international product markets, money and foreign exchange markets,
oil prices and petroleum investment, �scal policy, inventory investment) plus a residual
factor (i.e. impulses that by de�nition cannot be explained), and it is the impacts from
these that are assumed to drive the business cycle. Other possible decompositions are for
instance the familiar Keynesian approach: Y = C + I +G+NX where Y is the GDP, C
is consumption, I is investment, G is government consumption and NX is net export; see
for instance Kydland & Prescott (1990) for an example on this type of decomposition.

3.4 Relevant Literature

The literature on business cycles, or economical �uctuations as they are sometimes called,
is large and growing. For a comprehensive overview of recent work one can look into
Rebelo (2005) and The Royal Swedish Academy of Sciences (2004, chapter 3); the latter
also o�ers a concise history of the research on real business cycles. For a textbook
introduction on the subject one can read Romer (2001), in particular chapter four and
�ve.
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Chapter 4

Description of the Data Material

This chapter describes the data which is used in the model presented in the next chapter.
As stated in the introduction, this thesis carries out a case study which means that the
data is not representative for the market as it is collected from just one single portfolio.

The portfolio data and time series on di�erent exchange rates are presented before the
data used to extract the business cycles. This latter part also includes the results from
this thesis' implementation of the HP-�lter introduced in the previous chapter, although
this implementation should be regarded as a part of the methodology chosen. The reason
for presenting its results in this chapter, is that they are used as data in the statistical
model presented in the next chapter.

4.1 Data from DnBNOR

The data from DnBNOR is collected from a portfolio consisting of foreign currency,
mainly pound sterling (GBP), US dollars (USD), Swiss franc (CHF), Japanese yen (JPY)
and Euros (EUR). This part of data has three dimensions, speci�ed in the upper part of
table 4.1. Further, time series with these main currencies are collected, speci�ed in the
lower part of table 4.1.1

Table 4.1: The data material collected from DnBNOR.
Variable Unit Original resolution Resolution used Period (DD/MM/YY)a

PnL, PnLb NOK daily daily 20/11/03 - 10/11/04
Number of transactions, N # daily daily 20/11/03 - 10/11/04
Volume traded, V MNOK daily daily 20/11/03 - 10/11/04
NOK/USD - daily daily 01/01/02 - 30/12/05
CHF/USD - daily daily 01/01/02 - 30/12/05
USD/EUR - daily daily 01/01/02 - 30/12/05
USD/GBP - daily daily 01/01/02 - 30/12/05
JPY/USD - daily daily 01/01/02 - 30/12/05

aThe series are broken in weekends and holidays.
bPro�t and losses.

4.1.1 The Portfolio Data

Figure 4.1 shows a graphical representation of the data collected from the DnBNOR-
portfolio; table 4.2 gives the correlation matrix. From �gure 4.1(b) it is quite obvious

1These are also provided by DnBNOR.
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that the number and volume of transactions are highly correlated and this is con�rmed
by the correlation matrix as Cor(N,V ) = 0.938. On the other hand, there seems not
to be a signi�cant relationship between PnL and N and/or V ; a simple regression with
PnL as the dependent variable give p-values for N and V to 0.53 and 0.97, respectively.

Another thing one should note about �gure 4.1(a) is the four outliers on the dates
07/01/04, 08/01/04, 30/04/04 and 03/05/04. The fact that these follow one another
two and two, and that they are approximately of the same, but opposite, size, is a bit
suspicious as it is not the same volatility in the underlying exchange rates on these dates.
So, this can either be a data �aw, or a consequence of a bet made by the portfolio
administrator(s). As there is no apparent reason not to trust the data source, the data
will not be altered.

Table 4.2: Correlation matrix for the currency portfolio from DnBNOR.
Number PnL Volume

Number 1 -0.096 0.938
PnL -0.096 1 -0.092
Volume 0.938 -0.092 1
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Figure 4.1: The portfolio data collected from DnBNOR. (a): Pro�t and losses. (b):
Number and volume of transactions.
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4.1.2 The Exchange Rate Data

Figure 4.2 shows the exchange rates in NOK, the log-returns and a normal QQ-plot of
these log-returns for each of the exchange rates.2 The time period is from 01/01/02 to
30/12/05 (DD/MM/YY), including 1044 observations of the �ve exchange rates, 261 in
each year. The correlation matrix for the exchange rates is found in table 4.3, while the
correlation matrix for the log-returns on the exchange rates are found in table 4.4. The
former shows, for example that when YEN, measured in NOK, becomes more expensive,
the same happens with USD. The opposite is true for EUR; when EUR increases its value
measured in NOK, USD tends to decrease in value.

The correlation matrix in table 4.4 states that all returns are positive correlated. This
is probably due to the fact that it is primarily what happens to the Norwegian krone that
determines the returns on all the exchange rates; e.g. if the Norwegian Central Bank
decides to increase its interest, this will, ceteris paribus, make NOK more attractive to
foreign investors and the NOK becomes more expensive measured in other currencies.3

Table 4.3: Correlation matrix for the currencies in �gure 4.2(a).
NOK/USD NOK/CHF NOK/EUR NOK/GBP NOK/JPY

NOK/USD 1 -0.072 -0.391 0.349 0.713
NOK/CHF -0.072 1 0.885 0.707 0.448
NOK/EUR -0.391 0.885 1 0.556 0.173
NOK/GBP 0.349 0.707 0.556 1 0.709
NOK/JPY 0.713 0.448 0.173 0.709 1

Table 4.4: Correlation matrix for the log-returns of the exchange rates.
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4.2 Data on Business Cycles

To extract the business cycles, data on GDP and the consumer price index (CPI) are
collected from SSB, described in table 4.5, and the CPI is used to measure the GDP in
�xed (2005) prices. This resultant GDP is then seasonal adjusted before it undergoes

2The log-return at time t on for instance USD measured in NOK is de�ned as ln

 
NOKt
USDt

NOKt−1
USDt−1

!
.

3An introduction to the exchange market and its attributes is given by e.g. Rødseth (2000).
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Figure 4.2: Exchange rate data collected by DnBNOR. (a): Foreign currency against NOK.
(b-f): Log-returns on each exchange rate. (g-k): Normal QQ-plots for the log-returns on each
exchange rate.
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a logarithmic transformation. Then the HP-�lter constructed in the previous chapter
is applied to this �logarithmic transformed seasonal adjusted GDP measured in �xed
prices�. Procedure 4.1 explains this in detail.

Table 4.5: Resolution and description of the data material collected from SSB.
Variable Unit Original resolution Resolution used Period (quarter/year)
GDP and its components MNOK quarterly quarterly Q1/1978-Q3/2005
CPIa index monthly quarterly M1/1979-M12/2005

aCPI for 1978 is (indirectly) available using the �price calculator� on SSB's webpages; see http:

//ssb.no/emner/08/02/10/kpi/.

Procedure 4.1: This is the procedure used to extract the business cycles in the Norwegian
economy.

1. Collect data on GDP and CPI from SSB.4

2. De�ate the GDP �gures with the CPI such as they are measured in 2005-prices.5

3. Adjust for seasonal patterns using a classical decomposition model; Yt = Tt + St + et

where Yt is the original GDP data, Tt is the trend, St is the seasonal component and
It is the irregular component. The model prescribes that E(It) = 0, St+d = St and∑d

i=1 Si = 0 where d = 4 is the period.6 The implemented code can be found in
appendix A.3.

4. Do a logarithmic transformation of the GDP data.

5. Apply the Hodrick-Prescott �lter with λ = 40000 and extract the cycles.

6. Smooth the results from the HP-�lter using a centred MA(5)-process with weights
(1
8 , 1

4 , 1
4 , 1

4 , 1
8).7

Figure 4.3(a) illustrates the procedure 4.1 graphically. From here one can note that
the GDP Mainland Norway, used by Johansen & Eika (2000), shows the same seasonal
pattern as the regular GDP, but also that the petroleum sector was more volatile in recent
years making the GDP series more volatile than GDP Mainland Norway as argued in
chapter 3.2.1 above.

Figure 4.3(b) gives the results after the HP-�lter described in section 3.2 has been
applied and the results have been adjusted using a centred MA(5)-process as proce-
dure 4.1 prescribes. This particular smoothing is inspired by Johansen & Eika (2000,
page 27, footnote 3) as they say that

�Quarterly data in �gures and tables are smoothed with a �ve-quarter moving,
weighted average in order to eliminate short-term random e�ects and provide a
clearer visual picture.�

4This series is found in the �StatBank� of SSB (http://statbank.ssb.no/); then choose: �Subject
09: National economy and external trade Table 03519: Gross domestic product and value added, by
industry�.

5The CPI data is also from SSB; �Subject 08: Prices, price indices and economic indicators Table
03013: Consumer Price Index (1998=100)�. The base year is corrected from 1998 to 2005 (fourth
quarter).

6This model is presented in Brockwell & Davis (2002, chapter 1).
7The weights were provided in an email from one of the authors, T. Eika.

http://ssb.no/emner/08/02/10/kpi/
http://ssb.no/emner/08/02/10/kpi/
http://statbank.ssb.no/
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The upper left and bottom right plots in �gure 4.3(b) are the actual realizations of
their stylized counterparts in �gure 3.1. It is (part of) the values from the bottom right
plot that are used as quanti�cations of the business cycles in the full model which is
presented in the next chapter.
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Figure 4.3: Graphical presentation of procedure 4.1. (a): The cirles in the GDP series points
out the fourth quarter in every year. (b): Application of the HP-�lter (λ = 40000) to the
logarithmic transformed seasonal adjusted GDP.
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Chapter 5

The Model

The previous three chapters have provided the theory and data that the model will be
built upon. As written in the introduction, this model is an exempli�cation of a generic
methodology which should be able to answer whether the risk appetite is dependent upon
the macroeconomic environment.

As shown in the last chapter, the portfolio and exchange rate data had a daily time
resolution while the business cycles were classi�ed every quarter. This will motivate
the use of Bayesian statistics with two di�erent states; one macroeconomic and one
microeconomic. These two states are presented before a short introduction to Bayesian
theory is given. Then the covariates in the micro-state are chosen before the model is
fully speci�ed and implemented in WinBUGS.

5.1 Building the Model

As stated above, the model will be built using a Bayesian approach. One of the main
reasons for using Bayesian statistics is that the data material has di�erent time scales;
the business cycles are measured every quarter, while the �nancial time series have a
daily time resolution. This could, of course, be solved by aggregating the �nancial data
to a quarterly basis, but this would also reduce the information in the model. Instead
the business cycles, measured as the deviation from trend and the deviation from trend
growth, are thought of as a macroeconomic state for the economy in the relevant quarters.
This �macro-state� is speci�ed in equation (5.1);

µT = β0 + β1dTrendT + β2dTrendGwtT , (5.1)

where dTrendT is the deviation from trend and dTrendGwtT is the deviation from trend
growth in quarter T . As one can see, this looks like a regression type of model, and that
is indeed the intention: µT represents the macro-state and the coe�cients, β1 and β2,
will give the e�ects of dTrendT and dTrendGwtT , respectively. T counts the quarters,
T ∈ (1, . . . , N), where N is the number of quarters in the set of data.

The idea is now that for each µT there are several micro-states, labelled µt (note that
the macro-state is speci�ed with a capital T while the micro-state has a small t as its
subscript). In all of these microstates one wants to quantify, if any, the impact from µT

on the risk appetite held by the portfolio administrator.

Regardless of the macroeconomic state of the economy, it is also important to control
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the risk appetite, or realized risk, for other risk factors.1 And this is what the micro-state
should do; a generic speci�cation is

µt = α0 + α1x1,t + α2x2,t + . . . + αqxq,t. (5.2)

This is, as one can see, also a regression-like relation where the α's will tell in which way
and to what extent the risk factors (the covariates, xi) has e�ect on the risk appetite.
The covariates are speci�ed in chapter 5.3 below.

The two states will together control for the exogenous factors one believe a�ect the
risk appetite in the data; µT and µt are connected as shown in equation (5.3) below.

µS,t = γ1µT + γ2µt for t ∈ (K(T ), . . . ,K(T + 1)) where T ∈ (1, . . . , N). (5.3)

where (K(T + 1) − K(T )) is the number of time periods, or micro-states, in quarter
T . µS,t can now be interpreted as the expected level of risk and this is what the model,
described in detail in chapter 5.4 below, assumes.

Before specifying the model, a short introduction to Bayesian statistics will be given.

5.2 Bayesian Statistics; the Theory Behind

Bayesian statistics is di�erent from the classical approach in two important aspects: It
turns what is thought of as parameters in classical statistics into random variables and
it assumes that there exists some prior knowledge of these variables, knowledge which
is incorporated in what is called prior distributions, π(θ). The α's and β's in equations
(5.2) and (5.1) above can serve as examples of such parameters that become random
variables in the Bayesian paradigm.

A short intro to Bayesian statistics, with instructive examples, is given by Coles,
Roberts & Jarner (2002) and Green (2001). For a thorough presentation of Bayesian
theory, see Bernardo & Smith (1994).

5.2.1 Bayes Theorem

The cornerstone in Bayesian statistics is, naturally, Bayes Theorem. A representation of
this can be found in e.g. Bernardo & Smith (1994). Here D is data, H is hypotheses,
P (Hj) is called the prior probabilities, P (D|Hi) the likelihoods and P (Hi|D) the posteriori
probabilities.

Theorem 5.1 For any �nite partition {Hj , j ∈ J} of the certain event Ω and D > ∅,

P (Hi|D) =
P (D|Hi)P (Hi)∑

j∈J P (D|Hj)P (Hj)
. (5.4)

Proof: Given the well known theorem of conditional probability,

P (Hi|D) =
P (Hi ∩D)

P (D)
=

P (D|Hi)P (Hi)
P (D)

,

the result follows when applied to D = ∪j(D ∩Hj). �

1Another way to put this is that the moving variance of the pro�t and losses (see equation 5.9)
becomes a measure for the risk appetite after it is controlled for the risk in the exchange rate market.
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This result is directly transferable to the continuous case; the probabilities P are
shifted with distributions π and {Hj , j ∈ J} becomes (random) variables. So, let the
random variables in the model be represented with θ and call the data y. Bayes theorem
can now be written

π(θ|y) =
π(y|θ)π(θ)∫
π(y|θ)π(θ)dθ

(5.5)

where the integral in the denominator will be a constant. This means that

π(θ|y) ∝ π(y|θ)π(θ), (5.6a)

i.e.; posterior ∝ likelihood× prior. (5.6b)

It is quite obvious that the distribution of interest is the (joint) posterior distribution
as this is the one that gives estimates on the random variables of interest, given the
collected data material. So, inference is based upon the joint posterior and one much
used method is known as Markov chain Monte Carlo (MCMC).

5.2.2 MCMC

The idea behind MCMC is simple: Suppose the posterior distribution of interest is π(θ|y)
for θ ∈ Θ, but that one cannot sample from π(θ|y) directly. However, assume that a
Markov chain with state space Θ and stationary distribution π(θ|y) can be constructed
and that this is easy to simulate from. If the chain is run for a long enough time,
simulated values from this can be regarded as samples from the posterior distribution of
interest and inference on these realizations will provide the requested information from
π(θ|y).

A central concept in the use of MCMC methods is the concept known as conditional
conjugacy. This concept is based on the fact that each of the full conditional distributions
in a Bayesian model often have �nice and simple� forms, even in cases when the posterior
distribution does not. So, instead of sampling directly from the joint posterior, which
may be an arbitrarily high dimensional distribution, MCMC uses the full conditionals to
simulate a Markov chain whose stationary distribution is the posterior of interest. The
concept of conditional conjugacy is illustrated in example 5.1.2

Example 5.1 Let π(Yi|µ, σ2) ∼ N(µ, σ2) for i ∈ (1, . . . , n) with prior distributions

π(µ) ∼ N(µ0, σ
2
0) (5.7a)

π(σ−2) ∼ Gamma(α0, β0) (5.7b)

where µ and σ is considered to be a priori independent and µ0, σ2
0, α0 and β0 is known

parameters. Further, let τ = σ−2 and τ0 = σ−2
0 . The posterior distribution is then

π(µ, τ |y) ∝ e−
τ0
2

(µ−µ0)2τα0+n
2
−1e−β0τ

n∏
i=1

e−
τ
2
(yi−µ)2 . (5.8)

So even though the priors are tractable, common distributions, the posterior is not. But, the
full conditional distributions on the other hand, will be quite easy to handle:

2This example is based on example 3.1 by Coles et al. (2002).
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π(µ|τ,y) ∝ e−
τ0
2

(µ−µ0)2
n∏

i=1

e−
τ
2
(yi−µ)2

∼ N

(
τ
∑n

i=1 yi + µ0τ0

nτ + τ0
,

1
nτ + τ0

)
and

π(τ |µ,y) ∼ Gamma

(
α0 +

n

2
, β0 +

∑n
i=1(yi − µ)2

2

)
.

This result, where the full conditional distributions have nice and simple forms whereas the
joint posterior is intractable, is called conditional conjugacy.

The ideas from the example above are basis for one of the most common versions of
MCMC; the Gibbs sampler.

5.2.3 The Gibbs Sampler

The Gibbs sampler samples from the (generic) multivariate distribution π(θ) where θ is
a vector with d components; θ = (θ1, . . . , θd). The Gibbs sampler will now, successively
and repeatedly, simulate from the full conditional distribution of each component given
the other components. Algorithm 5.1 gives pseudocode for the Gibbs sampler.

Algorithm 5.1 The Gibbs Sampler

Initialize θ(0) = (θ(0)
1 , . . . , θ

(0)
d )

for i = 1, . . . ,m do

Simulate θ
(i)
1 from π(θ1|θ(i−1)

2 , θ
(i−1)
3 , . . . , θ

(i−1)
d )

Simulate θ
(i)
2 from π(θ2|θ(i)

1 , θ
(i−1)
3 , . . . , θ

(i−1)
d )

...
Simulate θ

(i)
d from π(θd|θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
d−1)

end for

return θ = θ(1),θ(2), . . . ,θ(m)

The iteration procedure in algorithm 5.1 does not converge to the stationary distri-
bution immediately, so one has to throw away some, say k, of the �rst samples (this is
referred to as the burn-in period). Then it can be shown that, as m →∞, θ(k+1), . . . ,θ(m)

can be regarded as realizations from π(θ).3

5.3 Choosing Variables in the Model

Recall that one part of the model is already speci�ed; the macro-state and its covariates
were given in equation (5.1) above. This leaves the micro-state, equation (5.2). After a
short discussion on di�erent risk concepts, including risk appetite, the covariates in the
micro-state are presented.

3See e.g. Geman & Geman (1984, chapter XII).
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5.3.1 Risk Appetite, Risk Aversion and Risk Premium

The key (dependent) variable in the model is the risk appetite. In the literature this
is normally de�ned as the willingness of investors to bear risk, but the concept of risk
appetite is hard to disentangle from the concepts of risk aversion and risk premium and
the literature is not consistent everywhere. This thesis will give most attention to the
de�nition used by Gai & Vause (2006) who allege that the risk appetite depends on both
the degree to which investors dislike uncertainty surrounding their future consumption
possibilities implied by their assets holdings, and the level of that uncertainty. The degree
of uncertainty is determined by the investor's risk aversion and the level of uncertainty
is derived from the macroeconomic state or environment.

Further, Gai & Vause (2006) claims that the risk aversion, the curvature of individ-
uals' utility functions, is a parameter that is unlikely to change markedly, or frequently,
over time. The risk appetite on the other hand, is likely to shift periodically as investors
respond to episodes of �nancial distress and macroeconomic uncertainty.4 This is because
investors will require higher excess expected return to hold each unit of risk in adverse
circumstances, implying that risk appetite will be low. Together with the quantity of
risk in a particular asset, risk appetite will determine the risk premium, i.e. the expected
return required to compensate investors for holding that asset. The relationship between
these concepts is shown in �gure 5.1.5 Here the dotted box represents the risk appetite
measure used in this thesis which must be controlled for the market risk (�Riskiness of
asset� in Gai & Vause's (2006) terminology as they are concerned with a single asset).
This is done by the micro-state, equation (5.2), above.

Risk premium

Risk appetiteRiskiness 
of asset ln(PnL_10DV)

Risk aversion Macroeconomic
environment

Figure 5.1: Relationship between risk concepts. ln (PnL_10DV t) is explained in equation
(5.9).

To measure the risk appetite, Gai & Vause (2006) use the thoughts and notation
from Cochrane's (2001) treatment of asset pricing theory and show that a measure of
risk appetite may be derived by computing the variation in the ratio of risk-neutral to
subjective probabilities used by investors in evaluating the expected payo� of an asset.

This thesis will use a simpli�ed approach for measuring the risk appetite; a case
study will be carried out with the data described in chapter 4.1.1 and the realized risk in
the portfolio will be used as a proxy for the risk appetite and measured as the moving
variance in the portfolio's pro�t and losses (PnL). Intuitively this seems reasonable; if
the portfolio's administrator takes on greater risk, this will mean that the pro�ts and
losses must �uctuate more heavily, hence, the variance must become larger.6

4See for instance Varian (1999, chapter 12.5) for an introductory approach on risk aversion.
5This is based on Gai & Vause (2006, �gure 1).
6Note that the variance in pro�ts (PnL) must equal the variance in losses (L) as pro�t= −losses.
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The length, labelled l, of this moving variance band can be varied. The preferred
speci�cation of the model chooses l = 10, which corresponds to two working weeks. The
risk appetite, labelled PnL_10DV t, is given by the equation below.7

PnL_lDVt =
1

l − 1

t∑
i=t−(l−1)

(PnLi − PnLt)2 (5.9a)

PnL_10DV t =
1
9

t∑
i=t−9

(PnLi − PnLt)2, (5.9b)

where PnLt = 1
l

∑t
j=t−(l−1) PnLj . As in �gure 4.1(a), PnL_10DV t is measured in

MNOK and because the model assumes that its data, i.e. the risk appetite, is normally
distributed, PnL_10DV t is log-transformed before it goes into the model; i.e. the risk
appetite is measured as ln (PnL_10DV t).

Figure 5.2(a) shows the risk appetite measured with the log-transformed values from
equation (5.9) against time, while �gures 5.2(b) and (c) show the QQ-plot and histogram
with the same values together with the normal distribution, respectively. From the latter
two �gures one can see that the normality assumption is a pretty rough approximation
as the tails in the empirical distribution are heavier than in the normal distribution, but
because this assumption makes the model more stable and easier to solve, this remains
the preferred speci�cation.8
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Figure 5.2: Risk appetite measured as the log-transformed values from equation (5.9). (a):
Plot against time. (b): QQ-plot. (c): Histogram together with the normal distribution (red
line).

5.3.2 The Covariates in the Micro-State

Equation (5.2) above gave a generic speci�cation of the micro-state and now it is time to
choose the covariates in this. First and foremost; to answer whether the risk appetite is
dependent on the business cycles, it must be controlled for the underlying, actual risk in

7One should note that it is after the moving variance has been controlled for the market risk is
becomes the risk appetite in Gai & Vause's (2006) terminology; this is what the dotted box in �gure 5.1
indicates.

8One can also note that the four outliers in the pro�t and losses, pointed out in �gure 4.1(a), are the
reason behind the two peaks in �gure 5.2(a) and therefore also responsible for much of the discrepancy
from the normality assumption.
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the exchange rate market in the relevant time period. It is very possible that the pro�ts
and losses from the portfolio become more volatile due to a higher risk in the underlying
assets and not because of a change in the business cycle (or higher risk appetite). The
procedure for constructing this �benchmark risk measure� is given below.

Benchmarking the Underlying Risk

To control for the underlying risk in the exchange rate market an Expected Shortfall
�benchmark� measure is created, based on the exchange rate data described in chapter
4.1.2.

Usually, when one calculates a VaR or a ES measure, one does so because one needs
to estimate the risk exposure for a time period in the future. For instance, if there where
100 trading days with data on the risk factor changes, Xt−99,Xt−98, . . . ,Xt, all these
would be used to make a risk estimate for day t + 1. Here the intent is to control for
the actual or realized risk in the market at time t and this imply that data on risk factor
changes that includes day t must be used in the benchmark risk measure. I.e. when the
risk appetite is controlled for the market risk at day t, the market risk measure is based
on risk factor changes that includes day t.

With use of the terminology from chapter 2.2.1 the log-transformed exchange rates,
e.g. ln

(
NOK
USD

)
, are chosen as the risk factors Z. This means that the change in risk
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
which has T − 1 = n number of rows where T = 1044 is the number of rows in the
original exchange rate series which stretch from 01/01/02 to 30/12/05.

In the calculation of the benchmark risk measure some assumptions must be made.
Because data on the weights of each exchange rate in the portfolio is unavailable, this
thesis choose to assume that the weights are equal in all assets through the whole period;
since there are �ve possible placements (d = 5) the weight of each must be 0.2. Even
though this is a very crude assumption, it still is reasonable as the intention is to say
something about the risk in the exchange rate market, not in just this one portfolio.
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Further, the thesis will use the variance-covariance method from chapter 2.3.1 to
calculate the benchmark risk estimate. This implies an assumption that the linearization
in equation (2.11) holds and that the changes in the risk factors, i.e. the log-returns
on the currencies, follow a multivariate normal distribution such that equation (2.9)
applies. The fact that the value of the di�erent currencies does not depend on calendar
time together with a short time horizon ∆ = 1 day, makes the linearization of the loss
distribution a decent approximation. The multivariate normality assumption also seems
reasonable at �rst sight as the QQ-plots in �gures 4.2(g-k) are pretty linear, but normal
marginal distributions do not necessarily produce a multinormal distribution. So this
assumption needs to be tested.9

It can be shown that if X ∼ Nd(µ,Σ) with Σ positive de�nite then10

(X − µ)′ Σ−1 (X − µ) ∼ χ2
d (5.10)

where χ2
d denotes the chi-square distribution with d degrees of freedom. To see whether

the risk factor changes are multivariate normally distributed, one can construct data

D2
i =

(
Xi − X̄

)′
S−1

(
Xi − X̄

)
, (5.11)

where X̄ = 1
n

∑n
i=1 Xi and S = 1

n

∑n
i=1

(
Xi − X̄

) (
Xi − X̄

)′
, which should behave like

an iid sample from a chi-square distribution with d degrees of freedom.11 Figure 5.3
presents a QQ-plot of the ordered D2

i -data against the χ2
df=5-quantile. From here it is

obvious that the empirical distribution has heavier tails than its theoretical counterpart
which is a common result in �nancial time series with a high time resolution. This means
that the joint normality assumption is indeed a crude approximation. However, as this
assumption simpli�es the further analysis, it still will be used, but one should note that
this imply that large observations, positive or negative, of ln(PnL_10DV t) is less likely
to be explained by the benchmark risk measure. This in turn will possibly overestimate
the impact from the other microeconomic covariates and also the macro-state.

Figure 5.3: QQ-plot of the ordered
D2

i -data from equation (5.11) against
the χ2

5-quantile. The plot is con-
structed with three steps; �rst sort
the data from (5.11); construct prob-
ability levels using pi =

(
i− 1

2

)
/n

and then use these probability levels
to calculate quantiles from the chi-
squared distribution with 5 degrees of
freedom.
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Figure 5.4 shows a collection of di�erent risk measures calculated with equations (2.7)
and (2.9) with di�erent α-levels. Here it becomes apparent that the more data (the size of

9See McNeil et al. (2005, chapter 3.1.3) for a short introduction to the multivariate normal distribution
or Johnson & Wichern (2002, chapter 4) for a more extensive presentation on the subject.

10See for instance Johnson & Wichern (2002, Result 4.7) or McNeil et al. (2005, equation (3.14)).
11This is an approximation which depends on the size of data, n; if n is large this is a good approxi-

mation.
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n) the risk estimate is based on, the less variable it becomes. It also shows, as expected,
that ESα > V aRα for α < 1. The code implemented to extract these estimates can be
found in appendix A.6.

Activity as a Risk Measure

In chapter 5.3.3 below it is shown that the variation in the benchmark risk measure
does not count for very much of the variation in the risk appetite. This is partly due
to the fact that the benchmark risk measure is only calculated one time each day (i.e.
at the end of day) which may not be su�cient because the exchange rate market has
large intra-day volatility. The idea behind the other risk factor chosen in equation (5.2),
called the activity (A), is that the portfolio administrator will execute more and bigger
transactions on days where this intra-day volatility is high, meaning that a higher activity
is an indication on higher (intra-day) risk in the exchange rate market.

This motivates the activity as another risk factor in equation (5.2). It is measured
as the product of the number (N) and volume (V ) of transactions and shown in �gure
5.5.12

Now equation (5.2) can be speci�ed:

µt = α0 + α1At + α2ESn=10
α=0.99,t. (5.12)

where At is the activity as explained above and ESn=10
α=0.99,t is the estimated shortfall based

on Xt−9, . . . ,Xt. The reason for choosing n = 10 in the ES estimates is simply that this
corresponds with the moving variance band in the risk appetite measure, PnL_10DV t,
from equation (5.9).

5.3.3 A Preliminary Analysis of the Micro-state

To see what can be expect of dependence between the variables in the micro-state, the
dependent variable, ln (PnL_10DV t), is plotted against the two explanatory variables
in equation (5.12), shown in �gure 5.6. From this �gure there is apparently no strong
dependency between the variables.

To look further into the relationship between the variables in the micro-state a stan-
dard regression analysis is performed:

ln (PnL_10DV t) = α0 + α1At + α2ESn=10
α=0.99,t (5.13)

for t ∈ (01/01/04, . . . , 10/11/04) (225 observations) which resulted in the estimates
shown in table 5.1. The table shows, as one would expect, that the coe�cient belonging
to the ES estimate is signi�cantly di�erent from zero and that risk appetite is positively
dependent upon the ES estimate. The activity A has no demonstrable e�ect at a �ve
percent signi�cance level (α = 0.05), but should be considered signi�cant at a ten per-
cent signi�cance level as its p-value is 0.0684. The activity is also positively correlated
with the risk appetite (α1 > 0). But, these estimates are not very robust; when the

12The reason for not just include both the number and volume of transactions in the micro-state,
is the problem with multicollinearity; the correlation matrix in table 4.2 showed that the two had a
correlation coe�cient above 90 % which means that the information carried in one is also more or less
present in the other. This would not be a very big problem if the only intention was to predict the risk
appetite, but here we are also interested in the α's in equation (5.2) and their standard deviation will
be a�ected (larger) in case of multicollinearity. For an introduction to econometrics and the problem of
multicollinearity see e.g. Wooldridge (2003, chapter 3).
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Figure 5.4: Di�erent benchmark risk measures. The di�erent colours correspond to di�erent
α-levels and the VaR measures are shown with full lines while the ES measures are dotted.
(a): Uses Xt−9, . . . ,Xt (n = 10) to construct V aRα and ESα for time t. (b): Uses
Xt−99, . . . ,Xt (n = 100) to construct V aRα and ESα for time t. (c): Uses Xt−261, . . . ,Xt

(n = 262; one year) to construct V aRα and ESα for time t.
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Figure 5.5: The activity (A) in the portfolio measured as the product of the numbers (N)
and volumes (V ) of transactions, N · V = A.

same regression is done with half of the values, both the coe�cient estimates and their
signi�cance are substantially altered. And with an adjusted R2 less than eight percent,
this analysis does not provide anything conclusive.

Table 5.1: Results from the regression analysis in equation (5.13), using the lm-function
in R. There are 225 observations in the time period from 01/01/04 to 10/11/04. Adjusted
R2 = 0.07757.

Estimate Std. Error t-value p-value
α0 -3.135 0.5142 -6.097 4.74E-09
α1 3.154E-06 1.723E-06 1.831 0.0684
α2 1.586 0.39361 4.028 7.72E-05
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Figure 5.6: Risk appetite plotted against the (a): activity A and (b): ESn=10
α=0.99.

5.4 The Full Model

Now that both the micro- and macro-state is speci�ed, the full model can be constructed.
As shown in equation (5.6), the likelihood and prior distributions need to be speci�ed to
�nd the posterior distribution.

The logarithmic transformed risk appetite is, as written in chapter 5.3.1 above, as-
sumed to be normal distributed given the other variables in the model (i.e. the α's, β's,
γ's and τ). This gives the likelihood:
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π(ln (PnL_10DV t) |α0, α1, α2, β0, β1, β2, γ1, γ2, τ) ∼ N
(
µS,t, τ

−1
)

(5.14)

where the variability is represented by the precision τ instead of the variance σ2 and
where13

µS,t = γ1(β0 + β1dTrendT + β2dTrendGwtT ) + γ2(α0 + α1At + α2ESn=10
α=0.99,t) (5.15)

which is interpreted as the expected risk appetite. The covariates dTrend, dTrendGwt,
A and ESn=10

α=0.99,t are deterministic and the (uninformative) prior distributions in the
model are given as

π(αi) = N(0, (10−6)−1) for i ∈ (0, 1, 2) (5.16a)

π(βj) = N(0, (10−6)−1) for j ∈ (0, 1, 2) (5.16b)

π(γk) = N(0, (10−6)−1) for k ∈ (1, 2) (5.16c)

π(τ) = Gamma(a = 10−3,
1
s

= 10−3). (5.16d)

where a and s are the shape and scale parameters such that E(τ) = 1. The condi-
tional distributions for αi, βj , γk and τ for i ∈ (0, 1, 2), j ∈ (0, 1, 2) and k ∈ (1, 2)
are shown in table 5.2. In this table the notation π(α0| − α0) means �the full condi-
tional distribution of α0, given all the other variables in the model�; i.e. π(α0| − α0) =
π(α0|α1, α2, β0, β1, β2, γ1, γ2, τ), π(α1|−α1) = π(α1|α0, α2, β0, β1, β2, γ1, γ2, τ) and so on.
Detailed calculations can be found in appendix A.7.

13One have that σ2 = 1/τ .
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5.5 The Model Implemented in WinBUGS

This thesis uses a program package called WinBUGS to implement the model described
above. This is an open source program which uses Gibbs sampling (recall algorithm 5.1)
to make statistical inference about the random variables of interest.14

Using WinBUGS, there is in fact no need to calculate the posterior distributions shown
in table 5.2; they are included here for completeness. What WinBUGS do need is the
likelihood and the prior distributions, i.e. equations (5.14) and (5.16), respectively. The
implementation is given in �gure 5.7 and illustrated graphically in �gure 5.8.

model{
beta0 ~ dnorm(0 , 1 .0E−6)
beta1 ~ dnorm(0 , 1 .0E−6)
beta2 ~ dnorm(0 , 1 .0E−6)
alpha2 ~ dnorm(0 , 1 .0E−6)
alpha1 ~ dnorm(0 , 1 .0E−6)
alpha0 ~ dnorm(0 , 1 .0E−6)
tau ~ dgamma(1 . 0E−3, 1 .0E−3)
gamma1 ~ dnorm(0 , 1 .0E−6)
gamma2 ~ dnorm(0 , 1 .0E−6)

f o r (T in 1 : N) {
mu_T[T] <− beta0 + beta1 ∗ dTrend [T] + beta2 ∗ dTrendGwt [T]
f o r ( t in K[T] + 1 : K[T + 1 ] ) {

PnL_10DV[ t ] ~ dnorm(mu_S[ t ] , tau )
mu_t [ t ] <− alpha0 + alpha1 ∗ x1 [ t ] + alpha2 ∗ x2 [ t ]
mu_S[ t ] <− gamma1 ∗ mu_T[T] + gamma2 ∗ mu_t [ t ]

}
}

}

Figure 5.7: WinBUGS-code for the directed acyclic graph (DAG) in �gure 5.8. In the preferred
spesi�cation x1,t = At and x2,t = ESn=10

α=0.99,t.

for(T IN 1 : N)
for(t IN (K[T]+1) : K[T+1])

gamma2

gamma1

mu_S[t]

tau_t

alpha0

alpha1

alpha2

x2[t]x1[t]

mu_t[t]

D[t]

mu_T[T]

beta2

beta1

beta0
dTrend[T]

dTrendGwt[T]

D[t]

name: D[t] type: stochastic density: dnorm
mean mu_S[t] precision tau_t lower bound upper bound

Figure 5.8: The DAG for the model implemented in WinBUGS. In the preferred speci�cation
the data Dt is the log-transformed ten day variance in the pro�t and losses in the portfolio,
i.e. Dt = ln (PnL_10DV t); x1,t = At and x2,t = ESn=10

α=0.99,t.

14Indeed, BUGS is abbreviation for �Bayesian inference Using Gibbs Sampling�. See Spiegelhalter,
Thomas, Best & Lunn (2003).
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Chapter 6

Results and Interpretations

This chapter presents the results from the model constructed in the previous chapter.
The preferred speci�cation and the coe�cients from the model is presented �rst, then a
sensitivity analysis of the results is preformed. Finally, the results are interpreted and
the conclusions follow in the next chapter.

6.1 Coe�cient Estimates

Before the coe�cient estimates are presented, a description of the covariates used in the
preferred speci�cation of the model is given in table 6.1.

Table 6.1: Overview of the data in the preferred speci�cation.
Variable Description Time resolution Time horizon
dTrendT Deviation from esti-

mated trend [%]
quarterly Q1/04 - Q4/04

dTrendGwtT Deviation from esti-
mated trend growth
[%]

quarterly Q1/04 - Q4/04

At Activity (A = N · V ,
[# ·MNOK])

daily 01/01/04 - 10/11/04

ESn=10
α=0.99,t Expected shortfall [%

of portfolio]
daily 01/01/04 - 10/11/04

ln(PnL_10DV ) Logarithmic trans-
formed 10 days sample
variance in the portfo-
lio's PnL [MNOK]

daily 01/01/04 - 10/11/04

Table 6.2 gives the parameter estimates when the model, given by equations (5.14)
and (5.16), is iterated 150000 times (i.e. m = 150000 in algorithm 5.1) with K =
(0, 65, 130, 196, 225)′, N = 4, and the data described in table 6.1. The �rst 10000 esti-
mates are removed due to burn-in.

Table 6.2 shows that none of the coe�cients for variables from the micro-state are
signi�cantly di�erent from zero with a 95% con�dence interval, but that the coe�cients
belonging to the variables from the macro-state are signi�cantly di�erent from zero. This
applies to the γ's as well; γ1 is signi�cant di�erent from zero while γ2 is not. One way to
put this is that, after controlling for the macroeconomic state of the economy, neither the
risk in the foreign exchange market (i.e. the ES measure) nor the activity in the portfolio
have signi�cantly e�ects on the risk appetite held by the portfolio's administrator. The
fact that the activity in the portfolio is insigni�cant is not very surprising, but that
riskiness in the portfolio at all times are under in�uence by the business cycles, not by
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Table 6.2: Results from the model with the preferred speci�cation given in equations (5.14)
and (5.16) and with the data described in table 6.1. All initial values were set to zero except
τt=1 = 0.001.

Node Mean Sd MC error 2.5% Median 97.5% Start Sample
α0 0.238 1006.0 7.579 -1962.0 -0.7526 1971.0 10001 140000
α1 -0.8114 267.6 1.262 -573.2 -1.712E-4 562.2 10001 140000
α2 -1.429 967.1 4.05 -1917.0 0.202 1924.0 10001 140000
β0 906.2 527.1 23.54 126.3 843.0 2145.0 10001 140000
β1 221.7 132.6 5.732 30.54 203.1 539.1 10001 140000
β2 -687.4 400.0 17.77 -1628.0 -636.7 -96.62 10001 140000
γ1 -0.008618 0.009512 4.402E-4 -0.0369 -0.005551 -0.002069 10001 140000
γ2 1.55E-5 5.409E-4 1.533E-5 -5.64E-4 -1.518E-10 6.537E-4 10001 140000
τ 0.3341 0.03178 8.696E-5 0.2745 0.3331 0.3992 10001 140000

the variability in the prices of the underlyings, is quite surprising. But now one must
remember that this is a case study and that the time period is not very long; there is
only four data points (quarters) in the macro-state. The signs of the coe�cients, i.e. the
directions of the dependencies, are discussed in chapter 6.3 below.

The �gures 6.1 and 6.2 give trace and density plots, respectively, of the coe�cient
estimates. From �gures 6.1(d-h) it becomes apparent that the mixing in the model is
quite slow, but when the model is iterated 150000 times, the MC-error becomes less
than 5 % of the sample standard deviation (�Sd� in table 6.2) which is, according to
Spiegelhalter et al. (2003), adequate to conclude that the chain has converged.1

6.2 Sensitivity Analysis

There are two of the covariates in the model that could be altered without a change in
interpretation; PnL_10DV t and ESn=10

α=0.99,t. Both of these variables are constructed with
the use of two working weeks of data, but there are no particular reason for using exactly
two weeks. When the construction of the risk appetite and the benchmark risk measure
are altered, i.e. the length of the moving variance band in equation (5.9) and n and α in
the ES measure, the results remains robust; meaning that γ1 and the β-coe�cients are
signi�cantly di�erent from zero, and that the others are not.

As there are only four observations on each of dTrend and dTrendGwt, one cannot
perform a test on the robustness of the coe�cient estimates.2

6.3 Interpretations

To attempt an interpretation of the results, one must look at the signs and quantities
of the coe�cient estimates. The partial e�ects, assuming everything else equal, can be
found by partial di�erentiation:

∂ ln (PnL_10DV t)
∂dTrendT

= γ1 · β1 = −0.008618 · 221.7 = −1.911 < 0 (6.1)

and

1The �MC-error� is an abbreviation for the �Monte Carlo error� and is an estimate of the di�erence
between the mean of the sampled values (which WinBUGS is using as the estimate of the posterior mean
for each parameter) and the true posterior mean.

2For example use only one half of the data to make the coe�cient estimates and then use this
estimated model to predict the other half.
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(a) α0 (b) α1

(c) α2 (d) β0

(e) β1 (f) β2

(g) γ1 (h) γ2

(i) τ

Figure 6.1: Trace plots of the variables in the model with the preferred speci�cation, see
table 6.1. The model is ran with 150000 iterations where the �rst 10000 are removed due to
burn-in.
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Figure 6.2: Density estimates of the variables in the model with the preferred speci�cation
(see table 6.1). The model is ran with 150000 iterations where the �rst 10000 are removed
due to burn-in.
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∂ ln (PnL_10DV t)
∂dTrendGwtT

= γ1 · β2 = −0.008618 · −687.4 = 5.924 > 0. (6.2)

This means that, ceteris paribus, an increase in the deviation from trend in a quarter,
results in a decreased risk appetite in the same quarter, while an increase in the deviation
from trend growth increases the risk appetite.

6.3.1 The Risk Appetite in the Business Cycle

To give a more precise interpretation one can read these results into the phase diagram
presented in �gure 3.1(b): When the economy is in the part of the business cycle called
catch-up, i.e. when dTrendT < 0 and dTrendGwtT > 0, the risk appetite will be grow-
ing. The opposite will be true in the state of cooling, while in periods with overheating
and contraction equations (6.1) and (6.2) say that the risk appetite could be either in-
creasing or decreasing dependent on the relative size between dTrendT and dTrendGwtT .
This is illustrated in �gure 6.3.

So if one accepts that the macroeconomic environment is duly characterized by the
business cycle de�ned as the deviation from trend and deviation from trend growth, one
may conclude from table 6.2 that the risk appetite is dependent on the macroeconomic
environment.

Deviation from 
trend growth

Catch-up Overheating

CoolingContraction

Recession Boom

Risk appetite ↑ Risk appetite ↑↓?

Risk appetite ↓Risk appetite ↑↓?

Cyclical
upturn

Deviation
from trend

Cyclical
downturn

Figure 6.3: The risk appetite in the business cycle.

6.3.2 A Further Discussion

If one looks further into the reasons why the risk appetite should be dependent on the
business cycles, the results from table 6.2 may be given an additional interpretation.

The logic behind the interdependence between the risk appetite and the macroeco-
nomic environment is quite easy to explain in the case of a stock portfolio. In that
case it is reasonable to predict that a �higher than normal� growth rate, i.e. a cyclical
upturn, indicates high return forecasts and therefore induces a high willingness to bear
risk, while an above normal resource exploitation, i.e. a boom, is an indication on an
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impending recession which implies lower expected future returns and therefore a low risk
appetite.3 So this argument is in accordance with the results from table 6.2 interpreted
trough equations (6.1) and (6.2).

But there are some fundamental di�erences between the stock market and the foreign
exchange market. In the former, the dependence between the risk appetite and the
macroeconomic environment is a consequence of the fact that the return forecasts are
high at the bottom of recessions and inverted at the top of a boom. The foreign exchange
market on the other hand, is a zero-sum game and it is not very intuitive why the returns
in this market, and therefore the risk appetite, should directly depend on the business
cycles in the Norwegian economy. Thus the important question is:

Does the business cycle, measured as the deviation from trend and deviation from
trend growth, encapsulate any form of uncertainty about the future value of a portfolio
consisting of foreign currency, that is not taken into account by the risk factors in the
micro-state (recall equation (5.12))?

If the answer is yes, then the results in table 6.2 are in correspondence with the
theory set out by Gai & Vause (2006) and others. If the answer is no, i.e. that there
are no direct or indirect ways the business cycle carries any more information about the
risk in the exchange market than what is already given by the micro-state,4 then the
assumption set out by Gai & Vause (2006) saying that the risk aversion is �unlikely to
change markedly, or frequently, over time.� is questionable.5

This statement is a consequence of Gai & Vause's (2006) de�nition of risk appetite
given in chapter 5.3.1 and the argument goes like this: If the level of uncertainty sur-
rounding the future value of this currency portfolio is una�ected by the macroeconomic
environment, but that the macroeconomic environment still has a signi�cant impact on
the risk appetite, this could mean that the macroeconomic environment has e�ect on
the risk aversion which then again a�ects the risk appetite. This implies that the risk
aversion does experience signi�cant changes over time as visualized in �gure 6.4. Here
the new red arrow represents the impact from the macroeconomic environment on the
risk aversion (and then on the risk appetite).

Does the business cycle, measured as the deviation from trend and 
deviation from trend growth, encapsulate any form of uncertainty about the 
future value of a portfolio consisting of foreign currency, that is not taken 
into account by the risk factors, i.e. the covariates, in the micro-state?

YESNO

Macroeconomic
environment

Risk appetite

Risk aversion

In accordance with 
Gai & Vause (2006)
(see figure 5.1)

Figure 6.4: Alternative relationship between risk concepts saying that the risk aversion also
is dependent on the macroeconomic environment.

3See for instance Cochrane (2001, chapter 20) for a survey on empirical results on expected returns
in time series.

4Recall that the risk appetite is controlled for the benchmark risk measure before the e�ects from the
macroeconomic environment is quanti�ed; this is done by the micro-state in equation 5.12.

5Gai & Vause (2006, page 168).
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If one believes that the answer to the question posed above is �no�, then the results in
table 6.2 may be interpreted as a psychological e�ect; a cyclical upturn gives the portfolio

administrator the impression that he or she can endure greater risk (
∂ ln(PnL_10DV t)

∂dTrendGwtT
> 0),

while the expectation of a impending cyclical downturn makes the portfolio administrator

more afraid of taking on risk (
∂ ln(PnL_10DV t)

∂dTrendT
< 0).

There are also reasons why the answer to the question above may be �yes�: Even
though the level on expected returns in the currency portfolio at hand does not depend
on the macroeconomic environment, it is possible that the macroeconomic environment
carries information about the volatility on the returns and therefore on the volatility of
the future value of the portfolio. If this is the case, the interpretation of the results in table
6.2 would be that an increased deviation from trend, ceteris paribus, induces a higher
level of uncertainty and hence a lower risk appetite, while an increased deviation from
trend growth, ceteris paribus, induces a lower level of uncertainty on future volatilities
and hence a higher risk appetite.

So much said, this thesis will not and cannot give an unambiguous conclusion as
the data foundation is small. To be con�dent about the results one needs to estimate
the coe�cients through a full cycle, preferably. This last discussion is merely meant to
question the distinction between risk appetite and risk aversion.

6.3.3 Quantifying the Results

The quanti�cation of these e�ects is somewhat demanding to interpret as the risk appetite
is measured as a logarithmic transformed moving variance and not in some relative
measure (because the data does not tell the size of the portfolio); the unit of the risk
appetite measure is ln(MNOK2).

From equation (6.1) one can say that a one percentage increase in dTrendT in a quar-
ter gives a −1.911 decrease in ln (PnL_10DV t); equation (6.2) states that a one per-
centage increase in dTrendGwtT in a quarter gives a 5.924 increase in ln (PnL_10DV t)
for all micro-states in the same quarter.

To put this into perspective one can note that the standard deviation for the risk aver-
sion during the whole period is 1.98. This means that an one percentage point increase in
dTrendT will reduce the risk aversion with approximately one standard deviation in all
micro-states in the relevant quarter, while one percentage point increase in dTrendGwtT
in a quarter will increase the risk aversion with approximately three standard deviations
in all micro-states in the relevant quarter.
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Chapter 7

Conclusions

This chapter will �rst give a quick walk-through of the model with all its building stones,
then the assumptions and limitations underlying the model will be addressed before the
conclusions are stated.

7.1 A Quick Walk-through

Before the conclusions is drawn it is perhaps helpful to recapitulate the building of the
model and its main parts.1

The intention in this thesis was to establish a methodology which could answer
whether the risk appetite is dependent on the macroeconomic state in an economy. The
�rst step was to look into the literature on market risk and how this should be measured.
This was done in chapter 2 with emphasis on Value at Risk and Expected Shortfall. The
next step was to �nd a way to measure the macroeconomic state of the economy. In
chapter 3 it was argued that this could be done using a phase diagram which classi�ed
the economy in terms of its deviation from the estimated trend and its deviation from
the estimated trend growth. To carry out this classi�cation, a Hodrick-Prescott-�lter
was constructed and applied.

The model was built around the collected data which was presented in chapter 4. The
data consisted of the pro�t and losses in a currency portfolio together with the number
and volume of transactions each day and time series with di�erent exchange rates. This
chapter also presented the results from the HP-�lter. Here the portfolio and exchange
rate data had a daily time resolution, while the business cycles where classi�ed every
quarter.

The main model was presented in chapter 5. To overcome the di�erent time res-
olutions of the data, the model was constructed with a Bayesian approach. A short
introduction to this statistical method was given and a hierarchic approach was chosen
as several microeconomic states were contained in one macroeconomic state. The risk
appetite was measured as a moving variance in the portfolio's pro�t and losses and two
(microeconomic) risk factors were chosen: The activity A and ESn=10

α=0.99,t. Further, the
model assigned uninformative prior distributions to all the variables (which also is, ex-
cept τ , referred to as �coe�cients�) and it was assumed that the risk appetite was normal
distributed given the other variables in the model.

1Recall �gure 1.1 as this might help to visualize this walk-through.
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7.2 Critical Assumptions and Reservations

The most critical element in the model is perhaps not any of the assumptions, but the
data used. As stressed several times through this thesis, the data which the risk appetite
is derived from is collected from just one portfolio and this is of course not likely to be
representative for the (Norwegian) �nancial market as such. Nevertheless, this is a quite
large portfolio administrated by one of the largest Norwegian banks, DnBNOR, so it
does carry important information and serves as a highly relevant case study.

The fact that the model �nds that the risk appetite in this one portfolio is dependent
on the business cycles does not mean that the risk appetite in the market is dependent
on the business cycles, nor that the risk appetite in this speci�c portfolio is independent
of other risk factors that are not considered here.

Another considerable drawback concerning the data is its short time horizon. Because
there is not more than a year with portfolio data, this means that the model can use
only four data points (quarters) classifying the business cycles which makes the coe�cient
estimates very sensitive towards perturbations in the data. The lack of data also makes
this sensitivity hard to quantify and further analyses with more data would be needed
for �rm conclusions.

There are also two assumptions made in the model that one should recall before
the conclusions are stated. One of them is the normality assumption regarding the risk
appetite (see equation (5.14)). As �gures 5.2(b-c) shows, this is a crude assumption as
the empirical distribution has heavier tails than its theoretical counterpart which means
that extreme outcomes are more likely than this assumption predicts. Another rough
approximation is the multinormal assumption implied in the variance-covariance method
used when the benchmark risk measure was constructed in chapter 5.3.2. Figure 5.3
shows that this approximation is inaccurate.

7.3 Conclusion

This thesis has attempted to establish a methodology to measure the dependency between
risk appetite and the macroeconomic environment with use of a hierarchical Bayesian
approach. The results from table 6.2 shows that the risk appetite, measured as the
logarithmic transformed ten days variance in the pro�t and losses in the selected portfolio,
is dependent on the business cycle, measured as the deviation from trend and deviation
from trend growth. The risk appetite depends negatively on the deviation from trend and
positively on the deviation from trend growth. The causality behind this dependency,
however, is still unclear and alternative interpretations may be considered as discussed
in chapter 6.3.2.

7.4 Possible Extensions

A model such as the one built and used in this thesis has a range of possible extensions.
A �rst extension (and improvement) would be to consider more explanatory variables
in the micro-state given in equation (5.2) than the two chosen (i.e. the activity A and
ESn=10

α=0.99) although one normally would think that the expected shortfall measure would
incorporate the relevant risk factors (i.e. the log-returns).

Further, one could also look into whether lagged observations of the macroeconomic
covariates in the model have signi�cant e�ects. The logic behind would be that the risk
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appetite is formed on the basis of expectations about the future state of the economy
which may be argued to be dependent on previous macroeconomic states.

It is also possible to specify the macroeconomic state in alternative ways. One could
for instance decompose the business cycles as mentioned in chapter 3.3 as this perhaps
would allow for a more speci�c interpretation of the dependencies between the risk ap-
petite and the macroeconomic environment.

Finally, one should note that the modelling approach used in this thesis is quite
generic and can easily be applied to other types of portfolios and classes of assets.
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Appendix A

Appendix

A.1 The Probability Space (Ω,F , P )

In more advanced parts of the statistical literature one uses the probability space (Ω,F , P )
and not just the probability distribution. This distinction is perhaps not very intuitive
and Cont & Tankov (2004, chapter 2.2.2) o�ers an excellent explanation on why one
sometimes need the hole space and not just the distribution. Øksendal (2003) gives a
concise de�nition of the terms in the space (Ω,F , P ) and the properties needed:1

De�nition A.1 If Ω is a given set, a σ-algebra F on Ω is a family F of Ω with the following
properties:

i) ∅ ∈ F
ii) F ∈ F ⇒ FC ∈ F where FC = Ω\F is the complement of F in Ω
iii) A1, A2, . . . ∈ F ⇒ A :=

⋃∞
i=1 Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable space
(Ω,F) is a function P : F → [0, 1] such that

a) P (∅) = 0, P (Ω) = 1
b) If A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then
P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai)

The triple (Ω,F , P ) is called a probability space.

A.2 The Choice and Scaling of the Time Horizon

V aRα and ESα is risk measures that tells you something about how much of your
portfolio you can loose, with some probability, over a pre-speci�ed time horizon. A
natural question to ask would be: �If I have calculated V aRα with ∆ = 1 day, how can
I use this to �nd V aRα for one week? �. One simlpe answer would be to �aggregate the
daily risk factor change data to a weekly resolution and calculate V aRα once again�. Or,
one could think that the daily estimate could be scaled in some way to obtain a weekly
V aRα measure. Generally one seeks a procedure to transform a one-period risk measure

into a h-period risk measure for h > 1. Let L
(h)
t+h denote the loss from time t over the

next h periods. Similar to equation (2.4) one can write

1This is a shortened version of (Øksendal 2003, De�nition 2.1.1).
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L
(h)
t+h = −(Vt+h − Vt)

= −(f(t + h, Zt+h)− f(t, +Zt))
= −(f(Zt + Xt+1 + . . . + Xt+h)− f(t, Zt))

= −(f(Zt +
h∑

i=1

Xt+i)− f(t,Zt))

such that ∆ = h. Now the question becomes how risk measures applied to the distribution

of L
(h)
t+h scale with h which does not have a simple answer except in special cases. An

exempli�cation of an important special case is found in example A.1.

Example A.1 Assume that the risk factor change vectors, Xt, are independent and iden-
tically distributed N(0,Σ). Then

∑h
i=1 Xt+i ∼ N(0, hΣ). Further, assume that the under-

lying assets of the portfolio in question do not depend on calendar time2 and that the loss is
linearly dependent on the risk factors, i.e. that Lh

t+h =
∑h

i=1 b′tXt+i where bt is a known

vector at time t.3 Then it follows that L
(h)
t+h ∼ N(0, hb′tΣbt) and that both the V aR and

ESα measure will scale according to the square root of time (
√

h) such that

V aR(h)
α =

√
hσΦ−1(α) =

√
hV aR(1)

α (A.2)

ES(h)
α =

√
hσ

φ(Φ−1(α))
1− α

=
√

hES(1)
α (A.3)

where V aR
(1)
α and ES

(1)
α are found in equations (2.7) and (2.9), respectively.

A.3 Seasonal Adjustment; the Classical Decomposition Model

Figure A.1 o�ers an implementation of the classical decomposition model done in R.
The implementation is based on Brockwell & Davis (2002). This algorithm �rst checks
whether the period is odd or even, then it extracts the trend component T using a moving
average �lter chosen to eliminate the seasonal component and dampen the noise. The
�lter depends then on whether the period is odd or even. Then the algorithm �nds the
di�erence between the original series and the trend and then calculates the mean for each
time interval within the full period. A estimate on the seasonal element, ses.temp, is
then found using the mean described above adjusted with the mean for all those means
such that the sum of all the seasonal adjustments over all elements within the period is
zero. The name ses.temp is due to the fact that the indices of this estimates is displaced
compared to its actual values; this is accounted for in the if-sentence that follows. The
algorithm replicates the estimates of the seasonal components such that the returned
vector is equally long as the original series (the input).

A.4 R-code for the HP-�lter

The code in �gure A.2 applies the HP-�lter to a timeseries used to extract the business
cycles in the Norwegian economy. Essentially this is an implementation of equation (3.5)
with the use of the solve-function in R.

2This excludes for instance derivatives.
3E.g. the weight of each asset in the portfolio.
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season <− f unc t i on (x , d){
######################
# The c l a s s i c a l decomposit ion model .
# The func t i on takes in a vector with data , x , and
# the per iod d . I t r e tu rns the s ea sona l components .
######################

# i s the per iod d even or odd?
q <− 0
i nd i c a t o r <− 0
i f (d %% 2 == 0){

q <− d/2
i nd i c a t o r <− 0 # per iod i s even

}
e l s e {

q <− (d−1)/2
i nd i c a t o r <− 1 # per iod i s odd

}

# est imate the trend vector T
T <− 0
T[ 1 : q ] <− NA
T[ ( q+1): l ength (x ) ] <− NA
i f ( i nd i c a t o r == 0){

f o r ( i in (q+1):( l ength (x)−q ) ){
T[ i ] <− (1/d )∗ ( . 5∗ x [ i−q ] + sum(x [ ( i−q+1):( i+q−1)]) + .5∗ x [ i+q ] )

}
}
e l s e {

f o r ( i in (q+1):( l ength (x)−q ) ){
T[ i ] <− mean(x [ i−q : i+q ] )

}
}

# ca l c u l a t e the d i f f e r e n c e between the o r i g i n a l data and the trend
w <− 0
f o r (k in 1 : d){

i n d i c e s <− seq (k+q , l ength (T)−q−(( l ength (T)−q ) %% d) , d)
w[ k ] <− mean(x [ i n d i c e s ]−T[ i nd i c e s ] ) # nr k i s d i sp l a c ed with q

}

# est imate the s ea sona l components ( which s h a l l add to 0)
s e s . temp <− 0
s e s <− 0
f o r ( l in 1 : d){

s e s . temp [ l ] <− w[ l ]− mean(w)
i f ( i nd i c a t o r == 0)

i f ( l <= q){
s e s [ q+l ] <− s e s . temp [ l ]

}
e l s e {

s e s [ l−q ] <− s e s . temp [ l ]
}

e l s e {
i f ( l <= (q+1)){

s e s [ q+l ] <− s e s . temp [ l ]
}
e l s e {

s e s [ l−q+1] <− s e s . temp [ l ]
}

}
}

s e s . vec tor <− 0
f o r (p in 1 : l ength (x ) ){

i f (p<d){
s e s . vec tor [ p ] <− s e s [ p ]

}
i f (p %% d == 0){

s e s . vec tor [ p ] <− s e s [ d ]
}
e l s e {

s e s . vec tor [ p ] <− s e s [ p %% d ]
}

}

return ( s e s . vec tor )

}# end func t i on

Figure A.1: R-code for the seasonal adjustment of the GDP series used in the HP-�lter.
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hp<−f unc t i on (x , lambda , year . s ta r t , qrt . s ta r t , year . end , qrt . end ){

######################
# The t r a d i t i o n a l Hodrick−Prescot t f i l t e r .
# hp i s a func t i on that takes in s i x arguments ; the
# da t a s e r i e s ( log−transformed ) that
# i s to be decomposed in a c y c l i c and a growth component ,
# the weight parameter lambda and
# the s t a r t and end year and quarter .
# I t r e tu rns a matrix with the trend ( growth component ) .
######################

# the length o f the s e r i e s that i s to be decomposed
l <− l ength (x )

# the input vector i s ensured to be a column vector
y <− matrix (x , nrow=l , nco l=1)

# i n t i t i a l i z e the f i l t e r F
F <− diag (6 , nrow=l , nco l=l )

# f i l l i n g in " the end va lues "
F [ 2 , 1 ] <− −2; F [ 1 , 2 ] <− −2
F [ l −1, l ] <− −2; F [ l , l −1] <− −2
F [ 1 , 1 ] <− 1 ; F [ l , l ] <− 1
F [ 2 , 2 ] <− 5 ; F [ l −1, l −1] <− 5

# f i l l i n g in the other d iagona l s
f o r ( i in 1 : ( l −2)){

F [ i ,2+ i ] <− 1
F[2+ i , i ] <− 1

}
f o r (k in 1 : ( l −3)){

F[1+k,2+k ] <− −4
F[2+k,1+k ] <− −4

}

# make an i d en t i t y matrix
I <− diag (1 , nrow=l , nco l=l )
in te rmed ia te <− ( ( lambda∗F)+I )

# apply the f i l t e r on the d a t a s e r i e s y and return the trend est imate
# togethe r with the o r i g i n a l s e r i e s and the dev i a t i on from trend
g <− s o l v e ( a=intermediate , b=y)
res<−matrix (NA, nrow=l , nco l=3)
r e s [ , 1 ] <− y
r e s [ , 2 ] <− g
r e s [ , 3 ] <− y−g

# the smoothed s e r i e s i s 2 pe r i ode s e n t r i e s than
# the o r i g i n a l in both ends ; 4 e n t r i e s toge the r
smooth . dev . trend<−0
f o r ( j in 3 : ( l −2)){

smooth . dev . trend [ j −2] <− 1/8∗ r e s [ j −2,3]+
1/4∗( r e s [ j −1,3]+ r e s [ j ,3 ]+ r e s [ j +1 ,3])+1/8∗ r e s [ j +2 ,3]

}

# the vector conta in ing the dev i a t i on from trend i s one
# entry sho r t e r than the o r i g i n a l data s e r i e s
dev . trend . growth <− ( r e s [ c (−1) ,1]− r e s [ 1 : ( l −1) ,1])−

( r e s [ c (−1) ,2]− r e s [ 1 : ( l −1) ,2 ] )

# the smoothed dev i a t i on from trend growth i s f i v e
# en t r i e s sho r t e r than the o r i g i n a l data s e r i e s ;
# four i s ' l o s t ' due to the smoothing process ,
# one entry due to the growth es t imat ion
smooth . dev . trend . growth <− 0
f o r ( j in 3 : ( l −3)){

smooth . dev . trend . growth [ j −2] <− 1/8∗dev . trend . growth [ j−2]+
1/4∗( dev . trend . growth [ j−1]+dev . trend . growth [ j ]+dev . trend . growth [ j +1])+
1/8∗dev . trend . growth [ j +2]

}

# make p l o t s ( code not inc luded here ) ;
# −the trend vs the o r i g i n a l s e r i e s
# −the dev i a t i on from trend
# − −−−−−−−−−−"−−−−−−−−−−−− smoothed with a centered MA(5)− proce s s
# − the phase diagram ( with and without the smoothed va lues )

re turn ( r e s )
}

Figure A.2: R-code for the HP-�lter.
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A.5 A Sensitivity Analyses of λ in the HP-�lter

Figure A.3 shows how di�erent values of λ a�ects the results of the �lter; for small values
the estimated trend is very close to the original GDP series, while a large value on λ
produces an almost constant trend. Note that λ = 1600 is the size recommended by
Hodrick & Prescott (1997) for the US economy.
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Figure A.3: The HP-�lter with di�erent values of λ; (a): λ = 1, (b): λ = 100,(c): λ = 1600
and (d): λ = 1000000.
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A.6 R-code for the ES and VaR Estimates

The code in �gures A.4 and A.5 constructs the ES and VaR estimates used in the micro-
state in equation 5.2.

ES <− f unc t i on ( return . data , e s t . length , alpha ){

n . row <− dim( return . data ) [ 1 ]
n . c o l <− dim( return . data ) [ 2 ]
var iance <− 0
mean . re turn <− 0
ES . r e s <− 0
mu <− matrix (NA, nrow=(n . row−e s t . l ength ) , nco l=n . c o l )
c u t o f f <− 0

# i n i t i a l i z i n g the weights
w <− matrix ( rep (1/n . co l , n . c o l ) , nrow=n . col , nco l=1)

f o r ( t in 1 : ( n . row−e s t . l ength +1)){
mean . re turn [ t ] <− mean( return . data [ t : ( t+e s t . length −1) , ] )
var iance [ t ] <− t (w)%∗%cov ( return . data [ t : ( t+e s t . length −1) ,1:n . c o l ])%∗%w
ES . r e s [ t ] <− −mean . re turn [ t ]+ sq r t ( var iance [ t ] )∗ dnorm(qnorm( alpha ))/(1− alpha )

}
return (ES . r e s )

}

Figure A.4: R-code for the ES estimates in �gure 5.4.

VaR <− f unc t i on ( return . data , e s t . length , alpha ){

n . row <− dim( return . data ) [ 1 ]
n . c o l <− dim( return . data ) [ 2 ]
var iance <− 0
mean . re turn <− 0
VaR. r e s <− 0
mu <− matrix (NA, nrow=(n . row−e s t . l ength ) , nco l=n . c o l )
c u t o f f <− 0

# i n i t i a l i z i n g the weights
w <− matrix ( rep (1/n . co l , n . c o l ) , nrow=n . col , nco l=1)

f o r ( t in 1 : ( n . row−e s t . l ength +1)){
mean . re turn [ t ] <− mean( return . data [ t : ( t+e s t . length −1) , ] )
var iance [ t ] <− t (w)%∗%cov ( return . data [ t : ( t+e s t . length −1) ,1:n . c o l ])%∗%w
VaR. r e s [ t ] <− −mean . re turn [ t ]+ sq r t ( var iance [ t ] )∗ qnorm( alpha )

}
return (VaR. r e s )

}

Figure A.5: R-code for the VaR estimates in �gure 5.4.
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A.7 Calculations of the Conditional Distributions

Below one can �nd the calculations for the conditional distributions used in the Gibbs
sampler in section 5.4. All calculations are based upon Bayes Theorem from equation
(5.5). To save space, R_PnLt is used instead of ln (PnL_10DV )t from the preferred
spesi�cation.

In the beginning the procedure is the same for the α's, β's, γ's and τ and it is
convenient to introduce the general parameter space φ ∈ {αi, βj , γk} for i ∈ (0, 1, . . . , q),
j ∈ (0, 1, 2, 3) and k ∈ (1, 2).

π(φ| − φ) ∝ π(φ)
N∏

T=1

KT+1∏
t=KT +1

π(R_PnLt|α0, α1, . . . , αq, β0, β1, β2, γ1, γ2, τ)

=
1√

2πσφ

exp

{
− 1

2σ2
φ,p

(φ− µφ,p)2
}

N∏
T=1

KT+1∏
t=KT +1

√
τ

2π
×

exp
{
−τ

2
[R_PnLt − γ1(β0 + β1dTrendT + β2dTrendGwtT )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}

=
1√

2πσφ

exp

{
− 1

2σ2
φ,p

(φ− µφ,p)2
}( τ

2π

)�KN+1
2

�
K2∏

t=K1+1

exp
{
−τ

2
[R_PnLt−

γ1(β0 + β1dTrendT=1 + β2dTrendGwtT=1)−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
} K3∏

t=K2+1

exp
{
−τ

2
[R_PnLt−

γ1(β0 + β1dTrendT=2 + β2dTrendGwtT=2)−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}
× · · · ×

KN+1∏
t=KN+1

exp
{
−τ

2
[R_PnLt−

γ1(β0 + β1dTrendT=N + β2dTrendGwtT=N )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}

=
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2πσφ

( τ

2π

)�KN+1
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−1
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1
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(φ− µφ,p)2+
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K2∑
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π(φ| − φ) ∝ 1√
2πσφ

( τ

2π

)�KN+1
2

�
exp

{
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2

[
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σ2
φ,p
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τ
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γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
]}

,

where subscript p means that it belongs to the prior distribution. This is as far one can
go without specifying φ. But before that is done, please note that an alternative way to
write the normal distribution is given by

Φ ∼ N(µφ, σ2
φ) ⇒ f(φ) =

1√
2πσφ

exp

{
− 1

2σ2
φ

(φ− µφ)2
}

=
1√

2πσφ

exp

{
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2σ2
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φ

)}
∝ exp

{
aφ2 + bφ + C

}
where a = −1/(2σ2

φ), b = µφ/σ2
φ and C = µφ/(2σ2

φ) is a constant. The two equations
above can now be used to �nd the speci�c conditional distributions.

A.7.1 Conditional Distributions for the α's

First the full conditional distributions for αi, i = (0, 1, 2):

π(α0| − α0) ∝ exp

{
−1

2

[
1

σ2
α0,p

(α0 − µα0,p)
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γ2(· · · )

α0 + C


which assumes q = 2. µα0,p = 0 from the prior distribution given in equation (A.1) and
σ2

α0,p
is the variance from the same prior. This means that

1
σ2

α0

=
1

σ2
α0,p

+ τγ2
2KN+1 ⇒ σ2

α0
=

(
1

σ2
α0,p

+ τγ2
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)−1

and that
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µα0

σ2
α0

= τ

N∑
T=1

KT+1∑
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 ,

where (· · · ) = (R_PnLt−γ1β0−γ1β1dTrendT−γ1β2dTrendGwtT−γ2α1x1,t−γ2α2x2,t).
Further, if one chooses the variance in the prior distribution su�ciently large, σ2

α0,p
→∞,

one have that
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For π(α1| − α1) the calculations are as follows:
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which gives, with the same assumptions as in the case with α0 above,

π(α1| − α1) ∼ N
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An identical approach gives the conditional distribution π(α2| − α2):

π(α2| − α2) ∼ N
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A.7.2 Conditional Distributions for the β's

The calculations are quite similar for the β's:

π(β0| − β0) ∝ exp
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−1

2

[
1

σ2
β1,p

(β1 − µβ1,p)
2+

τ

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − γ1(β0 + β1dTrendT + β2dTrendGwtT )−

γ2(α0 + α1x1,t + α2x2,t)]
2
]}

= exp

{
− β2

1

2σ2
β1,p

−
τγ2

1β2
1

∑N
T=1

∑KN+1

t=K1+1 dTrend2
T

2
+

β1τ

2

N∑
T=1

KT+1∑
t=KT +1

2γ1dTrendT (R_PnLt −

γ1β0 − γ1β2dTrendGwtT − γ2α0 − γ2α1x1,t − γ2α2x2,t) + C}

= exp


−1

2

 1
σ2

β1,p

+ τγ2
1

N∑
T=1

KN+1∑
t=K1+1

dTrend2
T

β2
1+

τ
N∑

T=1

KT+1∑
t=KT +1

γ1dTrendT (· · · )

β1 + C

 ;

π(β2| − β2) ∝ exp

{
−1

2

[
1

σ2
β2,p

(β2 − µβ2,p)
2+

τ

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − γ1(β0 + β1dTrendT + β2dTrendGwtT )−

γ2(α0 + α1x1,t + α2x2,t)]
2
]}
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π(β2| − β2) ∝ exp

{
− β2

2

2σ2
β2,p

−
τγ2

1β2
2

∑N
T=1

∑KN+1

t=K1+1 dTrendGwt2T
2

+

β2τ

2

N∑
T=1

KT+1∑
t=KT +1

2γ1dTrendGwtT (R_PnLt −

γ1β0 − γ1β1dTrendT − γ2α0 − γ2α1x1,t − γ2α2x2,t) + C}

= exp


−1

2

 1
σ2

β2,p

+ τγ2
1

N∑
T=1

KN+1∑
t=K1+1

dTrendGwt2T

β2
2+

τ

N∑
T=1

KT+1∑
t=KT +1

γ1dTrendGwtT (· · · )

β2 + C

 .

This result in the following normal distributions:

π(β0| − β0) ∼ N

 1
γ2

1KN+1

N∑
T=1

KT+1∑
t=KT +1

γ1(· · · ),
1

τγ2
1KN+1

 ;

π(β1| − β1) ∼ N

(∑N
T=1

∑KT+1

t=KT +1 γ1dTrendT (· · · )

γ2
1

∑N
T=1

∑KT+1

t=KT +1 dTrend2
T

,
1

τγ2
1

∑N
T=1

∑KT+1

t=KT +1 dTrend2
T

)
;

π(β2| − β2) ∼ N

(∑N
T=1

∑KT+1

t=KT +1 γ1dTrendGwtT (· · · )

γ2
1

∑N
T=1

∑KT+1

t=KT +1 dTrendGwt2T
,

1

τγ2
1

∑N
T=1

∑KT+1

t=KT +1 dTrendGwt2T

)
.

A.7.3 Conditional Distributions for the γ's

The γ's follows the same pattern;

π(γ1| − γ1) ∝ exp

−1
2

 1
σ2

γ1,p

(γ1 − µγ1,p)
2 + τ

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − γ1µT − γ2µt]
2


= exp

− γ2
1

2σ2
γ1,p

− τγ2
1

2

N∑
T=1

KT+1∑
t=KT +1

µ2
T +

τγ1

2

N∑
T=1

KT+1∑
t=KT +1

2µT (R_PnLt − γ2µt) + C


= exp


−1

2

 1
σ2

γ1,p

+ τ
N∑

T=1

KT+1∑
t=KT +1

µ2
T

 γ2
1+

τ
N∑

T=1

KT+1∑
t=KT +1

µT (R_PnLt − γ2µt)

 γ1 + C

 .

π(γ1| − γ1) ∼ N

(∑N
T=1

∑KT+1

t=KT +1 µT (R_PnLt − γ2µt)∑N
T=1

∑KT+1

t=KT +1 µ2
T

,
1

τ
∑N

T=1

∑KT+1

t=KT +1 µ2
T

)
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π(γ2| − γ2) ∝ exp

−1
2

 1
σ2

γ2,p

(γ2 − µγ2,p)
2 + τ

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − γ1µT − γ2µt]
2


= exp

− γ2
2

2σ2
γ2,p

− τγ2
2

2

N∑
T=1

KT+1∑
t=KT +1

µ2
t +

τγ2

2

N∑
T=1

KT+1∑
t=KT +1

2µt(R_PnLt − γ1µT ) + C


= exp


−1

2

 1
σ2

γ2,p

+ τ
N∑

T=1

KT+1∑
t=KT +1

µ2
t

 γ2
2+

τ
N∑

T=1

KT+1∑
t=KT +1

µT (R_PnLt − γ1µT )

 γ2 + C


π(γ2| − γ2) ∼ N

(∑N
T=1

∑KT+1

t=KT +1 µt(R_PnLt − γ1µT )∑N
T=1

∑KT+1

t=KT +1 µ2
t

,
1

τ
∑N

T=1

∑KT+1

t=KT +1 µ2
t

)
.

A.7.4 Conditional Distributions for τ

τ is a bit di�erent. Although the procedure is the same, τ has a gamma prior distribution
with shape and scale parameters a and s, respectively:

π(τ | − τ) ∝ π(τ)
N∏

T=1

KT+1∏
t=KT +1

π(R_PnLt|α0, α1, . . . , αq, β0, β1, β2, γ1, γ2, τ)

=
1

saΓ(a)
τa−1 exp

{
−τ

s

} N∏
T=1

KT+1∏
t=KT +1

√
τ

2π
×

exp
{
−τ

2
[R_PnLt − γ1(β0 + β1dTrendT + β2dTrendGwtT )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}

=
1

saΓ(a)
τa−1 exp

{
−τ

s

}( τ

2π

)�KN+1
2

�
K2∏

t=K1+1

exp
{
−τ

2
[R_PnLt−

γ1(β0 + β1dTrendT=1 + β2dTrendGwtT=1)−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
} K3∏

t=K2+1

exp
{
−τ

2
[R_PnLt−

γ1(β0 + β1dTrendT=2 + β2dTrendGwtT=2)−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}
× · · · ×

KN+1∏
t=KN+1

exp
{
−τ

2
[R_PnLt− γ1(β0 + β1dTrendT=N + β2dTrendGwtT=N )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}
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π(τ | − τ) ∝ (2π)−
�

KN+1
2

�
1

saΓ(a)
τ (a−1)τ

�
KN+1

2

�
exp

{
−τ

s

}
×

exp


K2∑

t=K1+1

−τ

2
[R_PnLt − γ1(β0 + β1dTrendT=1 + β2dTrendGwtT=1)−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}
× · · · ×

exp


KN+1∑

t=KN+1

−τ

2
[R_PnLt − γ1(β0 + β1dTrendT=N + β2dTrendGwtT=N )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}

∝ τ

�
a−1+

KN+1
2

�
exp

{
−τ

s

}
exp

{
−τ

2
×

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − γ1(β0 + β1dTrendT + β2dTrendGwtT )−

γ2(α0 + α1x1,t + α2x2,t + . . . + αqxq,t)]
2
}

= τ

�
a−1+

KN+1
2

�
exp

−τ

1
s

+
1
2

N∑
T=1

KT+1∑
t=KT +1

[R_PnLt − µTt]
2


π(τ | − τ) ∝ Gamma

(
a∗ = a +

KN+1

2
,

1
s∗

=
1
s

+

∑N
T=1

∑KT+1

t=KT +1 (PnL_10DV t − µS)2

2

)
.


