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Abstract

This thesis studies the estimation of credit exposure arising from a portfolio of interest rate
derivatives. The estimation is performed using a Monte Carlo simulation. The results are
compared to the exposure obtained under the current exposure method provided by the Bank
for International Settlements (BIS). We show that the simulation method provides a much
richer set of information for credit risk managers. Also, depending on the current exposure
and the nature of the transactions, the BIS method can fail to account for potential exposure.
All test portfolios benefit significantly from a netting agreement, but the BIS approach tends
to overestimate the risk reduction due to netting.

In addition we examine the impact of antithetic variates and different time-discretizations. We
find that a discretization based on derivatives’ start and maturity dates may reduce simulation
time significantly without loosing generality in exposure profiles. Antithetic variates have a
small effect.
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Chapter 1

Introduction

A derivative is a financial instrument whose value depends on the values of other, more
basic underlying variables. Financial derivatives can be grouped into three general headings:
Options, Forwards and Futures and Swaps. Bingham & Kiesel (2004) give a more precise
academic definition:

Definition 1.1. A derivative security, or contingent claim, is a financial contract whose value
at expiration date T is determined exactly by the price of the underlying financial assets at
time T.

Very often the variables underlying derivatives are the prices of traded assets. A stock option,
for example, is a derivative whose value is dependent on the price of a stock. However,
derivatives can be dependent on almost any variable, from currencies to the amount of snow
falling at a certain ski resort. Derivatives are themselves assets - they are traded, have value
etc. - and so can be used as underlying for new contingent claims: options on futures, options
on baskets of options etc. These developments give rise to so-called exotic options, demanding
a sophisticated mathematical machinery to handle them.

Interest rate derivatives, which will be the main focus of this work, are instruments whose
payoffs are dependent in some way on the level of interest rates. Interest rates themselves
are notional assets, which cannot be delivered. Hedging exposure to interest rates is more
complicated than hedging exposure to the price movements of a certain stock. Hull (2000)
gives a number of reasons for this:

1. The behavior of an individual interest rate is more complicated than that of a stock
price or an exchange rate. For instance, interest rates cannot grow unbounded. For
large interest rates the rates will tend to decrease toward the mean, and vice versa.

2. For the valuation of many products, it is necessary to develop a model describing the
behavior of the entire yield curve.

3. The volatilities of different points on the yield curve are different. Short-term rates have
greater volatility than long-term rates.

4. In addition to defining the payoff from the derivative, interest rates are also used for
discounting.

1



2 CHAPTER 1. INTRODUCTION

Financial derivatives are basically traded in two ways: on organized exchanges and over-the-
counter (OTC). Organized exchanges are subject to regulatory rules, require a certain degree
of standardization of the traded instruments and have a physical location at which trade takes
place. The over-the-counter market is an important alternative to exchanges and, measured in
terms of total volume of trading, has become much larger1 than the exchange-traded market.
It is a telephone- and computer-linked network of dealers, who do not physically meet. Trades
are usually between two financial institutions or between a financial institution and one of its
corporate clients. An advantage of the OTC market is that the terms of a contract do not have
to be those specified by an exchange. Market participants are free to negotiate any mutually
attractive deal. However, there is usually some credit risk in an OTC trade, i.e. there is a
risk that the contract will not be honored (Hull 2000).

The outstanding volume of OTC derivatives has grown exponentially over the past 18 years.
Market surveys2 conducted by the International Swaps and Derivatives Association (ISDA)
show outstanding notional amounts of interest rate and currency swaps reaching US$866
billion in 1987 and US$213.2 trillion in 2005. Derivatives have expanded the opportunities to
transfer risk. Counterparty risk is the risk that a party to an OTC derivatives contract may
fail to perform on its contractual obligations, causing losses to the other party. Counterparty
exposure is defined as the larger of zero and the market value of the portfolio of derivative
positions with a counterparty that would be lost if the counterparty were to default and there
were zero recovery. The value of an OTC derivatives portfolio, which depends on market
variables such as interest rates or exchange rates, will change when those variables change. As
a result, counterparty credit exposure will change in the future even if no new positions are
added to the portfolio.

The exposure from derivative transactions is very different and more complicated as compared
to the exposure from the loan business. If a counterparty defaults only minutes after the
confirmation of an OTC derivative transaction, losses are minimal because the transaction can
be replaced with another transaction at approximately the same market rates. However, if
default occurs at a later point of time and the market variables have changed, the replacement
costs could be significant.

With increased competition and tighter spreads, banks must accurately quantify the credit
risk they are facing so that they can appropriately price their products, set the proper level
of capital reserves and manage their credit line efficiently. Currently, different banks employ
different credit risk measurement techniques, ranging from applying a fixed percentage to the
notionals of the transactions, to creating distributions of future credit exposure and credit
loss.

The Basel Committee on Banking Supervision provides a forum for regular cooperation on
banking supervisory matters. Over the recent years, it has developed into a standard-setting
body on all aspects of banking supervision. The Committee’s Secretariat is provided by the
Bank for International Settlements (BIS) in Basel. The best known publication is the Basel
II framework, also known as the Revised Framework, in which the Committee presents three
different approaches for measuring exposure at default: an internal model method (IMM), the
standardized method (SM) and the current exposure method (CEM). These three methods

1OTC derivatives statistics can be found at www.bis.org/statistics/derstats.html
2See published surveys on ISDA’s website, www.isda.org.
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represent a continuum of sophistication in risk management practices, where CEM is the
simplest approach (Bas 2005a).

Although no particular form of model is required under the IMM, we will restrict ourselves
to a simulation model. Monte Carlo (MC) simulation is a powerful risk analysis tool because
it alone can accurately and clearly adjust risk estimates for optionality and convexity. Banks
can employ Monte Carlo techniques to understand and evaluate current market pricing as
well as their economic value at risk. This technique provides banks with a valuable tool for
measuring and managing interest rate risk.

1.1 Thesis Outline

The thesis is organized as follows. In the next chapter we describe the basic ideas of Monte
Carlo simulations and variance reduction techniques. In Chapter 3 we present derivative pric-
ing theory. This includes a closer look at arbitrage and risk-neutral pricing, term structure of
interest rates, interest rate derivatives and finally a detailed description of the LIBOR market
model. We investigate the LIBOR model dynamics under the spot- and the forward measure.
Chapter 4 is the heart of the thesis. It describes how to measure and mark counterparty
credit exposure. We present both a simple supervisory method and an implemented Monte
Carlo simulation engine. Chapter 5 describes data used for calibration and testing. Results
are presented and discussed in Chapter 6. Chapter 7 summarizes the thesis and gives some
directions for further research. A probability background and various mathematical tools are
given in Appendix A.
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Chapter 2

Preliminaries

2.1 Monte Carlo Simulation

A very commonly used tool for pricing and risk management of financial derivatives is the
Monte Carlo method. The main advantage of the method is that it is easy to understand and
implement but still very powerful and has a broad spectra of applications. The convergence
order is O(n1/2), where n is the number of replications. Since the convergence order does
not depend on the dimensionality of the problem the Monte Carlo method is popular in a
wide range of high-dimensional problems, from atom physics to finance. However, it can be
very slow since an additional factor 4 increase in the number of realizations only provides an
additional improvement in accuracy by a factor 2.

Monte Carlo Integration

Valuing a derivative security by Monte Carlo typically involves simulating paths of stochas-
tic processes used to describe the evolution of underlying asset prices, interest rates, model
parameters, and other factors relevant to the security in question.

In general Monte Carlo is used for simulation and optimization. However, in the context of
financial derivatives pricing with the LIBOR market model the focus will be on integration
problems. Consider a square-integrable function f ∈ L2(0, 1) and a uniformly distributed
random variable x ∈ [0, 1]. The integral of f over [0, 1] can be expressed as an expectation of
the function value

C := E[f(x)] =

∫ 1

0
f(x)dx,

which yields an unbiased estimator of the integral. Consider a sequence xi sampled from
U [0, 1]. An empirical approximation of the expectation is then

5



6 CHAPTER 2. PRELIMINARIES

Ĉn := E[f(x)] ≈ 1

n

n
∑

i=1

f(xi),

where we suppose that Var[Ci] = σ2
C < ∞. The Strong Law of Large Numbers implies that

this approximation is convergent with probability one, i.e.

lim
n→∞

1

n

n
∑

i=1

f(xi) =

∫ 1

0
f(x)dx,

and the Monte Carlo integration error is defined as

εn := Ĉn − C =
1

n

n
∑

i=1

f(xi)−
∫ 1

0
f(x)dx.

The central limit theorem asserts that as the number of replications n increases, the standard-
ized estimator (Ĉn − C)/(σC/

√
n) converges in distribution to the standard normal,

Ĉn − C

σn/
√

n
⇒ N(0, 1) or

√
n[Ĉn − C]⇒ N(0, σ2

C).

Here,⇒ denotes convergence in distribution and N(a, b2) denotes the normal distribution with
mean a and variance b2. The central limit theorem tells us something about the distribution
of the error in our simulation estimate,

Ĉn − C ∼ N(0, σ2
C/n).

The same limit holds if σC is replaced with the sample standard deviation sC , which is
important since σC is rarely known in practice. The fact that we can replace σC with sC

without changing the limit in the distribution follows from the fact that sC/σC → 1 as
n→∞ and general results on convergence in distribution (Casella & Berger 2002).

Random Number Generation

At the core of nearly all Monte Carlo simulations is a sequence of random numbers used to drive
the simulations. This driving engine will supply variates which in the limit of infinitely many
draws satisfy a given joint multivariate distribution density function. Typically, the density
function is obtained by transformation of draws from the uniform distribution function on the
interval [0, 1].

In our setting it will be necessarily to generate samples from univariate normal distributions.
Box & Muller (1958) and Marsaglia & Bray (1964) describe two methods. Since these al-
gorithms are quite straightforward they will not be dealt with here. Note that the number
generator is an important link in the chain that comprises a Monte Carlo method and that the
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reliability of it is crucial. One should always have more than one number generator available.
Instead of rerunning a calculation with a new seed one could make the computation using a
different number generator.

2.1.1 Variance Reduction Techniques

To overcome the rather slow convergence of Monte Carlo simulations we can use several
methods to reduce the variance of simulation estimates. These methods draw on two broad
strategies: taking advance of tractable features of a model to adjust or to correct simulations
output, and reducing the variability in simulation inputs. Control variates, antithetic variates,
stratified sampling and importance sampling are some examples of these methods. However,
one disadvantage with these variance reduction techniques is that they have to be specially
designed to each problem and for many problems it might be hard, or impossible, to find
nicely working techniques.

The greatest gains in efficiency from variance reduction techniques result from exploiting spe-
cific features of a problem, rather than from generic applications of generic methods. In order
to supplement a reduced-variance estimator with a valid confidence interval, we sometimes
need to sacrifice some of the potential variance reduction.

Antithetic Variates

The method of antithetic variates is based on the simple observation that if Z has a standard
normal distribution so does−Z. The idea is that random inputs obtained from the collection of
antithetic pairs {(Zi,−Zi)}Ii=1 are more regular distributed than a collection of 2I independent
samples.

If the Zi are used to simulate the increments of a Brownian path, then the −Zi simulate the
increments of the reflection of the path about the origin. Suppose our objective is to calculate
E[Y ] and that some implementation of antithetic variates produces a sequence of i.i.d. pairs of
observations (Y1, Ỹ1), (Y2, Ỹ2), . . . , (Yn, Ỹn). For each i, Yi and Ỹi have the same distribution,
though ordinarily they are not independent. The antithetic variates estimator is the average
of all 2n observations,

ŶAV =
1

2n

(

n
∑

i=1

Yi +

n
∑

i=1

Ỹi

)

=
1

n

n
∑

i=1

(

Yi + Ỹi

2

)

. (2.1)

Thus, YAV is the sample mean of the n independent observations (Y1 + Ỹ1/2), (Y2 + Ỹ2/2),
. . ., (Yn + Ỹn/2). The central limit theorem therefore applies and gives

ŶAV −E[Y ]

σAV /
√

n
⇒ N(0, 1) (2.2)

with σ2
AV = Var[(Yi + Ỹi)/2].
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The question is under what conditions is an antithetic variates estimator to be preferred
to an ordinary Monte Carlo estimator based on independent replications? To make this
comparison we start with the assumption that the computational effort required to generate
a pair (Yi + Ỹi) is approximately twice the effort required to generate Yi. Thus, the effort
required to compute YAV is approximately that required to compute the sample mean of 2n
independent replications. Using antithetics reduces variance if

Var[YAV ] < Var[
1

2n

2n
∑

i=1

Yi],

i.e., if Var[Yi + Ỹi] < 2Var[Yi]. Using the fact that Yi and Ỹi have the same variance if they
have the same distribution, we can write the variance on the left as

Var[Yi + Ỹi] = Var[Yi] + Var[Ỹi] + 2Cov[Yi, Ỹi]

= 2Var[Yi] + 2Cov[Yi, Ỹi].

Therefore, the condition for antithetic sampling to reduce variance becomes

Cov[Yi, Ỹi] < 0.

This condition requires that negative dependence in the inputs (Z and −Z) produce negative
correlation between the outputs of paired replications. A sufficient condition that ensure this
is monotonicity of the mapping from inputs to outputs defined by a simulation algorithm.
However, this requirement is rarely satisfied exactly (Glasserman 2004).

2.2 Order Statistics

The outcome of a Monte Carlo simulation is typically a random sample Xi, i = 1, . . . , n.
Sample values such as the smallest, largest, or middle observation from a random sample can
provide useful summary information. These are all examples of order statistics. Casella &
Berger (2002) give a precise definition:

Definition 2.1. The order statistics of a random sample X1, . . . , Xn are the sample values
placed in ascending order. They are denoted by X(1), . . . , X(n).

The order statistics are random variables that satisfy X(1) ≤ · · · ≤ X(n). In particular,

X(1) = min
1≤i≤n

Xi,

X(2) = second smallest Xi,

...

X(n) = max
1≤i≤n

Xi.



Chapter 3

Derivative Pricing

In order to calculate exposure at future dates, all trades with a counterparty must be priced
at each date. That task consumes large computational resources. Imagine a swap dealer’s
book with 50000 positions. With average maturity of seven years and 5000 market scenarios
generated every three month, one would need to perform 7.0 billion pricings. Unnecessary
pricing complexity should be avoided: one should avoid refining within the margin of error.
This is particularly important for long-dated trades because the volatilities, correlations and
probabilistic assumptions used in constructing long-dated scenarios are themselves surrounded
by considerable uncertainty.

This chapter deals with the pricing of interest rate derivatives. A probability background is
given in Appendix A. For proofs and a more detailed description see Glasserman (2004) and
Bingham & Kiesel (2004).

3.1 Basic Principles

The mathematical theory of derivatives pricing is both elegant and remarkably practical. A
proper development of the full theory would require a book-length treatment. We will therefore
highlight only some principles of the theory, especially those that bear on the application of
Monte Carlo to the calculation of prices. To apply Monte Carlo simulation we must find a
more convenient representation of derivative prices. In particular, we would like to represent
derivative prices as expectations of random objects that we can simulate. Three principles are
particularly important:

1. If a derivative security can be hedged through trading in other assets, the the price of
the derivative security is the cost of the replacing trading strategy.

2. Discounted asset prices are martingales under a probability measure associated with the
choice of discount factor. Prices are the expectations of discounted payoffs under such
a martingale measure.

3. In a complete market, any payoff can be synthesized through a trading strategy, and the
martingale measure associated with the numeraire is unique.

9
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The first of the principles gives us a way of thinking what the price of a derivative security
ought to be, but says little of how it might be evaluated. The second principle is the main link
between pricing and Monte Carlo because it tells us how to represent prices as expectations.
Expectations lend themselves to evaluation through Monte Carlo and other numerical meth-
ods. A complete market is one in which all risks can be perfectly hedged. The third principle
may be viewed as describing conditions under which the price of a derivative security is de-
termined by the prices of other assets so that the first and second principles apply. A more
detailed description is given below.

3.2 Arbitrage and Risk-Neutral Pricing

One of the fundamental concepts underlying the theory of financial derivative pricing and hedg-
ing is that of arbitrage. That is, there are never1 any opportunities to make an instantaneous
risk-free profit. Bingham & Kiesel (2004) define the concept of arbitrage in mathematical
terms:

Definition 3.1. Let Φ̃ ⊂ Φ be a set of self-financing strategies. A strategy φ ∈ Φ̃ is called
an arbitrage opportunity or arbitrage strategy with respect to Φ̃ if P{Vφ(0) = 0} = 1, and the
terminal wealth of φ satisfies

P{Vφ(T ) ≥ 0} = 1 and P{Vφ(T ) > 0} > 0.

We say that a marketM is arbitrage-free if there are no arbitrage opportunities in the class Φ
of trading strategies. Before arriving at the first central theorem in this section we will need
the definition of equivalent martingale measures.

Definition 3.2. A probability measure P∗ on (Ω,FT ) equivalent to P is called a martingale
measure for S̃ if the process S̃ follows a P∗-martingale with respect to the filtration F. We
denote by P(S̃) the class of equivalent martingale measures.

Here, Ω represents the sample space and the filtration F = {Ft}Tt=0 represents the information,
or knowledge, available to us at time t.

Theorem 3.1. (No-arbitrage Theorem) The market M is arbitrage-free if and only if
there exists a probability measure P∗ equivalent to P under which the discounted d-dimensional
asset price process S̃ is a P∗-martingale.

We say that a contingent claim is attainable if there exists a replicating strategy φ ∈ Φ such
that

Vφ(T ) = X.

Working with discounted values we have

1More correctly, such opportunities cannot exist for a significant length of time before prices move to
eliminate them.
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β(T )X = Ṽφ(T ) = V (0) + G̃φ(T ),

where G̃φ is the gain process of a trading strategy φ. In other words, the discounted value
of a contingent claim is given by the initial cost of setting up a replication strategy and the
gains from trading. Bingham & Kiesel (2004) show that, in an arbitrage-free market M, any
attainable contingent claim X is uniquely replicated inM. Uniqueness allows us to define the
important concept of an arbitrage price process.

Definition 3.3. Suppose the market is arbitrage-free. Let X be any attainable contingent
claim with time T maturity. Then the arbitrage price process πX(t), 0 ≤ t ≤ T is given by the
value process of any replicating strategy φ for X.

Analysing the arbitrage-pricing approach we observe that any attainable contingent claim must
be independent of all preferences that do not admit arbitrage. Any set of risk preferences can,
therefore, be used when evaluating V . In particular, the very simple assumption that all
investors are risk-neutral can be made.

Proposition 3.1. The arbitrage price process of any attainable contingent claim X is given
by the risk-neutral valuation formula

πX(t) = β(t)−1E∗(Xβ(T ) | Ft) ∀t = 0, 1, . . . , T,

where E∗ is the expectation operator with respect to an equivalent martingale measure P∗.

All attainable contingent claims can be priced using an equivalent martingale measure. A
desired property of the marketM would be if all contingent claims are attainable. We continue
with the definition of completeness.

Definition 3.4. A marketM is complete if every contingent claim is attainable, i.e for every
FT -measurable variable X there exists a replicating self-financing strategy φ ∈ Φ such that
Vφ(T ) = X.

Theorem 3.2. (Completeness Theorem) An arbitrage-free market M is complete if and
only if there exists a unique probability measure P∗ equivalent to P under which discounted
asset prices are martingales.

By combining the No-arbitrage Theorem and the Completeness Theorem we state the funda-
mental theorem of asset pricing.

Theorem 3.3. (Fundamental theorem of asset pricing) In an arbitrage-free complete
market M, there exists a unique equivalent martingale measure P∗.

Pricing contingent claims is our central task, and for pricing purposes P∗ is vital and P itself
irrelevant. We therefore focus attention on P∗ which is called the risk-neutral probability
measure. Throughout we will assume the existence of risk-free investments that give a guar-
anteed return with no chance of default. Such an investment could be a government bond or a
bank deposit. In a world where investors are risk-neutral, the expected return on all securities
is the risk-free rate of interest, r. The reason for this is that risk-neutral investors do not
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1. replace drift µi with the risk-free interest rate and simulate paths
2. calculate payoff of derivative security on each path
3. discount payoff at the risk-free rate
4. calculate average over paths

Figure 3.1: A summary of risk-neutral pricing by Monte Carlo.

require a premium to induce them to take risks. Also, the present value of any cash flow in a
risk-neutral world can be obtained by discounting its expected value at the risk-free rate. The
assumption that the world is risk neutral does, therefore, considerably simplifies the analysis
of derivatives. The solutions that are obtained are valid in all worlds, not just those where
investors are risk-neutral (Hull 2000). To summarize, we have:

Theorem 3.4. (Risk-neutral Pricing Formula) In an arbitrage-free complete marketM,
arbitrage prices of contingent claims are their discounted expected values under the risk-neutral
(equivalent martingale) measure P∗.

Consider a derivative security with a payoff at time T specified through a function f of the
prices of the underlying asset. To price the derivative we model the dynamics of the underlying
asset under the risk-neutral measure, ensuring that discounted asset prices are martingales.
The price is then given by Eβ[erTf(S(T ))]. To evaluate this expression, we simulate paths of
the underlying asset over the time interval [0, T ]. Next we calculate the discounted payoff
erT f(S(T )) and the average across paths is our estimate of the derivative’s price. An overly
simplified summary of risk-neutral pricing by Monte Carlo is given in Figure 3.1.

3.3 Term Structure of Interest Rates

The term structure of interest rates refers to the dependence of interest rates on maturity.
There are several equivalent ways of recording this relationship - through the prices of or
yields of zero-coupon bonds, through forward rates, and through swap rates, to name just a
few examples.

Let B(t, T ) denote the price at time t of a security making a single payment of 1 at time T, T ≥
t. This is a zero-coupon bond with maturity T . With constant continuously compounded
interest rate an investor could replicate a zero-coupon bond with maturity T by investing
e−RT in a bearing account at time 0 and letting it grow to a value of 1 at time T . Thus,
B(0, T ) = e−RT . More generally, if the continuously compounded rate at time t is given by a
stochastic process r(t), an investment of 1 at time 0 grows to a value of

β(t) = exp

(
∫ t

0
r(u)du

)

at time t. It follows that the price of a bond is given by
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B(0, T ) = E

[

exp

(
∫ T

0
r(t)dt

)]

,

where the expectation is taken under the risk-neutral measure.

The continuously compounded yield Y (t, T ) of a zero-coupon bond maturing at T is defined
as

B(t, T ) = eY (t,T )(T−t) or Y (t, T ) = − 1

T − t
logB(t, T ). (3.1)

The yield of a coupon-bearing bond is similarly defined by discounting the coupons as well as
the principal payment.

A forward rate is an interest rate set today for borrowing or lending at some date in the future.
Consider the case of simple interest and let F (t, T1, T2) denote the forward rate set at time
t for the interval [T1, T2]. An investor entering into an agreement at time t to borrow 1 at
time T1 and repay at time T2 pays interest at rate F (t, T1, T2). Glasserman (2004) shows that
forward rates are determined by bond prices through the relation

F (t, T1, T2) =
1

T2 − T1

(

B(t, T1)−B(t, T2)

B(t, T2)

)

. (3.2)

3.4 Interest Rate Derivatives

An interest rate cap places a ceiling on a floating rate of interest on a specific notional principal
amount for a specific term. The buyer of a cap uses the cap contract to limit his maximum
interest rate. The cap premium charged by the seller depends upon the market’s assessment
of the probability that rates will move through the cap strike over the time horizon of the deal.
The cap premium takes the form of an up front charge that is usually expressed in basic points
as percentage of the notional principal amount. Any period that the cap is in the money, the
cap buyer’s effective rate is equal to the cap strike plus the amortized cap premium in basic
points. Otherwise, the effective rate equals the floating rate plus the amortized cap premium.
A cap could be divided into caplets, which can be interpreted as a call option on a simple
forward rate. An option on a cap is called a caption.

An interest rate floor places a minimal value on a floating rate of interest on a specific notional
principal amount for a specific term. The buyer of the floor uses the floor contract to limit
his minimum interest rate. The seller of the floor accepts a minimum on the interest rate it
will pay in return for the floor premium. Often the floor premium is used to offset the cost
of a purchased interest rate cap. If the floating rate drops below the floor strike, the floor
provides for payments from the seller to the buyer for the difference between the floor strike
and the floating rate. A floor could be divided into floorlets and an option on a floor is called
a floortion.

An interest rate swap is an agreement with a counterparty to exchange interest payments
on some notional amount at fixed periods of time. In a payer swap on our tenor structure,
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the holder pays a fixed rate of interest K over each period δn = Tn+1 − Tn. The holder
then receives a floating rate of interest fixed at the beginning of each period. Payments are
exchanged at the end of each time period. A swaption is an option on a swap.

A forward rate agreement (FRA) is an agreement that a certain interest rate will apply to
a certain principal during a specified future period of time. The FRA does not involve any
transfer of principal. It is settled at maturity in cash, representing the profit or loss resulting
from the difference in the agreed rate and the settlement rate at maturity.

3.5 The LIBOR Market Model

The LIBOR market model describes the arbitrage-free dynamics of the term structure of
interest rates through the evolution of forward rates. We will work in terms of simple forward
rates, i.e. rates that really are quoted in the market. For much of the financial industry, the
most important benchmark interest rates are the London Inter-Bank Offered Rates or LIBOR.
LIBOR is calculated daily through an average of rates offered by selected banks in London.
The forward LIBOR rate L(0, T ) is the rate set at time 0 for the interval [T, T + δ]. If we
enter a contract at time 0 to borrow 1 at time T and repay it with interest at time T + δ, the
interest due will be δL(0, T ). The term “market model” is often used to describe an approach
to interest rate modeling based on observable market rates.

3.5.1 LIBOR Market Model Dynamics

We start this section by looking at the relation between forward LIBOR rates and bond prices.
From equation (3.2) we have

L(0, T ) =
B(0, T )−B(0, T + δ)

δB(0, T + δ)
, (3.3)

with a fixed length δ.

I should be noted that we treat the forward LIBOR rates as though they were risk-free rates.
LIBOR rates are based on quotes by banks which could default and the risk is presumably
reflected in the rates. Note also that the argument leading to (3.3) may not hold exactly if the
bonds on one side and the forward rate on the other reflect different levels of credit-worthiness.

Although (3.3) apply in principle to a continuum of maturities, we will consider models in
which a finite set of maturities or tenor dates

0 = T0 < T1 < · · · < TM < TM+1

are fixed in advance. Let

δi = Ti+1 − Ti, i = 0, . . . ,M
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denote the lengths of the intervals between tenor dates. For each date Tn we let Bn(t) denote
the time-t price of a bond maturing at Tn, 0 ≤ t ≤ Tn. Similarly, we write Ln(t) for the
forward rate as of time t for the accrual period [Tn, Tn+1]. Thus, we get

Ln(t) =
Bn(t)−Bn+1(t)

δBn+1(t)
, 0 ≤ t ≤ Tn, n = 0, 1, . . . ,M. (3.4)

An illustration showing the relation between bond prices, forward rates and the interest rate
tenor structure is given in Figure 3.2.

B(t,T     )

B(t,T   )

B(t,T  )

M+1

2

M

L L L

1

1 M0

t = T

B(t,T  )

0 T T MT TM+121

Figure 3.2: An M + 1 period interest rate tenor structure.

We see that bond prices determine the forward rates. At a tenor date, Ti, the relation can be
inverted to produce

Bn(Ti) =
n−1
∏

j=1

1

1 + δjLj(Ti)
, n = i + 1, . . . ,M + 1. (3.5)

However, one problem arises. At an arbitrary date t, the forward rates do not determine the
bond prices because they do not determine the discount factor for interval shorter than the
accrual periods. Suppose that Ti < t < Ti+1 and we want to find the price Bn(t) for some
n > i + 1. The factor

n−1
∏

j=i+1

1

1 + δjLj(t)

discounts the bond’s payment at δjLj(t, Tn) back to time Ti+1, and not the discount factor
from Ti+1 to t. To handle this problem we define a function η : [0, TM+1)→ {1, . . . ,M + 1}]
by taking η(t) to be the unique integer satisfying

Tη(t)−1 ≤ t ≤ Tη(t).

Thus, η(t) gives the index of the next tenor date at time t. With this notation, we have
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Bn(Ti) = Bη(t)(t)
n−1
∏

j=η(t)

1

1 + δjLj(Tj)
, 0 ≤ t ≤ Tn. (3.6)

Spot Measure

We seek a model were the forward LIBOR rates are described by a system of SDEs of the
form

dLn(t)

Ln(t)
= µn(t)dt + σn(t)>dW (t), 0 ≤ t ≤ Tn, n = i + 1, . . . ,M + 1, (3.7)

where W is a d-dimensional standard Brownian motion. The coefficients µn and σn may
depend on the current forward rates as well as the current time. The σn in (3.7) is the
proportional volatility because we have divided by Ln on the left.

The numeraire associated with the risk-neutral measure is β(t) = exp(
∫ t
o r(u)du). But in the

LIBOR setting we are developing a model based on the simple rates Ln(t), and are therefore
not interested in the spot-rate process r(t). Thus, we avoid the usual risk-neutral measure and
instead focus on a numeraire asset better suited to the tenor dates Ti. A counterpart of β(t)
is derived by starting with 1 unit of account and reinvest in bonds with different maturities.
The initial investment at time 0 grows to a value of

B∗(t) = Bη(t)(t)

η(t)−1
∏

j=0

[1 + δjLj(Tj)]

at time t. We take this as the numeraire asset and call the associated measure the spot
measure.

The absence of arbitrage means that bond prices must be martingales when deflated 2 by the
numeraire asset. From (3.6) we get that the deflated bond price Dn(t) = Bn(t)/B∗(t) is given
by

Dn(t) =





η(t)−1
∏

j=0

1

1 + δjLj(Tj)





n−1
∏

j=η(t)

1

1 + δjLj(t)
, 0 ≤ t ≤ Tn. (3.8)

The spot measure numeraire B∗ cancels the factor Bη(t)(t), and we are left with an expression
defined purely in terms of the LIBOR rates. Notice that the first factor in (3.8) is constant
between tenor dates Ti. Starting with the requirement that deflated bond prices be positive
martingales Glasserman (2004) arrives at

2We use the term ’deflated’ rather than ’discounted’ because we are dividing by the numeraire asset and
not discounting at a continuously compounded rate.
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µn(t) =

n
∑

j=η(t)

δjLj(t)σn(t)>σj(t)

1 + δjLl(t)
, (3.9)

as the drift parameter in (3.7). Thus,

dLn(t)

Ln(t)
=

n
∑

j=η(t)

δjLj(t)σn(t)>σj(t)

1 + δjLl(t)
dt + σn(t)>dW (t), 0 ≤ t ≤ Tn, (3.10)

n = 1, . . . ,M , describes the arbitrage-free dynamics of forward LIBOR rates under the spot
measure.

Forward Measure

We may formulate a LIBOR market model under the forward measure PM+1 for maturity
TM+1. The numeraire asset in this case is the bond BM+1. The deflated bond Dn(t) =
Bn(t)/BM+1(t) simplifies to

Dn(t) =

M
∏

j=n+1

(1 + δjLj(t)). (3.11)

Once again do the numeraire asset cancel the factor Bη(t), leaving an expression that depends
purely on the forward LIBOR rates.

The dynamics of the forward LIBOR rates under the forward measure could be derived using
the Girsanov Theorem, Appendix A.3. Alternatively, we could start from the requirement
that the Dn in (3.11) be martingales and proceed by induction to derive restrictions on the
evolution of the Ln. Either way, the arbitrage-free dynamics of the Ln, n = 1, . . . ,M , under
the forward measure PM+1 are given by

dLn(t)

Ln(t)
= −

M
∑

j=n+1

δjLj(t)σn(t)>σj(t)

1 + δjLj(t)
dt + σn(t)>dW M+1(t), 0 ≤ t ≤ Tn, (3.12)

with W M+1 a standard d-dimensional Brownian motion under PM+1. If we take n = M , we
have

dLM (t)

LM (t)
= σn(t)>dW M+1(t),

so that LM is martingale under the forward measure for maturity TM+1. Moreover, if σM

is deterministic it turns out that LM (t) has a log-normal distribution LN(−σ̂2
M (t)/2, σ̂2

M (t))
with
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σ̂M (t) =

√

1

t

∫ t

0
||σM (u)||2du.

In fact, each Ln is martingale under the forward measure PM+1.

3.5.2 Simulation

We will use simulation to price interest rate derivatives in the LIBOR market model. Exact
simulation is generally infeasible and some discretization error is inevitable. Because we have
a finite set of maturities we only need to discretize the time argument.

Discretization and Numerical Schemes

We fix a time grid 0 = t0 < t1 < · · · < tm < tm+1 over which to simulate. It is sensible to
include the tenor dates T1, . . . , TM+1 among these. A natural choice of time discretization
would be to simulate the exposure according to the tenor structure, i.e. ti = Ti. However, this
choice of time discretization will produce only a few points on the exposure profile. Although
interpolation could be used to make a full exposure profile we might not capture shifts over
small periods of time. Thus, we must require a more general partition of the time axis. Note
that there are two time axes; one representing the exposure horizon and one representing the
forward rate structure. We will use the notation ti for the former and Ti for the latter.

Simulation of forward LIBOR rates is a special case of the general problem of simulating
a system of SDEs. There are many choices of variables to discretize and many choices of
probability measures under which to simulate. We will restrict ourselves to an Euler scheme
to logL under the spot and the forward measure. This because an Euler scheme to L could
potentially produce negative rates. Discretizing the SDE (3.10), gives

L̂n(ti+1) = L̂n(ti)×

exp

([

µn(L̂(ti), ti)−
1

2
||σn(ti)||2

]

[ti+1 − ti] +
√

ti+1 − tiσn(ti)
>Zi+1

)

,
(3.13)

where

µn(L̂(ti), ti) =

n
∑

j=η(t)

δjL̂j(ti)σn(ti)
>σj(ti)

1 + δjL̂j(ti)
, (3.14)

and Z1, Z2, . . . independent N(0, 1) random vectors in <d. We use hats to identify discretized
variables. We are given an initial set of bond prices B1(0), . . . , BM+1(0) and initialize simu-
lation by setting

L̂n(0) =
Bn(0)−Bn+1(0)

δBn+1(0)
, n = 1, . . . ,M,



3.5. THE LIBOR MARKET MODEL 19

in accordance with (3.4). Under the forward measure the drift is given by

µn(L̂(ti), ti) = −
M
∑

j=n+1

δjL̂j(ti)σn(ti)
>σj(ti)

1 + δjL̂j(ti)
. (3.15)

Monte Carlo Pricing

In order to price a derivative security, we simulate, say N , paths of the discretized variables
L̂1, . . . , L̂M . Suppose we want to price a derivative with a payoff of f(L(Tn)) at time Tn.
Under the spot measure, we simulate to time Tn and then calculate the deflated payoff

Ĉ = f(L̂(Tn))×
n−1
∏

j=0

1

1 + δjL̂j(Tj)
. (3.16)

The Law of Large Numbers guarantees that averaging over independent replications will give
the derivative’s price at time 0. That is,

C = E[Ĉ] ≈ 1

N

N
∑

k=1

Ĉk.

3.5.3 Volatility Structure

So far we have taken the volatility factors as inputs without indicating how they might be
specified. These coefficients are in practice chosen to calibrate the model to market prices of
actively traded derivatives. The LIBOR market model considered in this section is automati-
cally calibrated to the market through the relations (3.4) and (3.5).

The LIBOR market models do not specify interest rates over accrual periods shorter than the
intervals [Ti, Ti+1]. It is therefore natural to choose the functions σn(t) to be constant between
tenor dates. To match previous notation, we take the σn’s to be right-continuous and thus
denote by σn(Ti) its value over the interval [Ti, Ti+1).

Under the forward measure with volatilities, σn, deterministic, Ln(Tn) has a log-normal dis-
tribution. In this case the caplet price is given by the Black formula (after Black (1976)),

Cn(0) = BC(Ln(0), σn(Tn), Tn,K, δnBn+1(0)), (3.17)

with

BC(F, σ, T,K, b) =

b

(

FΦ

(

log(F/K) + σ2T/2

σ
√

T

)

−KΦ

(

log(F/K) + σ2T/2

σ
√

T

))

,
(3.18)
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where Φ is the cumulative normal distribution. This formula could also be used in reverse
direction. Given the market price of a caplet, one can solve for the ’implied volatility’ that
makes the formula match the market. Once it has been calibrated it can be used to price less
liquid instruments.

However, we will use historical data to compute the volatility structure of the forward rates. If
we have forward rate time series data going back a few years we can calculate the covariances
between the relative changes in the forward rates at different maturities. We may have, for
example, the rates for 3, 6, 9 month, 1, 2, 3, 5 and 10 year maturities. The covariance matrix
will then be a 8× 8 symmetric matrix.

Principal component analysis (PCA) is a technique for finding common movement in a set of
variables, essentially for finding the eigenvalues and eigenvectors of the covariance/correlation
matrix. Although p components are required to reproduce the total system variability, often
much of this variability can be accounted for a small number d of the principal components.
If so, there is almost as much information in the d components as there is in the original p
variables. We expect to find that a large part of the movement of the forward rate curve is
common between rates. That is, the first eigenvector is expected to be a parallel shift in the
rates. The next most important movement would be a twisting of the curve, followed by a
bending. The eigenvalues, λi, and eigenvectors, vi, corresponding to the covariance matrix,
M, satisfy

Mvi = λivi.

The eigenvector associated with the largest eigenvalue is the first principal component. It gives
the dominant part of the movement of the forward rate curve. Its first entry represents the
movement of the 3-month rate. Its eigenvalue is the variance of these movements. Note that
eigenvectors are orthogonal, there is no correlation between principal components (Johnson &
Wichern 2002).

The result of this analysis, is that the volatility factors are given by

σn(ti) =
√

λn(vn)i.

To get the volatility of other maturities we will need some interpolation. Note that we scale
time according to years. To get the proper scaling we must multiply the covariance matrix by
the number of trading days a year (Wilmott 2000).

3.5.4 Algorithms

Algorithms for simulating forward rates and payoff are given in Algorithm 1, 2, 3 and 4. These
four algorithms could obviously be combined, but keeping them separate could help clarify
the various steps.

Algorithm 1 simulates vectors of forward rates at time ti+1 based on the rates from time ti.
The function η(t) is the one described in Section 3.5.1 and gives the index of the next tenor
date at time t. Line 3 and 4 make use of the antithetic variates technique described in Section
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2.1.1. Initial data are the last observation of forward rates available, i.e. the LIBOR market
model is initially calibrated to market prices of actively traded bonds.

Algorithm 2 and 3 calculate the drift coefficients under the risk-neutral measure and the
forward measure respectively. The drift coefficients are functions of simulated forward rates,
tenor- and volatility structure.

Algorithm 4 calculates the value of a portfolio based on a market scenario. The portfolio is
specified as a matrix where each row represents a derivative. Derivatives are further specified
by start date, maturity date, frequency of payments, strike, notional amount and type of
derivative. For instance, a 5 year 100 million swap-contract starting in 2 years, with quarterly
payments and strike 3.5% will be represented by the following matrix:

Portfolio << 2 << 7 << 0.25 << 0.035 << 100 << swap .

Note that time arguments are relative to “today”. Consider a cap spanning over a period
[Ti, Ti+n]. This cap consists of n− 1 caplets, each with a payoff Cn = δn(Ln−Kn)+. The cap
price is the sum over all caplets

Cap(t) =
n−1
∑

i=1

Ci(t).

Caplet payoffs are made at different times, and must therefore be discounted at different rates.
We start with the payoff from the last caplet, Ci+n−1 and discount back to time Ti+n−1 using
the simulated forward rate L̂i+n−1. Next we add the payoff made from the caplet Ci+n−2 and
discount the sum back to time Ti+n−2 using the simulated forward rate L̂i+n−2. We continue
doing this until all payoffs made are discounted back to time Ti. The cap’s price at time ti is
then calculated using the general expression above, equation (3.16).

Since the LIBOR market model is based on simple forward rates, at any point T ∗
i between

the tenor dates Ti there is no corresponding forward rate. This is a drawback with the
LIBOR market model compared to the HJM model (Heath, Jarrow & Morton 1990) which
works in terms of instantaneous continuously compounded forward rates. Thus, between tenor
dates, interpolation will be needed using the LIBOR model. We restrict ourselves to a linear
interpolation technique.

If the cap matures at a date later than the last tenor date, TM , the rates are, for t ≥ TM , set
equal to the last simulated forward rate L̂M . Pricing a floor is trivial once a cap is priced. The
only modification needed is to replace max(Ln(Tn) −Kn, 0) by max(Kn − Ln(Tn), 0) in the
payoff function. In the swap case the difference between the simulated forward rates Ln(Tn)
and some fixed interest rate Kn is modeled. Removing the max-argument we are left with the
swap payoff function of the form (Ln(Tn)−Kn).
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Algorithm 1 LIBOR - Calculation of forward rates as of time i + 1 based on the forward
rates set at time i.
1: Inputs: time axis timeaxis = (t1, . . . , tN ), volatility factors σ̂ = (σ̂1, . . . , σ̂d)n, eta η(t)

and forward rates L = (L1, . . . , LM )
2:

3: generate Z1← (Z1, . . . , Zd) ∼ N(0, 1)
4: Z2← (−Z1, . . . ,−Zd)
5:

6: for n = η, . . . ,M do
7: L1(n)← L(n) + µ̂nL(n)[ti+1 − ti] + L(n)

√
ti+1 − tiσ̂

>
n Z1i+1

8: L2(n)← L(n) + µ̂nL(n)[ti+1 − ti] + L(n)
√

ti+1 − tiσ̂
>
n Z2i+1

9: end for
10:

11: return L1, L2

Algorithm 2 Drift - Risk-neutral measure.

1: Inputs: simulated forward rates L = (Lti , . . . , LM ), volatility factors σ̂ = (σ̂1, . . . , σ̂d)n,
time between tenor dates δ = (δ1, . . . , δM ), eta η and n

2:

3: for j = η, . . . , n do
4: µ̂n = µ̂n + (δjLj σ̂

>
n σ̂j)/(1 + δjLj)

5: end for
6:

7: return µ̂n

Algorithm 3 Drift - Forward measure.

1: Inputs: simulated forward rates L = (Lti , . . . , LM ), volatility factors σ̂ = (σ̂1, . . . , σ̂d)n,
time between tenor dates δ = (δ1, . . . , δM ), eta η and n

2:

3: for j = n + 1, . . . ,M do
4: µ̂n = µ̂n + (δjLj σ̂

>
n σ̂j)/(1 + δjLj)

5: end for
6:

7: return −µ̂n
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Algorithm 4 Payoff - Calculation of payoff based on a market scenario.

1: inputs: vector of simulated forward rates L̂ = (L̂1, . . . , L̂M ), volatility-factors σ̂ =
(σ̂1, . . . , σ̂d)n and portfolio Portfolio

2:

3: P ← 0 {vector of payoffs}
4: D ← 1 {discounting factor}
5: index← 0 {keeps track of what interval to interpolate}
6: fRate← 0 {forward rates calculated by linear interpolation}
7:

8: for j = 1, . . . , P ortfolio.Nrows do
9:

10: Portfolio.Column(1)← max(Portfolio.Column(1), timeaxis(i))
11:

12: if timeaxis(i)! = Portfolio(j, 1) then
13: D ← discounting factor until start of derivative
14: end if
15:

16: k = Portfolio(j, 2) − Portfolio(j, 3)
17: for k, . . . , P ortfolio(j, 1) do
18:

19: if K <= TM then
20: fRate = LM

21: else
22: index = returnIndex(Tenor, k)
23: fRate = linInterpolation(index)
24: end if
25:

26: P (j)← P (j)+ max(fRate− Portfolio(j, 4), 0) · Portfolio(j, 3) {cap}
27: P (j)← P (j)+ max(Portfolio(j, 4) − fRate, 0) · Portfolio(j, 3) {floor}
28: P (j)← P (j)+ (fRate− Portfolio(j, 4), 0) · Portfolio(j, 3) {swap}
29:

30: P (j)← P (j)/(1 + fRate ∗ Portfolio(j, 3)) {discount payoff}
31: end for
32: P (j)← D · P (j) · Portfolio(j, 5) {discount payoff back to time ti}
33: end for
34:

35: return P
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Chapter 4

Counterparty Risk

We define credit risk as the risk of loss that will be incurred in the event of default by a
counterparty. Default occurs if the counterparty fails to honor its contractual payments.
Calculating potential credit losses requires the modeling of three processes that define: (i) the
counterparty exposure at time of default; (ii) the probability that default will occur; and (iii)
the amount that will be recovered after default. Effective credit risk management has gained
an increased focus in the recent years, largely due to the fact that inadequate risk policies are
still the main source of serious problems within the banking industry. Managing credit risk
thus remains an essential and challenging corporate function. The chief goal of an effective
credit risk management policy must be to maximize a bank’s risk-adjusted rate of return by
maintaining credit exposure within acceptable limits. Moreover, one need to manage credit
risk in the entire portfolio as well as the risk in individual transactions.

The Enron bankruptcy in 2001 highlights the destructive potential of credit events. At the
time of Enron’s bankruptcy filing, the aggregate exposure to Enron of all its counterparties
was estimated at $6.3 billion (Rich & Tange 2003).

4.1 Credit Risk Management

Effective credit risk management is a critical component of a bank’s overall risk management
strategy and is essential to the long term success of any banking organization. Key components
of effective credit risk management include:

Robust technology and business processes - Robust technology is a critical component of
effective credit risk management. It is though to help banks identify, measure, mange
and validate counterparty risk, although it is of little value without effective credit risk
policies and business processes in place.

Policies - Having a comprehensive and strategic vision for credit policy is vital as it sets
guidelines for businesses. These guidelines include a set of general principles that apply
to all credit risk situations, as well as specific situations applicable to some types of
counterparties and/or transactions.

25
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Exposures - The ability to measure, monitor and forecast potential credit risk exposure across
the entire firm on both counterparty level and portfolio level is vital.

Robust analytics - Efficient and accurate credit analytics enable risk managers to make
better and more informed decisions. Better information combined with timeliness in its
delivery leads to more effective balancing of risk and reward and the possibility of higher
long-term profitability.

Other - The other ingredients of effective credit risk management include factors such as
stress testing and efficient credit risk reporting just to name a few.

Implementing a scalable and consistent enterprise risk management framework is a challenging
task for many banks. To measure price and manage credit risk effectively a variety of disparate
systems have to be integrated. These systems should be able to collect substantial quantities
of data on credit ratings, credit transactions, loss experiences, rating and default histories in
addition to a variety of other relevant credit information.

Calculating counterparty credit risk enhances credit risk management capabilities but poses
a variety of challenges. Current practice in credit risk management consists of expected
and unexpected loss measures, and portfolio management measures, which require current
and potential exposure calculations. The purpose of exposure calculations is to support the
assessment of portfolio and firm compliance with policies and guidelines, and to assess credit
concentrations (Lepus 2004).

A risk managing program must offer a mechanism for limiting the size of a firm’s exposure
to its counterparties. The limits tend to be wider for short terms and tighter for long terms.
Traditionally, such credit limits are tied to the credit rating of the counterparty, and are often
identified in terms of the amount of exposure. In the process of permissioning new trades,
the exposure profile to a counterparty is re-computed including the new trades. The exposure
profile is then compared with the limit schedule.

Another application of exposure models is the calculation of economic capital to support the
risk of a portfolio of counterparties. That is, the amount of capital that a firm should hold
to protect itself from insolvency to a given degree of confidence over a specific time interval.
What matters most when calculating economic capital is the expected level of losses and
the volatility of those losses. Ideally, a full simulation model should be used to compute the
economic capital of the portfolio of counterparties, i.e. a model in which market and credit risk
variables are simulated simultaneously. An alternative is to use expected exposure profiles,
sometimes grossed up by a multiplicative factor to proxy for the increased risk of variable
exposure. The gross-up factor depends on the characteristics of the portfolio of counterparties,
with typical values in the range 1 to 1.4.

The presence of credit risk in a transaction generates a cost. A model similar to the one
that calculates economic capital can be employed to calculate the cost of credit risk over the
entire life of a transaction. When exposures are uncorrelated with the credit quality of the
counterparty, the unconditional expected exposure profile is used for valuation (Canabarro &
Duffie 2003).
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4.2 Counterparty Exposure - Definitions

Counterparty exposure is the cost of replacing or hedging the contract at the time of default
assuming no recovery. Since default is an uncertain event that can occur at any time during
the life of the contract, we consider potential changes in the exposure during the contract’s life.
This is particularly important for derivative contracts whose values can change substantially
over time according to the state of the market (Aziz & Charupat 1998).

Expected exposure (EE) is the average exposure on a future date. The curve EE(t) provides
the expected exposure profile. Effective expected exposure at a specific date is the maximum
exposure that occurs at that date or any prior date. The average of EE(t) for t in a certain
interval, is referred to as expected positive exposure (EPE).

Potential future exposure (PFE) is the maximum exposure estimated to occur on a future
date at a high level of statistical confidence. For instance, the 95% PFE is the level of
potential exposure that is exceeded with only 5% probability. The curve PFE(t), as t varies
over future dates, is the potential exposure profile. A simulation model is usually used for
the computation of PFE(t): for each future date the value of the portfolio of trades with a
counterparty is simulated. The peak of PFE(t) is referred to as maximum potential future
exposure (MPFE).

The Basel Committee defines rollover risk as the amount by which expected positive exposure
is understated when future transactions with a counterparty are expected to be conducted on
an ongoing basis, but the additional exposure from those future transactions is not included
in calculation of expected positive exposure.

A company is said to be exposed to wrong-way risk if future exposure to a counterparty is
expected to be high when the counterparty’s probability of default is also high. For instance,
a company writing put options on its own stock creates wrong-way exposure for the buyer.
The Basel Committee distinguishes between general- and specific wrong-way risk. The for-
mer arises when probability of default of counterparties is positively correlated with general
market risk factors, while the latter arises when the exposure to a particular counterparty is
positively correlated with the probability of default of the counterparty due to the nature of
the transactions with the counterparty.

4.3 The Basel Committee on Banking Supervision

The Basel Committee provides a forum for regular cooperation on banking supervisory mat-
ters. It has, over recent years, developed into a standard-setting body on all aspects of banking
supervision. The Basel Committee produces publications relating subjects as capital adequacy,
credit risk and securitisation among others. The Committee’s Secretariat is provided by the
Bank for International Settlements in Basel. BIS is an international organization which fosters
international monetary and financial cooperation and serves as a bank for central banks.
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Internal Model Method

A bank, meaning the individual legal entity or a group, that wishes to adopt an internal
modeling method to measure exposure at default (EAD) for regulatory capital purposes must
seek approval from its supervisor. This approval requires that institutions meet certain model
validation and operational requirements. When using an internal model, the exposure amount
is calculated as the product of alpha times Effective EPE,

EAD = α× Effective EPE. (4.1)

The motivation for this calculation is the concern that EE and EPE may not capture rollover
risk or may underestimate the exposures of OTC derivatives with short maturities. In order
to calculate Effective EPE we need Effective EE which is computed recursively as

Effective EEti = max(Effective EEti−1
,EEti), (4.2)

where exposure is measured at future dates t1, t2, t3, . . . and Effective EEt0 equals current
exposure. If all contracts in the netting set mature before one year, EPE is the average of
expected exposure until all contracts in the netting set mature,

Effective EPE =

min(1year, maturity)
∑

i=1

Effective EEti ×∆ti. (4.3)

The weights ∆ti = ti − ti−1 allow for the case when future exposure is calculated at dates
that are not equally spaced over time. Effective EPE will always lie somewhere between EPE
and peak EE. In general, the earlier that EE peaks, the closer Effective EPE will be to peak
EE; the later EE peaks, the closer effective EPE will be to EPE. With prior approval of the
supervisor, a measure that is more conservative than Effective EPE for every counterparty,
i.e. a measure based on peak exposure, can be used in place of Effective EPE in equation
(4.1). An illustration of different exposure measures is shown in Figure 4.1.

The alpha multiplier provides a means of conditioning internal estimates of EPE on a “bad
state” of the economy. In addition, it acts to adjust internal EPE estimates for both correla-
tions of exposures across counterparties and the potential lack of granularity across a firm’s
counterparty exposures. In addition, the alpha multiplier provides as a method to offset model
error or estimation error. Analysis from the industry and supervisors suggest that alpha may
range from approximately 1.1 for large global portfolios to more than 2.5 for new users of
derivatives with little or no current exposure. The Basel Committee requires institutions to
use a specified alpha factor of 1.4, with the ability to seek approval from their supervisors to
compute internal estimates of alpha subject to a floor of 1.2.

Current Exposure Method

Banks that do not have an approval for using the internal model method may use the current
exposure method. This method is to be applied to OTC derivatives only. The existing CEM



4.3. THE BASEL COMMITTEE ON BANKING SUPERVISION 29

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

Time (years)

Ex
po

sur
e

EE

Effective EPE

Effective EE

EPE

Figure 4.1: Illustration of different exposure measures under the internal method model.

takes the form of the following equation:

Counterparty Capital Charge = [(RC + add-on) - volatility adjusted collateral]

×Risk Weight × 8%,
(4.4)

where

RC = current replacement cost,

Add-on = the estimated amount of potential future exposure,

Volatility adjusted collateral = the value of collateral,

Risk weight = the risk weight of the counterparty.

Under the CEM, exposure amount or EAD is equal to [(RC + add-on) - volatility adjusted
collateral]. The add-on factors are given in Table 4.1, and are intended to account for the
possibility that future exposures exceed current exposures. Thus, the EAD is defined only at
the current time. When effective bilateral netting contracts are in place, RC will be the net
replacement cost and the add-on will be Anet,

Anet = 0.4 ∗ Agross + 0.6 ∗NGR ∗ Agross, (4.5)

where Agross is the gross add-on for the netting set. NGR equals (net current replacement
cost)/(gross replacement cost), and is calculated as
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Precious
Interest Rates FX and Equities Metals Other

Gold Except Commodities
Gold

One year or less 0.0% 1.0% 6.0% 7.0% 10.0%

One year to five years 0.5% 5.0% 8.0% 7.0% 12.0%

Over five years 1.5% 7.5% 10.0% 8.0% 15.0%

Table 4.1: Credit conversion factors under the current exposure method.

NGR =
max{0,∑i Vi(0)}
∑

i max{0, Vi(0)}
,

where Vi(0) is the current mark-to-market value of transaction number i.

4.4 Monte Carlo Exposure Calculation

A Monte Carlo model for counterparty exposure involves simulations of future market scenar-
ios. The interest rate market is the dominant contributor to long-term exposure due to the
possible long-term maturities of interest rate transactions. Therefore, we will model Norwe-
gian forward rates using the LIBOR market model described in Section 3.5. Based on a large
number of scenarios the portfolio’s exposure distribution is calculated at each future date,

f(Exposuret | f(Ft)). (4.6)

The expectation of these distributions creates the expected exposure profile,

EE(t) = E[f(Exposuret)], (4.7)

while order statistics give the desired statistical confidence on the potential future exposure
profile,

PFEt(α) : Pr(Exposuret < PFEt(α)) = α. (4.8)

Exposure distributions, expected exposure and potential future exposure profiles are illus-
trated in Figure 4.2. The exposure profiles identify the periods in which counterparty default
would be most financial damaging (Gibson 2005).

At time 0, initial forward rates are given and current exposure deterministic. To model
exposure at future dates t1, t2, t3, . . . one must take into account that, as time passes by,
interest rates change. Therefore, the distribution of forward rates at time t = t∗ depends on
all possible paths from 0 to t∗,
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f(Ft=t∗ | ∀Ft<t∗). (4.9)

The key point is that the drift term in the simulations must give an expectation that match
future marked development, i.e. the forward rates. Under the risk-neutral measure the drift
is biased because one has subtracted a term which Wilmott (2000) refers to as the “market
price of risk”. The market price of risk could be interpreted as the excess above the risk-free
rate for accepting a certain level of risk, and must be included when modeling the real drift.

Under the forward measure PM+1 the final caplet is priced without discretization error by the
Euler scheme for logLn. Switching measure just changes the relative likelihood of a particular
path being chosen while the diffusion components remain unaffected. Thus, when modeling
the evolution of forward rates one should work under the forward measure which has a drift
term given by equation (3.15). The risk-neutral measure is used for pricing only (Glasserman
& Zhao 2000).
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’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’

’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’

’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’’
’’’’’’’’’’’’

’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’
’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’
’’’’’

’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’
’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’
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Figure 4.2: Distributions of exposure at each time-step provided by Monte Carlo simulations.
The left panel shows a two-dimensional illustration whereas the left panel shows the same
situation in three dimensions. Red curves represent expected exposure (EE) and green curves
represent potential future exposure (PFE).

The main challenge is to structure simulations in such a way that it is manageable, both
with concern to computer memory and time, without limiting the sample space too much.
Figure 4.3 and Algorithm 5 show how simulations are structured. For each time-step ti,
i = 1, . . . , T , paths from time 0 to ti are simulated. With use of antithetic variates, two paths
are simulated simultaneously, exploring opposite areas of the sample space. Note again that
the simulated paths are realizations of the real rates using the real drift parameter. Once a
path is simulated, we switch measure and price the portfolio under the risk-neutral measure.
Exposures are measured in money value according to time ti. Complexity is O(m · n), where
m is the number of replications and n the number of pricing scenarios. Chosing large m, n and
number of time-steps this algorithm can be very time-consuming. For financial institutions
with many positions in their trading book, such a simulation will typically run overnight.
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Figure 4.3: Paths showing the structure of Algorithm 5. Paths are simulated up to current
time ti using the real drift parameter. Exposure is calculated given the simulated paths under
the risk-neutral measure. Complexity is O(m ·n), where m is the number of replications (real)
and n the number of future market scenarios (risk-neutral).

4.5 Credit risk mitigants

Credit risk mitigants are designed to reduce credit exposures. They include netting rights,
collateral agreements, and early settlement provisions. These agreements add another layer
of complexity because future collateral amounts and margin calls must also be modeled.

Netting agreements allow trades to be offset when determining the net payable amount upon
the default of the counterparty. Without netting, the positions of the non-defaulting party
would be a loss of the full value of the out-of-the-money trades against a claim on the total
value of the in-the-money trades. However, with netting, positives and negatives are added first
to determine the net payment due. For example, if one has purchased from the counterparty
a currency option with a market value of 100 and sold a forward contract with a current
market value of -60, then the exposure is 100−60 = 40. The extent to which netting is legally
enforceable is an outstanding issue in some jurisdictions. Cross-product netting refers to the
inclusion of transactions of different product categories within the same netting set. For rules
and legal criteria see Bas (2005b).

Collateral agreements require counterparties to periodically, e.g., every week, mark to mar-
ket their positions and provide collateral to each other as exposures exceed pre-established
thresholds. Usually the the threshold is a function of the credit rating of the counterparties.
Collateralization requires the two parties to agree on a validation model for the contract and
to agree to a rate of interest paid on the collateral. Even on fully collateralized positions there
are potential exposure associated with changes in the market value of the collateral relative
to the market value of the positions.

Downgrade triggers are clauses in contracts with counterparties that state that if the credit
rating of the counterparty falls below a certain level, then the contract is closed out using a
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Algorithm 5 Exposure - Calculation of exposure over the time horizon 0− T .

1: Inputs: number of replications replications, number of iterations niter and statistical
confidence α.

2:

3: for k = 1, . . . , replications do
4: for i = 1, . . . , T do
5:

6: path1(0,ti) = LIBOR using real drift {Algorithm 1 and 3}
7: path2(0,ti) = LIBOR using real drift {antithetic pair}
8:

9: for j = 1, . . . , niter do
10: frate1 = future forward rates | path1(0,ti) {Algorithm 1 and 2}
11: frate2 = future forward rates | path2(0,ti) {Algorithm 1 and 2}
12: Exposure(i, j) =Payoff(frate1) {Algorithm 4}
13: Exposure(i, j + 1) =Payoff(frate2) {Algorithm 4}
14: end for
15:

16: end for
17: end for
18: return sortExposure.Row(α ∗ niter ∗ replications) {order statistics}

pre-determined formula with one side paying a cash amount to the other side. These clauses
lead to significant reduction in credit risk, but they do not completely eliminate all credit risk
(Canabarro & Duffie 2003).
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Chapter 5

Data Description

This chapter presents data used to calibrate and test the implemented Monte Carlo exposure
model.

5.1 Historical Data

The data used in this paper are

1. Daily zero-coupon Norwegian yields from DnBNOR. They cover the period 1 October
1998 to 29 August 2005. The data consist of a total of 1758 trading days1 and yields
with maturity 3, 6, 9 months, 1, 2, 3, 5 and 10 years. The data are shown in Figure 5.1.

The yield curve is the plot of Y (t, T ) against time to maturity T − t, and it typically comes
in one of three distinct shapes associated with different economic conditions:

• increasing - Usually, short-term bonds carry lower yields to reflect the fact that an
investor’s money is under less risk. The longer one tie up cash, the more one should
be rewarded for the risk one is taking. A normal yield curve, therefore, slopes gently
upward as maturities lengthen and yields rise.

• decreasing - This is typical of periods when the short rate is high but expected to fall.
Long-term investors will settle for lower yields now if they think rates and the economy
are going even lower in the future.

• humped - For the yield curve to be inverted it must pass through a period where long-
term yields are the same as short-term yields. When that happens the shape will appear
to be flat or, more commonly, a little raised in the middle.

Different yield curves are given in Figure 5.2.

1Meaning all days except weekends and holidays

35
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Figure 5.1: Time-series of zero-coupon yields covering the period from 1 October 1998 to 29
August 2005. The eight time-series are yields with 3, 6, 9 month, 1, 2, 3, 5 and 10 year
maturities.
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Figure 5.2: Typical yield curves. Data are taken from 1 October 1998, 17 April 2002, 1 April
2003 and 29 August 2005 respectively.
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Zero-coupon yields are converted to zero-coupon bond prices through equation (3.1). Forward
rates are determined by bond prices through equation (3.2). The data are used to compute the
volatility structure of forward rates as discussed in Section 3.5.3. Simulations are initialized
by the last observation of forward rates. These are taken from 29 August 2005 and given in
Table 5.2.

Mean and standard deviations of historical forward rates are given in Table 5.1. Short-term
rates have greater volatility than long-term rates. A surface-plot of the correlation matrix
of historical forward rates is given in Figure 5.3. The forward rates are strongly positive
correlated.

Period Mean St.dev

0-3 months 0.05369 0.02209
3-6 months 0.05247 0.02158
6-9 months 0.05260 0.02072
9 months - 1 year 0.05362 0.01974
1-2 years 0.05772 0.01684
2-3 years 0.05928 0.01253
3-5 years 0.06359 0.01045
5-10 years 0.07323 0.01092

Table 5.1: Mean and standard deviations of historical forward rates.
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Figure 5.3: Correlation matrix of historical forward rates.

5.2 Portfolio

This section describes the construction of a test portfolio used throughout this thesis. The
portfolio will be used to test and highlight some key results on exposure calculations.

We construct a sample portfolio which contains portfolios for four counterparties, denoted A,
B, C and D, with four type of interest rate transactions - caps, floors, swaps and forward
rate agreements. The portfolio is given in Figure 5.4. Note that start and maturity dates are
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Start Maturity Forward LIBOR ∆T
rate (%)

L1 29.08.05 29.11.05 2.26 0.25
L2 29.11.05 28.02.06 2.48 0.25
L3 28.02.06 29.05.06 2.72 0.25
L4 29.05.06 29.08.06 2.83 0.25
L5 29.08.06 29.08.07 3.39 1.00
L6 29.08.07 29.08.08 3.65 1.00
L7 29.08.08 29.08.10 4.12 2.00
L8 29.08.10 29.08.15 4.91 5.00

Table 5.2: Market data used in pricing. Data are taken from 29 August 2005.

given relative to 29 August 2005. IRR represents interest rate receiver swap while IRP means
interest rate payer swap. FRB is a forward rate agreement where a forward rate is purchased.
All transactions allow for netting agreements.

The day count defines the way in which interest accrues over time and is usually expressed as
X/Y . When calculating the interest earned between two dates, X defines the way in which
the number of days between the two dates is calculated, ant Y defines the way in which the
total number of days in the reference period is measured. The interest earned between two
dates is

Number of days between dates

Number of days in reference period
× Interest earned in reference period

The most commonly used day count conventions are:

1. Actual/actual (in period)

2. 30/360

3. Actual/360.

The use of 30/360 indicates that we assume 30 days per month and 360 days per year when
carrying out calculations. Note that the interest earned in a whole year of 365 days is 365/360
times the quoted rate.

The trades to counterparty A include 17 swaps, both IRR and IRP, one floor and two caps
with a total notional amount of NOK 7450 million. Most of the derivatives have quarterly
payments but semiannual and annual do exist. The portfolio is a mixture of both long- and
short-dated contracts. Counterparty B, five contracts, has total notional amount of NOK 1950
million. To be noted is the short-dated cap contract which alone contributes to nearly half the
total notional. Counterparty C has a mixture of all interest rate derivatives considered, which
all are relatively short-dated. Total notional amount is NOK 1920 million. Counterparty D
has only a NOK 300 million swap contract in its trading book.
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Figure 5.4: Portfolio used to test the implemented exposure model.
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Chapter 6

Result and Discussion

We have implemented a LIBOR market model as presented in Section 3.5. The model has
been calibrated using the data described in Section 5.1. All program code is written in the
programming language C++. In order to handle matrices effectively we have taken use of the
C++ package Newmat (Davies 2005).

This chapter starts with results and discussion from the calibration of and pricing by the
LIBOR market model. Next we focus on exposure calculations. We present exposure profiles
and make a comparison between the Monte Carlo method and the BIS approach. This includes
a closer look at the benefit from netting agreements. Finally, we present the results obtained
from simulation efficiency improvements.

6.1 Calibration and LIBOR Market Model

Models calibrated to historical data tend to project future values based on the statistical
regularities observed in the past, while models calibrated to market prices tend to reflect
forward-looking views. There are positive and negative aspects of each method. Historical
calibration implies that the process generating future market behavior is the same that was
observed in the past. The model may be slow to react to changes in market conditions and
structure, even if a time-decay factor is used to over-weight more recent observations.

The first three eigenvectors of the covariance matrix of relative daily changes in forward rates
are given in Figure 6.1. Recall from Section 3.5.3 that the first principal component is expected
to be a parallel shift in the forward rates, the second a twisting of the curve and the third a
bending. Ideally, for the first principal component to be a parallel shift all entries should have
the same sign, representing a common movement in one direction.

Previous findings such as in Attaoui (2004) and Litterman & Scheinkman (1991) indicate
that the first three factors explain close to 100% of the total variance. From Figure 6.2 it
is clear that the first three principal components explain only 74.73% and to capture more
than 90% of the variance, six principal components must be included. An explanation for the
discrepancy from previous finding is that the Norwegian interest rate market is not that liquid
as for instance the English, American or German markets, meaning that there are relatively

41
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few interest rate products traded. As a result, the whole covariance matrix is used, meaning a
8-factor LIBOR market model. The computational difference to that of a three factor model
is about 10-14%.
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Figure 6.1: The three most significant eigenvectors.
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Eigenvalue Contribution (%) Cumulative (%)

λ1 37.87 37.87
λ2 23.32 61.19
λ3 13.54 74.73
λ4 9.40 84.12
λ5 5.71 89.84
λ6 4.25 94.09
λ7 3.36 97.45
λ8 2.55 100.00

Figure 6.2: Scree plot (left) and contributions to the total variance (right) of principal com-
ponents.

All derivatives in our test portfolio are priced using the eight factor LIBOR model. Price
distributions at time 0 of the first swap, cap and floor for counterparty A are given in Figure
6.3. The cap and floor prices can not get negative, therefore, the distributions look much like
log-normal distributions. The swap can have both negative and positive values, resulting in
the greatest variance.

To check convergence we have shown cumulative mean in Figure 6.3. Convergence occurs
after approximately 10000 iterations. However, a portfolio of derivatives will converge slower
than a single derivative. Also, the quantiles in the exposure distributions require several more
iterations than the expectation. This point out that we should generate considerably more
market scenarios at each time-step in the exposure calculations. Antithetic variates have been
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used to speed up convergence. We will return to the effects of variance reduction techniques
in Section 6.3.
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Figure 6.3: Price distributions of an interest rate cap, floor and swap, upper row. Patterns
of cumulative mean are given in bottom row. Convergence occurs after approximately 10000
iterations.

6.2 Exposure Calculations

In this section we present the results from exposure calculations. First, we present the details
for the test portfolio based on the Monte Carlo approach. We examine information and
highlight several significant aspects of the counterparty exposure profiles. Finally, we contrast
these results with those derived from the BIS approach. The mark-to-market values of the
transactions are calculated using the data on interest rates as of 29 August 2005.

Monte Carlo based credit exposures

To generate distributions of credit exposure at future points of time, we create 5000 scenarios
of the real interest rate path and 400 pricings scenarios for each path using the implemented
8-factor LIBOR market model.

Table 6.1 and Figure 6.4 summarize the results of an analysis based on the Monte Carlo ap-
proach. Total mark-to-market value is negative. Two counterparties - C and D - have positive
current exposure. The total current exposure represents the portfolio’s replacement cost should
both counterparties default today. Counterparty D has the greatest relative exposure with a
worst case scenario of nearly 11% of total notional amount. The other three counterparties
hold opposite positions in their trading book, resulting in lower relative exposure.
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Figure 6.4: EAD, expected exposure, 95% and 99% PFE profiles for counterparty A, B, C
and D. Right y-axes represent exposure relative to total notional amount.

The tabulated effective EPE and MPFEs suggest that future exposures are greater than
current exposure in each case. This suggestion is confirmed by the counterparty exposure
profiles. Each of the three exposure profiles for each counterparty increases from current value
and remains positive for some period during the simulation. At the portfolio level, effective
EPE suggests that future credit exposure is, on average, 453% higher than current exposure.
The maximum scenario, MPFE(99%), is almost 21 times higher. As a result, the decision
taken on the appropriate confidence level significantly affects the amount of reserves that
should be set.

The exposure profiles of counterparty A peak late compared to the other counterparties. This
is an effect of long-dated and late-starting derivatives. Assumptions for long-dated scenarios
must be considered significantly uncertain. A sudden shift in market conditions will affect
both the magnitude and the shape of exposure profiles. As a result, one should monitor
exposure to counterparty A carefully in the future.

Consider the exposure profiles of counterparty B. The PFE(95%) is initially 0 but raises almost
linearly and reaches its peak after approximately five years. Then it drops almost 50% during
a year period. Taking a look at the portfolio we discover that the peak is a result of a short
but profitable cap contract.

The difference between exposure profiles for counterparty C is small. This indicates that
trades held against C offset each other. By taking opposite positions one can insure oneself
against adverse movements of interest rates and reduce exposure to risk one already faces.
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Mark-to-market Current Effective Maximum Potential
Counterparty Value, Exposure, EPE Future Exposure

V CE MPFE(95%) MPFE(99%)

A -35.94 0 34.91 149.69 197.16
B -9.58 0 7.00 40.59 52.92
C 12.96 12.96 13.20 14.78 16.90
D 1.20 1.20 9.10 24.77 31.92

Total -31.36 14.16 64.21 229.83 298.9

Table 6.1: Monte Carlo credit exposures in millions of NOK.

This strategy is broadly known as hedging and its main focus is to reduce the sensitivity of a
portfolio to the movement of the underlying. For hedging to be possible there must be traders
that take opposite positions to hedgers. These traders are known as speculators.

Exposure profiles for the 10 year swap contract, counterparty D, are smooth and peak after
approximately four years. The difference between EE, PFE(95%) and PFE(99%) profiles
reflects the volatility of interest rates.

Note that Monte Carlo simulations, like all other risk measurements systems, are only as
good as the data and assumptions underlying the analysis. Two critical assumptions in the
Monte Carlo analysis are the process used to derive the interest rate paths and the cash flow
relationship developed for each interest rate path. If these assumption are faulty, the result of
the simulations will be suspect. The alpha multiplier in equation (4.1) provides as a method
to offset these errors.

Comparison of methods

In this section, we compare measures of credit exposure under the Monte Carlo approach to
the CEM under the BIS methodology. The BIS approach does not take into account the
evolution of exposure through time. Therefore, its resulting EAD can be either too low or too
high, depending of the nature of transactions.

The ratios of MC/CEM exposure are given in Figure 6.5. They range from 0.81 for counter-
party C to 2.23 for counterparty D, confirming that CEM exposures can be higher or lower
than the simulated values. In general, it appears that the CEM exposures are lower when the
counterparty’s current exposure is zero, i.e. A, B and D, but not C. This is to be expected
since the BIS approach applies the same add-on regardless of the moneyness of the current
position.

Next, we consider the capability of the methods to account for the impact of netting. We
compare the ratios of the Monte Carlo approach with and without netting to the ratios of the
CEM with and without netting.

Figure 6.6 shows that all counterparties except D can benefit significantly from netting agree-
ments. The ratios of counterparty D are 1 because counterparty D holds only a single swap
contract. At portfolio level, the total effect of netting is close to 50%. The CEM ratios are for
all counterparties lower than the Monte Carlo ratios, implying that the BIS approach over-
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A B C D Total
0

0.5
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1.5
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2.5

Counterparty

A B C D Total

CEM 28.9 6.3 22.7 5.7 63.6
MC 34.9 7.0 13.2 9.1 64.2
α·MC 48.9 9.8 18.5 12.7 89.9

Ratio 1.69 1.56 0.81 2.23 1.41

Figure 6.5: MC/CEM exposure ratios.

estimates the benefit of netting. The overestimation is particularly visible for counterparty A
and B whose current exposures are zero. While a Monte Carlo simulation over time captures
the changing characteristics of the portfolio and the reduced netting benefits, the static BIS
approach does not recognize any changes in the exposure profiles over time and overestimates
the risk reduction due to netting.

A B C D Total
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Counterparty 
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A B C D Total

CEM 0.16 0.20 0.39 1.00 0.23
MC 0.41 0.66 0.43 1.00 0.47

Figure 6.6: Netting/no netting exposure ratios.

6.3 Simulation Efficiency Improvements

In this section we discuss two different methods to reduce simulation time. First we present
the effects of variance reduction techniques. Next, we discuss different time discretizations.
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Variance Reduction

Reducing variance of simulation estimates will reduce number of iterations needed to obtain
accurate results, i.e. faster convergence. With use of antithetic variates we explore opposite
areas of the sample space simultaneously. We have used the method both with concern to the
evaluation of the real interest rate paths and the risk-neutral pricing. The effects are given in
Figure 6.7. At portfolio level, the average effect is 3.62%. Antithetic variates do not increase
computer time. Therefore, even though the effects are small, we recommend the use of this
method.

A B C D Total

0.96

0.98

1

1.02

1.04

1.06

Counterparty

Counterparty Effect (%)

A 2.44
B 3.44
C 4.91
D 3.68

Total 3.62

Figure 6.7: Effects of antithetic variates for each counterparty. The bar plot shows the ratios
without/with antithetic variates.

Time Discretization

Limiting the number of evaluation points on the exposure time-horizon is a valuable tool for de-
creasing simulation time. A bisection of time steps will reduce simulation time approximately
by a factor 1/2. This section compares equally spaced time grids to that of a carefully chosen
time discretization. Carefully chosen means in this setting to choose a time discretization
such that number of points are minimized but still captures the overall structure of exposure
profiles.

Quarterly discretization, h = 0.25, is a natural choice since most of the derivatives considered
have quarterly payments. Over a 15 year time horizon this will cause 15/0.25 = 60 evaluation
points. An annual approach, h = 1.0, reduces number of time steps by a factor 1/4. However,
this discretization may not capture shifts or peaks over small periods of time, leading to
potential large errors. The magnitude of errors depends on the portfolios’ exposure profiles.

Alternatively, one can locate dates of interest in advance and fix a time grid according to
these. Typical points will be derivatives’ start, maturity and payoff dates. It may also be
useful to include nearby points, ti ±∆t, for some fixed ∆t. Possible time discretizations take
the form shown in Figure 6.8.

We assume that using quarterly time-steps provides the most correct picture, and that the the
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Figure 6.8: Different time discretizations based on derivatives’ start and maturity dates. Some
surrounding points are also included.

Counterparty Method Red. of Maximum Fraction
sim. time (%) Error (%) underestimation (%)

A h = 1.00 77 10.5 68
smart 17 9.5 39

B h = 1.00 79 17.1 87
smart 55 5.9 36

C h = 1.00 80 45.6 81
smart 21 1.5 59

D h = 1.00 78 4.2 95
h = 0.50 50 2.4 76

Table 6.2: Different discretizations of PFE(95%) profiles for counterparty A, B, C and D. All
results are measured relatively to the quarterly approach, h = 0.25.

errors compared to the true profiles are small. Therefore, the errors in the “smart” and annual
discretization are measured relatively to the quarterly approach. Since expected exposure
profiles are zero for some periods of time, counterparty A and B, we use the PFE(95%) profiles
to make the comparison. Figure 6.9 and Table 6.2 summarize the results of this analysis.

Simulation time is reduced by 77-80% by the annual discretization compared to the quarterly
approach. This is to be expected, i.e. not 75%, since the effort of simulating the real interest
rate paths increases with increasing time step. Reduction of simulation time by the “smart”
discretization ranges from 55% to 17% for counterparty B and A respectively.

Since counterparty D holds only one single quarterly paying swap contract, the smart dis-
cretization equals the quarterly discretization. The so-called smart discretization is in this
case replaced with a semiannual approach. However, the three methods do not differ much
due to the smooth nature of the swap contract.

Annual discretization provides relatively large errors. In particular, the peaks of counterparty
B and C are greatly underestimated. However, the largest error occurs after approximately 7
years for portfolio C with nearly 50% underestimation. This points out the danger of taking
too large time-steps.

The “smart” discretization captures the overall trend considerably better than the annual
approach. For counterparty B, C and D there are small or no errors. However, the peaks of
counterparty A are not entirely captured. This suggests that we should have included some
more points, especially in the interval 5-10 years.
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Figure 6.9: 95% PFE profiles obtained from quarterly, annual and smart time discretizations.
Right y-axes represent exposure relative to total notional amount.

Note that for large portfolios it makes little sense to discretize according to start, maturity
and payoff dates. However, we may locate substantial peaks and shifts and discretize such
that these are for sure captured. Generally, one would have a finer partition of the time axis
for the first couple of years than for the long time horizon. This is due to the fact that the
assumptions in constructing long-dated scenarios are surrounded by considerable uncertainty.

In conclusion, it would have been optimal to use strategy “smart” to portfolio types B, C and
D, whereas A is a case of doubt.
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Chapter 7

Concluding Remarks

This chapter summarizes the thesis. In addition, some directions for further work are pointed
out.

7.1 Conclusion

The LIBOR market model is a sophisticated underlying interest rate model which gives a great
flexibility with regard to exotic instruments and different interest rates. The implemented
Monte Carlo method estimates future exposure based on a set of market scenarios over an
appropriate simulation horizon. This leads to a precise evaluation of the impact of netting
and moneyness of the position. Moreover, the Monte Carlo method provides a rich set of
information which credit managers can use to explain the causes of the exposure.

Under the Monte Carlo method, the capital reserves are set to cover a maximum loss cal-
culated at some level of confidence. The level chosen will significantly affect the amount of
reserve that should be set. The BIS approach does not take into account the evolution of
the exposure through time. Therefore, depending on the nature of the transactions and the
portfolio composition, its resulting reserve can be either too low or too high.

A simulation model for counterparty exposure is time-consuming and there is a fine line
between accuracy and effort. Taking too large time-steps when evaluating exposure profiles
may produce large errors. An underestimation of exposures can be disastrous in the case
of default by the counterparty. A carefully chosen time discretization can reduce simulation
time considerably without loosing the overall structure of exposures. However, the number
of transactions to a counterparty will affect the possibility to reduce time-steps. With use of
antithetic variates simulation time can be reduced by a few additional percent.

7.2 Further Work

Due to the rich and sophisticated nature of the LIBOR market model we can add layers of
complexity without changing the foundation. To include more exotic instruments or other in-
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terest rates we only need to specify payoff functions. Also, simulation efficiency improvements
and different calibrations can be modeled independently of the LIBOR market model. This
gives us an enormous freedom and numerous possibilities for further developments.

We have studied the calculation of counterparty exposure. Calculating potential credit losses
requires, in addition, the modeling of the probability of default and the amount that can be
recovered after default occurs. Aziz & Charupat (1998) suggest that the default probabilities
could be calculated based on average one-year transition matrices for banks and for corpora-
tions. The cumulative probability that a company will default by the end of n years can be
obtained by multiplying the appropriate transition matrix by itself n times.

Furthermore, simulation time could be additionally reduced by using other variance reduction
techniques such as control variates, stratified sampling and importance sampling. Glasserman,
Heidelberger & Shahabuddin (1999) discuss these methods in the HJM framework, which in
some extent can be generalized to the LIBOR market model. Also, Kajsajuntti (2004) and
Glasserman (2004) investigate the use of quasi-Monte Carlo and low-discrepancy sequences to
find that faster convergence holds in high dimensions.
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Appendix A

Probability, Martingales and Various

Mathematical Tools

The aim of this appendix is to provide mathematical tools that will be useful in order to
derive and understand the LIBOR market model and its applications. The theory is based on
Glasserman (2004) and Bingham & Kiesel (2004).

A.1 Probability and Stochastic Processes

Measure

The language of modeling financial markets involves that of probability, which in turn involves
that of measure theory. Let Ω be a set.

Definition A.1. A collection F0 of subsets of Ω is called an algebra on Ω if:

i Ω ∈ F0,

ii F ∈ F0 ⇒ F c = Ω\F ∈ F0,

iii F1, F2 ∈ F0 ⇒ F1 ∪ F2 ∈ F0.

Definition A.2. An algebra F of subsets of Ω is called a σ-algebra on Ω if for any sequence
Fn ∈ F , (n ∈ N), we have

∞
⋃

n=1

Fn ∈ F .

Such a pair (Ω,F) is called a measurable space.

Definition A.3. A measure P on a measurable space (Ω,F) is called a probability measure if

P(Ω) = 1.

The triple (Ω,F , P) is called a probability space.
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Probability

To describe a random experiment we begin with the sample space Ω, the set of all possi-
ble outcomes. Each point ω of Ω represents a possible outcome of performing the random
experiment. For a set A ⊆ Ω of points ω we want to know the probability P(A). We want

1 P(Ø) = 0, P(Ω) = 1,

2 P(A) ≥ 0 for all A,

3 If A1, A2, . . . are disjoint, P(
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai)

4 If B ⊆ A and P(A) = 0, then P(B) = 0 (completeness).

Definition A.4. A probability space, or Kolmogorov triple, is a triple (Ω,F , P) satisfying
Kolmogorov axioms (1), (2), (3), (4) above.

Information and Filtration

Information is the most important determinant of success in financial life. As time passes, new
information becomes available, and we need a framework that handles dynamic situations. In
particular we need to be able to speak in terms of “the information available at time n”. In
addition we need to be able to increase n, i.e. talk about the information flow over time. The
mathematical language to model this information flow is provided by the idea of filtration.

A stochastic process X = {Xn : n ∈ I} is a family of random variables, defined on some
common probability space. The process X = (Xn)∞n=0 is said to be adapted to the filtration
F = (Fn)∞n=0 if

Xn is Fn - measurable for all n.

Thus, if X is adapted we will know the value of Xn at time n. If

Fn = σ(X0, X1, . . . , Xn)

we call (Fn) the natural filtration of X.

Martingale

Definition A.5. A process X = (Xn) is called martingale relative to ({Fn}, P) if

i X is adapted (to {Fn}),

ii E[| Xn |] <∞ for all n,

iii E[Xn | Fn−1] = Xn−1.
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A.2 Mathematical Finance in Discrete Time

We specify a time horizon T , which is the terminal date of all economic activities considered.
The filtration F = F consists of σ-algebras F0 ⊂ F1 ⊂ · · · FT . The financial market contains
d + 1 financial assets in a market with prices S0(t), . . . , Sd(t). It will be essential to assume
that the price process of at least one asset follows a strictly positive process.

Definition A.6. A numeraire is a price process (X(t))T
t=0 which is strictly positive for all

t ∈ {0, 1, . . . , T}.

Numeraires can be used to express all prices in an economy. Suppose the asset price process
S1(t) is chosen as numeraire. The prices of other assets expressed in S1(t) are called relative
prices and are denoted by S

′

i(t) = Si(t)/S1(t).

A trading strategy φ is a Rd+1 vector stochastic process φ = (φ(t))T
t=1 = ((φ0(t, ω), φ1(t, ω),

. . . , φd(t, ω))′)Tt=1 which is predictable. That is, each φi(t) is Ft−1 measurable for t ≥ 1.

Definition A.7. The value of the portfolio at time t is the scalar product

Vφ(t) = φ(t) · S(t) :=

d
∑

i=0

φi(t)Si(t), (t = 1, 2, . . . , T ) and Vφ(0) = φ(1) · S(0).

The process Vφ(t, ω) is called the wealth or value process of the trading strategy φ.

The initial wealth Vφ(0) is called the initial investment. Special classes of trading strategies
are the self-financing.

Definition A.8. The strategy φ is self-financing, φ ∈ Φ, if

φ(t) · S(t) = φ(t + 1) · S(t), (t = 1, 2, . . . , T − 1).

Definition A.9. The gains process Gφ of a trading strategy φ is given by

Gφ :=

t
∑

τ=1

φ(t)(̇S(τ)− S(τ − 1)), (t = 1, 2, . . . , T ).

A.3 Some Useful Stochastic Calculus

With use of the martingale pricing equation one can calculate the value of a derivative security.
The price must be independent of the choice of numeraire but the pricing procedure might
be more convenient in some measures than others. Moreover, the derivatives’ price process
might be stated in one measure but one would like to price it using another measure. It is
therefore useful to provide theory on how to connect different measures and define ways to
express expectations under one measure in terms of another.

Consider two different numeraires N(t) and M(t) connected with the equivalent martingale
measures QN and QM . Since the prices must be independent of the choice of numeraire one
can state
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N(t)EN

[

X(T )

N(T )
| Ft

]

= M(t)EM

[

X(T )

M(T )
| Ft

]

.

We would like to derive an expression for the random variables in the left hand side expectation
in terms of the right hand side expectation. Let G(T ) = X(T )/N(T ) and state

EN [G(T ) | Ft] = EM

[

N(T )/N(t)

M(T )/M(t)
| Ft

]

.

Thus, the expectation of the martingale G under QN is equal to the expectation of G times
the random variable N(T )/N(t)

M(T )/M(t) under the measure QM . This random variable is known as the

Radon-Nikodym derivative and is denoted by dQN/dQM . This is summarized below.

Theorem A.1. Let QN and QM be equivalent measures with respect to the numeraires N(t)
and M(t). The Radon-Nikodym derivative that changes the equivalent measure QN into QM

is given by

dQN

dQM
=

N(T )/N(t)

M(T )/M(t)
.

The most well known result from stochastic calculus is the Girsanov’s Theorem. Girsanov’s
Theorem provides a tool to determine the effect of a change of measure on a stochastic process.

Theorem A.2. (Girsanov) For any stochastic process k(t) such that

P

(∫ t

0
k2(s)ds <∞

)

= 1

consider the Radon-Nikodym derivative dQ∗

dQ = ρ(t) given by,

ρ(t) = exp

{
∫ t

0
k(s)dW (s)− 1

2

∫ t

0
k(s)ds

}

,

where W is a Brownian motion under the measure Q. Under the measure Q∗ the process

W ∗(t) = W (t)−
∫ t

0
k(s)ds

is a Brownian motion.

The main consequence of the Girsanov theorem is that when one changes measures the drift
component is affected but the diffusion component remains unaffected. One can say that
switching from one measure to another just changes the relative likelihood of a particular
path being chosen.
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Itô’s Lemma

Itô’s Lemma is to functions of random variables what Taylor’s theorem is to functions of
deterministic variables, in that it relates the small changes in a function of random variables
to the small changes in the random variables itself. Suppose that a function f depends on
the n variables x1, x2, . . . , xn and time t. Suppose further that xi follows an Itô process with
instantaneous drift ai and instantaneous variance b2

i (1 ≤ i ≤ n), that is,

dxi = aidt + bidzi (A.1)

where dzi is a Wiener process (1 ≤ i ≤ n). Each function ai and bi may be any function of all
the xi’s and t. A Taylor series expansion of f gives

∆f =
∑

i

∂f

∂xi
∆xi +

∂f

∂t
∆t +

1

2

∑

i

∑

j

∂2f

∂xi∂xj
∆xi∆xj +

1

2

∑

j

∂2f

∂xi∂t
∆xi∆t + · · · (A.2)

Equation (A.1) can be discretized as

∆xi = ai∆t + biεi

√
∆t

where εi is a random sample from a standardized normal variable. The correlation ρij between
dzi and dzj is defined as the correlation between εi and εj. We can show that

lim
∆t→0

∆xi∆xj = bibjρijdt.

As ∆t → 0, the first three terms in the expansion of ∆f in equation (A.2) are of order ∆t.
All other terms are of higher order. Hence,

df =
∑

i

∂f

∂xi
dxi +

∂f

∂t
dt +

1

2

∑

i

∑

j

∂2f

∂xi∂xj
bibjρijdt.

This is the generalized version of Ito’s lemma. Substituting for dxi from equation (A.1) gives

df =





∑

i

∂f

∂xi
ai +

∂f

∂t
+

1

2

∑

i

∑

j

∂2f

∂xi∂xj
bibjρij



 dt +
∑

i

∂f

∂xi
bidzi. (A.3)
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arbitrage, 10
free, 10
No-arbitrage theorem, 11
strategy, 10

Bank for International Settlements (BIS),
27

Basel Committee, 27

current exposure method (CEM), 28
internal model method (IMM), 28

Black formula, 19
bond, 13, 14

deflated, 16
zero-coupon, 12, 37

collateral, 32
completeness, 11

theorem, 11
contingent claim, 1, see derivative

attainable, 11
counterparty exposure, 2, 9, 27

expected (EE), 27
expected positive (EPE), 27

maximum PFE (MPFE), 27
potential future (PFE), 27

credit risk, 25
management, 25

mitigants, 32

derivative, 1
interest rate, 1
Radon-Nikodym, 58

downgrade triggers, 32

Euler scheme, 18
exotic option, 1

filtration, 10, 56
adapted to, 56
natural, 56

forward rate, 13, 15
agreement, 14
LIBOR, 14

fundamental theorem of asset pricing, 11

Girsanov’s Theorem, 58

hedger, 45
hedging, 45

interest rate
cap, 13, 21
caplet, 13
caption, 13
day count, 38
floor, 13, 21
floorlet, 13
flortion, 13
swap, 13, 21
swaption, 14
term structure, 12

Itô process, 59
Itô’s Lemma, 59

Kolmogorov triple, 56

LIBOR market model, 14

martingale, 56
measurable space, 55
measure, 55

change of, 58
equivalent martingale, 10, 57
forward, 17
risk-neutral, 11, 31
spot, 16

Monte Carlo, 5, 9
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netting, 32
numeraire, 57

over-the-counter (OTC), 2

principal component analysis (PCA), 20
probability

measure, 55
space, 55

risk
market price of, 31
rollover, 27
wrong-way, 27

risk-neutral, 11
pricing formula, 12
valuation formula, 11

sample space, 56
σ-algebra, 55
speculator, 45
stochastic process, 56

trading strategy, 57
gain process, 11, 57
self-financing, 57

volatility, 19
historical, 20
implied, 20

yield, 13, 35
curve, 35
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