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Abstract

Cyber-physical empirical methods (CPEMs) are empirical methods in which
a dynamical system under study is partitioned into physical and numerical
substructures. While the numerical substructures are described by validated
computational models, the behaviour of the physical substructures is partly
unknown. CPEMs allow to address problems in e.g. mechanical and elec-
trical engineering that classical empirical methods alone, or models alone,
cannot address in a satisfactory way. In CPEMs, the substructures are
interconnected through a control system that includes sensors and actuators,
having their own dynamics. The present thesis addresses how the fidelity of
CPEMs, that is the degree to which they reproduce the behaviour of the
system under study, is affected by the presence of this control system.

In our work, the control system is represented by a parametrized set of
elementary artefacts, such as sensor calibration error, bias, noise, time delays,
signal loss, and actuator dynamics. Their describing parameter is assumed
to be the realization of a multidimensional random variable with a known,
but arbitrary, distribution, obtained from dedicated surveys or based on
experience. The proposed analysis method enables the designer of a CPEM to
(1) identify the artefacts that play a significant role for the fidelity, (2) define
bounds for the describing parameter ensuring high-fidelity of the CPEM, and
(3) evaluate whether probabilistic robust fidelity is achieved. These analyses
are generally to be performed in a high-dimensional space, and involve
non-closed form models of the substructures, which are possibly expensive
to evaluate. To make the problem tractable, our strategy was therefore to
apply adequate surrogate modelling technique, namely Polynomial Chaos
Expansions (PCE) and Polynomial Chaos-based Kriging (PCK).

The proposed method is first illustrated by a simple example involving
coupled linear oscillators. It is then applied to the analysis of the active
truncation of slender marine structures, a problem of direct relevance for
hydrodynamic model testing of floating structures in ultra-deep water.
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As most scientific reports, this thesis is organized in a logical way, without
giving an account of the chronology, the thread of the research, and the
difficulties encountered on the way. The initial objective of the work was to
study the active truncation of slender marine structures, and more specifically,
the accuracy of such setups (at term which would later on become the fidelity).
After several attempts to properly formulate the problem, it appeared that
quite strong assumptions had to be made to address it with the classical
analytical methods of mechanical and control engineering. The problem
seemed indeed tractable only by simplifying excessively the control system -a
common pitfall for mechanical engineers- and/or the dynamical description
of slender marine structures -a common pitfall for control engineers. Such
simplifications were, in our opinion, leading to weak results: how can one
assess whether active truncation is ”accurate”, by modeling it in a coarse
manner? Simulation-based methods were an alternative, as they would
enable us to model the CPEM with an arbitrarily high level of details, but
both sensitivity and reliability analyses would then have required a significant
amount of calculations.

The solution was brought to me by a mix of serendipity and curiosity.
While taking part to a workshop on CPEMs in earthquake engineering in
Italy, I attended a presentation by Dr. Giuseppe Abbiati, who was proposing
a method to include uncertain numerical substructures in CPEMs. To do so,
he was applying innovative UQ techniques developed in his institute. After
getting familiar with this subject, some time of maturation, and several
proof-of-concepts (the coupled linear oscillator example in Chapter 3, and
an unpublished analysis of a top tensioned riser), I finally managed to
reformulate the active truncation problem so that these modern UQ methods
could solve it. It then became clear that the method could be generalized to
address any CPEM. The final part of the work consisted in consolidating the
method, and applying it to active truncation. A thank-you goes therefore to
Giuseppe for introducing me to fascinating novel UQ tools.

I am thankful to my supervisor, Professor Asgeir Sørensen, who gave
me the freedom to explore new paths, which made this journey particularly
exciting. He also helped me to make strategic decisions in the course of this
study, contributing to its success. His availability, despite his obligations as
the director of NTNU AMOS, has been appreciated.

My collaboration with Dr Stefano Marelli in ETH/Zurich constitutes a
cornerstone for this work. Stefano has been helping me to understand the
inner workings of Adaptive Kriging (AK), and provided me with a beta
version of the UQLab software, which could perform offline AK with multiple
sample enrichment.
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Chapter 1

Introduction

1.1 Background

The word empirical derives from the Ancient Greek εμπειρία (empeiŕıa) which
means experience. Empirical methods enable researchers to gain knowledge
about some system or phenomenon through observation. They constitute the
cornerstone of most scientific fields, as they enable us to verify hypotheses,
and to build models of the reality that surrounds us. These models may take
the form of mathematical formulations or algorithms embedded in computer
software.

A model is said to be validated when it is proven that it is capable of
representing reality, from the perspective of the intended use of this model.
As of today, in most fields of engineering, the development of new products
heavily relies on validated models, while empirical methods are usually used
when no validated model is available.

1.1.1 Cyber-physical empirical methods

In this thesis, we will define cyber-physical empirical methods as follows.

Definition 1. Cyber-physical empirical methods (CPEMs) are empirical
methods in which the dynamical system under study is partitioned into physi-
cal and numerical substructures. The behaviour of the physical substructures
is partly unknown, while the numerical substructures are described by val-
idated computational models. The substructures interact with each other
through a control system.

CPEM therefore augment classical empirical methods with validated
numerical models, to address problems that classical empirical methods

1



2 Introduction

alone, or models alone, can not conveniently or reliably address. This is
for example the case: (Issue 1) when the dynamical system under study is
”ill-conditioned”, i.e. when it contains a large span of characteristic spatial
dimensions and/or time constants. In that case, the part of the system that
does not fit in the laboratory, or whose dynamics is slow, can advantageously
be replaced by a numerical model. (Issue 2) when scaling effects should be
tackled. Scaling laws, used in classical empirical methods, aim at preserving
the balance, at small scale, between two effects that are known to be of
importance for the full-scale system. When other effects, disregarded by
the chosen scaling law, play an important role too, so-called scaling effects
occur, which may reduce the confidence in experimental results. A cyber-
physical empirical method alleviates this issue by isolating, in the numerical
substructures, the parts of the system that cause scaling issues. (Issue
3) when component testing should be performed, that is when the focus is
on the performance of a specific uncertain substructure, that is interacting
with the other substructures as part of a complex system. When feasible,
the latter are modelled numerically, which reduces the complexity of the
laboratory test campaign. As we will see in the following examples, a CPEM
can address several of these issues simultaneously.

1.1.2 Examples

CPEM have been concurrently developed and applied in earthquake engi-
neering, mechanical engineering, electrical power engineering and, to a lesser
extent, in other scientific fields. In the present section, we present some key
application examples that illustrate the concept and purpose of CPEM. The
first example is taken from the field of earthquake engineering, a field that
has played a key role in the development and practical implementation of
these methods (McCrum and Williams, 2016).

Example 1. A multi-storey building is subjected to earthquake-induced
ground motions. The efficiency of damage-mitigating devices such as mag-
netorheological dampers, located at the ground level of the building, is to be
investigated. While numerical methods do not capture adequately the highly
nonlinear and hysteretic behaviour of these devices, a purely empirical method
consisting in constructing and shaking the whole building until collapse, would
require unrealistically large infrastructures and resources.

Carrion (2007) solved the problem by a CPEM as follows. The dynamic
response of the building was simulated with the Finite Element (FE) method,
while the damage-mitigating device was modeled physically. The simulated
dynamic response of the building was prescribed to the damage mitigating
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Figure 1.1: A CPEM to investigate how a magnetorheological damper
mitigates the consequences of an earthquake (Carrion, 2007).

device by using large hydraulic actuators, and the resulting reaction force
was fed back into the numerical model. See Figure 1.1.

The application of CPEMs to earthquake engineering was envisioned
about 40 years ago by Takanashi et al. (1975), at a time in which simulation
computers were not able to perform complex tasks in real-time. The first
implementations of tests at a relevant seismic rate were reported in the
1990’s by Nakashima et al. (1992) and Horiuchi et al. (1999). Since then,
numerous developments and projects have been conducted in Japan, Europe,
and in the United States (Shao and Griffith, 2013).

CPEM do also have applications in mechanical engineering, as illustrated
by the following example.

Example 2. Lag dampers, as represented in Figure 1.2a, are mechanical
parts mounted between the hub of a helicopter and each of its blades. They
damp the relative motion between the blade and the hub along the degree of
freedom which is parallel to the ground. The dynamic properties of a lag
damper have a significant effect on the vibrations of the helicopter, but are
rather difficult to model numerically, due to hysteresis and complex valve
dynamics. This constitutes a challenge for helicopter design.

To alleviate this issue, the following CPEM was employed by Wallace
et al. (2007) and Wagg et al. (2008). The blade, excited by forces from
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steady-state flight conditions, was simulated by a modal approach, and the
corresponding end vibrations (displacement at the blade root) were applied
on a real lag damper as shown in Figure 1.2b. The measured reaction force
was fed back into the numerical model. This test allowed to reproduce the
vibratory behaviour of the whole blade/hub system, and could be used to
adjust some design parameters of the lag damper.

Beside aerospace engineering, CPEMs have been used in the automotive
industry to develop engines (Filipi et al., 2006), car suspensions (Missel-
horn et al., 2006), or more generally to investigate chassis dynamics and
vibrations (Plummer, 2006). Thermomechanical test benches are currently
under development to investigate fire-induced collapse of buildings, and
thermomechanical loads on space crafts (Whyte et al., 2015) .

In both Examples 1 and 2, the numerical and physical substructures
exchanged mechanical power. CPEM have also been used in power electrical
engineering (Edrington et al., 2015), as exemplified in the following.

Example 3. Fault current limiters (FCL) are devices that limit the electrical
current when a fault occurs in a circuit. They feature low impedance at normal
current levels and higher impedance at fault current levels. FCL operate
in three-phase commercial power grids, and interact with the other power
devices present on the network. Therefore, testing new FCL concepts such as
the one depicted in Figure 1.3a, would require (1) rebuilding a surrounding
power grid, and (2) manufacturing three prototypes, one acting on each
phase of the grid.

To simplify this setup, Naeckel et al. (2015) employed the CPEM whose
principle is shown in Figures 1.3b and 1.3c. The FCL was interfaced to
a simulator of the surrounding environment, including all types of devices
which would be present in an actual grid environment. The voltage Vc
between 1© and 2© in the simulated system (Figure 1.3b) was supplied as a
voltage reference to a variable voltage source. The current ISFCL and the
voltage VSFCL measured across the FCL were fed back into the simulator. To
simulate the three-phase setup, variable impedance branches, whose properties
are obtained from the FCL specimen, were inserted in series in the (simulated)
two other phases of the system. See Figure 1.3c.

In this latter example, CPEM is typically aimed at performing component
testing, i.e. at solving an issue of type 3 according to the list given in Section
1.1.1. This is somewhat the case also for Examples 1 and 2, but in those cases,
the CPEM also solved an ill-conditioning issue (Issue 1), since performing
such tests in a fully physical manner would have required an unrealistically
large laboratory infrastructure.
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(a) Lag damper mounted between the blades and hub of a helicopter

(b) Laboratory setup.

Figure 1.2: CPEM for the study of a helicopter’s lag damper (Wagg et al.,
2008).
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(a) Air coil superconducting fault current limiter (AC-SFCL). The primary winding
(conventional conductor) is shielded by the secondary winding (superconductor),
and thus conducts the nominal current with low impedance. In the event of a fault,
the induced current in the secondary winding quenches the superconductor (it looses
its superconductive property), and the sudden increase in resistance transitions the
AC-SFCL to a high impedance state, which limits the fault current.

(b) One-phase setup (c) Three-phase setup

Figure 1.3: CPEM for testing the Air Coil Superconducting Fault Current
Limiter (AC-SFLC) represented in (a). Circuit diagrams for the one-phase
case in (b) and for the three-phase case in (c). PHIL stands for Power
Hardware in the Loop. AC-VVS represents a 5MW Alternative Current
Variable Voltage Source. T5 represents a three-phase transformer providing
high currents (at a low voltage) to the AC-SFCL. All figures are from Naeckel
et al. (2015).
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It is also interesting to notice the very wide span of frequencies of impor-
tance in these three examples. Typical earthquake-induced ground excitation
may reach some Hz, mechanical vibrations of interest for aerospace and
automotive applications some tens of Hz, while the frequencies involved in
power systems may reach tens of kHz. This sets stringent requirements on
the computational efficiency of the numerical substructure. While a linear
FE method could be used in Example 1, a truncated modal representation of
the helicopter blade dynamics had to be used in Example 2. In Example 3,
tailor-made hardware and software was used to run transient electromagnetic
simulations models with a time step of 50 µs.

1.1.3 Examples of CPEM in marine technology

As of today, CPEM are not much used in marine technology. However,
an important application which has been developed in the recent years is
related to the study of offshore wind turbines (OWT). OWTs constitute
complex dynamical systems, subjected to hydrodynamic and aerodynamic
loads, and their global response is, in addition, strongly influenced by the
controller regulating the generator output (Manwell et al., 2009; Goupee
et al., 2014). When performing hydrodynamic model testing of an OWT, two
major challenges arise. The first one is related to the poor quality of wind
fields in hydrodynamic laboratories, as compared to wind tunnels (Wendt
et al., 2017; Allen and Goupee, 2017). The second one is related to the
incompatibility between Froude and Reynolds scaling laws1. Since gravity,
inertia and viscous loads all have a significant effect on the response of an
OWT, choosing one scaling law, and disregarding the other, leads to scaling
effects and reduces the confidence in the experimental results (Issue 2).

Until recently, these two challenges have been addressed by improv-
ing wind generation capabilities in hydrodynamic laboratories, and by re-
designing the rotors models with the aim to mimic full-scale aerodynamic
loads (de Ridder et al., 2014; Martin et al., 2014, 2015). However, as
noted by Allen and Goupee (2017), large uncertainties remain regarding the
aerodynamic loads generated with such approaches.

Example 4. Several research groups have developed CPEMs to enhance
test of OWT in hydrodynamic laboratories. In such approaches, the nu-
merical substructure consists of the rotor/nacelle assembly (RNA), so that

1Reynolds scaling ensures a consistent balance between viscous and inertia loads at
full-scale and model scale, which is important for the modeling of aerodynamic loads.
Froude scaling ensures a consistent balance between gravity and inertia loads, in order
to model correctly free-surface water waves, and resulting hydrodynamic loads. See e.g.
(Journée and Massie, 2001, Appendix B)
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Example 5. A CPEM envisioned in the late 1990’s to test floating structures
in ultra-deep water is called active truncation (ITTC, 1999). It consists in
modelling physically, at a reasonably large scale, the upper part of the mooring
and riser system, together with the floating production unit. The lower part
of the mooring and riser system, connected to the seabed infrastructure, is
simulated on a computer. See Figure 1.5. The substructures interact at the
truncation point through sensors and actuators located on the floor of the
hydrodynamic laboratory.

Cao and Tahchiev (2013) and Sauder et al. (2017, 2018) investigated
the feasibility of this method through simulation studies, and it has been
considered as a possible testing method by the International Towing Tank
Conference (ITTC, 2017) since 1999. It has however never been fully
implemented in practice.

Other examples of applications of CPEM in marine technology include
studies on the acoustic footprint of ships (Botelho and Christenson, 2014),
verification of software and hardware components used in power management
systems (Zhu et al., 2005; Yum, 2017) and in dynamic positioning systems
(Sørensen, 2011).

1.1.4 A note about terminology

The terminology associated with CPEM is rather discordant across the
different fields in which they are used. In earthquake engineering for in-
stance, the term hybrid simulations (Nakata et al., 2014a) and hybrid testing
(McCrum and Williams, 2016) have been coexisting for decades, reflect-
ing two different points of view of the same method. In most cases, the
chosen terminology relates to concepts and terms that were in use before
cyber-physical approaches were introduced. In mechanical engineering, the
term real-time dynamic substructuring is often used. It stems from the
term dynamic substructuring, which is employed in computational mechanics
when part of a complex FE model is substituted by a reduced-order version
of it (De Klerk et al., 2008). In marine hydrodynamics, the terminology
real-time hybrid model testing2, was chosen by SINTEF Ocean to emphasize
the connection to classical hydrodynamic model testing, and with the terms
real-time and model emphasizing the fact that the involved simulations must
run in Froude-scaled real-time (Sauder et al., 2016).

Some researchers have made a distinction between the above-described
CPEM and the concept of Hardware-In-the-Loop testing (HIL) used to verify
controllers in the automotive or marine industry (Wagg et al., 2008; Edrington

2abbreviated ReaTHMR© testing, a registered trademark of SINTEF Ocean AS
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et al., 2015). They argue that the discriminating criterion between the two
approaches is the amount of power exchanged between the substructures.
Indeed, when using HIL to verify controllers (Sørensen, 2011; Skjetne and
Egeland, 2006), only signals with low voltage and current are exchanged at
the interface between the numerical and physical substructures. In Examples
1-5 outlined above, a significant amount of mechanical or electrical power
must be transferred through actuators or amplifiers, which have their own
dynamics. This indeed leads to specific challenges, as we will see in the next
sections.

The present work will focus on the control system that interconnects the
physical and numerical substructures. We therefore chose to use the termi-
nology cyber-physical empirical methods, since it is under this denomination
that the control engineering community addresses issues related to ”the
close interactions and feedback loop between the cyber components, such as
sensing systems, and the physical components, such as varying environment
and energy systems.” (IEEE CPS, 2018). The results presented herein can
of course be exploited in all the scientific fields using CPEM, regardless of
the used terminology.

1.1.5 Definitions and important concepts

The following terms, illustrated in Figure 1.6, will be employed throughout
this thesis.

Definition 2. The real system is the subject of the study, whose performance
under given load conditions should be documented. See Figure 1.6a.

Definition 3. The performances of the real system are quantified through
Quantities of Interest (QoI) derived from the response of the system. See
Figure 1.6a.

Definition 4. The set of numerical and physical substructures form the
substructural partition. See Figure 1.6c.

Note that in Figure 1.6c, we have assumed that the substructural parti-
tion consists of one numerical substructure and one physical substructure.
However, substructural partitions may contain several specimens of each
class.

Defining the substructural partition may be straightforward, given the
problem at hand. In Example 4 for instance, the rotor-nacelle assembly
is modeled numerically, since modeling it physically would cause scaling
issues. In other cases, the choice of a substructural partition is constrained
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by the capabilities of the physical and computational infrastructures. In
Example 5, the location of the truncation point is related to the available
depth of ocean basin, and to the fact that the truncated part of the slender
marine structures must be simulated in Froude-scaled real-time. Finally,
methods have been suggested to optimally define the substructural partition
when elements such as an inertia should be split between the numerical and
physical substructures (Plummer, 2006; Gawthrop et al., 2009).

As illustrated in Figure 1.6c, the power, continuously exchanged between
the members of the substructural partition, can be modeled as the product
of a flow and an effort (Gawthrop et al., 2005). For example, in a translatory
mechanical system, the flow is the linear velocity, while the effort is the
force. For an electrical system, the flow is the electrical current, and the
effort the voltage. The flow and the effort are said to be dual of each other.
Compatibility between two substructures is achieved when the sent and
received flows are equal at each instant, and similarly, equilibrium refers to
the consistency of the efforts.

Definition 5. The control system consists of hardware components (such
as sensors, actuators, computers and network infrastructure) and software
components (such as observers, controllers and allocation algorithms), which
aim at ensuring compatibility and equilibrium between the substructures. See
Figure 1.6e. Note that the control system is not part of the substructural
partition.

An important choice to be made during the control system design is
whether effort or flow will be actuated on the physical substructure. The
dual quantity must then be measured or estimated through a sensor system.
In the case depicted in Figure 1.6d, the actuator is flow-controlled, and the
effort is measured and used as an input to the numerical substructure. This
control strategy may be dictated by stability considerations (Gawthrop et al.,
2009), but also by practical issues. Off-the-shelf mechanical actuators are
indeed usually delivered with well-performing flow controllers. In earthquake
engineering the vast majority of tests use flow actuation, and only a few use
effort control, see e.g. (Bousias, 2014).

1.2 Motivation

We have in the previous section, extensively described how CPEM constitute
an improvement to classical empirical methods. Let us now recall that the
very purpose of empirical methods is to gain knowledge about the behaviour
of some system through observation of this system. When using a CPEM,



14 Introduction

we do not observe the real system (Figure 1.6a), but a substructured version
of it, orchestrated by a control system (Figure 1.6e). A legitimate question
is then whether the observations generated with this system, actually are
representative of those we would have obtained with the real system. Only
if this is the case, new knowledge about the real system can be inferred from
these observations.

To support our discussion, we will define, in line with Gross (1999) and
Nakata et al. (2014b), and loosely for now, the notion of fidelity as follows.

Definition 6. The fidelity of a CPEM refers to the degree to which it
reproduces the behaviour of the real system under study.

The following statement can then be made regarding CPEMs.

High fidelity constitutes a fundamental requirement for CPEMs to
be considered as valid empirical methods.

1.2.1 Loss of fidelity

Fidelity may be jeopardized by factors which are related to each component
of the CPEM represented in Figure 1.6e, and which we will discuss in the
following.

First of all, the physical substructure may differ from the corresponding
part of the real system. This would typically be the case in most marine
hydrodynamics experiments, such as the ones presented in Examples 4 and 5,
when the physical substructure is included at reduced scale. Loss of fidelity
could then occur due to model manufacturing issues (erroneous geometry,
structural properties and mass distribution), or to scaling effects induced
by a too low Reynolds number. How these issues affect the QoI in marine
hydrodynamics has been discussed for classical experiments by Qiu et al.
(2014) and Steen (2014), and the references therein.

Then, as stated in Definition 1, a requirement to the numerical substruc-
tures is their verification and validation (Hills et al., 2015; ASME (ed.),
2016) for the purpose of the study. (1) Fidelity loss can occur if the numeri-
cal substructure operates outside its domain of validity. For example, if a
modal description of the real system is used in the numerical substructure,
neglecting higher-order modes will typically cause errors if excitation oc-
curs at a frequency range near the eigenfrequencies of the truncated modes
(De Klerk et al., 2008). Similarly, when using neural networks as numerical
substructures, as done by Christiansen (2014), one should ensure their input
remain within the domain the network has been trained for. (2) Loss of
accuracy due to an inadequate time stepping procedure may also occur.
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Adequate partitioned schemes have been developed when the members of the
substructural partition are tightly coupled (Bursi et al., 2013). (3) Numerical
substructures that do not succeed in running in hard real-time could cause
loss of fidelity due to desynchronization with the physical substructures
(Vilsen et al., 2017). (4) The numerical substructure is in principle consid-
ered to be deterministic, which is beneficial when sources of randomness
should be isolated in the physical substructure. In reality, there may be
uncertainties in some parameters of the numerical substructure, which may
have to be accounted for (Abbiati et al., 2015).

As depicted in Figure 1.6, the performance of the real system is investi-
gated by considering its response (through the QoIs), when it is subjected to
a given loading scenario. Fidelity may be jeopardized if the loading, acting
on either the numerical or physical substructures, differs from the loading
applied to the real system. In marine hydrodynamics, the quality of the
laboratory infrastructure will dictate the accuracy of the (physical) wave
and current loads (Qiu et al., 2014). The modeling of the loading acting
on the numerical substructures is subjected to the validity requirements
described in the previous paragraph.

In the present work, we will focus on the control system that interconnects
the substructures. As stated in Definition 5, the control system aims at
maintaining compatibility and equilibrium between the substructures. On
a high level, this implies (1) a proper measurement of the flow or effort,
(2) a proper transfer of this quantity to the numerical substructure, and
(3) a proper actuation of the dual quantity. Loss of fidelity can then be
the result of poor sensing (e.g. biases or erroneous gains in transducers),
poor actuation (e.g. actuator dynamics, backlash in transfer mechanisms),
communication- and processing-induced time delays, and poorly designed
observers or controllers, among others.

Remark 1. In most application of mechanical engineering, the real system
under study is a stable dynamical system, in the sense that its response
remains bounded when it is subjected to a bounded load. However, for reasons
we will outline shortly, the stability of a corresponding CPEM is not granted.
Because of the safety issues and economical losses that instability of such a
setup could cause, stability has received a particular attention from researchers
working with CPEM. It is, however, important to stress that stability is not
sufficient to guarantee fidelity.
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1.2.2 Analysis of the control system’s effect on fidelity

Following the control engineering terminology, fidelity is a performance
indicator. The effect of the control system on fidelity can be studied by
various approaches, the choice of which depends on (1) the way the control
system is modeled, (2) the way the physical and numerical substructures
are modelled, and (3) the choice of indicators representing the fidelity. We
will detail this in the following.

Model of the control system First of all, the perturbations introduced
by the control system may be of very different natures, and we will therefore
use the generic term of artefact3 to describe such perturbations in a generic
manner. Actuator dynamics is, for example, a type of artefact that is often
studied by modeling the actuator as a linear dynamical system, inducing a
magnitude and phase tracking error. See for instance Jung and Benson Shing
(2006); Ren et al. (2009); Gao et al. (2013); Maghareh et al. (2014); Drazin
et al. (2015); Stoten (2017); Hall et al. (2017). The fidelity loss induced
by incomplete actuation (the fact that some components of the effort to
be actuated are simply neglected) has been studied by a simulation-based
method in Bachynski et al. (2015). Noise, at the sensor or actuation level, is
another type of artefact, which can be addressed for simple systems by using
Stochastic Differential Equations (Øksendal, 2003). However, for industrial
applications, frequency domain approaches (Ren, 2007; Ren et al., 2009)
or simulations are mostly used (Mosqueda et al., 2005; Hall et al., 2017).
Similarly, the effect of time delays in CPEM has been studied analytically
for simple cases by Maghareh et al. (2014) and Kyrychko et al. (2006), and
by simulations in other cases (Mosqueda et al., 2007b; Chabaud, 2016; Hall
et al., 2017). Research performed on the security of generic cyber-physical
systems (Humayed et al., 2017) has given birth to a wide range of methods to
analyze the consequences of manipulating of the signals exchanged between
the substructures (Pasqualetti et al., 2013; Fawzi et al., 2014). While this
field of research leads to relevant methods to study some types of artefacts,
security itself is in general not an issue for CPEMs, since they generally
operate on closed networks, and for a very limited amount of time.

Models of the substructures When analyzing a CPEM, a distinction
should in principle be made between the numerical substructures, which by
definition consist of discrete-time systems, and the physical substructures
which are considered in this thesis as continuous systems. From a control per-

3We will introduce a formal definition of this term in Chapter 3.
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spective, these two classes of systems are treated in a radically different way,
and there are ongoing efforts to develop unified frameworks to study generic
cyber-physical systems (Tabuada et al., 2014). However, in the particular
case of CPEM, the numerical substructures aim at representing continuous
dynamical systems, and have therefore been treated as continuous systems
by the majority of researchers, who could then apply the vast set of available
tools to study continuous systems. Modelling the substructures as linear
systems further simplifies the fidelity analysis. This, for instance, enables an
investigation by frequency domain approaches of how uncertainties related
to the control system propagate through the substructures (Voormeeren,
2007; Chabaud, 2016). Analysis methods have been proposed when physical
substructure exhibit bounded and smooth nonlinearities (MacDiarmid and
Bacic, 2007).

Fidelity indicator A final parameter dictating the choice of the fidelity
analysis method is the way fidelity is quantified. In many cases, it is assumed
that the main source of fidelity loss in the control system is the actuator, and
it is only sought to achieve a satisfactory reference tracking at the interface.
Some corresponding performance criteria are summarized in Nakata et al.
(2014b). Alternative indicators have been developed which are based on the
error in the transferred energy (i.e. flow and effort) between the substructures
(Mosqueda et al., 2007a; Ahmadizadeh and Mosqueda, 2009; Maghareh et al.,
2014). Instead of focusing on the interface, a radically different approach is
to compare the QoI evaluated, on the one hand, from a model of the CPEM
including the control system, and on the other hand, from what we refer to
as the emulated system, defined as follows:

Definition 7. The emulated system consists of a validated model or, by
default, the best available model, that describes the behaviour of the real
system. See Figure 1.6b.

This approach, used for example by Ren (2007) and Bachynski et al.
(2015), intrinsically accounts for the possibly complex interaction between
the control system and the substructures, but it requires a good model of
the latter. Finally, an approach in which the fidelity is formulated as an cost
function penalizing error on the QoI and on the actuator input has been
suggested by MacDiarmid et al. (2008).

1.2.3 Limitations

We will illustrate some limitations of the existing fidelity analysis methods
by considering the following motivating example.
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Figure 1.7: Test bench to study sloshing in a prismatic tank. The cradle
prescribes ship-induced motions to the tank. Pressure gauges, connected to
the visible light grey wires, measure local pressures during liquid impact on
the tank walls. Courtesy of SINTEF Ocean.

When transported in ships, Liquefied Natural Gas (LNG) will slosh
inside the ship’s tanks, which may lead to slamming on the tank walls and
possibly damage the LNG containment system (Faltinsen and Timokha,
2009). Sloshing impact is a very complex phenomenon, in which local
pressures (very short duration) are strongly influenced by global motions
of the fluid in the tank (much larger characteristic time scales), among
other parameters. To investigate this phenomenon, a reduced-scale model
of the tank is instrumented with a large amount of pressure sensors, and
precalculated ship-induced motions are prescribed to the tank, see Figure 1.7.
An issue with this approach is that it does not account for the fact that the
global loads induced by sloshing influence the ship motions (Rognebakke and
Faltinsen, 2003). This two-ways coupling will in turn influence the resulting
impact pressures.

Example 6. To properly account for the effect of global sloshing loads on the
ship motions, the following CPEM is envisioned. The physical substructure
consists of LNG tank, and the numerical substructure is the ship. The
measurement of reaction forces at the tank is fed into the ship simulation,
and the derived ship-induced motions of the tank are prescribed to the tank
in real time, using a test bench as shown in Figure 1.7.
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Figure 1.8: Bifurcation phenomena observed during a sloshing test. Due
to the minor imperfection in the applied position (top), the occurrence of
impact switches from panel r1 on one side of the tank, to panel r2, on
the other side of the tank (see middle and bottom plots). Figure originally
published in Loysel et al. (2012).

However, results reported by Loysel et al. (2012) let us anticipate that
performing such study with high fidelity may be delicate. In this study, a
tank was undergoing (pregenerated) harmonic oscillations parallel to its
largest dimension. The tank was equipped with two sets of pressure sensors,
located on either side of the tank, referred to as r1 and r2, respectively. The
objective was to establish extreme value statistics of the impact pressure on
each panel. For a given amplitude and frequency of the prescribed motions ,
the fluid in the tank exhibited a non-symmetric sloshing response: the fluid
would almost always impact on the same panel r1, despite the symmetry
of the prescribed motions. This phenomenon is described as sub-harmonic
oscillations. During one repetition of the test, a one-off small variation of
the motion, compared to the harmonic reference, occurred, as shown in the
upper plot in Figure 1.8. It led to a switch of the impacted panel from
r1 to r2 as shown in the lower plots in Figure 1.8. This bifurcation is
explainable by the nonlinear properties of the system, and by the fact the
tested condition excited mainly an unstable mode. The consequences on on
the QoI (statistical properties of the pressure on r1 and r2) were significant.
See Loysel et al. (2012) for more details.

In that case, the control system did not involve the feedback loop en-
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visioned in Example 6. But the described observations enables us to flag
very important points regarding the fidelity assessment of this particular
CPEM. (1) A nonlinear model should be used to describe the behaviour of
the physical substructure (tank and sloshing fluid), in order to capture such
bifurcation phenomena. (2) The fidelity should be evaluated based on the
actual QoI (statistical parameters for the pressure on the tank wall), and not
based on the actuator’s performance, since there is in this case no continuity,
in a mathematical sense, between the two quantities. (3) Investigating the
effect of control system issues should not be limited to time delays and
actuator frequency response performance. Other types of events, such as the
unlikely glitch observed in the displacement signal actuator control, should
be included, if they cannot be eliminated.

To the author’s knowledge, none of the method described in Section 1.2.2
would allow us to analyze the fidelity of such a setup. Approaching the
problem by combining analytical approaches such as Stochastic Differential
Equations (Øksendal, 2003), Delay Differential Equations (Kyrychko and
Hogan, 2010), or the Networked Control Systems theory (Hespanha et al.,
2007) to address simultaneously the effect of noise, time delays, or jitter,
respectively, would lead to formulations that are difficult to apply to practical
industrial problems.

1.3 Outline of this thesis

In this chapter, we have introduced the notion of CPEM, and stated that
they must be proven to be of sufficiently high fidelity in order to represent a
valid alternative to purely empirical methods. In the previous section, we
have outlined existing methods to analyze how the control system could
affect the fidelity. We also pointed out the following limitations of these
methods. (1) Heterogeneous types of artefacts may occur simultaneously
leading to problems which become intractable by purely analytical methods.
(2) Artefacts may be non-deterministic, such as sporadic signal loss (3) The
artefacts may interact with substructures that exhibit a complex behaviour,
which should be modeled properly.

1.3.1 Research questions

The present thesis addresses the design and analysis of CPEMs, and attempts
to answer the following research questions.
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RQ 1 How can the designer of a CPEM identify artefacts that play a
significant role for the fidelity? Such information would enable the designer
of the setup to focus his/her efforts on specific aspects of the control system,
and leave out those of lesser importance.

RQ 2 Can robust fidelity of a given CPEM be proven? In other words,
can the designer of a CPEM guarantee that no significant loss of fidelity
would occur due to artefacts that are likely to be introduced by the control
system?

RQ 3 Can absolute bounds be defined on these artefacts within which
sufficiently high fidelity would be guaranteed? On the one hand, this would
provide specifications/requirements to the control system. On the other
hand, this would allow an a posteriori analysis of a CPEM to confirm its
sufficiently high fidelity.

1.3.2 Scientific contributions

The original scientific contributions presented in this thesis are the following.

1. We provide, in Section 3.1, a unified and quantitative definition of the
fidelity of a CPEM, which fits to a wide class of applications.

2. We present in Section 3.2 a method to systematically identify and
rank the control system-induced artefacts that jeopardize the most the
fidelity (sensitivity study). This information is of great operational
relevance when designing a CPEM.

3. We also develop in Section 3.2 a framework to verify the probabilistic
robust fidelity of cyber-physical empirical setups, and to derive fidelity
bounds, which can be used as specifications to the control system. Our
framework constitutes an improvement as compared to existing analysis
methods for the following reasons. (1) The method is non-intrusive,
and thus not limited to analytic models, which allows its application
to the wide class of dynamical systems represented in CPEM. (2) It
can handle an arbitrary number and type of artefacts, which exhibit
parametric uncertainty. (3) It is based on surrogate modelling and
active learning techniques to achieve computational efficiency, even for
high-dimensional and high-reliability problems.

4. In the second part of the thesis, we investigate the fidelity of active
truncation of slender marine structure using the developed methods
(Chapter 5). We provide useful insight in the design of such setups, of
interest in marine technology research.
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5. Finally, at a more general level, this work establishes a bridge between
the modern methods for uncertainty quantification, control engineering
and marine technology. It is in particular expected that the proposed
method can be applied to a much wider class of robust control problems
(with parametric uncertainties) than those related to CPEM.

Some of the results reported in this thesis have been published in the
following papers.

Paper 1 Sauder, T., Sørensen, A. J., and Larsen, K. (2017). Real-Time
Hybrid Model Testing of a Top Tensioned Riser: A Numerical Case Study
On Interface Time-Delay and Truncation Ratio. In ASME 2017 36th Inter-
national Conference on Ocean, Offshore and Arctic Engineering, Trondheim,
Norway

Paper 2 Sauder, T., Marelli, S., Larsen, K., and Sørensen, A. J. (2018).
Active truncation of slender marine structures: Influence of the control
system on fidelity. Applied Ocean Research, 74:154–169

Paper 3 Sauder, T., Marelli, S., and Sørensen, A. J. (2019). Probabilistic
Robust Design of Control Systems for High-Fidelity Cyber-Physical Testing.
Automatica (accepted for publication)

In the course of this PhD study, the author also contributed to the
practical design, execution and analysis of cyber-physical experiments. These
experiments constitute an important background for this thesis: they were
a source of insight into practical realization of CPEMs, and nourished the
developments presented here.

The first set of experiments were performed in collaboration with PhD
candidate Stefan Vilsen, presently with SINTEF Ocean. The objective
was to design a CPEM in which the numerical substructure was a Finite
Element code, simulating the behaviour of mooring lines4 in real-time. The
physical substructure was a simple cylindrical floater, representing an oil&gas
production unit, or a a fish farm. The author was responsible for the hardware
and software architecture, development of several components of the control
system (allocation and prediction modules, among others), and took an
active part in the execution of the tests. This work was reported in the
following publications.

4As opposed to Example 5, developed in this thesis, the mooring lines were not
truncated, but fully replaced by their numerical counterparts.
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Paper 4 Vilsen, S., Sauder, T., and Sørensen, A. J. (2017). Real-time
hybrid model testing of moored floating structures using nonlinear finite
element simulations. In Dynamics of Coupled Structures, volume 4 of Con-
ference Proceedings of the Society for Experimental Mechanics Series, pages
79–92. Springer International Publishing

Paper 5 Vilsen, S., Sauder, T., Føre, M., and Sørensen, A. J. (2018).
Controller analysis in real-time hybrid model testing of an offshore floating
system. In ASME 2018 37th International Conference on Offshore Mechanics
and Arctic Engineering, Madrid, Spain

Paper 6 Vilsen, S., Sauder, T., Sørensen, A. J., and Føre, M. (2019).
Method for Real-Time Hybrid Model Testing of Ocean Structures: Case
Study on Horizontal Mooring Systems. Ocean Engineering (accepted for
publication)

The second set of experiments were aimed at investigating the behaviour
of floating wind turbines subjected to combined wind, current and wave
loads. A CPEM was used to address the Froude-Reynolds scaling conflict, as
discussed in Example 4. The practical implementation of this CPEM started
with the research reported in Chabaud (2016), and has then been further
developed by a joint NTNU and SINTEF Ocean team. It has now reached
a high level of maturity and has a significant influence on the way model
testing of floating wind turbines is performed worldwide. The publications
listed below have resulted from this work. The author has taken an active
part in the development of this CPEM and in the execution of the tests
reported in these publications.

Paper 7 Sauder, T., Chabaud, V., Thys, M., Bachynski, E. E., and
Sæther, L. O. (2016). Real-time Hybrid Model Testing of a Braceless Semi-
submersible Wind turbine. Part I: The Hybrid Approach. In ASME 2016
35th International Conference on Ocean, Offshore and Arctic Engineering,
No OMAE2016-54435

Paper 8 Bachynski, E. E., Thys, M., Chabaud, V., Sauder, T., and
Sæther, L. O. (2016). Real-time Hybrid Model Testing of a Braceless Semi-
submersible Wind turbine. Part II: Experimental Results. In ASME 2016
35th International Conference on Ocean, Offshore and Arctic Engineering,
No OMAE2016-54437





Chapter 2

Uncertainty quantification

using surrogate models

2.1 Introduction

This chapter presents the mathematical foundations of the tools that will
be used to address our Research Questions (RQ). We first introduce, inde-
pendently, the subjects of uncertainty quantification and surrogate models.
We will then show, in Section 2.2, how polynomial chaos expansions can be
used to conveniently perform uncertainty propagation and global sensitivity
analysis, which will prove useful in addressing RQ1. Then, in Section 2.3,
we will outline how reliability analyses, related to RQ2 and RQ3, can be
conducted by combining polynomial chaos-based kriging surrogate models
with active learning techniques.

Note that the present chapter is not meant to treat the subject of surrogate
modeling for uncertainty quantification in an exhaustive manner, but rather
to introduce the important concepts and tools which will be used in Chapter
3. Only demonstrations which contribute to the understanding of the subject
will be given. For more details, the interested reader is encouraged to consult
Santner et al. (2003); Sudret (2007); Saltelli (2008) and Lemaire (2009),
which have been our main references, as well as more specific references
which will be cited in the text.

2.1.1 Uncertainty quantification

The actual performance of engineered systems may differ from their nom-
inal performance predicted during design, due to epistemic and aleatory
uncertainties. The former refer to our lack of knowledge about some influ-
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encing phenomena while the latter is due to the natural variability of these
phenomena. In automatic control, this fact has given birth to the field of
robust control (Zhou et al., 1996), studying how stability and/or performance
of a dynamical system can be achieved in spite of perturbations that are
unknown, but generally assumed bounded. Robust control methods, such as
H∞ loop shaping or sliding mode controllers (Khalil, 2014, Chapter 10), are
now routinely used in controller design to cope with such uncertainty.

The field of uncertainty quantification (UQ), situated at the intersection
of mathematics and statistics, addresses these issues at a more general
level. It aims at modeling uncertainty in a quantitative manner, studying
how it propagates through functions, and providing tools to reduce it. For
illustration, let us consider the following, formally defined, mapping M
linking an M -dimensional input x to a one dimensional output y:

M : D → R (2.1)

x 7→ y

where D is a subset of RM , with M ∈ N
∗. Some of the sub-problems of UQ

are the following.

1. Modeling of input. How can an uncertain input variable x be described,
consistently with available information about x, such as known bounds,
and available data, such as samples or measurements of x?

2. Uncertainty propagation. When an uncertain input x enters the deter-
ministic function M, y will become uncertain. How can the uncertainty
on y be related to the uncertainty on x?

3. Sensitivity analysis. Out of the M components of the uncertain input
x, which ones drive most of the uncertainty of the output y?

4. Reliability analysis. How likely is it that y exceeds a given maximum
admissible value yadm, due to the uncertainty affecting x?

5. Inverse UQ, or model calibration. Let us assume that the behaviour of
the function M is conditioned by a set of uncertain parameters. How
can these parameters be estimated, given that some observations of
the input x and associated output y are available?

2.1.2 Probabilistic modeling of the inputs

In the present work we will use a probabilistic framework to address these
questions. In a such a framework, an uncertain quantity is represented
by a (possibly multidimensional) random variable X, and the uncertainty
affecting X is described by its joint probability density function (PDF)
fX(x), or equivalently, by its cumulative distribution function (CDF) FX(x),
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or by univariate marginal distributions and a copula, see Embrechts et al.
(2003). Note that there exist other, non-probabilistic, frameworks to address
uncertainty, such as interval analysis (Jaulin et al., 2001), fuzzy logic (Zadeh,
1965) and evidence theory (Shafer, 1976).

When addressing the UQ problems outlined above with a probabilistic
method, a usual starting point is the probabilistic modelling of inputs, i.e.
defining fX . It might be a time consuming step but it is a key aspect for
the quality of the analysis, since the input properties will in general strongly
influence the results. When no data, but only some information about X
is available, for example based on expert judgment, the maximum entropy
principle (Jaynes, 1957) can be used. It states that the least biased PDF
fX describing X is the one maximizing the entropy H, defined as

H := −
∫

D
fX(x) ln fX(x)dx (2.2)

and complying with the available information. Some of the solutions of this
variational problem may seem quite intuitive.

Example 7. If the only available information is that X is bounded, the
solution fX maximizing H in (2.2) will be the uniform distribution. If it
is known that X is unbounded, and its expected value and variance are
known, then the solution is the Gaussian distribution. If X is positive and
only its expected value is known, the exponential distribution should be used.
Additional similar results can be found in Kapur (1989).

When data is available in the form of samples of X, fX may be chosen
to maximize the likelihood of the data, that is the probability of this data
actually being observed. Selecting fX on this basis only may however lead
to overfitting, so criteria have been introduced that penalize the number of
parameters involved to describe fX . Example of such criteria are the Akaike
Information Criterion, or AIC (Akaike, 1974), and the Bayesian Information
Criterion, or BIC (Schwarz, 1978).

2.1.3 Surrogate models

Surrogate models, also known as metamodels or emulators, have mainly been
developed to serve as a computationally cheap replacement to a function M
that is expensive to evaluate. A surrogate model M̂ is generally calibrated
from a discrete set of N evaluation points referred to as the training set or
experimental design. We define

E := (x(1), x(2), ..., x(N))⊤ (2.3)
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F := [M(x(1)),M(x(2)), ...,M(x(N))]⊤ (2.4)

From (E ,F), M̂ can then be used to predict the value of M(x) at points
x not included in E . An aspect which will be emphasized in the present
chapter is that adequate surrogate models can also be used as tools to study
specific properties of M.

The most immediate example of surrogate model is the linear interpolator
between the evaluation points. In that case, M̂ is exactly equal to M at
the evaluation points. A linear regressor is an alternative form of surrogate
model. For this one, an assumption is made regarding the global behaviour of
M (it is linear over the whole range of evaluation points), which surpasses the
requirement for M̂ to be exactly equal to M at the evaluation points. The
response surface methodology by Box and Wilson (1951) was among the first
surrogate model used in experimental engineering problems. It was based
on second order polynomial regression. For a given number N of evaluation
point, increasing further the order of polynomials in the regression generally
improves the quality of the surrogate model at the evaluation points, but
may cause spurious oscillations of M̂ between them (referred to as Runge
effect, or overfitting). Splines have been developed to alleviate this issue and
are now an extremely popular tool to model smooth functions (Friedman,
1991). At a higher abstraction level, artificial neural networks have been
shown to perform adequately on very complex mappings (McCulloch and
Pitts, 1943). Finally, support vector machines (Vapnik, 1995) and Kriging
techniques (Cressie, 1990) have become very popular surrogate models in
the last years.

The structures of the surrogate models listed above may be radically
different from each other. A common point however, is that they all are
parametrized functions, whose parameters are optimized, in some sense, so
that M̂ mimics the original function M. During this optimization process,
but also when all parameters have been determined, it is necessary for the
analyst to measure the error between M̂ and M. Let us mention three
methods to do so. Assume that the samples in E are realizations of a random
variable X. The generalization error method uses an additional validation
set of evaluation points to estimate empirically E[( ˆM(X)−M(X))2]. The
main drawback of this approach is that it requires additional evaluations of
M, which may be costly. The empirical error method uses the same samples
that have been used to determine the parameters in M̂ to evaluate the
error. The main drawback of this approach is that it generally overestimates
the quality of the surrogate model, and does not detect overfitting. The
leave-one-out (LOO) cross-validation method, which is an unbiased empirical

estimator of E[( ˆM(X)−M(X))2], constitutes a good compromise between
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these two methods.

Definition 8. The LOO cross validation error ELOO is obtained as follows.
A surrogate model M̂(∼i) is established by using all Nevaluation points in E ,
except the ith one. Then (M̂(∼i) −M)2 is evaluated at the point x(i) which
was not included. The operation is repeated for all evaluation points, and
ELOO is obtained from the following arithmetic mean.

ELOO :=
1

N

N
∑

i=1

(

M(x(i))− M̂(∼i)(x(i))
)2

(2.5)

The advantage of the LOO cross-validation method is that no additional
evaluation of M are needed, and that it provides a reliable estimate of the
generalization error. A drawback is that N different surrogate models should
in principle be calibrated to calculate ELOO. However this can be avoided
for some surrogate model structures, as we will see in Section 2.2.3. The
surrogate model is in general considered satisfactory when ELOO is less than
a few percent of the variance of M(X) which can be estimated from F
(Le Gratiet et al., 2015). Note also that the concept of LOO can easily be
extended to the leave-K-out cross validation error (Zaki and Meira, 2014,
Chapter 22).

Another important question is how to select the training set E when there
is no available knowledge about the behaviour of M? If the surrogate model
is to perform correctly in all regions of D, a natural initial approach is to
”spread” the evaluation points over the whole domain D. This can be done for
example by maximizing the distance between the N evaluation points in D,
which leads to so-called minimax or maximin distance designs (Santner et al.,
2003, Section 5.3). Another approach is to minimize the discrepancy, which
is a measure of the non-uniformity of the evaluation points over D (Santner
et al., 2003, Section 5.4). When a probabilistic description of the input X
is available, an alternative is to sample the evaluation points according to
fX(x). Since there will be more evaluation points in regions of D where
samples of X are likely to be, so one can expect M̂ to perform better in these
high-probability regions of D, at the expenses of lesser probability regions.
Furthermore, and we are here reaching the topic of uncertainty propagation,
once M has been evaluated for these samples, statistical moments of M(X)
can be directly estimated from F .

Monte-Carlo simulations (MCS) may be used to generate such samples
of X. However, if the dimension M of D is large, and unless a large number
N of samples are generated, the samples generated by this method tend
to cluster in higher probability regions of D, leading to surrogate models
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performing very poorly elsewhere. The Latin Hypercube Sampling (LHS)
method (Stein, 1987) is a sampling method with excellent space-filling
properties. More specifically, an advantage of LHS is that the generated
samples tend to be spread ”marginally”, i.e over the range of each component
of X, taken separately (Santner et al., 2003, Section 5.2). A latin square is
a two-dimensional grid containing one (and only one) sample in each row
and each column, similarly to rooks on a chess board which do not threaten
each other. A latin hypercube is the generalization to larger dimensions of a
latin square. In LHS, NMcells are generated on D in such a way that all
cells are equiprobable. The N samples are then drawn in selected cells so
that this partition of D forms a latin hypercube.

2.2 Polynomial chaos expansions and applications

In this section, we will first introduce the concept of polynomial chaos
expansion (PCE), and show how surrogate models can be built from such
expansions. We will then show that these surrogate models have interesting
properties when uncertainty propagation and sensitivity analyses should be
performed.

2.2.1 Orthogonal families of polynomials and PCE

Let (Ω,ℵ, P ) be a probability space, and X : Ω → D ⊂ R
M be a (possibly

multidimensional) random variable. Let L2(Ω,ℵ, P ) be the space of the P -
squared integrable functionals of X, in other words the space of functionals
g(X) with finite variance Var[g(X)]. L2(Ω,ℵ, P ) is a Hilbert space when
endowed with the following inner product

〈g|h〉 := E[g(X)h(X)] =

∫

D
g(x)h(x)fX(x)dx (2.6)

Note that the definition of this inner product depends on the input variable
X. Families of orthogonal polynomials with respect to this inner product
can be constructed by Gram-Schmidt orthogonalization of monomials of
increasing order. Xiu and Karniadakis (2002) have identified the families
corresponding to the most usual probability distribution functions.

Example 8. Let X1 be a standard Gaussian variable, i.e X1 ∼ N (0, 1).
Then two distinct members of the so-called Hermite family of polynomials
(ψ1

0(x1) = 1, ψ1
1(x1) = x1, ψ

1
2(x1) = x21 − 1, ...) are orthogonal with respect
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to X1. Indeed, for this family of polynomials, when setting

fX1(x1) =
1√
2π
e−

x21
2 (2.7)

in (2.6), then ∀i, j ∈ N
∗, i 6= j ⇒

〈

ψ1
i |ψ1

j

〉

= 0.

Example 9. Consider another random variable denoted X2, uniformly
distributed on [−1, 1], i.e X2 ∼ U(−1, 1). Then two distinct members of the
Legendre family (ψ2

0(x2) = 1, ψ2
1(x2) = x2, ψ

2
2(x2) = 3/2x22 − 1, ...) are

orthogonal with respect to X2.

Consider now a multidimensional random variable X withM independent
components. The joint PDF fX of X is then the product of the marginal
distributions fXi , for i ∈ N

∗
M . Then, a family of multivariate polynomials

(ψα)α∈NM orthogonal with respect to X can be constructed from the tensor
product of M univariate polynomials (ψi

αi
(Xi))i∈N∗

M

Example 10. Let M = 2. We assume that X ∈ R
2 is composed of the two

independent random variables X1 and X2 from the previous examples. Then
the member of the family of bivariate polynomials orthogonal with respect to
X that is indexed by α = (2, 3) is

ψ(2,3)(x1, x2) = ψ1
2(x1)ψ

2
3(x2) = (x21 − 1)(5/2x32 − 3/2x2). (2.8)

The first factor is the Hermite polynomial of order 2, and the second factor
the Legendre polynomial of order 3. Orthogonality yields from the fact that
the integral in (2.6) can be split in two integrals since fX = fX1fX2 due

to independence. Then ∀α, β ∈ N
2, 〈ψα|ψβ〉 =

〈

ψ1
α1
|ψ1

β1

〉〈

ψ2
α2
|ψ2

β2

〉

, which

vanishes if α 6= β.

The first member of the family ψ0 is generally chosen as the constant
polynomial identically equal to 1, and the following terms are normalized,
so that

∀α, β ∈ N
M , 〈ψα|ψβ〉 = δαβ (2.9)

where δαβ is the Kronecker delta. The family (ψα)α∈NM forms then an
orthonormal basis of L2(Ω,ℵ, P ). This leads to the following definition of
the polynomial chaos expansion.

Definition 9. For M ∈ L2(Ω,ℵ, P ), the polynomial chaos expansion (PCE)
of M is

M =
∑

α∈NM

aαψα (2.10)

where (ψα)α∈NM is the family of orthonormal polynomials with respect to the
input variable X, and (aα)α∈NM a family of real coefficients.
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2.2.2 Truncated PCE as a surrogate model

A surrogate model of M can then be constructed by truncating the series
(2.10). Letting A be a finite subset of NM , we define M̂ as

M̂ :=
∑

α∈A
aαψα (2.11)

As shown by Cameron and Martin (1947), M̂ will converge in the L2 sense
towards M, i.e. Var[M−M̂] → 0 when the cardinality of A goes to infinity.
The rate of convergence of the aα coefficients is related to the smoothness
properties of M, and is exponential for C∞ functions.

An immediate question is how to select A. Various criteria have been
suggested to do so. Defining the total degree as the sum of the components
of α, one possibility is to keep all polynomials with total degree less than a
given p ∈ N

∗, as illustrated in the upper row of Figure 2.1 for M = 2. One
drawback of this choice, is that the cardinality |A| = (M + p)!/(M !p!) grows
fast with both M and p. Indeed, as discussed by Blatman and Sudret (2010),
the number of evaluations of M that is needed to identify the (aα)α∈A is
usually 2-3 times |A|. If the model M is expensive to evaluate, identification
is in practice unfeasible for large values of M and p. Furthermore, for large
values of p, this truncation set A includes interaction terms between high-
order univariate polynomials in the input variables. Even if theoretically
possible, this type of interaction is rarely seen in practice, which has been
formalized in the sparsity of effect principle (Montgomery, 2013, Chapter 6).

The following hyperbolic truncation sets were introduced by Blatman and
Sudret (2011) to address this issue.

∀p ∈ N
∗, ∀q ∈ (0, 1],AM,p

q := {α ∈ N
M |
(

M
∑

i=1

αq
i

)1/q

≤ p} (2.12)

The case q = 1 corresponds to the previously mentioned set in which the
total degree is required to be less than p. As shown in Figure 2.1, decreasing
values of q, typically to q = 0.5, produces sparser truncation sets, and favors
low-order interaction between the components of X. The cardinality of AM,p

q

as a function of M , p, and q has been studied in details in Blatman and
Sudret (2011). However for large M , even when hyperbolic truncation sets
are used, it is seen in practice that only a small subset of the identified
coefficients aα have a significant value, the remaining ones being negligible in
comparison. How could A be further optimized to include only the member
of AM,p

q associated with the most significant aα?
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Figure 2.1: Illustration of hyperbolic truncation sets AM,p
q for M = 2. The

x-axis corresponds to the degree of the polynomials in X1, and the y-axis to
the degree of the polynomials in X2. The included terms are represented
in blue for various pseudo-norm parameters q ∈ {1(top), 0.75, 0.5(bottom)},
and total degree p ∈ {3(left), 4, 5, 6(right)}. From Sudret and Marelli (2017).
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Iterative methods, based on the least angle regression (LAR) method,
have been proven to be effective at producing such sparse sets (Blatman and
Sudret, 2011). They start from a hyperbolic truncation set A, obtained using
predefined values for q and p, and proceed as follows. First, the member
ψαI of A which is the most correlated with M is identified. This is done by
evaluating empirically 〈M|ψα〉 for all α ∈ A, that is by using the available
set of fX -distributed evaluation points in E . Then, the largest possible step
λIψαI , with λI ∈ R, is taken in the direction of ψαI , until some other member
of A, say ψαII has as much correlation with the current residual M−λIψαI as
ψαI . Then, a step is taken along ψαI + ψαII , that is an equiangular direction
between ψαI and ψαII . The step length λII ∈ R is increased, which will
reduce the correlation of the residual M−

[

λIψαI + λII(ψαII + ψαII)
]

with
both ψαI and ψαII . When the residual becomes as correlated to a third
member of A, denoted ψαIII , as to ψαI and ψαII , the descent direction is
changed to become equiangular between ψαI , ψαII , and ψαIII . This until a
fourth member of A reaches a high enough correlation with the residual, and
so on. The iterations may for example be stopped when the set of selected
polynomials has reached a given size, or when the ELOO (2.18) associated
with generated surrogate model is sufficiently low. A refined version of this
algorithm, where an optimal value of the total degree p is sought, is presented
in Blatman and Sudret (2011).

2.2.3 Determination of the aα coefficients

Once the sparse polynomial basis (ψα) has been constructed, and a truncation
set A has been chosen, the coefficients (aα) must be found to obtain the
surrogate model (2.11). Two classes of methods are available for this purpose.
Projection methods build on the fact that

∀α ∈ A, aα = 〈M|ψα〉 = E[M(X)ψα(X)] =

∫

D
M(x)ψα(x)fX(x)dx

(2.13)
The coefficient aα can then be determined by sampling X with LHS or
MCS and evaluating E[M(X)ψα(X)]. Alternatively, the integral on the
right hand side can be evaluated by quadrature, meaning that the integrand
should be evaluated at values of x given by quadrature rules. Another class
of approach, denoted regression methods, have however been found to be
generally more efficient (Le Gratiet et al., 2015). They consist in minimizing
the mean square of the residual ǫ(X) defined as

ǫ(X) := M(X)− M̂(X) = M(X)−
∑

α∈A
aαψα(X) (2.14)
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Note that the two approaches are equivalent, see proof in Section A.2. In
practice, given the family E of N samples of X obtained e.g. by LHS, the
following discretized version of (2.14) is minimized:

a∗ = argmin
a∈R|A|

1

N

N
∑

i=1

(

M(x(i))−
∑

α∈A
aαψα(x

(i))

)2

(2.15)

This is an ordinary least square problem whose solution is given by1

a∗ = (F⊤F )−1F⊤F (2.16)

where F is the information matrix defined by

∀i ∈ N
∗
N , ∀j ∈ N

∗
|A|, Fij = ψj(x

(i)) (2.17)

and F has been defined in (2.4).
To verify that the obtained surrogate model M̂ represents well M, the

LOO cross-validation error (see Definition 8) can be used. If the LOO error
is deemed too large, several polynomials could be added to the set A, or the
number of samples N could be increased.

Note that owing to the linearity of (2.16), there exists an explicit expres-
sion of the LOO error that does not require establishing N separate PCE
models, but uses the one established from all N samples. Denoting di the
ith diagonal term of the matrix F (F⊤F )−1F⊤, Saporta (2006) showed that

ELOO =
1

N

N
∑

i=1

(

M(x(i))− M̂(x(i))

1− di

)2

(2.18)

We will in the following show how he obtained PCE-based surrogate model
can conveniently be used for UQ purposes.

2.2.4 Uncertainty propagation

Once the surrogate model M̂ in (2.11) is established, it is straightforward
to obtain an estimate of the expected value of M(X). Indeed E[M̂(X)] =
E[M̂(X)ψ0(X)] since ψ0 ≡ 1. Then, then replacing M̂ by its expansion
(2.11), and using the fact that ψ0 is orthogonal to all ψα with α 6= 0, we find
that

E[M̂(X)] = a0 (2.19)

1Note that we have for simplicity identified aα, indexed by the M -tuple α ∈ A, with
a |A|-dimensional vector a. The same abuse of notation is made for ψα in the following
equations.
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The variance of M(X) can be estimated from Var[M̂]. Noticing that

M̂(X)− E[M̂(X)] =
∑

α∈A\{0}
aαψα(X) (2.20)

and using the orthogonality of the (ψα) yields:

Var[M̂(X)] = E[(M̂(X)− E[M̂(X)])2] =
∑

α∈A\{0}
a2α (2.21)

We see from (2.19) and (2.21) that the two first statistical moments of a
PCE-based surrogate model are given by very simple expressions. Analytical
expressions of higher-order moments exist for some types of polynomials
(Savin and Faverjon, 2017), but in general, the skewness and kurtosis must
be estimated numerically from the following expressions:

E[(M̂(X)− E[M̂(X)])3] =
∑

(α,β,γ)∈(A\{0})3
aαaβaγE[ψαψβψγ ] (2.22)

E[(M̂(X)− E[M̂(X)])4] =
∑

(α,β,γ,δ)∈(A\{0})4
aαaβaγaδE[ψαψβψγψδ] (2.23)

One may wonder about the consequences of selecting Hermite polynomials
(ψα) to build the surrogate model, when X is not normally distributed. In
that case, one must expect to achieve sub-optimal convergence of the spectral
coefficients aα with respect to the number of terms in the PCE. If a consistent
basis is chosen, it has been shown by Blatman and Sudret (2010), among
others, that for a given confidence interval, the present approach enables
to estimate the statistical moments of M(X) using up to two orders of
magnitude less evaluations of M than if crude MCS were used.

2.2.5 Global sensitivity analysis

The objective of a sensitivity analysis is to determine which component of
the vector x has the most influence on M. Local sensitivity analyses examine
the impact of input parameters’ variations around a working point x∗, by
considering the value of the gradient and possibly the Hessian of M at x∗

(when such quantities are defined). Local sensitivity analyses are particularly
relevant when M is a linear, or weakly nonlinear, function, since the results
obtained at x∗ also reflect the sensitivity of M to its input elsewhere in D.
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Example 11. Let M(x1, x2) = x31+x2 defined for D = {x ∈ R
2, ||x||∞ ≤ ρ}

and ρ ∈ R
∗
+. Computing the gradient of M at x∗ = 0

∇M|x∗=0 =

(

∂M
∂x1

,
∂M
∂x2

)⊤

x∗=0

= (0, 1)⊤ (2.24)

puts in evidence the sensitivity of M to x2. When ρ is small, this is
representative of the global behaviour of M since the function is weakly
nonlinear over D. For large values of ρ, M will clearly be more sensitive to
variations x1 than to x2 in most regions of D, so the results obtained locally
for x∗ = 0 are not representative of the global behaviour of M.

This example shows that for nonlinear functions, sensitivity properties
of M may be radically different in different regions of D. This rules out
local sensitivity analysis for nonlinear functions, especially when there are
uncertainties regarding the value of x.

Assuming that X is a random vector with independent components, the
global sensitivity of M(X) can be studied by Analysis of Variance (ANOVA),
i.e. by determining how much of the variance of M(X) can be attributed
to each component of X. Indeed, if fixing some component of X to their
”true” value significantly reduces the variance of M(X), then it can be
concluded that the sensitivity to this component is large. If, on the contrary,
a component is left free to vary over its whole range of uncertainty without
causing large variations of the variance of M(X), then this component has
no global influence on M and could be fixed.

More particularly, we will make use of Sobol’ indices, which are introduced
through the following theorems.

Theorem 1. If M : D → R is integrable on D, then M has a unique
so-called Sobol’ decomposition

M(x1, ..., xM ) = M0 +

M
∑

i=1

Mi(xi) +
∑

1≤i<j≤M

Mi,j(xi, xj)

+ ...+M1,2,...,M (x1, x2, ..., xM ) (2.25)

where M0 is constant, and for any s ∈ N
∗
M and k ∈ N

∗
s, the integral of any

Mi1,...,is(xi1 , ..., xis)fXk
(xk) over the domain of variable xk is zero.

Proof. See Sobol (1993).

Theorem 2. The variance V of M(X) can be decomposed as

V =
M
∑

i=1

Vi +
∑

1≤i<j≤M

Vi,j + ...+ V1,2,...,M (2.26)
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where each term is the variance of the corresponding term in Sobol’ decom-
position (2.25).

Proof. First, one should note that the summands in (2.25) are orthogonal
in pairs in the sense that: ∀(i1, ..., is) 6= (j1, ..., jt),

∫

D
Mi1,..,is(xi1 , ..., xis)Mj1,...,jt(xj1 , ..., xjt)fX(x)dx = 0 (2.27)

This comes first from the fact that fX(x) can be written as
∏

i∈N∗
M
fXi(xi)

due to independence. Then, assuming without loss of generality that s ≤ t,
at least one of the indices i1, ..., is, say ik, is not repeated in j1, ..., jt. Then,
the integral with respect to xk can be separated from the integral over the
other variables in (2.27). By property of the Sobol’ decomposition (2.25),
the integral of Mi1,...,is(i1, ..., is)fXk

(xk) over the variable xk is zero, which
causes the integral in (2.27) to vanish, and shows the orthogonality of the
summands in the Sobol’ decomposition.

The expected value of M(X) is obviously M0. Taking the variance of
both sides of (2.25), the cross terms appearing when computing E[(M(X)−
M0)

2] will vanish due to the orthogonality relationship (2.27), which proves
(2.26).

Definition 10. The Sobol’ indices or sensitivity indices are defined as the
terms appearing when dividing (2.26) by V (Sobol’, 2001). They satisfy

M
∑

i=1

Si +
∑

1≤i<j≤M

Sij + ...+ S1,2,...,M = 1 (2.28)

The Si are called first-order Sobol’ indices2, Sij second order Sobol’
indices, and so on. Si measures the proportion of the variance of M(X)
that is due to Xi only, and Sij describes the proportion of the variance
of M(X) that is due to Xi and Xj , but cannot solely be explained by

2An equivalent definition of the first-order Sobol’ index, which is based on the conditional
expectation E[M(X)|Xi], is

Si :=
Var[E[M(X)|Xi]]

Var[M(X)]
(2.29)

As illustrated in (Saltelli, 2008, pages 21-23), it leads to an intuitive representation of the
meaning of Si. Indeed, when samples of X andM(X) are available, E[M(X)|Xi] can be
computed by partitioning the Xi domain into slices, and averaging the values ofM(X)
given xi within each slice. If these average values vary much across the xi domain, i.e. if
Var[E[M(X)|Xi]] is large, thenM is sensitive to the input xi. Note that definition (2.29)
can be extended to Sobol’ indices of arbitrary order by using conditional expectations
covering several input variables.
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individual variations of Xi or Xj . So the fact that Si = 0 is a necessary,
but not sufficient, criterion to conclude on the insensitivity of M to the ith

component of its input. Indeed, this component could play a significant role
in interaction with another component, which would be visible by examining
the higher-order Sobol’ indices.

Definition 11. The total Sobol’ index STi is defined as the sum of all Sobol’
indices in (2.28) involving the parameter i.

STi quantifies the total effect of an input parameter, either alone, or in
combination with others. STi = 0 is then a necessary and sufficient condition
to conclude that Xi is non-influential. Furthermore, by ranking the ST,i, the
components of X having the greatest impact on the variations of M can
be identified. Also, by comparing each ST,i to Si, it is possible to evaluate
whether Xi influences M alone (in the case Si ≈ ST,i), or jointly with other
components of X.

When they were introduced, the Sobol’ indices were computed from
equations such as (2.29) using Monte-Carlo simulation (Homma and Saltelli,
1996). This proved to be quite time consuming, and higher-order Sobol
indices were rarely accessible in practice. Recently, Sudret (2008) put in
evidence the analytical connection between the coefficients aα of a PCE
surrogate model in (2.11) and the Sobol’ indices. This was done by noticing
the similarity of the orthogonality conditions (2.6) and (2.27). In other
words, once the aα were identified, the Sobol’ indices could be obtained at
practically no cost. This finding, combined with the methods outlined in
Section 2.2.2 to efficiently identify sparse polynomial bases have now made
PCE an intermediate of choice for global sensitivity analyses.

2.3 Gaussian process modeling and applications

In this section, another type of surrogate model will be presented, which
builds upon the assumption that M is the realization of a Gaussian process
M̂(x, ω) defined over D × Ω. This assumption enables us to estimate
quantitatively how uncertain M̂ is at each location of D. This information
can then be exploited to sequentially improve M̂ in strategic regions of D,
which will prove interesting in reliability analyses (task 4 in Section 2.1.1).

2.3.1 Gaussian processes and autocorrelation functions

We refer the reader to Appendix A.1 for the definition of Gaussian random
vectors. Gaussian random processes can be considered as extensions, to
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continuous sets, such as D, of Gaussian random vectors, whose components
are indexed by the discrete and finite set N∗

k, with k ∈ N
∗.

Definition 12. A collection of random variables Zx(ω) indexed by x ∈ D
is a Gaussian Random Process (GRP) if ∀k ∈ N

∗, ∀(x1, x2, ..., xk) ∈ Dk,
the random vector (Zx1(ω), Zx2(ω), ..., Zxk

(ω))⊤ is multivariate normally
distributed.

The functions x 7→ Zx(ω) obtained for a given ω ∈ Ω are denoted sample
paths. The covariance of Z between two fixed points x and x′ is given by
the autocovariance function CZ(x, x′):

CZ(x, x′) := cov(Zx, Zx′) = E[(Zx − µx)(Zx′ − µx′)] (2.30)

For so called weakly stationary processes (and a fortiori for stationary
processes), the mean µx = µ does not vary with x, and the autocovariance
function CZ(x, x′) only depends on the gap h = x− x′. This implies that the
variance σ2Z of the process is constant and equal to CZ(x, x). In that case,
the autocorrelation function RZ , defined as

RZ(x, h) := CZ(x, x+ h)/σ2Z (2.31)

is also independent of x, which can then omitted. Obviously, R(h = 0) = 1.
Other properties of h 7→ R(h) for a stationary GRP, such as symmetry,
definite positiveness, continuity, asymptotic values are discussed in Santner
et al. (2003), Section 2.3.3.

The smoothness of the sample paths (i.e. the x 7→ Zx(ω) functions) of
a stationary GRP is strongly related to the shape and smoothness of the
corresponding autocorrelation function. The Matérn correlation function
provides a flexible and unified way of describing the autocorrelation of various
classes of processes.

Definition 13. The general Matérn correlation function is defined by:

RZ(h, l) := 21−νΓ−1(ν)
(

2νh′2
)ν/2

Kν

(√
2νh′2

)

with h′2 =
M
∑

i=1

( |hi|
li

)2

(2.32)
where Γ is the Gamma function, Kν is the modified Bessel function of the
second kind, l ∈ (R+)

M contains scale parameters describing the amount
of correlation between neighbours for each component xi and x

′
i (we recall

that h = x− x′), and ν ∈ R
∗
+ is a shape parameter related to the continuity

properties of the sample paths x 7→ Z(x, ω).
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Plots of this function for various values of ν and l are presented on the
left hand side of Figure 2.2. By setting ν = 1/2, the Matérn correlation
function can be specialized into the exponential autocorrelation function

RZ(h, l) = e−h′
with h′2 =

M
∑

i=1

( |hi|
li

)2

(2.33)

which leads to continuous, but non differentiable sample paths 3, as shown
in Figure 2.2a. Letting ν → ∞, we obtain the squared exponential autocor-
relation function

RZ(h, l) = e−h′2
with h′2 =

M
∑

i=1

( |hi|
li

)2

(2.34)

which leads to smooth (C∞) sample paths, see Figure 2.2b. For other values
of ν > 0, the sample paths drawn from a GRP with Matérn correlation
function are continuously differentiable up to order ⌊ν⌋. In the next chapters,
we will use ν = 5/2, leading to the following simplified expression:

RZ(h, l) =
(

1 + 5h′ + 5/3h′2
)

e−
√
5h′

with h′2 =
M
∑

i=1

( |hi|
li

)2

(2.35)

Additional examples of autocorrelation functions, together with associated
sample paths, can be found in Santner et al. (2003), Section 2.3.4.

2.3.2 Kriging

As in the previous section, we consider that x is a realization of a multidimen-
sional random variable X with independent components. We also assume
that N samples of X have been generated using space-filling method such
as LHS, and gathered in E . The corresponding outputs of the M function
are gathered in F . We will now show how a surrogate model of M can
be created by assuming that M(x) is the sample path of a GRP with the
following form.

Definition 14. M(x) is the realization of the underlying GRP

M̂(x, ω) :=
∑

α∈A
aαψα(x) + σ2Z(x, ω, l) (2.36)

3This assertion and all corresponding ones below are valid almost surely, that is except
on a subset of Ω with zero probability
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(a) Exponential autocorrelation function (ν = 1/2) leading to continuous but
non-differentiable (C0) sample paths. Effect of varying the scale parameter l.

(b) Squared exponential autocorrelation function (ν → ∞) leading to smooth (C∞)
sample paths. Effect of varying the scale parameter l.

(c) Effect of the shape parameter ν and scale parameter l on the sample paths.

Figure 2.2: Matérn autocorrelation function in dimensionM = 1 with various
shape parameters ν and scale parameters l (l.h.s.), and corresponding sample
paths x 7→ Y (x, ω) (r.h.s.). From Dubourg (2011).
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where A is a finite subset of NM , (aα)α∈A are real numbers, (ψα)α∈A form
a finite set of orthonormal polynomials with respect to X, Z(x, ω) is a zero
mean and unit-variance stationary GRP and σ ∈ R

+. Z is assumed to be
described by the general Matérn correlation function RZ , with parameters
ν and l.The GRP in (2.36) is denoted Polynomial-Chaos Kriging (PCK)
model Schöbi et al. (2016).

The first term of this model (denoted the trend) aims at describing the
global variations of M over D. Here, the trend has the same structure as the
PCE developed in the previous section, and the polynomials ψα are in general
selected using similar methods, such as the LAR algorithm described in
Section 2.2.2. The selected ψα are weighted by the coefficients aα, gathered
in a |A|-tuple which we denote β. Note however, for a given set of evaluation
points (E ,F), the aα coefficients in the PCK model are not equal to those
which would have been obtained when identifying a PCE model with (2.15).
This is due to the presence of the second term in the PCK (2.36), a zero
mean and stationary Gaussian process with variance σ2, that accounts for
local variations of M.

The structure of (2.36) is a particular case of universal kriging (Santner
et al., 2003, Section 3.3). The advantages of PCK over ordinary kriging
(in which the regressors ψα are limited to one constant) and over PCE, in
which no GRP is involved have been demonstrated by Schöbi et al. (2015).
More specifically, it was shown that the LOO error associated with a PCK
surrogate model tend to be lower for small E sets, i.e. satisfactory surrogate
models could be obtained with fewer samples .

Definition 14 provides a framework for surrogating M(x), but also for
estimating how uncertain the value of M(x) is at a point x /∈ E , given
the fact that some information has been gathered at neighbouring points.
Indeed, assuming that the values of aα (gathered in the vector β), σ, and l,
involved in (2.36) are known, then

Theorem 3. the most probable value of M(x) at any point in D is

µM̂(x) := f(x)⊤β + r(x)⊤R−1(F − Fβ) (2.37)

with an uncertainty

σ2M̂(x)
:= σ2(1− r(x)⊤R−1r(x)⊤) (2.38)

where
• f(x) ∈ R

|A|×1 contains the ψα(x) polynomials evaluated at x,
• F ∈ R

|A|×N is the information matrix defined in (2.17), containing,
in each column the ψα(x) polynomials evaluated at x(i),
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• r(x) ∈ R
N×1 is the cross-correlation vector defined by

∀i ∈ NN , ri(x) := RZ(x− x(i), l) (2.39)

• and R ∈ R
N×N is the correlation matrix defined by

∀i, j ∈ N
∗
N , Rij := RZ(x

(i) − x(j), l) (2.40)

Proof. According to Definition 12, a GRP is a collection of random variables,
any finite number of which have a joint Gaussian distribution. Based on
Definition 14, (M(x),F⊤)⊤ is then the realization of a random vector
V ∈ R

N+1 distributed as:

V ∼ N
([

f(x)⊤β
Fβ

]

, σ2
[

1 r(x)⊤

r(x) R

])

(2.41)

According to Theorem 3.2.1 in Santner et al. (2003), the estimator of M(x)
with minimum mean-squared prediction error is E[V1|[V2, ..., VN+1]

⊤]. As
derived in (Eaton, 2007, page 117), this conditional expectation is a Gaussian
random variable, whose mean µM̂(x), and thus most probable value, is equal

to the right hand side of (2.37). Its variance is given by (2.38).

Remark 2. It is important to make the distinction between the randomness
of X and the randomness introduced through ω in Definition 14. While the
former is a reality of our UQ problem, the latter provides a tool to model the
epistemic uncertainty on M(x) at locations where it has not been evaluated,
and leads to the result stated in Theorem 3.

Theorem 3 shows how M can be estimated once the parameters in (2.36)
are known. These parameters are determined based on the available data
(E ,F) as follows. In a first step, the sparse set of polynomials (ψα)α∈A in
the trend is determined using the LAR method (see Section 2.2.2). Then,

Theorem 4. the optimal parameters β and σ2 can be estimated by:

β̂ =
(

F⊤R−1F
)−1

FR−1F (2.42)

σ̂2 =
1

N
(F − Fβ)TR−1(F − Fβ) (2.43)

Proof. Let us first assume that the correlation function R in (2.32) is known.
The optimal coefficients β̂ and σ̂2 in (2.36) are those which lead to a process
M̂ whose most likely realization is M(x). Since by construction, M̂ is a
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Gaussian process, the optimal coefficients β̂ and σ̂2 in (2.36) are those which
maximize the likelihood, or log-likelihood of F , expressed as

logL(F|β, σ2) = −N
2
log 2πσ2 − 1

2
log |R| − 1

2σ2
(F − Fβ)⊤R−1(F − Fβ)

(2.44)
The values of β and σ2 maximizing this expression necessarily satisfy the
first-order optimality conditions ∇β(logL) = 0 and ∇σ2(logL) = 0. Since R
is symmetric, they read

F TR−1(F − Fβ) = 0 (2.45)

− N

2

1

σ2
+

1

2σ4
(F − Fβ)⊤R−1(F − Fβ) = 0 (2.46)

which leads to (2.42) and (2.43).

Finally, the hyperparameter l in R is determined as the one minimizing
the ELOO (2.18). In the present work, we used a genetic optimization
algorithm (Goldberg, 1989) to determine l.

We have in this section presented PCK surrogate models. In the next
section, we will introduce the class of UQ problems called reliability problems,
before showing, in Section 2.3.4, how such problems can efficiently be solved
by using the PCK model.

2.3.3 Reliability analysis

The field of reliability engineering is concerned with the failure of systems,
and on quantifying the probability of occurrence of such failures. Note that
the engineered systems under study can be mechanical systems (Lemaire,
2009) or control systems (Calafiore et al., 2011), among others. Assuming that
y = M(x) measures the performance of the system, failure can be defined as
M(x) ≤ yadm, where yadm defines a minimum admissible performance. Given
that uncertainties exist on x, a reliability analysis will aim at estimating the
probability Pf := P[M(X) ≤ yadm] of the system to fail.

Definition 15. The domain of failure Df ⊂ R
M is defined by

Df := {x ∈ D|M(x) ≤ yadm} (2.47)

Definition 16. The limit state surface L ⊂ R
M is defined by

L := {x ∈ D|M(x) = yadm} (2.48)
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Failures are, in general, rare events, meaning that the probability Pf =
P [X ∈ Df ] will be small. This causes practical challenges when attempting
to estimate Pf . Indeed, consider for example a naive MCS-based approach
to estimate Pf , that would consist in drawing N samples of X, calculating
M(x(i)) for each of them, and comparing the result to yadm. Pf could then
be estimated by

P̂f =
1

N

∑

i∈N∗
N

IDf
(x(i)) (2.49)

where I is the indicator function. In that case, IDf
(x(i)) follows a binomial

distribution, and estimating Pf with a confidence interval of δ, requires
performing at least

N ≥ (1− Pf )(δ
2Pf )

−1 (2.50)

simulations. For instance, if δ = 5% and Pf = 10−3, N should be of
the order of magnitude of 105, which is practically unfeasible when M
is computationally expensive. See also Chernoff (1952) for bounds not
depending directly on Pf .

Optimized methods have therefore been developed to perform reliability
analyses. The first-order and second-order reliability methods (FORM and
SORM, respectively) are approximation methods that have been developed
in the 1970’s and are still very much used in structural engineering (Lemaire,
2009, Chapter 7). Both methods work in a suitable probabilistic space, and
first identify a most probable point of failure x∗ by performing simulations
of M. Then they approximate L by either the tangent hyperplane at x∗

(for FORM), or by the tangent second-order hypersurface at x∗ (for SORM).
Pf can then be estimated from analytical formulas. An advantage of such
approximation methods is that they require few evaluations of M, mainly
associated with the search for x∗. It is clear that these methods perform
well if Df is a connected set (or else the approximation of Df at x∗ will not
be representative of the whole domain of failure) and if the shape of L can
reasonably well be represented by a first- or second-order hypersurface.

These approximation methods can be completed by so-called simulation
methods. For example, once x∗ has been identified, a distribution gX(x)
could be defined that generates samples that are located near x∗ with high
probability. Then, by noting that

Pf =

∫

D
IDf

(x)fX(x)dx =

∫

D
IDf

(x)
fX(x)

gX(x)
gX(x)dx (2.51)

Pf could be estimated from E[IDf
(X)fX(X)

gX(X) ] using gX -distributed samples.
This method called importance sampling can estimate Pf with significantly
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less samples than the naive MCS approach (2.50) (Melchers, 1990). Subset
simulation is another strategy that consists in solving a sequence of nested
reliability problems, each of them featuring probabilities of failures signif-
icantly larger than Pf . These simulation based methods lead to precise
estimates of Pf , are clearly more efficient than naive MCS (2.50), but may
still require a large number of evaluations of M (Echard et al., 2013).

In the following, we will present results from recent research, in which
a PCK surrogate model, such as presented in Section 2.3.2, is refined with
active learning techniques to identify Df and estimate Pf . The resulting
reliability analysis method has been shown to be extremely efficient when
high dimensions M and low values of Pf are involved.

2.3.4 Adaptive Kriging for reliability analysis

The heuristics behind Adaptive Kriging (AK) is the following. Assuming that
a good surrogate model M̂ of M is available, the reliability problem could in
principle be solved with the naive MCS approach, using M̂ and an arbitrarily
large auxiliary set of samples S of X (typically |S| > 106). M̂(x) could be
(cheaply) computed for each sample, and Pf could be evaluated from (2.49).

This strategy requires that M̂ at least captures the distinction between
failure and success, i.e. that M̂ models accurately M near L. However,
as mentioned in Section 2.1.3, the initial calibration of a surrogate model
is usually done from a limited set of samples, generated from space-filling
sampling methods such as LHS. In that case, there is a large probability
that none of these samples falls into Df , which means that M̂ is not likely
to capture L correctly.

To address this issue, adaptive methods were developed, in which the
set of evaluation points E is sequentially enriched in locations of D which
might be near L. The adaptive strategy that we will consider here makes
use of a PCK model, and has been suggested by Schöbi et al. (2016). For
each sample x in the auxiliary set S, the probability of misclassification
Pm(x) is evaluated, that is the probability that the PCK model predicts
that x is in Df while it is actually not, or vice versa. This corresponds to
the two following distinct cases. Case 1: the PCK model predicts failure,
that is µM̂(x) < yadm, while the system is safe, that is M(x) > yadm. The
probability of such an event can be evaluated from our assumption that M
behaves as GRP, and is thus normally distributed at x. Denoting Φ be the
standard normal cumulative distribution function,

If µM̂(x) ≤ yadm, Pm(x) := P [M(X) > yadm] = 1− Φ

(

yadm − µM̂(x)

σM̂(x)

)
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Case 2: the PCK model does not predicts failure, that is µM̂(x) > yadm,
while M(x) ≤ yadm. This corresponds to a probability

If µM̂(x) > yadm, Pm(x) := P [M(X) ≤ yadm] = Φ

(

yadm − µM̂(x)

σM̂(x)

)

Combining these two cases, the probability of misclassification can then be
written, in a compact manner, as

Pm(x) := Φ

(

−|µM̂(x)− yadm|
σM̂(x)

)

(2.52)

The value of Pm is largest (1) when µM̂(x) is close to yadm, meaning that x
is close to the L estimated from the PCK, and/or (2) when the uncertainty
on the value of M is large, meaning that the proximity to L is uncertain.
Based on this information, E is enriched with the auxiliary sample xnew in S
that features the largest Pm. For this reason, Pm is referred to as a learning
function. Then M(xnew) is evaluated and added to F , and the enriched sets
E and F are used, as described in Section 2.3.2, to define a new PCK model
(2.36), which sequentially will be refined near L.

When several model evaluations can be performed in parallel, several
new promising samples (and not only the one with the largest Pm) can
advantageously be selected at each enrichment step. To do so, an δ-confidence
bound about the estimated L is first derived by identifying an ”upper bound”
of the failure domain Df :

D+
f := {x ∈ D|µM̂(x)− kσM̂(x) ≤ yadm} (2.53)

and a lower bound for Df :

D−
f := {x ∈ D|µM̂(x) + kσM̂(x) ≤ yadm} (2.54)

where k = Φ−1(1−δ/2) 4. The limit state margin (Dubourg, 2011) is defined
as the relative complement of the lower bound in the upper bound.

Definition 17. The limit state margin is the set

L := D+
f \ D−

f (2.55)

The domain L contains locations where M is probably close to yadm,
and where new relevant samples should be found to refine the PCK model.
Assuming that we wish to enrich E withK samples, and more thanK samples

4If δ = 5%, then k ≈ 1.96.
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in S have fallen into the limit state margin, one can identify K clusters of
points in L with high Pm values. Samples which are ”representative” of
each cluster are then selected using a K-means clustering algorithm (Zaki
and Meira, 2014, Chapter 13). The K samples [xnew,1, ..., xnew,K] are added
to E , M is evaluated for each of them, and the enriched sets E and F are
used to refine the PCK model. This process is illustrated by an example in
Appendix 2.3.4.

The enriched sets E and F are then used to define a new, refined, PCK
model as described in Section 2.3.2. The locations of Df , and the associated
estimate Pf become, step by step, more exact. Various stopping criteria
have been suggested, to decide when to end this enrichment process, and
some have been compared by Schöbi et al. (2016). Here, the uncertainty
on the estimated Pf is quantified by comparing the probabilities of failure
estimated from D+

f and D−
f , respectively. If the difference between them

is less than 5% of Pf (evaluated from the estimated Df ), we consider that
convergence is achieved. Convergence towards the true value of Pf when
N → ∞ is guaranteed by the fact that (1) the learning function (2.52)
weights uncertain areas of D, and thus eventually explores the whole space
D, and (2) the resulting PCK (2.36) will interpolate exactly M(x) since
it is an universal approximation function. Note, however, that no formal
proof of ioptimal convergence, as compared to other established methods, is
available for this algorithm. Adaptive Kriging has however been shown to be
more computationally efficient than other established methods, such as e.g.
importance sampling5 (Echard et al., 2011). It is also more precise than the
FORM/SORM methods (Schöbi et al., 2016), as it tackles non-connected,
and arbitrarily shaped failure regions Df .

The following example, borrowed from Schöbi et al. (2016), illustrates
both single and multiple sample enrichment with the Adaptive Kriging
method. Similar examples will be provided in the next sections.

Example 12. We define the function M(x) := 20−(x1−x2)2−8(x1+x2−4)3

on D = [−5, 5]2. Failure occurs when M(x) ≤ 0. Consider Figure 2.3. In
(a), X has first been sampled using a space-filling sampling method. Some of
the samples (represented by circles) are found to lead to unacceptable values
of M(x) ≤ 0, and others (represented by pluses) lead to acceptable values.
The exact (and a priori unknown) L is represented with a thin line, while
its PCK-estimated counterpart, that is the set {x ∈ D|µ̂M̂(x) = yadm} is
represented by a thick line. In (b), the lower bound of Df , D−

f is represented

in red, and in (c), D+
f is represented in green. The resulting limit state margin

5It has also been combined with importance sampling, as shown in Echard et al. (2013)





Chapter 3

New method for the fidelity

analysis of CPEMs

In this chapter, we first define a framework which enables us to formalize the
Research Questions (RQ) stated in Section 1.3.1. Then, in Section 3.2.1, by
combining this framework with the tools presented in Chapter 2, we present
a method to address the RQ. Finally, in Section 3.3, we apply the presented
method to a simple CPEM, namely a coupled linear oscillator, with one
oscillator being physical and the other one numerical. The proposed method,
together with case studies, has been partially presented in Sauder et al.
(2018) and Sauder et al. (2019).

3.1 Reformulation of the problem

3.1.1 Modeling of cyber-physical empirical setups

Let s denote the total number of substructures. We consider a substructural
partition1, as represented on the left hand side of Figure 3.1 for s = 3. Given a
duration T > 0, let τ(t) = (τ1(t), ..., τs(t)) represent an exogenous excitation,
with support [0, T ], acting on the substructural partition. A generic way of
modelling the emulated system after substructuring, which is suitable for
most existing applications of CPEMs, is the following interconnected system:

∀i ∈ N
∗
s, ẋi = fi(xi, uij , τi) (3.1)

yi = hi(xi) (3.2)

1The terms used in this section, such as substructural partition, emulated system, etc...
have been defined in Chapter 1.

51
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and
∀i ∈ N

∗
s, ∀j ∈ N

∗
s \ {i}, uij ≡ yj (3.3)

where xi is the internal state of substructure Σi, yi its output, and uij is
the input to Σi originating from Σj . A block diagram of this interconnected
system is presented on the right hand side of Figure 3.1. The yi and uij are
related to the power continuously exchanged between the substructures. If yi
represents a flow, such as a velocity or an electrical current, then ∀j 6= i, uij
represent efforts, such as a force or a voltage, and vice versa. The behaviour
of the (ideal) substructured system, described by equations (3.1)-(3.3), is
identical to the behaviour of the emulated system, but does not account for
the effect of the control system.

Definition 18. An artefact ∆ij is a parametrized function describing the
effect the control system on the connection between the output of substructure
Σj and the input of Σi.

Artefacts are not necessarily first principles-based models of the compo-
nents of the control system, but model the consequences, on the exchanged
signals, of including these components in the substructural partition. In
other words, two components of the control system of different natures, such
as a communication link or an actuator, could in a first approximation, be
modelled by the same artefact, such as a time delay.

An artefact ∆ij consists in general of a combination of elementary artefacts
of various natures (heterogeneous), which simultaneously affect the signal.
The effect of selected elementary artefacts on a reference signal is shown in
Figure 3.3a, and more examples of elementary artefacts, together with their
possible sources, are given in Table 3.1. The properties of each elementary
artefact are described by one or several parameters denoted θi with support
Di ⊂ R, and described in the third column of Table 3.1.

Example 13. The signal loss elementary artefact is parametrized by a
probability of occurrence θ1 ∈ [0, 1) and an inverse duration parameter
θ2 > 0. When it occurs, the duration d of the signal loss is distributed as
fD(d) = θ2e

−θ2d, with both mean and standard deviation equal to 1/θ2

The artefact ∆ij presented in Figure 3.3b consists of five elementary
artefacts, and is parametrized by six values: the scaling factor, bias value,
noise variance, duration of the delay, probability of occurrence of the signal
loss, and inverse duration parameter of the signal loss. The effect of such a
”composite” artefact on an input signal is illustrated in Figure 3.3c. Note
that in the present work, there has not been made any attempt to achieve
the unicity of the decomposition of an artefact into elementary artefacts.
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Table 3.1: Examples of elementary artefacts, their possible sources, and the
corresponding describing parameters (component of θ).

Elementary artefact Example of sources Describing parameter(s)

Gain calibration error scaling factor
actuator limitations

Bias zero measurement bias value

Noise measurement noise noise variance

Constant time delay computational time duration
communication time

Signal loss unfinished iteration process probability of occurrence
faulty position measurement inverse duration parameter

Quantization analog to digital conversion resolution

Zero-order hold sampling sampling period

Saturation actuator limitations saturation threshold

1st-order dyn. sys. actuator dynamics time constant

2nd-order transfer system dynamics natural frequency
dynamical system (spring, cables, ...) damping ratio

dynamic bias sensor drift first-order Markov process rate

The ideal interconnection represented in Figure 3.1 can now be modified,
to model the effect of the control system on the signals. This is done
as shown on the right hand side of Figure 3.2. Equations (3.1) and (3.2)
remain valid, but the relationship (3.3) between the output of substructure
j and the input to substructure i originating from substructure j becomes:
∀i ∈ N

∗
s, ∀j ∈ N

∗
s \ {i}, ∀t > 0,

uij(t) = ∆ij

(

(

yj(t
′)
)

t′∈[0,t] , θ
)

(3.4)

where θ ∈ D ⊂ R
M gathers all the θi parameters describing the elementary

artefacts in all ∆ij . In other words, if the artefact ∆ij presented in Figure
3.3b was affecting all interconnections in Figure 3.2, then θ would be of
dimension M = 36 (6 artefacts × 6 parameters per artefact).

Remark 3. As discussed in 1.2.2, owing to the presence of numerical sub-
structures among the Σi, modeling the such an interconnection would in
principle imply the use of digital or hybrid control theory, see e.g. Tabuada
et al. (2014); Goebel et al. (2012). In the particular case of CPEM, however,
the ”cyber” parts of the system (the numerical substructures) represent con-
tinuous dynamical systems. Assuming that adequate time-stepping algorithms
are employed, see e.g. Bursi et al. (2013), we can make abstraction of their
digital nature. Note, however, that some aspects related to the digital nature
of the hardware, such as quantization, sampling, and zero-order hold, can be
approached by the present method, by modeling them as artefacts.
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3.1.2 Fidelity

According to Definition 6, the concept of fidelity translates the capacity
of the setup represented in Figure 3.2 to ”resemble” the one represented
in Figure 3.1. This resemblance can be measured by the fact that some
quantities of interest (QoI) remain undisturbed in spite of the artefacts
introduced by the control system. Based on the model established in Section
3.1.1, we now introduce a quantitative definition of the fidelity of a CPEM.

For i ∈ N
∗
s, let x̄i denote the state of Σi when ∀j 6= i, uij ≡ yj . In that

case, no artefact is present, and the CPEM behaves exactly as the emulated
system. For a given Q ∈ N

∗, let then (γq)q∈N∗
Q
, be a family of cost functions

satisfying

∀q ∈ N
∗
Q, (∀i ∈ Ns, xi|θ → x̄i) ⇒ (γq → 0) (3.5)

Definition 19. The fidelity ϕ is defined as

ϕ :D → R

θ 7→ −1

2
log

∑

q∈N∗
Q

γ2q ({xi|θ(t), x̄i(t)}i∈N∗
s ,t∈[0,T ])

(3.6)

The rationale behind the proposed definition is the following.

1. Each γq function compares selected QoI derived from the states
(x1, x2, ..., xs)|θ with the corresponding QoI derived from (x̄1, x̄2, ..., x̄s).
If all states xi converge towards x̄i, then all γq tend to zero, and ϕ→ ∞.
Fidelity quantifies therefore the capability of the CPEM to generate
QoIs that are similar to the real system, when subjected to same
excitation.

2. The reciprocal is however not true: high fidelity can be achieved even
if some states xi which are not of interest, i.e. not included in the
calculation of any γq, differ from x̄i. This is a major difference with
the concept of resilient cyber-physical systems (Fawzi et al., 2014). A
high fidelity value does not imply a correct estimation of the complete
state (xi)i∈N∗

s
in presence of artefacts, but rather a correct estimation

of selected state-derived quantities.
3. If the cyber-physical system becomes unstable because of the intro-

duced artefacts, some γq may blow up in some domains of D. On the
other hand, when studying high-fidelity setups, we may be interested
in emphasizing the difference between small values of the γq. The
logarithm in (3.6) is introduced for this reason.

4. A sum of the squares, rather a maximum function, is used in (3.6)
to combine the cost functions γq, which preserves the smoothness
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properties of the functions θ 7→ γq(θ). Using a maximum function
instead would have compromised the differentiability of ϕ even if the
γq were smooth functions. This choice will prove convenient when
analyzing the problem.

Definition 19 is rather general, and must be adapted to the specific
problem at hand. More specifically, the exogenous excitation τ , and the
functions γq that select and compare the QoI, should be carefully defined.

The excitation τ(t) must reflect the loads that the empirical setup will
eventually be subjected to. It may for instance include impulsive loads,
ramps, frequency sweeps, pink noise, or combine several of the above. If
nonlinear effects are significant, several excitation levels should be included.

The selection of the QoI through the γq functions must be connected
to the very purpose of the tests, and may not necessarily be related to the
outputs yi that play an active role in the interconnection. To illustrate
this, let us consider again Example 5 in Chapter 1. The overall objective
of active truncation was for the truncated line to replicate the behaviour
of a non-truncated line, in interaction with the floater. In this setting, the
behaviour of the truncation point (physical location of the interconnection) is
of no interest, as opposed to the other extremity of the physical substructure
(connected to the floater) whose behaviour is of high interest.

QoI may also be of different natures. They can be time series or more
generally fields, such as in Drazin et al. (2015). They can also be derived
quantities, such as statistical moments, parameters of extreme value distribu-
tions, or transfer functions. The QoI should obviously be selected carefully,
and in accordance with the purpose of the tests, since the fidelity, calculated
from the extrema of a signal for instance, will convey a very different type
of information from the fidelity calculated from the full time series.

To be meaningful, a fidelity value should always be related to a
given CPEM, and stated together with the excitation τ and the
selection/cost functions γq that have been used to compute it.

3.1.3 Reformulation of the Research Questions.

The concepts introduced in the previous sections enabled us to define, in
a quantitative manner, the fidelity ϕ of a CPEM. Our objective is to in-
vestigate how the control system, modelled by the artefacts ∆ij(θ), may
deteriorate the fidelity. Even if CPEM are developed in a controlled labora-
tory environment, some uncertainty is entailed to the artefacts: sensor noise
variance, or the interconnection delays between the substructures, remain
for example uncertain at the design stage, may vary during the execution of
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the experiment, and can only be quantified accurately when the experiment
has finished. However, the amount of uncertainty on these quantities can be
estimated from expert judgment or dedicated surveys, as discussed in 2.1.2,
and therefore modeled within a probabilistic framework.

Assumption 1. The artefact parameter θ is the realization of a multi-
dimensional random variable Θ with a known, but arbitrary, distribution
fΘ.

The RQ outlined in Section 1.3.1 can now be reformulated as follows.
(RQ1) Sensitivity : which component of Θ does influence the most ϕ(Θ)?
(RQ2) Probabilistic robust fidelity : given a minimum admissible fidelity
ϕadm ∈ R, and given a maximum acceptable probability of failure εadm ∈
(0, 1), does P [ϕ < ϕadm] ≤ εadm hold? (RQ3) Fidelity bounds: what is the
set of artefact parameters θ which leads to ϕ(θ) > ϕadm ?

Formulated in this way, RQ2 and RQ3 can be seen as variations of a class
of problems referred to as probabilistic robust analysis of control systems,
an account of which has been given by Calafiore et al. (2011). Probabilistic
robustness has been shown to have great advantages, in terms of conservatism
and complexity, when compared to the classical worst-case robustness2. See
for instance Tempo et al. (2013), Chapter 5, and the case study in Chen
et al. (2005).

The main drawback of probabilistic approaches is that estimating the
probability in RQ2 implies the evaluation of a multidimensional integral
over D. This is challenging in high-dimensions M and when non-analytic
models are involved, which is a typical situation encountered when dealing
with CPEMs. Indeed, (1) the Σi representing numerical substructures
may typically consist in complex computer programs, see Examples 1-5.
Furthermore, (2) for the purpose of the analysis, the Σi representing the
physical substructures, in which the most challenging physics generally takes
place, must be modeled in a rather realistic way. In practice, this means that
the fi and hi functions are often black box functions, for which no analytical
or even closed-form expressions exist.

To address such problems, so-called randomized algorithms have been
developed (Tempo et al., 2013), which rely on sampling the performance
function, here ϕ(θ). The required number of samples is however large for
highly reliable CPEM (Alamo et al., 2015). This becomes an issue when the
fi functions are costly to evaluate. As discussed in Chapter 1, a ”classical”
approach would be to simplify the Σi, but this would be detrimental for the
fidelity analysis, since some important information about the substructures

2in which bounds only, and no probabilistic information regarding Θ is available.
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could be lost. The analysis method proposed in the next section aims at
avoiding such a compromise.

3.2 Proposed fidelity analysis method

The reformulation of the RQ in the previous section, combined with the
theoretical background introduced in Chapter 2, yields a natural approach
to address our RQ, which will be outlined in the following. Let us first define,
consistently with Definitions 15 and 16, the following sets.

Definition 20. The domain of failure of a CPEM is the set Df ⊂ D defined
by:

Df := {θ ∈ D|ϕ(θ) ≤ ϕadm} (3.7)

Definition 21. The limit state surface L ⊂ D is defined by

L := {θ ∈ D|ϕ(θ) = ϕadm} (3.8)

We notice that addressing RQ2 and RQ3 is equivalent to identifying
Df . Indeed, identifying Df answers immediately RQ3 since the θ leading
to sufficiently high fidelity are found in D \ Df . Then, letting IDf

(θ) be the
indicator function for Df , the probability of failure of a CPEM, involved in
RQ2, can be evaluated from

Pf :=

∫

Df

fΘ(θ)dθ =

∫

D
IDf

(θ)fΘ(θ)dθ (3.9)

3.2.1 Solution outline

As noted in Section 3.1.3, the functions fi describing the substructure
dynamics, and hence involved in the calculation of ϕ, may be non-analytical
or so-called black boxes. A sampling-based approach must therefore be
employed to address our RQ. The solution we propose is presented as a flow
chart in Figure 3.4, and described in the following.

Step 1 First, N samples of Θ in D are generated using a space-filling
sampling method.

E := (θ(1), θ(2), ..., θ(N))⊤ (3.10)

For each sample θ, the interconnected system including artefacts (represented
in Figure 3.2), when subjected to τ , is co-simulated3. The fidelity ϕ(θ) is

3This term will be defined and details about these co-simulations will be given in
Section 3.2.2.
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obtained for each θ(i) by comparing the result of this co-simulation to the
one without artefacts (Figure 3.1) using (3.6). We let

F := [ϕ(θ(1)), ϕ(θ(2)), ..., ϕ(θ(N))]⊤ (3.11)

Step 2 By using E and F , a PCE-based surrogate model of ϕ is constructed
as outlined in Section 2.2. The expected fidelity E[ϕ] and the associated
uncertainty Var[ϕ] can be estimated from this surrogate model (Section
2.2.4). The sensitivity of ϕ to the components of Θ can be expressed through
the Sobol’ indices derived from the PCE (Section 2.2.5), which answers RQ1.

Step 3 We stated that RQ2 and RQ3 can be solved through the identifi-
cation of Df . However, at the present stage, the information available on ϕ
is insufficient for this purpose. Indeed, as discussed in 2.3.4, E was so far
aimed at filling the space D, and not at resolving L. If E[ϕ] is well above
ϕadm and Var[ϕ] is small, it may happen that none of the samples in E yields
too low fidelity.

By using the Adaptive Kriging technique discussed in 2.3.4, additional
relevant samples of Θ can iteratively be generated to enrich E and resolve
the boundaries of Df . The resulting PCK surrogate model, whose accuracy
near L step-by-step increases, can be interrogated to find out if a given θ is
in Df or not (answer to RQ3). Furthermore, MCS, using a large number
of auxiliary samples can be performed, with the PCK model, to calculate
Pf . This allows to verify probabilistic robustness of the setup, and answer
(RQ2).

Step 4 The PCE and PCK surrogate models established in Steps 2 and 3,
respectively, can be used to perform online, or a posteriori, fidelity assessment
of a test based on measured or estimated values of θ. The PCK model will
be correct in sign when θ is near the boundary of Df , and adequate if we
wish to know whether sufficient fidelity has been achieved. The PCE model
can be used when θ takes higher probability values to document the achieved
fidelity value.

Furthermore, using the defined surrogate models, an optimal control
system design can be found as the one minimizing some cost function c(θ),
maximizing the fidelity, and with a hard constraint on the minimum fidelity:

minimize
θ∈D

w1c(θ)− w2ϕ̂PCE(θ) subject to ϕ̂PCK(θ)− ϕadm ≥ 0 (3.12)

where w1 and w2 being positive weights. In the next section, we will provide
some more details regarding the computer implementation of this method.
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It will then be applied on a simple example, with additional explanations
and details, in Section 3.3.

3.2.2 Co-simulation and fidelity calculation

In Steps 1 and 3, ϕ(θ) must be evaluated for given samples θ(i) of Θ. This
is done by using equation (3.6), which involves the time-histories of the
states x̄i and xi|θ. These latter are found by co-simulating the substructured
emulated system, described by (3.1)-(3.3), and the substructured system
subjected to the artefacts parametrized by θ, which is described by (3.1),
(3.2), and (3.4).

Definition 22. Co-simulation is a simulation technique in which the compu-
tations associated with different substructures Σi are performed independently
from each other, and the exchange of data between the substructures is re-
stricted to discrete synchronization points4.

Algorithm 1 presents the iterative co-simulation procedure that has been
developed to generate the time histories of x̄i and xi|θ. In this algorithm,
after the initialization phase on lines 1-3, the co-simulation is performed
for the time interval [0, T ]on lines 4-21. The synchronization between the
substructures is carried out in the while loop located on lines 8-19. The
algorithm can be used for the co-simulation of a system with or without
artefacts, by selecting either line 14 or line 15, respectively.

A synchronization time step δt is introduced at line 4. It is the duration
between two time instants, at which dynamic equilibrium between the
substructures shall be fulfilled when co-simulating the emulated system.
Dynamic equilibrium is checked via a convergence criterion, stated on Line
8, that involves the exchanged signals uij(t + δt), between two successive
iterations indexed by k − 1 and k. In more precise terms, it is checked that
the values of all these quantities differ, in infinite norm, by less than a set
of pre-defined thresholds ǫij , between two iterations. Note that the time
integration performed within each substructure (Line 10) may require smaller
internal time steps than δt, and may be steered by an adaptive step size
algorithm.

When artefacts are present (i.e. line 14 is used instead of line 15), they
prevent equilibrium between the substructures Σi to be fulfilled . Indeed, the
flow and effort the substructures ”perceive” from each other are modified by

4This definition is adapted from (Skjong, 2017, Definition 2.2). See also Sadjina et al.
(2017) for a good introduction to co-simulation, in particular when applied to marine
systems.
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Algorithm 1 Pseudo-code for co-simulation

1: ∀i ∈ N
∗
s , initialize the xi(t = 0)

2: ∀i ∈ N
∗
s , evaluate yi(0) from (3.2)

3: ∀i ∈ N
∗
s , ∀j ∈ N

∗
s \ {i}, uij(0)← yj(0)

4: for t ∈ {0, δt, ..., T − δt} do

5: u
(−1)
ij (t+ δt)←∞

6: u
(0)
ij (t+ δt)← uij(t)

7: k ← 0
8: while ∃i ∈ N

∗
s , j ∈ N

∗
s \ {i}, ‖u

(k)
ij (t+ δt)− u

(k−1)
ij (t+ δt)‖∞ ≥ ǫij do

9: for i ∈ N
∗
s do

10: Perform time-integration of Σi from t to t+ δt according to (3.1)

11: (note: ∀j ∈ N
∗
s \ {i}, uij varying linearly from uij(t) to u

(k)
ij (t+ δt))

12: Evaluate yi(t+ δt) from (3.2)
13: for j ∈ N

∗
s \ {i} do

14: Evaluate u
(k)
ji (t+ δt) from {yi(t

′); t ∈ [0, t+ δt]} and (3.4)

15: or when co-simulating the emulated system: u
(k)
ji (t+ δt)← yi(t+ δt)

16: end for

17: end for

18: k ← k + 1
19: end while

20: uij(t+ δt)← u
(k)
ij (t+ δt)

21: end for

the artefacts. In that case, Algorithm 1 ensures consistency of all exchanged
signals, accounting for the substructures’ dynamics and the presence of
artefacts.

While dynamic equilibrium should in principle be fulfilled in a continuous
and exact manner, the equilibrium achieved in a co-simulation is neither
exact, as it depends on ǫij > 0, nor continuous as it is only ensured every
δt > 0. The result (x̄i(t))i∈N∗

s ,t∈[0,T ] of a co-simulation of the emulated
system will therefore differ from the result (x∗i (t))i∈N∗

s ,t∈[0,T ] that would
have been obtained if dynamic equilibrium was fulfilled in an exact and
continuous way. As classically done in computational physics, a convergence
study must therefore be carried out, to define adequate values of δt and
ǫij , and possibly other parameters involved in the Σi, that yield ”small
enough” errors between (x̄i) and (x∗i ).

5 The magnitude of this admissible
error depends on the objective of the co-simulation. In our method, the
co-simulation result is going to be used in a fidelity calculation (3.6), that is
a comparison of (xi|θ) with (x̄i) using the squared γq functions. So, for (x̄i)
to adequately represent (x∗i ) in this context, (x̄i) should be is much closer

5The indexing i∈N∗

s
,t∈[0,T ] is omitted for clarity.
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to (x∗i ) than to any of the (xi|θ). This can be formulated as

∀q ∈ Q, θ ∈ D, γq(x̄i, x∗i )2 ≪ γq(xi|θ, x̄i)2 (3.13)

In practice, it means that studying higher fidelity setups, for which all
γq(xi|θ, x̄i) are small, will set more stringent requirements on the accuracy
of the co-simulation. In that case, small values for δt and ǫij will be needed,
which in turn increases the required computational budget. This will be
investigated in detail in the case study presented in Chapter 4.

Remark 4. If in accordance with the criterion (3.13), the synchronization
time step δt in Algorithm 1 should be chosen equal to the minimum loop time
of the control system orchestrating the CPEM. This simplifies the modeling
and implementation of artefacts changing at this rate or at lower ones, such
as noise and zero-order hold artefacts.

Let us finally stress that the duration of the co-simulation T should
be large enough, when elementary artefacts that involve randomness are
included. This is in order to ensure that the result of a co-simulation is
statistically representative of the given value of θ. Indeed, let us consider
the signal loss artefact (see Table 3.1 and Example 13). If its probability of
occurrence is small compared to δt/T , signal loss occurs seldom in [0, T ]. If
in addition, it has an inverse duration parameter small compared to 1/T ,
signal loss would last (in average) for a sensible portion of [0, T ]. In that
case, (xi|θ) would not be representative of θ, since another realization of this
artefact (same θ, but signal loss occurring for instance at a different time
instant) would lead to a significantly different response.

3.2.3 PCE and PCK: implementation and parameters

In the present work, the surrogate models have been established as outlined
in Section 3.2.1 by using the UQLab software, developed at the Chair of Risk,
Safety & Uncertainty Quantification, at ETH Zürich (Marelli and Sudret,
2014). UQLab is developed in the Matlab programming language, and
implements state-of-the-art UQ methods, but also results of recent research
such as the APCK-MCS method presented in 2.3.4, which has been used here.
The reader is referred to Marelli and Sudret (2017) for the documentation
of UQLab related to PCE, to Marelli et al. (2017a) for sensitivity analysis,
to Schöbi et al. (2017) for PCK, and to Marelli et al. (2017b) for rare events
estimation, and Adaptive Kriging in particular.

When defining the PCE surrogate model (Step 2), the LAR method
described in Section 2.2.2 was used. The truncation set used at the initiation
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of the LAR method is the hyperbolic truncation set given by (2.12), where
q = 0.75. The second row of Figure 2.1 illustrates which polynomials are
retained in this truncation set in the case M = 2.

MetaOpts.Method = ’LARS’;

MetaOpts.TruncOptions.qNorm = 0.75;

The analysis in Step 3 that involves PCK and AK-MCS is performed
as described in Section 2.3.4. The PCK model is based on the Matérn
correlation function with ν = 5/2, see (2.35), which assumes that θ 7→ ϕ(θ)
is twice continuously differentiable. The hyperparameter l in the correlation
function is found by global optimization, using a genetic algorithm with 20
stall generations (Goldberg, 1989). The corresponding configuration options
in UQLab read:

ROpts.Method = ’AKMCS’;

ROpts.AKMCS.MetaModel = ’PCK’;

ROpts.AKMCS.PCK.Kriging.Corr.Type = ’ellipsoidal’;

ROpts.AKMCS.PCK.Kriging.Corr.Family = ’matern-5_2’;

ROpts.AKMCS.PCK.Kriging.Optim.Method = ’ga’;

ROpts.AKMCS.PCK.Kriging.Optim.GA.nStall = 20;

As explained in Section 2.3.4, once the PCK surrogate model of ϕ is
established, MCS is performed using a large set S of auxiliary samples of Θ,
in order to estimate Pf , see (2.50). The confidence interval on Pf depends
on the cardinality |S|, and for low values of Pf and tight confidence intervals,
the required |S| may become very large.

ROpts.Simulation.MaxSampleSize = 1e6;

In UQLab, MCS is performed by calling the PCK once in a vectorized
way. This may require too much memory for large |S|. To alleviate this
issue, it is possible to split the call to the PCK into several calls or ”chunks”
of given maximum sample size, which are then treated sequentially.

As discussed in Section 2.3.4, an enrichment step of Adaptive Kriging
can generate K > 1 new interesting samples of Θ at which ϕ should be
evaluated. These samples are chosen by using a learning function based
on the probability of misclassification (2.52). The new co-simulations, and
fidelity calculations, to be performed are independent of each other, and
have therefore been parallelized. The number of new samples that should be
generated during the enrichment depends on the available hardware and on
the dimensionality of the problem. In the case studies which we will report
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in Chapter 5, we explore a twelve-dimensional space, and we found beneficial
to add a ”maximum” number of new samples at each step. This amount
was set to 16, which was the maximum number of processes that could be
run simultaneously on one node of the cluster we had access to.

ROpts.AKMCS.LearningFunction = ’U’;

ROpts.AKMCS.NEnrich = 16;

The analysis stopped when the uncertainty on the estimated probability of
failure is deemed small enough. It is quantified by comparing the probabilities
estimated from D+

f and D+
f defined in (2.53) and (2.54), respectively. If

the difference between them is less than 1% of Pf estimated from the mean
of the PCK, convergence is considered to be achieved. The corresponding
configuration command reads:

ROpts.AKMCS.Convergence = ’stopPf’;

ROpts.Simulation.Alpha = 1e-2;

3.3 Example: coupled linear oscillators

The method presented in the previous section will now be illustrated with a
simple example.

3.3.1 Description of the problem

The system under study is the coupled linear oscillators represented in Figure
3.5. Each oscillator, denoted Σi, consists of a mass mi, a damper ci and
a spring ki. The left hand side (l.h.s.) of Σ1 is fixed, while its right hand
side (r.h.s.) is free to oscillate, and subjected to the force applied by the
l.h.s. of Σ2. The r.h.s. of Σ2 is subjected to a unit step force τ2(t), and
we wish to investigate the velocity response of the application point of τ2
during T = 100 s. The undamped eigenfrequencies of this system are

ω2
± =

ω2
1 + ω2

2 + χ2

2

(

1±
√

1− 4ω2
1ω

2
2

(ω2
1 + ω2

2 + χ2)2

)

(3.14)

where ω1 =
√

k1/m1, ω2 =
√

k2/m2 and χ =
√

k2/m1. Setting m1 = m2 =
m = 1kg and k1 = k2 = k = 1N/m leads to

ω2
± =

3k

2m

(

1±
√

5

9

)

(3.15)
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Inserting numbers, ω+ = 1.62 rad/s and ω− = 0.62 rad/s. The damping
coefficients c1 and c2 are both set to 1% of 2

√
km, leading to a lightly

damped system.

For the sake of the example, let us assume that the behaviour of this
system is to be investigated by a CPEM. The coupled oscillator is partitioned
into s = 2 substructures, where Σ1 is the numerical substructure and Σ2 the
physical substructure. The force measured on the l.h.s. of Σ2 is input to the
computer code representing Σ1 as a force acting on the r.h.s. of Σ1. The
computed velocity response of Σ1 is then actuated on the l.h.s. of Σ2.

The effect of the control system, including the force sensor, the velocity
actuator, and other intermediate components, is modeled by the following
set of artefacts. The force measurement is affected by a calibration error, i.e.
a constant gain αs, and a data processing-induced time delay τs. Similar
artefacts affect the velocity actuation (parametrized by αa and τa), repre-
senting a first approximation of the actuator dynamics (amplitude mismatch
and lag). The artefact parameters are gathered in

θ := (αs, τs, αa, τa)
⊤ (3.16)

which is assumed to be the realization of random vector Θ with independent
components. αs and αa are both assumed to be normally distributed, with
unit mean and a standard deviation of 0.5%. The delays τs and τa are
assumed to be uniformly distributed between 0 and 20ms.

The objective is to study the influence of these artefacts on the QoI for
the problem, namely the velocity V2 of mass m2. Since Q = 1, the fidelity
(3.6) can simply be written as

ϕ(θ) := −1

2
log γ21 where γ21(θ) :=

∫ T
0 [V2|θ(t)− V̄2(t)]

2dt
∫ T
0 V̄2(t)2dt

(3.17)

In Figure 3.6, different realizations of Θ, leading to different velocity time
series, and different fidelity values are compared. This illustrates how
artefacts influence the QoI, and how this translates to a loss of fidelity.

Remark 5. It is worth noting that, due to the nature of the present set of
artefacts, some properties of this CPEM can be established from classical
frequency domain analysis. The transfer function, in the Laplace domain,
between τ2 and the QoI V2 indeed reads

H(s) =
s [P1(s) + αe−τs(k2 + c2s)]

P1(s)P2(s) + αe−τs(k2 + c2s)m2s2
(3.18)
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Figure 3.6: Time series of the QoI, in the absence and presence of arte-
facts (red and black curves, respectively). For the latter case, three dif-
ferent samples of Θ, leading to three values of ϕ are shown: θ(1) =
(1.007, 4.23, 0.993, 6.75)⊤ (solid line), θ(2) = (1.004, 10.33, 0.998, 12.31)⊤

(dashed line), and θ(3) = (0.990, 18.53, 0.993, 17.17)⊤ (dash-dot line).

where Pi(s) = mis
2 + cis+ ki, α = αsαa and τ = τs + τa. Equation (3.18)

indicates that αs and αa (resp. τs and τa) play symmetric roles, and that it
is the total scaling factor α and the total delay τ that are of importance for
this system.

3.3.2 Expected fidelity, uncertainty and sensitivity

In Step 1, an initial set E containing N=100 samples of Θ is generated
using LHS. The corresponding co-simulations are performed as described in
Section 3.2.2. Since the linear oscillators are extremely fast to simulate, no
convergence study on δt, ǫ12 and ǫ21 was performed. Their value were rather
set to ”conservative” values ensuring the accuracy of numerical integration,
namely δt = 1ms (three orders of magnitude less than the lowest eigenperiod
of the system), and ǫ12[N ] and ǫ21[m/s] set to 2.22×10−15, that is one order
of magnitude above machine precision. For each of the N co-simulations,
the value of ϕ is evaluated and stored in F . In Figure 3.7, ϕ is plotted as
a function of the components of the samples θ(i). As expected, the general
trend is that the fidelity decreases when τs and τa increase, and when αs

and αa deviate from unity.

In Step 2, the two sets E and F are then used to establish the PCE
surrogate model ϕ̂, using the method outlined in Section 2.2. Since the
artefact parameters are uniformly and normally distributed, Legendre and
Hermite polynomials are used to build a (ψα) basis satisfying (2.9). This cor-
responds exactly to the bases used in Examples 8 and 9. The obtained PCE
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Figure 3.7: ϕ as a function of each component of θ(i) for N = 100 samples
of Θ. We recall that θ = (αs, τs, αa, τa).
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surrogate model ϕ̂ contains |A| = 27 terms, and its associated normalized
leave-one-out cross-validation error

εLOO :=
ELOO

√

Var[ϕ(Θ)]
(3.19)

is about 10%. From (2.19) and (2.21), we obtain directly that the expected
value of the fidelity for this setup is E[ϕ(Θ)] ≈ 1.03, and its standard
deviation (Var[ϕ(Θ)])1/2 ≈ 0.18. In other words, the dashed curve in Figure
3.6 represents an average situation, while the two other black curves represent
”good” and ”bad” cases with much lower probability of occurrence.

To identify which artefacts have the greatest impact on the fidelity, Sobol’
indices are evaluated as described in Section 2.2.5. They are presented in the
lower part of Figure 3.8 (consider only the bars corresponding to N = 100,
in a first stage). As expected for this kind of system, notoriously sensitive
to time delays, the parameters τs and τa (i.e. θ1 and θ3), feature the largest
total Sobol’ indices (shown in the background), and hence influence the most
the variance of ϕ. The outcome of this analysis is that the designer should
aim at minimizing τs and τa first, and that they are equally important to the
fidelity. The scaling artefacts, parametrized by αs and αa, play a secondary,
but non-negligible, role in influencing the variance of ϕ. The symmetrical
structure between τs and τa (and αs and αa, respectively) observed in (3.18)
is also visible from the Sobol’ indices. Finally, the fact that first-order and
total Sobol’ indices differ (and this, for all four parameters θi) indicates some
non-additive interaction between the parameters, which is consistent with
(3.18). This answers our research question RQ1 for this simple setup.

Note that we have used N = 100 samples in E and F to reach this
conclusion. For this value, the value of ELOO for our surrogate model was
above the values recommended by Le Gratiet et al. (2015). To investigate
the effect of a rather large ELOO on our conclusion, sets E of various sizes N
were generated by successive LHS enrichment, see Figure 3.9, and the global
sensitivity analysis was run for each of them. Figure 3.8 shows how the
choice of N influences ELOO, our estimates of the moments, and the Sobol’
indices. For N ≥ 100, ELOO is indeed reduced, but the resulting variations
of E[ϕ(Θ)] and Var[ϕ(Θ)] are less than 1%, and the conclusions of the
sensitivity analyses are similar. For N = 50, ELOO has a similar value as for
N = 100, satisfactory estimates of E[ϕ(Θ)] and Var[ϕ(Θ)] are obtained, but
the estimated Sobol’ indices may lead to an erroneous conclusion regarding
the relative importance of θ2 and θ4. It is therefore good practice to not only
rely on ELOO, but also study the statistical convergence of the statistical
moments and Sobol’ indices in our study.
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Figure 3.8: Upper Figure: normalized leave-one out cross-validation error of
the PCE surrogate model. Middle figure: estimated mean value and standard
deviation of ϕ(Θ). Lower Figure: first-order Sobol’ indices and total Sobol
indices (in the background) of ϕ. We recall that θ = (αs, τs, αa, τa)

⊤. The
statistical moments and Sobol’ indices are estimated from sets E and F of
four sizes N ∈ {50, 100, 200, 400}.
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Figure 3.9: Samples of Θ obtained by LHS and successive enrichment. Left:
scatter diagram representing the first and third components of θ. Right:
scatter diagram representing the second and fourth component of θ

3.3.3 Probabilistic robust fidelity

As a design choice, we request the cyber-physical setup to guarantee a fidelity
of at least ϕadm = 0.7, which corresponds to the worst case in Figure 3.6. In
Step 3, we will now check that this criterion is met with sufficiently high
probability (RQ2), and establish the resulting constraints on the components
of θ (RQ3).

We use a PCK surrogate model K, describing ϕ near the locations of the
four dimensional space where ϕ(θ) = ϕadm. The initial set E , which contains
N = 100 samples of Θ at this stage, is used to initialize the PCK model, as
outlined in Section 2.3. It is then enriched with new samples as described
in Section 2.3.4, and illustrated in Figure 3.10. The set of samples added
step-by-step by this process are represented by square markers in the (α, τ)
plane in Figure 3.11. The following remarks are in order when considering
this Figure.

1. The fact that failure clearly occurs in well-defined regions of the α− τ
plane is consistent with the knowledge we have from (3.18): the
individual values of τs and τa (resp. αs and αa) are irrelevant for this
system, it is their sum (resp. product) that matters. Note however that
in general such knowledge is not available, and that such structures are
not easily identifiable, especially when dealing with high-dimensional
Θ.

2. As expected, we also see that loss of fidelity occurs when τ becomes
large and when α deviates (i.e. increases or decreases) by more than 1%
from unity. In contrast, by inspection of (3.18), it can be established
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that the dynamical system becomes unstable for τ ≥ 40 ms when α
is equal to 1, and that the stability margin may be increased only
by decreasing α, when τ=40ms. This illustrates the fact that, while
stability is in general necessary to ensure high fidelity of a cyber-
physical empirical setup, it is clearly not a sufficient condition.

3. Finally, while most of the samples generated by the enrichment algo-
rithm are located near the boundaries of Df (which is the objective),
some of them seem inadequately located in regions with high fidelity.
The reason is that these samples typically feature an unlikely large
value of αs, combined with an unlikely small value of αa (or vice-versa).
Even if α = αsαa is close to unity, such a combination falls in an
unexplored region of the four-dimensional space D, leading to a large
value of the uncertainty (2.38), and therefore Pm in (2.52). The corre-
sponding sample is therefore selected by the AK algorithm. This is
commonly referred to as sample space exploration.

The evolution of the estimated probability of failure Pf during the en-
richment process is shown in Figure 3.12. We recall that Pf is calculated
from (3.9) by performing Monte-Carlo simulations (MCS) using the PCK
model, which is updated at each step. The confidence intervals represented
in Figure 3.12 can be made as small as desired by increasing the number
of auxiliary samples involved in this MCS. Significant variations of Pf are
observed initially and until the 40th step. They occur when the enrichment
process ”discovers” a sample that refines the PCK model at a location where
it is close to ϕadm. This changes the estimated location of Df , which in
turn causes large variations of Pf . Smaller variations in the estimated Pf

are also due to statistical noise, since Pf is evaluated by MCS, which can
lead to different estimates, even for a given PCK model. In the present
case, convergence is achieved after ca 80 iterations, and it is found that
P [ϕ < 0.7] ≃ 1.6× 10−3. This probability should be compared with a target
εadm, set by the designer. Robust fidelity is achieved if Pf < εadm.
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3.4 Conclusion

We have in this chapter proposed a method to address the RQ formulated in
Section 1.3.1. We first defined a generic model for CPEM as an interconnec-
tion between the substructures. This interconnection is subject to random
and heterogeneous artefacts, such as measurement noise and actuator dy-
namics, which prevent the dynamic equilibrium between the substructures
to be fulfilled. We then introduced a definition of the fidelity (3.6) that
quantifies the detrimental effect of the artefacts on the quantities of interest
(QoI) for the experiments. We finally described how the fidelity could be
computed by co-simulating the ideal system (without artefact) on the one
hand, and the system subjected to the artefacts on the other hand.

Based on this problem formulation, and by using the uncertainty quan-
tification tools presented in Chapter 2, we showed how to assess the robust
fidelity of a CPEM. The proposed method enables us to conclude whether
the substructural partition and the control system at hand are suitable to
study of the dynamical system at hand (RQ2). A bi-product of this analysis
are fidelity bounds, yielding requirements on the control system connecting
the substructures (RQ3). These latter are obtained by interrogating the
PCK surrogate model established during the analysis. Finally, by using
another type of surrogate model (PCE), the influence of each artefact on the
fidelity could be quantified, which is of great operational relevance during
the design of a CPEM (RQ1).

For illustration purposes, the method was applied to a simple CPEM,
aimed at studying the behaviour of coupled oscillators. In the two next
chapters, we will show how the proposed method can be used to address a
more complex problem of industrial relevance, namely the active truncation
of slender marine structures.
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Figure 3.11: Samples of θ = (αs, τs, αa, τa)
⊤, represented in the α-τ plane.

Dots represent samples from the initial experimental design (100 samples),
while squares correspond to the enrichment process (160 samples). Black
markers corresponds to ϕ(θ) > 0.75, blue markers to ϕ(θ) ∈ (0.70, 0.75] and
red markers correspond to ϕ(θ) ≤ 0.70.
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Chapter 4

Co-simulation of the active

truncation of slender marine

structures

In the previous chapter, we presented a method to analyze the fidelity of
generic CPEM. In the next two chapters, we will apply this method to
the study of the active truncation of slender marine structures, already
mentioned in Example 5.

A slender marine structure can be defined as a structure whose length
is several orders of magnitude larger than its characteristic cross-sectional
dimension, and which is used in the marine industry. Slender structures
usually combine a soft transverse stiffness with a strong axial stiffness,
coupled through the curvature of the structure (Papazoglou and Mavrakos,
1990). They operate in water and are therefore subjected to drag loads,
possibly vortex-induced vibrations, and contact with the sea-bed, which pose
specific modeling and analysis issues. Examples of slender marine structures
are mooring lines, risers, umbilicals, the tethers of a tension leg platform, or
hawsers used in towing or trawling.

In Section 4.1, we will introduce in detail the background for the active
truncation of such structures. In Section 4.2, we will show how co-simulations
of substructured slender marine structures can be performed. Finally, in
Section 4.3, we will investigate how some given types of artefacts affect
the behaviour of a substructured polyester mooring line. The content of
this section will serve as background to Chapter 5, in which a complete
fidelity analysis of an active truncation setup will be performed. Parts of
this chapter have been published earlier in Sauder et al. (2017) and Sauder
et al. (2018).

79
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4.1 The active truncation problem

4.1.1 Hydrodynamic model testing in ultra-deep water

Floating oil&gas production units are generally designed based on functional
requirements which are specific to the targeted hydrocarbon field. Examples
of such requirements are the reservoir type, the required on-board processing
and storage capabilities, and the surrounding environment. During the
design phase, hydrodynamic model testing of these structures is usually
performed to validate the numerical models used by the designer, to study
of specific complex physical phenomena, and to eventually perform a final
verification of the design (Magee, 2018). During such verification tests, the
floating structure is modelled at reduced scale, as depicted in Figure 4.1,
and exposed to the wave, wind and current conditions it may experience
during its design life, see e.g. DNV GL (2015). It is then verified that the
motions of the platform, and the loads in the mooring and riser systems
are acceptable under these environmental conditions. The test campaign is
in general also a final risk mitigation campaign, during which unexpected
events such as green water on deck, wave impact (see Figure 4.2), could be
detected.

When subjected to irregular waves, the motions of moored floating systems
in the horizontal plane generally contain a wave-frequency (WF) component,
with periods ranging from 5 to 20s, and a low-frequency (LF) component.
Both components play an important role for the extreme excursions of the
floater and the extreme tensions in the mooring lines. The LF motions
may feature large amplitudes and a narrow banded spectrum, and can
be described, in a first approximation, by a forced linear oscillator whose
damping term includes wave drift damping, viscous damping on the floater,
and damping induced by the mooring and riser system1. The latter is mainly
induced by transverse drag loads along the mooring lines when their upper
end undergoes horizontal motions. Which of these three damping components
contributes most to the LF damping depends on the water depth, the sea
state and on the floating system at hand, but mooring-induced damping
plays in general an important role (Huse, 1986; Webster, 1995). The static
and dynamic properties of the mooring system must therefore be properly

1In this oscillator, the mass term consists of the mass of the floater and the asymptotic
value of its added mass for low frequencies, and the stiffness is due to the mooring system.
The external excitation is due to second-order (in terms of wave amplitude) hydrodynamic
loads on the floater. Second-order wave loads are in practice predicted by perturbation
methods, despite the fact that the amplitude of LF motions is very large compared to the
wave amplitude. This inconsistency gives birth to an additional damping load denoted
wave drift damping (Molin, 2002)
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Figure 4.2: Example of complex hydrodynamic phenomena at the free-surface
for FPSO and semi-submersibles. From Muthanna (2014)

Figure 4.3: Sketch of catenary and taut mooring systems in 1200m water
depth ITTC (1999).
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Figure 4.4: Passive truncation of a mooring/riser system. The full-depth
system includes 16 identical taut mooring lines (in grey) and 17 risers in
J-configuration (in green). The truncated version of these slender marine
structures are plotted in blue and red, respectively. From Kendon et al.
(2008)

floating system and a controlled environmental loading.

4.1.2 Passive truncation

The state-of-the-art approach to address this problem is denoted passive
truncation, and it is founded on the fact that (1) most of the complex
hydrodynamic phenomena, such as wave-current interaction, wave impact,
and important viscous effects, occur near the free-surface, and (2) the
dynamic behaviour of slender marine structures is well-described by validated
numerical codes such as RIFLEX (Aksnes et al., 2015). Note that these
considerations leave aside the notoriously difficult problem of vortex induced
vibrations (VIV). The verification of a typical floating production platform
(with mooring and risers) using passive truncation consists of the following
four-step procedure.

Step 1. A truncated version of the mooring and riser system is designed
as shown in Figure 4.4. The objective is to achieve static similarity between
the truncated and full-depth systems. The design of the truncated system is
very dependent on the type of system under study. The process involves in
general an architectural design phase during which the truncation point, a
first estimate of line properties, and the use of clump weights or blocking
springs are decided upon. The parameters of the truncated system are
then refined by solving an optimization problem (Fylling and Stansberg,
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2005; Molins et al., 2015; Felix-Gonzalez and Mercier, 2016), whose objective
function is a measure of the difference between the static characteristic of
the full-depth and truncated systems. The constraints of the optimization
problem are typically related to the manufacturability and strength of the
truncated system. The yield strength of coil springs should, for instance,
not be exceeded.

Step 2. Hydrodynamic model testing is performed with this statically-
equivalent truncated system, which leads to similar (but not identical) floater
motions as if it was the full-depth system. It is important to emphasize that
the dynamic tension in the mooring and riser lines measured during these
model tests, cannot be used directly for design verification: indeed, inertial
loads and transverse drag loads on the truncated slender marine structures
are in general significantly less than on the full-depth system, which causes
discrepancies on the dynamic tension, especially in harsh sea-states (Kim
et al., 2005).

Step 3. A numerical model of the truncated setup is established using a
state-of-the-art analysis program, such as SIMA (SINTEF Ocean, 2015). The
hydrodynamic model of the floating system is calibrated in order to match
model test results (Baarholm et al., 2006). This involves the identification of
second-order wave loads and damping on the floater, wave-current interaction
parameters, and viscous damping coefficients, among others.

Step 4. When satisfactory agreement with model tests is achieved,
the numerical results are ”extrapolated”. In other words, the truncated
mooring/riser system is replaced by the full-depth system in the numerical
model, and simulations are run in relevant environmental conditions to
obtain dynamic line tensions, extreme excursions of the floater, which are
used to verify the design. As of today, this verification method is considered
as reliable and is the common practice (ITTC, 2005). However, its main
weakness lies in the execution time of this four-step process, and also to
possible challenges related to numerical model identification (Kendon et al.,
2008).

In the last years, researchers have therefore attempted to create truncated
setups exhibiting a correct dynamic behaviour. Starting from a statically-
equivalent system, Ferreira et al. (2016) suggested to achieve dynamic
equivalence by jointly varying the diameter and mass of the segments, while
keeping the submerged weight constant, and the static properties of the
system unchanged. Based on a numerical case study, they concluded that
the truncated setup was able to replicate the dynamic line tensions in sea-
states with comparable strength to the ones used in the calibration. When
quite different sea-states were investigated, motions of the floater could
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however deviate significantly. No detailed results were reported regarding
dynamic line tensions in these sea-states. Using a similar approach, Wei
et al. (2017) presented a step-wise, systematic and efficient way of solving
the optimization problem mentioned in the previous paragraph. However,
dynamic equivalence was only verified for quite mild sea-states, very close
in terms of strength to the ones used in the optimization process. This
approach also requires a number of nonlinear time domain simulations to be
performed prior to the test.

Following a radically different approach, Argyros (2011) studied the
drag-induced decay of transverse vibrations of taut polyester mooring lines,
subjected to top motions. Based on this, he defined a truncation length as
the minimum length below which drag-induced damping and added mass
would have an insignificant effect on the transverse motions of the line. To
model the lower, truncated, part of the line, he suggested to use a nonlinear
(polynomial) spring at the truncation point, as well as a dashpot acting
transversely to the line. An additional axial force, calibrated from numerical
simulations at full-depth, may be added when studying extreme sea states.
However, while the method seems very adequate for the truncation of a large
class of taut polyester mooring systems in deep water, it cannot be applied
directly to other classes of slender marine structures, such as steel catenary
risers depicted in green in Figure 4.4. Also, even though the boundary
conditions at the truncation point seem quite simple (polynomial stiffness,
transverse damping, and additional axial force), they may be difficult to
achieve in practice with simple ”passive” components, such as springs or
dashpots.

4.1.3 Active truncation: introduction and case study

The verification of floating systems in ultra-deep water in general, and the
truncation of slender marine structures in particular, are ill-conditioned
problems. They are multi-scale problems in time, since several hours (in
full-scale time) of exposure to irregular waves are required to obtain reliable
statistical information about extreme mooring line tensions and floater
excursions, while wave impact events and snatch loads in the mooring
system, also of interest, last less than one second. They are also multi-scale
problems in space. Indeed the characteristic dimensions involved, i.e. the
cross-sectional dimension of the mooring lines, the characteristic size of the
platform, the wave height and length, and the water depth, span four orders
of magnitude.

We argued in Section 1.1.1 that CPEM could be an adequate tool to
address such ill-conditioned problems. In the late 1990’s, some researchers
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have indeed suggested to use active truncation to study deep water floating
systems. The truncated part of the slender marine structures would become
a numerical substructure, and would then be simulated using a FE method
(Watts, 1999; Buchner et al., 1999). The connection between the physical
and numerical substructures happens through a set of sensors and actuators,
located at the truncation point, in other words on the floor of the hydro-
dynamic laboratory. In that setting, spatial ill-conditioning is solved, and
dynamic similarity between the full-depth and truncated setup is achieved
intrinsically.

Active truncation of slender marine structures has however never been
realized, most probably due to practical challenges. Indeed, Froude scaling
sets quite stringent requirements on the performance of both the numerical
substructure and the control system. When Froude scaling is applied with
a factor λ < 1, time runs λ−

1
2 faster than full-scale real-time, velocities

are λ−
1
2 times larger, and forces are λ−3 times smaller. As an example, if

model testing was to be performed at a scale of λ = 1/64, the numerical
substructure would have to run 8 times faster than full-scale real time,
tension variations of 200 kN would correspond to variations as small as 0.76
N at model scale, and these should be applied with velocities 8 times larger
than at full-scale. Note that in addition to be efficient from a computational
speed point of view, the model used in the numerical substructure should of
course be validated for the CPEM to be meaningful, as discussed in Chapter
1. For practical reasons, it should also be robust, in the sense that it should
not lead to numerical instabilities or excessive jitter.

Main requirements for numerical substructures used in active trunca-
tion: validity, computational efficiency and robustness

Even if active truncation has never been applied to the verification of
complete moored floating systems, CPEM have been developed to address
other issues involving slender marine structures: VIV have for instance been
studied by Hover et al. (1997, 1998) and Smogeli et al. (2003), and more
recently, the installation of a steel catenary risers (SCR) was studied by Ye
et al. (2014).

Our objective is now to study active truncation in details, by applying
the fidelity analysis method for generic CPEM, presented in Chapter 3.
This will be done through the following case study. We will consider a taut
polyester mooring line, as depicted on the right hand side of Figure 4.3.
Note that there are generally chain segments at the top and bottom ends of
the mooring line3 which are not considered here for simplicity. The property

3For more details, see the interesting study on impedance mismatch at the connection
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of the mooring line are given in Table 4.1. Without loss of generality, we
assume that the problem is two dimensional, and we define a direct x-z
coordinate system, whose z axis is vertical and pointing upwards. The water
depth is D=1200 m and water density ρ=1025 kg/m3. Active truncation is
to be performed as shown in Figure 1.5b and at the top left of Figure 4.5.
We set the scale to λ = 1/60, the truncation ratio to α=0.8, so the required
water depth in the laboratory is (1 − α)λD = 4m. Σ1 is the numerical
substructure, representing the lower portion of the mooring line, and the
physical substructure Σ2 represents the upper portion of the line.

The fidelity of active truncation will be evaluated by studying the response
of this slender marine structure to an external excitation τ(t), with a duration
T . This load is meant to be representative, in terms of amplitude, frequency
content and direction, of a severe load that can be encountered during the
testing of a floating system. The dynamic part of this load represents wave
loads transferred from the floater to the slender structure, and is therefore
applied to the top of the line. It has two components. The first low-frequency
component mainly acts axially, has an amplitude of 1MN, and a frequency
content sweeping [0, 0.02] Hz. It mimics the effect of second-order difference-
frequency wave loads. The superimposed wave-frequency component has
an amplitude of 250kN, and a frequency content sweeping [0,0.2] Hz, and
a direction with constant rate of change. Time series of the described top
load can be seen in Figure 4.10. This dynamic load comes in addition to the
static top tension applied to the slender structure (see Table 4.1), and to
the drag load associated to a shear current, whose velocity varies linearly
throughout the water column for 0m/s at the seabed to 0.5m/s at the free
surface.

We will now focus on the definition of the fidelity indicator ϕ for the
active truncation problem. As mentioned earlier, hydrodynamic model test
campaigns focus generally on the behaviour of the floater, and on extreme
tensions in the slender marine structures. They do not consider their local
deflection or curvature. The objective is therefore to make the interaction
between the truncated slender marine structure, the (physical) floater and
the (numerical) sea bottom reflect the corresponding interactions in a fully
physical setup.

Based on this reasoning, two fidelity indicators are suggested as outlined
in Section 3.1.2. Let Vx,top and Vz,top be the components of the top velocity of
the slender structure when it is subjected to τ(t), and Fx,bottom and Fz,bottom

the components of the force vector at its lower end. These four values are

between polyester rope and chain, and its consequences on dynamic tension in Argyros
(2011)
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calculated as outlined in Section 3.2.2 by co-simulation of the substructured
system, subjected to artefacts described by a parameter θ that will be defined
later on. Letting V̄top and F̄bottom be their ideal counterparts, obtained by
simulation of the emulated system without artefacts, the first indicator can
be written, consistently with (3.6)

ϕ1(θ) := −1

2
log10

(

γ2Vx(θ) + γ2Vz(θ)
)

(4.1)

where

γ2Vx(θ) :=

∫ T
0

(

Vx,top(t|θ)− V̄x,top(t)
)2
dt

∫ T
0 V̄x,top(t)2dt

(4.2)

γ2Vz(θ) :=

∫ T
0

(

Vz,top(t|θ)− V̄z,top(t)
)2
dt

∫ T
0 V̄z,top(t)2dt

(4.3)

ϕ1 quantifies how well the top end of the structure responds to the prescribed
external load τ , and thus how well the substructured system manages to
replicate the mechanical impedance of the slender structure (Argyros, 2011;
Fahy and Gardonio, 2007). ϕ1 is therefore important when motions of the
floater are investigated.

The second fidelity indicator is defined by

ϕ2(θ) := −1

2
log10

(

γ2Fx(θ) + γ2Fz(θ)
)

(4.4)

where

γ2Fx(θ) :=

∫ T
0

(

Fx,bottom(t|θ)− F̄x,bottom(t)
)2
dt

∫ T
0 F̄x,bottom(t)2dt

(4.5)

γ2Fz(θ) :=

∫ T
0

(

Fz,bottom(t|θ)− F̄z,bottom(t)
)2
dt

∫ T
0 F̄z,bottom(t)2dt

(4.6)

ϕ2 quantifies how well the external load is transferred to the sea bottom,
and is then more relevant when the focus is on the loads at the anchors
(or blow-out preventer, if considering a drilling riser). If both aspects are
important, ϕ1 and ϕ2 could easily be combined into a single indicator.

4.2 Co-simulation of an active truncation setup

To analyze the fidelity of active truncation, we must be capable of performing
co-simulation of this CPEM, using a validated model of the substructures.
The emulated system must indeed be representative of the real system, for
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the fidelity assessment of the CPEM to be meaningful. In the following
section, we will review possible models for slender marine structures, and
select the adequate one for our case study.

4.2.1 Numerical modeling of slender marine structures

In the general context of verification of ultra-deep water floating systems,
active truncation must potentially be applied to a wide class of slender
marine structures. Examples of such structures are catenary mooring systems
(generally composed of chain and steel wire), taut mooring systems (based
on fiber rope), steel catenary risers, flexible risers, top-tensioned risers,
tendons of a TLP, etc... The requirements to a numerical model that could
perform a global4 analysis of all these structures are quite extensive. It
should be a time domain, dynamic, three-dimensional model, accounting
for nonlinearities due to large geometrical deformations. It should model
the axial/bending/torsional stiffness, and possibly the nonlinear material
properties of the slender structures. It should handle concentrated loads
(from clump weights or buoys) and distributed loads (as current loads),
as well as contact with the sea floor. The employed numerical integration
methods should be adequate for stiff problems, to handle snatch loads for
instance.

The standard approach to model slender marine structures is to use
the nonlinear Finite Element (FE) method (Cook, 2002), implemented
in commercial codes such as OrcaFlex, Deeplines, Flexcom and RIFLEX
(Zhan, 2010). The FE method can satisfy all requirements listed in the first
paragraph, and it has been validated for an increasing number of marine
applications over the years. However, since the nonlinear FE method relies
on Newton-Raphson iterations to account for large deformation of the slender
structures, it is not a natural candidate for CPEM due to a possible lack
of robustness. There is indeed no theoretical guarantee that the simulation
of one time-step can be executed in a fixed time interval. Such a ”jitter”
phenomenon was observed by Vilsen et al. (2017).

Some classes of slender marine structures, operating in certain condi-
tions, may, however, be described by simpler models. Such particular cases
may be identified by dimensional analyses, see e.g. (Webster, 1995). Some
adaptations in the structural formulation have been suggested by Johansen
(2007) and Rustad (2007), among others, to enhance efficiency and robust-
ness. Another possibility to ensure efficiency is to step away from a first

4as opposed to a local, or cross-sectional, analysis, which removes a level of abstraction
and includes a detailed model of the cross-section of the slender marine structure. See e.g.
Fergestad and Løtveit (2015).
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principles-based resolution of the problem, and use semi-empirical models,
such as proposed by Mainçon (2011) and Thorsen (2016) to model VIV in
time domain. Using surrogate models of FE models is another possibility.
Christiansen (2014) suggested for example to use Artificial Neural Networks
(ANN), calibrated with RIFLEX simulations, to efficiently carry out fatigue
analyses. When used in their domain of validity, ANN lead to accurate
results, at a fraction of the computational cost used by the corresponding
FEM analysis. They also feature a constant and predictable computational
time, and are therefore suitable for real-time applications. However, the
validity of ANN is jeopardized when they are used on a set of data for which
they have not been trained for, as shown for VIV induced forces by Mainçon
(2011).

As a conclusion, there is as of today no method to describe the dynamics
of generic slender marine structures, that fully satisfies the validity, efficiency
and robustness requirements set by active truncation. However, such tools
can be found for some classes of slender marine structures, as the polyester
mooring line we consider in our case study.

4.2.2 A class for the simulation of polyester mooring lines

When included in a deep water mooring system, taut mooring lines provide
restoring mainly through axial deformations. The catenary restoring effect
is not significant, since the weight in water of polyester lines is rather small,
compared to steel wire or chain. Bending-induced loads do neither play a
significant role in the deep water configuration, since the curvature in such
lines structure is small. Neglecting VIV, the transverse deformations of
polyester lines are mainly induced by current, and by the top motions of
the floater. These latter are damped out by drag loads when propagating
downwards in the water column (Argyros, 2011). Dynamic deformations are
in general sufficiently small, so that geometric nonlinearities can be neglected
in the dynamic analysis. A challenge related to such fiber ropes is the
nonlinearity and rate-dependency of the relationship between the axial force
they are subject to, and the resulting elongation (DNV GL, 2017, Section
2.10). There is no mature model to fully describe this phenomenon yet, but
it seems reasonable to assume linear material properties when performing a
dynamic analysis about a working point.

Provided that (nonlinear) drag loads are included, the linear FE method
is therefore adequate to describe polyester mooring line dynamics. Since
bending stiffness plays an insignificant role in ultra-deep water systems, a
linear bar FE model can be used to address our case study. For practical
reasons which will be clear in the next section, we set the boundary condition
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of the structure to fixed-free, which means that the velocity of lower end
of the structure, and the force on the upper end, are prescribed, and their
dual left free. Figure 4.6 presents the convention used for the numbering
of elements and nodes, and illustrates the involved load components on the
structure.

Inertia, added-mass and effective weight loads are calculated in a similar
way as described in Rustad et al. (2008), Section 2.3. This will not be
detailed again here. Since forces must be input as nodal quantities, drag
loads are computed on the semi-element adjacent to each node, using the
relative velocity at this node. The stiffness matrix has both an elastic and
a geometric component. Since the geometric component strongly depends
on the configuration of the structure, the static equilibrium of the polyester
mooring line is found using Newton-Raphson iterations.

The dynamic time-domain analysis is however linear, in the sense that
it uses the mass matrix M and the stiffness matrix K, determined by the
static analysis. Nonlinearities due to drag loads are modelled exactly. The
structural damping matrix is of the form C = α1M+α2K (Rayleigh damping)
where α1 is chosen to be null. In that case, the damping ratio associated to
a vibration mode with circular frequency ωi is ωiα2/2, with α2 as indicated
in Table 4.1. The time integration is performed with MATLAB R©’s ode45
function (Shampine and Reichelt, 1997) featuring an adaptive step size. Our
model is implemented as a class named fixedFreeCableSegment.

To verify our implementation, the eigenvalues and associated modeshapes
computed from fixedFreeCableStructure are compared to known analyti-
cal solutions. We consider the polyester line properties are given in Table 4.1,
but work first under the assumptions of vertical top tension, infinite axial
stiffness and zero submerged weight. When it comes to transverse vibrations,
the eigenfrequencies ωt,i of the line and the associated modeshapes φt,i are
given by:

∀i ∈ N
∗, ωt,i =

(2i− 1)π

2L
ct and φt,i(z) = (−1)i+1 sin

(

(2i− 1)πz

2L

)

(4.7)

For finite stiffness, longitudinal vibrations occur, and a similar expression
describes the corresponding eigenfrequencies ωl,i and associated modeshapes
φl,i:

∀i ∈ N
∗, ωl,i =

(2i− 1)π

2L
cl and φl,i(z) = (−1)i+1 sin

(

(2i− 1)πz

2L

)

(4.8)

The expression and values of the longitudinal and transverse wave velocities
cl and ct are given in Table 4.1. Note that the φi have been normalized
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so that φi(L) = 1. The six first modeshapes obtained from the analytical
solution (4.7) are represented with solid lines in Figure 4.7, and the values
of the 15 first eigenperiods are tabulated in the second column of Table 4.2,
page 103.

These analytical eigenmodes are compared to those obtained for a
fixedFreeCableSegment object with nel=500 elements, whose axial stiffness
has been increased by one order of magnitude (to mimic the infinite stiffness
assumption used in the analytical model), and whose submerged weight
has been set to zero. The eigenmodes of a fixedFreeCableSegment object
are obtained numerically from the eigenvalue analysis of M−1K after then
nonlinear static analysis. The corresponding eigenperiods are tabulated in
the third column of Table 4.2, page 103, and the difference with the analytical
solution is found to be insignificant. When nel is decreased to 80 elements
(fourth column of Table 4.2), the error is less than 1% for the 13 first modes,
and the first modeshapes, compared in Figure 4.7a, also show excellent
agreement. For higher modes, with eigenperiods less than 1.80 s, the model
with nel=80 becomes too coarse to model transverse vibrations, with less
than 12 elements per wavelength 4L/(2i−1), and the estimated eigenperiods
become erroneous. So provided that nel is chosen adequately, the dynamic
system modelled by fixedFreeCableSegment can be considered as verified
against the corresponding analytical solution.

In reality, several physical effects will make the eigenmodes of a polyester
line deviate from the ideal solution (4.7).

• First, the elasticity of the polyester influences the dynamics of long lines.
This is shown in the fifth column of Table 4.2, in which eigenperiods
are evaluated from a vertical fixedFreeCableSegment, now featuring
its nominal stiffness. The first eigenperiod for axial vibrations is
2π/ωl,1 = 2.41 s. While the elasticity of the line does not influence
significantly the ten first transverse modes (less than 0.5% deviation
on the eigenperiod), it must be accounted for when higher frequencies
are to be modelled.

• The submerged weight of the slender structure causes (static) tension
variations throughout the water column, which also affects the eigen-
modes. See e.g. Eq. (61-62) in Vandiver and Li (2005). By considering
the sixth column of Table 4.2, it is seen that this effect has an impact
on all modes of our structure, including the the lower modes, making
the corresponding eigenperiods deviate by 2 to 3% from the zero-weight
case.

• Then, since such a polyester line is in general installed in an oblique
way, it will exhibit a small static lateral deflection (of the order of 1%
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of the structure’s length in the present case), due to its submerged
weight. As shown in the sixth column of Table 4.2, this change of
static configuration has some effect on all eigenmodes.

• Finally, the oblique line is subjected to oceanic current. Considering
a shear current whose velocity varies linearly throughout the water
column for 0 m/s at the seabed to 0.5 m/s at the free surface. It is
found to have an insignificant additional effect on the eigenmodes (last
column in Table 4.2). Note however that current has an important
effect on the drag-induced damping of transverse motions.

As a conclusion, the fixedFreeCableSegment class developed in this
Section is suitable to simulate structures with minimal changes of configura-
tion (typically when lateral deflections do not exceed a few percent of the
structure’s length), such as the deep water taut mooring line in our case
study. Note that it could also be used to simulate top tensioned risers or
TLP tendons, as long as they remain taut. If slack occurs, the bending
stiffness should be modeled (Howell, 1992; Triantafyllou and Howell, 1994),
and beam elements should be used instead of bar elements.

4.2.3 Co-simulation: implementation and convergence study

In the following, we will show how the active truncation setup can be co-
simulated by coupling two fixedFreeCableSegment objects. The numerical
substructure Σ1 (in blue) and the physical substructure Σ2 (in red), are
each modelled by a fixedFreeCableStructure object denoted n and p,
respectively. The top velocity Vtop in (4.1) will hence be evaluated from p,
and the bottom force Fbottom in (4.4) from n. Focusing now on the truncation
point, the selected boundary conditions in fixedFreeCableSegment are such
that the bottom velocity of p and the top force acting on n can be prescribed.
Their dual values, that is the bottom force on p, and the top velocity
of n, must be evaluated by time integration. The dynamic equilibrium
and kinematic compatibility at the truncation point is satisfied by the
iterative procedure described in Algorithm 2, which is a specialized version
of Algorithm 1 for s = 2 and when no artefacts are included. Modifications
of this algorithm to accommodate artefacts will be discussed in the following
section.

Parameters of this algorithm, such as δt, ǫf and ǫv (these latter were
denoted ǫ12 and ǫ21 in the general case) have been discussed in Section 3.2.2.
As also emphasized in that section, a convergence study must be performed
to select the value of these parameters, together with the number of elements
nel.

To do so, we consider the truncated taut polyester mooring line, exposed
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(a) Verification case: ideal cable.
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(b) Additional physical effects

Figure 4.7: Modeshapes corresponding to the six first eigenmodes of the
fixed-free cable structure. The corresponding eigenperiods can be found
in Table 4.2, page 103. In both figures, the analytical solutions for an
ideal (weightless and infinitely stiff) cable are plotted with solid lines, and
numerical results using the fixedFreeCableSegment class with 80 elements
are plotted with circle markers.In (a) fixedFreeCableSegment models an
ideal cable. In (b) the class models a line with nominal weight in water,
stiffness, and under inclined top force and current loads. The resulting
modeshapes are compared to those of an ideal cable.
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Algorithm 2 Co-simulation of two coupled fixedFreeCableSegment ob-
jects, denoted n and p.

1: for t ∈ {0, δt, ..., T − δt} do
2: v ←top velocity of n at time instant t
3: v next ←∞
4: f ←bottom force of p at time instant t
5: f next ←∞
6: while true do

7: Perform time-integration of p from t to t+ δt with varying external excitation and
bottom velocity varying linearly to v

8: f next ←bottom force of p at t+ δt
9: Perform time-integration of n from t to t+ δt with varying external excitation and

top force varying linearly to f next

10: v next ←top velocity of n at t+ δt
11: if ||v next−v||∞ > ǫv OR ||f next−f||∞ > ǫf then: v← v next ; f← f next

12: else: Jump to next synchronization time step
13: end if

14: end while

15: end for

to the current and wave-induced loads described in Section 4.1.3. The
response of the substructured system (we recall that at this stage, no
artefact is introduced) is evaluated by the co-simulation procedure described
in Algorithm 2. Each of the four parameters is varied, keeping the other
ones constant and equal to the following nominal values: nel=80 elements,
δt=10 ms, ǫv=10−6 m/s and ǫf=0.1 N. Based on the discussion in Section
3.2.2, criteria for the convergence study ǫ1 and ǫ2 are selected based on the
fidelity indicators (4.1) and (4.4).

ǫ1 :=

(

∫ T

0

(

Vx,top(t)− V
∞
x,top(t)

)2
dt

∫ T

0
V∞
x,top(t)

2dt
+

∫ T

0

(

Vz,top(t)− V
∞
z,top(t)

)2
dt

∫ T

0
V∞
z,top(t)

2dt

)1/2

(4.9)

ǫ2 :=

(

∫ T

0

(

Fx,bottom(t)− F∞
x,bottom(t)

)2
dt

∫ T

0
F∞
x,bottom(t)2dt

+

∫ T

0

(

Fz,bottom(t)− F∞
z,bottom(t)

)2
dt

∫ T

0
F∞
z,bottom(t)2dt

)1/2

(4.10)

where the ∞ superscript refers to the time series obtained with the finest
mesh, smallest synchronization time step or tolerance value, depending on
which parameter is varied. Figure 4.8a to 4.8d show the variations of ǫ1 and
ǫ2 as a function of each parameter, and Figure 4.8e shows the effect of the
parameters on the computational time.

As expected, ǫ1 and ǫ2 decrease when refining the mesh (Figure 4.8a),
while the computational time increases proportionally to n2el (Figure 4.8e).
As seen in Section 3.3, the present study requires a possibly large number of
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co-simulations, so nel=80 is selected, which keeps computational costs to an
acceptable level.

Convergence is also clearly observed when the synchronization time
step is reduced (Figure 4.8b). It can be observed (Figure 4.8e) that the
computational time is minimum for δt=10 ms, and increases significantly
when δt=100ms. Indeed, even if reducing total number of synchronizations
(calls to Algorithm 2) during the given simulation time, increasing δt leads
to a larger required number of iterations (lines 6-14 in Algorithm 2) at
each synchronization step. On the other hand, it can be observed that
the computational time is larger for δt=5ms than for δt=10ms. In that
case, even if very few iterations are required to achieve compatibility and
equilibrium, the total computational burden increases due to some expensive
operations (such as writing data), which are performed at the end of each
synchronization step.

As expected when considering line 11 in Algorithm 2, for a given ǫf ,
decreasing ǫv will only have an influence on the outcome of the co-simulation
(and thus on ǫ1 and ǫ2) if it is ǫv, and not ǫf , that forces the iteration
process to continue. Indeed, when ǫv is chosen to be very large, the dynamic
equilibrium condition will be the limiting constraint, and the value of ǫf
will thus steer the number of iterations. When ǫv is decreased and reaches
a certain threshold, which depends on the mechanical impedance of the
structure, it may be either the equilibrium or the compatibility condition
that steers the number of iterations, at a given synchronization step. Finally,
decreasing further ǫv will yield a more accurate compatibility condition,
which decreases the error, and increases the number of iterations and the
computational time. This shift is clearly happening for ǫv=10−7 m/s in
Figure 4.8c. It should however be noted, that within the range of investigated
ǫv and ǫf , the errors ǫ1 and ǫ2 are extremely small. The selected values are
nel=80 elements, δt=10 ms, ǫv=10−6 m/s and ǫf=0.1 N.

We have, in this section, shown how to co-simulate the emulated system.
Performing the fidelity analysis described in Section 3.1.2 requires now also
artefacts to be introduced in the coupling between the substructures, which
will be the object of the next section.

4.3 Effect of deterministic artefacts

4.3.1 The artefact class

An artefact class was developed, which enables us to apply a gain (multi-
plicative error), bias (additive error), white noise, delay, zero-order hold and



100 Co-simulation of the active truncation of slender marine structures

signal loss to a signal, as presented in Figure 3.3. The class has a signalIn

method to get an input, a signalOut method to retrieve an output, and
in the particular case when no artefact should affect the signal, it works
simply as a First-In-First-Out (FIFO) queue. When artefacts are present,
the input is modified before being returned. As an example, in Figure 3.3,
successive calls to signalOut were made on artefact objects with different
properties, which received identical samples of the reference signal via the
signalIn method.

To study active truncation, two artefacts objects are needed, one acting
on the measured force, obtained from the physical substructure Σ2, and
the other one acting on the imposed velocity, obtained from the numerical
substructure Σ1. Because they act on signals which are obtained from sensors,
or used as reference to actuators, the corresponding artefact objects will be
denoted aS and aA, respectively. In this setting, performing a co-simulation
that includes the effect of these artefacts requires only minor modifications
to Algorithm 2. (1) At line 8, f next should be input to aS.signalIn, and
the output of aS.signalOut should be used instead of f next in line 9. (2)
Similarly, v next should be passed through aA after line 10 before being used.
(3) At line 11, the convergence criterion should be evaluated on the values
affected by the artefacts. The state of each artefact, which conditions how
the artefact will modify a future entering signal, must be modified several
times during the iterations. Implementing artefacts as classes is convenient,
since they can easily be saved in a given state, copied or deleted.

4.3.2 Example: effect of signal loss in active truncation

We will now illustrate how the artefact and fixedFreeCableSegment

classes can be used in Algorithm 2, to co-simulate the active truncation
setup, including the effect of artefacts. As an example, we will consider a co-
simulation in which signal loss affects both the measured force and the applied
velocity. Signal loss may for example be due to sensor and communication
issues, or to unfinished calculations in the numerical substructure, such as
reported in Vilsen et al. (2017). As presented in Example 13, signal loss
is parametrized by a probability of occurrence θ1, and an inverse duration
parameter θ2. When signal loss occurs, the signal is ”frozen” to the last
measured force, or the last commanded velocity, for a period of time, which
is random, see Example 13. The probability distribution of this duration
is exponential, with rate parameters θ2. This means that longer and more
variable signal losses are expected for smaller values of θ2. In the present
case, θ1 is set to 1%, and θ2 to 0.1, on both sensor and actuator side. So
in this case, the artefacts are parametrized by M = 4 components, and
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setup, represented in Figure 4.9. We assume that signal loss occurs on the
force measurement only, and that the velocity actuation is perfect, that is
vp = vn at all times, while fn 6= fp when signal loss occurs. Starting from
static equilibrium, when F0 increases, all other variables fp, fn, vp and vn will
increase. If signal loss occurs in the force measurement, fn keeps a constant
value (instead of increasing), and vn will eventually decrease due to the
stiffness and damping of the numerical substructure. Since vn directly steers
the actuator command, vp will decrease immediately, causing the stretching
of the physical substructure, and an in increase in fp. When the signal on
the force senors is recovered, fn will jump to to the (larger) fp value, causing
a sudden increase of vn, and thus vp. This simplified example describes
well the mechanism causing the significant variations of the velocity of the
truncation point (on the physical substructure side) observed in Figure 4.10
for t ∈ [174, 176] s. This perturbation propagates according to the dynamics
of the slender structure, to the top and bottom ends of the line, and is clearly
observed both on the top velocity and bottom force time series. It will thus
affect both ϕ1 and ϕ2.

4.4 Conclusion

We have in this section presented how active truncation could alleviate
existing issues related to the hydrodynamic testing of ultra-deep water
systems. We developed the necessary co-simulation tools needed to compute
the fidelity of this CPEM. With the last example, we illustrated the possibly
complex interaction mechanisms resulting from e.g. signal losses at the
truncation point. In the next chapter, we will extend this analysis, and
investigate the effect of a larger set of random and heterogeneous artefacts,
occurring simultaneously, on the fidelity. We will, to this end, apply the
framework developed in Chapter 3.
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Table 4.2: Eigenperiods in seconds corresponding to the 15 first modes of a 1934m long cable subjected to a top
tension of 2.5MN. In italic: deviation in percents between the analytical solution (transverse vibrations of a weightless
and infinitely stiff string) and various numerical solutions computed with the fixedFreeCableSegment class. Note
that in the four last columns, mode 11 computed with fixedFreeCableSegment corresponds to the first axial
resonance mode. For these columns, the eigenperiods of modes 12-15 are therefore compared to those of modes 11-14
from the analytical solution.

Analytical solution Numerical solution using the fixedFreeCableSegment class
Axial stiffness Infinite Nominal×10 Nominal×10 Nominal Nominal Nominal Nominal
Weight in water Weightless Weightless Weightless Weightless Nominal Nominal Nominal
Top force direction - Vertical Vertical Vertical Vertical Nominal Nominal
Current - None None None None None Nominal
Number of elements - 500 80 80 80 80 80

% % % % % %
Mode 1 49.15 49.15 0.00 49.15 0.00 49.39 0.48 50.68 3.12 50.17 2.08 50.17 2.07

Mode 2 16.38 16.38 0.00 16.38 -0.01 16.46 0.47 16.78 2.42 16.66 1.71 16.66 1.71

Mode 3 9.83 9.83 0.00 9.83 -0.04 9.87 0.44 10.06 2.33 9.99 1.62 9.99 1.62

Mode 4 7.02 7.02 0.00 7.02 -0.08 7.05 0.41 7.18 2.28 7.13 1.57 7.13 1.57

Mode 5 5.46 5.46 0.00 5.45 -0.13 5.48 0.35 5.58 2.22 5.54 1.51 5.54 1.51

Mode 6 4.47 4.47 0.00 4.46 -0.19 4.48 0.29 4.56 2.15 4.53 1.45 4.53 1.44

Mode 7 3.78 3.78 -0.01 3.77 -0.27 3.79 0.21 3.86 2.07 3.83 1.37 3.83 1.36

Mode 8 3.28 3.28 -0.01 3.26 -0.36 3.28 0.12 3.34 1.98 3.32 1.27 3.32 1.27

Mode 9 2.89 2.89 -0.01 2.88 -0.46 2.89 0.02 2.95 1.87 2.92 1.17 2.92 1.16

Mode 10 2.59 2.59 -0.01 2.57 -0.58 2.58 -0.10 2.63 1.76 2.61 1.05 2.61 1.05

Mode 11 2.34 2.34 -0.02 2.32 -0.70 2.41 - 2.41 - 2.41 - 2.41 -

Mode 12 2.14 2.14 -0.02 2.12 -0.84 2.34 -0.25 2.38 1.78 2.36 1.01 2.36 1.00

Mode 13 1.97 1.97 -0.02 1.95 -0.99 2.13 -0.40 2.17 1.61 2.15 0.85 2.15 0.84

Mode 14 1.82 1.82 -0.03 1.80 -1.16 1.96 -0.56 1.99 1.43 1.98 0.67 1.98 0.67

Mode 15 1.69 1.69 -0.03 1.67 -1.34 1.81 -0.73 1.84 1.24 1.83 0.49 1.83 0.49
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Figure 4.10: Active truncation setup subjected to the characteristic load τ . The red curves are obtained from the
physical substructure p, and the blue curves from the numerical substructure n. The black curves represent the
emulated system. Signal loss occurs at the force sensors level (as visible on the second row) and at the velocity
actuation level (third row). The right column is a zoom on the time series at a location of interest.



Chapter 5

Fidelity analysis of the active

truncation problem

In this chapter, we will investigate the fidelity of the active truncation setup
defined in Chapter 4. This study will provide useful information for the design
of active truncation, but also illustrate the capabilities of the generic fidelity
analysis method developed in Chapter 3 when multiple, heterogeneous and
random artefacts are involved. The numerical tools described in Chapter 4,
i.e. the artefact and fixedFreeCableSegment classes will be used. Parts
of this chapter have been published in Sauder et al. (2018) and Sauder et al.
(2019).

5.1 Nominal analysis with α = 0.8

We consider the polyester mooring line introduced in Section 4.1.3, and
whose properties are given in Table 4.1. We still have D = 1200 m, α =0.8,
and λ = 1/60. The bottom of the hydrodynamic laboratory, where sensors
and actuators are installed, is located at a water depth of (1− α)Dλ = 4 m.
The force components fx and fz, originating from the physical part of the
line at the truncation point, are measured by two independent force sensors.
An actuator prescribes the velocity (vx, vz) of the truncation point. The
mooring line is subjected to the current- and wave-induced loads introduced
in Section 4.1.3. The fidelity indicators based on top velocity (ϕ1) and
bottom force (ϕ2), defined in (4.1) and (4.4) are considered. In the following,
ϕ may designate either ϕ1 or ϕ2, for conciseness.

As shown in Figure 5.1, ten individual artefacts, described by M = 12
parameters, are assumed to affect the setup. Each component of the force
measurement is assumed to be contaminated by calibration error (gain),
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Table 5.1: Description of the artefacts affecting the setup, including their
probabilistic description. Here λ=1/60 and δt=10 ms, and the values are
given in full-scale.

Type of artefact Affected signal Describing parameter(s) Unit Probabilistic description

Calibration error fx Θ1 (gain) - N (1, 0.015)
Calibration error fz Θ2 (gain) - N (1, 0.015)
Bias fx Θ3 (bias value) N N (0, 0.05λ−3)
Bias fz Θ4 (bias value) N N (0, 0.05λ−3)
Noise fx Θ5 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)
Noise fz Θ6 (noise variance) N2 U((0.025λ−3)2, (0.05λ−3)2)
Delay fx,fz Θ7 (duration) s U(0, 5δt)
Signal loss fx,fz Θ8 (probability of occurrence) - U(1%, 10%)

Θ9 (duration parameter) s−1 U(0.1, 0.5)
Delay vx,vz Θ10 (duration) s U(0, 5δt)
Signal loss vx,vz Θ11 (probability of occurrence) - U(1%, 10%)

Θ12 (duration parameter) s−1 U(0.1, 0.5)

five sets (Ei)i∈N∗
5
of cardinality N equal to 32× 2i−1. This was done by using

nested LHS (Blatman and Sudret, 2010), which sequentially add samples to
E , while ensuring that the updated set E still is a latin hypercube containing
samples distributed according to fΘ(θ).

ϕ(θ) is evaluated by co-simulation, as explained in Section 4.2.3, for
each sample in E5. Note that these 512 co-simulations are independent of
each other and can therefore be performed in parallel. In Figure 5.2, the
markers shows a scatter diagram of ϕ1, plotted against each component of θ.
The corresponding figure for ϕ2 is reported in Appendix (Figure B.1). The
distributions of ϕ1 and ϕ2, estimated from each Ei are shown in Figure 5.3.

Based on the initial set E , the PCE model ϕ̂ is established as described
in Section 2.2.2. Since Θ is member of a twelve dimensional space, the
polynomial basis A obtained with a hyperbolic truncation set and q = 0.75
has a cardinality of 1481. We recall that the required cardinality of E to
identify a PCE is usually N = 2-3 ×|A|, which is rather large with the
present A. The size of the basis is dramatically reduced, down to |A| =58
terms, by applying the LAR method detailed in Section 2.2.2. The PCE can
then, in principle, be identified from a set E containing not more than a few
hundred of samples. The accuracy, in terms of εLOO, of the PCEs obtained
from each Ei is presented as a function of N on the top of Figure 5.5. It will
be commented on later on.

The values of E[ϕ(Θ)] and Var[ϕ(Θ)] are evaluated from (2.19) and
(2.21), and presented for various values of N in the middle of Figure 5.5.
For N = 128, they are within 1% of the values obtained with the largest set
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Figure 5.2: Scatter diagrams showing the value of ϕ1 (fidelity indicator
based on the top velocity of the line), as a function of the twelve parameters
describing the artefacts. The dots correspond to N =512 samples of Θ
obtained by Latin Hypercube Sampling (set denoted E5 in the text). The
samples leading to the highest and lowest fidelity are represented by red
triangles.
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Figure 5.3: Cumulative distribution functions of ϕ1 and ϕ2 obtained from
sets E of different sizes (l.h.s.), and quantile-quantile plot comparing the
distribution of ϕ1 to a normal distribution (r.h.s., Figure B.3 shows the
corresponding plot for ϕ2).
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E , and equal to:

E[ϕ̂1(Θ)] = 1.32 and Var[ϕ̂1(Θ)] = 0.132 (5.1)

E[ϕ̂2(Θ)] = 1.77 and Var[ϕ̂2(Θ)] = 0.172 (5.2)

The coefficient of variation of ϕ, defined as

cv[ϕ[Θ]] :=

√

Var[ϕ(Θ)]

E[ϕ(Θ)]
(5.3)

quantifies the uncertainty on the fidelity relative to its mean value, and is
approximately equal to 10% for both ϕ1 and ϕ2.

For illustration, Figure 5.4 shows the realization of Θ leading to the
median value of ϕ1, for which ϕ1=1.33 and ϕ2=1.62. Seen in light of (5.1)
and (5.2), this realization corresponds to an average fidelity if the behaviour
of the top of the line of interest, and to a quite poor fidelity if the objective
was to reproduce the bottom force correctly.

Note that this uncertainty propagation analysis does not, by itself, assess
whether the expected fidelity of the active truncation setup at hand is
sufficiently high. The value of the minimum admissible fidelity depends on
the intended use of the empirical data, and is to be assessed by the designer
of the active truncation setup. Lower fidelity values might be tolerated in
early-stage conceptual studies of floating systems, for instance, while high-
fidelity would be required for final verification tests, or for the validation of
numerical methods.
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Figure 5.4: Co-simulation of active truncation with a set of the artefacts leading to the median value of ϕ1. For
this realization, the measurement of fx (resp. fz) is affected by a -0.3% (resp. -3%) calibration error, a -0.012
N (resp. 0.28 N) bias, and noise with a standard deviation of 0.040 N (resp. 0.037N), in model scale. The force
measurement is delayed by 2.6ms, and has a probability of signal loss of 7.5%, with a duration parameter of 0.47,
which corresponds to frequent and short periods of signal loss. On the actuation side, the delay is 1.3ms, and the
probability of occurrence and duration parameter of signal loss are 6.8 % and 0.17, respectively. The resulting fidelity
indicators are ϕ1=1.33 and ϕ2=1.62.
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5.1.2 Sensitivity analysis

As discussed in Sections 2.2.5 and 3.2.1, the sensitivity analysis aims at
identifying the artefacts contributing the most to the uncertainty on the
fidelity, evaluated in (5.1) and (5.2). This provides a rational course of action
to reduce this uncertainty, but also to improve the expected fidelity if it is
deemed too low.

In low-dimension (i.e. small M) cases, and particularly when the number
of samples in E is large, visual inspection of scatter diagrams such as Figure
5.2, enables one to determine directly which artefact component(s) affects
the most the fidelity. This inspection-based method becomes however less
reliable in high dimensions, such as in the present case with M = 12. As
introduced in Section 3.1.2, Sobol’ sensitivity indices can instead be used,
and derived directly from ϕ̂. Before looking at the Sobol’ indices, let us
recall that the absolute values of the total Sobol’ indices ST,i are of secondary
importance: the ST,i should be compared to each other to identify the most
influencing artefacts’ parameters. Furthermore, ST,i can be compared to the
first order Sobol’ index Si, to understand whether the artefact parameter
Θi influences the variance of ϕ(Θ) alone, or in an interaction with another
parameter Θj , or several others.

With these interpretation keys in mind, let us consider the bottom plots in
Figure 5.5, showing the ST,i and Si, estimated for various sizes N of E . It is
seen that for the present problem, reliable insight into the main mechanisms
of sensitivity can be obtained for N=128. If N=256, finer conclusions can
be made regarding the sensitivity to less important parameters, which do
not change when N=512. Note that the recommended maximum values for
εLOO in Le Gratiet et al. (2015) seem rather conservative for the present
situation, since good convergence of the statistical moments and meaningful
sensitivity information are obtained, in spite of an εLOO exceeding 0.1.

Let us first outline the main conclusions that can be drawn from the total
Sobol’ indices ST,i, represented by grey bars in Figure B.6b (consider for
example N=256). The fidelity indicator based on the top velocity response,
ϕ1, is very sensitive to θ9 (the duration of the signal loss on the force signal)
and to the calibration errors of the fx and fz measurement (θ1 and θ2). ϕ1 is
much less sensitive to the other θi, and clearly insensitive to noise (described
by θ5 and θ6). Focusing now on the bottom force, we see that ϕ2 is mostly
sensitive to θ1, then θ2 (calibration errors), and then to a much less extent
to the biases θ3 and θ4, which have both comparable total Sobol’ indices. ϕ2

is slightly sensitive to θ9, the duration parameter for signal loss on the force
measurement, and insensitive to the other θi parameters.
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Figure 5.5: Upper plot: normalized Leave-One-Out cross-validation error for
the PCE metamodel of ϕi. Middle plot: expected value and variance of ϕi

estimated from initial empirical designs of five different sizes. Lower plot:
first-order Sobol’ indices of ϕi estimated from these initial experimental
designs. The corresponding total Sobol’ index of each θi is plotted in grey
in the background.
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5.1.3 Physical interpretation

We will now relate these results, obtained by a systematic and data-driven
approach, to their physical causes.

It is clear from Figure 5.4 that the noise affecting force measurements
(parametrized by θ5 and θ6) induces a significant velocity response at the
truncation point. This response is however filtered mechanically by drag and,
to a less extent, structural damping, before reaching the top and bottom of
the mooring line. Therefore noise does not significantly affect the fidelity
indicators ϕ1 and ϕ2. The fact that the ST,i associated to this artefact
are negligible, means that the corresponding parameters θ5 and θ6 (noise
variances) could have been set to deterministic values (here, zero), without
affecting the variance of ϕ.

The force sensors feeds the numerical substructure, while the actuator
controls the bottom part of the physical substructure, whose response directly
enters in the definition (4.1) of ϕ1. A natural question, when looking at
Figure 5.5a, is then why the top velocity (or ϕ1) is more sensitive to signal
loss, when it acts on the force sensor (duration parameter θ9) rather than
when it acts on the velocity actuation (parameter θ12). The reason is the
following. When signal loss on the velocity command happens, the velocity
of the truncation point keeps a constant value. On the other hand, signal
loss on the force sensor may cause large variations of the truncation point’s
velocity, due to the interaction with the numerical substructure that was
commented in detail in Section 4.3.2 and seen in Figure 4.10. Both the
amplitude of these perturbations and their duration increase when the signal
loss characteristic duration increases, which enhances their propagation to
the top of the mooring line.

The fact that ϕ2 is more sensitive to θ1 (calibration error for fx measure-
ment) than to its counterpart θ2 (acting on fz) can be explained as follows.
Transverse motions of the mooring line are subjected to drag damping forces,
while axial motions are only damped by structural damping, which means
that, with the present choice of α2 and the present frequency range of mo-
tions, transverse motions will be subjected to a significantly higher level of
damping than axial motions. Consequently, an axial dynamic force error
will be less damped than its transverse counterpart. Since the mooring line
forms an angle of γ = 39.2 o with respect to the x-axis at the truncation
point, the axial forces have an x-component larger than their z− component,
and a calibration error on fx (parametrized by θ1) will play a greater role
for ϕ2 than a calibration error on fz (parametrized by θ2).

Also, as explained earlier, Total Sobol’ indices and first-order indices
differ when there is a non-additive interaction between two (or more) θi in ϕ.



114 Fidelity analysis of the active truncation problem

The nature of this interaction can be determined by considering higher-order
Sobol’ indices (not shown here). Note that in principle, a finer PCE model
(with lower εLOO) would be needed to obtain accurate estimates of the
higher-order Sobol’ indices, so we will only comment on the trends observed
with the PCEs at hand. We found for example that the interaction between
θ1 and θ2 explains ≈ 20% of the variance of ϕ1, and ≈ 15% of the variance
of ϕ2. This is due to the fact that if θ1 and θ2 differ significantly from each
other, the amplitude, but also the direction of the force at the truncation
point will be affected1. Since the stiffness and damping properties of the
line are strongly anisotropic, as explained earlier, this change in direction
will have a significant effect on the fidelity.

From Figure 5.5, we then see that biases have a sensible influence on ϕ1

and ϕ2 (total Sobol indices), and that this influence is due to interactions
(S5 ≪ ST,5 and S6 ≪ ST,6 in both cases). Here, the mechanisms in play are
slightly different for ϕ1 and ϕ2.

• By again studying higher-order Sobol indices, it can be shown that
the interaction between θ1 and θ3 (resp. θ2 and θ4) explain ≈ 10% of
the variance of ϕ2. This interaction is induced by the pretension at
the truncation point, denoted T ∗

0 . Indeed, for example, when a scaling
error θ1 affects fx only, it is equivalent to a bias of (θ1 − 1)T ∗

0 cos γ
being added to θ3, and transferred to the anchor point. Coupling
terms between θ1 and θ3 will therefore be generated in the Sobol’
decomposition (2.25) of ϕ2, due to the square and logarithm in (4.4).

• Biases should, in principle have little influence on ϕ1, since constant
force will simply lead to a constant offset, and not change the (linear)
dynamical properties of our substructures. However, about ≈ 10% of
the variance of ϕ1 is due to one-to-one interactions between θ1, θ2, θ3,
and θ4. This is due to the following effect. In the horizontal direction,
for t < 0, the component of the pretension is T ∗

0 cos γ at the truncation
point. For t ≥ 0, it suddenly changes to θ3 + (θ1 − 1)T ∗

0 cos γ, when
artefacts are applied to the force signal. This impulsive load causes
a transient response, visible in Figure 5.4, which has a minor, but
sensible, influence on ϕ1.

We have, in this section, shown how the results of the systematic sensitivity
study performed in Section 5.1.2 leads to the identification of the the most

1Let fp = (fx,p, fz,p) be the actual force at the truncation point, and fn the force
measured and sent to the numerical substructure. Let us assume that only the gains
errors are present, and denote p = θ1θ2 and q = θ2/θ1. Then the distortion in the
module and direction of the force, due to the measurement errors, are given by ||fn||

2 =

p
(

1
q
f2
x,p + qf2

x,p

)

and ∠fn = arctan q
fz,p
fx,p
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critical artefacts for this problem, and enables one to gain insight in the
complex coupling between the control system and the mooring line dynamics.

5.1.4 Reliability analysis

While the two previous sections addressed RQ1, the present section will
exemplify how probabilistic robust fidelity of the active truncation setup can
be assessed (RQ2), and how the fidelity bounds of the considered setup could
be established (RQ3). In this section, we will assume that the interaction
of the top of the line with the floater is of interest, and consider only the
fidelity indicator ϕ1.

As a design choice, we set the minimum admissible fidelity for this setup
to ϕadm = 0.8, which we want to achieve with a probability of at least
1− εadm = 0.999. In other words, we will consider that probabilistic robust
fidelity is achieved if

Pf := P [ϕ1 < 0.8] < 10−3 (5.4)

By considering Figure 5.2, we see that none of the samples of Θ in the
largest initial set E5 leads to a fidelity less than ϕadm. However this set had a
cardinality of N =512, which is too low to confidently assess whether (3.3.3)
holds. Furthermore, by considering the quantile-quantile plot in Figure 5.3,
it can be observed that the distribution of ϕ1 has heavy tails. Extrapolating
the empirical distribution to lower quantile values is therefore hazardous.

The Adaptive Kriging method presented in Sections 3.2.1 and 2.3.4 is
applied to address this problem. Additional samples of Θ are generated, as
presented in Example 12 and in Section 3.3.3. The two key differences with
the analysis performed on the coupled linear oscillators, is that the algorithm
now explores a space of dimension M = 12, and that K = 16 new samples of
θ are added at each step of the enrichment process. The co-simulations and
evaluations of ϕ for the batch of 16 new samples are performed in parallel.

Starting from E4, which contains 256 samples of Θ all leading to a fidelity
greater than ϕadm, the first enrichment step is taken. In this step, the PCK
surrogate model established from E4 is used to evaluate where the probability
of misclassification Pm is large, i.e. where ϕ1 could have dropped close to
ϕadm and/or is highly uncertain. As illustrated in Figure 5.6, the regions of
D associated with a large Pm are detected where the ratio θ2/θ1 deviates
significantly from unity, where θ8 is small, and, to some extent where θ7
and θ10 are simultaneously large. In physical terms, this corresponds to a
distortion of the measured force angle, to long periods of signal loss of the
force sensor (both have a significant influence on the fidelity as commented
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in Section 5.1.2), and to significant delays in the loop, which may yield an
unstable, and thus low-fidelity, system. We note that since the new samples
are chosen by a clustering algorithm, they are nicely spread over the limit
state margin (2.55).

The evolution of the estimated probability of failure Pf during the en-
richment process is shown in Figure 5.8 (consider α = 0.8 only, in a first
stage). From the initial sample set (256 samples), Pf is estimated to
2.5× 10−2 > εadm, but after about 60 enrichment steps in which the accu-
racy of the PCK model near L is improved, Pf stabilizes at 3.6×10−4 < εadm.
Small oscillations are still visible in the 20 last steps, which are induced
by the randomness of the auxiliary sample sets used in the computation of
(3.9). The amplitude of these oscillations can be decreased by increasing the
cardinality of this auxiliary set. This is, however, necessary only if Pf is
close to εadm, and if these oscillations were preventing us to conclude on the
robust fidelity of this setup.

Note that even if the problem is twelve-dimensional, the total number of
required enrichment steps remained of the order of 102.

5.2 Some variations of the problem

In the previous section, we studied the fidelity of an active truncation setup
with α = 0.8. In this section we will present two variations of this problem.
The first variation aims at illustrating the consequence of using a local
performance indicator (this term will be defined in the next section). The
second variation aims at investigating the effect of truncating the mooring
line at a deeper location.

5.2.1 Distinction between fidelity and local performance

Considering exactly the same truncation setup and set of artefacts as in the
previous section, we now introduce another indicator denoted ϕ3, which quan-
tifies the mechanical power mismatch between the numerical and physical
substructures at the truncation point. This indicator is defined as

ϕ3 := −1

2
log10 γ

2
∆P (5.5)

where

γ2∆P :=

∫ T
0 (fn · vn − fp · vp)2dt
∫ T
0 (fp · vp)2dt

(5.6)
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Figure 5.6: Illustration of the first enrichment step. The grey dots represent
the samples in the initial set E . The blue dots corresponds to areas of
the twelve dimensional space with large probability of misclassification
(Pm > 0.45). The red diamonds represent the K =16 samples selected by
the clustering algorithm, at this step.
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and where f and v denote the force and velocity vectors, respectively, and
Σn and Σp, the numerical and physical substructures, respectively. In other
words, considering the plots on the second and third rows of Figure 5.4, ϕ3

quantifies the mismatch between the power obtained from the red curves
and the blue curves. This type of indicator has been used in the analysis of
several CPEM, as discussed in Section 1.2.2.

We qualify this performance indicator as ”local”, since it penalizes a loss
of compatibility and equilibrium at the truncation point, without considering
the behaviour of other parts of the substructures. It is quite different from
ϕ1 and ϕ2, in the sense that it is not based on a quantity of direct interest
for the test, and does neither use the emulated system as a reference. The
indicator ϕ3 is therefore not a fidelity indicator, according to Definition 19.

However, ϕ3 is based on a similar comparison structure (normalized time
integration of the squared error) as the one used in ϕ1 and ϕ2, which makes
the comparison between these three indicators meaningful and interesting.
Using the same set E5 as in the previous section, and the same PCE-based
approach, the following observations are made.

• The two first moments of ϕ3 can be estimated to

E[ϕ̂3(Θ)] = 1.01 and Var[ϕ̂3(Θ)] = 0.182 (5.7)

By comparing E[ϕ̂3(Θ)] to E[ϕ̂1(Θ)] and E[ϕ̂2(Θ)] given in (5.1) and
(5.2) for the same set of artefacts, it is seen that the error on the
transfer of power between the substructures can be significantly larger2

than the resulting errors on the quantities of interest. Furthermore,
the coefficient of variation for ϕ3 is 17%, while it was close to 10% for
ϕ1 and ϕ2, meaning that the local indicator is in comparison more
sensitive to the the given set of artefacts than the fidelity indicators.

• The Sobol’ indices for ϕ3 are shown in Figure B.5 for sets Ei of various
sizes, and compared to the Sobol’indices for ϕ1 and ϕ2 in Figure 5.7.
The conclusions drawn from this sensitivity analysis are radically dif-
ferent from the ones obtained for ϕ1 and ϕ2. Indeed, while calibration
errors and signal loss on the force sensors were found to be the most
influencing parameters for ϕ1 and ϕ2, they have an insignificant effect
on ϕ3. Besides, ϕ3 is mostly affected by the artefacts acting the velocity
actuation (time delay and signal loss), which played a very minor role
for ϕ1 and ϕ2. We will come back to this in the next section.

• The probability of this indicator to drop below ϕadm = 0.8 can be
directly estimated by considering the distribution of ϕ3, without need

2We remind the reader about the logarithm in the definition of the ϕi
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Figure 5.7: Comparison of the outcomes of the sensitivity analyses for the
fidelity indicators ϕ1 and ϕ2, and the local performance indicator ϕ3

for Adaptive Kriging, due to the generally lower values taken by ϕ3.
This probability is found to be about 10%, which is significantly larger
than εadm.

From this analysis, we can conclude that designing the control system
based on the local indicator ϕ3 would have led to an over-conservative (or
possibly unfeasible) design for given performance targets. Furthermore,
based on the conclusions of the sensitivity analysis, the designer would have
attempted to minimize the artefacts present on the velocity actuation side,
which have been shown to be of marginal importance for the fidelity.

5.2.2 Influence of the truncation ratio

As a second variation of the problem presented in Section 5.1, we investigate
the consequence of decreasing the truncation ratio α from 0.8 to 0.5 and
0.2. In that case, the required water depth in the hydrodynamic laboratory
(1− α)λD increases from 4 m to 10 m and 16 m, respectively. The control
system, and the artefacts used to describe it, remain the same as above.

Let us first describe the dynamical behaviour of the truncation point at
these water depths. For the mooring line considered here, the amplitude of the
transverse wave-frequency vibrations of the structure decreases approximately
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exponentially with the depth3. For α = 0.8, the standard deviation of this
amplitude at the truncation point is about 10% of its counterpart at the
top of the line. For α = 0.5 the ratio is about 2%. When α decreases,
the motions of the truncation point become mainly axial. Since the largest
excitation frequency in τ is twice lower than the first axial eigenfrequency
of the mooring line, the lower portions of the line will undergo quasi-static
stretching, whose amplitude goes to zero when α→ 0, since the line is fixed
to the seabed. The tension in the line is very much influenced by the drag
and transverse line dynamics at the top of the line, but when the transverse
velocity become negligible (say for α < 0.5), the dynamic part of the tension
becomes approximately uniform along the line. Note that the static part of
the tension decreases slightly due to the weight in water of the polyester.

The expected fidelity for α ∈ {0.8, 0.5, 0.2} and coefficient of variations
due to the randomness of the artefacts are summarized in Table 5.2. The two
fidelity indicators ϕ1 and ϕ2 are considered, as well as the local performance
indicator ϕ3. The sensitivity indices of the ϕi are compared in Figure 5.9
for three values of α. The following comments can be made.

Table 5.2: Comparison of the statistical moments of ϕi(Θ) for three trunca-
tion ratios.

E[ϕ̂i(Θ)]
√

Var[ϕ̂i(Θ)] cv[ϕ̂i(Θ)]
α 0.8 0.5 0.2 0.8 0.5 0.2 0.8 0.5 0.2

ϕ1 1.32 1.43 1.68 0.13 0.13 0.12 10.2% 8.9% 7.3%

ϕ2 1.77 1.74 1.72 0.17 0.18 0.18 10.7% 10.1% 10.4%

ϕ3 1.01 0.86 0.5 0.18 0.18 0.18 17.4% 20.7% 36.0%

Influence of α on ϕ1 We find that the expected fidelity increases sig-
nificantly when α decreases. Since the variance of the fidelity remains
approximately constant, the coefficient of variation of ϕ1 decreases.

From Figure 5.9, calibration errors, which were important when α = 0.8,
have less influence when α decreases. Indeed, as discussed in Section 5.1.3,
combinations of θ1 and θ2 lead to both a change of amplitude and direction of
the measured force. For low α, errors in the amplitude of the quasi-static axial

3For our lightweight polyester mooring line with Cd = 1.6, the drag loads per unit
length are much greater than inertia loads, which translates into a β parameter, defined in
equation (2.25) in Argyros (2011), much larger than 1. This case is analyzed in Appendix
A in the same reference.
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stretching will lead to decreasing errors in the deflection of the truncation
point since the stiffness of the numerical substructure is proportional to α−1.
And if the (axial) force is distorted, the resulting lateral vibrations at the
truncation point will be absorbed by drag loads before reaching the top of
the line, and influencing the QoI (the top velocity).

On the other hand, the sensitivity to the signal loss of the force sensors
increases significantly when α decreases. The mechanisms giving rise to large
spurious forces and velocities due to force signal loss have been discussed
in Section 4.3.2 for α = 0.8. How the location of the truncation point
influences these mechanisms? The axial stiffness of the physical substructure
is proportional to (1− α)−1, so when α decreases, larger force and velocity
perturbations, with a higher-frequency content, will be generated at the
truncation point. The characteristic duration of signal loss is much shorter
than the first axial resonance frequency of the structure, which means that
these spurious forces are of impulsive nature, and will excite all axial modes
of the structure. However, the damping ratios associated with the second
and third axial modes are 17% and 29%, respectively, so mainly the first
axial mode (with a damping ratio of 6%) of the slender structure will exhibit
a significant response. In other words, the perturbations induced by signal
loss increase when α decreases, but their influence on the QoI decreases.
This balance explains why, in Figure 5.9, the importance of the force signal
loss artefact is larger for α = 0.5 than for α = 0.2 or 0.8.

The estimated Pf drops from 3.6× 10−4, for α = 0.8, to about 8.7× 10−5

and 4.8×10−5 for α = 0.5 and 0.2, respectively, meaning that the probabilistic
robustness of the setup increases when α decreases. Figure 5.8 shows the
convergence plots of Pf , defined in 5.4 for the three truncation ratios. Again,
small oscillations of Pf are still visible in the last steps, which could be
attenuated by increasing the cardinality of this auxiliary set. This is, however,
not necessary here, since Pf ≪ εadm. Note also that all AK-MCS analyses
have been initiated with 256 samples of ϕ1(Θ). Since the expected fidelity
was increasing for α ∈ {0.5, 0.2}, less than 16 of the 106 auxiliary samples
at which the PCK is evaluated fell into the limit state margin at the first
enrichment step. The K-means algorithm could then not be applied. A
work-around was to temporarily increase ϕadm to 0.9 (for α = 0.5) or 1.0 (for
α = 0.2) during the first enrichment steps. This allowed to refine the PCK
in low fidelity regions, before switching ϕadm back to 0.8 for the rest of the
analysis. Since the values of Pf are not available for these first enrichment
steps, they are missing from Figure 5.8.
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Figure 5.8: Evolution of the estimated probability of failure as a function
of the number of enrichment steps for two different truncation ratios. The
reasons for the missing values of Pf for the first enrichment steps for α = 0.5
and 0.2 are detailed in the text.

Influence of α on ϕ2 The influence of α on the expected fidelity is
much less pronounced for ϕ2 than for ϕ1. The coefficient of variation is
approximately independent of α. As indicated earlier, the line undergoes
mainly quasi-static stretching at the truncation point for α < 0.8, meaning
that the forces will be the nearly the same for all three truncation ratios.

It is interesting to consider the limit case α → 0. In that case, the
calibration error and bias artefacts act directly on the QoI, i.e. the measured
bottom force. The dynamic response of the numerical substructure is
insignificant, and its anisotropic character does not play a role anymore.
According to (4.5), and omitting the ”bottom” in the indices, we have

γ2Fx
(θ)

∫ T

0
F̄x(t)

2dt =

∫ T

0

[

Fx(t|θ)− F̄x(t)
]2
dt

=
α→0

∫ T

0

[

θ1F̄x(t) + θ3 − F̄x(t)
]2
dt

=
α→0

(θ1 − 1)2
∫ T

0
F̄x(t)

2dt+ 2(θ1 − 1)θ3

∫ T

0
F̄x(t)dt+ θ23
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so

γ2Fx
(θ) =

α→0
(θ1 − 1)2 + 2(θ1 − 1)θ3

∫ T
0 F̄x(t)dt
∫ T
0 F̄x(t)2dt

+
θ23

∫ T
0 F̄x(t)2dt

(5.8)

In our case, it can be checked numerically that the last term is negligible

compared to the two first ones. Denoting rx =
∫ T
0 F̄x(t)dt

∫ T
0 F̄x(t)2dt

, rz =
∫ T
0 F̄z(t)dt

∫ T
0 F̄z(t)2dt

,

and reasoning similarly for γ2Fz
, we get

γ2Fx
(θ)+γ2Fz

(θ) ≃
α→0

(θ1−1)2+(θ2−1)2+2(θ1−1)θ3rx+2(θ2−1)θ4rz (5.9)

The fidelity ϕ2 is found by taking minus half the logarithm of (5.9). Since
the x- and z- components of the measured force play a similar role in the
calculation of ϕ2, and since the sensors exhibit the same calibration errors
and biases, it is expected that the first-order Sobol’ indices for θ1 and θ2 will
be equal for α→ 0. The biases influence ϕ2 in interaction with the gains for
all truncation ratios, and their Sobol’ indices will converge to a limit that
depends on rx and rz, and thus on τ(t).

Influence of α on ϕ3 We recall that ϕ3 is not a fidelity indicator, and as
such, it will not be commented in details. It is however interesting to observe
that E[ϕ3(Θ)] decreases dramatically when α decreases. This is mainly due
to the fact that the power transferred to the physical substructure at the
truncation point tends to zero when α→ 0. Hence, the normalizing factor
in (5.6) decreases much faster than the power mismatch at the numerator.
Furthermore, it is seen in Figure 5.9 that the time delay and signal loss on
the velocity actuation play an important role, and are in general much more
important than their counterparts acting on the force measurement. This
is due to the fact that the former artefacts modify (directly) vp, while the
latter ones acts on fn. The multiplying factors of these two terms in the
power mismatch equation fn · vn − fp · vp are fp and vn, the former being
several orders of magnitude than the latter. So, in the sense of variance
decomposition, ϕ3 is therefore more sensitive to artefacts acting on the
velocity actuation than on the one acting on the force measurement.

We can conclude this study by noting that the influence of force measure-
ment noise was insignificant for all cases, for the reasons outlined in Section
5.1.3. Note however that a noisy inputs can lead to stability issues with
other numerical substructures, and might as such need some consideration.
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5.3 Conclusion

In this section, we have applied the method presented in Chapter 3 to study
the fidelity of the active truncation of a taut polyester mooring line. The
initial truncation ratio α was equal to 0.8, meaning that a setup that would
have required a 20 m deep basin can be tested in 4 m water depth. The
control system connecting the substructures was modeled by a total of ten
artefacts, described by twelve parameters. Two fidelity indicators were
considered, ϕ1, focusing on the interaction between the slender structure and
the floater, and ϕ2, on its interaction with the seabed. The dynamics of the
polyester line was described by a non-closed form model. The co-simulations
including the artefacts were performed as described in Chapter 4.

This study enabled us gain insight in the complex interaction between
the two substructures and the control system. The sensitivity analysis put
in evidence the importance of calibration errors on the force sensors and, for
ϕ1, signal loss in the force measurement. The effect of noise on the fidelity
indicators was found to be insignificant. The analysis also indicated that
artefacts of different nature were interacting, and could jointly influence the
fidelity.

In a first variation of our problem, we studied a local performance indi-
cator, that quantified the power mismatch between the substructures. We
showed that it was possible to achieve an high level of fidelity, even when
the control system was not consistently transferring the mechanical power
between the substructures. The local performance indicator was very sensi-
tive to the time delay on the actuation side, parametrized by θ10, while this
parameter was of limited importance for the fidelity indicators ϕ1 and ϕ2.
This ”mitigating” effect was due to the mechanical properties and dynamic
behaviour of polyester line.

In the second variation of our problem, we showed that for a given control
system, it was beneficial to decrease the truncation ratio α to achieve high-
fidelity. Indeed the expected value of ϕ1 increased then significantly, while
the expected value of ϕ2 remained undisturbed. For both fidelity indicators,
α did not influence much the variance of the fidelity indicators, but reducing
α increased the probabilistic robustness of the setup (based on ϕ1). It was
shown that the sensitivity to given artefacts was strongly dependent on α.

These results are of practical interest for the development of active
truncation. While the developed fidelity analysis method is generic, it must
be emphasized that the conclusions presented here are valid for the present
system and set of artefacts only.
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Figure 5.9: Comparison of the outcomes of the sensitivity analyses for three truncation ratios α ∈ {0.2, 0.5, 0.8}.
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Chapter 6

Conclusion and suggested

further work

6.1 Conclusion

In this thesis we studied the fidelity of cyber-physical empirical methods
(CPEM), with a focus on the control system that interconnects the sub-
structures. An imperfect control system prevents the dynamic equilibrium
between the substructures to be fulfilled, hereby influencing the properties
of the dynamical system under study, and jeopardizing the validity of the
CPEM as an empirical method.

We formulated a generic model for CPEMs. In this model, the inter-
connections between the substructures were subjected to multiple, random
and heterogeneous artefacts, modeling the imperfect control system, and
described by a parameter θ. The effect of the artefacts on the quantities of
interest for the experimentalist was quantified by a performance indicator,
denoted the fidelity. It was assumed that a probabilistic description of θ was
available, based on previous experience or on a dedicated survey.

Based on this problem formulation, we developed a pragmatic method that
enables the designer of a CPEM to identify artefacts that play a significant
role for the fidelity (RQ1). We also showed how absolute bounds on θ could
be established, which guarantee sufficiently high fidelity (RQ3). Associating
this result with the probabilistic description of θ enabled us to conclude
whether probabilistic robust fidelity of a given CPEM was achieved (RQ2).
An overview of the method was given in Figure 3.4.

In our work, the orthogonality properties of Polynomial Chaos Exapan-
sions was used to efficiently propagate the uncertainty, and perform the
sensitivity analysis. Adaptive (Polynomial-Chaos-based) Kriging was used
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to model the local uncertainty on the fidelity in the regions where it was
close to its minimum admissible value.

The developed method was illustrated by a first example in Chapter 3, in
which a coupled linear oscillator was substructured into two simple oscillators.
The interconnection was subjected to simple artefacts (namely gains and
time delays), which allowed to verify the data-based results against analytical
ones. In Chapter 5, we used the method to study the active truncation of
slender marine structures. In this problem, the substructures had to be
described by non-closed form models, and the setup was subjected to a larger
number of heterogeneous artefacts (gains, biases, noise, signal losses and time
delays), parametrized in a twelve-dimensional space. Strong assumptions
would have been required to make this problem tractable with classical
analytical methods, which would have weakened the obtained conclusions
about fidelity.

The computational efficiency of the method for higher-dimensional and
high-reliability problems was put in evidence through this second example.
Global sensitivity results could be obtained with a few hundred simulations,
and probability of failures of the order of 10−5 − 10−4 could be estimated
with less than 100 enrichment steps, even if θ was taking values in a twelve-
dimensional space.

Through this case study, we also showed the importance of assessing the
considered CPEM through its fidelity, based on the the Quantities of Interest
for the experimentalist, rather than through local performance criteria, such
as the ability of the control system to transfer the mechanical power between
the substructures.

This case study highlighted some useful points, when it comes to active
truncation, which have been summarized in the conclusion of Chapter 5. In
addition to these results, our method provides a solid basis to discard some
artefacts, with a view to performing an analytical study, and an indication
of which type of artefacts such a study must include.

6.2 Suggested further work

We will, in the following paragraphs, outline possible directions of research,
which may emerge from the present work.

The proposed method enables us to include a complex set of artefacts and
substructure models in the fidelity analysis. The quality of results of such an
analysis is, however, strongly dependent on the quality of the probabilistic
description of the artefacts, and of the validity of the substructures’ models.
As a consequence, a rigorous survey on the components of the control system
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is crucial, and guidelines are probably needed in this respect. When it comes
to the modeling of the substructures, all simplifications should be made
with a critical eye. For the active truncation problem considered here, we
neglected the presence of the bottom chain segment and its interaction with
the seabed. This is believed to be a good first approximation, and enabled
us to illustrate the developed method within the time frame available for this
study. It constitutes however a source of uncertainty regarding the present
results. It is expected that nonlinear FE analysis programs, including beam
elements, a realistic modeling of soil-structure interaction, and, in the future,
time-domain VIV models, should be the standard way to model the slender
marine structures. There should always be a reflection on the employed drag
and added-mass coefficients, as well as structural damping models.

The present method does not provide a way of assessing whether the
fidelity (may it be its expected value, or its minimum admissible value) are
sufficiently high for the intended use of the data generated with the CPEM.
Further work is needed to support the decision on the choice of a fidelity
indicator, excitation τ , and level of fidelity that is necessary for a given
application. Replacing the deterministic excitation τ by a set of scenarios,
as classically done in probabilistic robust control (Tempo et al., 2013), is a
possibility to consider.

In the developed method, the control system was represented by a set of
artefacts. Further work should address how unicity of the decomposition
of an artefact into elementary artefacts can be achieved, and how artefacts
parameters can reliably be estimated from measured signals when operating
a CPEM.

We have, in our examples, focused mostly on the analysis of CPEMs, even
if the obtained sensitivity results constitute a major help to the designer for
improving the fidelity. It should however be explored, through a case study,
how the surrogate models developed in the present work could be used in a
control system design context. The optimal control system can be found as
the one minimizing some cost function c(θ), while maximizing the fidelity,
and ensuring high-enough fidelity, as formulated in (3.12). Once the optimal
artefact’s parameters are determined, the next step would be to establish a
method to synthesize a control system satisfying these requirements.

It is expected that the combination of surrogate modelling and active
learning techniques, applied here to the analysis of CPEM, can contribute
to solve, in an efficient and pragmatic manner, a much wider class of
probabilistic robust control problems. The versatility of the method makes
it especially suitable to address the design and analysis of complex cyber-
physical systems.
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Clermont-Ferrand II.

Eaton, M. L. (2007). Multivariate Statistics: A Vector Space Approach. Lecture
Notes, Monograph Series, Institute of Mathematical Statistics, 53.

Echard, B., Gayton, N., and Lemaire, M. (2011). AK-MCS: An active learning
reliability method combining Kriging and Monte Carlo Simulation. Structural
Safety, 33(2):145–154.

Echard, B., Gayton, N., Lemaire, M., and Relun, N. (2013). A combined Importance
Sampling and Kriging reliability method for small failure probabilities with
time-demanding numerical models. Reliability Engineering & System Safety,
111:232–240.

Edrington, C. S., Steurer, M., Langston, J., El-Mezyani, T., and Schoder, K. (2015).
Role of Power Hardware in the Loop in Modeling and Simulation for Experimenta-
tion in Power and Energy Systems. Proceedings of the IEEE, 103(12):2401–2409.

Embrechts, P., Lindskog, F., and Mcneil, A. (2003). Modelling Dependence with
Copulas and Applications to Risk Management. In Handbook of Heavy Tailed
Distributions in Finance, pages 329–384. Elsevier.

Fahy, F. and Gardonio, P. (2007). Sound and Structural Vibration. Academic Press,
2 edition.

Faltinsen, O. M. and Timokha, A. N. (2009). Sloshing. Cambridge University Press.

Fawzi, H., Tabuada, P., and Diggavi, S. (2014). Secure Estimation and Control
for Cyber-Physical Systems Under Adversarial Attacks. IEEE Transactions on
Automatic Control, 59(6):1454–1467.



BIBLIOGRAPHY 135

Felix-Gonzalez, I. and Mercier, R. S. (2016). Optimized design of statically equivalent
mooring systems. Ocean Engineering, 111:384–397.

Fergestad, D. and Løtveit, S. A. (2015). Handbook on Design and Operations of
Flexible Pipes. Joint industry project ”safe and cost effective operations of flexible
pipes” edition.

Ferreira, F. M., Lages, E. N., Afonso, S. M., and Lyra, P. R. (2016). Dynamic design
optimization of an equivalent truncated mooring system. Ocean Engineering,
122:186–201.

Filipi, Z., Fathy, H., Hagena, J., Knafl, A., Ahlawat, R., Liu, J., Jung, D., Assanis,
D. N., Peng, H., and Stein, J. (2006). Engine-in-the-loop testing for evaluat-
ing hybrid propulsion concepts and transient emissions-HMMWV case study.
Technical report, SAE Technical Paper.

Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of
Statistics, 19(1):1–67.

Fylling, I. and Stansberg, C. T. (2005). Model Testing of Deepwater Floating
Production Systems: Strategy for Truncation of Moorings and Risers. In DOT
Brazil.

Gao, X., Castaneda, N., and Dyke, S. J. (2013). Real time hybrid simulation: From
dynamic system, motion control to experimental error. Earthquake Engineering
& Structural Dynamics, 42(6):815–832.

Gawthrop, P., Neild, S., Gonzalez-Buelga, A., and Wagg, D. (2009). Causality in
real-time dynamic substructure testing. Mechatronics, 19(7):1105–1115.

Gawthrop, P. J., Wallace, M. I., and Wagg, D. J. (2005). Bond-graph based
substructuring of dynamical systems. Earthquake Engineering & Structural
Dynamics.

Goebel, R., Sanfelice, R. G., and Teel, A. R. (2012). Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, Princeton, N.J.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Goupee, A. J., Koo, B. J., Kimball, R. W., Lambrakos, K. F., and Dagher, H. J.
(2014). Experimental comparison of three floating wind turbine concepts. Journal
of Offshore Mechanics and Arctic Engineering, 136(2):020906.

Gross, D. C. (1999). Report from the Fidelity Implementation Study Group. In
Simulation Interoperability Workshop, Orlando, Florida.

Hall, M. (2016). Hybrid Modeling of Floating Wind Turbines. PhD Thesis, University
of Maine.



136 BIBLIOGRAPHY

Hall, M., Goupee, A., and Jonkman, J. (2017). Development of performance
specifications for hybrid modeling of floating wind turbines in wave basin tests.
Journal of Ocean Engineering and Marine Energy.

Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in
networked control systems. Proceedings of IEEE, 95(1):138.

Hills, R. G., Maniaci, D. C., and Naughton, J. W. (2015). V&V Framework. Sandia
Report SAND2015-7455, Sandia National Laboratories.

Homma, T. and Saltelli, A. (1996). Importance measures in global sensitivity analysis
of nonlinear models. Reliability Engineering & System Safety, 52(1):1–17.

Horiuchi, T., Inoue, M., Konno, T., and Namita, Y. (1999). Real-Time Hybrid
Experimental System With Actuator Delay Compensation And Its Application
to a Piping System With Energy Absorber. Earthquake Engineering & Structural
Dynamics, 28:1121–1141.

Hover, F. S., Miller, S. N., and Triantafyllou, M. S. (1997). Vortex-induced
vibration of marine cables: Experiments using force feedback. Journal of fluids
and structures, 11(3):307–326.

Hover, F. S., Techet, A. H., and Triantafyllou, M. S. (1998). Forces on oscillating
uniform and tapered cylinders in cross flow. Journal of Fluid Mechanics, 363:97–
114.

Howell, C. T. (1992). Investigation of the dynamics of low-tension cables. Technical
report, DTIC Document.

Humayed, A., Lin, J., Li, F., and Luo, B. (2017). Cyber-Physical Systems Secu-
rity—A Survey. IEEE Internet of Things Journal, 4(6):1802–1831.

Huse, E. (1986). Influence of mooring line damping upon rig motions. In Offshore
Technology Conference. Offshore Technology Conference.

IEEE CPS (2018). Scope and Mission. http://www.ieee-cps.org/.

ITTC (1999). The Specialist Committee on Deep Water Mooring Final Report and
Recommendations to the 22nd ITTC. Technical report.

ITTC (2005). Testing and Extrapolation Methods Loads and Responses, Ocean
Engineering, Truncation of Test Models and Integration with Numerical Simula-
tions.

ITTC (2017). Recommended Procedures and Guidelines - Active Hybrid Model
Tests of Floating Offshore Structures with Mooring Lines.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied Interval Analysis:
With Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer-Verlag, London.



BIBLIOGRAPHY 137

Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. The Physical
Review, 106(4):620–630.

Johansen, V. (2007). Modelling of Flexible Slender Systems for Real-Time Simulation
and Control Applications. PhD thesis, Norwegian University of Science and
Technology.

Journée, J. and Massie, W. (2001). Offshore Hydromechanics. Delft University of
Technology.

Jung, R.-Y. and Benson Shing, P. (2006). Performance evaluation of a real-time
pseudodynamic test system. Earthquake Engineering & Structural Dynamics,
35(7):789–810.

Kapur, J. N. (1989). Maximum-Entropy Models in Science and Engineering. John
Wiley & Sons.

Kendon, T. E., Oritsland, O., Baarholm, R. J., Karlsen, S. I., Stansberg, C.-T., Rossi,
R. R., Barreira, R. A., Matos, V. L., and Sales, J. S. (2008). Ultra-deepwater
model testing of a semisubmersible and hybrid verification. In ASME 2008 27th
International Conference on Offshore Mechanics and Arctic Engineering, pages
277–290. American Society of Mechanical Engineers.

Khalil, H. K. (2014). Nonlinear Control. Pearson.

Kim, M., Koo, B., Mercier, R., and Ward, E. (2005). Vessel/mooring/riser coupled
dynamic analysis of a turret-moored FPSO compared with OTRC experiment.
Ocean Engineering, 32(14-15):1780–1802.

Kyrychko, Y., Blyuss, K., Gonzalez-Buelga, A., Hogan, S., and Wagg, D. (2006).
Real-time dynamic substructuring in a coupled oscillator–pendulum system.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 462(2068):1271–1294.

Kyrychko, Y. N. and Hogan, S. J. (2010). On the Use of Delay Equations in
Engineering Applications. Journal of Vibration and Control, 16(7-8):943–960.

Le Gratiet, L., Marelli, S., and Sudret, B. (2015). Metamodel-Based Sensitivity
Analysis: Polynomial Chaos Expansions and Gaussian Processes. In Ghanem, R.,
Higdon, D., and Owhadi, H., editors, Handbook of Uncertainty Quantification,
pages 1–37. Springer International Publishing, Cham.

Lemaire, M. (2009). Structural Reliability. ISTE ; Wiley, London : Hoboken, NJ.

Loysel, T., Chollet, S., Gervaise, E., Brosset, L., De Seze, P.-E., and others (2012).
Results of the first sloshing model test benchmark. In The Twenty-Second
International Offshore and Polar Engineering Conference. International Society
of Offshore and Polar Engineers.



138 BIBLIOGRAPHY

MacDiarmid, M. and Bacic, M. (2007). Quantifying the accuracy of hardware-in-
the-loop simulations. In American Control Conference, 2007. ACC’07, pages
5147–5152. IEEE.

MacDiarmid, M., Bacic, M., and Daniel, R. (2008). Extension and application of
a novel hardware-in-the-loop simulator design methodology. In Decision and
Control, 2008. CDC 2008. 47th IEEE Conference On, pages 5054–5061. IEEE.

Magee, A. R. (2018). The Role of Model Testing in the Execution of Deepwater
Projects. In Proceedings of the Offshore Technology Conference, Kuala Lumpur,
Malaysia.

Maghareh, A., Dyke, S. J., Prakash, A., and Bunting, G. B. (2014). Establishing
a predictive performance indicator for real-time hybrid simulation. Earthquake
Engineering & Structural Dynamics, 43(15):2299–2318.
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Appendix A

Mathematical background

and proofs

A.1 Gaussian random vectors

This section is a short introduction to Gaussian random vectors.

Definition 23. Let k ∈ N
∗. A random vector Z = (Z1, ..., Zk)

⊤ is said to
be multivariate normally distributed if it admits the following joint PDF.

fZ(z1, . . . , zk) =
1

√

(2π)k|Σ|
e−

1
2
(z−µ)⊤Σ−1(z−µ) (A.1)

where µ ∈ R
k is the mean of Z, and Σ ∈ R

k×k is a symmetric definite
positive matrix, called the covariance matrix of Z, satisfying

∀i, j ∈ N
∗
k,E[(Zi − µi)(Zj − µj)] = Σij (A.2)

Example 14. Let k = 2. A bivariate normally distributed random vector

with mean µ = (µ1, µ2)
⊤ and covariance Σ =

(

σ21 ρσ1σ2
ρσ1σ2 σ22

)

admits the

following distribution:

fZ(z1, z2) =
1

2πσ1σ2
√

1− ρ2
e
− 1

2(1−ρ2)

(

(z1−µ1)
2

σ2
1

+
(z2−µ2)

2

σ2
2

− 2ρ(z1−µ1)(z2−µ2)
σ1σ2

)

(A.3)
Figure A.1 shows contour plots of fZ for various ratios σ1/σ2 and various
values of the correlation coefficient ρ. If ρ = 0, then z1 and z2 are uncorrelated
and independent. The principal axes of the ellipses presented in Figure A.1
are the eigenvectors of the covariance matrix.

V



VI Mathematical background and proofs

Arbitrary random vectors whose covariance matrix is zero in every entry
outside the main diagonal are called uncorrelated. Note that for Gaussian
random vectors, this implies that the joint PDF fZ can be factorized as
∏

i∈N∗
k
fZi(zi), which in turns implies that the components of Z also are

independent.

A.2 Equivalence between the regression and pro-

jection approaches

See Section 2.2.3.

Proposition 1. The regression approach and projection approaches, used
to identify PCE coefficients, are equivalent.

Proof. The square of ǫ(X), used in the regression approach, can be written
as

ǫ2(X) = M2(X)−2
∑

α∈A
aαM(X)ψα(X)+

∑

(α,β)∈A2

aαaβψα(X)ψβ(X) (A.4)

Then taking the expectation of this expression, and exploiting the fact that
the polynomial basis is orthonormal, yields

E[ǫ2(X)] = E[M2(X)]− 2
∑

α∈A
aαE[M(X)ψα(X)] +

∑

α∈A
a2α (A.5)

A necessary condition for the aα coefficients to minimize E[ǫ2(X)] is to
satisfy the following first-order optimality condition:

∀α ∈ A, ∂E[ǫ
2(X)]

∂aα
= 0 (A.6)

which leads to

∀α ∈ A,−2E[M(X)ψα(X)] + 2aα = 0 (A.7)

which is equivalent to equation (2.13)
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Figure A.1: Joint PDF of a bivariate normally distributed random vector with
zero mean, and various variance and correlations values. Three-dimensional
plot (left hand side) and contour plots representing the 80th, 90th, 95th and
99th percentiles (r.h.s.).
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Figure B.1: Scatter diagrams showing the value of ϕ2 (fidelity indicator
based on line force transferred to the bottom), as a function of the twelve
parameters describing the artefacts. The dots correspond to 512 samples of
Θ obtained by Latin Hypercube Sampling (set denoted E5 in the text).
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Figure B.2: Scatter diagrams showing the value of ϕ3 (pseudo-fidelity indica-
tor based on power transfer mismatch at the truncation point), as a function
of the twelve parameters describing the artefacts. The dots correspond to
512 samples of Θ obtained by Latin Hypercube Sampling (set denoted E5 in
the text).



XII Additional figures

✲� ✲✁ ✲✂ ✵ ✂ ✁ �

✲�

✲✁

✲✂

✵

✂

✁

�

Figure B.3: Quantile-quantile (QQ) plots comparing the distribution of ϕ2

to a normal distribution, for various sizes of E .

✄☎ ✄✆ ✄✝ ✞ ✝ ✆ ☎

✄☎

✄✆

✄✝

✞

✝

✆

☎

Figure B.4: Quantile-quantile (QQ) plots comparing the distribution of ϕ3

to a normal distribution, for various sizes of E .



XIII

◆�✁✂ ◆�✄☎ ◆�✆✂✝ ◆�✂✞✄ ◆�✞✆✂

✆✶
✲✟

✆✶
✵

◆�✁✂ ◆�✄☎ ◆�✆✂✝ ◆�✂✞✄ ◆�✞✆✂

✶✠✝

✶✠✡

✆

✆✠✆

✆✠✂

✟ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✟✵ ✟✟ ✟✷

✶

✶✠✆

✶✠✂

✶✠✁

✶✠☎

✶✠✞

✶✠✄

✶✠☛

Figure B.5: Similar results as in 5.5 but for ϕ3.



X
IV

A
d
d
ition

al
fi
gu

res

◆�✁✂ ◆�✄☎ ◆�✆✂✝ ◆�✂✞✄ ◆�✞✆✂

✆✶
✲✟

✆✶
✵

◆�✁✂ ◆�✄☎ ◆�✆✂✝ ◆�✂✞✄ ◆�✞✆✂

✆✠✁

✆✠☎

✆✠✞

✆✠✄

✟ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✟✵ ✟✟ ✟✷

✶

✶✠✆

✶✠✂

✶✠✁

✶✠☎

✶✠✞

✶✠✄

✶✠✡

✶✠✝

(a) ϕ1

☛☞✌✍ ☛☞✎✏ ☛☞✑✍✒ ☛☞✍✓✎ ☛☞✓✑✍

✑✔
✕✖

✑✔
✗

☛☞✌✍ ☛☞✎✏ ☛☞✑✍✒ ☛☞✍✓✎ ☛☞✓✑✍

✑✘✓

✑✘✎

✑✘✙

✑✘✒

✑✘✚

✍

✖ ✛ ✜ ✢ ✣ ✤ ✥ ✦ ✧ ✖✗ ✖✖ ✖✛

✔

✔✘✑

✔✘✍

✔✘✌

✔✘✏

✔✘✓

✔✘✎

(b) ϕ2

★✩✪✫ ★✩✬✭ ★✩✮✫✯ ★✩✫✰✬ ★✩✰✮✫

✮✱
✳✴

✮✱
✿

★✩✪✫ ★✩✬✭ ★✩✮✫✯ ★✩✫✰✬ ★✩✰✮✫

✱❀✬

✱❀❁

✱❀✯

✱❀❂

✮

✮❀✮

✮❀✫

✴ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ❊ ✴✿ ✴✴ ✴❃

✱

✱❀✮

✱❀✫

✱❀✪

✱❀✭

✱❀✰

✱❀✬

✱❀❁

(c) ϕ3

Figure B.6: Similar figure as Figure 5.5 and B.5, but for α = 0.5.



1 

 
Previous	PhD	theses	published	at	the	Department	of	Marine	Technology	

(earlier:	Faculty	of	Marine	Technology)	
NORWEGIAN	UNIVERSITY	OF	SCIENCE	AND	TECHNOLOGY	

 
Report 
No. 

Author Title 

 Kavlie, Dag Optimization of Plane Elastic Grillages, 1967 

 Hansen, Hans R. Man-Machine Communication and Data-Storage 
Methods in Ship Structural Design, 1971 

 Gisvold, Kaare M. A Method for non-linear mixed -integer 
programming and its Application to Design 
Problems, 1971 

 Lund, Sverre Tanker Frame Optimalization by means of SUMT-
Transformation and Behaviour Models, 1971 

 Vinje, Tor On Vibration of Spherical Shells Interacting with 
Fluid, 1972 

 Lorentz, Jan D. Tank Arrangement for Crude Oil Carriers in 
Accordance with the new Anti-Pollution 
Regulations, 1975 

 Carlsen, Carl A. Computer-Aided Design of Tanker Structures, 1975 

 Larsen, Carl M. Static and Dynamic Analysis of Offshore Pipelines 
during Installation, 1976 

UR-79-01 Brigt Hatlestad, MK The finite element method used in a fatigue 
evaluation of fixed offshore platforms. (Dr.Ing. 
Thesis) 

UR-79-02 Erik Pettersen, MK Analysis and design of cellular structures. (Dr.Ing. 
Thesis) 

UR-79-03 Sverre Valsgård, MK Finite difference and finite element methods 
applied to nonlinear analysis of plated structures. 
(Dr.Ing. Thesis) 

UR-79-04 Nils T. Nordsve, MK Finite element collapse analysis of structural 
members considering imperfections and stresses 
due to fabrication. (Dr.Ing. Thesis) 

UR-79-05 Ivar J. Fylling, MK Analysis of towline forces in ocean towing systems. 
(Dr.Ing. Thesis) 

UR-80-06 Nils Sandsmark, MM Analysis of Stationary and Transient Heat 
Conduction by the Use of the Finite Element 
Method. (Dr.Ing. Thesis) 

UR-80-09 Sverre Haver, MK Analysis of uncertainties related to the stochastic 
modeling of ocean waves. (Dr.Ing. Thesis) 

UR-81-15 Odland, Jonas On the Strength of welded Ring stiffened 
cylindrical Shells primarily subjected to axial 
Compression 

UR-82-17 Engesvik, Knut Analysis of Uncertainties in the fatigue Capacity of 



2 

Welded Joints 

UR-82-18 Rye, Henrik Ocean wave groups 

UR-83-30 Eide, Oddvar Inge On Cumulative Fatigue Damage in Steel Welded 
Joints 

UR-83-33 Mo, Olav Stochastic Time Domain Analysis of Slender 
Offshore Structures 

UR-83-34 Amdahl, Jørgen Energy absorption in Ship-platform impacts 

UR-84-37 Mørch, Morten Motions and mooring forces of semi submersibles 
as determined by full-scale measurements and 
theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 
Floating Body. (Dr.Ing. Thesis) 



3 

UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a 
Two-Stroke Diesel Engine with Thermal Barriers 
(in Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90-
75 

Torbjørn Sotberg, MK Application of Reliability Methods for Safety 
Assessment of Submarine Pipelines. (Dr.Ing. 



4 

Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible 
Risers. (Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue 
Degradation. (Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response 
of Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 



5 

MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 



6 

Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 
AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 
2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-64 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 

Imt – 
2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-86 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-90 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 

IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-
2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 
icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 
CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 
IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 
of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-
2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 
Account Effects of Residual Stress, IMT 

IMT-1-
2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-
2015 

Wang, Kai Modelling and dynamic analysis of a semi-
submersible floating vertical axis wind turbine, 
CeSOS 

IMT-3-
2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-
dimensional body with moonpool in waves and 
current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 
to contact interactions, IMT 

IMT-6-
2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 
CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-
2015 

Oleh I Karpa Development of bivariate extreme value 
distributions for applications in marine 
technology,CeSOS 

IMT-9-
2015 

Daniel de Almeida Fernandes An output feedback motion control system for 
ROVs, AMOS 

IMT-10-
2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 
Dynamic Positioning Vessel and Underwater 
Robotics, CeSOS 

IMT-11-
2015 

Wenting Zhu Impact of emission allocation in maritime 
transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 
Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 
IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 
Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 
and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 
for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 
CeSOS 
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