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ii Abstract

Abstract

Intrauterine growth retardation means that the growth of a fetus is restricted as compared
with its biological growth potential. This contributes to an increased risk for illnesses
or death of the newborn. Therefore it is important to characterize, detect and to follow
up clinically any suspected or confirmed growth restriction of the fetus. In this master
thesis we aim to describe the course of growth during the pregnancy based on repeated
ultrasound measurements and study how the growth depends on different background
variables of the mother in analyzing the data from the SGA (small-for-getational age) -
project. The SGA-project contains data from 5722 pregnancies that took place in Trond-
heim, Bergen and Uppsala from 1986− 1988, named The Scandinavian SGA-studies. In
this thesis we have confined ourselves to a random sample of 561 pregnancies.

A problem with many studies of this kind is that the data set contain missing val-
ues. In the SGA data set under study there were missing values from one or more of
the ultrasound measurements for approximately 40% of the women. Until recently, the
most popular used missing-data method available has been complete case analysis, where
only subjects with a complete set of data are being analysed. There exist a number of
alternative ways of dealing with missing data. Bayesian multiple imputation (MI) has
become a highly useful paradigm for handling missing values in many settings. In this
paper we compare 2 general approaches that come highly recommended: Bayesian MI
and maximum likelihood (ML), and point out some of its unique features. One aspect
of MI is the separation of the imputation phase from the analysis phase. It can be ad-
vantageous in settings where the models underlying the two phases are different.

We have used a multilevel analysis for the course of fetal growth. Multilevel analysis
has a hierarchic structure with two levels of variation: variation between points in time
for the same fetus (level 1) and variation between fetuses (level 2). Level 1 is modeled
by regression analysis with gestational age as the independent variable and level 2 is
modeled by regarding the regression coefficients as stochastic with a set of (non directly
observed) values for individual fetuses and some background variables of the mother.

The model we ended up with describes the devolopment in time of the abdominal diam-
eter (MAD) of the fetus. It had several “significant” covariates (p− value < 0.05), they
were gestational age (Time-variable), the body-mass index (BMI), age of the mother,
an index varible wich tells if a mother has given birth to a low-weight child in an ear-
lier pregnancy and the gender of the fetus. The last covariate was not significant in a
strictly mathematical way, but since it is well known that the gender of the fetus has an
important effect we included gender in the model as well. The growth model for MAD is

yij = β0j + β1jx
∗
ijTime

+ β2jx
∗2

ijTime
+ β3xijGender

+ β4xijAGE + β5xijBMI + β6xijLBW

+ β7xijAGEx
∗
ijTime

+ β8xijBMIx
∗
ijTime

+ β9xijLBW x
∗
ijTime

+ εij .
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When we used the MI-method on the random sample (561) with missing values, the
estimated standard deviations of the parameters have been reduced compared to those
obtained from the complete case analysis. There were not a significant change in the
parameter estimates except for the coefficient for the age of the mother.

We also have found a procedure to verify if the MI-method gives us reasonable im-
puted values for the missing values by following the MCAR-procedure defined in Section
6.2. Another interesting observation from a simulation study is that estimates of the
coefficients for variables used to generate the MAR and MNAR missing mechanism are
“suffering” because they tend to be more biased compared to the values from the com-
plete case analysis on the random sample (320) than the other variables. According to
the MAR assumption such a procedure should give unbiased parameter estimates.

Key Words: Longitudinal data, multilevel analysis, missing data, multiple imputa-
tion (MI), Gibbs sampling, linear mixed-effects model and maximum likelihood (ML)-
procedure.
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1 Introduction

Intrauterine growth retardation means that a fetus does not live up to its growth poten-
tial. This represents a seriously increased risk for illnesses or death at birth and later in
life. Therefore it is important to characterize, detect and follow up restricted growth of
fetuses.

In my project (Bråthen, 2005) last semester I studied the observed measurements of
the different variables of the subjects from the SGA-study, and I also described some
of the relevant statistical models which are suitable for repeated measurements. The
intention is to use the suggested methods in analyzing the data from the SGA-project.

This project will analyze a sub-sample of data from 5722 pregnancies that took place
in Trondheim, Bergen and Uppsala named the Scandinavian SGA (small-for-gestational
age) - studies (SGA-Scandinavia, 1986-1988). Background variables of the mother were
registered, such as age, parity, weight, height and smoking status, outcome of previous
gestations, such as length of the pregnancy, length and weight of fetuses and its condition
at birth. 1384 of the women were defined in a high risk group, which had an increased
risk to give birth to smaller-than-expected children. This was defined as similar outcome
in earlier pregnancies, if they had experienced a stillbirth, smoked during pregnancy, had
a pre-pregnancy weight below 50 kg or had been diagnosed with certain chronic diseases
(chronic renal disease, essential hypertension or heart disease). The pregnant women of
the risk group were followed by 4 ultrasound measurements during pregnancy; week 17,
25, 33 and 37. That included among others measurement of the femur length of the fetus,
its abdomen and bi-partial diameter of the head. A similar procedure was followed for a
random sample of 561 of the 5722 women. This random sample is the data set studied
in this thesis. As defined in Section 2.2 and the remaining part of this master thesis we
use the form ’SGA Data Set’ to refer to the random sample of size 561.

One problem in many studies of this kind is that the data set is not complete because
participants may be present for some portion of data collection and missing for others.
For the SGA study data were missing for one or more ultrasound measurements from
approximately 40% of the female participants. Traditionally in such situations one have
used “complete-case” analysis, where only the data from women with a complete set of
data is analyzed. However, parts of the data is discarded, which may cause the results
to be biased (skewness in the expectation of the results).

The goals of this assignment is to study how that growth depends on different background
variables, and to describe methods for dealing with missing data, especially “maximum
likelihood” and “multiple imputation”. Finally, these methods will be used to generate a
complete data set for the SGA Data Set and compare this results to the “complete-case”
analysis. During this thesis I have collaborated with medical student, Silje Forseth Eil-
ertsen. She has contributed with the biological and the human medical knowledge which
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has been essential to perform a correct analysis and interpretation of the results.

The outline of this master thesis is as follows

• In Chapter 2 we will describe the collecting procedure of the data material from
the Scandinavian SGA-project.

• In Chapter 3 and 4 we present background theory on the relevant statistical models
suitable in the repeated measurements situation and describe different methods
available for imputations of missing values. We also look at the relation between
the response variable and the covariates in the raw data for the three different
missing mechanisms; MAR, MCAR and MNAR (Chapter 4).

• In Chapter 5 we study marginal and joint descriptions of the missing values in the
data set. We investigate different imputation models to be used for the SGA data.

• In Chapter 6 we through a simulation study assess the accuracy of the estimates
of the MI method.

• In Chapter 7 we compare two recommended methods for dealing with missing data;
“maximum likelihood” and “multiple imputation”. We also perform a simulation
study to study the bias (skewness from the expectation values of the parameter)
and the standard deviation of the parameters for the growth model constructed
from data sets with different missing mechanisms.

• In Chapter 8 we describe the selection procedure for variables to be included in the
growth model for MAD (mean abdominal circumference) of a fetus, and perform a
complete data analysis for the growth model for the SGA Data Set (561 subjects)
with imputed values for the missing observations, and compare the results to the
complete case analysis of SGA Data Set (320 subjects with complete data).

• In Chapter 9 we discuss the main results from the master thesis and suggest further
work within this topic.

• The Appendix consists of two parts, A and B. In Appendix A we have described the
methods we have used for Multilevel analysis and dealing with missing data; LME,
MI-method and the ECME-method. The program code is displayed in Appendix
B.
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2 The Scandinavian SGA Project

2.1 Definitions

The following definitions are taken from SGA-Scandinavia (1986-1988) study.

Gestational Age: was based on the first day of the last menstrual period (LMP) if
it was accurately recalled to within ±3 days. A sonogram of the biparietal diameter
(BPD) were used at the first visit (approximately 17 weeks) to date the pregnancy if the
discrepancy between BPD and LMP gestational age was more than ±14 days, or if the
LMP could not be recalled accurately.

Parity: According to the WHO (World Health Organization) parity is defined as the
number of pregnancies that a woman delivers past 28 week or more duration.

Pre-Pregnancy Weight: was reported by the mother. A weight less than 50 kilo-
grams was the cut-off used to identify women with a low pre-pregnancy weight.

Previous Low Birth Weight (LWB) Infant: was defined as the prior first birth
of a baby girl below 2700 grams or a baby boy below 2800 grams, or a prior second
baby girl below 2800 grams or a baby boy below 2900 grams, regardless of the gesta-
tional age at the delivery. These limits were chosen since they correspond approximately
to the lowest 10th percentile of weight at term. Births below these limits represent a
group of small for gestational age births and preterm births. For practical reasons, when
women were included in the study those who were responsible for the study had to rely
on the mothers own recall of the weight of their previous birth(s). As it turned out, the
mothers tended to remember the birth weight of their previous infants extremely well.
Birth weights reported by the mothers were validated subsequently against birth weights
recorded in the Norwegian and Swedish medical birth registers. In 97% of the cases,
mothers had recalled the birth weights of previous infants to within 50 gram. The exact
birth weight was reported by 89% of the mothers.

Small for Gestational Age (SGA) Birth: the index pregnancy was defined as an
infant with a low birth weight at each specific gestational week. The reference stan-
dards were sex specific for parous women and based on last menstrual period dating,
as previously published using data from the Norwegian Medical Birth Registry. Be-
cause ultrasound dating of gestational age is much more common now than when these
standards were derived, both the nominal 10th and 15th percentiles of birth weight for
gestational age were used in defining a SGA birth. Since ultrasound standards employ
gestational ages that, on average are shifted from three to seven days earlier than LMP
based estimates, the nominal 15th percentile (based on the original LMP based stan-
dards) corresponds better to a current population based birth weight percentile. This
so-called 15th percentile standard for SGA also compares favorably with a recently pub-
lished update of the Swedish standards. The LMP based estimate of gestational age
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was chosen unless the ultrasound and LMP-based expected dates of delivery differed by
more than two weeks, in which case the ultrasound based estimate of gestational age was
substituted.

Smokers: Women who at the first visit reported that they smoked daily at the time of
conception.

2.2 Collecting Procedure

The NICHD Study of Successive Small-for-Gestational-Age births is a multicentre study
(SGA-Scandinavia, 1986-1988) organized in Scandinavia at the Universities of Trondheim
and Bergen in Norway, and Uppsala in Sweden. The University hospital in each site was
the basis for the collection of prenatal, delivery and follow up data. In this project, the
prenatal data will be used supplemented by the delivery and newborn data. In each
of the three geographical areas there was only one obstetrical and pediatric department
and practically all women delivered at the University hospital. Recruitment of pregnant
women in Norway was based on referrals from general practitioners and obstetrician in
Trondheim and Bergen who had agreed to refer their eligible patients to the antena-
tal clinic at the University hospital for four special antenatal study visits. They were
arranged in addition to the antenatal visits by their ordinary practitioner. In Sweden
women were recruited from all antenatal care centers in Uppsala County, which were
under direct supervision by the University hospital. Recruitment took place over a 27
months period. Women who were invited to participate in the study were given a consent
form, which was discussed and signed before they entered into the study. In the present
project SGA was defined as birth weight-for-gestation below the 15th percentile of the
background population reference, adjusted for gender and gestational age.

There were 6354 women who were eligible for enrolment in the study at the first an-
tenatal visit. They were women of Caucasian origin who spoke one of the Scandinavian
languages and expected their second or third child. 432 of the women were excluded
because they did not fulfill the study criteria. 34 had a multiple pregnancy and 229
aborted. In addition 169 women were found ineligible due to ethnic or language incom-
patibilities, were not expecting their second or third child, or their pregnancy had gone
beyond 20 weeks of gestation. Another 200 women failed to come to their first scheduled
appointment. A overview of this process can modeled as follows:
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Women referred for study 6354

��

432 Ineligible

��

200 Failed to make first appointment

��

Eligible and made first appointment 5722

Figure 1: This figure shows the first step of the selection procedure of women eligible for
the SGA-project.

The 5722 eligible women who remained, were divided into three different groups

1. A 10% random sample, (n = 561).
2. A high risk group, (n = 1384).
3. A rest population, (n = 3777).

First, the random sample was selected using the sealed envelope method1, and this sample
serve as a control group that is representative of the parous pregnant population at each
study site. The analyses in this project are limited to study the random sample (561
pregnancies). The selected women were examined at four defined intervals throughout
pregnancy, at 17, 25, 33 and 37 weeks of gestation. The information collected at each of
the four antenatal study visits and at birth, which is used in the analysis is presented in
Table 1.

1Randomly selected of the 5722 women who were eligible for the study
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Variable Variables Week 17 Week 25 Week 33 Week 37 Delivery
Eligibility and study entry V0001-V0068 X
Prenatal record 1 V0103A-V0168 X
Ultrasound 1 V02001-V0230 X
Medical history V0502A-V0533M X
Prenatal record 2 V1103A-V1164 X
Ultrasound 2 V1201-V1218 X
Prenatal record 3 V2103A-V2171 X
Ultrasound 3 V2201-V2220 X
Prenatal record V3103A-V3166 X
Ultrasound 4 V3201-V3220 X
Prenatal record 5 V4102B-V4165C X
Ultrasound 5 V4201-V4229 X
Newborn record (part A) V51002-V51147D X

Table 1: Collected data in the SGA-project.

2.2.1 High risk group

The high-risk group was selected after the selection of random sample from the remaining
women if they fulfilled one or more of the defined risk criteria for SGA birth. These risk
factors were

1. A prior Low-Birth-Weight birth (LBW) .
2. Maternal cigarette smoking at conception.
3. Low pre-pregnancy weight (< 50 kg).
4. A previous prenatal or perinatal death.
5. The presence of chronic maternal disease (chronic renal disease, essential hyperten-

sion or heart disease).

This high risk group was selected in order to enrich the study sample with a statistically
sufficient number of SGA births. Selection criteria of the high risk group were used to
determine which women in addition to the 561 women in group 1, who should be offered
the detailed follow up. Women who met one or more of the high risk group criteria were
included with one notable exception. If they reported smoking around time of conception,
then 50% were randomly selected, using the sealed envelope method, to be included in
the detailed follow up group, regardless of the fact that they might have other risk factors
in addition. Overall, the gestational age was estimated by ultrasound in 18.8% of the
“high risk group”, of which an equal proportion (9.4% each) was due to an uncertain LMP
versus discrepancies of more than ±14 days. The corresponding proportion of gestational
ages estimated by ultrasound in the random sample was 16.6% of which 7.0% was due
to uncertain dates and 9.6% was due to discrepancies of more than ±14 days. After the
selection of the random sample had taken place, 598 of the remaining women had smoking
as the only risk factor. A total of 1384 women, in example the randomly selected smokers
and those who fulfilled one or more of the other risk criteria were studied prospectively
as the high risk group. The remaining 3777 women were defined as a “rest population”.
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Their newborn was entered into the follow up study of the children if it was diagnosed
as a SGA birth. The selection process of the three different groups can be modeled as
follows

Eligible and made first appointment 5722

��

561(10%) random sample

��

5161

1384 High risk group

��

3777 Rest population (low risk)

Figure 2: This figure is illustrating the allocation of the study objects. That is the para
1 and para 2 pregnant women from the time of initial refferal by clinics, obstetrician or
family practitioners until assignment to one of the three study groups

From the 1945 (High risk group + 10% random sample) women who were invited
to the detailed study, 393 (20, 2%) failed to complete more than one of the four study
examinations that took place during the pregnancy. Those women were defined as “drop
outs”. Most of them gave “social inconvenience” as reason for not continuing with the
study which included no available baby-sitter, no possibility to obtain a leave from work
and long travel times to the university hospital. This was in particular the case in Uppsala
where women were recruited from the whole country. Of the 393 drop outs, 358 (91, 1%)
came from the Uppsala part. Of the remaining women who did not complete the study
as planned, 15 (0, 8%) had moved, 60 (3, 1%) “refused” and 15 (0, 8%) gave no reason.
The data used in this project is an extract of the complete data file and consists of the
random sample of 561 pregnancies. We will in the remaining part of this master thesis
use the form ’SGA-Data set’ to refer to the random sample of size 561.
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3 Multilevel Analysis

This presentation of theory of multilevel models is largely based on Goldstein (2003).

3.1 Notation

All covariates used in the equations in this project is defined in a “unusual” form, but
I find it very informative and a natural way of defining them. For example if we use
time measured in weeks of gestations as a covariate, it is being defined as: XijTime . This
means that measurement i of fetus j from gestational age is used as a covariate.

3.2 The Basic Two-Level Model

We find it necessary to state the fact that multilevel models are the same as Mixed-
effects models. Mixed-effects models provide a flexible and powerful tool for the analysis
of grouped data. Examples of such data include longitudinal data, repeated measures,
blocked design and multilevel data. The increasing popularity of mixed-effects models
is explained by the flexibility that they offer in the modeling of the within-group cor-
relation, the number of “levels” are the same as the number of nested levels of random
effects. Mixed-effects models assumes that both the random effects and the errors follow
Gaussian distributions.

To illustrate the basic two-level model we use the following data set which consists of
two occasions of measurements of scores from mathematics tests. The data set (JSP =
Junior School Project) consists of 728 pupils in 48 different elementary schools. The first
occasion of measurement took place in their fourth year of schooling (when the pupils
were 8 years old), and the second measurement took place three years later at age 11
years. Goldstein (2003) uses the results from mathematics tests together with informa-
tion collected on the social background of the pupils and the gender to predict the 11-year
scores. A simple model for one school which relates the 11 year score, yi, to the 8 year
score, xi, is for pupil i

yi = α+ βxi + ei, (1)

where the standard interpretations are given to the intercept (α), slope (β) and to the
residuals (ei). Goldstein (2003) also use the typically assumption that the residuals
follows a Gaussian distribution with a zero mean and a common variance, ei ∼ N(0, σ2

e).
To describe simultaneously the relationships for several schools for all pupils

yij = αj + βjxij + eij , (2)

where j refers to the level two unit which in this case are the different schools and i
refers to the different pupils from each school which is the level one unit. Equation (2)
is as it stands essentially a single-level model which describes separate relationships for
each of the j schools. To make Equation (2) into a genuine two level model we let αj

and βj become random variables, and we replace αj by β0j and βj by β1j such that β0j
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can be written as β0 + u0j and β1j can be written as β1 + u1j , where u0j ,u1j are random
variables. Again Goldstein (2003) uses the usual assumption that the random parameters
are normally distributed with

E(u0j ) = E(u1j ) = 0 (3)

var(u0j ) = σ2
u0
, var(u1j ) = σ2

u1
, cov(u0j , u1j ) = σu01 . (4)

Equation (2) may now be written as

yij = β0 + β1xij + (u0j + u1jxij + e0ij ) (5)

var(e0ij ) = σ2
e0
. (6)

Where the response variable (yij) can be written as a sum of a fixed and a random part.
The fixed part of Equation (5) can generally be written in the matrix-form as in Equation
(7).

E(Y ) = Xβ, with Y = {y}ij (7)
E(yij) = (Xβ)ij . (8)

The feature of Equation (5) which distinguishes it from the standard linear models of
the regression or analysis of variance type is the presence of more than one residual term
and this implies that special procedures are required to obtain satisfactory parameter
estimates. Note that it is the structure of the random part of the model which is the key
factor. The fixed part of the variables can be measured at any level.

3.3 The variance components model

Equation (5) requires estimation of two fixed coefficients β0, β1 and four random param-
eters σ2

u0
, σ2

u1
, σ2

u01
and σ2

e0
. First we consider the simplest 2-level model

yij = β0j + β1xij + e0ij , which only includes the random parameters σ2
u0

and σ2
e0

. The
variance of the response about the fixed component is

var(yij | β0, β1, xij) = var(uo + e0ij ) = σ2
u0

+ σ2
e0
,

which is equal to the sum of the level one and level two variances. The JSP-data in
Goldstein’s model implies that the total variance for each student is constant and that
the covariance between two students in the same school are given by

cov(uoj + e0i1j , uoj + e0i2j ) = cov(u0j , u0j ) = σ2
u0
.

Since the level 1 residuals are assumed to be independent, the correlation between two
students in the same school is given by

ρ =
σ2

u0

σ2
u0

+ σ2
e0

.
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Goldstein (2003) calls this the intra-level-two-unit correlation, in this case the intra-school
correlation. For the variance components model this also measures the proportion of to-
tal variance between the different schools.

The block-diagonal covariance matrix for the response-vector Y for a two-level variance
components model is derived from the expressions above between two different schools.
Let A be the covariance matrix for the scores of three students in one school and B the
covariance matrix for the scores of two students in a another school.[

A 0
0 B

]

A =

σ2
u0

+ σ2
e0

σ2
u0

σ2
u0

σ2
u0

σ2
e0

+ σ2
u0

σ2
u0

σ2
u0

σ2
e0

σ2
u0

+ σ2
e0

 , B =
[
σ2

u0
+ σ2

e0
σ2

u0

σ2
u0

σ2
e0

+ σ2
u0

]

This “block-diagonal” structure reflects the fact that the covariance between students in
different schools are zero and extends to any number of level 2 units.

3.4 The General 2-Level Model With Random Coefficients

It is possible to extend Equation (5) in a standard way to include further fixed explanatory
variables in addition to the exiting ones

yij = β0 + β1xij +
n∑

h=2

βhxhij
+ (u0j + u1jxij + e0ij )

or written in a more compact form

yij = βXij +
1∑

h=0

uhj
zhij

+ e0ijz0ij , (9)

where Goldstein (2003) uses the new explanatory variables for the random part of the
model to write these more generally.

Z = {Z0, Z1}
Z0 = {1} , a vector of 1’s
Z1 = {x1ij}.

Any of the explanatory variables may be measured at any levels, for example we may have
pupil characteristics at level 1 or school characteristics at level 2. In this model is the
coefficient of X1 random at level 2, and that give rise to the following block structure for
a level 2 block with two level 1 units. Ω2 is the covariance matrix of the random intercept
and slope at level 2. It is necessary to distinguish between the covariance matrix of the



3.5 Maximum likelihood estimation using iterative Generalized Least Squares (IGLS)11

responses and the random coefficients, Ω1 is the covariance matrix for the set of the level
one random coefficients and in this case it is just a single variance term at level one.[

A B
B C

]
where

A = (σ2
u0

+ 2σu01x1j + σ2
u01
x2

1j
+ σ2

e0
)

B = (σ2
u0

+ σu01(x1j + x2j ) + σ2
u1
x1jx2j )

C = (σ2
u0

+ 2σu01x2j + σ2
u1
x2

2j
+ σ2

e0
)

giving [
A B
B C

]
= XjΩ2X

T
j +

[
Ω1 0
0 Ω2

]
Xj =

[
1 x1j

1 x2j

]
, Ω2 =

[
σ2

u0
σu01

σu01 σ2
u1

]
, Ω1 = σ2

e0

From the equations above we see the covariance matrix for a level 2 unit with two level
1 units for a 2-level model with a random intercept and regression coefficient at level 2.
We also see the general pattern for constructing the response covariance matrix which
generalizes to both higher order models and to complex variation structures at level 1. In
the next Section 3.5, is the Maximum likelihood (ML) procedure for obtaining estimates
presented.

3.5 Maximum likelihood estimation using iterative Generalized Least
Squares (IGLS)

Suppose we knew the values of variances and could construct the block-diagonal matrix,
then we could apply Generalized Least Squares (GLS) estimation procedure to obtain
the estimator for the fixed coefficients.

β̂ = (XTV −1X)−1XTV −1Y,

where in this case

X =


1 x11

1 x21
...

...
1 xnmm

 , Y =


y11

y21
...

ynmm


with m level 2 units and nj level 1 units in the j-th level 2 unit. Since we have assumed
that the residuals have Normal distributions, also yields maximum likelihood estimates.
This estimation procedure is iterative, we can usually start from reasonable estimates of
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the fixed parameters. These will be chosen from an initial ordinary least squares (OLS)
fit. Assuming σ2

u0
= 0 giving OLS estimates of the fixed coefficients (β̂OLS). From these

we can form the “raw”residuals

ỹij = yij − β̂OLS
0 − β̂OLS

1 xij ,

where the vector and raw residuals is written Ỹ = {ỹij}. If we form the cross-product
matrix Ỹ Ỹ T we see that the expected value of this is simply the covariance matrix. This
has been used again in β̂ = (XTV −1X)−1XTV −1Y to give a better estimate of β’s until
the estimated values of β have converged.The maximum likelihood procedure produces
biased estimates of the random parameters because it takes no account of sampling
variation of the fixed parameters. This may be important in small samples, and we
can produce unbiased estimates by using a modification known as Restricted Maximum
Likelihood (REML), which means that certain conditions is being imposed before the
estimates of the coefficients are estimated. Then we can form the raw residuals to get
the covariance matrix and use this to estimate the coefficients again until the values have
converged.

3.6 Models for Repeated Measures Data

When measurements are repeated on the same subjects, for example as in our SGA-
data set where different measures of the pregnant women are repeated at four different
antenatal visits during the study, then a two-level hierarchy is established with mea-
surements/repetitions as level one units and subjects as level two units. Such data are
often referred to as “longitudinal” as opposed to “cross-sectional” where each subject is
measured only once. It is important to distinguish between two classes of models which
use repeated measurements on the same subject, Goldstein (2003) uses this two classes:

1. In the first model are earlier measurements being treated as covariates rather than
responses, this is appropriate when there are a small number of discrete occasions
and where different measures are used at each one.

2. The second model is usually referred to as “repeated measure” models, where all
the measurements are treated as responses.

We may also have repetitions at higher levels of the data hierarchy, for example annual
examination data on successive cohorts of 16 year old students in a sample of schools. In
this case the school is the level 3 unit, year is the level 2 unit and the students are the
level 1 unit. In repeated measures models typically most of the variation is at level 2,
so the proper specification of a multilevel model for the data is of particular importance.
In the models considered so far Goldstein have assumed that the level 1 residuals are
uncorrelated, but for some kind of repeated measures data this assumption will not be
reasonable.
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3.7 A 2-Level Repeated Measures Model

Consider a data set consisting of repeated measurements of heights of a random sample
of children, then we can write this model as follows:

yij = β0j + β1jxij + eij . (10)

In this model, Yheight is linearly related to age where both intercept and the slope are
treated as random effects. That will cause each subject to have their own intercept and
slope such that

E(β0j ) = β0, E(β1j ) = β1,

var(β0j ) = σ2
u0
, var(β1j ) = σ2

u1
, cov(β0j , β1j ) = σu01 , var(eij) = σ2

e .

Note that there is no restriction on the number of ages, which means that we can fit a
single model to subjects who may have only one or several measurements. We can extend
Equation (10) to include further explanatory variables measured either at the occasion
level (level 1) such as time of year and state of health, or at the subject level (level 2)
such as birth weight and gender. It is also possible to extend the basic linear function
(10) to include higher order terms, in an attempt to elaborate the model even further it
is possible to model the level 1 residual as a function of age.

3.8 LME (Linear mixed-effects) - Model Formulation

R is a free software environment for statistical computing and graphics for performing
statistical analysis. The method we used to perform our analysis is multilevel analysis,
to perform such an analysis in R we used the nlme package, which fits and compare
Gaussian linear and nonlinear mixed-effects models. The fitting function for linear mixed
effects models is lme. The lme-procedure has two different types of maximum likelihood
fits, ’ML’ and ’REML’. Using ’REML’ is the model fitted by maximizing the restricted
log-likelihood and with ’ML’ is the usual log-likelihood maximized. We used ’REML’ as
the maximum likelihood fits in the analysis in this thesis. Several optional arguments
can be used with this function, but a typical call is

lme(fixed, data, random)

The first two arguments to lme, fixed and data, give the model for the expected response
(the fixed-effects part of the model) and the object containing the data to which the
model should be fit. The third argument, random, is a one sided formula describing the
random effects and the grouping structure of the model. For the SGA-data using MAD
(mean abdominal diameter) as a response variable and with gestational time centered at
the average gestational time for the 4 antenatal visits, these formulas are:

fixed = MAD ∼ Covariable1 + ...+ Covariablen, random = Covariable1|fetus

Note that the response variable is specified only in the fixed formula. Here is Covariable1

chosen as a level 1 random effect and fetus as a level 2 random effect. The final growth
model for MAD is defined in Section 8, the R documentation for the lme-function used
in this master thesis is reproduced in Appendix A.
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4 Methods for Analyzing Missing Data

4.1 Introduction

I find it necessary to clarify the two different kind of data set used in the analysis.
Complete-case analysis means that only subjects with a complete set of variables are
used in the analysis, and complete-data method contain imputed values which is used in
the analysis (observed and missing values). The complete case data set is thus a subset
of the complete data set.

Missing data can seriously affect the result the analysis, if the missing data are ignored
or if one assume that excluding missing data is sufficient there is a risk getting invalid
and insignificant results. A missing value is a data value that should have been recorded,
but for some reason was not. Missing data are a part of almost all data, and statisticians
all have to decide how to deal with it from time to time. Missing values in a data set is a
problem because most statistical methods assume that every case has information on all
the variables to be included in the analysis. There are alternative ways of dealing with
missing data, and this document is an attempt to outline those approaches. Our focus
will be on the two general approaches that are highly recommended: Bayesian multiple
imputation (MI) and maximum likelihood (ML).

4.2 Types and Patterns of Nonresponse

In longitudinal studies participants may be present for some portion of data collection
and missing for others. The kind of missingness may be called nonresponse or dropouts
(a subject leaves the study at some time after which no more measurements are taken),
which is a special case of nonresponse and occurs when one leaves the study and does
not return, dropouts or attrition may be the most common type of nonresponse. It is
however not uncommon for participants to be absent from one time during a study and
subsequently reappear

Many data sets can be arranged in a rectangular or matrix form, where the rows cor-
respond to observational units or participants and the columns correspond to items or
variables. With rectangular data there are several important classes of overall missing
data patterns. Consider Figure 3 from Schafer and Graham (2002) which shows different
patterns of nonresponse. Figure 3a in which missing values occur on an item Y but is
completely observed on a set of p other items X1, ......, Xp in a data set, this type of
missingness is called a univariate pattern. The univariate pattern is also meant to in-
clude situations in which Y represents a group of items that is either entirely observed
or entirely missing for each unit.

In Figure 3b, subjects or subjects groups Y1, ...., Yp may be ordered in such a way that if
variable Yj is missing for a unit, then the subsequent variables Yj+1, ...., Yp are missing
as well. This type of missingness is called a monotone pattern. Monotone pattern may
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arise in longitudinal studies with attrition when Yj is representing variables collected at
the j th occasion.

The third kind of missing pattern that we see in Figure 3c shows an arbitrary pattern in
which any set of variables may be missing for any unit.
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Figure 3: Patterns of nonresponse in rectangular data sets: (a) univariate pattern, (b)
monotone pattern and (c) arbitrary pattern. In each case, rows correspond to observa-
tional units and columns correspond to variables

4.3 Missingness Mechanism

For any data set one can define different indicator variables (Z ) which identity what is
known and what is missing, therefore is Z being referred to as the missingness. The form
of the missingness depends on the complexity of the pattern. In Figure 3c Z can be a
matrix of binary indicators with the same dimension as the data matrix with elements
of Z set to be either one or zero according to whether the corresponding data values are
observed or missing. The following terminology were introduced by Rubin (1987) and
Little and Rubin (2002), where the missing-data mechanism can be classified according
to the probability of response, the missing data are said to be as follows

• MCAR - missing completely at random. MCAR means that the probability that
Y is missing for a participant does not depend on his/her own values of X or Y , and
by independence does not depend on the X or Y of other participants either. If,
for instance the probability that income is recorded is the same for all individuals
regardless of their age or income itself, then the data are said to be MCAR.

• MAR - missing at random. MAR means that the probability that Y is missing
may depend on the other variables Xi but not on Y itself.

• MNAR - missing not at random. MNAR means that the probability that Y is
missing depends on both the Y variable and the other variables Xi.
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When Equation (11) is violated and the distribution depends on Ymis then the missing
data are said to be missing not at random (MNAR). MAR is also called ignorable non-
response and MNAR is called non-ignorable (NI).

Because we often consider real-world reasons why data become missing, if one could
code all the different reasons for missingness into a set of variables. This might include
variables that explain why some participants were physically unable to show up fore ex-
ample age and health status, variables that explain the tendency to say “I don’t know”
or “I’m not sure” and so on. These causes of missingness are not likely to be present in
the data set but some of them are possibly related to X and Y and thus by omission
induce relationships between X, Y and Z. Other causes may be entirely unrelated to X
and Y and may be viewed as external noise. If we let K denote the component of the
cause that is unrelated to X and Y , then MCAR, MAR and MNAR may be represented
by the following graphical relationships from Schafer and Graham (2002)

The relationships between the different options for MCAR-mechanism shows that MCAR
requires the causes of missingness to be entirely contained within the unrelated part K.

X K

Y Z

Figure 4: Graphical representation of missing completely at random (MCAR) in a uni-
variate missing-data pattern. X represents the variables that are completely observed
within the data set, Y represents a variable that is partly missing, K represents the
component of the causes of missingness unrelated to X and Y and Z represents the
missingness.

The graphical representations of missing at random shows that MAR allows some
causes to be related to the observed values Xi.

X

AA
AA

AA
AA

K

Y Z

Figure 5: Graphical representation of missing at random (MAR) in a univariate missing-
data pattern. X represents the variables that are completely observed within the data
set, Y represents a variable that is partly missing, K represents the component of the
causes of missingness unrelated to X and Y and Z represents the missingness.

The graphical representations of missing not at random shows that MNAR requires
some causes to be residually related to Y after the relationships between X and Z are
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taken into account

X

AA
AA

AA
AA

K

Y Z

Figure 6: Graphical representation of missing not at random (MNAR) in a univariate
missing-data pattern. X represents the variables that are completely observed within
the data set, Y represents a variable that is partly missing, K represents the component
of the causes of missingness unrelated to X and Y and Z represents the missingness.

Note that under MAR there could be a relationship between missingness and Y in-
duced by their mutual relationship to X, but there must be no residual relationship
between them once X is taken into account. Under MNAR some residual dependence
between missingness and Y remains after accounting for X. Z is being treated as a
set of random variables having a joint probably distribution, but it is not necessary to
specify a particular distribution. To describe accurately all potential causes or reasons
for missingness is not realistic. The distribution of Z is best regarded as a mathematical
device to describe the rates and patterns of missing values and to capture roughly possi-
ble relationships between the missingness and the values of the missing items themselves.

Because missingness may be related to the data we classify distributions for Z according
to the characteristics of the relationship. Let the complete set of data be denoted as Ycom
and portion it as Ycom = (Yobs, Ymis), where Yobs and Ymis are the observed and missing
parts of the data. Rubin (1976) defined the missing data to be MAR if the distribution
of missingness does not depend on Ymis, which means that MAR allows the probabilities
of missingness to depend on observed data but not on missing data.

P (Z|Ycom) = P (Z|Yobs). (11)

An important special case of MAR, called missing completely at random (MCAR), occurs
when the distribution does not depend on Yobs either such that

P (Z|Ycom) = P (Z).

Processes that are neither MCAR or MAR are called MNAR, in which the probability
of dropouts depends on the unobserved measurements.

4.4 Single Imputation

Both complete-case and available-case analysis make no use of cases where missing values
(Yj) occurs when the marginal distribution of Yj or measures of covariation between Yj

and the other variables are estimated. When a unit provides partial information it is
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tempting to replace the missing items with plausible values and proceed with the de-
sired analysis rather than discard the unit entirely. The imputation-method which are
filling in missing items has several desirable features, it is potentially more efficient than
case deletion because no units are sacrificed performing the analysis. Retaining the full
sample-size helps us to prevent loss of power compared with a reduced sample size, which
may give parameter estimates which are biased and may have bigger or smaller standard
deviation than one gets performing the analysis with the full sample-size. If the observed
data contain useful information for predicting the missing values, the imputation pro-
cedure would make use of this information estimating the missing values and maintain
high precision.

The methods that impute the values of items that are missing will now be discussed.
These methods can be applied to impute one value for each missing item (single impu-
tation) or in some cases impute more than one value to allow appropriate assessment of
imputation uncertainty (multiple imputation). Note that with single imputation there
is no simple way to reflect the missing data uncertainty. Imputation is a general and
flexible method for handling missing-data problems, but it has pitfalls. In the words of
Dempster and Rubin (1983);

The idea of imputation is both seductive and dangerous. It is seductive because it can
lull the user into the pleasurable state of believing that the data are complete after all,
and it is dangerous because it lumps together situations where the problem is sufficiently
minor that it can legitimately handled in this way and situations where the standard es-
timators applied to the real and imputated data have substantial biases.

Imputations which are used are means or values drawn from a predictive distribution
of the missing values and require an imputation-method of creating a predictive distri-
bution for the imputation based on the observed data. There are two generic approaches
to generating this distribution:

Little and Rubin (2002) defined Explicit modeling as the predictive distribution which is
based on a formal statistical model (e.g. multivariate normal) and hence the assumptions
are explicit. There exists several explicit imputation methods

• Mean imputation - where means from the responding units in the sample are sub-
stituted, the means may be formed within subjects or classes analogous to the
weighting classes. Mean imputation then leads to estimates similar to those found
by weighting provided the sampling weights are constant within weighting classes.

• Regression imputation - replaces missing values by predicted values from a re-
gression method on missing items observed for the unit. This method is usually
calculated from units with both observed and missing variables present. The model
is first fit for the subjects for which Y is known, then the values of X from the non-
correspondents are plugged into the regression-method to obtain predicted values
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for Ŷ . Note that mean imputation method can be regarded as a special case of the
regression-method where the predictor variables are dummy indicator variables for
the observations within which the means are imputed.

• Stochastic regression imputation - replaces missing values by a value predicted by
regression plus a residual which is drawn to reflect the uncertainty in the pre-
dicted value. With normal linear regression models the residuals will be normally
distributed with zero mean and variance equal to the residual variance in the re-
gression.

Little and Rubin (2002) defined Implicit modeling as follows: the focus is on an algorithm
which implies an underlying model and the assumptions are implicit but they still need
to be carefully assessed to ensure that they are reasonable. There exists several implicit
imputation methods:

• Hot deck imputation - involves substituting individual values which is drawn from
“similar” responding units. Hot deck imputation is common in survey practice
and may involve very elaborate schemes for selecting units that are similar for
imputation, it has no parametric model.

• Substitution - is a method for dealing with nonresponse units at the “fieldwork”
stage of a survey, and replaces the non-responding units with alternative units
which originally were not selected into the sample. For example if a household
cannot be contacted, then a previously nonselected household in the same housing
block may be substituted. The tendency to treat the resulting sample as com-
plete should be resisted since the substituted units are respondents and hence may
differ systematically from nonrespondents who were originally selected. Hence at
the analysis stage substituted values should be regarded as imputed values of a
particular type.

• Cold deck imputation - replaces a missing values of an item by a constant value
from an external source such as a value from a previous realization of the same
survey. As with substitution, current practice usually treats the resulting data as
a complete sample which ignores the consequences of imputation.

• Composite methods - can also be defined as a combination from different methods
above. For example hot deck and regression imputation can be combined by cal-
culating predicted means from a regression but then adding a residual randomly
chosen from the empirical residuals to the predicted value when forming values for
the imputation.

4.5 Multiple Imputation (MI)

Since the theoretical motivation for multiple imputation is Bayesian will a short intro-
duction to the Bayesian way of argumentation be given here first.
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4.5.1 Bayesian Methodology

The full process of an typical Bayesian analysis can be described as consisting of three
main steps (Gelman et al., 1995a)

(a) setting up a full probability model (the joint distribution) which captures the relation
ships among all the variables (e.g observed data, missing data and the unknown
parameters) in the consideration.

(b) summarizing the findings for particular quantities of interest by appropriate pos-
terior distributions which is a conditional distribution of the quantities of interest
given the observed data.

(c) evaluating the appropareness of the model and suggesting improvements.

The Bayesian statistics is based on specifying a probability model for the observed data
U with a joint density fu|Θ(θ|u) giving a vector of the unknown parameters Θ = θ which
is identical to the likelihood function L(θ;u) understood as a function of θ. Then we
assume that Θ is a random parameter instead of treating θ as an unknown constant as
in a frequentist approach, and it has a prior density or probability functions fΘ. This
prior is typically regarded as known to the researcher independently of the data under
the analysis. Inference about Θ is then summarized in the function fΘ|U , which is called
the posterior distribution of Θ given the data. The posterior distribution is derived from
the joint distribution fU,Θ = fU |ΘfΘ according to Bayes’ formula

fu|Θ(θ|u) =
fu,Θ(θ, u)
fU (u)

=
fU |Θ(u|θ)fΘ(θ)∫
Ω fΘ,U (θ, u)dθ

=
L(θ;u)fΘ(θ)∫

Ω L(θ;u)fΘ(θ)dθ
,

where Ω denotes the parameter space of Θ. Notice that from a Bayesian perspective the
joint distribution fU |Θ(u|θ) equates the likelihood L(θ;u) when the data are observed
and only Θ is still variable. The Bayesian approach has at least two advantages

• First, through the prior distribution where we can inject our prior knowledge and
information on the value of Θ

• Second, treating all the variables in the system as random variables will greatly
clarifies the methods of analysis.

If we are interested in only one of the components in Θ from the posterior distribution
we only have to integrate out the other remaining components.

4.5.2 Multiple Imputation Paradigm

MI has emerged as a flexible alternative to likelihood methods for a wide variety of
missing-data problems. MI retains much of the attractiveness of single imputation from
a conditional distribution but solves the problem of understating uncertainty. When the
MI-method is executed each missing value is replaced by a list of m > 1 simulated values
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as shown in Figure 7 from Schafer and Graham (2002) p. 165. By substituting the
jth element of each list for the corresponding missing value, j = 1, ....,M produces M
plausible alternative versions of the complete data set, and each of the M data sets are
then analyzed by the same complete-data method. The results which may vary, are then
combined by simple arithmetic to obtain the overall estimates and standard errors that
reflect missing-data uncertainty as well as finite sample variation.

Figure 7: Schematic representation of multiple imputation from Figure 4 in Schafer and
Graham (2002), where m = M is the number of imputations which is estimated by
each missing value in the original data set.

In Schafer (2003) he states that all currently available MI programs assumes that
the missingnes is MAR. That means that the MI-method which is included in the Pan
package used in this master thesis uses the MAR assumptions.

4.5.3 Rules for MI Inference

The analysis of a multiply-imputed data set is quite direct. Each of the M data set
which are completed by imputation is analyzed using the same complete-data method
that would be used in the complete-case situation. Let θ̂j , Wj , j = 1, ....,M be M
complete-data estimates and their associated variances for an estimated parameter θ,
which is computed from each of the M repeated imputations under one model.

Note that the MI-method assumes that the sample is large enough so that
√
W (θ̂ − θ)

has approximately a standard normal distribution, so that θ̂ ± 1.96
√
W has about 95%

coverage. We can not compute θ̂ and W , because we have M different versions of them,
[θ̂(j),W (j)], j = 1, ...,M . By using Rubin’s (1987) rules, we proceed as follows: the MI
estimate or the overall estimate is the average of the M different estimates,

θM =
1
M

M∑
m=1

θ̂m. (12)

Since the imputations involved in MI are conditional draws rather than conditional means
will they under a good imputation model provide valid estimates for a wide range of
estimates. Averaging over M imputations from data sets in Equation (12) increases the
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efficiency of an estimate obtained from single a data set with imputed conditional draws.
The variability associated with this estimate has two components. The first component
is the average within-imputation variance

WM =
1
M

M∑
m=1

Ŵm, (13)

and between-imputation component

BM =
1

M − 1

M∑
m=1

(θ̂m − θ̂)2. (14)

The total variability associated with θM is a modified sum of the two components.

TM = WM +
M + 1
M

BM , (15)

where (1 + 1
M ) is an adjustment for finite M . Hence

γ̂M =
1 + 1

MBM

TM
(16)

is an estimate of the fraction of information about θ missing due to nonresponse. For
large sample sizes and a scalar θ will the reference distribution for interval estimates and
significance tests be a t distribution

(θ̂m − θM )T
− 1

2
M ∼ tν , (17)

where the degrades of freedom are given by

ν = (M − 1)(1 +
1

M + 1
WM

BM
)2. (18)

Barnard and Rubin (1999) have later improved the expression for degrees of freedom for
small data sets, they relax the assumption of a normal reference distribution of

√
W (θ̂−θ)

for the complete-data interval estimates and tests to allow for a t distribution, and they
derive the corresponding degrees of freedom for the MI-inference to replace the formula,
Equation (18), given here. In their article they had made a simulation study which
demonstrates the superior frequentist performance when they used ν̃m rather than νm.
MI has many attractive features, like single imputation it allows the analyst to proceed
with familiar complete-data techniques and software. One good set of M imputations
may effectively solve the missing data problems in many analyses, and one does not
necessarily need to re-impute before computing every new analysis.
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4.5.4 Why Only a Few Imputations Are Needed

Unlike other Monte Carlo methods, with MI we do not need a large number of repetitions
to obtain precise estimates. There are two fundamental reasons for this. First, like Rao-
Blackwellzation, multiple imputation relies on simulation to solve only the missing-data
aspect of the problem. As with any simulation method one could effectively eliminate
Monte Carlo error by choosing M to be very large, but with multiple imputation the
resulting gain in efficiency would typically be unimportant because the Monte Carlo er-
ror is relatively small portion of the overall inferential uncertainty. Little and Rubin
(2002) p.114 shows that the efficiency of an estimate based on M imputations, relative
to one based on an infinite number is (1 + λ

M )(−1), where λ is the rate of missing infor-
mation. λ is distinct from the rate of missing observations and measures the increase
in the large-sample variance of a parameter estimate due to missing values. It may be
greater or smaller than the rate of missing values in any given problem. For example
with 50% missing information an estimate based on M = 3 imputations has a standard
error which is about 8% higher than one based on M = ∞, because

√
1 + 0.5

3 = 1.0801.
Schafer (1999) states that unless the fraction of missing information is unusually high
(i.e., far more than 50%), there is little benefit in using more than five to ten imputations.

The second reason why we can often obtain valid inferences with a very small M is
that the rules for combining the M complete-data analyses explicitly account for Monte
Carlo error. A multiple imputation interval estimate makes provisions for the fact that
both the point and variance estimates contain a predictable amount of simulation error
due to finiteness of M , and the width of the interval in accordingly adjusted to maintain
the appropriate probability of coverage.

4.5.5 Proper MI-Procedure

An essential part of the MI-method is treating the parameters as random rather than
fixed, and the validity of MI rests on how the imputation-procedures are created and how
the procedure relates the model which is used to subsequently analyze the complete data-
set. Creating complete data set with the MI-procedure often requires special algorithms
for estimating the missing-values. In general the missing-values should be drawn from a
distribution for the missing data which reflects uncertainty about the parameters of the
model. With single imputation it is desirable to impute from the conditional distribution
P (Ymis|Yobs; θ̂), where θ̂ is an estimate derived from the observed data. MI extends
this by first simulating M different and independent plausible values for the parameters
θ(1), ..., θ(M), and then drawing the missing data Y

(t)
mis from P [Ymis|Yobs; θ(t)] for t =

1, ....,M .

4.5.6 Using Auxiliary Variables in the MI-Method

Let Y1, Y2, ..., Yp denote the most significant variables observed in the SGA-project used
in the MI-method, if missing values occur in any of these variables there will be other
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variables (partially or fully observed) X1, X2, ...., Xp which may potentially contain
useful information for predicting the missing values. If so, they may be included in the
MI-procedure but they will be excluded from the subsequent analysis. In Collins et al.
(2001) they classify the auxiliary variables into three different types

• Type A-variables, which are correlated with the outcomes Y1, Y2, ..., Yp and may
help to explain why Y1, Y2, ..., Yp are missing. That means that they are related
to the missingness.

• Type B-variables are correlated with the outcomes Y1, Y2, ..., Yp, but they are
unrelated to the missingness.

• Type C-variables are unrelated to any of Y1, Y2, ..., Yp.

From Section 4.5 we know that Schafer (2003) has verified that all current available MI
programs assumes that the missingness is MAR. Some of the major findings Collins et al.
(2001) made in their article were; Because the Type A variables were correlated with the
missingness it will cause that the MAR assumption is violated if they are excluded from
the imputation procedure, and therefore by include them in the imputation procedure
may help reducing the bias. Type B variables will not reduce bias under MAR, but
they may increase the precision of the parameter estimates because they contain useful
information for predicting the missing values for the Y1, Y2, ..., Yp variables. Type B
variables can under MNAR conditions instead of the MAR situation may help reducing
the bias. Type C variables which is the last of the three groups will neither reduce the
bias or the precision of the parameter estimates. They will only make the imputation
model unnecessary large and complicated, therefore it is no use taking they into consid-
eration.

In Collins et al. (2001) they discuss when it is beneficial to use the auxiliary variables in
this fashion and if there are any potential dangers in doing so in depth, using different
simulation studies. In one set of the simulations Collins et al. (2001) showed that the
biases incurred by failing to include Type A variables in the imputation procedure were
not as serious as some have previously thought. By including or excluding a type A
variable Xk made little difference unless the correlation between Xk and an the outcome
Yj was unusually strong (much greater than 0.4), and the rate of missing values in Yj was
very high (50% or more missing). With weaker correlations and lower rates of missing
values were biases in parameters related to Yj and its relationships to other variables
barely noticeable when Xk was excluded from the imputation procedure.

In another set of simulation Collins et al. (2001) showed that by including a type B
variable can substantially increase the precisions under MAR conditions if its correlation
with the outcomes is very strong (approximately 0.9). This situation is very simular to
our project, because in longitudinal studies there are some measured variables which are
repeated on individuals over time, which will cause the variables to be highly correlated.
Responses at one occasion may be very useful for imputing missing responses at another.
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Finally, Collins et al. (2001) showed that the costs of unnecessarily including type C vari-
ables into the imputation procedure tend to be minimal. Overall there were potentially
important gains and small risks associated with auxiliarly variables in the MI-method.

4.6 Imputation-Model Used in MI

Linear mixed-effects models are mixed-effects models in which both the fixed and the
random effects occur linearly in the model function. An extension of linear models may
be obtained by incorporating random effects, which can be regarded as additional error
terms to account for the correlation among the observations within the same group. We
have used the same procedure in estimating the missing values using a Gibbs sampler as
Schafer and Yucel (2002).

In the imputation model yi is an ni ∗r matrix of multivariate responses for sample unit i,
i = {1, 2, ...,M}, where each row of yi is a joint realization of the variables Y1, Y2, ...., Yr.
The model we have used for the complete data is

yi = Xiβ + Zibi + εi, (19)

where Xi (ni ∗ p) and Zi (ni ∗ q) are known covariate matrices, β (p ∗ r) is a matrix
containing the regression coefficients which is common to all the units in the data-set,
and bi (q∗r) is a matrix of coefficients which are specific for each unit i. β and bi may also
be called fixed and random effects. We assume that the ni rows of εi are independently
distributed as N(0,Σ), and the random effects are distributed as vec(bi) ∼ N(0,Ψ)
independently for i = {1, 2, ..., n}. (Note that the “vec” operator vectorizes a matrix
by stacking its columns). The DAG of the hierarchic model made in Winbugs 2 can be
modeled as follows

Figure 8: DAG of the model (yi = Xiβ + Zibi + εi) for the complete data.

2Winbugs is a freely available software for constructing Bayesian statistical models and evaluating
them using MCMC methods



26 4 METHODS FOR ANALYZING MISSING DATA

Where

bi|pa(i) = f(bi|Ψ) =
f(bi,Ψ)
fΨ(Ψ)

∼ N(0,Ψ) (20)

yi|pa(i) = f(yi|β,Σ,Ψ, bi) =
f(yi, β,Σ,Ψ, bi)

f(bi|Ψ)f(Ψ)f(β)f(Σ)
(21)

Without conditioning on b1, ..., bm the implied model used for vec(yi) is normally dis-
tributed with mean equal to vec(Xiβ) and a covariance matrix

W−1
i = (Ir ⊗ Zi)Ψi(Ir ⊗ Zi)T + (Σ⊗ Ini). (22)

Note because of β,Ψ,Σ is being drawn from a multivariate distribution, this will result
in that the mixing is getting better. In longitudinal applications such in our situation,
gestational times of measurement may be incorporated into the Xi matrix used as a
predictor and the Zi matrix (or a vector) which allows the relevant aspects of the growth
curves (e.g. intercepts and slopes) to vary by each subject in the data-set.

4.6.1 The Gibbs Sampler Used in the MI-Method

A Gibbs sampler is a MCMC procedure and an iterative simulation algorithm in which
current values of the unknown parameters are drawn from the conditional distribution
of the parameter given the last updated values of all the other parameters, this is being
called the full-conditional distribution. The missing values Y (t)

mis are updated in the three
following steps, given the starting values for β(0),Σ(0),Ψ(0) and the missing values Y (0)

mis .
First,

b
(t+1)
i = π(b(t+1)

i |Yobs, Y
(t)
mis, β

(t),Σ(t),Ψ(t))

∝ π(Yobs, Y
(t)
mis|b

(t+1)
i , β(t),Σ(t))π(b(t+1)

i |Ψ(t))
(23)

independently for i = {1, 2, ...,m};next

β
(t+1)
i = π(β(t+1)

i |Yobs, Y
(t)
mis, B

(t+1),Σ(t),Ψ(t))

∝ π(Yobs, Y
(t)
mis|B

(t+1)
i , β(t+1),Σ(t))π(β(t+1)

i )
(24)

Ψ(t+1)
i = π(Ψ(t+1)

i |Yobs, Y
(t)
mis, B

(t+1), β(t+1),Σ(t))

∝ π(B(t+1)|Ψ(t+1))π(Ψ(t+1))
(25)

Σ(t+1)
i = π(Σ(t+1)

i |Yobs, Y
(t)
mis, β

(t+1), B(t+1),Ψ(t+1))

∝ π(Yobs, Y
(t)
mis|B

(t+1)
i , β(t+1),Ψ(t+1))π(Σ(t+1))

(26)

and finally,

Y
(t+1)
mis = π(Y (t+1)

mis |Yobs, B
(t+1), β(t+1),Σ(t+1),Ψ(t+1))

∝ π(Y (t+1)
mis , Yobs|B(t+1), β(t+1),Σ(t+1),Ψ(t+1))

(27)
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for i = {1, 2, ...,m}. These three steps form one cycle of the Gibbs sampler algo-
rithm. Executing the cycle repeatedly creates sequences of the parameters contained
in {θ(1), θ(2), ..., θ(m)},where θ(t) consists of β(t),Σ(t)and Ψ(t), and for the missing values
{Y (1)

mis , Y
(2)
mis , ..., Y

(m)
mis }, whose limiting distributions are P (θ|Yobs) and P (Ymis|Yobs).

Implementing the second step of the cycle requires a prior distribution for θ. It is known
from their article and in general that mixed-effects models with improper prior distribu-
tions for the covariance components may lead to Gibbs samplers that do not converge
to proper posterior distributions, even though if each step of the cycle is well defined.
Therefore are proper prior distributions for the covariance matrices are important to
achieve satisfactory results.

We also need to specify the prior distributions for the covariance matrices Sigma and
Psi. Schafer and Yucel (2002) applied the independent inverted Wishart priors for Σ−1

W (ν1,Λ1) and Φ−1 are distributed as W (ν2,Λ2), where W (ν,Λ) denotes a Wishart dis-
tribution with ν > 0 degrees of freedom and mean νΛ > 0 because this priors are ap-
propriate for a model with unstructured Ψ. These priors exist provided that Λ1,Λ2 > 0,
ν1 ≥ r and ν2 ≥ qr, where q are the number of random effects and r are the number
of response variables (in our case q = 2 and r = 2). Choosing values for the hyper-
parameters it is helpful to regard ν−1Λ−1 and ν−2Λ−2 as prior guesses for Σ and Ψ with
confidence equivalent to ν1 and ν2 degrees of freedom. Note that small prior guesses for
the values for ν1 and ν2 make the prior densities relatively diffuse and are reducing their
impact on the final inferences. For the β-parameters Schafer and Yucel (2002) uses an
improper uniform density over Rpr.

Under these priors guesses each of the steps in the cycle, Equations (23) - (27), is derived
by straightforward application of Bayes’ theorem. In our model are the pairs (yi, bi)
distributed as:

vec(yi)|bi, θ ∼ N(vec(Xiβ + Zibi), (Σ⊗ Ini)),
vec(bi)|θ ∼ N(0,Ψ)

independently for i = {1, 2, ...,m}. It follows that

vec(bi|yi, θ) ∼ N(vec(b̃i), Ui),

where

vec(b̃i) = Ui(Σ−1 ⊗ ZT
i )vec(yi −Xiβ),

Ui = (Ψ−1 + (Σ−1 ⊗ ZT
i Zi))−1.

Simulation of the parameters contained in θ (step two of the cycle) proceeds as follows:

• First draw Ψ−1 from a Wishart distribution with ν
′
2 = ν2 +m degrees of freedom

and using the scale Λ
′
2 = (Λ−1

2 +BTB)−1.
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• Next, the ordinary least-squares coefficients β̂ = (
∑m

i=1X
T
i Xi)−1(

∑m
i=1X

T
i (yi −

Zibi)) and the residuals ε̂i = yi −Xiβ̂ − Zibi will be calculated. Then Σ−1 will be
drawn from a Wishart distribution with ν ′

1 = ν1 − p+
∑m

i=1 ni degrees of freedom
and scale Λ

′
1 equal to (Λ−1

1 +
∑m

i=1 ε̂
T
i ε̂i)

−1.

• Finally will β be drawn from a multivariate normal distribution centered at β̂ with
covariance matrix Σ⊗ V , where V = (

∑m
i=1X

T
i Xi)−1.

For simulating the values of the parameters (β) it is very helpful to note that if G and H
are upper-triangular square roots of Σ and V . (GTG = Σ and HTH = V ), then G⊗H
is an upper-triangular square root of Σ⊗ V .

Notice from executing the final step, Equation (27), of the Gibbs sampler that the rows
of εi = yi−Xiβ−Zibi are independent and normally distributed with mean zero and co-
variance matrix Σ. Therefore in any row of εi the missing elements have an intercept-free
multivariate normal regression on the observed elements; the slopes and the residual co-
variances for this regression can be quickly calculated by inverting the square sub-matrix
of Σ corresponding to the observed variables. Drawing the missing elements in εi from
these regressions and adding them to the corresponding elements of Xiβ+Zibi completes
the simulation of yimis .

4.6.2 Implementation Issues

If any of the steps, Equations (23) - (27), from the cycle could be carried out without
conditioning on the simulated values of Ymis or B, would cause the algorithm to converge
in fewer iterations. With modern computers iterations contained in the cycle can perform
quickly even with large datasets provided that sufficient physical memory is available to
store the data, which consists of Yobs, Y

(t)
mis and the covariate matrices Xi and Zi. The

convergence behavior of this algorithm is governed by two factors:

• the amount of information about θ carried in the missing values relative to observed
ones

• and the degree to which the random effects bi can be estimated from the values
contained in the yi matrix.

If the missing portions of yi exert a high leverage over the components contained in θ or
if the the random effects bi are poorly estimated for example if the within-unit precision
matrices of Σ−1⊗ZT

i Zi tend to be small relative to Ψ−1) then convergence can be slow.
Convergence may also be slow when the number of subjects m is large because for large
m the posterior distribution for Ψ given b1, b2, ..., bm becomes very tight and causing
the drawn value for Ψ to be correlated with its previous value. If the parameters and
values produced from the multiple imputations method have slow convergence, it is not
catastrophic because in most situations we only need a few independent draws of Ymis.
Assessing convergence of the MI-method can done by examining time-series plots of the
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parameters and autocorrelation-plots (ACF ) for individual elements or functions of θ,
one should in particular pay close attention to the elements of Ψ matrix (random effects)
because these parameters tend to exhibit high correlations between the values estimated
at each iteration.

Any rows of the yi matrix that is completely missing may be omitted from consideration
along with the corresponding rows of Xi and Zi without changing the form of complete-
data model, Equation (19), by ignoring these rows we will eliminate any unnecessary
computation at each of the three steps in the cycle and simultaneously reducing the rate
of missing information and speeding the overall rate of convergence. The deleted rows
may be restored at the final imputation step, Equation (27), to produce a fully completed
dataset to be used in the further analysis.

4.6.3 Prior Guesses and Alternative Covariance Structures

When specifying values for the hyper-parameters the usual practice is to set ν1 = r and
ν2 = qr to make the priors as dispersed as possible and minimize their subjective influ-
ence. We will typically set the initial values of Λ−1

1 equal to ν1Σ̂ and Λ−1
2 equal to ν2Ψ̂

where Σ̂ and Ψ̂ are reasonable guesses for Σ and Ψ. As a prior guess estimate of Σ we
will use the (r ∗ r) identity matrix and for Ψ we use the (rq ∗ rq) identity matrix.

When modeling a large number of response variables it may be advantageous to re-
strict Ψ to have a block-diagonal structure not only for the purpose of obtaining prior
guesses but also when running the Gibbs sampler itself. If Ψ is block-diagonal then
independent inverted Wishart prior distributions may be applied to the q ∗ q nonzero
blocks, Ψ−1

j ∼ W (νj ,Λj) for j = 1, 2, ..., r. We obtain weak priors by setting νj = q

and Λ−1
j = νjΨ̂j , where Ψ̂j is an estimate or our prior guess for Ψj . The distribution

for these blocks in step two of the cycle become Ψ−1
j ∼ W (νj ,Λj), where ν ′

j = νj +m,
Λ

′−1
j = Λ−1

j +
∑m

i=1 bijb
T
ij and bij is the jth column of bi.

The choice of selecting between an unstructured or a block-diagonal Ψ will depend on
both theoretical and practical considerations. A block diagonal structure indicates that
there exists no a priori associations between the random effects for any two response
variables in the yj matrix and in yj

′ .

4.7 Maximum Likelihood (ML) Estimation)

Most of the theory from this section is based upon Little and Rubin (2002) (Chapther
8) and by Schafer and Graham (2002).
The principle of drawing inferences from a likelihood function is widely accepted. Under
the MAR assumption will the marginal distribution of the observed data provide the
correct likelihood for the unknown parameter θ, provided that the model for the complete
data is realistic (P (Yobs; θ) =

∫
P (Ycom; θ)dYmis). Schafer and Graham (2002) defines this
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as the observed-data likelihood, and the logarithm of this function,

l(θ;Yobs) = log L(θ;Yobs), (28)

plays a vital role in the estimation-procedure. The ML estimate of θ̂ is the value of θ for
which Equation (28) has it highest values, and it has attractive theoretical properties just
as it does in the complete-data problems. Under rather general regularity conditions θ̂
tends to be approximately unbiased and highly efficient when the sample size is large, and
as the sample size increase its variance approaches the theoretical lower bound of what is
achievable by any unbiased estimator (e.g., Casella and Berger (2001) p. 337). Confidence
intervals and regions are often computed by the assumptions that θ̂ is approximately
normally distributed about the true parameter θ with approximate covariance matrix

V (θ̂) ≈ [− l
′′
(θ̂)]−1, (29)

where l ′′(θ̂) is the matrix of second partial derivate of Equation (28) with respect to
the elements of θ. In Schafer and Graham (2002) the matrix − l ′′(θ̂) is referred to as
the observed information, which describes how quickly the log-likelihood function drops
as we move away from the ML estimate. Sometimes this matrix is replaced by its ex-
pected information or Fisher information because the expected value is sometimes easier
to compute. In complete-data problems the approximation, Equation (29), is still valid
when the observed information is replaced by the expected information, earlier Kenward
and Molenberghs (1998) have shown that this is not necessary true with missing data.
Expected information implicitly uses Equation (28) as the sampling distribution for Yobs,
which is only valid if the missing data are MCAR. If we want to obtain standard errors
and confidence intervals that are valid under the general MAR condition in missing-data
problems, Schafer and Graham (2002) suggests that we should base them on the observed
rather than the expected information matrix.

Log-likelihood also provides methods for testing hypotheses about elements or functions
of θ. If we wish to test the null hypothesis, θ lies in a certain area or region of the
parameter space versus the alternative that it does not. Under suitable regularity con-
ditions this test may be performed by comparing a difference in the log-likelihood with
a chi-square distribution. We would reject the null hypothesis at the designed α-level if
2[l(θ̂;Yobs) − l(θ̃;Yobs)] exceeds the 100(1− α) percentile of the chi-square distribution.
The degrees of freedom are given by the difference in number of free parameters under
the null and alternative hypothesis, that is the number if restrictions that must be placed
on the elements of θ to ensure that it lies in the null region. These likelihood-ratio tests
are very attractive for missing-data problems because they only require that we are being
able to compute the maximizers θ̂ and θ̃, and no second derivatives are needed. In a few
problems the maximizer of the log likelihood can be computed directly.

4.8 The Expectation Maximation (EM) - Method

The key idea behind EM is to solve a difficult incomplete-data estimation problem by
repeatedly solving tractable complete-data problems. We “fill in the missing data” with a
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best guess under the current estimate of the unknown parameters from the observed and
filled in data. EM algorithm is an alternative computing strategy for incomplete-data
problems which does not require second derivatives to be calculated or approximated.
The fact that Ymis contains information which is relevant to estimate θ and θ in turn
helps us to find likely values of the missing values (Ymis) which helps us to suggest the
following scheme for estimating θ in the presence of Yobs alone:

1. Replace the missing values by estimated values.

2. Estimate the parameters.

3. Re-estimate the missing values assuming that the new parameter estimates are
correct.

4. Re-estimate the parameters, and so forth iterating until convergence.

In any incomplete-data problem can the distribution of the complete-data Ycom be fac-
tored as follows

f(Y |θ) = f(Yobs, Ymis|θ) = f(Yobs|θ)f(Ymis|Yobs, θ),

where f(Yobs|θ) is the density of the observed data Yobs and f(Ymis|Yobs, θ) is the density
of the missing data given the observed data. The corresponding decompositions of the
log-likelihood as a function of θ can be written as

l(θ|Y ) = l(θ|Yobs, Ymis) = l(θ|Yobs) + logf(Ymis|Yobs, θ), (30)

where l(θ|Y ) = logf(Y |θ) denotes the complete-data log-likelihood , l(θ|Yobs) = log f(θ|Yobs)
denotes the observed-data log-likelihood and the term f(Ymis|Yobs, θ) may be called the
predictive distribution of the missing data given θ which plays a central role in the EM-
method because it captures the uavhengighet between the missing values and the param-
eters (θ). When it is viewed as a probability distribution it summaries the knowledge
about Ymis for any assumed value of θ, and when it is viewed as a function of θ it brings
the evidence about θ contained in the missing values beyond that it is already provided
by the observed values (Yobs). The aim is to estimate the parameters by maximizing the
incomplete-data log-likelihood l(θ|Yobs) with respect to θ for the observed values Yobs,
because Ymis is unknown we cannot calculate the second term in the right-hand side of
Equation (30). Rubin solves this problem by performing the following procedure, first
he rewrites Equation (30) as

l(θ|Yobs) = l(θ|Y )− lnf(Ymis|Yobs, θ),

then taking the expectation of both sides over the distribution of the missing data (Ymis)
given the observed data Yobs and the current estimate of theta θ(t) Rubin gets

l(θ|Yobs) = Q(θ|θ(t))−H(θ|θ(t)),
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where
Q(θ|θ(t)) =

∫
l(θ|Yobs, Ymis)f(Ymis|Yobs, θ

(t)) dYmis

and
H(θ|θ(t)) =

∫
ln f(Ymis|Yobs, θ)f(Ymis|Yobs, θ

(t)) dYmis.

A central result of Dempster et al. (1977) is that if we let θ(t+1) be the value of θ
that maximizes Q(θ|θ(t)), then θ(t+1) is a better estimate than θ(t) in the sense that its
observed-data log-likelihood is at least as high as that of θ(t),

l(θ(t+1)|Yobs) ≥ l(θ(t)|Yobs).

This can be seen by writing the difference in the values of Yobs at successive iterates as
follows

l(θ(t+1)|Yobs)− l(θ(t)|Yobs) = Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) +H(θ(t+1)|θ(t))−H(θ(t)|θ(t)).

The quantity Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t)) is non-negative because θ has been chosen to
satisfy

Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) for all θ. (31)

The remainder H(θ(t+1)|θ(t))−H(θ(t)|θ(t)) which can be written∫
log

[
P (Ymis|Yobs, θ

(t))
P (Ymis|Yobs, θ(t+1))

]
P (Ymis|Yobs, θ

(t)) dYmis,

is easily shown to be non-negative by Jensen’s inequality for any two probability distri-
butions (π1(x), π2(x)) and convexity of the function xlogx. Let∫

log
[
π2(x)
π1(x)

]
π1(x)dx ≤ log

∫ [
π2(x)
π1(x)

]
π1(x)dx = 0.

Hence
S(θ(t)|θ(t)) ≥ S(θ(t+1)|θ(t)). (32)

By putting (31) and (32) together, we have proven that F (θ(t+1)) ≥ F (θ(t)). From the
proof we can see that any θ(t+1) that increases the Q-function will increase F (θ). A
proper design of the EM-method is to think of one iteration of EM defined by (31) as a
consisting of the two following steps

1. The Expectation or E-step, in which the functionQ(θ|θ(t)) is calculated by averaging
the complete-data log-likelihood l(θ|Y ) over P (Ymis|Yobs, θ

(t))

2. The maximization or M-step, in which θ(t+1) is found by maximizing Q(θ|θ(t)).

Lately has the EM-method also been applied to many situations that are not necessarily
thought of as missing-data problems but it can be formulated as one. For example in
multilevel linear models for unbalanced repeated measures data, such as in our project,
where not all participants are measured at all time points.
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4.9 Extension of EM

The ECM algorithm defined by Meng and Rubin (1993) generalizes the EM algorithm by
replacing the M-step with a sequence of simple constrained maximization steps which is
shortened CM-steps, indexed by i = 1, ...., k each of which fixes some function of the pa-
rameters θ to be maximized. A newer development of the ECM algorithm which itself is
an extension of the EM algorithm can be obtained by replacing some CM-steps of ECM
which maximize the correspondingly constrained actual likelihood function with steps
that maximize the correspondingly actual likelihood function. This algorithm which
Chuanhai Liu and Donald Rubin call ECME algorithm for Expectation/Conditional
shares with both EM and ECM their stable monotone convergence and basic simplicity
of implementation relative to competing faster converging methods. ECME can have
a substantially faster convergence rate than either EM or ECM, measured using either
the number of iterations or actual computer time. There are two reasons for this im-
provement. First, in some if ECME’s maximization steps is the actual likelihood being
conditionally maximized rather than a current approximation to it as with EM and ECM.
Secondly ECME allows faster converging numerical methods to be used on only those
constrained maximizations where they are most efficient.

4.9.1 The Expectation Conditional Maximization Either (ECME) method

The ECME algorithm defined by Liu and Rubin (1995) extends the ECM algorithm
by allowing CM-steps to maximize either the constrained expected log-likelihood or the
correspondingly constrained the actual log-likelihood function L(θ). The E-step of ECME
is the same as the E-step of EM and ECM. The CM-step 1 of ECME is the same as
the CM-step of ECM, but the CM-step 2 of ECME maximizes the actual likelihood,
Equation (30), and the constraint functions which correspond to a different conjugate
linear combinations of the parameters across iterations. Code for this maximization
involves a one-dimensional search as with EM, where Fisher scoring are incorporated
into the M-step. This procedure may be used when the response variable are partially
missing. The ECME algorithm used in Pan3 is based upon the multivariate model in
Equation (19), the likelihood function from the marginal normal distribution for yi may
be expressed as

L(θ) ∝
m∏

i=1

|Wi|
1
2 exp{−1

2
δT
i Wiδi}, (33)

where δi = vec(yi −Xiβ) and Wi is defined by Equation (22). Schafer and Yucel (2002)
uses the relationship |Wi| = |Σ⊗ Ini |−1|Ψ|−1|Ui| and ignore the constants of proportion-
ality. Then the logarithm of L becomes

l(θ) = −N
2

log|Σ| − m

2
log|Ψ|+ 1

2

m∑
i=1

log|Ui| −
m

2

m∑
i=1

δT
i Wiδi (34)

3defined in Section 4.10
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Fischer scoring updates the current estimate of θ(t) by solving the linear system C(θ(t+1)) =
d, where C = −El′′(θ(t)) and d = Cθ(t) + l

′
(θ(t)). Upon convergence will the final value

of C−1 provide an estimated covariance matrix for θ̂. For further details see Schafer and
Yucel (2002).

The E-step calculates the expectation of the complete data log-likelihood function, Equa-
tion (33), with respect to the conditional distribution of Ymis given Yobs under a current
estimate of θ and the M-step updates the estimate of θ, maximizing this expected log-
likelihood by scoring. For the E-step note that Equation (33) is a linear function of the
sufficient statistics vec(yi) and vec(yi)vec(yi)T . It follows from Equation (19) that vec(yi)
and vec(bi) are jointly normal with covariance matrix[

(Ir ⊗ Zi)Ψ(Ir ⊗ Zi)T (Ir ⊗ Zi)Ψ
Ψ(Ir ⊗ Zi)T Ψ

]
(35)

Finding the expectations, Schafer and Yucel use Equation (35) as a basis whose dimension
is (rq + rni) × (rq + rni), where r = 1 in the ecme-method in the PAN package, and
then apply an orthogonalization method for i = 1, 2, .....,m. Q are equal to the number
of random variables in the pred matrix and ni are equal to the number of rows in the y
vector and the pred -matrix. Since this procedure is best fitted to small samples Schafer
and Yucel changed their strategy, and assumed that the rows of yi are conditionally
independent given bi with a constant variance. They expressed the expectation of the
first complete-data sufficient statistic as follows

E(yi|Yobs) = E(E(yi|Yobs, bi)|Yobs). (36)

Equation (36) require access to the distribution of the missing values given the observed
values and the random effects (y(obs), bi) and the random effects given the observed
values. The previous is quite simple since, given bi, the rows of εi = yi −Xiβ − Zibi are
independent and identically distributed as N(0,Σ). Therefore will the missing values in
any row of ε have, given the observed values and the random effects, an intercept-free
regression on the observed values. The parameters of this regression can be obtained by
inverting the square sub-matrix of Σ which corresponds to the observed values. Schafer
and Yucel (2002) divided the variable y∗i into two parts, where y∗ij(mis)

is the missing
portion and y∗ij(obs)

are the observed portions of the j th row of y∗i . Then they expressed
the expectation of the missing values given the observed ones and the random effects as

E(y∗ij(mis)
|Y(obs), bi) = Σ21Σ−1

11 yij(obs) ,

where Σ11 is the square sub-matrix of Σ corresponding to the observed elements and Σ21

is the rectangular sub-matrix of covariances between the missing and observed elements.
Since y∗i is a linear function of bi will the expectation of yi without conditioning on bi
be obtained by a direct substitution of E(bi|yi(obs)) for bi. The value of Σ21Σ11 varies by
the different missingness pattern, but not by observational units i = 1, 2, .....,m.
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For the second sufficient statistic vec(yi)vec(yi)T Schafer and Yucel (2002) applies a
similar argument by first calculating the conditional expectation given the random ef-
fects and the observed values, and then averaging over the distribution of bi given yi(obs) .
Let yijk denote the kth element of the j th row of yi, and the formula for the expectation
of yijkyij

′
k′ depends on whether yijk and yij

′
k′ are observed or missing and whether they

are in the same (j = j
′) or different (j 6= j

′) rows. Schafer and Yucel (2002) have shown
that the expectation of yijkyij

′
k′ given yi(obs) is given by: yijkyij′k′ if both are observed,

yijkE(yij
′
k′ |yi(obs) if yijk is observed and yij′k′ is missing, and

E(yijk|Y(obs))E(yij
′
k
′ |Y(obs)) + cov(yijkyij

′
k′ |yi(obs))

if both are missing. The covariance between yijk and yij′k′ given yi(obs) is equal to

cov(Aijk, Aij
′
k
′ |yi(obs)) + [Σ22·1]kk′

if they are in the same row, and

cov(Aijk, Aij′k′ |yi(obs))

if they are in different rows, where

Aijk = E(yijk|bi, yi(obs))

comes from the regression predictions for the missing elements in the j th row of yi given
the observed values.

In the M-step will the expected log-likelihood which are computed in the E-step be
maximized, and this can be performed by a slightly modification of the Fischer scoring
procedure. This has almost the same form as Equation (34), but smaller changes must be
made to the log-likelihood function and it derivatives. The expected second derivatives
are the same. Schafer and Yucel (2002) write the first derivatives of le = E(l|Ymis) with
respect to the elements of θ as following:

∂le
∂vec(β)

= −

(
m∑

i=1

(Ir ⊗Xi)TWi(Ir ⊗Xi)

)
vec(β − β̃)

∂le
∂ωj

=
1
2

m∑
i=1

tr(Ψ− Ui − (Σ−1 ⊗ ZT
i Zi)UiTiUi(Σ−1 ⊗ ZT

i Zi))Gj ,

∂le
∂σl

=
1
2

m∑
i=1

tr(niΣFl − (Fl ⊗ ZT
i Zi)Ui −Wi(ΣFjΣ⊗ Ini)WiTi,

vec(β) = Γ
m∑

i=1

(Ir ⊗Xi)TWiE(vec(yi)|θ, yi(obs)),

Ti = E{vec(yi −Xiβ)vec(yi −Xiβ)T |yi(obs) , θ}.

After these derivatives have been calculated will the parameters be updated in the same
way as in Section 3.2 from Schafer and Yucel (2002) until the estimates have converged.
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4.10 Pan - Imputation of Multivariate Panel or Clustered Data

Pan (for PANel data) is a software package for R, written by Joseph L. Schafer. The
package can be downloaded freely from the Comprehensive R Archive Network at
http://www.cran.r-project.org/. It is designed for use with clustered sampling and lon-
gitudinal data sets. Pan uses a multivariate extension of a two-level linear regression
model commonly applied to multilevel data. This package takes full advantage of the
known design characters to perform more efficient imputations and is particularly useful
for the situation where time-varying predictors of change are partially unobserved. More
details of these models are given by Schafer (1997). The two main functions used from
the Pan package are

• pan – A Gibbs sampler for the multivariate linear mixed models with incomplete
data. This function will be used to produce multiple imputations of missing values
in multivariate data. The input is a data set with missing values.

• ecme – Performs maximum-likelihood estimations for generalized mixed models.
The input is a data set with missing values.

The R documentation for the pan-function used in this master thesis is reproduced in
Appendix A.
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5 Missing Values in the SGA-Data set

In this chapter we

(a) describe the marginal and joint description of the missing values in the SGA Data
Set.

(b) investigate different imputation models in the MI-procedure to be used for the SGA
Data Set.

The selection procedure of variables included in the growth model for MAD is described
in Section 8.1. The “SGA-data Set” is the 561 random sample defined in Section 2.2.

5.1 Marginal description of missing values

The variables included in the analysis and their rates of missingness are reported in Table
2. Notice that MAD and time of gestation are missing from approximately 25% of the
observed measurements from the three last antenatal visits. The gender of the fetus, the
LBW variable and the age of the mother are the only covariates with a complete set of
measurements from all the subjects.

Name Description Missing (%)
SEX Gender of the fetus 0.0

(0 = female, 1 = male)
LBW Previous low birth weight infant of the mother 0.0

(0 = No, 1 = Yes)
Height Height of the mother 0.5
Age Age of the mother 0.0
Time1 Gestational age measurued in weeks, based on ultrasound 3.2
MAD17 Mean abdominal diameter at Time1 weeks of gestation 3.0
Weight17 Weight of the mother at Time1 weeks of gestation 0.9
Time2 Gestational age measurued in weeks, based on ultrasound 23.5
MAD25 Mean abdominal diameter at Time2 weeks of gestation 23.2
Weight25 Weight of the mother at Time2 weeks of gestation 8.0
Time3 Gestational age measurued in weeks, based on ultrasound 20.9
MAD33 Mean abdominal diameter at Time3 weeks of gestation 20.9
Weight33 Weight of the mother at Time3 weeks of gestation 8.4
Time4 Gestational age measurued in weeks, based on ultrasound 23.9
MAD37 Mean abdominal diameter at Time4 weeks of gestation 24.1
Weight37 Weight of the mother at Time4 weeks of gestation 10.7
Total 561 pregnant women 44.00

Table 2: Variables from the SGA-data set used in the analysis, where the marginal rates
of missingness for each variable is = Total number of subjects with at least 1 missing value

561 ∗ 100%
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Histograms of these 16 variables are displayed in Figures 9 and 10.
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Figure 9: Histogram of gestational age (measured in weeks), weight of the pregnant
woman and MAD at each of the four antenatal visits during the study.

In Figure 9 we see that MAD, Weight and gestational age have equal distribution of
observed values at each of the four antenatal visits during the study. As a measure of
weight gain during the pregnancy the weight variable is used together with the height
variable to calculate the BMI (Body mass per index ( kg

m2 )). From the histogram of gender
in Figure 10 we see that there is approximately as many female and males fetuses. Most
of the women who participated in the SGA-study are between the age of 25 and 30, and
have a height between 1.6 − 1.7 meters. We also see that 30 of the 561 women have
earlier given birth to a low-weight child (LBW-variable).
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Figure 10: Histogram of age, height, LBW and gender of the fetus. For the gender of
the fetus 1 denote girls and 2 denote boys.

If analysis involving all these variables were performed using standard statistical
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packages, the built-in case deletion procedures would discard up to 44.00% of the subjects,
resulting in a substantial loss of power.

5.2 Joint Descriptions of Missing Data

In order to describe the joint pattern of missing values in the SGA-data set we divided
the data set into groups, such that in each group every member is missing the same set
of variable(s). In Table 3 we see that there are 314 subjects with no missing values.
There are 59 subjects which are missing values of MAD and Time from the last three
antenatal visits, and 21 subjects are missing values of MAD, Time and Weight from the
last antenatal visit during the study. We also notice that there are 26 groups which
consists of only one subject each, whose missing pattern is different from all the other
groups. In Total there are 53 different groups, each with a different set of missing
variables.
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1 0 314
2 1 X 2
3 1 X 4
4 1 X 4
5 2 X X 1
6 1 X 2
7 1 X 1
8 2 X X 16
9 1 X 16
10 3 X X X 3
11 2 X X 1
12 2 X X 1
13 2 X X 8
14 4 X X X X 9
15 1 X 15
16 2 X X 3
17 4 X X X X 1
18 3 X X X 6
19 1 X 1
20 3 X X X 1
21 3 X X X 2
22 2 X X 3
23 4 X X X X 10
24 4 X X X X 3
25 5 X X X X X 1
26 6 X X X X X X 59
27 7 X X X X X X X 1

Continued on the next page
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28 7 X X X X X X X 3
29 7 X X X X X X X 1
30 8 X X X X X X X X 1
31 7 X X X X X X X 3
32 7 X X X X X X X 2
33 3 X X X 1
34 6 X X X X X X 1
35 8 X X X X X X X X 1
36 1 X 10
37 2 X X 1
38 3 X X X 1
39 2 X X 2
40 3 X X X 1
41 2 X X 1
42 4 X X X X 1
43 2 X X 1
44 3 X X X 21
45 4 X X X X 1
46 4 X X X X 1
47 5 X X X X X 2
48 4 X X X X 1
49 6 X X X X X X 1
50 7 X X X X X X X 1
51 9 X X X X X X X X X 7
52 10 X X X X X X X X X X 1
53 11 X X X X X X X X X X X 6

Sum: 561
Table 3: Patterns of missing values in the SGA-data set with 516 subjects.

5.3 Imputing missing values of Gestational Age

Since Time is one of the best predictors in the model for both MAD and BMI, we had
to make some decisions with respect to missing values in the time measurements. Since
the ultrasound measurements were planned at given gestational ages, one solution to
this problem is to fill inn the average gestational time at each of the 4 antenatal visits
of the missing values. The number of subjects who are missing time measurements are
presented in Table 4.
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time∗ of gestation Min Mean Max Number missing
17 12 16.76 20 18 (3.21%)
25 22 24.62 29 132 (23.53%)
33 29 32.47 36 117 (20.86%)
37 31 36.63 39 134 (23.89%)

SGA-data set : 561

Table 4: Summary measurements on gestational age, where time∗ is the expected time
among the sample at each of the four antenatal visits during the study.

As we see from Table 4 3.21% of the time measurements are missing for the first
antenatal visit, and approximately 20% of the time measurements are missing at each of
the last three antenatal visits. For these missing values of time we have chosen to impute
the mean values from each of the four antenatal visits. By doing this we believe that we
are not introducing bias, as we see from Figure 9 clearly gestational age is for most of the
women measured within one week from the planned time of gestation. In the next Section
(Section 5.4.3) we will look at an alternative strategy for handling missing values in the
time measurements. We see from Table 5 when the Time-variable is imputed there are
now 320 subject who have a complete set of measurements, and there are 561−320 = 241
subjects who are missing one or more variables. The number of groups with different
combinations of missing-data are reduced from 53 to 38, where members from each group
are missing measurements from only MAD and BMI variables.
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1 0 320
2 1 X 2
3 1 X 5
4 1 X 2
5 1 X 18
6 1 X 16
7 2 X X 3
8 1 X 8
9 2 X X 9
10 2 X X 1
11 1 X 15
12 2 X X 3
13 3 X X X 1
14 2 X X 6
15 1 X 4
16 2 X X 11
17 2 X X 4

Continued on the next page
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18 3 X X X 60
19 4 X X X X 1
20 4 X X X X 4
21 4 X X X X 3
22 4 X X X X 2
23 2 X X 1
24 4 X X X X 1
25 5 X X X X X 1
26 1 X 11
27 2 X X 1
28 2 X X 2
29 2 X X 1
30 2 X X 1
31 3 X X X 1
32 2 X X 24
33 3 X X X 2
34 3 X X X 1
35 3 X X X 1
36 5 X X X X X 1
37 6 X X X X X X 7
38 7 X X X X X X X 7

Sum: 561
Table 5: Pattern of missing values when the time have been imputed with the mean values from
each of the four antenatal visits.

5.4 Using the Multivariate Linear Mixed Effects Model to Produce
Multiple Imputation

5.4.1 The Imputation Model

We are using the linear mixed-effects model, Equation (19), defined in Section 4.6 as our
choice of imputation model. In the imputation model, the response matrix y, is a ni ∗ 2
matrix of multivariate responses for sample unit i (where i = {1, 2, ..., 561}), and consists
of MAD and the BMI variables. It is important to note that the imputation model and
the model to be used for modeling MAD model differ. In the analysis model for MAD
the BMI variable is treated as a covariate in the growth model for MAD, but in the impu-
tation model both MAD and BMI are treated as responses with the same set of covariates.

The missing values in the response will be predicted from an covariate-matrix which
consists of a constant, LBW, Time and Time2 with gestational age and fetus as random
effects. Note that we use the result from Section 5.3 with complete time measurements.



5.4 Using the Multivariate Linear Mixed Effects Model to Produce Multiple Imputation43

Our data set contains both continuous and binary variables and we construct dummy
indicators for LBW to preserve program effects (LBW will be treated as a factor and
not a continuous variable). The missing values will be imputated using the Gibbs sam-
pler defined in Section 4.6.1, where Equations (23) - (27) denote one cycle. The cy-
cle repeatedly creates sequences of the parameters, and estimates of the missing values
{Y (1)

mis , Y
(2)
mis , ..., Y

(M)
mis } for both MAD and BMI.

5.4.2 Assessing Convergence

We can examine the behavior of the imputation model by making time-series plot and plot
of the acfs (autocorrelation function) for the model parameters to assess the convergence
of the MCMC-algorithm. All plots are plotted after the burn-in period is removed. In
the time series, the value of the parameter (vertical axis) is plotted against the iteration
number (horizontal axis). Using the definition from Brockwell and Davis (2002), let
{Xt} be a stationary time series. The autocorrelation function (ACF4) of {Xt} at lag h
is defined as

ρx(h) ≡ γx(h)
γx(0)

= Cor(Xt+h, Xt), (37)

where γx(t) = Cov(Xi(t + h), Xj(h)). The approximate 95% confidence limits (or ac-
ceptance area) are shown as dotted lines, these are for an independent serie for which
ρt = I(t = 0). As with a time series a priori one is expecting autocorrelation, these limits
must be viewed with caution. In particular, if any ρx is non-zero then all the limits are
invalid. In Figure 11 we see the time-series plot of the covariance matrix between MAD
and BMI. We see that σMAD, σBMI and σMAD,BMI have converged very well and they are
slightly positive correlated, which is expected. If the MAD increases it means that the
fetus has grown which will cause an increase in the weight of the mother.

4The acf-method in R chooses the number of lags to plot unless this is specified by the argument
lag.max. The default is 10∗ log10(

N
m

) where N is the number of observations and m the number of series,
in our case N is equal to 561 and m is equal to 10.
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Figure 11: Time-series plot of Σ, which is the covariance-matrix of MAD and BMI.

From the ACF-plot of Σ in Figure 12, we see that the estimates at lag 100 are
approximately independent.
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Figure 12: ACF plots of the covariance matrix, Σ, between MAD and BMI.

From the covariance matrix of the random effects (Figure 13) we see that the there
is a slightly larger variation at the intercept for MAD than there is for the intercept for
BMI. The intercept for MAD and BMI are positively correlated which means that an
increase in MAD would result in a larger BMI value. The slope in the model for MAD
increases more than the slope for BMI, which is natural since MAD is increasing much
more for a fetus during a pregnancy than the increase in BMI by the mother during the
same period of time.
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Figure 13: Time-series plot of Ψ, which is the covariance matrix of the random effects.

From the ACF-plot of Ψ (Figure 14), we see that the estimates are un correlated at
lag 100.
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Figure 14: ACF plots of the covariance matrix Ψ, with Time and fetus as random effects.

From the time-series plot of the estimated fixed parameters of the imputation model
in Figure 15 we see that the estimated values for both models (MAD and BMI) have
converged very well. All four estimates for the β values are significant in each model,
because they have converged very well and the estimated values are clearly not zero.
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Figure 15: Time-series plot of the estimated parameters in the imputation model for MAD
and BMI, in the first column β0 = constant, the second column β1 = LBW-variable, the
third column β2 = Time-variable and in the fourth column β3 = Time2−variable.

From the ACF-plot of β (Figure 16), we see that the estimates are approximately
uncorrelated at lag 100 in the model for MAD. In the model for BMI we see that the
β0 and β1 values have correlated estimates, but the parameter estimates for Time and
Time2 seems to be uncorrelated at lag 100. That is because the mixing may not be very
good since the imputation model we have used for both MAD and BMI is based upon
the model we got from backwards elimination by the lme model for MAD. Because of
that there is a possibility that there exist some covariates which are better for predicting
missing-values for BMI, but after all these results are quite satisfying. Based upon the
results from Section 5.4.2 we have decided to use values at lag 1000, by doing this we are
sure that the estimates are uncorrelated.



5.4 Using the Multivariate Linear Mixed Effects Model to Produce Multiple Imputation47

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

MAD

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

MAD

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

MAD

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

MAD

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

BMI

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

BMI

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

BMI

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

BMI

Figure 16: Acf plots of the estimated parameters in the imputation model for MAD and
BMI, in the first column β0 = constant, the second column β1 = LBW-variable, the third
column β2 = Time-variable and in the fourth column β3 = Time2−variable.

5.4.3 Imputing Missing Values of Gestational Age

In Section 5.3-5.4.2 we used the average values of gestational age from each of the 4 an-
tenatal visits in our imputation model. An alternative approach is to estimate the time
measurements which are missing. The time-variable will be included into the response-
matrix together with the MAD and BMI variables in the imputation model, and then
the missing values will be predicted by a covariate-matrix which consists of a constant
and LWB and with fetus as a random effect.

From Figure 17 we see that the estimated values of the standard deviations of the re-
sponse variables (MAD and BMI) in the response-matrix are very high compared to the
previous alternative. This is not surprising since gestational age is not used as a covari-
ate to model MAD and BMI. Therefore the covariate-matrix will not contain enough
information to give us reasonable estimates.
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Figure 17: Time series plot of the covariance matrix (Σ) of the response variables (MAD,
BMI and gestational time) in the response-matrix of the MI-procedure.

The only random effects which is included into the model is the person effect. From
Figure 18 we see that the estimated values for the covariance matrix of the random effects
(Ψ) have not converged and the mixing could have been better.
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Figure 18: Time series plot for the covariance matrix of random effects (Ψ) when only
fetus is being used as a random effect.
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From the ACF5-plot (Figure 19) we see that the correlations between the estimated
values from each iteration are very high, which means that all the values show a significant
correlation.
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Figure 19: ACF-plot for the covariance matrix of the random effects (Ψ), when only fetus
is being used as a random effect.

5.4.4 Conclusions

From the results shown in Figures 17, 18 and 19 compared with Figures 11, 12, 13 and 14
we see that the imputation procedure where missing values of gestational age are imputed
instead of modeled in the imputation model performs the best. Therefore we use the MI-
procedure where the gestational age variable is included as covariates in the imputation
model. This model has much smaller variance and the ACF-plot of the parameters in
the imputation-model clearly shows that the estimates of the parameters are much more
uncorrelated and the mixing is much better.

5acf = autocorrelation function is defined in Equation (37)
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6 Evaluation of Multiple Imputation method using a Simu-
lation Study

6.1 Introduction

In this chapter we

through a simulation study assess the accuracy of the estimates of the MI method.

6.2 Assessing the Accuracy of the MI-Method

Procedures for assessing model fit have not yet been implemented under multiple impu-
tation. Imputation variance serves to increase the “noise” in assessing the fit of a specific
model, and use of the full sample size also serves to inflate the model chi-square statistic.
Note that the MI-method consist of the MI (used to impute missing values) and the
growth model for MAD (perform the multilevel analysis with a complete set of data)
method. In an attempt to assess the accuracy of the model we used the following idea.

We only use subjects with a complete set of data (320) as a basis, from this data set
we delete values following a MCAR-procedure such that we get a simular pattern of miss-
ing values as in the full data set. Then we perform the MI-method (MI + lme method)
for each data set with missing values, and compare the estimates of imputed observations
with the true values. We also compare the summary statistics, the values it selves are not
the most important.

6.2.1 MCAR-procedure

From Table 5 we removed all groups with a frequency less than 10, the remaining eight
groups were
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1 0 320
2 1 X 18
3 1 X 16
4 1 X 15
5 2 X X 11
6 3 X X X 60
7 1 X 11
8 2 X X 24

Sum: 475

Table 6: Missing pattern of groups from Table 5 with a frequency ≥ 10 in each group.
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From Table 6 we see that there are 320 subjects which have no missing values and
155 are missing MAD or BMI from one ore more antenatal visits. This will contain
85% (475 of 561) of all the subjects in the original data set.

The eight different groups from Table 6 formed a basis, with a probability
Freq(groupj)P8

i=1 Freqi

to draw one of the groups. We sampled each subject in the complete set of data (320)
to decide which of the eight group they will be a member of, and deleted the observed
values which were missing in that specific group. The distribution for the groups from
the first simulation is displayed in Table 7.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
Freq 195 17 13 9 9 43 9 25

Table 7: Results from the first simulation following the outlined MCAR-procedure.

From Table 7 we see that there are 195 subjects with a complete set of data, and
125
320 = 39.06% of the subjects have missing values in the simulated data set. In the orig-
inal 561 SGA data set 561−320

561 = 42.96% were missing. This means that the percentage
of records with missing values are approximately the same in the simulated data set as
in the SGA data set.

The 195 subjects with no missing values were used to perform the complete case analysis
resulting in the estimates for the fixed coefficients in Table 8

Coefficient Value Std.dev DF t-value p-value
β0 65.4585 1.9195 579 34.1024 0.0000
β1 2.3534 0.1967 579 11.9668 0.0000
β2 -0.0120 0.0023 579 -5.1778 0.0000
β3 -0.2652 0.2724 191 -0.973 0.3316
β4 0.2032 0.0503 191 4.0403 0.0001
β5 0.1904 0.0561 579 3.3968 0.0007
β6 -1.4182 0.7536 191 -1.8818 0.0614
β7 0.0160 0.0049 579 3.2464 0.0012
β8 0.0228 0.0057 579 4.0331 0.0001
β9 -0.1651 0.0738 579 -2.2361 0.0257

Table 8: Estimates of the fixed effects from the complete case by the MCAR-procedure,
here 195 subjects are randomly chosen from those who originally 320 had a complete set
of values.

If we compare the estimated values from the original data set (Table 18) with the
simulated one (Table 8), we see that most of the parameters are almost unchanged except
β3 which represents effect of gender on the fetus and β6 which represents the effect of low
weighted fetuses from earlier pregnancies. The covariate β3 have changed from −0.00152
to −0.26519, which means that the gender of the fetus have become more significant, β6

have changed from −2.34333 to −1.41817 which means that result of earlier pregnancies
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with respect by LWB have slightly reduced its significance. We see that none of the pa-
rameter estimates have changed significantly (lies outside the 95% confidence interval of
the parameter estimates from Table 18) and all the estimated standard deviations have
increased, this is as expected since the data set from the MCAR-procedure contains as
subset of the original complete case (195 < 320).

Performing the MI-procedure defined in Section 4.5.2 on the data set we got from the
MCAR-procedure, we get M imputations of each missing value which gives us M differ-
ent imputed data sets. We here choose M = 10. Each of the imputed data sets are
then analyzed by the same complete-data method (lme), and we use Rubin’s rules from
Section 4.5.3 to combine the parameter estimates. Before we study the parameter esti-
mates we compare the estimated values from the MI-procedure with the observed values
(true-value) which we have deleted. Subjects from group 2 were only missing values from
MAD25 and subjects from group 7 were missing values from BMI37.

From Table 9, we see that the estimated values (measured in mm) from the imputa-
tion method for MAD are very close to the true values, the biases (observed value -
imputed value) are varying in the interval [−2.7770, 5.2460]. That is not so far from
the truth. The simulated values for BMI (measured in kg

m2 ) are surprising close to the
true value compared to the imputed values for MAD. The differences are in the interval
[−1.8240, 0.8760]. Since the imputation model is fitted for a model for MAD, we may
expected that we would have obtained a more narrow interval of the differences between
true and imputed values for MAD than for BMI. But neither of the imputed values for
the two different groups are far from the true value, and we know that our choice of
imputation model is acceptable.
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Imputed values
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m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 D
iff

2 72 69.40 73.50 67.10 68.60 70.30 70.40 68.10 69.70 72.50 68.50 -2.1900
2 62 64.61 63.27 62.52 63.62 61.89 63.59 66.28 61.20 65.24 61.06 1.3280
2 71 68.06 70.66 69.54 66.63 69.04 63.58 65.67 68.18 69.81 71.06 -2.7770
2 61 62.64 62.25 62.74 65.91 60.51 60.07 61.64 64.30 59.75 64.10 1.3910
2 61 64.28 65.84 63.16 61.85 63.00 66.93 64.32 64.67 62.63 62.13 2.8819
2 63 66.33 65.97 64.50 70.87 65.99 61.93 67.87 66.59 64.19 59.80 2.4040
2 72 71.01 70.01 70.61 67.84 70.48 67.73 71.74 70.33 67.96 69.79 -2.2500
2 62 63.35 66.04 68.97 66.59 67.12 66.09 71.61 66.17 69.62 66.90 5.2460
2 60 64.49 63.80 62.76 62.45 66.21 62.45 66.60 63.77 63.47 62.22 3.8220
2 61 62.96 61.71 62.72 65.38 65.22 62.38 60.47 60.48 59.56 63.48 1.4360
2 56 58.22 54.94 61.04 56.52 62.14 62.05 65.61 59.45 61.20 56.71 3.7880
2 64 60.28 61.85 61.85 61.53 61.84 62.77 57.57 61.54 61.05 57.87 -3.1850
2 63 57.12 61.28 59.45 60.18 59.68 63.79 61.10 62.51 60.48 59.80 -2.4610
2 67 66.82 67.75 68.89 66.37 64.25 67.50 66.81 67.33 63.31 68.19 -0.2780
2 63 68.79 66.37 64.15 69.15 71.28 67.28 70.04 68.42 66.39 67.87 4.9740
2 67 66.27 70.48 67.44 66.44 72.26 72.96 68.10 68.74 71.64 69.03 2.3360
2 68 68.94 66.12 66.18 67.38 65.90 67.20 71.92 67.52 65.67 67.92 -0.4773

7 23.18 22.33 23.89 25.59 25.29 22.41 21.98 23.72 23.70 25.79 20.89 0.3790
7 23.62 26.27 23.34 24.63 23.57 24.19 24.48 23.60 25.12 24.25 25.51 0.8760
7 25.34 26.83 25.17 25.68 26.47 23.47 24.83 25.55 24.91 26.09 25.92 0.1520
7 24.38 23.50 23.55 21.96 22.77 23.04 22.96 23.54 24.57 23.90 23.60 -1.0410
7 23.79 22.27 23.48 21.43 24.30 23.79 25.70 24.17 21.61 25.32 22.31 -0.3520
7 30.48 28.76 29.63 29.28 30.74 29.59 28.46 29.66 29.04 29.18 29.98 -1.0480
7 24.91 22.10 23.16 25.88 23.87 23.81 27.70 24.60 21.30 24.37 23.88 -0.8430
7 23.45 21.77 22.76 22.44 21.04 21.59 22.56 19.84 20.54 19.87 23.85 -1.8240
7 27.77 29.11 27.84 27.90 27.89 26.61 29.07 28.16 26.63 28.03 28.78 0.2320

Table 9: Estimated values from the imputation model for two of the eight possible groups
from the MCAR-simulation (Table 7). Diff is the average difference between each of the
observed values and the 10 imputed values. Subjects from group 2 are missing MAD17-
observations and subjects from group 7 are missing BMI37-observations.

In Table 10 we see the estimated fixed effects of the parameters when we analyze each
of the 10 imputed data sets with the the growth model for MAD (perform the multilevel
analysis with a complete set of data) method.
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Imputed data set
Parameter m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

β0 65.631 67.379 67.749 66.648 66.980 66.143 66.693 66.334 67.770 66.747
Std.devβ0 1.5617 1.5839 1.5613 1.6083 1.5789 1.5651 1.6139 1.6217 1.5865 1.6007
β1 2.4738 2.5432 2.6299 2.5101 2.5824 2.5439 2.5108 2.5117 2.6473 2.5368
Std.devβ1 0.1506 0.1511 0.1508 0.1563 0.1519 0.1497 0.1525 0.1555 0.1527 0.1512
β2 -0.0119 -0.0112 -0.0119 -0.0113 -0.0127 -0.0110 -0.0122 -0.0127 -0.0111 -0.0110
Std.devβ2 0.0017 0.0017 0.0017 0.0018 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
β3 0.1365 0.0219 -0.0228 0.0659 0.0612 0.0357 0.1540 0.0486 0.0083 0.0225
Std.devβ3 0.2216 0.2213 0.2214 0.2308 0.2230 0.2212 0.2243 0.2237 0.2216 0.2237
β4 0.1717 0.0997 0.1024 0.1433 0.1089 0.1739 0.1203 0.1164 0.1214 0.1111
Std.devβ4 0.0412 0.0420 0.0413 0.0426 0.0419 0.0415 0.0429 0.0433 0.0420 0.0426
β5 0.2220 0.2303 0.2183 0.2064 0.2399 0.1958 0.2351 0.2584 0.1872 0.2422
Std.devβ5 0.0438 0.0442 0.0437 0.0450 0.0439 0.0436 0.0448 0.0447 0.0441 0.0444
β6 -1.4646 -1.5728 -1.4696 -1.0711 -1.2008 -1.5663 -1.4229 -1.2142 -1.5546 -1.4242
Std.devβ6 0.5660 0.5773 0.5670 0.5845 0.5755 0.5692 0.5888 0.5945 0.5773 0.5853
β7 0.0127 0.0080 0.0074 0.0103 0.0078 0.0137 0.0109 0.0088 0.0091 0.0090
Std.devβ7 0.0038 0.0038 0.0038 0.0040 0.0039 0.0038 0.0039 0.0040 0.0039 0.0039
β8 0.0221 0.0244 0.0217 0.0230 0.0228 0.0178 0.0220 0.0245 0.0187 0.0235
Std.devβ8 0.0042 0.0042 0.0042 0.0043 0.0042 0.0042 0.0042 0.0043 0.0042 0.0042
β9 -0.1032 -0.1152 -0.1172 -0.0563 -0.0768 -0.1277 -0.0773 -0.0895 -0.1173 -0.1054
Std.devβ9 0.0523 0.0528 0.0525 0.0545 0.0532 0.0522 0.0534 0.0546 0.0532 0.0530

Table 10: Estimated fixed effects and standard deviation of the parameters for the 320
subjects using complete-data method analysis from each of the 10 imputed data sets.

We see that there is only small variations between the estimates and the standard
deviations of the parameters for each of the imputed data sets.

6.2.2 Combining the Results

When we use Rubin’s rules to combine the results of the estimated parameters in the
model for MAD from Table 10 we get the results of Table 11

Coefficient Mean Average Var. Between-imputation Var. Total Var. Standard deviation
β0 66.8073 2.5230e+00 4.7348e-01 3.0437e+00 1.7446
β1 2.5490 2.3180e-02 3.0617e-03 2.6547e-02 0.1629
β2 -0.0117 2.9933e-06 4.6081e-07 3.5002e-06 0.0019
β3 0.0532 4.9846e-02 3.0397e-03 5.3190e-02 0.2306
β4 0.1269 1.7754e-03 7.3153e-04 2.5801e-03 0.0508
β5 0.2235 1.9565e-03 4.9189e-04 2.4976e-03 0.0500
β6 -1.3961 3.3479e-01 3.0418e-02 3.682e-01 0.6068
β7 0.0098 1.4969e-05 4.4669e-06 1.9883e-05 0.0045
β8 0.02205 1.77590e-05 4.9041e-06 2.3153e-05 0.0048
β9 -0.0986 2.8117e-03 5.2054e-04 3.3989e-03 0.0583

Table 11: Estimates of the fixed effects combined by Rubins rules, Equation (13-16), for
the 320 subjects in the imputed data sets.

From Table 11 we see that the estimates for the different parameters are almost equal
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to the ones from the complete-data analysis in Table 18. The standard deviation of the
parameters in Table 11 are larger than the standard deviations in Table 18 as expected.

To investigate this more throughly, we need to perform more than only one repeti-
tion of the MCAR-procedure. Therefore we repeated the MCAR-procedure 10 times as
described in Figure 20. Each time we calculated:

Biasβ = meanβComplete-case −meanβMI-method ,

FractionStd.devβ
=

Std.devβComplete-case

Std.devβMI-method

.
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Figure 20: Simulation process to verify our imputation method, where CC is the complete
case analysis of subjects with a complete set of measurements from the SGA-data set
(320). θi is the parameter estimate of the imputed data set combined with Rubin’s
rules. The uncertainty in θi has two parts; Wi is the average within each imputation
variance, Bi is the between-imputations variance and Ti is the total variability associated
with θi. Estimated bias of the fixed effects for each parameter is the difference between
meanβComplete-case and meanβMI-method . Estimated standard deviation of the fixed effects is
measured as a fraction between Std.devβComplete-case and the Std.devβMI-method .
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The Complete case data set is the original SGA Data set (561) with a complete
set of measurements (320), and MI-method contains the data sets generated by the
MCAR-procedure and the (MI-procedure + lme analysis). The result from this MCAR-
simulation (the 10 repetitions of the MCAR procedure) are given in Table 12. Note that
estimated parameters from the MI-method used in the estimated biases and fraction of
the standard deviations from repi are combined with usage of Rubin’s rules from the
lme analysis with the 10 imputed data sets from the MCAR-procedure in each of the 10
repetitions as showed in Figure 20.

Coefficient rep 1 rep 2 rep 3 rep 4 rep 5 rep 6 rep 7 rep 8 rep 9 rep 10

Biasβ0 -1.1816 -0.7709 -0.2128 0.5242 -0.8013 -0.4752 0.3348 -0.3197 0.0503 -1.4100
Fractionβ0 0.8756 0.9457 0.9326 0.9504 0.9523 0.9207 0.9519 0.9644 0.8420 0.9228
Biasβ1 -0.0857 -0.0680 -0.0097 0.0725 -0.0854 -0.0361 0.0599 -0.0116 0.0556 -0.1070
Fractionβ1 0.8600 0.9407 0.9428 0.8759 0.9279 0.9187 0.9195 0.9454 0.7950 0.9499
Biasβ2 0.0000 0.0004 0.0004 0.0007 0.0001 -0.0007 -0.0008 -0.0002 0.0003 0.0005
Fractionβ2 0.9029 0.9777 0.9087 0.9277 0.8437 0.8947 0.9381 0.91063 0.8320 0.8928
Biasβ3 0.0576 -0.0041 0.0003 -0.0208 -0.0401 0.0546 -0.0561 -0.0215 -0.0207 0.0469
Fractionβ3 0.9755 0.9621 1.0008 1.0096 0.9716 0.9821 0.9645 0.9820 1.0040 0.9730
Biasβ4 0.0154 0.0213 0.0101 0.0002 0.0156 0.0148 0.0297 0.0243 0.0094 0.0456
Fractionβ4 0.8711 0.9682 0.9174 0.9536 0.9493 0.8912 0.9607 0.9494 0.9482 0.8763
Biasβ5 0.0295 0.0077 -0.0088 -0.0254 0.0138 0.0039 -0.0416 -0.0131 -0.0133 0.0045
Fractionβ5 0.8750 0.8942 0.9591 0.9004 0.9162 0.8874 0.8980 0.9687 0.7743 0.9455
Biasβ6 -0.2140 0.0280 -0.0441 -0.0969 -0.3905 -0.4419 -0.3786 -0.1386 -0.3383 -0.3974
Fractionβ6 0.9409 0.9671 0.9347 0.9523 0.8955 0.9161 0.8962 0.9361 0.9640 0.8980
Biasβ7 0.0003 0.0027 0.0004 -0.0007 0.0008 0.0003 0.0028 0.0010 0.0007 0.0041
Fractionβ7 0.8662 0.9536 0.8974 0.9061 0.9297 0.8693 0.9439 0.9366 0.8963 0.9050
Biasβ8 0.0033 -0.0003 -0.0004 -0.0022 0.0026 0.0011 -0.0056 -0.0004 -0.003 -0.0001
Fractionβ8 0.8770 0.8862 0.9352 0.8488 0.9126 0.9447 0.8792 0.9587 0.7659 0.9511
Biasβ9 -0.0264 0.0068 -0.0014 -0.0090 -0.0346 -0.0272 -0.0371 -0.0125 -0.0381 -0.0473
Fractionβ9 0.8876 0.9609 0.9251 0.9191 0.8745 0.8971 0.8695 0.9073 0.9264 0.9000

Table 12: Estimated bias of the fixed effects for each parameter β0, ..., β9 between
meanβComplete-case and meanβMI-method , and estimated standard deviation of the fixed ef-
fects for each parameter measured as a fraction between Std.devβComplete-case and the
Std.devβMI-method from the 320 subjects in the complete-case analysis.

In Table 13 we see the calculated average of the biases and average fraction of the
standard deviation for each parameter
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Variable β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

CCpar 66.677 2.5305 -0.0122 0.0277 0.1495 0.2088 -1.9599 0.0117 0.0210 -0.1682
Biasβ -0.5350 -0.0357 0.0001 -0.0067 0.0200 -0.0013 -0.2719 0.0015 -0.0002 -0.0259
CCdev 1.5559 0.1468 0.0018 0.2269 0.0409 0.0440 0.5615 0.0037 0.0041 0.0507
Frac.β 0.9242 0.9066 0.9060 0.9827 0.9305 0.9020 0.9274 0.9141 0.8983 0.9058

Table 13: Biasβ are the calculated average bias (meanβComplete-case −meanβMI-method) and

Fractionβ are average fraction of the standard deviation (
Std.devβComplete-case
Std.devβMI-method

) for each
parameter β0, ..., β9. While CCpar and CCdev are the estimates of the parameters and
the standard deviations from the complete-case analysis (320).

From Table 13 we see that most of the calculated bias of the estimated parameter
values from the MCAR-procedure are small and negative. The bias of β0 is on average
reduced by −0.5350 from the estimated value of the complete-data method with 320 sub-
jects, and β6 is on average reduced by −0.2719. The rest of the parameter estimates are
approximately unchanged. The standard deviations of all the parameters have increased
after the missing values have been imputed from the MI-method as expected.

6.3 Conclusions

Following the MCAR-procedure defined in Section 6.2 we have found the MI-method
gives us reasonable imputed values for the missing values. Table 9 shows that there is
not a large difference between the observed values and the imputed ones, when we used
the complete-data method for analyzing the imputed data sets and combining the results
with Rubin’s rules we see from Table 11 that the estimates for the different parameters
are almost equal to the ones from the complete-data method in Table 18. When we
repeated the MCAR-procedure ten times we found out that there were a negative trend
in the differences of the estimated parameter values and all the standard deviations of
the parameters increased compared with complete case analysis.

The simulation study we used to evaluate the multiple imputation method worked very
well. From Table 9 it is easy to see if the imputed values are reasonable. The results
from Table 13 are as we expected, there are very little difference between the parameter
estimates and the standard deviations of the parameter generated from the MCAR-
procedure is larger than the estimates from the Complete case analysis with the subjects
with a complete set of measurements (320) from the original SGA Data set (561).
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7 Comparison of ML and MI on the SGA-Data set using a
Simulation Study

In this chapter we compare the result of a maximum likelihood (ML)-procedure which
uses a single model applied to Yobs alone to an analysis based on an multiple imputation
(MI)-procedure (which use two models). Collins et al. (2001) assumes that the model for
the complete-data population P (Ycom; θ) used in the ML analysis is the same model used
to obtain the estimates and standard errors (θ̂, Uj) , j = 1, ...,m after performing the
MI-method. Without this assumption there is no guarantee that the same population
parameters are estimated under the two methods and the missing values are MAR. MAR
(defined in Section 4.3) means that the probability that Y is missing may depend on the
other variables Xi but not on Y itself. Collins et al. (2001) discusses three different
propositions, but we will only use the first of these:

Proposition 1. If the user of the ML procedure and the imputer use the same set of
input data (same variables and observed units); if their models apply equivalent distribu-
tional assumptions to the variables and the relationships among them; if the sample size
is large and if the number of imputations is sufficiently large; then the results from the
ML and MI procedures will be essentially identical.

Under this conditions the MI procedure will approximately perform a Bayesian analysis
under the same model used in the ML-procedure. The asymptotic equivalence between
the Bayesian and likelihood-based procedures is well known (Gelman et al. (1995b)).
Note that with large samples the effect of a diffuse prior distribution will be diminished
which will cause the MI (Bayesian) and ML analyses to produce similar results.

7.1 Comparing ECME and the LME-Method using the Complete Data

In the SGA-data set values are missing both for the variable MAD (that is the response
variable in the lme model) and for the BMI variable (which is a covariate in the lme
model for MAD). The MI-method based on the multivariate lme-method of Schafer (im-
plemented in the PAN package) can handle this situation. This is however not the case
for the EM-method of Schafer implemented in the PAN package, but this is theoretical
possible to accomplish. BMI should have been used as a predictor for MAD. Therefore
to compare the performance of the MI-Method with the ML-Method we use the original
data set with a complete set of measurements (320) and will only delete values in the
MAD variable.

The ML procedure applied to Yobs uses a single model, and this ecme procedure should
give us approximate equal results as with the multilevel analysis which is performed with
the lme procedure. The results from this two methods is given in Table 14.
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Parameter ECME LMEREML LMEML DifferenceREML DifferenceML

β0 68.5946 66.6775 66.6692 1.9171 1.9254
β0Std.Error 1.7482 1.5559 1.5460 0.1923 0.2022
β1 2.6969 2.5305 2.5298 0.1664 0.1671
β1Std.Error 0.1605 0.1468 0.1461 0.0137 0.0144
β2 -0.0122 -0.0122 -0.0122 0.0000 0.0000
β2Std.Error 0.0018 0.0018 0.0018 0.0000 0.0000
β3 0.0277 0.0277 0.0285 0.0000 0.0008
β3Std.Error 0.2245 0.2269 0.2258 0.0024 0.0013
β4 0.1495 0.1495 0.1495 0.0000 0.0000
β4Std.Error 0.0406 0.0409 0.0406 0.0003 0.0000
β5 0.2094 0.2088 0.2091 0.0006 0.0003
β5Std.Error 0.0438 0.0440 0.0438 0.0002 0.0000
β6 -1.9588 -1.9599 -1.9595 0.0011 0.0007
β6Std.Error 0.5579 0.5615 0.5577 0.0036 0.0002
β7 0.0117 0.0117 0.0117 0.0000 0.0000
β7Std.Error 0.0037 0.0037 0.0037 0.0000 0.0000
β8 0.0211 0.0210 0.0210 0.0001 0.0001
β8Std.Error 0.0041 0.0041 0.0041 0.0000 0.0000
β9 -0.1682 -0.1682 -0.1682 0.0000 0.0000
β9Std.Error 0.0504 0.0507 0.0505 0.0003 0.0001

Table 14: Analyzing the complete-case (320) by the ecme and the lme-method, where
DifferenceREML is the difference between the estimates of the ECME and LMEREML
method and DifferenceML is the difference between the estimates of the ECME and
LMEML method.

We emphasize that this was done to verify that the ML-procedure and the growth
model for MAD (perform the multilevel analysis with a complete set of data) method give
approximately equal results. The estimated parameters of the ecme-procedure are almost
equal to the estimates from the lme-procedure, except the estimate of β0 and β1 where
the difference is approximately 1 standard deviation. The 95% confidence interval for β0

and β1 with the lme procedure is: β0 ∈ {63.5657, 69.7893} and β1 ∈ {2.2369, 2.8241}.
The estimate of β0 and β1 by the ecme procedure is within this interval and therefore
there is not a significant difference between the estimates of the two methods.

7.2 Simulation Study

We will now generate data set with different types if missing mechanisms, when we
generated the different data sets with the different missingness-procedures we wanted
to keep the rate of missingness as in the SGA Data set (561). From Table 2 we see
that the rate of missingness of MAD by the four different time of gestations during
the pregnancy are 3%, 23%, 21% and 24%, which means that from the complete data
set (320), subjects with a complete set of measurements (320) from the original SGA
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Data set, approximately 10 observations will be missing from the first antenatal visit,
74 observations will be missing from the second antenatal visit, 67 observations will be
missing from the third antenatal visit and 77 observations will be missing from the fourth
and last of the antenatal visits.

7.2.1 MCAR

Following a MCAR procedure we know that the missingness does not depend on the
observed or unobserved data. We therefore randomly drew MAD observations to be
missing such that the missing rates at each of the four occasions were fulfilled.

7.2.2 MAR

Following a MAR procedure we know that the missingness of the response variable may
depend on the covariates, but not on the value of the response. To construct the simu-
lation method using the MAR mechanism simple, we used the observed values of BMI
of the mother at each of the four occasions as predictor variable of missingness by the
MAD variable.

If the values of BMIi > Constanti i = {1, 2, 3, 4} it will cause MADi to be missing.
The different values of the Constant which are selected to generate similar missing rates
of MAD as in the full data set are

Constanti =


28.5 at the first occasion.
25.6 at the second occasion.
27.2 at the third occasion.
28.0 at the fourth occasion.

A woman who has an BMI > 25 is classified as over-weighted.

7.2.3 MNAR1

Following a MNAR procedure we know that the missingness of the response variable
may depend on the covariates and on the missing value itself. Again to make the
simulation-method using the MNAR mechanism simple we omit the current value of
MAD if MADi > Constanti i = {1, 2, 3, 4}. The different values of the Constants which
are selected to generate similar missing rates of MAD as in the full data set are

ConstantMADi =


46.00 at the first occasion.
67.50 at the second occasion.
96.50 at the third occasion.
105.50 at the fourth occasion.
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By executing this procedure only one of the subjects got all four repeated measurements
removed, and by performing an lme analysis with the complete case-data we only have
a complete set of data from 187 of the 320 subjects.

7.2.4 MNAR2

Another way of simulate a data set with missing values with the MNAR missing mecha-
nism is to use the observed values of BMI of the mother at each of the four occasions as
predictor variable in addition to the MAD variable itself to be predictors of missingness
by the MAD variable. If the values of BMIi > Constanti and MADi > Constanti i =
{1, 2, 3, 4} it will cause the MAD variablei to be missing. The different values of the
Constants to generate similar missing rates of MAD as in the full data set are:

Const.BMIi =


22.04 at the first occasion.
23.88 at the second occasion.
25.24 at the third occasion.
26.42 at the fourth occasion.

Const.MADi =


46.00 at the first occasion.
67.50 at the second occasion.
96.50 at the third occasion.
105.50 at the fourth occasion.

All the Constants used by the BMI-variable are equal to the average values at each of the
different occasion, and those observed MAD measurements which are larger that the con-
stant used by the MNAR procedure represent the 3− 20% largest measurements at each
occasion during the pregnancy. By executing this procedure none of the subjects had all
four repeated measurements removed, but 15 subjects had the last three measurements
during the study removed, and by performing an lme analysis with the complete-data
set we only have a complete set of data from 251 of the 320 subjects.

7.2.5 Comparing the Results of the Different Missingness Mechanisms

The convergence behavior of the log-likelihood using the ECME-procedure on the com-
plete data set, data set with missing data generated by the MCAR-procedure, data set
with missing data generated by the MAR-procedure and the data set with missing data
generated by the MNAR1 and MNAR2-procedures are shown in Figure 21.
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Figure 21: Convergence behavior of the log-likelihood by the different missingness-
procedures. MNAR1 is based on the values of MAD and MNAR2 is based on the BMI
values in addition to the MAD values.

We see that the log-likelihood of the ECME -procedure used on different data set
with different missing mechanisms converged at different steps. The log-likelihood of
the complete data set converged at 253 iterations and had the lowest value (−2056.505).
The log-likelihood of the data set generated by the MCAR procedure converged at 770
iterations which was slowest at all the procedures, and it had the third highest value
(−1684.405). The log-likelihood of the data set generated by the MAR procedure con-
verged fastest (199 iterations) and had the second highest value with −1651.240. The
log-likelihood of the data set generated by the MNAR1 procedure which is based upon
the MAD values itself in addition to the BMI values converged at 223 iterations, which
was almost as fast as the MAR procedure and with almost the same value of the log-
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likelihood (−1806.901). The log-likelihood of the data set generated by the MNAR2

procedure which is based upon only the MAD values itself converged at 274 iterations
and had the highest value with −1580.245.

The result of executing the ECME, MI and lme method for the data sets with the
three different missing mechanisms, is summarized in Table 16, together with the results
on the complete data set for each situation.
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A rule of thumb that Schafer and Graham (2002) have found useful is that bias
becomes problematic if its absolute size is greater than |bias|β̂ >

1
2standard deviationβ̂ .

We make the following general observations of the missing values, which were imposed
by the three different missing-mechanisms:

• MCAR – all the estimated parameter values from the ECME, MI and the lme
method with a complete data set lie within the 95% - confidence intervals, and
the estimated standard deviation from all the three methods are greater than the
standard deviations estimated from the lme(∗) method (defined in the caption in
Figure 16). Note that the lme method with a complete data set have a larger
standard deviation for each parameter than the ECME and MI methods.

• MAR – all the estimated parameter values from the ECME, the lme with a complete
data set and almost all the parameter estimates from the MI method lies within
the 95% - confidence intervals. The absolute values of the bias from the estimates
of β1, β5 and β8 from the MI method are greater than the rule of thumb. The
estimated standard deviations from the ECME and MI methods are greater than
the standard deviations from the MCAR simulation, but the standard deviations
from the lme method with a complete data set have been reduced on six of the ten
parameters, unchanged in one parameter (β2) and increased on three parameters
(β1, β5 and β8).

• MNAR1 – the parameter values estimated by this type of missing-mechanism are
biased and their standard deviations are smaller than the standard deviations es-
timated from MAR and MCAR with both the ECME , MI and the lme method
with a complete set of data. The absolute size of the biases of β0, β1, β5 and
β8 are greater than the rule of thumb and will cause a larger residual in the
model which describes MAD during the pregnancy . The estimated standard
deviations from the MNAR simulation are smaller than the standard deviations
estimated from the MCAR and MAR simulations, and smaller than the estimated
standard deviations estimated by the lme(∗) method except for the CC method.
(Std.devMAR > Std.devMCAR > Std.devlme(∗) > Std.devMNAR1)

• MNAR2 – the parameter values estimated by this type of missing-mechanism are
biased, but not so much as the other MNAR option and their standard deviations
are smaller than the standard deviations estimated from MAR, MCAR and MNAR1

with both the ECME, MI and the lme method with a complete set of data. We also
see that the estimated values of β5 and β7 are not significantly biased compared with
the MNAR1 method. The fraction of the standard deviations of the CC analysis
of the different missing mechanisms are: CCMCAR > CCMAR > CCMNAR1 >
CCMNAR2 .

7.2.6 Further Investigations under the MAR Assumption

When we used the BMI variable in the MAR missing mechanism to generate data set
containing missing values, and used both ECME and MI method to give us a complete-
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case analysis. It resulted in that the parameter estimates of the variable used to create
the missing values in the data set were significantly biased compared to the parameter
estimates from the lme(∗) method. Checking this assumption further, we wanted to use
AGE and LBW to generate two different data set with missing values using the MAR
mechanism, and performed the ECME and MI method to generate complete cases, trying
to assess the same trend.

MAR1.

We use AGE as a predictor for MAD in the MAR missing mechanism. We divided
the data set into four different groups such that

1. The first group contained only women whose AGE ≤ 22. In the full data set (561)
there are 28 (4.99%) women who fulfill the age criteria, and the missing rates of
MAD at the different time of gestation are 14.29%, 42.86%, 32.14% and 42.86%.

2. The second group contained women whose age is: 23 ≥ AGE ≤ 29. There were
304 (54.19%) women who fulfilled the age criteria for being in the second group, the
missing rates of MAD at the different gestational time are 3.62%, 20.07%, 18.75%
and 23.36%.

3. The third group contained women whose 23 ≥ AGE ≤ 35. There were 194 (34.58%)
women who fulfilled the age criteria for being in the third group, the missing rates
of MAD at the different gestational time are 1.03%, 24.23%, 21.65% and 21.65%.

4. The last group contained women whose AGE > 35. There were 35 (6.24%) women
who fulfilled the age criteria for being in the last group, the missing rates of MAD
at the different gestational time are 0%, 28.60%, 25.71% and 28.57%.

Then we removed as many observations completely at random from each occasion of mea-
surements in each of the four groups to obtain the appropriate amount of missing values.
This is a MAR and not MCAR mechanism because the quantity of MAD observations
to be removed depends of the age of the women. We see that there are different rates
of missingness in each group. In group 1 there are most missing values at the second
and fourth occasion of measurements, compared with the other groups we see that from
the second occasion of measurement there are missing more than 40% of the values and
that is twice the amount (measured in percentage) which is missing in the other groups.
From the third occasion of measurements we see that there is missing almost one third
of the measurements, while in the other three groups there are missing approximately
one fifth of the measurements. From the last occasion of measurements we see that there
is missing 40% of the results in group one and that is almost twice the amount which is
missing in the other groups.
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MAR2.

We use LBW as a predictor for MAD in the MAR missing mechanism, we divided
the data set into three different groups such that

1. The first group contained only women who have not given birth to a child with
low birth weight in one of the earlier pregnancies. In the full data set there are
494 (88.06%) women who fulfill the this criteria, and the missing rates of MAD at
the different time of gestation are 2.65%, 22.20%, 20.57% and 23.01%.

2. The second group contained women who have given birth to one low weighted child
from earlier pregnancies. There were 61 (10.87%) women who fulfilled this criteria
for being in the second group, the missing rates of MAD at the different gestational
time are 4.48%, 28.36%, 19.40% and 29.85%.

3. The third group contained women who have given birth to two low weighted chil-
dren from earlier pregnancies. Totally there were only three (0.53%) women who
fulfilled this criteria for being in the third group, the missing rates of MAD at the
different gestational time are 33.33%, 66.67%, 100.00% and 66.67%.

Then we removed as many observations completely at random from each occasion of
measurements in each of the three groups to obtain the appropriate quantity of missing
values. This is also a MAR mechanism since the quantity of MAD observations to be
removed depends of the different outcome from the LBW variable. We see that the
number of subjects in each group are very different, there are 494 subjects in the first
group and only 3 subjects in the third group. There are missing approximately the equal
amount of missing values in the first and second group. The results of the complete-data
method and complete-case analysis are given in Table 16.
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Parameter- MAR1 MAR2

Estimate ECME MI CC ECME MI CC lme(∗)

β0 68.2614 66.9566 66.8450 67.8971 66.8012 68.0726 66.6775
β0Std.Error 1.8355 1.7091 2.4940 1.8551 1.7545 2.4501 1.5559
β1 2.7119 2.6380 2.5310 2.6671 2.5669 2.6421 2.5305
β1Std.Error 0.1742 0.1612 0.2292 0.1707 0.1669 0.2399 0.1468
β2 -0.0114 -0.0111 -0.0129 -0.0115 -0.0110 -0.0130 -0.0122
β2Std.Error 0.0020 0.0020 0.0026 0.0020 0.0019 0.0029 0.0018
β3 0.0654 0.0822 0.3814 0.0289 0.0156 0.0618 0.0277
β3Std.Error 0.2343 0.2335 0.3568 0.2330 0.2397 0.3677 0.2269
β4 0.1486 0.1447 0.1536 0.1605 0.1513 0.0988 0.1495
β4Std.Error 0.0422 0.0436 0.0673 0.0424 0.0438 0.0655 0.0409
β5 0.2191 0.2026 0.1842 0.2281 0.2052 0.2180 0.2088
β5Std.Error 0.0466 0.0471 0.0647 0.0476 0.0510 0.0703 0.0440
β6 -1.9175 -1.9447 -1.6932 -1.9741 -1.9036 -1.7673 -1.9599
β6Std.Error 0.5680 0.5765 0.7203 0.5825 0.5835 1.0778 0.5615
β7 0.0109 0.0103 0.0125 0.0141 0.0134 0.0118 0.0117
β7Std.Error 0.0039 0.0040 0.0059 0.0038 0.0040 0.0061 0.0037
β8 0.0214 0.0186 0.0201 0.0207 0.0181 0.0170 0.0210
β8Std.Error 0.0045 0.0046 0.0060 0.0045 0.0047 0.0069 0.0041
β9 -0.1631 -0.1665 -0.1473 -0.1880 -0.1617 -0.1859 -0.1682
β9Std.Error 0.0528 0.0540 0.0631 0.0537 0.0539 0.1002 0.0507

Table 16: MAR1 is the missing mechanism based upon the AGE of the mother and
MAR2 is the missing mechanism based upon the LBW (low birth weighted children from
earlier pregnancies) variable. Use of boldface type in the table indicates the parameter-
estimates which is not within the 95% confidence interval from Table 21. In each case a
lme procedure is performed with a complete set of data, which is named CC.

We see that none of the estimated values of the parameters used generating missing
values with the MAR-assumption are significantly different from the lme(∗) estimates.
One reason for this might be that the dependence (correlation) of the variables AGE
and LBW are smaller on to MAD than the BMI variable. Since BMI is such a strong
predictor for MAD a missing-procedure for BMI will also act as a missing-procedure for
MAD.

7.3 Conclusion

We have verified that the ML-procedure and the growth model for MAD (perform the
multilevel analysis with a complete set of data) gives approximately equal results. From
our simulation study we have verified proposition 1 from Collins et al. (2001), the MI-
procedure and the ML-procedure gives us approximately equal parameter estimates
for the generated data set with different types of missing mechanisms. Both MNAR-
procedures produced biased parameter estimates and the standard deviations were re-
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duced. We believe that the covariates used in the MAR-procedure approximately will act
as a MNAR-procedure if the correlation between the covariates and the response variable
are large enough.

Another interesting observation in the simulation study is that estimates of the coef-
ficients for variables used to generate the MAR and MNAR missing mechanism are
“suffering” because they tend to be more biased compared to the values from the lme
procedure performed on the complete SGA Data Set (320) than the other variables.
According to the MAR assumption such a procedure should give unbiased parameter
estimates.
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8 Analyzing MAD Growth in the SGA Data set

8.0.1 Introduction

In this chapter we

(a) describe the selection procedure of variables included into the growth model for
MAD.

(b) perform a complete data analysis on the SGA Data set (561) and compare the results
to the complete case analysis with the subjects with a complete set of measurements
(320) from the original SGA Data set.

8.1 Variable Selection Based on a Complete-Case SGA Data Set

In Section 2.2 the SGA Data Set was presented. Here we repeat the work based on
backward elimination to arrive at a set of explanatory variables to be based in a linear
mixed effects model with MAD as response variable.

We first fit a full set of covariates. From the estimates of the fixed effects from Ta-
ble 17 we see from the p-values that there are many covariates which were not significant
(p > 0.05). The covariates were omitted based upon the p-values. We omitted the co-
variate which had the biggest p-value, and re-estimated new coefficients until we only
had significant variables left. This procedure is called backwards elimination.

Coefficient Value Std.dev DF t-value p-value
Intercept 69.03488 2.5301035 555 27.285396 0.0000
Time∗ 2.66509 0.2495621 555 10.679081 0.0000
Time∗

2
-0.00846 0.0023226 555 -3.642911 0.0003

Smoking 0.37239 0.4557491 184 0.817091 0.4149
Cigarettes -0.02785 0.0412494 555 -0.675143 0.4999
Age 0.14434 0.0548158 184 2.633186 0.0092
Parity 0.76006 0.4629415 184 1.641810 0.1023
Weight 0.00585 0.0405019 555 0.144332 0.8853
BMI 0.17594 0.1318462 555 1.334435 0.1826
HB -0.25660 0.1290669 555 -1.988134 0.0473
Gender 0.07923 0.4037541 184 0.196225 0.8447
LBW -2.32386 0.7334272 184 -3.168496 0.0018
Time∗:Smoking 0.10099 0.0406742 555 2.482940 0.0133
Time∗:Cigarettes -0.00471 0.0038111 555 -1.236099 0.2169
Time∗:Age 0.00938 0.0048808 555 1.920991 0.0552
Time∗:Parity 0.02336 0.0410673 555 0.568813 0.5697
Time∗:Weight 0.00279 0.0035146 555 0.795007 0.4269
Time∗:BMI 0.00905 0.0117005 555 0.773093 0.4398
Time∗:HB -0.00441 0.0145524 555 -0.302803 0.7622
Time∗:Gender 0.02042 0.0358550 555 0.569413 0.5693
Time∗:LBW -0.17193 0.0648776 555 -2.650088 0.0083

Table 17: Estimates of the fixed effects from (561−369) 192 subjects who had a complete
set of observed measurements for the relevant variables.
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We omitted Cigarettes, Smoking, Weight, Parity and HB from the model. Now we
only have “significant” covariates left, because all the covariates are significant except
gender, but we know that gender has an important effect. The growth of fetuses are
different between the gender, girls are smaller and weigh less than boys. Concerning the
MAD-variable this will show itself in from approximately 18 weeks of gestation, and the
differences will increase towards the delivery. This have been confirmed by Goldenber
et al. (1993). Their primary objective were to determine the importance of several ma-
ternal risk factors and fetal sex on specific fetal anthropometric measurements assessed
by ultrasonograhy. Serial ultrasonographic examinations were performed on 1205 fetuses
of multiparous women who ultimately gave birth at term. They measured among others
femur length and abdominal circumference (MAD) at mean gestational ages of 18, 25, 31
and 36 and they estimated a fetal weight. They used regression analyses to determine
the effects on each measurement of maternal race, results from the study were that acting
through their effect on head circumference, abdominal circumference and fetal length,
each of the risk factors together with female sex were shown to have a negative effect on
fetal weight.

The new model with the significant covariates for MAD is

yij = β0j + β1jx
∗
ijTime

+ β2jx
∗2

ijTime
+ β3xijGender

+ β4xijAGE + β5xijBMI + β6xijLBW

+ β7xijAGEx
∗
ijTime

+ β8xijBMIx
∗
ijTime

+ β9xijLBW x
∗
ijTime

+ εij .

(38)

Complete data set

The estimates of the fixed effects from the complete data set are given in Table 18.

Covariate Coefficient Value Std.dev DF t-value p-value
Constant β0 66.6775 1.5559 954 42.8549 0.0000
Time∗ β1 2.5305 0.1468 954 17.2356 0.0000
Time∗2 β2 -0.0122 0.0018 954 -6.9294 0.0000
Gender β3 0.0277 0.2269 316 0.1219 0.9031
AGE β4 0.1495 0.0409 316 3.6575 0.0003
BMI β5 0.2088 0.0440 954 4.7443 0.0000
LBW β6 -1.9599 0.5615 316 -3.4905 0.0006
Time∗:Age β7 0.0117 0.0037 954 3.1757 0.0015
Time∗:BMI β8 0.0210 0.0041 954 5.0877 0.0000
Time∗:LBW β9 -0.1682 0.0507 954 -3.3147 0.0010

Table 18: Estimates of the fixed effects from the 320 subjects who had a complete set of
values.
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8.2 Complete Case (561)

Since we have assessed that the MI-method gives us reasonable imputed values for the
missing values in Section 6 we used the MI-method (defined in Section 5.4.1) on the full
data set based upon the SGA Data Set (561). In Table 19 we see the estimated values of
the parameters from the complete-data method when we analyzed each of the 10 imputed
data sets.

Parameter m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

β̂0 68.423 68.166 66.969 68.978 67.806 68.509 67.833 67.728 68.637 68.664
β0Std.Error 1.1508 1.1537 1.1827 1.1385 1.1329 1.1610 1.1543 1.1502 1.1748 1.1395
β̂1 2.6406 2.5915 2.5052 2.6545 2.5906 2.6158 2.5563 2.5503 2.6343 2.6640
β1Std.Error 0.1149 0.1133 0.1164 0.1120 0.1118 0.1148 0.1147 0.1131 0.1132 0.1161
β̂2 -0.0107 -0.0104 -0.0115 -0.0104 -0.0117 -0.0124 -0.0116 -0.0110 -0.0102 -0.0118
β2Std.Error 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014
β̂3 0.0503 0.0698 0.0912 0.0273 0.1345 -0.0476 -0.0219 0.0939 -0.1032 0.0902
β3Std.Error 0.1663 0.1695 0.1691 0.1673 0.1682 0.1685 0.1658 0.1696 0.1710 0.1657
β̂4 0.0732 0.0706 0.1070 0.0582 0.0746 0.0602 0.0650 0.0807 0.0635 0.0640
β4Std.Error 0.0282 0.0282 0.0290 0.0278 0.0276 0.0284 0.0283 0.0281 0.0288 0.0279
β̂5 0.2319 0.2377 0.2480 0.2236 0.2483 0.2441 0.2648 0.2456 0.2257 0.2308
β5Std.Error 0.0340 0.0342 0.0350 0.0339 0.0338 0.0346 0.0343 0.0341 0.0348 0.0340
β̂6 -1.5268 -1.2546 -1.1252 -1.2656 -1.2660 -1.2847 -1.2941 -1.5400 -1.2196 -1.5993
β6Std.Error 0.3613 0.3614 0.3720 0.3568 0.3538 0.3645 0.3627 0.3602 0.3693 0.3581
β̂7 0.0060 0.0082 0.0088 0.0072 0.0065 0.0057 0.0072 0.0082 0.0068 0.0063
β7Std.Error 0.0027 0.0026 0.0027 0.0026 0.0026 0.0027 0.0027 0.0026 0.0026 0.0027
β̂8 0.0242 0.0227 0.0257 0.0217 0.0247 0.0245 0.0253 0.0246 0.0226 0.0219
β8Std.Error 0.0033 0.0033 0.0034 0.0033 0.0033 0.0034 0.0033 0.0033 0.0033 0.0034
β̂9 -0.1437 -0.1151 -0.1034 -0.1279 -0.1168 -0.1114 -0.1098 -0.1461 -0.1160 -0.1383
β9Std.Error 0.0345 0.0338 0.0348 0.0335 0.0333 0.0344 0.0343 0.0339 0.0339 0.0348

Table 19: Estimates of the fixed effects and standard deviation of the parameters from
the 561 subjects from each of the M imputed data sets.

We used the equations from Rubin (12,13, 14, 15) when we merged the results for
β0, ..., β9 from each of the M = 10 data sets. In Table 20 we see the combined results for
the parameters in the model for MAD.
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Coefficient Mean Average Var. Between-imputation Var. Total Var. Std.deviation
β0 68.1720 1.3316e+00 3.5351e-01 1.7204e+00 1.3117
β1 2.6003 1.3007e-02 2.6307e-03 1.5901e-02 0.1261
β2 -0.0112 1.7959e-06 5.1933e-07 2.3672e-06 0.0015
β3 0.0384 2.8263e-02 5.5689e-03 3.4389e-02 0.1854
β4 0.0717 7.9753e-04 2.0314e-04 1.0210e-03 0.0320
β5 0.2400 1.1742e-03 1.5867e-04 1.3487e-03 0.0367
β6 -1.3376 1.3109e-01 2.5129e-02 1.5873e-01 0.3984
β7 0.0071 7.0434e-06 1.0847e-06 8.2365e-06 0.0029
β8 0.0238 1.1060e-05 2.0179e-06 1.3280e-05 0.0036
β9 -0.1229 1.1639e-03 2.29167e-04 1.4160e-03 0.0376

Table 20: Estimates of the fixed effects from all 561 subjects from the SGA Data Set.

The square root of total variance is the overall standard error associated within β.
Note that if the were no missing data then β̂j1 , β̂j2 , ....., β̂jM would be identical, and B,
Equation (14), would be zero and T , Equation (15), would simply be equal to W , Equa-
tion (13). The size of B relative to W reflects how much information is contained in the
missing part of the data relative to the observed part. A rough 95% confidence interval
can be obtained as βi ± 2

√
T , but in general is is better to calculate intervals using the

approximation βi±tdf
√
T where tdf denotes a quantile of the Students t-distribution with

degrees of freedom equal to Equation (18). If the originally β-values lie in this confidence
interval, then there is not a significant change in the estimated parameter values.

We see that the estimated value of β4 from the complete case analysis in Table 21 have
been reduced from 0.1495 to 0.0717, and does not lie in the 95% confidence interval from
the MI-method. That means that there is a significant change in the estimated param-
eter value. The β0 parameter have increased from 66.6775 to 68.1720, but it is not a
significant change. The remaining parameters estimates are also not significant changed.
Note that all the standard deviations of the parameters from the complete data method
(561) analysis are reduced compared to the SGA Data Set complete case analysis (320).
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Analysis model (320) Imputation model (561)
Coefficients Estimate Std.dev 95% - confidence interval Estimate Std.dev 95% - confidence interval

β0 66.6775 1.5559 {63.6279, 69.7271} 68.1720 1.3117 {65.5486, 70.7954}
β1 2.5305 0.1468 {2.2428, 2.8182} 2.6003 0.1261 {2.3481, 2.8525}
β2 -0.0122 0.0018 {−0.0157,−0.0087} -0.0112 0.0015 {−0.0142,−0.0082}
β3 0.0277 0.2269 {−0.4261, 0.4875} 0.0384 0.1854 {−0.3324, 0.4092}
β4 0.1495 0.0409 {0.0693, 0.2297} 0.0717 0.0320 {0.0077, 0.1357}
β5 0.2088 0.0440 {0.1226, 0.2950} 0.2400 0.0367 {0.1666, 0.3134}
β6 -1.9599 0.5615 {−3.0604,−0.8594} -1.3376 0.3984 {−2.1344,−0.5408}
β7 0.0117 0.0037 {0.0044, 0.0190} 0.0071 0.0029 {0.0013, 0.0129}
β8 0.0210 0.0041 {0.0130, 0.0290} 0.0238 0.0036 {0.0166, 0.0310}
β9 -0.1682 0.0507 {−0.2676,−0.0688} -0.1229 0.0376 {−0.1981,−0.0477}

Table 21: Estimate of the coefficients of the parameters from the model for MAD for the
complete-case (320) and the MI complete-data (561).

8.3 Conclusion

In Section 8.1 we have found using complete case analysis that the growth model for
MAD may be expressed by Equation (38). From the masters thesis of Eilertsen (2006)
we know that during the first 20 weeks of gestation there is little individual variation in
fetal growth. This is because the fetal genome is the major determinant of growth in early
pregnancy. Later in pregnancy will environmental, nutritional and hormonal influences
become increasingly more important. Thus growth differences and disorders become
more evident in the second half of the pregnancy. Therefore, variables such as smoking
and age, will affect the growth of the fetus such that it will not reach its growth potential.

Since MAD is the most important predictor of the fetal weight (Smith et al. (1994),
Manning (1995) and Snijders and Nicolaides (1994))6, we made a linear mixed effects
model with MAD as response variable. In a growth model it is important to include both
genetical variables of the mother and lifestyle variables such as smoking and overweight.
We included the following variables, where the ones in italic were found to be signifi-
cant in the growth model for MAD: Gender, LWB, BMI, AGE, Time, Parity, Smoking,
Cigarettes and HB. It is surprising that Smoking did not became significant. In the SGA
Data Set there are 200 (35.65%) subjects who were smoking, 359 (63.99%) were not
smoking at the time of the conception and 2 (0.36%) subjects did not answer. Of the 200
subjects who were smoking, 50 (8.91%) smoked 1−9 cigarettes per day and 150 (26.74%)
smoked over 10 cigarettes each day. Throughout the pregnancy an increasing numbers
quitted smoking and the average number of cigarettes smoked each day felled. An-
other interesting observation is that there were more and more missing values due to
pregnancy length, at approximately 33 weeks of gestation 134 (23.89%) of the subjects
reported smoking. Of the 134 subjects who were smoking, 57 (10.16%) of these smoked
1−9 cigarettes per day and 77 (13.73%) smoked over 10 cigarettes each day. About time

6The references says that abdominal circumference (and not MAD) are most correlated to birth
weight, but ultrasound linked to abdominal circumference is most linked to MAD.



8.3 Conclusion 75

of birth (47 (8.38%) and (72 (12.38%) of the 561 subjects reported respectively 1 − 9
and over 10 cigarettes per day. It is important to be aware of that the growth model for
MAD is based upon subjects from the SGA Data Set with a complete measurements on
all the initial variables and not the full SGA Data set (561). Of the 200 (35.65%) subjects
who were smoking at the time of conception only 94 (16.76%) subjects smoked during
the pregnancy. Of the 192 subjects 131 (68.23%) did not smoke, and that may cause
the effects of smoking during the pregnancy to have an non-significant effect in the model.

The parity of the women should also have been a significant variable in the growth
model for MAD, a reason that it became non-significant is that every women who partic-
ipated into the SGA-study have one or two children from earlier pregnancy. It is possible
that we would have seen an effect of parity in the growth model between women who
are pregnant for the first time and women who have earlier given birth, but we have no
possibility to verify this hypothesis. We have observed that there is a non-significant ef-
fect between women who have given birth to one or two children from earlier pregnancies.

When we used the MI-method on the full SGA Data Set with missing values it re-
sulted in that all the standard deviations of the parameter have been reduced compared
with the complete case analysis. There were not a significant change in the parameter
estimates except the coefficient of the age of the mother. From this results we see the
benefits of using the MI-method compared to the ordinary complete case analysis.
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9 Discussion and Conclusions

The analysis of data sets with missing values is one area is statistical science where real
advances recently have been made. Modern missing data techniques which substantially
improve upon old ad hoc methods are finally becoming available. Among these new
techniques multiple imputation is especially powerful because of its generality. Unlike
the ad hoc methods, MI solves the missing data problem in a statistically reasonable
manner and incorporates missing-data uncertainty into all summary statistics. We now
look into some issues that is of importance when analyzing missing data.

What is the Relationship Between the Model Used for Imputation and the
Model Used for Analysis? - An imputation model should be chosen to be (at least
almost) compatible with the analyses that subsequent will be performed on the imputed
data sets. The imputation model should be good enough to preserve the relationships
among the variables that will be focus of later investigation. An example from Collins
et al. (2001), suppose that a variable Y is imputed under a normal model that includes
the variable X1. After imputation, the analyst then uses linear regression to predict
Y from X1 and another variable X2 which was not in the imputation model. The
estimated coefficient for X2 from this regression would tend to be biased toward zero,
because Y has been imputated without regard for its possible relationship with X2.
This means that in general any association that may prove important in subsequent
analyses should be present in the imputation model, but he converse of this rule is not
necessary. If Y has been imputed under a model that includes X2, there is no need to
include X2 in future analyses involving Y unless its relationship to Y is of substantive
interest. In our imputation model we have excluded the gender of the fetus and age of the
mother, but they are included into the lme-method for predicting MAD because they are
significant. Results appropriate to MAD are not biased by inclusion of extra variables
in the imputation phase, because we have a rich imputation model that preserves a large
number of associations. This is very desirable because it allows us to use the SGA Data
Set (561) for a variety of post-imputation analyses.

What If the Missing Data Are Not “Missing at Random” - Most of the tech-
niques presently available for creating multiple imputations assume that the missing
values are missing at random (MAR), which means that missing values in the data set
carry no information about probabilities of missingness (as in Figure 5). This assump-
tion is mathematically convenient because it allows one to avoid an explicit probability
of nonresponse. In some applications Schafer (2003) thinks that ignorability may seem
implausible but with attrition in a longitudinal study such as in our case, it is possible
that subjects drop out for reasons related to current data values. It is therefore impor-
tant to note that the MI-model does not require or assume that nonresponse is ignorable.
Imputations may in principle be created under any kind of assumptions/model for the
missing-data mechanism and the resulting inferences will be valid under that mechanism.
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Use of Growth Curves in the Clinic - During the pregnancy the clinicians use ultra-
sound to measure BPD (Biparietal diameter), MAD and FL (Femur length). To evaluate
fetal growth, these measurements are compared to size-charts especially developed for the
particular population. Studies have shown that customized size-charts, where the fetal
growth is adjusted for pre pregnancy characteristics, can reduce the false-positive rate
of growth restriction diagnosis in a normal populations Mongenelli and Gardosi (1996).
Thus better revealing the fetuses who is pathological small (IGUR) from those are genet-
ically small. The statistical methods in this thesis can be used to make customized size
chart based on pre-pregnancy characteristics of the fetus and mother, but we need data
set with children who is not IGUR, to estimate the coefficients in the growth model.

Missing Gestational Age - The imputation model where gestational age was included
into the matrix with response variables from Section 5.4.3 were not useful compared with
the imputation model where the missing values in the gestational Time-variable were
replaced with the average gestational age at each of the 4 antenatal visits. Therefore
we use the MI-procedure where the gestational age variable is included as covariates in
the imputation model. This model has much smaller variance and the ACF-plot of the
parameters in the imputation-model clearly shows that the estimates of the parameters
are much more uncorrelated and the mixing is much better.

Results on the SGA Data Set - We have found a procedure to verify if the MI-
method gives us reasonable imputed values for the missing values by following the MCAR-
procedure defined in Section 6.2. Table 9 shows that there is not a large difference between
the observed values and the imputed ones, when we used the complete-data method for
analyzing the imputed data sets and combining the results with Rubin’s rules we see
from Table 11 that the estimates for the different parameters are almost equal to the
ones from the complete-data method in Table 18.

Simulation Study - From the simulation study in Section 7.2 we have verified that
the ML-procedure and the growth model for MAD gives approximately equal results.
From our simulation study we have verified proposition 1 from Collins et al. (2001),
the MI-procedure and the ML-procedure gives us approximately equal parameter es-
timates for the generated data set with different types of missing mechanisms. Both
MNAR-procedures produced biased parameter estimates and the standard deviations
were reduced. We believe that the covariates used in the MAR-procedure approximately
will act as a MNAR-procedure if the correlation between the covariates and the response
variable are large enough. Another interesting observation in the simulation study is that
estimates of the coefficients for variables used to generate the MAR and MNAR missing
mechanism are “suffering” because they tend to be more biased compared to the values
from the lme procedure performed on the complete SGA Data Set (320) than the other
variables. According to the MAR assumption such a procedure should give unbiased
parameter estimates. As we discovered during the simulation study the implemented
PAN ML-method can only handle data set with missing values in the response variable
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compared with the MI-method which can handle missing values in both the response
variable and the covariates.

Predicting Fetal Weight - In Section 8.1 we have found using complete case analysis
that the growth model for MAD may be modeled using by Equation (38). Since MAD is
the most important predictor of the fetal weight we developed a model for this variable.
In a growth model there is important to include both genetical variables of the mother and
lifestyle variables such as smoking and overweight. We included the following variables,
where the italic ones became significant in the growth model for MAD: Gender, LWB,
BMI, AGE, Time, Parity, Smoking, Cigarettes and HB. It is surprising that Smoking
did not became significant. A reason may be that there is such a small amount in the
SGA Data Set who are smoking during the whole pregnancy and will cause this variable
to have an non-significant effect in the model. The parity of the subjects should also
have been a significant variable in the growth model for MAD, a reason that it became
non-significant is that every women who participated into the SGA-study have one or
two children from earlier pregnancy. It is possible that we would have seen an effect
of parity in the growth model between women who are pregnant for the first time and
women who have earlier given birth, but we have no possibility to verify this hypothesis.
We have observed that there is a non-significant effect between women who have given
birth to one or two children from earlier pregnancies. The growth model for MAD is

yij = β0j + β1jx
∗
ijTime

+ β2jx
2∗
ijTime

+ β3xijGender
+ β4xijAGE + β5xijBMI + β6xijLBW

+ β7xijAGEx
∗
ijTime

+ β8xijBMIx
∗
ijTime

+ β9xijLBW x
∗
ijTime

+ εij .

When we used the MI-method on the SGA Data Set (561) with missing values it resulted
in that all the standard deviations of the parameter have been reduced compared with the
complete case analysis. There were not a significant change in the parameter estimates
except for the coefficient for the age of the women. From this results we see the benefits
of using the MI-method compared to the ordinary complete case analysis.

Suggestions to further work - The MI-method based on the multivariate lme-
method of Schafer implemented in the PAN package can handle situations where missing
values occur in both the response variable and the covariates. Since this situation is
not possible to execute for the EM-method of Schafer (also implemented in the PAN
package), a natural extension is to write a program allowing the EM-method handling
the same situation.
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A R documentation

A.1 LME (Linear Mixed-Effects) - Model Formulation

Description:

This generic function fits a linear mixed-effects model in the formulation described in
Laird and Ware (1982) but allowing for nested random effects. The within-group errors
are allowed to be correlated and/or have unequal variances.

Usage:

lme(fixed, data, random,method, correlation, weights, subset,method, na.action,
control, contrasts = NULL)

Variance functions are specified in the lme method using the weights argument. Weights
equal to NULL corresponds to a homoscedastic variance model for the within-group er-
rors. Variance models can be specified in weights either as a one-sided formula, in which
case it is passed as the single argument to the varFixed constructor or as a varFunc
object. This may be created using the standard constructors are described in §5.2.1 from
Mixed-Effects Models in S and S-PLUS (Pinheiro and Bates, 2000).

Note:
The lme-model used in the lme fit always assume that there is a within-group error term
being added to the response.

A.2 Description of The R routines used in Pan

This is a reproduction of the auxiliary file for pan and the ecme methods defined in
Section 4.

A.3 MI-method

Gibbs sampler for the multivariate linear model with incomplete data. This function will
typically be used to produce multiple imputations of missing data values in multivariate
panel or clustered data. The underlying model is the same as in equation (19),where

• yi = (ni ∗ r) – matrix of incomplete multivariate data for subject or cluster i;

• Xi = (ni ∗ p) – matrix of covariates;

• zi = (ni ∗ q) – matrix of covariates;

• β = (p ∗ q) – matrix of coefficients common to the population (fixed effects);

• bi = (q ∗ r) – matrix of coefficients specific to subject or cluster i (random effects);
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• εi = (ni ∗ r) – matrix of residual errors.

The matrix bi, when stacked into a single column is assumed to be normally distributed
with mean zero and unstructured covariance matrix Ψ, and the rows of εi are assumed to
be independently normal with mean zero and unstructured covariance Σ. Missing values
may appear in yi in any pattern.

In most applications of this model, the first columns of Xi and Zi will be constant
(one) and Zi will contain a subset of the columns of Xi.

usage:

pan(y, subj, pred, xcol, zcol, prior, seed, iter, start)

Arguments:

• y – matrix of responses. Each column of y corresponds to a response variable. Each
row of y corresponds to a single subject-occasion. Missing values (NA) may occur
in any pattern.

• subj –vector of length nrow(y), giving the subject indicators i for the rows of y.

• pred – matrix of covariates used to predict y. This should have the same number
of rows as y. The first column will typically be constant (one), and the remaining
columns correspond to other variables appearing in Xi and Zi.

• xcol – a vector of integers indicating which columns of pred will be used in Xi.

• zcol – a vector of integers indicating which columns of pred will be used in Zi.

• prior – a list with four components specifying the hyper-parameters of the prior
distributions for Ψ and Σ.

• seed – integer seed for initializing pan()’s internal random number generator.

• iter – total number of iterations or cycles of the Gibbs sampler to be carried out.

• start – an optional list of quantities to specify the initial state of the Gibbs sampler.
If "start" is omitted then pan() chooses its own initial state.

Note
This function assumes that the rows of y ( and thus the rows of subj and pred) have been
sorted by subject number. That is, we assume that subj=sort(subj),y=y[order(subj),],
and pred=pred[order(subj),]. If the matrix y is created by stacking yi, i = 1, .....,m then
this will automatically be the case.
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A.4 ECME-method

Performs maximum-likelihood estimation for generalized linear models. This function
will typically be used to produce multiple imputations of missing data values in mul-
tivariate panel or clustered data. The underlying model is the same as in equation
(19),where

• yi = (ni ∗ 1) – vector of incomplete multivariate data for subject or cluster i

• Xi = (ni ∗ p) – matrix of covariates;

• zi = (ni ∗ q) – matrix of covariates;

• β = (p ∗ 1) – vector of coefficients common to the population (fixed effects);

• bi = (q ∗ 1) – vector of coefficients specific to subject or cluster i (random effects);

• εi = (ni ∗ 1) – vector of residual errors.

The vector bi is assumed to be normally distributed with mean zero and unstructured
covariance matrix psi, bi ∼ N(0,Ψ) independently for i = 1, ...,m. The residual vector
ei is assumed to be ei ∼ N(0, sigma2Vi), where Vi is a known (ni ∗ ni) matrix. In most
applications is Vi equal to the identity matrix.

usage:

ecme(y, subj, occ, pred, xcol, zcol, vmax, start, maxits=1000, eps=0.0001, random.effects=F)

Arguments:

• y – vector of responses. This is simply the individual yj vectors stacked upon
one another. Each element of y represents the observed response for a particular
subject-occasion or for a particular unit within a cluster.

• subj – vector of length nrow(y), giving the subject indicators i for the rows of y.

• occ – vector of same length as y indicating the “occasions” for elements of y. In a
longitudinal data set where each individual is measured on at most nmax distinct
occasions, each element of y corresponds to one subject-occasion and elements of
occ should be coded as 1, 2, ...., nmax to indicate these occasion labels.

• pred – matrix of covariates used to predict y. This should have the same number
of rows as y. The first column will typically be constant (one), and the remaining
columns correspond to other variables appearing in Xi and Zi.

• xcol – a vector of integers indicating which columns of pred will be used in Xi.

• zcol – a vector of integers indicating which columns of pred will be used in Zi, if
zcol=NULL then the model is assumed to have no random effects.
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• vmax – optional matrix of dimension c(max(occ),max(occ)) from which the Vi

matrices will be extracted. In a longitudinal data set vmax would represent the Vi

matrix for an individual with responses at all possible occasions 1, 2, ...., nmax =
max(occ). For individuals with responses at only a subset of these occasions, the
Vi will be obtained by extracting the rows and columns of vmax for those occasions.
If no vmax is specified will an identity matrix be used (vmax = identity).

• start – optional starting values of the parameters. If this arguments is not given
then ecme() chooses its own starting values. This argument should be a list of three
elements named β, Ψ and σ2. Note that β should be a vector of the same length
as “xcol”, ψ should be a matrix of dimension c(length(zcol),length(zcol)) and σ2

should be a scalar. This arguments has no effect if zcol=NULL.

• maxits – maximum number of cycles of ECME to be performed. The algorithm
runs to convergence or until “maxits” iterations, whichever comes first.

• eps – convergence criterion. The algorithm is considered to have if the relative
differences in all parameters from one iteration to the next are less than eps - that
is if all(|epsnew − epsold| < eps ∗ |epsold|).

• random.effects – if TRUE it returns empirical Bayes estimates of all the random
effects bi, i = 1, 2, ...,m and their estimated covariance matrices.
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B R code:

Listing 1: Data file

############### load ing the packages ###############

library ( nlme )
library ( foreign )
library ( pan )
library ( stats )

############### Reading the data f i l e ###############

datasett <- read . spss ("eystein␣ekstrakt␣7␣sept␣2005.sav" )

#Make a new data set , with the random sample (561)

data <- is . na ( datasett$V0053A )
data1 <- datasett$V0053A
index <- matrix (0 , 561 ,1 )
j <- 0
for (i in 1 :2072) {
if ( data [ i ] != "TRUE" ) {

j <- j + 1
index [ j ] <- i

}
}
datasett <- as . data . frame ( datasett )
datasettnew <- datasett [ index , ]

#Al l the v a r i a b l e s from datasettnew which are used during the ana l y s i s have
been accumulated in Miss . Dat

Miss . Dat <- dget ("Missing.dat" )

#Using the imputation procedure with a complete s e t o f time measurements ,
f e t u s and g e g s t a t i o n a l time are being used as random e f f e c t s in the MI−
method

data . set <- Miss . Dat

nc <- dim ( data . set ) [ 2 ]
nr <- dim ( data . set ) [ 1 ]
bmi <- data . set [ , c (8 , 11 , 14 , 17 ) ] / ( data . set [ , 4 ] ^ 2 )
MAD <- data . set [ , c (6 , 9 , 12 , 15 ) ]
ymat <- cbind (c (t ( MAD ) ) ,c (t ( bmi ) ) )
realtime <- data . set [ , c (7 , 10 , 13 , 16 ) ]
mastertime <- cbind ( rep ( 16 . 76 , nr ) , rep ( 24 . 62 , nr ) , rep ( 32 . 47 , nr ) , rep ( 36 . 63 , nr )

)
time <- mastertime
time [ !is . na ( realtime ) ] <- realtime [ !is . na ( realtime ) ]
time <- c (t ( time ) )
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#Center ing the g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2

xmat <- cbind ( rep (1 , nr*4) , rep ( data . set [ ,3 ]==2 , each=4) , time1 , time2 )
fetus <- rep ( data . set [ , 1 ] , each=4)

res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a=2,
Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=123 ,iter=10000)

# Plot showing convergence o f the parameter va lue s

svec=1000:10000

# sigma

par ( mfrow=c ( 2 , 2 ) )
plot ( svec , ( res$sigma [ 1 , 1 , svec ] ) , type="l" , main="MAD" )
plot ( svec , ( res$sigma [ 1 , 2 , svec ] ) , type="l" )
plot ( svec , ( res$sigma [ 2 , 1 , svec ] ) , type="l" )
plot ( svec , ( res$sigma [ 2 , 2 , svec ] ) , type="l" , main="BMI" )
par ( mfrow=c ( 1 , 1 ) )

plot ( density ( res$sigma [ 1 , 2 , svec ] ) , type="l" )
quantile ( res$sigma [ 2 , 1 , svec ] , c ( 0 . 1 5 , 0 . 0 5 , 0 . 0 1 ) )

par ( mfrow=c ( 2 , 2 ) )
acf ( ( res$sigma [ 1 , 1 , svec ] ) , lag . max=100)
acf ( ( res$sigma [ 1 , 2 , svec ] ) , lag . max=100)
acf ( ( res$sigma [ 2 , 1 , svec ] ) , lag . max=100)
acf ( ( res$sigma [ 2 , 2 , svec ] ) , lag . max=100)

#ps i

par ( mfrow=c ( 4 , 4 ) , mar=c ( 3 , 3 , 3 , 1 ) )
for (j in 1 : 4 ) {

for (i in 1 : 4 ) {
plot ( svec , ( res$psi [ j , i , svec ] ) , type="l" )

}
}

par ( mfrow=c ( 4 , 4 ) , mar=c ( 2 . 5 , 2 . 5 , 2 . 5 , 1 ) )
for (j in 1 : 4 ) {

for (i in 1 : 4 ) {
acf ( res$psi [ j , i , svec ] , lag . max=100 ,main="" )

}
}

#beta

par ( mfrow=c ( 2 , 4 ) , mar=c ( 3 , 3 , 3 , 1 ) )
for (i in 1 : 4 ) {
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plot ( res$beta [ i , 1 , svec ] , type="l" , main="MAD" )

}

for (i in 1 : 4 ) {

plot ( res$beta [ i , 2 , svec ] , type="l" , main="BMI" )

}

par ( mfrow=c ( 2 , 4 ) , mar=c ( 3 , 3 , 3 , 1 ) )
for (i in 1 : 4 ) {

acf ( res$beta [ i , 1 , svec ] , lag . max=100 ,main="MAD" )
}
for (i in 1 : 4 ) {

acf ( res$beta [ i , 2 , svec ] , lag . max=100 ,main="BMI" )
}

##### Executes the MCAR−method 10 t imes to a s s e s s the accuracy o f the
e s t imate s o f the MI−method #####

X <- is . na ( Miss . Dat )
missing . pattern <- as . data . frame ( table ( as . data . frame (X ) ) )
Missing . pattern <- missing . pattern [ missing . pattern$Freq >0 ,]
Missing . pattern <- missing . pattern [ missing . pattern$Freq >=10,]

Gruppe <- seq ( 1 : dim ( Missing . pattern ) [ 1 ] )
Missing . patnew <- cbind ( Gruppe , Missing . pattern )

prob <- as . vector ( Missing . patnew [ , 1 9 ] ) / ( sum ( Missing . patnew [ , 1 9 ] ) )

Mean . Par <- NULL
Tot . Par <- NULL

j <- 0

while (j <= 10) {
Miss . Com <- na . omit ( Miss . Dat )
Miss . com <- na . omit ( Miss . Dat )
MCAR <- sample ( 1 : length ( Gruppe ) ,320 , replace = TRUE , prob )

for (i in 1 : length ( MCAR ) ) {

if ( MCAR [ i ] == 2) {
Miss . com [ i , 9 ] <- NA

}

if ( MCAR [ i ] == 3) {
Miss . com [ i , 1 1 ] <- NA

}

if ( MCAR [ i ] == 4) {
Miss . com [ i , 1 4 ] <- NA
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}

if ( MCAR [ i ] == 5) {
Miss . com [ i , c (9 , 15 ) ] <- NA

}

if ( MCAR [ i ] == 6) {
Miss . com [ i , c (9 , 12 , 15 ) ] <- NA

}

if ( MCAR [ i ] == 7) {
Miss . com [ i , 1 7 ] <- NA

}

if ( MCAR [ i ] == 8) {
Miss . com [ i , c (15 ,17) ] <- NA

}

}

nc <- dim ( Miss . com ) [ 2 ]
nr <- dim ( Miss . com ) [ 1 ]
bmi <- Miss . com [ , c (8 , 11 , 14 , 17 ) ] / ( Miss . com [ , 4 ] ^ 2 )
MAD <- Miss . com [ , c (6 , 9 , 12 , 15 ) ]
time <- Miss . com [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#Center ing the g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2

#Enter the re sponse data in to a matrix , one column f o r each va r i ab l e

ymat <- cbind (c (t ( MAD ) ) ,c (t ( bmi ) ) )

#Spec i f y i ng the model to be used f o r imputation

xmat <- cbind ( rep (1 , nr*4) , rep ( Miss . com [ ,3 ]==2 , each=4) , time1 , time2 )
fetus <- rep ( Miss . com [ , 1 ] , each=4)

#Now we are ready to run pan ( ) .
#F i r s t we do a pre l im inary run o f 10000 i t e r a t i o n s .

res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a
=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=123 ,iter=10000)

#Impute the miss ing data m=10 times tak ing 1000 s t ep s between the
imputat ions

y1 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=9565 ,iter=1000 ,start=res$last )
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y2 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=6047 ,iter=1000 ,start=res$last )
y3 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=3955 ,iter=1000 ,start=res$last )
y4 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=4761 ,iter=1000 ,start=res$last )
y5 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=9188 ,iter=1000 ,start=res$last )
y6 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=9029 ,iter=1000 ,start=res$last )
y7 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=4343 ,iter=1000 ,start=res$last )
y8 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=2372 ,iter=1000 ,start=res$last )
y9 <- res$y
res <- pan (y=ymat , subj=fetus , pred=xmat , xcol=1:4 , zcol=c ( 1 , 3 ) , prior=list (a

=2,Binv=diag (2 ) ,c=4,Dinv=diag (4 ) ) , seed=7081 ,iter=1000 ,start=res$last )
y10 <- res$y

#MAD. lme are being executed 10 t imes
#c r e a t i n g data s e t f o r lme−method

Gender <- rep ( Miss . Com [ , 2 ] , each=4)
LWB <- rep ( Miss . Com [ , 3 ] , each=4)
AGE <- rep ( Miss . Com [ , 5 ] , each=4)
fetus <- rep ( Miss . com [ , 1 ] , each=4)
temp . Mad <- cbind ( y1 [ , 1 ] , y2 [ , 1 ] , y3 [ , 1 ] , y4 [ , 1 ] , y5 [ , 1 ] , y6 [ , 1 ] , y7 [ , 1 ] , y8 [ , 1 ] ,

y9 [ , 1 ] , y10 [ , 1 ] )
temp . Bmi <- cbind ( y1 [ , 2 ] , y2 [ , 2 ] , y3 [ , 2 ] , y4 [ , 2 ] , y5 [ , 2 ] , y6 [ , 2 ] , y7 [ , 2 ] , y8 [ , 2 ] ,

y9 [ , 2 ] , y10 [ , 2 ] )

B0 <- NULL
B1 <- NULL
B2 <- NULL
B3 <- NULL
B4 <- NULL
B5 <- NULL
B6 <- NULL
B7 <- NULL
B8 <- NULL
B9 <- NULL

stdB0 <- NULL
stdB1 <- NULL
stdB2 <- NULL
stdB3 <- NULL
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stdB4 <- NULL
stdB5 <- NULL
stdB6 <- NULL
stdB7 <- NULL
stdB8 <- NULL
stdB9 <- NULL

for (i in 1 : 10 ) {

MAD <- temp . Mad [ , i ]
BMI <- temp . Bmi [ , i ]
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , BMI , Gender , LWB ) )

MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + BMI + as .
factor ( LWB ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) )
Value <- data . frame ( MAD . lme$coef [ 1 ] )

B0 <- c (B0 , Value [ 1 , 1 ] )
B1 <- c (B1 , Value [ 2 , 1 ] )
B2 <- c (B2 , Value [ 3 , 1 ] )
B3 <- c (B3 , Value [ 4 , 1 ] )
B4 <- c (B4 , Value [ 5 , 1 ] )
B5 <- c (B5 , Value [ 6 , 1 ] )
B6 <- c (B6 , Value [ 7 , 1 ] )
B7 <- c (B7 , Value [ 8 , 1 ] )
B8 <- c (B8 , Value [ 9 , 1 ] )
B9 <- c (B9 , Value [ 1 0 , 1 ] )

stdB0 <- c ( stdB0 , Std . Error [ 1 , 1 ] )
stdB1 <- c ( stdB1 , Std . Error [ 2 , 1 ] )
stdB2 <- c ( stdB2 , Std . Error [ 3 , 1 ] )
stdB3 <- c ( stdB3 , Std . Error [ 4 , 1 ] )
stdB4 <- c ( stdB4 , Std . Error [ 5 , 1 ] )
stdB5 <- c ( stdB5 , Std . Error [ 6 , 1 ] )
stdB6 <- c ( stdB6 , Std . Error [ 7 , 1 ] )
stdB7 <- c ( stdB7 , Std . Error [ 8 , 1 ] )
stdB8 <- c ( stdB8 , Std . Error [ 9 , 1 ] )
stdB9 <- c ( stdB9 , Std . Error [ 1 0 , 1 ] )

}

#Calcu la te the parameter e s t imate s by Rubin ’ s r u l e s

param <- cbind (B0 , B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8 , B9 )
std . param <- cbind ( stdB0 , stdB1 , stdB2 , stdB3 , stdB4 , stdB5 , stdB6 , stdB7 , stdB8 ,

stdB9 )
var . param <- std . param^2
average . par <- NULL
var . par <- NULL
mean . param <- NULL
tot . var <- NULL
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for (i in 1 : dim ( var . param ) [ 1 ] ) {

mean . param <- c ( mean . param , mean ( param [ , i ] ) )
average . par <- c ( average . par , mean ( var . param [ , i ] ) )
var . par <- c ( var . par , var ( param [ , i ] ) )
tot . var <- c ( tot . var , ( average . par [ i ] + ( (1 /dim ( param ) [ 1 ] ) +1)*var . par [ i ] ) )

}
Mean . Par <- c ( Mean . Par , mean . param )
Tot . Par <- c ( Tot . Par , sqrt ( tot . var ) )
j <- j + 1

}

#Ca l cu l a t e s the b i a s o f the parameters and the f r a c t i o n o f the standard
dev i a t i on s

#I n i t i a l va lue s from the complete case an a l y s i s (320)

Miss . Dat <- dget ("Missing.dat" )
Miss . Com <- na . omit ( Miss . Dat )
bmi <- c (t ( Miss . Com [ , c (8 , 11 , 14 , 17 ) ] / ( Miss . Com [ , 4 ] ^ 2 ) ) )
MAD <- c (t ( Miss . Com [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- Miss . Com [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#centered g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2

Gender <- rep ( Miss . Com [ , 2 ] , each=4)
LWB <- rep ( Miss . Com [ , 3 ] , each=4)
AGE <- rep ( Miss . Com [ , 5 ] , each=4)
fetus <- rep ( Miss . Com [ , 1 ] , each=4)
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , bmi , Gender , LWB ) )

MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + bmi + as .
factor ( LWB ) )*time1 , method="ML" , random= ~time1 | fetus , data=MI . dat )

Std . Error <- round ( data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) ) , 4 )
Value <- round ( data . frame ( MAD . lme$coef [ 1 ] ) , 4 )

Init . beta <- c (66 .67750291 ,2 .53052347 , −0 .01221834 ,0 .02764627 ,0 .14953252 ,
0 .20877076 , −1.95990456 ,0 .01172218 ,0 .02099182 , −0.16820022)

Init . Std <- c (1 .555889215 ,0 .146819685 ,0 .001763264 ,0 .226877126 ,0 .040884245 ,
0 .044004905 ,0 .561504001 ,0 .003691179 ,0 .004125998 ,0 .050743426)

#Estimates from the MCAR−method

Simulation . ResBeta <- cbind ( Mean . Par [ 1 : 1 0 ] , Mean . Par [ 1 1 : 2 0 ] , Mean . Par [ 2 1 : 3 0 ] ,
Mean . Par [ 3 1 : 4 0 ] , Mean . Par [ 4 1 : 5 0 ] , Mean . Par [ 5 1 : 6 0 ] , Mean . Par [ 6 1 : 7 0 ] , Mean .
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Par [ 7 1 : 8 0 ] , Mean . Par [ 8 1 : 9 0 ] , Mean . Par [ 9 1 : 1 0 0 ] , Mean . Par [ 1 0 1 : 1 1 0 ] )

Simulation . ResStd <- cbind ( Tot . Par [ 1 : 1 0 ] , Tot . Par [ 1 1 : 2 0 ] , Tot . Par [ 2 1 : 3 0 ] , Tot .
Par [ 3 1 : 4 0 ] , Tot . Par [ 4 1 : 5 0 ] , Tot . Par [ 5 1 : 6 0 ] , Tot . Par [ 6 1 : 7 0 ] , Tot . Par [ 7 1 : 8 0 ] ,
Tot . Par [ 8 1 : 9 0 ] , Tot . Par [ 9 1 : 1 0 0 ] , Tot . Par [ 1 0 1 : 1 1 0 ] )

#Ca l cu l a t e s the r e s u l t s

for (i in 1 : 10 ) {
Simulation . ResBeta [ i , ] <- Init . beta [ i ] − Simulation . ResBeta [ i , ]
Simulation . ResStd [ i , ] <- Init . Std [ i ] /Simulation . ResStd [ i , ]

}

totalt <- rbind ( Simulation . ResBeta , Simulation . ResStd )

mean . beta <- NULL
mean . Std <- NULL
for (i in 1 : 10 ) {

mean . beta <- c ( mean . beta , mean ( Simulation . ResBeta [ i , ] ) )
mean . Std <- c ( mean . Std , mean ( Simulation . ResStd [ i , ] ) )

}

############### End o f MCAR−method ###############

############### Simulat ion Study ###############

#Complete case an a l y s i s

Miss . Com <- na . omit ( dget ("Missing.dat" ) )

Miss . Com [ , 6 ] <- MAD [ , 1 ]
Miss . Com [ , 9 ] <- MAD [ , 2 ]
Miss . Com [ , 1 2 ] <- MAD [ , 3 ]
Miss . Com [ , 1 5 ] <- MAD [ , 4 ]

Complete . MAR <- na . omit ( Miss . Com )

bmi <- c (t ( Complete . MAR [ , c (8 , 11 , 14 , 17 ) ] / ( Complete . MAR [ , 4 ] ^ 2 ) ) )
MAD <- c (t ( Complete . MAR [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- Complete . MAR [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#centered g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2
Gender <- rep ( Complete . MAR [ , 2 ] , each=4)
LWB <- rep ( Complete . MAR [ , 3 ] , each=4)
AGE <- rep ( Complete . MAR [ , 5 ] , each=4)
fetus <- rep ( Complete . MAR [ , 1 ] , each=4)
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , bmi , Gender , LWB ) )
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MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + bmi + as .
factor ( LWB ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- round ( data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) ) , 4 )
Value <- round ( data . frame ( MAD . lme$coef [ 1 ] ) , 4 )

res <- cbind ( Value , Std . Error )

#complete case (320) ecme−procedure

Complete <- na . omit ( dget ("Missing.dat" ) )

time <- c (t ( Complete [ , c (7 , 10 , 13 , 16 ) ] ) )
time1 <- time − 27 .62
time2 <- time1^2
MAD <- c (t ( Complete [ , c (6 , 9 , 12 , 15 ) ] ) )
AGE <- rep ( Complete [ , 5 ] , each=4)
Gender <- rep ( Complete [ , 2 ] , each=4)
BMI <- c (t ( Complete [ , c (8 , 11 , 14 , 17 ) ] / ( Complete [ , 4 ] ^ 2 ) ) )
LWB <- rep ( Complete [ , 3 ] , each=4)

pred <- cbind ( rep (1 ,320) , time1 , time2 , Gender , AGE , BMI , LWB , AGE*time1 , BMI*time1
, LWB*time1 )

occ <- rep (c ( 1 , 2 , 3 , 4 ) ,320)
subj <- rep ( Complete [ , 1 ] , each=4)
ymat <- MAD

result <- ecme (y=ymat , subj , occ , pred , xcol=1:10 , zcol=c ( 1 , 2 ) )

log . likelihood <- result$loglik
Iteration . number <- seq ( 1 : length ( log . likelihood ) )

#MCAR−procedure

mcar . dat <- na . omit ( dget ("Missing.dat" ) )

mcar17 <- sample ( 1 : 320 , 10 )
mcar25 <- sample ( 1 : 320 , 74 )
mcar33 <- sample ( 1 : 320 , 67 )
mcar37 <- sample ( 1 : 320 , 77 )

mcar . dat [ mcar17 , 6 ] <- NA
mcar . dat [ mcar25 , 9 ] <- NA
mcar . dat [ mcar33 , 1 2 ] <- NA
mcar . dat [ mcar37 , 1 5 ] <- NA

MAD <- cbind ( mcar . dat [ , 6 ] , mcar . dat [ , 9 ] , mcar . dat [ , 1 2 ] , mcar . dat [ , 1 5 ] )

Miss . Com <- na . omit ( dget ("Missing.dat" ) )
Miss . Com [ , 6 ] <- MAD [ , 1 ]
Miss . Com [ , 9 ] <- MAD [ , 2 ]
Miss . Com [ , 1 2 ] <- MAD [ , 3 ]
Miss . Com [ , 1 5 ] <- MAD [ , 4 ]
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Complete . MCAR <- na . omit ( Miss . Com )

bmi <- c (t ( Complete . MCAR [ , c (8 , 11 , 14 , 17 ) ] / ( Complete . MCAR [ , 4 ] ^ 2 ) ) )
MAD <- c (t ( Complete . MCAR [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- Complete . MCAR [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#centered g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2
Gender <- rep ( Complete . MCAR [ , 2 ] , each=4)
LWB <- rep ( Complete . MCAR [ , 3 ] , each=4)
AGE <- rep ( Complete . MCAR [ , 5 ] , each=4)
fetus <- rep ( Complete . MCAR [ , 1 ] , each=4)
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , bmi , Gender , LWB ) )

MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + bmi + as .
factor ( LWB ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- round ( data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) ) , 4 )
Value <- round ( data . frame ( MAD . lme$coef [ 1 ] ) , 4 )

res <- cbind ( Value , Std . Error )

#MAR−procedure

MAR <- na . omit ( dget ("Missing.dat" ) )
BMI <- MAR [ , c (8 , 11 , 14 , 17 ) ] / ( MAR [ , 4 ] ^ 2 )

ant . BMI <- NULL
value . BMI <- c ( 2 8 . 5 , 2 5 . 6 , 2 7 . 2 , 2 8 )

for (j in 1 : 4 ) {
teller . BMI <- 0 ;
for (i in 1 :320 ) {

if ( BMI [ i , j ] > value . BMI [ j ] ) {
teller . BMI <- teller . BMI + 1

}
}
ant . BMI <- c ( ant . BMI , teller . BMI )

}

for (j in 1 : 4 ) {
for (i in 1 :320 ) {

if ( BMI [ i , j]> value . BMI [ j ] ) {
MAR [ i ,(3+3*j ) ] <- NA

}
}

}

MAD <- MAR [ , c (6 , 9 , 12 , 15 ) ]
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#MNMAR_1−procedure

MNAR <- na . omit ( dget ("Missing.dat" ) )
MAD <- MNAR [ , c (6 , 9 , 12 , 15 ) ]
ant . MAD <- NULL
value . MAD <- c ( 4 6 , 6 7 . 5 , 9 6 . 5 , 1 0 9 . 5 )

for (j in 1 : 4 ) {
teller . MAD <- 0 ;
for (i in 1 :320 ) {

if ( MAD [ i , j ] > value . MAD [ j ] ) {
teller . MAD <- teller . MAD + 1

}
}
ant . MAD <- c ( ant . MAD , teller . MAD )

}

for (j in 1 : 4 ) {
for (i in 1 :320 ) {

if ( MAD [ i , j ] > value . MAD [ j ] ) {
MNAR [ i ,(3+3*j ) ] <- NA

}
}

}

MAD <- MNAR [ , c (6 , 9 , 12 , 15 ) ]

#Complete case an a l y s i s (MNAR_1−procedure )

Miss . Com <- na . omit ( dget ("Missing.dat" ) )
Miss . Com [ , 6 ] <- MAD [ , 1 ]
Miss . Com [ , 9 ] <- MAD [ , 2 ]
Miss . Com [ , 1 2 ] <- MAD [ , 3 ]
Miss . Com [ , 1 5 ] <- MAD [ , 4 ]

Complete . MNAR <- na . omit ( Miss . Com )

bmi <- c (t ( Complete . MNAR [ , c (8 , 11 , 14 , 17 ) ] / ( Complete . MNAR [ , 4 ] ^ 2 ) ) )
MAD <- c (t ( Complete . MNAR [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- Complete . MNAR [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#centered g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2
Gender <- rep ( Complete . MNAR [ , 2 ] , each=4)
LWB <- rep ( Complete . MNAR [ , 3 ] , each=4)
AGE <- rep ( Complete . MNAR [ , 5 ] , each=4)
fetus <- rep ( Complete . MNAR [ , 1 ] , each=4)
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , bmi , Gender , LWB ) )
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MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + bmi + as .
factor ( LWB ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- round ( data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) ) , 4 )
Value <- round ( data . frame ( MAD . lme$coef [ 1 ] ) , 4 )

res <- cbind ( Value , Std . Error )

#MNAR_2−procedure

MNAR <- na . omit ( dget ("Missing.dat" ) )
BMI <- MNAR [ , c (8 , 11 , 14 , 17 ) ] / ( MNAR [ , 4 ] ^ 2 )
MAD <- MNAR [ , c (6 , 9 , 12 , 15 ) ]
ant . BMI <- NULL
ant . MAD <- NULL
value . BMI <- c ( 2 2 . 0 4 , 2 3 . 8 8 , 2 5 . 2 4 , 2 6 . 4 2 )
value . MAD <- c ( 4 6 , 6 7 . 5 , 9 6 . 5 , 1 0 9 . 5 )

for (j in 1 : 4 ) {
teller . BMI <- 0 ;
for (i in 1 :320 ) {

if ( BMI [ i , j ] > value . BMI [ j ] ) {
teller . BMI <- teller . BMI + 1

}
}
ant . BMI <- c ( ant . BMI , teller . BMI )

}

for (j in 1 : 4 ) {
teller . MAD <- 0 ;
for (i in 1 :320 ) {

if ( MAD [ i , j ] > value . MAD [ j ] ) {
teller . MAD <- teller . MAD + 1

}
}
ant . MAD <- c ( ant . MAD , teller . MAD )

}

for (j in 1 : 4 ) {
for (i in 1 :320 ) {

if ( ( BMI [ i , j ] > value . BMI [ j ] ) && ( MAD [ i , j ] > value . MAD [ j ] ) ) {
MNAR [ i ,(3+3*j ) ] <- NA

}
}

}

MAD <- MNAR [ , c (6 , 9 , 12 , 15 ) ]

#Complete case an a l y s i s (MNAR_2−procedure )

Miss . Com <- na . omit ( dget ("Missing.dat" ) )
Miss . Com [ , 6 ] <- MAD [ , 1 ]
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Miss . Com [ , 9 ] <- MAD [ , 2 ]
Miss . Com [ , 1 2 ] <- MAD [ , 3 ]
Miss . Com [ , 1 5 ] <- MAD [ , 4 ]

Complete . MNAR <- na . omit ( Miss . Com )

bmi <- c (t ( Complete . MNAR [ , c (8 , 11 , 14 , 17 ) ] / ( Complete . MNAR [ , 4 ] ^ 2 ) ) )
MAD <- c (t ( Complete . MNAR [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- Complete . MNAR [ , c (7 , 10 , 13 , 16 ) ]
time <- c (t ( time ) )

#centered g e s t a t i o n a l age

time1 <- time − 27 .62
time2 <- time1^2
Gender <- rep ( Complete . MNAR [ , 2 ] , each=4)
LWB <- rep ( Complete . MNAR [ , 3 ] , each=4)
AGE <- rep ( Complete . MNAR [ , 5 ] , each=4)
fetus <- rep ( Complete . MNAR [ , 1 ] , each=4)
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , bmi , Gender , LWB ) )

MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + bmi + as .
factor ( LWB ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- round ( data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) ) , 4 )
Value <- round ( data . frame ( MAD . lme$coef [ 1 ] ) , 4 )

res <- cbind ( Value , Std . Error )

#ecme−procedure

Complete <- na . omit ( dget ("Missing.dat" ) )

occ . MAD <- NULL
subj . MAD <- NULL
MAD . new <- MAD
a <- is . na ( MAD )

for (i in 1 :320 ) {
for (j in 1 : 4 ) {

if (a [ i , j]==FALSE ) {
occ . MAD <- c ( occ . MAD , j )
subj . MAD <- c ( subj . MAD , i )
MAD . new [ i , j ] <- 1

}
else if (a [ i , j]==TRUE ) {

MAD . new [ i , j ] <- 0
}

}
}



98 B R CODE:

time <- Complete [ , c (7 , 10 , 13 , 16 ) ]
BMI <- Complete [ , c (8 , 11 , 14 , 17 ) ] / ( Complete [ , 4 ] ^ 2 )
bmi <- NULL
Time . keep <- NULL
for (i in 1 :320 ) {

for (j in 1 : 4 ) {
if ( MAD . new [ i , j ] > 0) {

Time . keep <- c ( Time . keep , time [ i , j ] )
bmi <- c ( bmi , BMI [ i , j ] )

}
}

}

#centered g e s t a t i o n a l age

time1 <- c (t ( Time . keep ) ) − 27 .62
time2 <- time1^2

Sum <- apply ( MAD . new , 1 , sum )

LBW <- NULL
AGE <- NULL
Gender <- NULL
for (i in 1 :320 ) {

LBW <- c ( LBW , rep ( Complete [ i , 3 ] , each=Sum [ i ] ) )
AGE <- c ( AGE , rep ( Complete [ i , 5 ] , each=Sum [ i ] ) )
Gender <-c ( Gender , rep ( Complete [ i , 2 ] , each=Sum [ i ] ) )

}

ymat <- na . omit (c (t ( MAD ) ) )
ant<- length ( ymat )

pred <- cbind ( rep (1 , ant ) , time1 , time2 , Gender , AGE , bmi , LBW , AGE*time1 , bmi*time1
, LBW*time1 )

#execut ing the ecme−method

resultMCAR <- ecme (y=ymat , subj=subj . MAD , occ=occ . MAD , pred , xcol=1:10 , zcol
=1:2)

log . likelihoodMCAR <- resultMCAR$loglik
Iteration . numberMCAR <- seq ( 1 : length ( log . likelihoodMCAR ) )

resultMAR <- ecme (y=ymat , subj=subj . MAD , occ=occ . MAD , pred , xcol=1:10 , zcol=1:2)
log . likelihoodMAR <- resultMAR$loglik
Iteration . numberMAR <- seq ( 1 : length ( log . likelihoodMAR ) )

resultMNAR <- ecme (y=ymat , subj=subj . MAD , occ=occ . MAD , pred , xcol=1:10 , zcol
=1:2)

log . likelihoodMNAR <- resultMNAR$loglik
Iteration . numberMNAR <- seq ( 1 : length ( log . likelihoodMNAR ) )

resultMNAR2 <- ecme (y=ymat , subj=subj . MAD , occ=occ . MAD , pred , xcol=1:10 , zcol
=1:2)
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log . likelihoodMNAR2 <- resultMNAR2$loglik
Iteration . numberMNAR2 <- seq ( 1 : length ( log . likelihoodMNAR2 ) )

#r e s u l t s

result <- c ( resultMCAR , resultMAR , resultMNAR , resultMNAR2 )

#PAN−procedure ( only MAD−va lue s are est imated )

Complete <- na . omit ( dget ("Missing.dat" ) )
Complete [ , 6 ] <- MAD [ , 1 ]
Complete [ , 9 ] <- MAD [ , 2 ]
Complete [ , 1 2 ] <- MAD [ , 3 ]
Complete [ , 1 5 ] <- MAD [ , 4 ]

MAD <- c (t ( Complete [ , c (6 , 9 , 12 , 15 ) ] ) )
time <- c (t ( Complete [ , c (7 , 10 , 13 , 16 ) ] ) )
time1 <- time − 27 .62
time2 <- time1^2
AGE <- rep ( Complete [ , 5 ] , each=4)
Gender <- rep ( Complete [ , 2 ] , each=4)
BMI <- c (t ( Complete [ , c (8 , 11 , 14 , 17 ) ] / ( Complete [ , 4 ] ^ 2 ) ) )
LBW <- rep ( Complete [ , 3 ] , each=4)

pred <- cbind ( rep (1 ,320) , time1 , time2 , Gender , BMI , AGE , LBW )

ymat <- c (t ( MAD ) )
subj <- rep ( Complete [ , 1 ] , each=4)

res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag
(1 ) ,c=2,Dinv=diag (2 ) ) , seed=123 ,iter=10000)

y1 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=9565 ,iter=1000 ,start=res$last )
y2 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=6047 ,iter=1000 ,start=res$last )
y3 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=3955 ,iter=1000 ,start=res$last )
y4 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=4761 ,iter=1000 ,start=res$last )
y5 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=9188 ,iter=1000 ,start=res$last )
y6 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=9029 ,iter=1000 ,start=res$last )
y7 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=4343 ,iter=1000 ,start=res$last )
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y8 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=2372 ,iter=1000 ,start=res$last )
y9 <- res$y
res <- pan (y=ymat , subj , pred , xcol=1:7 , zcol=c ( 1 , 2 ) , prior=list (a=1,Binv=diag

(1 ) ,c=2,Dinv=diag (2 ) ) , seed=7081 ,iter=1000 ,start=res$last )
y10 <- res$y

#Executing lme−method 10 t imes

MAD . pan <- cbind (y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , y9 , y10 )

B0 <- NULL
B1 <- NULL
B2 <- NULL
B3 <- NULL
B4 <- NULL
B5 <- NULL
B6 <- NULL
B7 <- NULL
B8 <- NULL
B9 <- NULL

stdB0 <- NULL
stdB1 <- NULL
stdB2 <- NULL
stdB3 <- NULL
stdB4 <- NULL
stdB5 <- NULL
stdB6 <- NULL
stdB7 <- NULL
stdB8 <- NULL
stdB9 <- NULL

fetus <- rep ( Complete [ , 1 ] , each=4)

for (i in 1 : 10 ) {

MAD <- MAD . pan [ , i ]
MI . dat <- as . data . frame ( cbind ( fetus , MAD , time1 , time2 , AGE , BMI , Gender , LBW ) )

MAD . lme <- lme ( MAD ~ time1 + time2 + as . factor ( Gender ) + ( AGE + BMI + as .
factor ( LBW ) )*time1 , random= ~time1 | fetus , data=MI . dat )

Std . Error <- data . frame ( sqrt ( diag ( MAD . lme$"varFix" ) ) )
Value <- data . frame ( MAD . lme$coef [ 1 ] )

B0 <- c (B0 , Value [ 1 , 1 ] )
B1 <- c (B1 , Value [ 2 , 1 ] )
B2 <- c (B2 , Value [ 3 , 1 ] )
B3 <- c (B3 , Value [ 4 , 1 ] )
B4 <- c (B4 , Value [ 5 , 1 ] )
B5 <- c (B5 , Value [ 6 , 1 ] )
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B6 <- c (B6 , Value [ 7 , 1 ] )
B7 <- c (B7 , Value [ 8 , 1 ] )
B8 <- c (B8 , Value [ 9 , 1 ] )
B9 <- c (B9 , Value [ 1 0 , 1 ] )

stdB0 <- c ( stdB0 , Std . Error [ 1 , 1 ] )
stdB1 <- c ( stdB1 , Std . Error [ 2 , 1 ] )
stdB2 <- c ( stdB2 , Std . Error [ 3 , 1 ] )
stdB3 <- c ( stdB3 , Std . Error [ 4 , 1 ] )
stdB4 <- c ( stdB4 , Std . Error [ 5 , 1 ] )
stdB5 <- c ( stdB5 , Std . Error [ 6 , 1 ] )
stdB6 <- c ( stdB6 , Std . Error [ 7 , 1 ] )
stdB7 <- c ( stdB7 , Std . Error [ 8 , 1 ] )
stdB8 <- c ( stdB8 , Std . Error [ 9 , 1 ] )
stdB9 <- c ( stdB9 , Std . Error [ 1 0 , 1 ] )

}

#Ca l cu l a t e s the parameter e s t imate s by Rubin ’ s r u l e s

param <- cbind (B0 , B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8 , B9 )
std . param <- cbind ( stdB0 , stdB1 , stdB2 , stdB3 , stdB4 , stdB5 , stdB6 , stdB7 , stdB8 ,

stdB9 )
var . param <- std . param^2
average . par <- NULL
var . par <- NULL
mean . param <- NULL
tot . var <- NULL

for (i in 1 : dim ( var . param ) [ 1 ] ) {

mean . param <- c ( mean . param , mean ( param [ , i ] ) )
average . par <- c ( average . par , mean ( var . param [ , i ] ) )
var . par <- c ( var . par , var ( param [ , i ] ) )
tot . var <- c ( tot . var , ( average . par [ i ] + ( (1 /dim ( param ) [ 1 ] ) +1)*var . par [ i ] ) )

}

Mean . Par <- mean . param
Tot . Par <- sqrt ( tot . var )
res <- round ( cbind ( Mean . Par , Tot . Par ) , 4 )

############### END ###############


