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Abstract

This article studies a procedure that facilitates short-time, deterministic predic-

tions of the wave-induced motion of a marine vessel, where it is understood that

the future motion of the vessel is calculated ahead of time. Such predictions

are valuable to assist in the execution of many marine operations (crane lifts,

helicopter landings, etc.), as a specific prediction can be used to inform whether

it is safe, or not, to carry out the particular operation within the nearest time

horizon. The examined prediction procedure relies on observations of the corre-

lation structure of the wave-induced response in study. Thus, predicted (future)

values ahead of time for a given time history recording are computed through a

mathematical combination of the sample autocorrelation function and previous

measurements recorded just prior to the moment of action. Importantly, the

procedure does not need input about the exciting wave system, and neither does

it rely on off-line training. In the article, the prediction procedure is applied

to experimental data obtained through model-scale tests, and the procedure’s

predictive performance is investigated for various irregular wave scenarios. The

presented results show that predictions can be successfully made in a time hori-

zon corresponding to about 8-9 wave periods ahead of current time (the moment

of action).
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1. Introduction1

Most marine operations require a high level of safety. This is also the case2

when concern is for here-and-now operations such as lifts by floating cranes, heli-3

copter landings on (smaller) ships, tow of drilling and production vessels/platforms,4

and various ship-to-ship actions. The execution of these operations can be made5

safer if the particular vessels wave-induced motions can be predicted ahead of6

current time. Thus, the ability to calculate accurately, in a deterministic sense,7

the future wave-induced behaviour of the vessel can reduce significantly the8

probability of failure of the actual operation. Some of the before mentioned9

operations involve dynamically positioned (DP) vessels and one means to apply10

the predicted response/motion ahead of current time can, in this case, be used11

directly in proactive control strategies for the DP system. Examples of strategies12

may be to adjust the controller gains, change the set-point of smaller vessels,13

and for larger vessels accelerate the vessel into the waves to avoid drift-off, or,14

if worst comes to worst, have sufficient time to emergency-abort the operation15

safely. Other practices, where the prediction of vessel motions ahead of current16

time is valuable, occur for general heave compensation systems, and for robotic17

manipulators on ships and other seaborne platforms, since efficient operation of18

the manipulators requires precise motion planing and control algorithms. As a19

practical remark, it should be noted that current time, in the following, relates20

to the very instant from when a prediction is made, meaning that measurements21

have been recorded (are known) only until the current time. Equivalently, this22

specific time could be defined as the moment of action from when the future23

(hydrodynamic) behaviour of the vessel is predicted.24

1.1. Previous work25

In the past, a number of studies has been conducted to investigate procedures26

for the prediction of the wave-induced motion of a marine vessel. Some of27
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the initial studies, e.g., Dalzell [1], Triantafyllou et al. [2, 3] and Sidar and28

Doolin [4], were concerned about the landing of aircrafts on naval destroyers.29

Since then, several of other works have followed both with naval and merchant30

applications; for instance, Broome [5], Broome and Hall [6], Chung et al. [7],31

Duan et al. [8], From et al. [9], Khan et al. [10, 11, 12], Naaijen et al. [13], Peng32

et al. [14], Woodacre et al. [15], Zhao et al. [16]. Most works in the existing33

literature belong to one of two main categories. Either the established prediction34

procedure relies on; a) a combined knowledge of the exciting wave system and35

the hydrodynamic behaviour of the ship, e.g. in terms of the ships transfer36

function, or b) the procedure relies on some sort of offline training which is37

necessary for ’standard’ autoregressive (AR) models and Neural Networks that,38

on the other hand, not necessarily require input about the waves/sea state.39

Obviously, independence of (information about) the sea state is beneficial, as40

real-time ocean surface and sea state estimation, at a ship’s exact location,41

in itself can be a difficult problem to handle in practice, not to mention the42

uncertainty associated to the actual estimate produced by whatever estimating43

means [17, 18, 19].44

It is possible to formulate a prediction procedure, see Andersen et al. [20],45

which neither requires information about the wave conditions, nor does it re-46

quire offline training. In the particular procedure - for any considered motion47

component - the sample autocorrelation function (ACF) for a recent time win-48

dow needs to be obtained. The (sampled) ACF must represent a stationary49

situation which, in time and properties, is so close to the current time that50

the statistics and the correlation structure in the dynamical system have not51

changed significantly. Thus, leaving the basic details for later, the prediction52

procedure relies on a linear model based on the correlation structure, in terms53

of the autocorrelation function, of the physical process in question together with54

the most recent - past - measurement points. In this connection, it is important55

to realise that the autocorrelation function is a direct measure of the physical56

process’ underlying memory effect; here due to the free surface oscillations of57

the sea surface. Another property to keep in mind, when discussing a process’s58
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memory and the autocorrelation function, is the fact that, for a stationary pro-59

cess, ”... the autocorrelation function and the spectrum are transforms of each60

other, (hence) they are mathematically equivalent” [21]. This fact is made di-61

rectly use of later, but, as a qualitative interpretation of the property, it means62

that an infinitely narrow-banded process has infinitely long prediction horizon;63

since the process has, in the extreme case, one single frequency component and,64

hence, is described by a sine wave. The opposite is true for an infinitely broad-65

banded process (i.e. white noise), where the deterministic prediction horizon is66

zero.67

In a recent study, Nielsen and Jensen [22] investigated the procedure, [20],68

to predict vessel responses up to 50 seconds ahead of current time. The study69

[22] was focused on simulated time histories of a ship’s wave-induced vertical70

acceleration at the centreline at a longitudinal position forward of the COG. In71

total, 20 × 60 minutes of measurements data were simulated, and predictions,72

looking 50 seconds ahead, were made every 10 seconds within the single 60-73

minutes time strips. Hence, 7,200 (= 3,600s/10s × 20) sets of {predictions vs.74

measurements} were analysed and statistically evaluated. The study showed75

that predictions of the acceleration level could be successfully made up to 2076

seconds ahead of time for most of the sets (about 85-90%); however, with pre-77

diction accuracy reducing beyond this time to a success rate of 10-20% at the78

end of the prediction intervals (spanning 50 seconds). Various metrics were79

derived to establish the statistical comparison between the predictions and the80

(simulated) measurements but, obviously, there is no unique way of doing the81

comparison of individual time history strips; a fact which also will be addressed82

later in the present study.83

1.2. Content of the study84

The investigated procedure by Nielsen and Jensen [22] is also examined in the85

present study but, herein, the measurements data consist of motion recordings86

obtained from model-scale experiments rather than numerically simulated time87

histories. Some of the findings made in [22] are directly applied in the present88
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work and, as as such, the study herein is a continuation of the former one,89

including the recommended further work.90

In most studies on stochastic wave-structure interactions, the statistical con-91

cept of a stationary process is important. Indeed, this is so herein and through-92

out it is a fundamental assumption that conditions are stationary. In principle,93

this calls for a discussion on requirements for a process to be stationary, or94

maybe rather a discussion of the theoretical/mathematical consequences if the95

process is not strictly (nor weakly) stationary. However, this particular dis-96

cussion is not touched upon, although some remarks are given. Overall, the97

importance is that stationarity will be assumed; without necessarily stating98

this.99

It should also be mentioned that the interest in this study concerns ’standard100

marine crafts’, such as ships or other ship-like structures and floating platforms,101

and not tethered marine structures. On the other hand, the theoretical formu-102

lations might apply to the latter type of structures; if the particular response103

is characterised by a (Gaussian) stationary process.104

1.3. Composition of paper105

The paper has been organised into five main sections, and the remaining106

four are as follows: In Section 2, the theoretical formulations are outlined with107

mentioning also about general properties about the (sample) autocorrelation108

function of a stationary process. The experimental facility, including descrip-109

tions of the test cases, and pre-analyses of the recorded model-scale data are110

described in Section 3. All predictions, and associated results and comparisons111

with measurements, follow in Section 4. Finally, a short summary and an ex-112

traction of main findings and conclusions are given in Section 5.113

2. Theoretical formulation114

The prediction procedure addressed herein is established from the fact that115

any stationary wave-induced response has some memory in its behaviour. The116
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reminiscence arises due to a memory effect in the exciting force which is gov-117

erned by the wave oscillations of the sea surface. The ability of a wave-induced118

process to ”remember its past” may conversely be expressed by saying that the119

future values (= outcomes) of the particular process will be conditional on its120

prior outcomes. Thus, it makes sense to introduce the (statistical) concept of121

conditional processes, and the prediction procedure makes directly use of results122

which can be derived from the definition of the joint probability density function123

of time-dependent normal distributed variables. Indeed, Lindgren [23] studied124

properties of a normal process, and results and general findings were outlined125

for the conditional behaviour of a normal process. The mentioned study [23]126

is at a somewhat high-level of mathematical abstraction/notation, and some of127

the findings have been concretised by Jensen [24] and Andersen et al. [20]. The128

following section outlines the expressions that have been derived for a normal129

process, conditional on a set of known, i.e., (prior) measured values.130

The main focus in the article is on application; rather than going through131

all the details of the theory. That said, all relevant and necessary theory is132

included in the following, but some of the algebra, derived from the original133

work by Lindgren [23], has been left out. In order to assist the reader, the134

relevant theory has been compressed down to a set of bullet points specified in135

subsection 2.2, and the reader may jump directly to this subsection.136

2.1. Conditional process based on a set of known values137

The measurement x(t0) = x0 of an arbitrary wave-induced response at an138

instant t0 is considered, and measured values x(t1) = x1, x(t2) = x2, ..., x(tn) =139

xn exist at a set of times t1 > t2 > ... > tn prior to t0. Mathematically, the140

measurements are described by the stochastic normal process X(t), and the141

interest is concerned with the expected mean variation X̂(t) of X(t) ahead of142

current time (i.e. t > t0). By definition, the expected mean variation of the143

6



conditional process, conditioning X(t) on its prior values, is given by144

X̂(t) ≡ E
[
X(t)|X(t0) = x0, X(t1) = x1, ..., X(tn) = xn

]
=

∫ ∞
−∞

u · p(u|x0, x1, ..., xn)dx (1)

where p(x|x0, x1, ..., xn) is the conditional probability density function of X(t)145

given X(t0) = x0, X(t1) = x1, ..., X(tn) = xn. Since the probability den-146

sity function of X(t) is normal distributed, the conditional probability density147

function will also be (multivariate) normal distributed,148

p(x|x0, x1, ..., xn) = ϕ
(
x(t);µn(t), σn(t)

)
(2)

where ϕ(x;µ, σ) is the probability density function of a normal distributed vari-149

able150

ϕ (x;µ, σ) ≡ 1√
2πσ

exp

(
−1

2

(x− µ
σ

)2)
(3)

with mean value µ and standard deviation σ. In the particular case, Eq. (2),151

the mean value and the standard deviation are themselves processes rather152

than variables. Notably, the ’mean value’ will be identical to the expected153

mean variation, i.e. µn(t) ≡ X̂(t), which is the very solution to the prediction154

problem. The derivation of the explicit formula for X̂(t), generally expressed155

in terms of n prior measured values of X(t), requires some algebra. Below, the156

solution will be indicated only for the special case n = 1.157

The conditional probability density function of the processX(t), givenX(t0) =158

x0 and X(t1) = x1, can be written, cf. Jensen [24]159

p(x(t)|x0, x1) =
p(x(t), x0, x1)

p(x0, x1)
(4)

Thus, the interest is in the marginal probability density functions, p
(
x0, x1

)
and160

p
(
x(t), x0, x1

)
, which both are multivariate versions of the normal distribution.161

For the k-variate case, with x being a vector of k elements, the expression reads162

p
(
x
)

=
1√
|(2π)Σ|

exp

(
−1

2

(
xTΣ−1x

))
(5)

where Σ is the (auto)covariance matrix of p(x), and | · | denotes determinant.163

In Eqs. (4)-(5) , the autocovariance matrices Σ2 and Σ3 for p
(
x0, x1

)
and164
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p
(
x(t), x0, x1

)
, respectively, are defined by165

Σ2 =

 E[X(0)2] E[X(0)X(t1)]

E[X(t1)X(0)] E[X(0)2]

 (6)

166

Σ3 =


E[X(t)2] E[X(t)X(0)] E[X(t)X(t1)]

E[X(0)X(t)] E[X(0)2] E[X(0)X(t1)]

E[X(t1)X(t)] E[X(t1)X(0)] E[X(t1)2]

 (7)

and, after insertion of the normalised time-dependent autocorrelation function167

r(t),168

Σ2 = m0

 1 r(t1)

r(t1) 1

 (8)

169

Σ3 = m0


1 r(t) r(t− t1)

r(t) 1 r(t1)

r(t1 − t) r(t1) 1

 (9)

where r(t) is given by,170

r(t) =
1

m0
E
[
X(0)X(t)

]
(10)

introducing the variance in terms of the 0-th order spectral moment m0, and171

noting r(t1 − t) = r(t − t1) for a stationary process. The i-th order spectral172

moment mi follows from173

mi =

∫ ∞
0

ωiS(ω)dω (11)

with the spectral density S(ω), at frequency ω, being the Fourier transform of174

the (stationary) time domain process X(t). It is noteworthy that the definition175

of the time-dependent autocorrelation function (Eq. 10) is formulated in the176

time domain, but for a stationary process the autocorrelation function may177

alternatively be obtained by a frequency domain calculation,178

r(t) =
1

m0

∫ ∞
0

S(ω) cos(ωt)dω (12)

The further steps in the development of the prediction procedure are to179

insert Eq. (8) and Eq. (9), respectively, into Eq. (5), yielding analytical180

expressions for the two marginal probability density functions p
(
x0, x1

)
and181
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p
(
x(t), x0, x1

)
. Subsequently, substitution of these two expressions into Eq. (4)182

leads - through (algebraic) matrix multiplication - to an analytic expression for183

the conditional probability density function p(x(t)|x0, x1). On the other hand,184

the assumption is that p(x(t)|x0, x1) is given by a normal probability density185

function, ϕ
(
x(t);µ1(t), σ1(t)

)
, with given processes for the mean value µ1(t) and186

the standard deviation σ1(t), cf. Eqs. (2) and (3). Hence, from the (explicit)187

analytic expression of the conditional probability density function it is possible188

to define analytic expressions for µ1(t) and σ1(t); keeping in mind that the189

former yields the actual prediction in search, X̂(t) = µ1(t). Thus, the expected190

mean variation, equivalently said the prediction ahead of current time t0, can191

be calculated from192

X̂(t) =

(
r(t)− r(t1)r(t− t1)

)
x0 +

(
r(t− t1)− r(t)r(t1)

)
x1

1− r2(t1)

=
1

1− r2(t1)

[
r(t), r(t− t1)

]  1 −r(t1)

−r(t1) 1

 [x0, x1

]T
(13)

In the formula above, only the two most recent measurements, x0 and x1,193

are taken into account. In the general case with a set of n prior values, that is194

n > 1, the formula for predictions ahead of time t0 changes accordingly:195

X̂(t) = rT (t)R−1x (14)

using matrix notation with the ’measurement vector’ x = [x0, x1, x2, ..., xn]T .196

For at discrete set of (lagged) times, tk = k∆t, k = 0, 1, 2, ..., n (i.e. t0 = 0), the197

autocorrelation vector r(t) and autocorrelation matrix R are,198

r(t) =
[
r(t− 0), r(t−∆t), r(t− 2∆t), ..., r(t− n∆t)

]T
(15)

199

R =



1 r(∆t) r(2∆t) · · · r(n∆t)

r(∆t) 1 r(∆t) · · · r((n− 1)∆t)

r(2∆t) r(∆t) 1 · · · r((n− 2)∆t)
...

...
...

. . .
...

r(n∆t) r((n− 1)∆t) · · · r(∆t) 1


(16)
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where it is noted that the autocorrelation matrix is symmetric, with constant200

elements on any diagonal, and with ones on the centre diagonal. The autocorre-201

lation (row) vector has length n+ 1, while the autocorrelation (square) matrix202

has dimension (n+ 1)× (n+ 1). For n = 1 it is evident that Eq. (14) becomes203

identical to Eq. (13).204

2.2. Summary205

The prediction procedure is complete with expression Eq. (14). As a kind206

of summary, and with attention to calculations in practice, where stationary207

conditions will be assumed, a few important points are worth mentioning:208

1. The autocorrelation matrix (Eq. 16) does not change, and it needs there-209

fore to be calculated and inverted only once for the considered range of210

stationary data.211

2. The autocorrelation vector (Eq. 15) does not depend on the (instanta-212

neous) measured values of X(t) and can be precalculated and re-used for213

the set of prior time steps considered at the particular time step(s) of the214

(discretised) time t.215

3. Combining (1) and (2) leads to the ’predictive vector’ y(t) which is pre-216

calculated, or adapted, to the particular setup of prediction horizon and217

prior measurements considered,218

y(t) = rT (t)R−1 , size(y) = 1× (n+ 1). (17)

4. In practice, one specific vector, ym, m = 1, 2, ...,M , is computed/assigned219

corresponding to one particular time tm ahead of current time t0. Thus,220

on a discrete time interval, tm, m = 1, 2, ...,M , predictions of the process221

X(t) are calculated according to222

x̂m = ymx (18)

noting that ym = [y1,m, y2,m, ..., yn+1,m] and x = [x0, x1, x2, ..., xn]T .223
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The outlined prediction procedure has some resemblance to predictions by the224

autoregressive (AR) predictor method, e.g. Zhao et al. [16], but with a main225

difference that for the AR procedure the future time step is assumed to be only226

the next time step and not a continuous variable as in Eq. (14) (and Eq. 18).227

Consequently, any ’standard’ AR procedure needs some sort of offline training228

to facilitate predictions at several time steps ahead of current time. In contrast,229

the present prediction procedure (Eq. 14) makes directly use of the system’s230

correlation structure in terms of the autocorrelation function and, thus, offline231

training is not needed to make predictions at a number of time steps ahead of232

time.233

Some additional discussions, including comparisons, of theoretical concepts234

of various prediction procedures are given in, for instance, [20] and [9]. The235

present section is closed by a small theoretical example/illustration which serves236

to explain some general aspects of calculations, i.e. predictions, made with Eq.237

(14).238

2.3. Theoretical example239

A certain response has been monitored and recorded during a stationary pe-240

riod. Specifically, a time history recording of the past 30 minutes (see Figure 1)241

has been used to estimate the response spectrum and the associated autocorre-242

lation function. Some three minutes later is considered as the current time, i.e.243

”now”, where a prediction ahead of time is made. Figure 1 shows the situation;244

the upper plot is the 30-minutes time recording while the lower plot is a zoom245

around the current time, which is taken to be three minutes later than the end246

of the 30-minutes time history recording providing the underlying correlation247

structure.248

At time t0 = 33.0 min., a value x0 is measured and predictions ahead of249

t0 are made using the past, say, Tpast = 20 seconds of data. Thus, with250

the sampling rate to be, for instance, ∆t = 0.5 s, it means that 41 prior251

points are considered for predictions, and the measurement vector x33min =252

[x0, x1, ..., x40]T is assigned accordingly. The autocorrelation matrix R20s has253
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Figure 1: Response measurements recorded during 30 minutes of stationary conditions (upper

plot) and a zoom around current time t0 = 33.0 min. at which a prediction of the future

behaviour is made.

been (pre)constructed with its 41 × 41 elements, cf. Eq. (16), using the cal-254

culated autocorrelation function derived from the 30-minutes (stationary) time255

recording. At any one time step (m∆t), m = 1, 2, ... ahead of t0 the predictive256

vector y20s,m = [y1, y2, ..., y41]m has 41 elements and it is calculated according257

to Eq. (17), noting that the vector depends only on the autocorrelation func-258

tion, depending itself on just the initial 30-minutes time history recording. In259

this scenario, however, prediction is made Tpredict = 60 seconds ahead of t0, so a260

set of 120 (=
Tpredict

∆t ) predictive vectors is needed; a set that can be stored as a261

matrix Y20s,60s, which will be specific to the combination of Tpast and Tpredict.262

As a consequence of the above ”deduction”, any new predictions, made also263

60 seconds ahead of a ’new current time’ being different from t0, can be made264

by just changing x, since y has not changed; assuming no change in the corre-265

lation structure of the process at the new current time. More generally, from266

the illustration-example, it is important to note (and to repeat) that in the267

prediction procedure;268

• the measurement vector (xt0) will be specific to the instant in time when269

predictions are made,270

• the autocorrelation function is specific only to the considered stationary271
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time history recording; and thus the (specific) autocorrelation matrix R,272

independent of the value of t0, can be used for predictions as long as273

conditions remain in the same ’stationary settings’,274

• consequently, or similarly, any predictive vector y does not change with275

the current time t0, whatever the value of t0, requiring just that t0 is not276

(very) far away, measured on a time scale, from the initial stationary time277

history recording.278

As a closing remark on the theoretical example, but focusing instead on the279

practical application of a predicted response sequence, one means to exploit280

such deterministic predictions (e.g., Fig. 1) is to provide the maximum and281

minimum values of the predicted time sequence. That is, it may not necessarily282

be important to know that, say, the heave motion will be +0.98 m, 28 seconds283

ahead of current time. Rather it will be beneficial to know that it is likely284

that the heave motion, during the next, say, 30 seconds, reaches a specific level285

(plus/minus) that makes a particular operation unsafe to carry out. Obviously,286

for a perfect prediction procedure the term ’likely’ will be replaced by ’certain’.287

Consequently, the evaluation of the prediction procedure could be a matter288

of comparing just predicted max/min values to the corresponding measured289

max/min values for given prediction sequences. However, as will be addressed in290

the remaining sections, the evaluation is conducted significantly more thorough.291

2.4. Kriging vs. non-Gaussian processes292

It turns out1 that Eq. (14) can be derived also from Kriging which is a293

statistical regression and/or prediction method, where the basic idea is to predict294

the value of a function at a given point by computing a weighted average of the295

known values of the function in the neighborhood of the point [25, 26, 27, 28].296

Thus, the resemblance to the presented prediction procedure is clear.297

As such, the derivations of the ’Kriging equations’ do not need a specific as-298

sumption about (multivariate) Gaussian processes, although some authors will299

1Thanks to an anonymous reviewer.
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claim that, in practice, this is necessary and why the Kriging models often are300

referred to a Gaussian process models [29]. Briefly said, the assumptions are301

1) Stationarity and 2) Isotropy. However, one limitation is that, in general,302

the accuracy of interpolation by Kriging will be limited if the number of sam-303

pled observations is small, e.g. [26]. Consequently, the Gaussian assumption is304

implicitly imposed, because of the Central Limit Theorem.305

Kriging will not be explored any further in the present article but, obvi-306

ously, it should be interesting, as a future work, to look closer into Kriging to307

examine the method for potential use in the context of short-time, determinis-308

tic prediction of wave-induced processes. Some useful references can be found309

on the general topic of Kriging in relation to marine and offshore applications310

by consulting [30, 31]. To close the discussion about Kriging, and with given311

knowledge at hand, it appears that the Gaussian assumption can be relaxed, as312

Eq. (14) can be found by ’Simple Kriging’. Nonetheless, in the work by Lind-313

gren [23], which is the original reference for the present work including Eq. (14),314

the assumption is a Gaussian process, and therefore the Gaussian assumption315

is kept herein.316

3. Experimental data317

3.1. Testing facility318

The prediction procedure has been applied to experimental model-scale data319

obtained in a testing facility at the Marine Cybernetics Laboratory (MCLab) at320

the Norwegian University of Science and Technology (NTNU), Trondheim. The321

facility includes a basin with dimensions 40 m× 6.45 m× 1.41 m (L×B ×D),322

a vision-based positioning system that provides position and orientation mea-323

surements of a dynamic positioned (DP) vessel, and a wave flap2 for generating324

long-crested waves derived from a given wave spectrum. Figure 2 shows the325

specific model, Cybership 3, in action. The particular ship is a 1:30 scale model326

2DHI Wave Synthesizer, www.dhigroup.com.
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of a platform supply vessel with dimensions Lpp = 1.97 m and B = 0.44 m. It327

is equipped with three azimuth thrusters; two at the stern with fixed angles of328

±30 ◦ and one in the bow at 90 ◦ (Fig. 2). The vessel has eight 12 V batteries329

supplying power to the thrusters and a National InstrumentsTM CompactRIO330

(cRIO) that runs the DP control system. The operator supplies setpoints and331

specifies controller-gains from a laptop, and communication between the camera332

system, operator laptop and cRIO is via Ethernet.

COG

-0.81 0.76

-0.11

0.11

Figure 2: Cybership 3 deployed in the model-basin at NTNU (top), and thruster configuration

of the vessel (bottom) with measures in meters. [32]

333

3.2. Experiments and motion measurements334

The experimental tests have been run with Cybership 3 exposed to different335

wave scenarios; in each case with the (irregular) sea state specified in terms of a336

parameterised wave spectrum that has as input significant wave height Hs and337

peak period Tp. The tests are made with different (relative) wave headings β,338

and a summary of the experimental conditions are given in Table 1. All tests339

are made at zero-forward speed, and with the experimental conditions fixed for340

the single test case; since the prediction procedure requires/assumes stationary341

conditions (Section 2). The specific wave heading, used in subcases ’a’, ’b’ or342

’c’, is given in the parenthesis {...}, where β = 0◦ is head sea (and β = 180◦343
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Table 1: Experimental conditions of the test cases. Note, conditions apply to model scale.

Case no. Spectrum Hs [m] Tp [s] β[◦]

1a,b,c JONSWAP 0.04 0.8 {0, 10, 20}
2a,b,c JONSWAP 0.05 0.9 {0, 10, 20}
3a,b,c JONSWAP 0.05 1.5 {0, 10, 20}
4a,b,c Ochi-Hubble (0.04+0.04) (0.8+1.5) {0, 10, 20}

is following sea). It is decided to keep data in model scale throughout; this344

includes all analyses and associated results.345

The use of long-crested wave presumably does not influence the outcome of346

predictions, neither positively nor negatively, as the resulting stochastic prop-347

erties of the wave-induced process, i.e. the motion of the vessel response, are348

unaffected. It should, however, be interesting to examine this hypothesis closer349

by conducting model-scale (or full-scale) experiment in short-crested seas. In350

the same line, it will be of no (theoretical) importance whether the ship advances351

with a constant forward speed or is at zero-forward speed, as the wave-induced352

process is stationary in either case; obviously, taking all other experimental353

conditions/parameters as constant too.354

From Table 1 it is seen that totally 12 (sub)cases are investigated. For each355

subcase, the components of the six degrees-of-freedom motion of Cybership 3356

have been measured and corresponding time history records thus exist. On-357

wards, it is chosen to focus almost entirely on the heave recordings, although358

analyses have been also made with roll and pitch; but leaving just a few com-359

ments, here and there, on these motion components. It is important to note360

that, in all of the considered cases, approximately ten minutes of stationary361

motion recordings are available. For the given sea states, noting the values of362

associated wave periods Tp (Table 1), 10-minutes recording lengths imply that363

the vessel encounters about 400-700 single waves, depending on the case (Tp)364

in study. The motion recordings were initially sampled at 100 Hz but, as a365

post-process, data has been resampled to 20 Hz. The reason to down-sample is366

merely a matter of saving memory/storage on the authors’ personal computers,367

and increase computational efficiency as reduced sampling frequency leads to368
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smaller dimension of the autocorrelation matrix. Down-sampling to 20 Hz will369

not affect any of the global wave-induced responses; not even in model-scale370

(1:30).371

3.3. Pre-analysis of measurements data372

One example of a heave recording is shown in Figure 3, which shows both373

the time history recording and the corresponding periodogram, i.e. the re-374

sponse spectrum, of Case 1a. The response spectrum is shown without and375

with smoothing (legends ’No smoothing’, respectively ’L = 2,400’ and ’L =376

200’) where smoothing is applied using a Parzen window on the estimated au-377

tocovariance function. In practice, the spectral calculation has been made with378

WAFO [33], and in this case (Fig. 3) the smoothing window functions have379

2,400 and 240 elements/weights.3 The one value, L = 2,400, is equivalent to380

one fifth of the total number of samples in the particular time history record-381

ing. It is noteworthy that this amount of smoothing is used throughout the382

3In WAFO, the size of the smoothing window is controlled by parameter L.
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Figure 3: Time history recording (top) and corresponding response spectrum (bottom) with

three versions of the spectrum; without and with smoothing controlled by the parameter ’L’.
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Figure 4: Cumulative distribution functions and corresponding histograms (”internal” plots)

of the heave level of Cases 1a and 2a.

forthcoming analyses; however, with no special attempt to ”justify” the value383

L = 2,400, although some further remarks on smoothing and its consequence384

are given in Subsection 4.1.385

Mathematically, the prediction procedure assumes, or requires, data to be386

normal distributed; which for most wave-induced (global) vessel responses typ-387

ically is a reasonable assumption. Two visual evaluations of the (model-scale)388

data studied herein are shown in Figure 4, where the two plots apply to the time389

history recordings of cases 1a and 2a. The plots show the empirical cumulative390

distribution function (CDF) together with a cumulative normal distribution391

function having mean value and standard deviation as calculated from the em-392

pirical data of the single case. Additionally, each plot presents, as the smaller393

plot inside, a histogram of the empirical distribution including a fitted normal394

probability density function. It is seen that the considered cases, 1a and 2a,395

seemingly represent a normal distributed process, and albeit not shown herein396

similar findings/visualisations apply to all the other cases listed in Table 1. The397

visual evaluation can be supplemented with a quantitative/objective test using398

hypothesis testings, e.g. Anderson-Darling, Kolmogorov-Smirnov, and Lilliefors399

[34, 35], where data is tested against the null hypothesis [36, 37] that it follows400

some pre-specified distribution; or the alternative that data does not follow the401

specific distribution. The outcome of a hypothesis test is usually a logical, 1402

or 0, where ’1’ indicates that the hypothesis is rejected, and ’0’ means that403
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the test fails to reject the hypothesis. The result, 1 or 0, is based on the test404

statistics, considered as a metric/distance A2, relative to a certain significance405

level [38, 39]. In the present context ’rejection’ thus implies that data is not406

normally distributed, and the alternative means it is. For the specific cases in407

Figure 4, the data sets have been tested using the Anderson-Darling test4 with408

a 5% significance level, and it is interesting to note that the data sets, i.e. the409

time history recordings, of Cases 1a and 2a are not normally distributed. There-410

fore, it will be interesting to see if predictions, on average, behave differently411

in terms of agreement relative to measurements, depending on the underlying412

probability distribution of the data.413

The Anderson-Darling test has been applied to all time history recordings,414

and the result can be seen in Table 2 which specifies whether data follows a415

normal distribution or, the alternative, that it does not; with values ’Yes’ or416

’No’, respectively, in the specific column. The decision is, as mentioned, based417

on the test statistics A2 relative to a 5% significance level where the latter, for418

the given time history recordings, directly translates into an associated critical419

value cV . Thus, data is stationary if A2 < cV , equivalently cV − A2 > 0, and420

otherwise data is not, and Table 2 yields also the relative deviation cV −A2

cV
to421

indicate the ”degree of normality”, or the opposite.422

Additionally, Table 2 presents a summary of a pre-analysis made on the423

measurements data. Thus, the table provides some of the (spectral) parameters424

characterising the time history recordings; this includes the standard deviation425

σ, the mean zero-upcrossing period Tz and the spectral bandwidth parameter426

ε. These parameters can all be calculated using the spectral moments (cf. Eq.427

4The actual computation is performed using the built-in function adtest of MATLABr
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11),428

σ =
√
m0 (19)

Tz =

√
m0

m2
(20)

ε =

√
1− m2

2

m0m4
(21)

Finally, as the rightmost column in Table 2, the result of another hypothesis429

test is shown. This test looks into whether data can be considered as stationary430

or not, and is based on the outcome of an ’Augmented Dickey-Fuller test’ which431

is used to indicate rejection of the presence of a unit root or failure to reject one432

in the given time history recording.5 Herein, it is understood that the presence433

of a unit root implies that data is non-stationary (and may have a trend). The434

principle of the test is much the same as the test for a normal distribution,435

which means that the actual outcome relies on some test statistics. Contrary436

to the test for a normal distribution it is, however, found that all time history437

recordings can be considered as stationary and no further remarks are given.438

4. Results and discussions439

The experimental data, including the pre-analysis, described in the previous440

section will be used to evaluate the prediction procedure outlined in Section441

2. The evaluation will be focused on merely the outcome of the prediction442

procedure when specific settings are applied. This leaves out any sensitivity443

and parameter studies in the following analysis. On the other hand, the work444

by Nielsen and Jensen [22] has some detailed studies in this respect for what445

reason ’guidance’ from [22] is indeed valuable.446

4.1. Prediction settings447

In the particular work [22], studies were made on the prediction settings448

and their influence on any prediction. Specifically, efforts looked at the conse-449

5The actual test is performed using adftest of MATLABr without augmented difference

terms.
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Table 2: Spectral parameters of the underlying time history recordings and results of hypothesis

testings with regards to a normal distribution and stationarity, respectively.

Case σ [cm] Tz [s] ε [-] Normally distr. Stationary

1a 0.29 0.62 0.90 ’No’ (-0.28) ’Yes’
1b 0.25 0.62 0.90 ’Yes’ (0.21) ’Yes’
1c 0.26 0.64 0.90 ’No’ (-3.87) ’Yes’
2a 0.50 0.74 0.91 ’No’ (-5.33) ’Yes’
2b 0.42 0.65 0.90 ’No’ (-2.25) ’Yes’
2c 0.42 0.67 0.91 ’Yes’ (0.53) ’Yes’
3a 0.80 0.94 0.96 ’No’ (-0.97) ’Yes’
3b 0.75 0.92 0.96 ’Yes’ (0.35) ’Yes’
3c 0.81 0.93 0.95 ’Yes’ (0.16) ’Yes’
4a 0.64 0.83 0.94 ’Yes’ (0.43) ’Yes’
4b 0.62 0.79 0.94 ’Yes’ (0.20) ’Yes’
4c 0.69 0.82 0.94 ’Yes’ (0.57) ’Yes’

quence in applying different ”amounts” of prior data, e.g. to consider the past450

10 seconds versus 20 seconds of data, relative to current time t0, for making451

predictions, say, 50 seconds ahead of time t0; with all times in full-scale. More-452

over, the importance of settings related to the spectral calculation of the sample453

autocorrelation function (ACF) was addressed, since smoothing, as discussed in454

Section 3, affects significantly the shape of the periodogram from which the455

sample ACF is derived. The most ”complete” sample ACF is obtained when no456

smoothing is applied to the periodogram, and, in this case, the spectral-version457

of the sample ACF will be identical to the sample ACF as if computed directly458

according to its definition in the time domain (Eq. 10). However, it is also459

known that for zero-smoothing, the sample autocorrelation function may fail460

to damp out according to expectation [21, 40]. Consequently, correlation may461

appear to last (be present) for longer duration than is actually true, and some462

smoothing is therefore necessary. On the other hand, if too much smoothing is463

applied to the periodogram, correlation will appear to vanish after only a short464

time, or equivalently said the sample ACF damps out too quickly.465

Previously, it was explained that, in the present study, smoothing is applied466

to data using a Parzen window on the estimated autocovariance function and,467
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hence, contributions from covariance at large lags, which are generally not re-468

liable, will be small or zero. Three versions of sample ACFs, all obtained from469

exactly the same data, are visualised in Figure 5; with the underlying time470

history recording and the amounts of smoothing identical to what was studied471

previously (Fig. 3). Indeed, it is seen how varying degrees of smoothing may472

affect the sample ACF very much. Consequently, a prediction procedure relying473

fundamentally on the sample ACF will be influenced by the degree of smoothing474

being applied in the spectral calculations. Nonetheless, the conclusions drawn475

from the earlier study by Nielsen and Jensen [22], made on a very large set of476

numerical time history simulations, suggest, or ”prescribe”, that predictions,477

relative to corresponding measurements, are improved by taking into account478

correlation/autocovariance at large lags despite they are not necessarily always479

(”mathematically”) reliable.480

In summary, predictions will be made with the following settings, cf. Nielsen481

and Jensen [22], which apply to model scale:482

• Predictions ahead of current time t0 take into account N past measure-483

ment points (relative to t0), where the value of N is equivalent to a time484

period Tpast = 25Tp with Tp given in Table 1.485

• The periodogram is smoothed using a Parzen window on the estimated486

autocovariance function. The window function is of size L, where L is487

taken as one fifth of the total number of samples in the particular time488
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Figure 5: Sample autocorrelation function with a zoom included as the ”internal” plot. The

underlying time history recording is as seen in Figure 3.
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history recording in study.489

• Finally, predictions will be made 7.5 seconds ahead of any current time490

t0, and a new prediction is made every 2.0 second on the 10-minutes time491

strips. It is noted that 7.5 seconds correspond to about 5-8 wave periods,492

depending on the case (Tp) in study.493

These settings are applied to all time history recordings, cf. Tables 1 and 2. On494

each 10-minutes time history strip, totally 200 prediction sequences have been495

computed; taking note that the initial 50 seconds and the last approximately496

90 seconds of any recording are not considered, and remembering also that497

prediction sequences overlap each other.498

4.2. Visual and statistical comparisons499

Figure 6 shows four prediction sequences; all made for data strips taken from500

Case 2a. The plots include the measured (i.e., the true) response sequences, and,501

furthermore, two (statistical) numbers, R2 and ρ, are printed in the upper right502

corner of each plot. Leaving the two numbers to be defined and explained later,503

the particular plots reveal good agreement between the predicted and measured504

response sequences on almost the entire part of the individual data strips. How-505

ever, generally it is not every prediction sequence of Case 2a which agrees as506
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Figure 6: Selected heave response sequences of Case 2a; blue full line is measurement and

dashed red line is prediction. The determination and correlation coefficients, R2 respectively

ρ (defined later), are seen in the upper right-hand corner.
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2×200 curves on top of each other. Additionally, the pairs of bold lines in cyan (predictions)

and green (measurements) indicate the ’point-wise’ standard deviation calculated from the

2 × 200 data points at given time instants.

accurate to the measured corresponding one, as seen from the plots/comparisons507

in Figure 6. Therefore, to get a better, or more ”average”, picture of the overall508

performance of the prediction procedure, a random excerpt of visual compar-509

isons can be seen in Figures A.13-A.15 in Appendix A, which presents sets of510

plots similar to those in Figure 6. The sets seen in Figures A.13, A.14, A.15511

apply to Cases 2a, 2b, and 2c, respectively, and the excerpts (of prediction vs.512

measurement sequences) are simply based on 16 data strips, for each case, cut513

out every 20 second starting at t0 = 50 s. Thus, the average performance of514

the prediction procedure is better evaluated since no special focus is on ”good”515

predictions, nor ”bad” ones.516

On the other hand, it is not practically possible, nor feasible, to visually517

compare - for all data sets (Cases 1-4), cf. Section 3 - every prediction sequence518

with the corresponding measurement sequence in single and detailed plots like519

studied in, e.g., Figures 6 and A.13-A.15. Therefore, to derive some sort of520

’statistical measure’ of the average performance of the prediction procedure,521

another presentation of the outcome/comparison is studied. Collectively, Fig-522

ure 7 shows the results of all heave prediction sequences and the corresponding523

measurement sequences of Case 2a. The abscissa represent the normalised pre-524

diction time ahead of t0, where normalisation is made with respect to the wave525

peak period Tp (cf. Table 2). In addition to all pairs (prediction vs. mea-526

24



-2 -1 0 1 2

Measurement level [cm]

-2

-1

0

1

2

P
re

di
ct

io
n 

le
ve

l [
cm

]

[0-1T
p
]

[0-3T
p
]

[0-8T
p
]

Figure 8: Agreement between single pairs of measurements and predictions for Case 2a with

separate results depending on the prediction horizon considered; e.g., [0 − 3Tp] where Tp is

the wave peak period.

surement) of data sequences, the curves of the point-wise standard deviation527

are included as pairs of plus/minus versions of it; shown as the green and cyan528

pairs of bold lines for measurements and predictions, respectively. Thus, keep-529

ing in mind, there are 2×200 prediction and measurement points at any instant,530

where the individual set of points has a mean value of zero and a standard de-531

viation as visualised in Figure 7. From the plot in Figure 7, it is noted that532

until about 1Tp ahead of current time t0 there is a very good agreement be-533

tween predictions and measurements. Subsequently, the agreement reduces and534

at prediction instants from about 3Tp and further ahead until the end (taken as535

8Tp), the agreement remains, on average, at the same level. These findings are536

confirmed by the plot in Figure 8 which presents the agreement between any537

single pair of data values (prediction vs. measurement) obtained for Case 2a;538

with specified results dependent on the prediction horizon: [0− 1Tp], [0− 3Tp]539

and [0− 8Tp], respectively. Moreover, the theoretical line of perfect agreement540

is included in the plot as the black dashed line.541

Appendix B contains pairs of plots equivalent to those in Figures 7 and542

8 but considering subcases 2a, 2b, and 2c together. Generally, the observa-543

tions from the (other) subcases, see Figures B.17 and B.18 in the appendix,544

are similar to what was addressed above, although the agreements for Cases545
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2b and 2c reduce to slightly lower levels than found for Case 2a. One partic-546

ular ”characteristic”, evident from all cases (2a-c), is the decreasing amplitude547

levels, equivalently decreasing point-wise standard deviations, for prolonged pre-548

diction horizon/interval of the prediction sequences. This observation can be549

explained mathematically, cf. Lindgren [23], since the predicting process (Eq.550

14) is non-stationary with properties resembling the autocorrelation function of551

a (stochastic) wave-induced process.552

As a last visual comparison, see Figure 9, the relative error between cor-553

responding set of heave sequences (prediction versus measurement), as seen in554

Figure 7, has been calculated for Case 2a; where normalisation is made with re-555

spect to the square root of the 0th-order spectral moment, cf. Table 2. The error556

curves for all corresponding sequences are shown in Figure 9 as the blue (thin)557

lines. Notably, the plot sheds light on four specific error curves (coloured in558

green); namely, those four obtained by considering the prediction and measure-559

ment sequences shown in Figure 6. Furthermore, the plot in Figure 9 includes560

the point-wise mean value curve and the ditto curves of plus/minus the point-561

wise standard deviation (StD) of the errors, where the former curve fluctuates562

around zero as expected. It is interesting to observe that even for sequences563

like those studied previously (Figure 6), where the agreement, based on a visual564

judgement, is apparently very acceptable, still the relative, normalised error is565

not insignificant; taking note that the four green curves in the plot in Figure 9566

exceed the standard deviation of the point-wise error at several instants. Con-567

sequently, a large number of the prediction sequences seen in Figure 7 reveals568

just as good, or better, ”visual agreement” as what can be seen from the four569

individual plots in Figure 6.570

Obviously, the various plots like those discussed above are visual indicators571

of the general performance of the prediction procedure. Nonetheless, the dis-572

cussion(s) can be supplemented with some quantitative error measures and/or573

statistical evaluations. In this context, it should be clear that some metric(s)574

must be computed to comprehensively evaluate the overall performance of the575

prediction procedure, since any visual comparison that can be made from the576
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Figure 9: Normalised error between prediction and measurement for all sequences of Case

2a.

plots in, for instance, Figures 6 and 8 always will be, to some degree, rather577

subjective. On the other hand, it is not straight forward to define unique and578

physically meaningful metrics to make comparisons from. This topic has been579

discussed in several of other similar works, e.g. [41, 18, 13, 22], and the mat-580

ter is, to some extent, an entire topic in its own right. In the present study,581

attention is given to two metrics; the one taken as the Pearson Correlation Co-582

efficient, ρ, and the other taken as the Determination Coefficient, R2, defined583

by, respectively,584

ρ =

∑N
i=1(x̂i − µx̂)(xi − µx)√∑N

i=1(x̂i − µx̂)2

√∑N
i=1(xi − µx)2

(22)

R2 = 1−
∑N

i=1(x̂i − xi)2∑N
i=1(xi − µx)2

(23)

Here, the former is a direct measure of the linear dependence (correlation) be-585

tween the two sequences; the prediction sequence, x̂, and the corresponding586

measurement sequence, x, on a data strip with totally N pairs of observations587

{x̂i, x} with mean values {µx̂, µx} on the specific data strip. The correlation588

coefficient ρ is 1 for perfect correlation, -1 for anti-correlation, and −1 < ρ < 1589

for anything in between. The determination coefficient r-squared indicates to590

some degree the ’goodness of fit’, on average, for the pairs of observations. It591

has a value of 1 if the fit is perfect, and otherwise R2 < 1.592

Although other metrics could be considered, see Nielsen and Jensen [22],593
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these two metrics have, in their combined use, the potential to quantitatively594

assess the agreement between predictions and measurements. It is noteworthy595

that some studies in the literature focus on only correlation as the measure for596

comparison. However, in principle, a correlation coefficient by itself has little597

meaning, if not the actual values of measurement and prediction are close to each598

other at any given observation point i. Therefore, it is necessary to introduce599

also a measure of the agreement between individual observations (prediction vs.600

measurement) for what reason the determination coefficient R2 is used together601

with ρ. It is noteworthy that in this particular context, the r-squared value602

can lie outside [0;1] with negative values; which is usually not the case for an603

r-squared value when the coefficient is calculated/applied in regression analysis604

[42, 43]. The issue here is that the determination coefficient, in the present605

application, is used in a different way than what is the typical way in (linear)606

regression analysis, where a regression model is fitted to data, so that the value607

of the coefficient is a measure of how well observed outcomes are replicated608

by the regression model itself, based on the proportion of total variation of609

outcomes explained by the model, cf. [44].610

The correlation coefficient and the determination coefficient have been com-611

puted for every sequence (200 in total) within each of the test cases, cf. Table612

1, and specific outcomes of the coefficients are included in Figure 6, where the613

values of ρ and R2 are seen in the upper right-hand corner of each plot. Like-614

wise, the values of the metrics appear in the plots of the sequences visualised615

in Appendix A. If focus is turned on all the sequences of Case 2a, the result616

is presented in Figure 10, and it is clear that the two coefficients, ρ and R2,617

show some variation with both higher and lower values, indicating sequences618

with good agreement and the opposite, respectively, between predictions and619

measurements. The similar plots of Cases 2b and 2c have been included in620

Appendix C.621

Table 3 presents the statistics of all cases, including results of roll and622

pitch, with the mean value and the coefficient of variation (CoV = ”standard623

dev./mean”) noted for the correlation coefficient and the determination coeffi-624
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Table 3: Statistics, i.e. mean values, of the correlation coefficient ρ and the determination

coefficient R2, respectively, with results for heave, roll, and pitch. Note, the coefficient of

variation (CoV) is included in parenthesis.

Heave Roll Pitch

Case ρ [-] R2 [-] ρ [-] R2 [-] ρ [-] R2 [-]

1a 0.54(0.50) 0.26(1.22) 0.67(0.33) 0.43(0.74) 0.42(0.65) 0.17(1.32)
1b 0.48(0.56) 0.21(1.34) 0.53(0.52) 0.27(1.10) 0.50(0.50) 0.24(1.12)
1c 0.42(0.56) 0.15(1.52) 0.50(0.55) 0.24(1.29) 0.46(0.53) 0.19(1.37)
2a 0.67(0.29) 0.44(0.59) 0.62(0.40) 0.35(0.98) 0.42(0.51) 0.17(1.18)
2b 0.56(0.45) 0.31(0.91) 0.62(0.46) 0.36(0.93) 0.47(0.48) 0.21(1.10)
2c 0.40(0.67) 0.16(1.55) 0.55(0.62) 0.30(1.24) 0.47(0.70) 0.22(1.42)
3a 0.54(0.42) 0.28(0.94) 0.65(0.36) 0.40(0.82) 0.49(0.46) 0.24(1.01)
3b 0.53(0.51) 0.26(1.25) 0.61(0.47) 0.35(1.00) 0.55(0.45) 0.28(0.96)
3c 0.53(0.45) 0.28(0.88) 0.61(0.40) 0.35(0.92) 0.54(0.42) 0.29(0.76)
4a 0.48(0.40) 0.23(0.83) 0.49(0.39) 0.32(0.96) 0.45(0.45) 0.20(0.93)
4b 0.48(0.39) 0.21(0.95) 0.58(0.45) 0.30(1.18) 0.44(0.45) 0.17(1.18)
4c 0.48(0.43) 0.23(0.85) 0.54(0.58) 0.27(1.36) 0.47(0.41) 0.21(0.96)

Average 0.51 0.25 0.58 0.33 0.47 0.22

cient, respectively.625

It can be argued that the results presented in Table 3, i.e. the determi-626

nation and the correlation coefficients, have the most meaning when they are627

discussed in relative terms and not considered as absolute statistical measures628
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Prediction sequence no.
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-0.5

0
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1
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]
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Figure 10: Determination coefficients R2 (red) and correlation coefficients ρ (blue) of Case

2a. The results corresponding to the sequences from Figure 6 are indicated by the larger

marker sizes in colours black and green in contrast to red and blue, respectively.
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and/or performance indicators. Thus, the coefficients should be rather used as629

relative indicators of the performance of the prediction procedure, when this is630

applied under different, but specific, settings and to various, but similar, exper-631

imental conditions (including vessel type, sea state, motions/responses, etc.).632

For instance, Table 3 suggests that heave, on average, may be predicted most633

accurately when the vessel faces the waves head sea (subcases ’a’), since the634

correlation coefficient and the determination coefficient consistently attain the635

highest average values in these cases; compared to headings off head sea (sub-636

cases ’b’ and ’c’). An almost similar finding is observed for roll but not for637

pitch. The table also reveals that roll of the three responses, for the considered638

ship and sea states, can be predicted with the best accuracy. Albeit not shown639

(directly), it is in itself interesting that significant roll is actually induced even640

when the heading is straight head sea (and also slightly off). The physical expla-641

nation may be that some wave reflection occurs from the tank wall sides, and/or642

the explanation may be because of the DP system. This issue is, however, not643

considered any further in the present study but another should try to resolve644

the ”problem”.645

Previously, all the time history recordings were tested for their probability646

distribution to be of a normal distribution type, cf. Table 2. It is interesting to647

note from Table 3 that it does not seem to be of any role whether the data is648

normally distributed or not, when the (average) agreement between prediction649

and measurement sequences are studied. Thus, the best results for heave are650

found for Cases 2a and 2b, where data - according to the Anderson-Darling651

test - should not be considered to be normally distributed. It is therefore of no652

fundamental importance that data, in practice, follows a normal distribution,653

despite the theoretical formulation of the prediction procedure assumes that654

data originates from a normal distributed process, cf. Lindgren [23].655

Another way to make use of the correlation coefficient and the determination656

coefficient is to study their behaviour with the prediction horizon (ahead of657

current time). This sort of analysis can be used to evaluate, in relative terms,658

when predictions statistically will be less reliable. Table 4 presents the result of659
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Table 4: Heave statistics: Behaviour of the correlation coefficient ρ and the determination

coefficient R2 with prediction horizon ahead of t0. Note, the coefficient of variation (CoV)

is included in parenthesis.

[0-2] s [0-4] s [0-6] s

Case ρ [-] R2 [-] ρ [-] R2 [-] ρ [-] R2 [-]

1a 0.72(0.46) 0.42(1.55) 0.59(0.57) 0.31(1.68) 0.55(0.53) 0.28(1.38)
1b 0.66(0.50) 0.36(1.55) 0.53(0.59) 0.25(1.66) 0.49(0.58) 0.22(1.46)
1c 0.66(0.45) 0.32(1.69) 0.51(0.53) 0.22(1.56) 0.45(0.56) 0.17(1.46)
2a 0.80(0.31) 0.53(1.21) 0.72(0.31) 0.47(0.80) 0.69(0.29) 0.45(0.63)
2b 0.77(0.32) 0.51(0.92) 0.65(0.40) 0.38(0.96) 0.59(0.43) 0.34(0.89)
2c 0.70(0.39) 0.43(1.00) 0.53(0.56) 0.28(1.22) 0.44(0.64) 0.19(1.48)
3a 0.78(0.32) 0.53(0.88) 0.66(0.41) 0.38(1.15) 0.58(0.43) 0.32(1.02)
3b 0.80(0.27) 0.53(1.04) 0.66(0.40) 0.38(1.09) 0.57(0.49) 0.29(1.38)
3c 0.78(0.34) 0.58(0.67) 0.65(0.44) 0.41(0.88) 0.57(0.43) 0.32(0.86)
4a 0.69(0.39) 0.44(0.91) 0.57(0.40) 0.32(0.85) 0.51(0.39) 0.26(0.87)
4b 0.67(0.40) 0.41(1.15) 0.56(0.43) 0.29(1.12) 0.50(0.42) 0.24(1.06)
4c 0.69(0.38) 0.41(1.13) 0.57(0.43) 0.31(0.87) 0.51(0.43) 0.26(0.81)

Average 0.73 0.46 0.60 0.33 0.54 0.28

such an analysis made for the heave sequences alone; omitting results of roll and660

pitch. It is seen that the correlation coefficient and the determination coefficient661

have been calculated for prediction horizons: [0-2] s, [0-4] s, and [0-6] s. The662

content of Table 4 has been visulised in Figures 11 and 12, where the data from663

Table 3 is also included, since this data, of course, represent the full prediction664

horizon [0-7.5] s. Basically, Table 4 yields a (consistent) quantification of the665

graphical result presented previously in Figure 8, where the agreement at single666

time instants with varying prediction horizons was considered for one specific667

subcase.668

Figures 11 and 12 confirm, not surprisingly, what was previously discussed669

about ”reducing” agreement for prolonged prediction horizon. However, it is670

indeed interesting to see that the largest relative reduction occurs consistently,671

and for both ρ and R2, as the prediction horizon is increased from [0-2] s to672

[0-4] s, whereas the relative reduction is smaller for the larger horizons. This in-673
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dicates that successful predictions, with insignificant reduction in the accuracy,674

may be obtained for even larger horizons than considered in the present study;675

leaving the actual investigation for a future study.676

5. Summary and conclusions677

In the article, a procedure facilitating short-time, deterministic prediction678

of wave-induced vessel responses has been presented. The predicted response679

sequence applies to a given time horizon in the order 15-60 seconds ahead of cur-680

rent time, and is deterministic in the sense that it is the actual (time-dependent)681

response oscillation that is computed. The prediction procedure does not need682

information about the exciting wave scenario; neither in terms of the sea surface683

elevation nor in terms of a (statistical) wave spectrum. Merely, the procedure684

requires discretely sampled measurements data of the vessel response to be685

predicted, so that the only input is the measured time history recording. The686

procedure is not dependent on off-line training and, thus, predictive calculations687
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Figure 11: Heave correlation coefficients depending on the prediction horizon.
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Figure 12: Heave determination coefficients depending on the prediction horizon.

can run real-time. Mathematically, the procedure relies on the observed (mea-688

sured) sample autocorrelation function of the particular wave-induced response689

in study. The response is considered to be of a normal distributed process and,690

in theory, stationary conditions should apply, since the sample autocorrelation691

function is not reliable otherwise.692

The study herein was a direct continuation of earlier studies [20, 22] but, for693

the first time, the prediction procedure has been applied to model-scale data.694

The experimental data has been obtained from tests conducted at the ’MCLab’695

at the Norwegian University of Science and Technology, where a 1:30 scale model696

of a platform supply vessel was exposed to various long-crested, irregular wave697

scenarios. The main conclusions from the present study do not contradict any of698

the previous findings in [20, 22]. Especially, the following bullets are noteworthy;699

emphasising that the list not only draws conclusions from work explicitly shown700

herein but includes also findings from [22] that have been confirmed/elaborated701

on in the present work without including detailed discussions:702
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• Deterministic predictions ahead of time can be made successfully on a703

given time horizon. In the present study, predictions were computed 7.5704

seconds ahead of time. In full scale, this corresponds to a prediction hori-705

zon of 41 seconds for the particular vessel. In the tested wave conditions,706

this time horizon is equivalent to about 8-9 wave periods ahead of current707

time.708

• The accuracy of predictions reduces as the prediction horizon is increased.709

Generally, for the shorter horizons ahead of time the deviations between710

prediction and measurement sequences are explained primarily because of711

a small delay/lag in the prediction. At times further ahead, deviations712

are present also because the actual values of predictions, at particular713

instants of time, are off compared to the measured values. This behaviour714

is seen because the predicted response sequence is non-stationary with715

properties resembling the autocorrelation function of a (stochastic) wave-716

induced process.717

• The accuracy of the prediction procedure is highly related to the correla-718

tion structure of the actual process, as the autocorrelation function is a719

direct measure of the hydrodynamic memory in the system. Thus, smooth-720

ing of the autocorrelation function or, vice versa, the response spectrum721

will be influencing the outcome of computed predictions.722

• Albeit some smoothing must be applied to diminish the influence of co-723

variance contributions at (very) large lags, which are generally not reli-724

able, it is vital to keep some correlation, as the prediction horizon thus is725

extended.726

5.1. Further work727

The presented work and the associated results show that the considered pre-728

diction procedure has the potential to calculate accurately, in real-time, the729

future wave-induced behaviour of a vessel. This ability will be indeed valuable,730
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as it can reduce significantly the probability of failure of many marine opera-731

tions. Nonetheless, and before the procedure is applied in real-case applications732

to assist in execution of practical operations, the prediction procedure should733

be examined further. Thus, it will be relevant to consider some, or all, of the734

points and/or questions below:735

• Previously, the method, as is, has been applied to simulated data [22] and736

the present article considers model-scale data. This means that stationar-737

ity can be taken as a good assumption. It should be useful to examine the738

procedure with full-scale data; either obtained through dedicated sea tri-739

als, or from measurements recorded on an operating vessel, since strictly740

speaking stationarity does never occur in real-world conditions.741

• The effect/influence of smoothing has not been fully explored, and sensi-742

tivity studies in this respect will provide useful knowledge. In the same743

line, it should be tested what is the maximum prediction horizon ahead of744

time, and what will it depend on; taking that any such ’maximum horizon’745

exists, i.e. can be calculated. In this context, statistical metrics/measures746

of the goodness-of-fit needs to be explored.747

• Why are predictions good, when they are; or conversely, under which con-748

ditions are predictions typically not reliable/accurate. Obviously, keeping749

in mind here that in real-case scenarios it will be just as important to750

know when a marine operation should not be conducted, as it is to know751

when the operation (most likely) can be safely conducted.752

• The prediction of the response, at any instant ahead of time, is the main753

objective. However, is it possible to associate some sort of ’limiting en-754

velope’ which estimates upper and lower bounds on the actual prediction755

sequence. In practical applications/exploitations, this sort of knowledge756

is more useful than knowing that a response may take a given value at a757

specific time.758

• Is it possible to use knowledge of the probability distribution, or other sta-759
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tistical properties, of the errors between previously-made sets of prediction760

and measurement sequences; both ”good” ones and ”bad” ones.761

• Finally, in a more distant future, it could be interesting to set up a compar-762

ative study which will evaluate the performance of different (deterministic)763

prediction procedures, including the ones requiring offline training (e.g.,764

neural networks, autoregressive-procedures).765
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Appendix A. Prediction and measurement sequences884
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Figure A.13: Heave response sequences of Case 2a; blue full line is measurement and dashed

red line is prediction. The determination and correlation coefficients, R2 respectively ρ, are

seen in the upper right-hand corner.
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Figure A.14: Heave response sequences of Case 2b; blue full line is measurement and dashed

red line is prediction. The determination and correlation coefficients, R2 respectively ρ, are

seen in the upper right-hand corner.
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Figure A.15: Heave response sequences of Case 2c; blue full line is measurement and dashed

red line is prediction. The determination and correlation coefficients, R2 respectively ρ, are

seen in the upper right-hand corner.
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Appendix B. Full set of data sequences and pair-wise comparisons885
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Figure B.16: Case 2a: Heave data sequences (left) and pair-wise comparison (right) of pre-

dictions and measurement. The plots are identical to the plots in Figures 7 and 8.
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Figure B.17: Case 2b: Heave data sequences (left) and pair-wise comparison (right) of pre-

dictions and measurement.
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Figure B.18: Case 2c: Heave data sequences (left) and pair-wise comparison (right) of pre-

dictions and measurement.

44



Appendix C. Determination and correlation coefficients886
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Figure C.19: Determination coefficients R2 (red) and correlation coefficients ρ (blue) of Case

2b.
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Figure C.20: Determination coefficients R2 (red) and correlation coefficients ρ (blue) of Case

2c.

45


