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Abstract—GPU memory systems adopt a multi-dimensional
hardware structure to provide the bandwidth necessary to sup-
port 100s to 1000s of concurrent threads. On the software side,
GPU-compute workloads also use multi-dimensional structures
to organize the threads. We observe that these structures can
combine unfavorably and create significant resource imbalance
in the memory subsystem — causing low performance and poor
power-efficiency. The key issue is that it is highly application-
dependent which memory address bits exhibit high variability.

To solve this problem, we first provide an entropy analysis
approach tailored for the highly concurrent memory request
behavior in GPU-compute workloads. Our window-based en-
tropy metric captures the information content of each address
bit of the memory requests that are likely to co-exist in the
memory system at runtime. Using this metric, we find that
GPU-compute workloads exhibit entropy valleys distributed
throughout the lower order address bits. This indicates that ef-
ficient GPU-address mapping schemes need to harvest entropy
from broad address-bit ranges and concentrate the entropy into
the bits used for channel and bank selection in the memory
subsystem. This insight leads us to propose the Page Address
Entropy (PAE) mapping scheme which concentrates the entropy
of the row, channel and bank bits of the input address into
the bank and channel bits of the output address. PAE maps
straightforwardly to hardware and can be implemented with
a tree of XOR-gates. PAE improves performance by 1.31×
and power-efficiency by 1.25× compared to state-of-the-art
permutation-based address mapping.

I. INTRODUCTION

GPUs need high-bandwidth memory systems to support
their massively parallel execution model. Current DRAM
solutions such as GDDR5 [1] and 3D-stacked memory [2],
[3] deliver high theoretical performance. Unfortunately,
it is difficult to reach this potential with contemporary
GPU-compute workloads, leading to suboptimal bandwidth
utilization, performance and power-efficiency [4]. To maxi-
mize bandwidth, DRAM interfaces are organized in a four-
dimensional structure of channels, banks, rows and columns.
The way the application memory access streams are mapped
onto this structure has a significant impact on performance
and power consumption. For the row bits, the addresses
should change as little as possible to ensure high row buffer
locality. For the channel and bank bits, the addresses should
be highly variable to ensure uniform distribution of memory
requests across channels and banks [5].

To find a good address mapping, it is critical to understand
how entropy [6] is distributed across address bits. Informally,
a low-entropy value indicates that it is unlikely that a bit will
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Figure 1: GPU and CPU address bit entropy distribution.
GPU workloads that exhibit an entropy valley in the channel
or bank bits limit parallelism in the memory subsystem.

change. Conversely, a high-entropy value indicates that an
address bit is likely to change. Thus, low-entropy address bits
should be mapped to rows — to exploit row buffer locality
— and high-entropy bits should be mapped to channels and
banks — to exploit parallelism. Address mapping schemes
have previously been proposed for single-core CPUs [5],
multi-core CPUs [7] and GPUs [4], [8], [9], [10]. Our
objective is to systematically analyze the entropy of the
concurrent memory addresses in GPU-compute workloads
and use this insight to derive efficient address mapping
policies.

GPU address bit entropy. Our first objective is to estab-
lish the address bit entropy distribution of GPU-compute
workloads. This is challenging due to the highly threaded
execution model of GPUs. Specifically, the application con-
sists of Thread Blocks (TBs) that the hardware schedules on
Streaming Multiprocessors (SMs); an SM can execute several
TBs concurrently. In-flight memory requests originate from
different threads within a TB as well as from different TBs
within an SM and across SMs. The number of concurrently
executing TBs is bounded by the available hardware resources.
Since TBs are highly parallel, it is likely that the memory
requests of the TBs within this window co-exist in the
memory system. We devise a window-based entropy metric
that captures the information content of each address bit of
these likely concurrent memory requests.

Our entropy analysis shows that GPU address bit entropy
is significantly different from CPU address bit entropy, as
illustrated in Figure 1. For CPUs, entropy results from spatial
locality, e.g., accesses to arrays within loops where the loop
index is used to access the array. Thus, the least significant
address bits tend to change often (e.g., high entropy), and



entropy gradually decreases towards the most significant
bits [11]. GPU address bit entropy is radically different, and
lower order bits may have low entropy. In fact, many of our
benchmarks contain an entropy valley in the lower order bits.
Unfortunately, the entropy valley commonly overlaps with
bits that have high entropy for CPUs. Thus, CPU-oriented
address mapping schemes [4], [8], [9], [10] fail to deliver high
memory request parallelism for GPU-compute workloads.

Which bits end up having high entropy is highly
application-dependent because it depends on how the ap-
plication accesses memory. The mapping problem is made
even more challenging by observing that the high-entropy bits
move across the address space as new TBs get scheduled and
the application iterates through memory. Therefore, it is not
sufficient to simply select bits that have high average entropy
and use them where high entropy is needed. On the contrary,
we need to harvest entropy across a broad selection of address
bits to be robust to entropy-variation across applications and
across phases within a single application. Prior work fails to
achieve this requirement since they gather entropy across a
narrow address range by XORing the bank and channel bits
with the least significant row bits [4], [8], [9], [10].

GPU address mapping. Our second objective is to leverage
the key insights of our entropy analysis to develop novel
GPU address mapping schemes that consistently provide
high-entropy bits for the channel and bank selection. Prior
work [12], [13] has shown that memory remapping operations
can be concisely represented with a Binary Invertible Matrix
(BIM). We observe that the BIM is able to represent all
possible address mapping schemes that consist of AND
and XOR operations. The reason is that the matrix covers
all possible transformations, and the invertibility criterion
ensures that all possible one-to-one relations are considered.
Thus, the BIM abstraction forms a theoretical framework
for reasoning about different classes of address mappings.
Multiplying the original address with the BIM generates a
new address with different entropy characteristics.

Armed with the BIM abstraction, we investigate strategies
for gathering bit entropy from the whole address and
concentrating it into the channel and bank bits. We investigate
two strategies which we refer to as the Full Address Entropy
(FAE) and Page Address Entropy (PAE) mapping schemes.
With FAE, we randomly select bits from the complete input
address to be part of the BIM-driven address mapping. The
PAE scheme is limited to only selecting random bits from the
input address fields that make up the DRAM page address
(i.e., the row, channel and bank bits). For completeness, we
also explore distributing the entropy across the complete
memory address (i.e., the ALL mapping scheme).

Our experiments show that both the FAE and PAE address
mapping schemes provide significantly higher performance
and power-efficiency than previously proposed address map-
ping schemes. More specifically, PAE and FAE improve

performance by 1.52× and 1.56× on average, respectively,
over the baseline Hynix address map [14]. Moreover, we
find that PAE is the most power-efficient mapping scheme:
performance per Watt improves by 1.39× on average over the
baseline, versus 1.36× for FAE. The ALL scheme performs
similarly to FAE because increasing the entropy of the column
and row bits do not further improve resource balance.

Paper contributions. In summary, this work makes the
following major contributions:

• We extend memory address entropy analysis to cover
GPU-compute workloads. In particular, we observe that
a useful entropy metric must compute the information
content of each address bit of the memory requests
that are likely to co-exist in the memory system. Our
novel entropy analysis methodology shows that there is
significant opportunity for improving upon the current
state-of-the-art GPU address mapping schemes.

• We observe that all DRAM address mapping schemes
that use AND and XOR operations can be represented
by a Binary Invertible Matrix (BIM). With the BIM-
abstraction, the new address can be computed with
a binary matrix vector product and the invertibility
criterion ensures that there is a one-to-one mapping
from the input to the output address. The BIM is a
unified representation that provides a theoretical basis
for analyzing families of mapping schemes. Furthermore,
BIMs can be straightforwardly implemented in hardware
with a tree of XOR-gates.

• We develop the Page Address Entropy (PAE) mapping
scheme which harvests entropy from the row, channel
and bank fields of the input address and uses this to
create well-distributed channel and bank fields in the
output address. Among the address mapping schemes
proposed in this paper, PAE is the most power-efficient
one, improving performance per Watt by 1.25× over
state-of-the-art address mapping.

• We also develop the Full Address Entropy (FAE) map-
ping scheme. FAE provides even more well-distributed
channel and bank fields than PAE because it harvests
entropy from the complete input address. Therefore, FAE
is the best performing address mapping scheme among
the ones proposed in this paper, improving performance
by 1.34× compared to state-of-the-art address mapping.
However, FAE has lower power efficiency than PAE
because it reduces row buffer locality by distributing
page hits to different banks which increases the number
of DRAM page activations.

II. UNDERSTANDING GPU-COMPUTE WORKLOAD
ADDRESS BEHAVIOR

GPU thread organization. The basic unit of a GPU-compute
workload is a thread, and each thread is responsible for
carrying out a desired computation on a subset of the
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Figure 2: Removing the entropy valley with BIM-driven address mapping.

application’s input data. Threads are organized into one or
two-dimensional Thread Blocks (TBs), and all threads in a
TB run on the same Streaming Multiprocessor (SM).

The threads in a TB can execute sequentially or in
parallel and communicate with each other. The TBs are
again organized into a grid, and this grid can have up to
three dimensions. The purpose of this section is to provide
an example of how the TB and grid structure can align
unfavorably with the structure of the DRAM system and
cause severe resource imbalance. We will also demonstrate
that the problem can be easily fixed by applying our BIM-
driven address mapping strategies.

Li et al. [15] find that threads can be organized using row-
major, column-major, tiled or arbitrary patterns. Figure 2a
shows a two-dimensional map of threads and the row-major
and column-major strategies for creating one-dimensional
TBs. For the purpose of this example, we assume that each
thread accesses a single data element in a C-style two-
dimensional array. Other thread mappings are also possible,
but we choose these two as they clearly illustrate how
application-level thread organization can create resource
imbalance in the DRAM system. Application developers
will choose a thread to TB and grid mapping that is a good
fit for the computation and communication patterns of the
algorithm. Thus, it is desirable that the GPU provides high
performance regardless of which application-level mapping
strategy is employed.

Each thread uses its position to compute its ID and uses
this ID to determine which data elements to work on. In other
words, the threads use dimension-related indexing of the input
and output arrays. To keep the example simple, we focus
on the thread-to-TB mapping. In the row-major case, the
thread can compute its ID by computing the offset of its row
and adding its x-coordinate (i.e., i = threadIdx.y *
blockDim.x + threadIdx.x). For the column-major
case, the thread first computes the offset of its column
and then adds its y-coordinate (i.e., i = threadIdx.x

* blockDim.y + threadIdx.y). In this example, we
will focus on the first TB of the column-major strategy (i.e.,
TB-CM0) and the third TB of the row-major strategy (i.e.,

TB-RM2). TB-RM2 and TB-CM0 are highlighted in Figure
2a, and TB-RM2 is responsible for indices 16 to 23 while
TB-CM0 is responsible for indices 0, 8, 16, 24, 32, 40, 48 and
56. For real applications, thread ID computation occurs deep
within the multi-dimensional thread structure which makes
it challenging to fully alleviate memory access alignment
issues with application-level thread reorganization.

Memory and DRAM organization. The threads read from
a contiguous C-style array in DRAM. Figure 2b shows how
the grid of threads maps to the flat memory address space of
the GPU. We assume that data is allocated in row-major order.
Thus, the data element at index [0,0] is the first data element
in memory, [0,1] the second (i.e., row 0 and column 1) and
[7,7] the last data element. For convenience, we assume that
the six address bits that correspond to the index of the array
are 0 for element [0,0]. These address bits are incremented by
one for each new data element. Further, we assume that the
DRAM system implementation uses the two least significant
of these bits to select the DRAM channel. Figure 2c shows
the resulting memory addresses for TB-RM2 and TB-CM0.
The key observation is that TB-RM2’s addresses change
in the three least significant bits and TB-CM0’s addresses
change in the three most significant bits.

Figure 2d shows the organization of the DRAM system.
DRAM systems also have a complex, multi-dimensional
structure to maximize bandwidth. Concretely, they consist
of independent channels and banks, and a subset of the bits
in the memory address is used to distribute requests among
these units. Since the channels and banks can operate mostly
in parallel, it is critical to evenly distribute requests across
these units to achieve high throughput. To retrieve a data
item from DRAM, the memory controller first provides the
bank and row address. This causes a row (or page) of the
DRAM array to be transferred to the row-buffer. The row-
buffer is then accessed using the column address. Repeated
accesses to the row-buffer are very efficient and have low
latency. Since DRAMs are destructive read, the page must
be written back to the DRAM array before a different page
can be loaded into the row buffer.

Figure 2e shows how the memory requests of TB-RM2
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and TB-CM0 are distributed across the DRAM channels. TB-
RM2 achieves perfect channel balance since the address
bits used to select the channel vary considerably. TB-
CM0 exhibits remarkably different behavior, and all of its
memory requests are mapped to DRAM channel 0 because
both address channel bits are 0 for all threads. The root
cause of this problem is that the application level thread
organization maps unfavorably to the organization at the
DRAM level. Such interactions are undesirable because they
are difficult to identify and understand at the application level.
Furthermore, fixing dimension-order performance problems
may be difficult or even impossible for complex GPU
compute workloads.
Our BIM-based address mapping approach. In this work,
we show that the channel and bank imbalance problem can
be remedied in hardware by employing a simple address
mapping scheme. The key idea is to harvest entropy from
broad ranges of the address and concentrate this into
the channel and bank bits. The highly-parallel and multi-
dimensional data-organization of GPU-compute workloads
means that high-entropy bits are available in the address.

Figure 2c shows the memory addresses after applying our
BIM-driven mapping strategy to the memory addresses of TB-
CM0. At design time, we generate a binary matrix and ensure
that it is invertible. The invertibility criterion guarantees that
there is a one-to-one mapping between the new and old
address. At run time, all memory addresses are multiplied by
this matrix directly after memory coalescing. In Figure 2c, we
show that multiplying the address 111000 by the BIM gives
the new address 111001 which causes the request to move
from channel 0 to channel 1. The matrix vector multiplication
is very efficient because binary multiplication is an AND-
operation and addition an XOR-operation. Figure 2e shows
that applying our BIM-based address mapping also gives
TB-CM0 a perfectly balanced DRAM-channel distribution.
Comparison to state-of-the-art Permutation-based map-
ping (PM). Figure 2c shows the memory addresses after
applying the state-of-the-art PM [4], [5] scheme to the
memory addresses of TB-CM0. PM increases channel address
bit entropy by taking the exclusive-or of a channel and a
non-channel address bit. It uses the output of this operation
as a new channel bit, and repeats the procedure for all other
channel bits. Figure 2e shows that PM is able to improve
bank balance but still causes requests to cluster in channel 0
and 2. The reason is that the two bits PM used to increase
entropy fails to capture the entropy available in TB-CM0’s
addresses. In the next section, we will show that this problem
affects PM even more for real applications since the location
of high entropy bits depends strongly on the application.

III. QUANTIFYING THE ADDRESS ENTROPY OF
GPU-COMPUTE WORKLOADS

In this section, we extend memory address entropy analysis
to investigate the address entropy of GPU-compute workloads.

We start with Shannon’s entropy function [6]:

H(p1, p2, . . . , pv) =−
v

∑
i=1

pi logv pi. (1)

For a sequence of bits, there are two probabilities: p is
the probability that a bit is 1 and (1− p) is the probability
that the bit is 0. Overall, entropy measures the amount of
information contained in a sequence of values. A value that
changes frequently contains a lot of information and has high
entropy. Conversely, a value that changes rarely contains
little information and has low entropy. Entropy is a number
between 0 and 1 where 0 means that the bit has a constant
value and 1 means that the bit has maximum variability (i.e.,
the probability of 0s and 1s are equal).

A. Window-based Entropy

GPU-compute workloads are highly concurrent. Therefore,
the entropy metric cannot rely on memory request ordering
assumptions because requests from different threads can
interleave in many ways. To avoid this problem, we identify
the memory requests that are likely to co-exist in the memory
system and compute the entropy of each address bit for these
requests. Concretely, address bit entropy is determined by
the addresses of the requests issued by the threads within
each TB (e.g., intra-TB entropy) and by requests issued by
concurrently executed TBs (e.g., inter-TB entropy). In this
work, we propose a new entropy metric called window-based
entropy which accounts for both sources of entropy.

To compute the window-based entropy, we start with
estimating intra-TB entropy. For each TB, we gather the
addresses of all memory requests issued by the TB. Then,
we compute the Bit Value Ratio (BVR) of all address bits.
The BVR is the fraction of 1-values for a single address bit
across all memory requests within a TB. The key feature of
the BVR is that it quantifies the likelihood of address bit
variability without making request ordering assumptions.

To account for inter-TB entropy, we first sort the BVR-
values in ascending order using the TB identifiers. The reason
is that TBs are issued sequentially by the TB-scheduler.
However, the TB-scheduler may also issue multiple TBs
concurrently if sufficient hardware resources are available.
We approximate this behavior with the window size parameter
w which indicates the number of TBs that can execute
concurrently in all SMs.

The main benefit of modeling inter-TB entropy is that it
can compensate for low intra-TB entropy. We illustrate this
with a simple example. Consider a single address bit and
two TBs A and B with BVRs of 0 and 1, respectively. In
this case, intra-TB entropy is low for both A and B since a
BVR of 0 (1) means that the address bit value is 0 (1) for
all requests issued by the TB. However, co-executing A and
B increases entropy since the concurrent memory addresses
will contain a mix of zeros and ones for this address bit.
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Figure 3: Window-based entropy example.

Equation 2 shows the details of how we compute the
window-based entropy H∗ for a single address bit:

H∗ =
∑

n−w+1
i=1 HW

i (pBVR
1 , pBVR

2 , . . . , pBVR
v )

n−w+1
. (2)

We first find the v unique BVRs that occur for this address
bit across all TBs within a window i. Within the window,
we then count the number of times each BVR-value occurs
and compute the probability of each BVR-value pBVR by
dividing the number of occurrences by the window size w.
Then, we use Equation 1 to compute the entropy HW

i with
these probabilities.1

The window-based entropy H∗ is the arithmetic mean of
all window entropies. The sum ends at n−w+ 1 because
this is the number of windows when there are n TBs and the
window size is w. We calculate H∗ for each kernel of the
application since the TBs of different kernels do not execute
concurrently in our setup. Then, we take the weighted average
of the per-kernel entropy distributions to create an entropy
distribution for the complete application. The weight of each
kernel is the number of memory requests it contains.

The window size w is affected by both the architecture and
the application because it depends on the hardware resources
provided by the SM and the hardware needs of the TBs.
In this work, we leverage the observation that state-of-the-
art warp scheduling policies, such as Greedy-Then-Oldest
(GTO) [16], strive to execute instructions from the same
warp until it stalls, after which it picks the oldest warp,
determined by the time the warp was assigned to the SM.
Because all warps from the same TB have the same age
and a TB gets assigned to an SM as a unit, this suggests
that we can heuristically set the window size equal to the
number of SMs, which is what we do in our experiments.
Other warp-scheduling policies may benefit from different
window sizes. The key insight is that the combination of
warp-scheduler and hardware resources determines which
TBs are likely to issue concurrent requests.

Example. Figure 3 illustrates how we compute the window-
based entropy. In this example, we assume an application

1 Example: Consider a window with three TBs where two TBs have a
BVR of 0 and a single TB has a BVR of 1. In this case, there are two
unique BVR values which gives pBVR

1 = 2/3, pBVR
2 = 1/3, and HW = 0.92.

Row ColBank BlockColB Ch
05678910111415171829

Figure 4: 30-bit address map for our baseline 1 GB Hynix
GDDR5 memory [14].

with 8 TBs where half of the TBs have a BVR-value of 1 and
the other half have a BVR-value of 0. The TBs are sorted
according to their identifiers, and we use sliding window
sizes of 2 and 4. We slide the window across the TBs from
left to right and identify the windows by the identifier of
the first TB covered. In other words, window #1 starts with
TB #1, window #2 starts with TB #2, and so on.

We first consider the case with a window size of 2,
and focus on window #2. For each window, we count the
occurrences of each BVR-value and use this to compute the
probabilities by dividing the number of occurrences by the
window size. Then, we use the probabilities to compute the
window-entropy. For instance, window #2 contains one TB
with each BVR-value which means that both probabilities are
1/2. This gives a window-entropy of 1 (following Equation 1).
Window #1 contains two TBs with BVR-value 0. This gives
a probability of 1 for BVR-value 0, 0 for BVR-value 1 and
a window-entropy of 0. The overall entropy is the average
of the window entropies (i.e., H∗ = 3/7).

Using a window size of 4 changes the window-based
entropy significantly. Here, all windows contain two TBs
with BVR-value 0 and two TBs with BVR-value 1. Thus, the
probability is 1/2 in both cases. This results in all window-
entropies being 1 and an overall entropy H∗ of 1. This
illustrates that modeling the effect of the window size is
beneficial since it can have a substantial impact on the amount
of entropy available.

B. GPU-Compute Workload Entropy Distributions

To investigate the entropy distribution of GPU-compute
workloads, we apply our entropy metric to 16 GPU-compute
benchmarks and 2 kernels2. We model a 1 GB Hynix GDDR5
memory [14] with a 30-bit physical address space and the
physical address map from Figure 4. The resulting entropy
distributions are shown in Figure 5. The most significant
address bit is at index 29 and on the left side of the plot. We
do not show the DRAM block address bits (bits 5 through
0) since these are offsets within a DRAM page and have
no impact on the behavior of the DRAM system. Thus, bit
6 is the least significant bit and shown to the right in the
distributions. The bits used for bank and channel selection
are shown with gray background.

The main take-away from Figure 5 is that all benchmarks
have high entropy bits, but they are distributed throughout the
address map. Many benchmarks have deep entropy valleys
(e.g., LU, NW and LPS), and the location of these valleys

2We describe our experimental setup in detail in Section V.
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Figure 5: Overall entropy distribution for 16 GPU-compute benchmarks and 2 kernels. The benchmarks above the horizontal
line have entropy valleys while the benchmarks below the line have the entropy concentrated in the lower order address bits.
Bits that are used for bank and channel selection have gray background.

is highly application-dependent. This shows that an effective
address mapping scheme must be able to harvest entropy
from broad address bit ranges to be robust to inter-application
entropy variation.

Entropy can also vary between the kernels of a single
application. Figure 5i shows the overall entropy distribution
for DWT2D, and Figure 5j shows the entropy distribution for
one of its kernels. The entropy distribution of the application
shows a broad entropy valley while the profile of the kernel
has a narrow valley. This illustrates that entropy can vary
considerably between the kernels of a single benchmark. For
other benchmarks such as SRAD2, the entropy distributions
of its kernels are similar to the overall profile (see Figure 5g
and 5h).

IV. GPU ADDRESS MAPPING SCHEMES

We have now established that many GPU-compute work-
loads have entropy valleys in the bits state-of-the-art DRAM
mapping schemes use to select channels and banks. Fur-
thermore, we have demonstrated that different applications
have entropy valleys in different locations and that a single
application can have entropy valleys at different locations
for different kernels and phases. In this section, we explain
how our BIM-based mapping schemes alleviate bank and
channel congestion by gathering entropy from broad ranges
of address bits and concentrating this entropy into the bits
used for channel and bank selection. Our BIM-based address
mapper is located after the memory coalescer unit and is
therefore orthogonal to memory coalescing.

A. Representing Address Mapping Schemes with BIMs

The Binary Invertible Matrix (BIM) [12], [13] is a
generic abstraction for representing memory address mapping
schemes. The key observation is that address transformation
can be represented as a matrix-vector product BIM×~ain =
~aout where an input address ~ain is mapped to a new address
~aout by multiplying ~ain with the BIM. In binary arithmetic,
multiplication maps to the bit-wise AND-operation and
addition maps to the XOR-operation. Since the BIM is
required to be invertible, we are guaranteed that each input
address is mapped to exactly one output address. The BIM
abstraction provides a powerful theoretic framework for
reasoning about address mapping strategies. In fact, the BIM
is able to represent all possible one-to-one address mapping
strategies for the AND- and XOR-operators.

Figures 6b, 6c and 6d show the BIM-representation of three
classes of address mapping strategies for the simple address
map of Figure 6a. Figure 6b shows the Remap (RMP) strategy
which rearranges the address bits that tend to have high
average entropy to be used as channel and bank bits. Thus,
a remapping BIM has a single ‘1’ for all rows and columns.
The address map of the Hynix’ GDDR5 [14] (Figure 4) and
the minimalist open-page mapping scheme [7] are examples
of applying the Remap-strategy.

The remap strategy is unable to account for different
applications having high entropy bits in different locations
and that high entropy bits change over time. The Permutation-
based Mapping (PM) strategy [4], [5] improves upon the
Remap strategy by using single row bits to increase the
entropy of the channel and bank bits. Figure 6c shows an
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Row r2 Row r1 Row r0 Channel c Bank b

(a) Example address map.
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


(b) Remap


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 1 0 1


(c) PM (e.g., [4], [5])


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 1 0
0 1 1 0 1


(d) Broad


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 1 0
0 1 1 0 1

×


rin

2
rin

1
rin

0
cin

bin

=


rin

2
rin

1
rin

0
rin

2 ⊕ rin
1 ⊕ rin

0 ⊕ cin

rin
1 ⊕ rin

0 ⊕bin


(e) Address map computation for the Broad BIM example.

Figure 6: Example showing BIM-representations of the
Remap, PM and Broad address mapping strategies for a
simplified address map.

rin2
rin1
rin0
cin

cout

Figure 7: Hardware for address translation of the cout bit.

example of a BIM representing a PM-strategy. The key
characteristic of BIMs for PM-strategies is that there are two
ones in the rows of the BIM that is responsible for generating
the new channel and bank bits. Thus, PM strategies increase
the entropy of the bank and channel bits by combining the
entropy of narrow ranges of address bits.

Although PM-strategies can improve upon Remap-
strategies, they are in general unable to account for entropy
valleys and entropy changes due to application phase behavior.
The key observation is that a remapping scheme needs to
gather entropy from a broad range of address bits to be robust
to these changes. We refer to this as the Broad strategy, and
Figure 6d contains a BIM that implements this strategy. The
key difference from the PM-strategy is that the rows of the
BIM responsible for generating the bank and channel bits
now contain multiple ones. Figure 6e shows how this pattern
affects the new address computation. Here, the output address
channel bit cout is the XOR of the row bits rin

2 , rin
1 and rin

0 and
the original channel bit cin. In other words, the new channel
bit leverages the combined entropy of the original channel
and row bits. By distributing the input bits throughout the
input address, the Broad-strategy is robust to both inter- and
intra-application address bit entropy variation.

Another advantage of the BIM-abstraction is that it can be
efficiently realized in hardware. Since the BIM is constant
for a given GPU architecture, it can be realized as a fixed-
function hardware unit. Figure 7 contains a simple circuit
that implements the generation of the new channel bit cout

for the example in Figure 6e. Since the AND of a bit b and

Row Channel BlockColumnBank

Row Column BlockChannel Bank

Bit-wise XOR with least significant row bits

Input address

Output address

Figure 8: Permutation-based (PM) mapping scheme [4], [5].

Row Channel BlockColumnBank

Row Column BlockChannel Bank

Binary Invertible Matrix (BIM)

Input address

Output address

PAE, FAE, ALL FAE, ALL ALL

Figure 9: Our Broad-strategy mapping schemes.

1 is always b, we can simply select the input lines where
there are ones in the BIM. The wide XOR-operations can be
be realized with a tree of two-input XOR-gates. The result
is that the address mapping function can be carried out in a
single cycle on contemporary GPUs.

B. Generating BIM Representations

The Remap-, PM- and Broad-strategy can each be realized
with different BIM representations since many invertible
matrices exist within the bits-per-row restrictions outlined in
the previous section. Since the number of matrices is large,
we need more refined design strategies to make sense of the
design space. For the Remap-strategy, we first gather the
entropy of all our GPU-compute benchmarks and aggregate
this into a global entropy profile. Then, we allocate the 6
bits with the highest average entropy to bank and channel
selection (i.e., bits 8-11, 15, and 16). In the remainder of the
paper, we refer to this as the Remap (RMP) mapping scheme.
Figure 8 shows our implementation of the PM-strategy. Like
prior work [4], [5], we take the XOR of the least significant
row bits and the bank and channel bits (as exemplified in
Figure 6c). We refer to this BIM-instantiation as Permutation-
based Mapping (PM).

To cover the design space of Broad-strategy mapping
schemes, we define three sub-strategies which gather entropy
from different locations in the input address and distribute
it to different locations in the output address (see Figure 9).
The first strategy, called Page Address Entropy (PAE), gathers
entropy from randomly selected address bits within the page
address (i.e., channel, bank and row) and uses the entropy
of these bits to generate new bank and channel bits. The

7



61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(a) BASE

61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(b) PM

61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(c) RMP

61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(d) PAE

61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(e) FAE

61829
Bit

0.0

0.5

1.0

E
nt

ro
py

(f) ALL

Figure 10: MT’s entropy distribution for the six address mapping schemes. PAE and FAE effectively remove the entropy
valley at bits 8–10; ALL removes all valleys.

SM Configuration
No. SMs 12 SMs

SM resources 1.4 GHz, 32 SIMT width, 48 KB shared memory
Max. 1536 threads (48 warps/SM, 32 threads/warp)

Scheduler 2 warp schedulers per SM, GTO policy

L1 data cache 16 KB per SM (4-way, 32 sets),
128 B block, 32 MSHR entries

LLC 512 KB in total (8 slices, 8-way, 64 sets),
120 clock cycles latency

NoC 12×8 crossbar, 700 MHz
32-byte channel width, 179.3 GB/s

DRAM Memory Configuration
DRAM Timing Hynix GDDR5 [14]

DRAM configuration

924 MHz, 4 Memory Channels/Controllers (MC),
16 banks/MC, 4 K rows/bank, 64 columns/row,
FR-FCFS [17], open page mode, 118.3 GB/s,

12-12-12 (CL-tRCD-tRP) timing

3D-stacked Memory Configuration

Memory stack
configuration

4 memory stacks, 16 vaults/stack,
16 banks/vault, 64 TSVs/vault

1.25 Gb/s TSV signaling rate, 640 GB/s

Table I: Simulated GPU architecture.

second strategy, called Full Address Entropy (FAE), adds
the column bits in addition to the input fields used in PAE,
but still only changes the bank and channel bits. Finally, the
All strategy uses the same input as FAE, but generates new
row, column, channel and bank bits. Neither strategies use or
modify the block address bits since these are offsets within a
DRAM page and therefore have no impact on the behavior of
the DRAM system. In the evaluation, we randomly generate
three BIMs for each strategy, and unless otherwise specified
we report the results of the best performing BIM for each
strategy. We find performance to be (relatively) insensitive
to the particular BIM instantiation, see Section VI-D.
Example. We now illustrate how the different address
mapping schemes affect the entropy distribution for one
specific benchmark, namely MT, see Figure 10 — we observe
similar results for the other benchmarks. Hynix (BASE)
exhibits a clear entropy valley for channel bits 8–9 and bank
bit 10. PM and RMP are unable to remove this valley. PAE
and FAE on the other hand effectively removes the valley.
ALL removes all valleys.

V. EXPERIMENTAL SETUP

Performance simulation. We use the GPGPU-sim v3.2.2
simulator [22] for all our experiments. The simulated baseline
GPU architecture features 12 SMs, which can support up
to 48 warps of 32 threads each. We assume the GTO warp

Benchmark Abbr. APKI MPKI #Knls #Insns
Transpose [18] MT 7.44 5.69 4 0.19 B

LU Decomposition [18] LU 12.32 1.97 1022 2.22 B
Gaussian [19] GS 9.09 0.01 510 0.43 B
Needle [19] NW 5.25 5.12 255 0.21 B
Laplace [20] LPS 2.27 1.66 2 2.33 B

StreamCluster [19] SC 4.24 3.58 50 1.71 B
Srad v2 [19] SRAD2 3.29 1.85 4 2.43 B
DWT2D [19] DWT2D 1.56 1.21 10 0.33 B
Hotspot [19] HS 0.71 0.08 1 1.3 B

Scalar Product [18] SP 2.17 2.16 1 0.12 B

Fast Walsh Transform [18] FWT 2.69 1.38 22 4.38 B
NN [20] NN 2.33 0.2 4 0.31 B

SPMV [21] SPMV 5.95 2.75 50 0.19 B
LavaMD[19] LM 18.23 0.01 1 2.11 B

MUMmerGPU [19] MUM 25.63 22.53 2 0.23 B
BFS [19] BFS 26.92 18.14 24 0.46 B

Table II: GPU-compute benchmarks considered in this study.

scheduling policy within an SM [16]. Each SM features
48 KB shared memory along with a 16 KB L1 data cache.
The last-level cache (LLC) is partitioned into 8 slices across
the four memory controllers; each LLC slice is 64 KB in size
for a total LLC capacity of 512 KB. The SMs are connected
to the LLC slices and memory controllers through an 12×8
crossbar network-on-chip (NoC). We assume a single-cycle
latency penalty to compute the address transformation for
all but the baseline address mapping scheme.

The simulated DRAM system is Hynix’ GDDR5 [14]
configured with 4 channels, 16 banks per channel, 4 K rows
per bank and 64 columns per row for a total capacity of
1 GB. We further assume an open-page policy with an FR-
FCFS memory controller. In one of our experiments, we also
simulate a 3D-stacked memory system, configured the same
as in prior work [8], consisting of 4 memory stacks with 16
vaults per stack and 16 banks per vault.

Power modeling. For evaluating GPU power, we use
GPUWattch [23]. For computing DRAM power, we use the
detailed power model developed by Micron [24] configured
using Hynix’ GDDR5 specification [14], as done in previous
work [25]. The DRAM power model includes background
power, refresh power, activation & precharge power, read
power and write power.

Workloads. We use a set of GPU-compute workloads from
three benchmark suites: CUDA SDK [18], Rodinia [19], and
Parboil [21]; and one other source [20]. Table II reports the
benchmarks’ LLC APKI (LLC accesses per kilo-instructions),
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Figure 11: Performance vs. DRAM power consumption.
PAE achieves an average 1.52× speedup over Base while
consuming 3% more DRAM power; FAE and ALL achieve
slightly higher speedup, 1.56× and 1.54×, yet consume 35%
and 45% more DRAM power, respectively.

LLC MPKI (LLC misses per kilo-instructions), the number
of kernel launches and the number of dynamically executed
instructions in billions. The ten benchmarks at the top exhibit
address bit entropy valley behavior; the bottom six do not,
see also Figure 5.

VI. RESULTS

In the evaluation we consider the following address
mapping schemes:

• BASE: the Hynix address mapping scheme [14].
• PM: permutation-based address mapping following [5],

[4] which randomizes the bank and channel bits with
the lowest order row bits.

• RMP: the bits with the highest average entropy across
all benchmarks are used as channel and bank bits.

• PAE: randomized channel and bank bits using page bits
as input.

• FAE: randomized channel and bank bits using the full
address as input.

• ALL: randomized full address bits using the full address
as input.

The evaluation is done in a number of steps. We first
evaluate performance and power. We then dive into explaining
the performance and power numbers. Finally, we perform
a number of sensitivity analyses in which we vary the
number of SMs; consider 3D-stacked memory; evaluate
BIM sensitivity; and consider non-entropy valley benchmarks.
When we report arithmetic or harmonic means in figures, they
are computed across the benchmarks listed in the respective
figure.

A. Performance vs. Power

Figure 11 plots execution time as a function of DRAM
power for the different address mapping schemes. The closer
to the origin, the better. All address mapping schemes are
normalized to BASE, for both performance and power.

The key take-away is that PAE achieves an average
1.52× speedup over BASE, while increasing DRAM power
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Figure 12: Per-benchmark speedup over BASE. PAE, FAE
and ALL lead to dramatic speedups for several benchmarks,
averaging to 1.52×, 1.56× and 1.54×, respectively.
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(b) LLC miss rate
Figure 13: NoC packet latency and LLC miss rate. PAE, FAE
and/or ALL lead to a dramatic reduction for NoC packet
latency and a substantial reduction in LLC miss rate.

consumption by 3%. FAE achieves a slightly higher speedup
than PAE (1.56×), however it consumes 35% more power.
PM and RMP are not nearly as competitive: performance
improves by 1.16× and 1.21× over BASE, while power
consumption increases by 8% and 16%, respectively. ALL is
comparable to FAE performance-wise, although it consumes
45% more DRAM power. PAE and FAE improve performance
over state-of-the-art PM by 1.31× and 1.34×, respectively.

B. Explaining Performance

Figure 12 reports per-benchmark performance results
normalized to BASE. For the two benchmarks in the left
graph, we observe dramatic speedups for PAE, FAE and ALL,
up to 7.5×. These benchmarks are memory-intensive, see also
Table II, and benefit dramatically from an improved address
mapping. The other benchmarks are somewhat less memory-
intensive, yet they still experience substantial performance
speedups. On average, we report a speedup of 1.52×, 1.56×
and 1.54× for the PAE, FAE and ALL address mapping
schemes, respectively.

To understand where these performance improvements
come from, we now take a closer look at a couple memory
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(a) LLC-level parallelism
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(b) Channel-level parallelism
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(c) Bank-level parallelism
Figure 14: Memory-level parallelism. PAE, FAE and ALL
improve parallelism at the LLC, channel and bank level.
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Figure 15: DRAM row buffer hit rate. PAE achieves the
highest row buffer hit rate, whereas FAE and ALL degrade
row buffer locality.

subsystem metrics. Figure 13 reports NoC packet latency
and LLC cache miss rate; Figure 14 quantifies parallelism in
the memory hierarchy, at the LLC, channel and bank level;
and Figure 15 reports row buffer hit rate. The parallelism
metrics are defined as the number of outstanding requests if
at least one is outstanding. Note that bank-level parallelism
is quantified per channel. This implies there is a multiplier
effect when both channel-level and bank-level parallelism
increase, i.e., the total number of outstanding requests is
the number of parallel channel requests multiplied by the
number of parallel bank requests per channel.

Address mapping affects the various memory hierarchy
characteristics substantially, which collectively leads to the
high performance improvements previously reported. Take
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Figure 16: DRAM power consumption breakdown. Address
mapping primarily affects the activate power component;
FAE and ALL increase activate power substantially.

the MT and LU benchmarks as an example: under BASE, a
single LLC slice receives most of the requests at a given point
in time, i.e., LLC-level parallelism equals one, see Figure 14a.
This implies that memory requests effectively serialize, which
leads to a dramatically high LLC miss rate and NoC packet
latency, see Figure 13. Address randomization through PAE,
FAE and ALL distributes the accesses across the LLC slices
which reduces the LLC miss rate (Figure 13b) and increases
LLC-level parallelism (Figure 14a), which ultimately leads
to a dramatic reduction in NoC packet latency (Figure 13a).

Figure 14c and Figure 15 reveal an interesting relationship
between bank-level parallelism and DRAM row buffer hit
rates. Load imbalance results in some banks having more
DRAM requests than others which may cause frequent
row switching and hit rate degradations. PAE improves
row buffer hit rate because it creates sufficiently good load
balancing while keeping good-locality requests within the
same bank. FAE sometimes distributes good-locality requests
to different banks. This causes additional row activations
which reduces row buffer hit rates and increases power
consumption compared to PAE.

This is also the underlying reason why FAE has a lower row
buffer hit rate than PAE for MT (see Figure 15), even if FAE
provides more address entropy (see Figure 14c and Figure 10).
PAE provides slightly (1-2%) lower entropy than FAE for
most bank and channel bits. Since the entropy function is
logarithmic, a 2% drop in entropy equates to a 10% drop in
address bit probabilities. Further, the effect of entropy loss
is additive since each bit contributes independently to load
imbalance. Thus, the small entropy reduction is responsible
for PAE having larger load imbalance than FAE for MT in
Figure 14c.

C. Explaining Power

Figure 16 breaks down DRAM power consumption3 into
its four major components: background, activate, read and
write power. GPU address mapping primarily affects the
activate power component. We observe a small increase in
DRAM power consumption for PAE over BASE (by 3%

3In our experiments, DRAM power consumption accounts for up to 40%
of total system power.
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Figure 17: Normalized performance per Watt while consider-
ing total system (GPU+DRAM) power. PAE, FAE and ALL
improve performance per Watt by 1.39×, 1.36× and 1.31×
on average, respectively.
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Figure 18: Performance sensitivity to the number of SMs
and DRAM memory configuration. PAE, FAE and ALL
consistently improve performance across SM counts (from
12 to 64) and DRAM configuration (conventional memory
organization versus 3D-stacked memory).

on average). FAE and ALL on the other hand lead to a
substantial increase in DRAM power consumption, by 35%
and 45% on average, respectively. This increase is a result of
the reduced row buffer hit rate, as quantified in the previous
section, which leads to a substantial increase in the number
of row activations.

We now revert to total system (GPU+DRAM) power
consumption. System power consumption increases by 9%,
15% and 18% on average under PAE, FAE and ALL, respec-
tively. However, because of the (much) higher performance
improvement, this leads to a substantial improvement in
performance per Watt, as reported in Figure 17. PAE, FAE
and ALL improve performance per Watt by 1.39×, 1.36×
and 1.31× on average, respectively, compared to BASE.
PAE and FAE improve performance per Watt by 1.25× and
1.22× over state-of-the-art PM. This makes PAE the most
power-efficient scheme.

D. Sensitivity Analyses

Varying the number of SMs. We first vary the number
of SMs from 12 to 24 and 48. Figure 18 reports average
speedup of the various address mapping schemes over BASE
at different SM counts (see the three sets of bars on the
left). The proposed address mapping schemes consistently
improve performance across SM count; performance seems
to be somewhat lower at 48 SMs compared to 24 SMs as a
result of increased saturation in the memory system.
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Figure 19: Average speedup for three randomly generated
BIMs per address mapping scheme. Different BIMs lead to
similar performance improvements.

3D-stacked memory. 3D-stacked memory leads to a dra-
matic increase in memory bandwidth compared to traditional
DRAM. We now consider 3D-stacked DRAM with 4 memory
stacks for a total of 640 GB/s; to make sure our system
is balanced, we assume 64 SMs and a 960 GB/s NoC.
Because 3D stacked memory is organized differently from
conventional DRAM, we need to change the address mapping
to randomize 2 channel bits, 4 vault bits and 4 bank bits.
The rightmost set of bars in Figure 18 reports average
speedup for the 3D stacked memory system with 64 SMs.
PAE, FAE and ALL achieve consistently high performance
improvement over BASE. RMP performs similarly to BASE
in this configuration since applications do not have enough
high entropy bits to achieve good load balancing.

BIM sensitivity. As mentioned in Section IV-B, BIMs
are generated randomly. We now evaluate how sensitive
performance is to the specific BIM. We consider three
randomly generated BIMs for the PAE, FAE and ALL address
mapping schemes, and report the resulting average speedup,
see Figure 19. For FAE and ALL, the different BIMs result in
roughly the same overall performance improvement. In other
words, overall performance improvement is insensitive to
the specific BIM. PAE seems to be (slightly) more sensitive.
The reason is that PAE uses page address bits only, not the
full address like FAE and ALL, hence we need to make
sure that enough bit entropy information is incorporated into
the new generated channel and bank bits. Note that even
though PAE is slightly more sensitive to the specific BIM,
even the lowest performing BIM still leads to a substantial
performance improvement.

Non-entropy valley benchmarks. Not all workloads exhibit
address bit entropy valleys, as mentioned in Section III.
Nevertheless, it is important to demonstrate that the pro-
posed address mapping schemes do not adversely affect the
performance of such workloads. Figure 20 reports speedup
for a set of non-entropy valley benchmarks. Note that these
benchmarks are still memory-intensive, see Table II. The key
observation is that address mapping has a relatively minor
impact on these benchmarks, and PAE and FAE lead to small
average performance improvements.
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Figure 20: Normalized performance for non-entropy valley
benchmarks. The proposed address mapping schemes do
not affect performance for benchmarks that do not exhibit
address bit entropy valleys.

VII. RELATED WORK

Address mapping schemes. DRAM address mapping
schemes have been explored for single and multi-core CPUs.
The permutation-based mapping scheme [5] increases the
entropy of the bank address bits by taking the XOR of each
bank bit and a single row bit. In addition, researchers have
investigated the impact of changing the address bits that map
to the bank, channel and column address fields. For instance,
Kaseridis et al. [7] find that moving the bank and channel bits
closer to the least significant bits allow streaming applications
to improve their bank-level parallelism. For GPUs, Chatterjee
et al. [4] propose to extend the XOR-operations of the PM-
scheme to also cover channel bits. We compare against all of
these schemes in our evaluation and show that they are unable
to achieve good bank and channel balance for GPU-compute
workloads.

Quantifying the entropy of memory address bits. Measur-
ing the bit-level entropy of collections of memory addresses
has been investigated by prior work. Both Akin et al. [12]
and Ghasempour et al. [26] monitor the bit flip rate of the
memory access stream and use this to estimate entropy. Bit
flip rate is difficult to apply to a GPU as memory requests
from different TBs are generated in parallel. Hence, they
interleave in many different ways, causing unreliable bit
flip measurements. Our approach avoids this problem by
computing the window-based entropy.

Memory address reorganization. A large body of research
has targeted ways of remapping memory addresses for
different purposes. The most similar to this work are Akin
et al. [12] and Qureshi et al. [13]. Akin et al. use the BIM-
abstraction in a reshape accelerator implemented within 3D-
stacked DRAM, while Qureshi et al. use it as a component in
a wear-leveling technique for phase change memory. In this
work, we provide another use case for matrix-based address
transformations.

In addition, a number of researchers have proposed to
reorganize the data layout to improve performance [27],
[28]. Another line of research focuses on restructuring
loop nests to improve parallelism and locality [29], [30],

[31]. Jang et al. [32] use data transformation to optimize
memory access patterns in loop bodies for GPU-compute
workloads, and Sung et al. [33] propose a compiler tool that
automatically reorganizes data layout. Finally, researchers
have proposed techniques that dynamically reorganize the
data layout to improve performance or energy-efficiency [34],
[35], [36], [26]. Our mapping scheme reduces the need for
such approaches since it limits the performance loss caused
by poor application-level memory organization.

Memory request scheduling. A large body of research has
investigated memory request scheduling techniques. Rixner
et al. [17] propose the First-Ready First-Come-First-Served
(FR-FCFS) scheduler which dynamically reorders memory
requests to improve row buffer hit rates. For CPUs, a number
of researchers have improved upon FR-FCFS to better exploit
row buffer locality, better utilize bank-level parallelism or
improve fairness among co-executing processes [37], [38],
[39], [40], [41], [42]. For GPUs, Lakshminarayana et al. [43]
propose the Shortest-Job-First (SJF) scheduling policy. SJF
dynamically trades off the latency of completing all memory
requests of a warp against the bandwidth utilization benefits
of FR-FCFS. Chatterjee et al. [10] propose a static reordering
scheme to reduce the toggling rate in DRAM. Scheduling is
orthogonal to address mapping because it attempts to increase
row buffer hit rates while address mapping attempts to evenly
distribute memory requests across channels and banks.

Bandwidth-oriented DRAM organization. A number of
researchers have proposed improvements to DRAM organi-
zation. Kim et al. [44] propose a mechanism that exposes
parallelism at the DRAM-subarray level, and O’Connor et
al. [9] propose a DRAM organization which enables using the
bandwidth of the DRAM banks simultaneously. Chatterjee et
al. [10] observe that GPUs tend to have low row buffer
hit rates and therefore propose to reduce the activation-
granularity to save energy. In summary, these proposals
suggest to increase the number of independent memory
system units to achieve higher bandwidth. Address mapping
techniques like ours will presumably combine favorably with
such systems since ensuring an even request distribution
becomes more important as the number of parallel units
increases.

VIII. CONCLUSION

In this work, we study and improve GPU memory address
mapping. To comprehensively analyze GPU address behavior,
we devise a novel entropy metric, called window-based
entropy, tailored for highly parallel GPU-compute workloads.
Window-based entropy quantifies the entropy of each address
bit across the memory requests within and across TBs
that are likely to co-exist in the memory subsystem at run
time. We compute window-based entropy for a broad set of
GPU-compute workloads and find that application-dependent
entropy valleys exist distributed throughout the lower order
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bits. Based on this key insight, we devise novel GPU address
mapping schemes that harvest entropy from broad address-
bit ranges and concentrate it into the address bits used for
bank and channel selection to maximize parallelism in the
memory subsystem. We propose the PAE, FAE and ALL
address mapping schemes which cover different combinations
of input and output address-bit-field selection. PAE considers
bits from the DRAM page address to create well-distributed
channel and bank bits, and is the most power-efficient
mapping scheme, improving performance per Watt by 1.25×
compared to PM, the state-of-the-art mapping scheme [4],
[5]. FAE considers bits from the full address and is the
highest performing mapping scheme, improving performance
by 1.34× compared to PM.
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