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Trajectories of brain development 
in school-age children born preterm 
with very low birth weight
K. Sripada1, K. J. Bjuland2, A. E. Sølsnes1, A. K. Håberg3,4, K. H. Grunewaldt1,5, 
G. C. Løhaugen2, L. M. Rimol4,6 & J. Skranes1,2

Preterm birth (gestational age < 37 weeks) with very low birth weight (VLBW, birth weight ≤ 1500 g) is 
associated with lifelong cognitive deficits, including in executive function, and persistent alterations in 
cortical and subcortical structures. However, it remains unclear whether “catch-up” growth is possible 
in the preterm/VLBW brain. Longitudinal structural MRI was conducted with children born preterm 
with VLBW (n = 41) and term-born peers participating in the Norwegian Mother and Child Cohort 
Study (MoBa) (n = 128) at two timepoints in early school age (mean ages 8.0 and 9.3 years). Images 
were analyzed with the FreeSurfer 5.3.0 longitudinal stream to assess differences in development of 
cortical thickness, surface area, and brain structure volumes, as well as associations with executive 
function development (NEPSY Statue and WMS-III Spatial Span scores) and perinatal health markers. 
No longitudinal group × time effects in cortical thickness, surface area, or subcortical volumes were 
seen, indicating similar brain growth trajectories in the groups over an approximately 16-month period 
in middle childhood. Higher IQ scores within the VLBW group were associated with greater surface area 
in left parieto-occipital and inferior temporal regions. Among VLBW preterm-born children, cortical 
surface area was smaller across the cortical mantle, and cortical thickness was thicker occipitally 
and frontally and thinner in lateral parietal and posterior temporal areas. Smaller volumes of corpus 
callosum, right globus pallidus, and right thalamus persisted in the VLBW group from timepoint 1 
to 2. VLBW children had on average IQ 1 SD below term-born MoBa peers and significantly worse 
scores on WMS-III Spatial Span. Executive function scores did not show differential associations with 
morphometry between groups cross-sectionally or longitudinally. This study investigated divergent 
or “catch-up” growth in terms of cortical thickness, surface area, and volumes of subcortical gray 
matter structures and corpus callosum in children born preterm/VLBW and did not find group × time 
interactions. Greater surface area at mean age 9.3 in left parieto-occipital and inferior temporal cortex 
was associated with higher IQ in the VLBW group. These results suggest that preterm VLBW children 
may have altered cognitive networks, yet have structural growth trajectories that appear generally 
similar to their term-born peers in this early school age window.

Cognitive deficits among individuals born preterm (gestational age < 37 weeks) with very low birth weight 
(VLBW, birth weight ≤ 1500 g) can persist for decades1–6. Executive functions, which are foundational for aca-
demic performance and quality of life, are often impaired in the preterm-born VLBW population, even among 
those with otherwise typical cognitive ability7–9, starting in early childhood10 and lasting into adulthood11–14. 
Cognitive impairment following preterm birth may derive from altered connectivity that begins in utero15, as 
suggested by a recent fetal resting state functional magnetic resonance imaging (MRI) finding of reduced connec-
tivity in a left hemisphere proto-language region16.

What is unclear is whether these structural and functional differences can potentially diminish over time 
(“catch up”), or whether they will persist. Finding a window for catch up development could be a therapeutic 
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opportunity, yet there is limited evidence for catch-up growth in this population. A small number of studies have 
identified differential growth in corpus callosum volume17, cerebellar volume18, and cortical thickness in specific 
regions19. By contrast, much research has pointed to altered brain growth following preterm birth/VLBW20–22 and 
similar brain growth rates for preterm/VLBW and term-born children and adolescents, despite different start-
ing points23–26. Smaller volumes, decreased general cognitive functioning, and altered frontal, thalamo-cortical, 
and subcortical connectivity are typical in this population27–29. Adolescents born extremely preterm/VLBW have 
shown a 1.6-year younger “brain age” based on T1-weighted whole brain structural data, compared to adolescents 
born after gestational week 2930.

As preterm-born children enter school age, they have been reported to have increased distractibility, worse 
inhibitory control, and poorer executive function skills that may contribute to poorer social competence31,32. A 
clearer understanding of the timing and extent of structural and functional plasticity in the preterm brain – and 
the potential for catch-up development – is thus needed33,34. Cross-sectional findings from an overlapping sample 
of this preterm/VLBW cohort and term-born participants in the Norwegian Mother and Child Cohort Study 
(MoBa)35,36 identified smaller cortical surface area bilaterally in frontal, temporal, and parietal lobes; thicker 
cortex in frontal and occipital regions; thinner cortex in posterior parietal areas; reduced volumes of subcortical 
structures including corpus callosum and hippocampus in the preterm/VLBW group; and only limited group 
differences in white matter tracts. This study is the first to present longitudinal findings comparing the preterm/
VLBW and MoBa cohorts.

The aim of this study was therefore to determine whether the cortical and subcortical deviations found at the 
first timepoint35,36 persisted longitudinally, and whether VLBW children showed different growth trajectories of 
brain structures compared to term-born peers. To our knowledge, this study is the first to investigate longitudinal 
morphometric changes in the preterm brain at early school age. Moreover, we assessed executive function at early 
school age and examined possible interactions with brain development over time, in this sensitive window where 
demands on executive function escalate37. We expected that preterm-born/VLBW children would continue to 
show altered brain structure, as well as associations between MRI findings and both cognitive scores and perinatal 
morbidity markers.

Methods
Participants. Preterm-born VLBW participants (n = 41) born between 2003 and 2007 were recruited based 
on admittance to the Neonatal Intensive Care Unit at St. Olav’s University Hospital in Trondheim, Norway. Term-
born control participants from central Norway (n = 128) born between 2001 and 2007 were recruited from the 
national Norwegian Mother and Child Cohort Study (MoBa) study, coordinated by the Norwegian Institute of 
Public Health38,39. Cerebral MRI and cognitive data were collected at two timepoints in childhood: first at mean 
age 8.0 years (range: 4.9–10.6) then at mean age 9.3 years (range: 6.1–12.0).

Exclusion criteria were severe cerebral palsy (unable to complete neuropsychological testing and MRI), severe 
sensory impairments, and/or MRI contraindications. Birth weight and gestational age for MoBa participants 
were retrieved from registry data (not available for 2 participants, for whom parent-reported birth weight was 
used); birth weight > 2500 g and gestational age ≥ 37 completed weeks were inclusion criteria for term-born 
participants in this study. Among the VLBW participants, five children with retinopathy of prematurity, one with 
epilepsy and mild cerebral palsy, one with intraventricular hemorrhage (grade 1) and mild cerebral palsy, and 
2 others without cerebral palsy with intraventricular hemorrhage (grades 1 and 3) who successfully completed 
the neuropsychological assessments and MRI were included in the analyses; IQ range of these participants was 
87 to 117. Four participants (2 VLBW and 2 term-born) had ADHD, and one term-born child had a history of 
concussion. Overall 120 participants (VLBW n = 30) had two successful MRI scans, and 49 (VLBW n = 11) with 
only one successful scan were also included in this study. Six preterm participants and no controls had twins. 
Morphometry findings at the first timepoint in an overlapping sample of this cohort were previously reported 
using the FreeSurfer cross-sectional processing stream35,36. Birth weight, gestational age, Apgar scores at 1 and 
5 minutes, number of days in the NICU, and number of neonatal days on ventilator were the clinical variables in 
the VLBW group assessed for partial correlations with MRI data.

MRI.  MRI data were collected using a 12-channel head coil on a 1.5 T Siemens Avanto scanner (Siemens, 
Erlangen, Germany). The total scan time was on average 30 minutes. The pulse sequence used for morpho-
metric analyses was a 3D T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) 
scan with the following parameters: TR = 2400 ms, TE = 3.61 ms, TI = 1000 ms; flip angle 8°, FOV 240 × 240 
mm2, and TA = 4 minutes and 18 minutes. Each volume consisted of 160 sagittal slices with voxel sizes of 
1.25 × 1.25 × 1.20 mm3. All subjects had between one and four MPRAGE T1 scans. Each MPRAGE series was vis-
ually inspected using FreeSurfer’s tkregister2 tool and Aeskulap Viewer (http://aeskulap.nongnu.org) to identify 
artifacts and evaluate Talairach alignment, and only scans with no or minimal movement artifacts were included. 
The FreeSurfer package QA Tools was run on all subjects for visual inspection of segmentation. Ten subjects did 
not have any satisfactory MPRAGE T1–weighted scans due mostly to motion artifacts or other objects such as 
braces.

Image analysis.  All image analysis was performed with the freely available FreeSurfer image analysis suite 
version 5.3.0 (http://surfer.nmr.mgh.harvard.edu). The technical details of the FreeSurfer image processing proce-
dures are described in prior publications40–55. Images in this study were processed automatically using FreeSurfer’s 
longitudinal stream to extract reliable volume and thickness estimates across the timepoints55. Specifically, an 
unbiased within-subject template image was created using robust, inverse consistent registration54. Several pro-
cessing steps, such as skull stripping, Talairach transforms, atlas registration as well as spherical surface maps 
and parcellations were then initialized with common information from the within-subject template, significantly 

http://aeskulap.nongnu.org
http://surfer.nmr.mgh.harvard.edu


www.nature.com/scientificreports/

3SCIeNTIfIC REPoRTS |  (2018) 8:15553  | DOI:10.1038/s41598-018-33530-8

increasing reliability and statistical power55. The subcortical brain structures included in the analyses are based 
on the automated segmentation and labeling procedure in FreeSurfer46,48. The cortical parcellation scheme in 
FreeSurfer by Desikan et al.50 was used for the table in Section 3.4, and the naming based on the Destrieux et al.53 
cortical parcellation scheme was used to provide additional detail in the text. Ventricular system volume is the 
aggregate of lateral, inferior, third, and fourth ventricle volumes.

We used a method described by Hansen and Brezova et al.56 to measure intracranial volume (ICV). Briefly, 
ICV was estimated with an automated reverse brain mask method using the “new segment” approach of the 
SPM8 toolbox (release 5236) (www.fil.ion.ucl.ac.uk/spm) inside the cranium, including the brain, meninges, and 
cerebrospinal fluid. The pituitary gland is excluded by a straight line through the upper pituitary stalk in the 
axial plane. The lowest point of the cerebellum defines the caudal border. All ICV segmentations were visually 
inspected, and none were rejected or manually adjusted.

Cognitive measures. Comprehensive neuropsychological assessment and IQ testing were performed in the 
two groups. At neuropsychological assessment, parents reported whether children had received or planned to 
receive special education, such as aid of an assistant or help with specific subjects, at school/preschool. Executive 
function scores deemed invalid or incomplete by test administrators were not included in the analyses, leading to 
different participant numbers for the different tests.

IQ in VLBW group. In the VLBW group, children ≥ 6 years of age were assessed with Wechsler Intelligence 
Scale for Children, fourth edition (WISC-IV)57, which comprises four indices: Verbal Comprehension Index, 
Perceptual Reasoning Index, Working Memory Index, and Processing Speed Index. Children < 6 years of age 
were assessed with the complete version of the Wechsler Preschool and Primary Scale of Intelligence, third edition 
(WPPSI-III)58. Since most participants were tested twice, scores from their first cognitive assessment were used 
here to avoid practice effects; however, for 11 VLBW participants, IQ scores from the first timepoint were not 
available (e.g., due to incomplete testing), so scores from the second timepoint were used instead. Due to incom-
plete testing, Verbal Comprehension Index was used as a substitute for Full-scale IQ Index for four participants, 
and Perceptual Reasoning Index was used as a substitute for one participant. Full-scale IQ Index scores were used 
for this study.

IQ in control group. Cognitive abilities in the controls who were ≥ 6.5 years of age were assessed with the 
Wechsler Abbreviated Scale of Intelligence (WASI)59. WASI is a validated screening test used to assess verbal 
knowledge, visual information processing, spatial and nonverbal reasoning, and general intelligence. Three IQ 
scores can be measured using the WASI: Verbal IQ and Performance IQ, which when combined provide an esti-
mated Full-scale IQ score. The controls < 6.5 years of age completed a short form of the WPPSI-III58, including 
the vocabulary, similarities, block design, and matrices subtests. Full-scale IQ Index scores from timepoint 1 were 
used for this study.

NEPSY Statue. The NEPSY Statue subtest of the Developmental NEuroPSYchological Assessment, Norwegian 
version (NEPSY)60, is designed to assess motor control and inhibition by asking the child to maintain a body posi-
tion for 75 seconds and ignore distracting sounds that they are not informed about before the test starts. Points 
are awarded per five-second interval: two points for full response inhibition, one point for one inappropriate 
response, and zero points for more than one inappropriate response61. This study used raw scores, where a higher 
score reflects better response inhibition.

Spatial Span. The Spatial Span subtest of the Wechsler Memory Scale, third edition (WMS-III)62, is designed to 
evaluate visual working memory. The examiner points to blue blocks on a white board and asks the participant 
to point to the blocks in the same order, with increasing difficulty. Later, the participant is instructed to point 
in reverse order, also with increasing difficulty. For this study, we used the raw total outcome score of correctly 
replicated items.

Socio economic status. Hollingshead’s63 two factor index of social position based on education and occu-
pation of one parent or the mean index of both parents was used to calculate socioeconomic status.

Statistical analysis. IBM SPSS 24 (Chicago, USA) was used to evaluate group differences and correlations 
between demographic, clinical, morphometric, and cognitive measures, with significance threshold at p < 0.05. 
One-way ANOVA was used to compare demographic variables with normal distribution, with p < 0.05 indicating 
significant group differences. Mann-Whitney U Test was used for age at scan, which had a nonparametric distri-
bution as assessed by Shapiro-Wilk’s test (p < 0.05). Chi-square (χ2) testing for association was used for socio-
economic status. Drop-out analysis used independent samples t-tests within the preterm and term-born groups 
in terms of gestational age, birth weight, receiving help at school, age at scan, and IQ, based on the 14 term-born 
participants and 12 preterm/VLBW participants who met for assessment and were excluded from this analysis.

Longitudinal analyses of changes in cortical morphometry from timepoint 1 to 2 were run in Matlab 2015b 
(MATLAB and Statistics Toolbox Release 2015b. The MathWorks, Inc., Natick, Massachusetts, USA) by adapting 
the linear mixed effects module in FreeSurfer 5.3.064. A linear mixed effects model was fitted in each location (ver-
tex) across the reconstructed cortical surface, with cortical area or cortical thickness as the dependent variable; 
intercept, time from baseline, age at baseline, group, sex, and interaction (group × time) as independent variables; 
and intercept as random factor. Using these variables, contrast vectors were set in order to test for an interaction 
effect between group and time and for each of the executive function tests and IQ. Effects of time were assessed 
within each group for each of the cognitive scores.

http://www.fil.ion.ucl.ac.uk/spm
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General linear models were fitted in Matlab 2015b for cross-sectional cortical thickness and surface area anal-
yses for both timepoints, controlled for age at scan and sex. General linear models were also fitted to assess rela-
tionships between cortical surface area or thickness with IQ and executive function scores, between and within 
groups, at each timepoint. General linear models for both cortical surface area and thickness were also fitted at 
timepoint 2 with cortical measure (area or thickness) as the dependent variable and group as the independent 
variable, co-varying for sex, age at scan, and retinopathy of prematurity. General linear models in SPSS were fitted 
for cross-sectional group comparisons of subcortical brain structure volumes, controlled for ICV, age at scan, and 
sex; analysis of ICV controlled only for age at scan and sex.

To correct for multiple comparisons, the p-maps from left and right hemisphere were combined and thresh-
olded to yield an expected false discovery rate (FDR) of 5% across both hemispheres. In order to generate effect 
size maps that are comparable across the morphometry variables to investigate annualized rate of change, cortical 
area and cortical thickness were log-transformed prior to fitting the model to the data; the beta value for time, 
resulting from the model fit, was back-transformed and multiplied by 100 in order to obtain percent change per 
unit of time26. Brain figures display MRI data overlaid on the FreeSurfer fsaverage white surface.

Holm–Bonferroni step-down65 was used to correct for multiple comparisons for tests of group differences 
and correlations in subcortical volumes based on 24 structures compared and α = 0.05. Partial correlation tests, 
controlled for age at scan, sex, and ICV were used to investigate the relationships between subcortical volumes 
and cognitive and perinatal data. Raw cognitive test scores were adjusted for age.

Ethics. The Regional Committee for Medical Research Ethics approved the study protocol (project number 
2010/2359), and written, informed consent was obtained from the parents/guardians of all participants. The study 
was performed in accordance with relevant guidelines and regulations.

Results
Clinical profile.  Demographic and clinical characteristics of the two groups are presented in Table 1. VLBW 
participants had lower IQ by approximately 1 SD, were more likely to be receiving or plan to receive help at school 
or preschool based on parent report (36.6% vs 7.3%), and were younger than term-born peers by approximately 6 
months at both scans. There was no statistically significant association between socioeconomic status and group 
(χ2(1) = 7.39, p = 0.12). Average time between scans was 14.3 months for VLBW participants and 16.0 months 
for term-born peers. Drop-out analysis did not reveal any significant differences within either group in terms of 
gestational age, birth weight, receiving help at school, age at scan, or IQ.

Executive function.  Scores on the two executive function tests are presented in Table 2 with significance 
testing and at each timepoint and for longitudinal group × time effects. WMS-III Spatial Span was significantly 
worse in the VLBW group at timepoint 2 (d = −0.62, p = 0.005).

Subcortical volumes. Group differences: longitudinal and cross-sectional. Group differences in subcorti-
cal gray matter structures, corpus callosum volume, and ICV are presented in Supplemental Table 1, and effect 
sizes for structures showing significant group differences in Figure 1. Longitudinal analyses of subcortical brain 
structure volumes did not identify any group × time effects. Post-hoc removal of ICV as a covariate also did not 
identify any longitudinal group differences. Corpus callosum (central, mid-posterior, and posterior segmenta-
tions, and total corpus callosum volume), right globus pallidus, and right thalamus were significantly smaller in 
the VLBW group compared to controls at both timepoints. The ventricular system was significantly larger in the 
VLBW group at both timepoints. In addition, group differences in bilateral hippocampus, left thalamus, and cor-
pus callosum mid-anterior subsegmentation size were significant at timepoint 1, with the VLBW group showing 
smaller volumes.

Volume-cognition relationships. No group × score interactions (for executive function scores, IQ, or receiving 
help at school) were found for any of the subcortical volumes after correction for multiple comparisons. Several 

VLBW (n = 41) Term-born (n = 128)

p-valueMean SD Range Mean SD Range

Birth weight, grams 1039 313 416–1495 3679 529 2510–5460 <0.0001*
Gestational age, weeks (days) 29(1) 2(6) 23(4)–35(1) 40(0) 1(2) 37(1)–42(4) <0.0001*
Age, years

  Timepoint 1 7.7 1.7 (5.0, 10.4) 8.2 1.2 (4.9, 11.1) 0.51

  Timepoint 2 (n = 30 VLBW, 90 term-born) 8.9 1.7 (6.1, 10.7) 9.5 1.2 (6.3, 12.0) 0.31

Sex, male:female 17:24 66:62 0.26

IQ 93.5 9.8 (74, 117) 107.4 13.8 (73, 139) <0.0001*
Socioeconomic status (low 1, high 5; n = 37 VLBW, 109 term-born) 3.9 0.9 (1, 5) 4.3 0.9 (1,5) 0.12

Received/plan to receive help at school, (%) 15 (36.6) 9 (7.0) <0.0001*

Table 1. Demographic and clinical profile of the two study groups. Significant group differences indicated with *. 
Abbreviations: SD, standard deviation; VLBW, very low birth weight.
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associations were found within the groups. In the VLBW group at timepoint 2, larger corpus callosum volume 
(total volume and posterior, mid-posterior, and central subsegmentations) was negatively associated with receiv-
ing help/special education at school, although only the posterior segment structure-function relationship was 
significant after correction for multiple comparisons (p = 0.00089). Among controls, ventricular system volume 
was significantly correlated with receiving/planning to receive help at school at timepoint 1 (R = 0.45, p < 0.001) 
and timepoint 2 (R = 0.31, p = 0.0011), and left nucleus accumbens volume was correlated with NEPSY statue 
score at timepoint 1 (R = 0.33, p = 0.001).

Volume-perinatal health data relationships in VLBW group. Birth weight was positively correlated with left thal-
amus volume at timepoint 1 (R = 0.67, p = 0.002). Right hippocampus volume at timepoint 2 was negatively 
associated with Apgar 5 minute score (R = −0.71, p = 0.00091).

Group differences in cortical structure.  Longitudinal changes. No evidence was found for longitudinal 
group × time interactions in either cortical thickness or surface area development between the two scanning 
timepoints (approximately 16 months apart).

Cross-sectional findings. Cross-sectional group differences in cortical thickness and surface area were wide-
spread across the cortical mantle at timepoint 2 (Table 3). Surface area group differences were more global than 
those for cortical thickness. Cortical thickness was increased in the VLBW group frontally and decreased in 
parietal and temporal regions. Similar morphometry findings at timepoint 1 were previously reported using 
cross-sectional processing in an overlapping sample in this cohort35.

Assessment Timepoint
n, VLBW, 
control

VLBW 
mean ± SD

Term-born 
mean ± SD d p-value

LME 
p-value

Statue
1 n = 26, 127 28.4 ± 3.1 27.6 ± 3.1 0.25 0.25

0.21
2 n = 29, 90 28.5 ± 2 28.7 ± 1.9 −0.13 0.55

Spatial span
1 n = 26, 128 11.7 ± 2.9 12.6 ± 2.9 −0.32 0.14

0.51
2 n = 29, 87 12.1 ± 2.9 13.9 ± 2.9 −0.62 0.005*

Table 2. Scores on NEPSY Statue and WMS-III Spatial Span assessments, tested for group differences at each 
timepoint and for effect of group × time. Group differences tested using the general linear model, controlled for 
age, shown with effect size and number of participants included in each analysis. Statistically significant results 
are denoted by *. LME p-value refers to the longitudinal interaction analyses (score × time). Abbreviations: CI: 
confidence interval; d: Cohen’s d; LME: linear mixed effects; VLBW: very low birth weight.

Figure 1. Subcortical structures showing significant group differences (indicated by *) at timepoint 1 and 
timepoint 2, in right (R) and left (L) hemispheres, shown with effect size of VLBW group compared to controls. 
Volumes adjusted for sex, age at scan, and ICV (ICV itself only adjusted for sex and age at scan). Abbreviations: 
CC: corpus callosum; ICV: intracranial volume; VLBW: very low birth weight.
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Surface area. Group differences in surface area were widespread, shown in Figure 2 and Table 3 for timepoint 2, 
and were more widespread than group differences in cortical thickness. There were no cortical areas with larger 
surface area in the VLBW group, as indicated by Cohen’s d values (Figure 2B, range: −1.37 > d < −0.054 on left; 
−1.50 > d < −0.0075 on right). Cortical surface area results from timepoint 1 in this study using the longitudinal 
processing stream are presented in Supplementary Figure 1.

Cortical thickness. The groups showed significantly different cortical thickness in areas in all cortical lobes at 
timepoint 2, as shown in Figure 3 and Table 3. Group differences in cortical thickness were much less widespread 
than those for surface area (Table 3). Thicker occipital cortex and medial frontal cortex was found bilaterally in 
the VLBW group, while thinning was seen in posterior temporal lobe, particularly on the left side. Left and right 
hemispheres showed generally the same extent of group differences, with some variation in location. Cohen’s d 
values (Figure 3D, range: −0.91 > d < 1.36 on left; −0.81 > d < 1.57 on right) indicated areas of large effect sizes 
in group differences. Cortical thickness results from timepoint 1 in this study using the longitudinal processing 
stream are presented in Supplementary Figure 2.

Cortical parcellation

Cortical thickness Surface area

Timpoint 1 Timepoint 2 Timpoint 1 Timepoint 2

Left Right Left Right Left Right Left Right

Banks of the superior temporal gyrus 24 13 57 49 100 100 100 100

Caudal anterior cingulate gyrus 93 0 0 0 100 100 100 100

Caudal middle frontal gyrus 0 3 0 0 100 100 100 100

Cuneus 65 36 65 20 100 93 100 71

Entorhinal cortex 0 0 0 0 26 0 23 2

Frontal pole 100 0 100 0 100 100 100 100

Fusiform gyrus 10 13 4 12 85 85 84 80

Inferior parietal gyrus 7 15 55 14 99 100 84 99

Inferior temporal gyrus 3 29 15 34 41 100 57 100

Insula 1 25 1 2 98 25 98 25

Isthmus cingulate 10 39 2 35 100 100 100 100

Lateral occipital gyrus 50 58 43 59 74 78 60 82

Lateral orbitofrontal gyrus 54 33 22 13 100 96 100 96

Lingual gyrus 35 43 39 50 100 96 100 97

Medial orbitofrontal gyrus 99 2 66 6 100 100 100 100

Middle temporal gyrus 40 25 64 34 85 85 90 85

Paracentral gyrus 0 0 0 0 52 100 7 7

Parahippocampal gyrus 0 6 0 23 100 50 100 42

Pars opercularis 14 46 0 24 100 97 100 82

Pars orbitalis 0 78 0 56 100 100 100 100

Pars triangularis 0 100 0 95 100 100 100 70

Pericalcarine sulcus 59 37 100 32 100 46 100 29

Postcentral gyrus 0 0 0 0 100 61 98 27

Posterior cingulate 43 0 6 0 100 100 100 100

Precentral gyrus 0 0 0 0 97 95 79 85

Precuneus 0 4 7 11 100 95 82 85

Rostral anterior cingulate 100 0 27 0 100 100 100 100

Rostral middle frontal gyrus 37 31 3 0 85 82 76 59

Superior frontal gyrus 28 3 21 0 84 100 74 94

Superior parietal gyrus 11 12 5 17 93 100 73 78

Superior temporal gyrus 1 4 3 4 100 18 100 18

Supramarginal gyrus 12 15 44 7 99 64 82 56

Temporal pole 0 0 0 0 11 9 32 7

Transverse temporal gyrus (Heschl’s 
gyrus) 0 0 0 0 100 0 100 0

Table 3. Proportion (%) of each cortical parcellation showing significant differences in cortical surface area 
and thickness between VLBW and controls for both timepoints. This table presents the percentage of surface 
area in atlas space (fsaverage) that showed a significant group difference between the VLBW and control groups 
in each of the 36 cortical parcellations in the Desikan-Killiany parcellation scheme50, for both surface area and 
thickness for each hemisphere at each timepoint after 5% FDR correction. Abbreviations: FDR: false discovery 
rate; VLBW: very low birth weight.
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Figure 4 summarizes cortical regions demonstrating significant group differences in cortical thickness, surface 
area, and both. The majority of areas that differed significantly in cortical thickness also differed in surface area 
(overlap shown in red). The cortical areas showing group differences in both thickness and surface area were 
similar bilaterally: superior temporal sulcus, angular gyrus, supramarginal gyrus, anterior cingulate, orbitofrontal 
cortex, cuneus, and calcarine sulcus; right hemisphere also showed overlap in the posterior cingulate, and left 
hemisphere showed more overlap in the superior temporal sulcus. Group differences in cortical surface area and 
thickness when additionally covarying for retinopathy of prematurity (Supplementary Figure 3) showed similar 
patterns of areas affected to those in Figures 2 and 3.

Cortical morphometry and cognitive performance. Two left hemisphere regions showed a group × IQ 
interaction in surface area at timepoint 2 (Figure 5). Significant group × IQ interactions were seen at the border 
of the left parietal and occipital lobes (superior occipital and transverse occipital sulci, middle occipital gyrus, 
angular gyrus, intraparietal sulcus in the left hemisphere) and to a lesser extent in the left inferior temporal 

Figure 2. Cortical surface area group differences between VLBW and control groups at timepoint 2. Row A 
shows p-maps and row B shows effect size. The p-maps were produced from GLM models fitted at each location 
(vertex) across the cortical surface, with cortical area as the dependent variable and group as the independent 
variable, co-varying for sex and age at scan. The p-maps were thresholded to yield an expected 5% FDR 
across both hemispheres. In the effect size maps, blue represents areas of reduced surface area in the VLBW. 
Abbreviations: d: Cohen’s d; FDR: false discovery rate; VLBW, very low birth weight.

Figure 3. Cortical thickness group differences between VLBW and control groups at timepoint 2. Row C shows 
p-maps and row D shows effect size. The p-maps were produced from GLM models fitted at each vertex across 
the cortical surface, with cortical thickness as the dependent variable and group as the independent variable, 
co-varying for sex and age at scan. The p-maps were thresholded to yield an expected 5% FDR across both 
hemispheres. In the effect size maps, red-yellow color represents areas of increased thickness in the VLBW, 
while blue represents cortical thinning. Abbreviations: d: Cohen’s d; FDR: false discovery rate; VLBW, very low 
birth weight.
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cortex (middle temporal gyrus towards the frontal pole). Greater surface area in these regions was associated with 
higher IQ scores in the VLBW group (r2 ≤ 0.16). These areas also showed group × IQ interaction at timepoint 1, 
as previously reported35.

No significant group × score interactions for the executive functions were found for surface area or cortical 
thickness in the longitudinal or cross-sectional analyses after FDR correction.

In the control group only, longitudinal surface area changes showed a structure-function relationship with 
change in NEPSY statue scores, with higher scores associated with increased surface area in right superior pre-
central sulcus, left planum temporale, transverse temporal sulcus, posterior segment of the lateral sulcus, and 
cingulate gyrus posterior-ventral. For spatial span, higher scores were associated with reduced surface area in 
right subparietal sulcus and the marginal part of the cingulate sulcus. See Supplementary Figure 3.

Discussion
No group × time interactions were seen in brain growth between approximately 8 and 9.3 years of age, while 
significant group differences in subcortical volumes and, cortical surface area, and to a lesser extent cortical 
thickness, persisted from timepoint 1 to 2. However, within the VLBW group, higher IQ was associated with 
greater surface area in left hemisphere regions of parieto-occipital and inferior temporal cortex, and perinatal 
health markers were to a limited extent associated with reduced volumes in right hippocampus and left thala-
mus. We found no group × time longitudinal interactions in morphometry for the executive function scores. The 
longitudinal results suggest a similar trajectory of cortical and subcortical development between preterm and 
term-born peers in this middle childhood window, in conjunction with evidence of altered cognitive networks in 

Figure 4. Cortical regions demonstrating significant group differences in cortical thickness (blue), surface area 
(yellow), and both (red) at timepoint 2.

Figure 5. Effect size map (r2, bottom row) and p-map (top row) showing group × IQ interaction at timepoint 2, 
indicating parieto-occipital and inferior temporal regions where greater surface area was associated with higher 
IQ scores in the VLBW group. Left, left hemisphere lateral view; right, left hemisphere posterior view.
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preterm-born children. This result among preterm children born in the 2000s extends our findings from a cohort 
born in the late 1980s, which demonstrated that VLBW preterm-born individuals and term-born peers did not 
show divergent developmental trajectories for cortical thickness, surface area26, or subcortical volumes23 from 15 
to 20 years of age.

Executive function and IQ interaction with morphometric development.  Lower IQ was asso-
ciated with reduced surface area in two cortical regions within the VLBW group (Figure 5). In the area in 
parieto-occipital cortex, the preterm group showed both significantly reduced surface area, as well as an added 
effect of IQ on surface area in the preterm group compared to term-born (i.e., increased surface area and higher 
IQ). This finding points to a specific region within a lateral parieto-temporal module reported to show stronger 
association between IQ and gray matter volume in very preterm-born adolescents/adults22. This area constitutes 
part of the proposed dorsal stream66,67, which is believed to be involved in visuomotor control of actions68. The 
dorsal stream is reported to be impacted in the preterm population69, among other clinical groups, and may be 
related to impairments in attention and executive function70, a potential explanation for its relationship to IQ 
scores in this study. This interesting finding may indicate specific cortical regions where surface area development 
reflects compensatory mechanisms used for general cognitive abilities in place by early school age.

This study did not find group × executive function score interactions for morphometry measures in early 
school age. These findings were somewhat unexpected, as altered morphometry has been frequently associated 
with differences in executive function, visual-motor skills, and cognition in long-term follow-up of preterm birth 
survivors71–76. It is possible that the relatively high functioning of the preterm-born sample in this study limited 
the ability to identify different structure-score associations between groups, making it difficult to comment on 
reorganization or alternate cortical development among preterm survivors with more reduced executive function.

Executive function encompasses encompass working memory, cognitive control, and inhibitory control/
reward processing77,78. Prematurity can lead to a cascade of downstream impairments on cognitive performance, 
beginning with slower processing speed, poorer executive functioning and working memory, and finally lower 
achievement in math and reading79. Consistent with the hypothesis of Rose, et al.79, preterm-born children in this 
sample were indeed more likely than term-born peers to receive special services in school.

It is possible that differential trajectories linking executive function and cortical development occur earlier in 
life, prior to the age window assessed in this study. Rathbone et al.80 found a positive correlation between perinatal 
growth rate of cortical surface area and NEPSY summary score at age 6 and speculated that genetic and environ-
mental influences during infancy are related to the development in childhood of executive function, attention, 
and planning capacities. Term-born and preterm-born children did not show significantly different trajectories 
in this study between the ages of 8 and 9.3, similar to findings of Edgin, et al.10 in children between the ages of 
2 and 4. Very preterm-born children in the Edgin, et al.10 study had similar executive function performance as 
term-born peers, while those with white matter abnormalities showed persistent cognitive inflexibility and poor 
inhibitory control, underscoring the value of neuroimaging for identifying individuals at highest risk for cogni-
tive control difficulties already by age two.

Functional neuroimaging studies have shown evidence for differences in verbal, learning, and memory corti-
cal circuits in the preterm population81–90. Further multimodal analysis in this preterm/MoBa cohort combining 
white matter imaging with morphometry and functional imaging may be able identify specific risks for those with 
poorer white matter development.

Persistent differences in cortical thickness and surface area.  Both cortical thickness and surface 
area showed widespread cross-sectional group differences in this study as expected, with significant overlap 
(Figure 4), which held when taking retinopathy of prematurity into account (Supplementary Figure 2). Frontal, 
occipital, and temporo-parietal regions implicated in this study have previously shown the greatest cortical thick-
ness deviation among the most immature preterm survivors (birth weight ≤ 1250 g or gestational age ≤ 28 weeks) 
in adolescence73.

This study’s findings of cortical and subcortical deficits may be due to epigenetic effects of immature birth 
on genes controlling growth, or the same effects due to fetal growth restriction caused by placental pathology. 
Preterm/VLBW-related insults to the brain may be first and foremost limited to the perinatal period, a highly 
plastic and vulnerable period for the immature brain91–96. Compared to fetuses of comparable age, preterm/
VLBW infants who live ex utero for their “third trimester” show decreased brain growth – even in the absence 
of severe brain injury – suggesting that their course of brain development leading up to term age is altered97. 
Disruption in this window of plasticity may initiate or require reorganization of neural connections29,91.

The ages assessed in this study encompass periods of peak cortical thickness and surface area98–100, which are 
followed by pruning of experience-expectant synapses and plasticity through adolescence101, especially in white 
matter. It is likely that both neural growth and pruning mechanisms are disturbed in the preterm population, 
leading to the constellation of preterm brain features including both thinning and thickening of cortex and wide-
spread surface area reduction.

The structural differences in cortex among preterms in this study may be caused by a cascading mech-
anism from white matter damage. While the most severe lesions including cystic periventricular leukomala-
cia have declined following advances in neonatal care, periventricular white matter injury is still common in 
the preterm-born population15,102. Vollmer et al.103 speculate that early disturbance of growth in white matter 
pathways, rather than reduced structural volumes, contribute to worse cognitive function in the preterm-born 
population104,105.
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Reduced subcortical structure volumes. The VLBW group showed persistently smaller volumes of cor-
pus callosum, right globus pallidus, and right thalamus. Growth rates for subcortical structures (Table 2) did not 
differ between groups whether or not ICV was used as a covariate. Corpus callosum, hippocampus, and thalamus 
are particularly vulnerable in this group, and alterations in their development in the VLBW population have been 
linked to cognitive deficits or psychiatric symptoms23,106–108. Corpus callosum volume in this clinical population 
has been linked to IQ17 and executive functions11,109,110.

Moreover, volume associations with cognitive and perinatal markers in the preterm group were predominant 
in structures critical for learning, memory, and cognition. Volumes of right hippocampus and left thalamus were 
related to perinatal health measures in the VLBW group. Smaller corpus callosum subsegmentation volumes, 
especially posteriorly, showed strong correlations to receiving help at school. Posterior corpus callosum is often 
affected in long-term follow-up of preterm survivors, and perinatal brain injury to its connectivity may affect 
visual and perceptual skills111. Formation of deep gray matter structures, in particular the thalamus, occurs at the 
same time as preterm birth and is linked to development of white matter and cortex112. Thalamocortical fibers and 
projections from sensory and associative thalamus can be affected by both focal and diffuse lesions in prematurity, 
related to vulnerability of subplate neurons in the second and third trimesters113,114. These functional outcomes 
likely share common mechanisms with structural alterations and/or reflect cascading cognitive effects.

It is difficult to discern whether or to what extent these structural changes are compensating for impaired 
function in the preterm brain, or are altered for physiological reasons as part of the so-called encephalopathy of 
prematurity20,115. Moreover, reduced brain volumes may not be caused by prematurity itself, but rather postnatal 
events and risk factors, such as the need for prolonged supplementary oxygen, which may exert an environmental 
influence on brain growth116.

Clinical and Classroom Implications.  These results suggest that improvements in neonatal medical care 
and other early childhood services have buffered the neurodevelopmental impact of preterm birth with VLBW 
and that children born in the 2000s show more similar structure-function relationships to their term-born 
peers than in previous decades36. For example, intubation for extremely preterm neonates has been increasingly 
replaced with less-invasive methods of ventilation, such as increased surfactant use and early continuous positive 
airway pressure102,117.

The preterm behavioral phenotype has been described as anxious and inattentive, rather than hyperactive 
or disruptive, which may also mean that their cognitive difficulties may not be as readily visible in a classroom 
setting20,118,119. Promisingly, working memory training interventions have shown learning gains in preterm-born 
preschoolers and adolescents120,121. Identifying sensitive windows for “catch up” in brain function is critical for 
survivors of preterm birth with VLBW, given their well-documented cognitive challenges.

Strengths and Limitations. Structural MRI can detect variation in early brain development and serve as a 
reference point for functional differences122,123. Longitudinal imaging is the only way to accurately measure struc-
tural growth and maturation and determine links between cognitive development and brain growth124. A strength 
of this study is the use of a robust longitudinal image registration protocol55 and a statistical analysis approach that 
allows for explicit modeling and analysis of within- and across-subject sources of variability in temporal covari-
ance64. Following the same individuals longitudinally is a challenge for researchers, and this study includes MRI 
data from 2 timepoints from 120 children, with no significant difference in socioeconomic status between groups. 
This study included a subset of participants in the Norwegian MoBa Study, which in total recruited 108,000 births 
from across Norway in an extensive prospective study of health and development38. Future study designs could do 
more to incentivize continued participation to ensure a robust and representative sample.

Although group × time analyses did not show significant interactions for any of the brain structures, it is 
still possible that the growth rates in the two groups do differ, but either at a different age, or at a rate that was 
not detectable in this study. A challenge with the longitudinal cognitive assessment portion was the possibility 
of practice effects when administering the same test twice125. Moreover, the NEPSY Statue subtest is typically 
administered to children three to six years old but was used here with older children as part of the longitudinal 
design and to increase standardization across the entire age span of participants. Finally, it is possible that the 
preterm-born children with the most compromised executive function were not included in the study due to 
incomplete testing and/or poor quality neuroimaging, which would skew overall performance in the preterm 
group upwards.

Basis for multimodal analysis. A natural extension of this project would be to move from correlational 
analysis to developing a predictive model that integrates multimodal MRI features (such as cortical thickness, 
surface area, subcortical volumes, white matter properties, and activation patterns) and with neuropsycholog-
ical and cognitive follow-up results. Differences in the development of brain structures can parallel differences 
in cognitive skills and behavior126,127. Predictive modeling using functional and morphometric data has shown 
potential in estimating cognitive skills later in childhood128 and may be useful for the VLBW community129. As 
more neurodevelopmental predictive models using MRI are created and tested, they may prove useful for iden-
tifying children with greater need for follow-up services and education interventions130 or to predict potential 
variance in treatment outcomes131,132. As preterm birth and VLBW remain global health challenges, increasing 
our knowledge linking subtle changes in brain structures with measurable deficits in cognitive performance is an 
important step forward.

A future step would be to study gray and white matter changes longitudinally in the same cohort to better 
link white matter damage with cortical development and maturation, and evaluate how this relationship evolves 
starting in the neonatal period, since morphometric and diffusion parameters have been shown to follow different 
developmental paths111,133–135. While this study does not provide evidence for catch-up growth in brain structures 
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among preterm-born individuals, it is possible that there is a critical window open earlier in childhood during 
which targeted interventions can stimulate cognitive development, especially in the most at-risk babies born 
preterm with VLBW.

Data Availability
Inquiries about and requests for access to data generated and analyzed during this study should be directed to the 
corresponding author.
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