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Abstract—This paper looks into the consumption side of the
power balance, and more specifically on the effects of utilizing
an increasingly larger fleet of Plug-in electric vehicles (PEVs)
for personal transportation. To asses this, an Agent Based
Model of PEVs has been extended and developed with different
charging strategies. The model simulates power demand from
a given number of PEVs in a given area, and may be useful
for policymakers and researchers alike. Simulations ran for the
city of Trondheim reinforce the notion that the rising adoption
of PEVs might not only pose a substantial challenge due to
the relative size of the power demanded, but more critically
also because of the variability that the charging profiles exhibit.
On the other hand, the different behaviour of the PEV agents,
as modelled through different charging strategies, indicate that
incentives such as price signals might effect how much the agent
charge at different times. Hence it may even lend the PEVs
batteries as assets to help stabilize the power balance in the
electric grid.

Index Terms—Agent Based Modelling, Plug-in Electric Vehi-
cles, Power Demand Variability

I. INTRODUCTION

The transition to a more sustainable society and economy
imposes a challenge for the power system due to raising
variability in the system. It is induced by an increasing share of
renewable energy sources on the supply side, and the growing
adoption of Plug-in Electric Vehicles (PEVs) on the demand
side. The focus of this paper is on the latter. The adoption
of PEVs has seen a tremendous rise throughout the last
decade, facilitated by batteries seeing a steady improvement
for both cost and energy density [1]. As such, Norway poses
an interesting case study, as the country is one of the greatest
PEV adopters to date with PEVs at 3,7% of the total fleet
and market share of new car sales above 15% [2]. Hence, it
is increasingly crucial to understand how the rising adoption
of PEVs will impact the energy system, especially from
a Norwegian perspective. Publications from the Norwegian
Water Resources and Energy Directorate (NVE), [3] and [4],
shows how the PEV adoption will pose challenges especially
for transformer stations, transmission lines and voltage quality
in Norway. Yet, a challenge when analyzing the electricity
consumption of PEVs is the complexity added by human
decisions. However, one accredited method to analyze such
complex, socio-technical systems[5] is that of Agent Based
Modelling (ABM), from the field of Complexity Science.

There is abundant research done on understanding the
challenges that arise as an increasing PEV fleet demand more

energy, as well as modeling how flexible charging might aid
the integration of PEVs to the power system. The reports of
[1] and [6] gives a great overview and outlook on the adoption
of PEVs. As for analyses based on real data and surveys,
the paper of [7] is to recommend. It present information
from the “The EV Project” which gathered PEV driving
and charging data in the US. In [8] it is discussed how the
PEVs will impact the grid. For the Norwegian case, there
are other studies to take note of, besides the two mentioned
NVE reports.For instance, [9] discusses charging behaviour in
Norway specifically, based on survey data from a few hundred
PEV owners. There are also many papers who discusses how
to smooth out PEV charging variability. Many of these presents
optimization methods which may be used for peak shaving
and valley filling. Examples of such are [10] who uses game
theory and Nash equilibrium for decentralized charging, [11]
who utilizes transition matrix for decentralized charging, [12]
and [13] who are solving AC-OPF with Wind, Hydro Power
and PEV scheduling, and [14] who gives an assessment of the
need for flexibility for PEV integration in Norway.

As for work that has utilized the methodology of ABM
in the context of Power Systems, the work of [15] offers
a great introduction to the possibilities of AMBs for grid
systems. Other important work is that of [16] and [17], which
both utilizes the MATSim[18] ABM software to simulate
PEV driving and charging behaviour. The former uses game
theoretical perspectives to analyze competition for power and
the benefits and possibilities with an aggregated PEV manager,
the latter parking. Where these works are dependent on a much
bigger model built for transport simulations in general, the
work of [19] develops a custom-made ABM for PEVs driving
and charging.

This paper looks into the effects of utilizing an increasingly
larger fleet of Plug-in electric vehicles (PEVs) for personal
transportation, by extending the fundamental ABM model of
[19], analyzing different PEV behaviour and power system
implications. None of the previous work has yet, in the authors
opinion, fully utilized the most valuable feature of ABM -
namely the possibility to analyze the uprising of extreme
events from complex behaviour - to assess the key question of
power demand variability. The charging behaviour of PEVs
that we want to analyze, may due to human influence be
characterized as Socio-technical systems. Hence the use of
ABM is a well-suited method to cope with the complexities of
our task. Through the implementation of an ABM mimicking



the basic characteristics and interactions of the individual
components of a PEV charging system, and the heterogeneous
nature of an ABM, we should not only be able to simulate
the PEV charging behaviour, but also observe the rise of
seemingly unpredictable and complex patterns[20] in their
power consumption. The paper is organized as follows; part II
presents general information, assumptions and specific charg-
ing strategies, gathered information on how PEV charging
behaviour, discusses how this may be utilized for an ABM,
before defining rules for the agents to operate after based
on the presented material. part III an overview of the model
and the case of Trondheim, presents a brief overview of the
implementation of the model, as well as the case study of
Trondheim for which the model was further customized. part
IV presents some of the main results from the simulation
and analysis, of the Trondheim case study, and discusses the
findings. part V discusses the findings, and part VI concludes
the paper.

II. AGENT BASED MODELLING OF PEV BEHAVIOUR

A few empirical studies have been made that collects data
from existing populations of eclectic vehicles, and analyze
them to get a sense of their behaviour. In [7], they present
the Fig. 1, showing that most EVs are charged once per day
and start charging with 20-80% SOC.
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Fig. 1: Charging in terms of SOC and frequency. [7]

However, despite observable profile characteristics, the
charging behaviour is still rather volatile, and can also
change from different times of year and different locations
[21]Contrasting the daily profiles presented in [4], with [21]
and [8], it is clear that there are a lot of variation in the
charging profiles across different regions.

Agent Based Models are generally bottom-up computational
programs where the set of agents all have certain charac-
teristics, and where one specifies certain interaction rules
between them and also with the environment. To simulate the
fundamental behaviour of the agents, we develop a few basic
rules that allows the reproduction of the real observed phe-
nomena and data. From this we may change the parameters,
or add a new rule, to observe how it effects the system. It
should be noted that by using an ABM one seeks insights on
complex problems that is not possible to gain through explicit
techniques. As a result, the mathematics here is by itself not
very advanced.

To build an ABM of PEVs, we start by making similar
assumptions as [19], namely that:

a) The charging of the agent vehicles happens either when
they are at home, or at a charging station within a certain
distance from their working place in the city.

b) For simplicity, we let the agents decide whether to start
charging or not when they arrive either at home or at work.
Thus, if they don’t connect at first, they will wait until the
next arrival at a charging station to charge.

c) Every agent has a home location and work location, which
for the sake of simplicity is assigned randomly within some
defined areas outside the city.

d) There is a chance that each agent has an errand after work.

e) Every agent has the possibility to charge its car at home.

With these ground rules we may begin building an ABM of

PEV energy demand. It is of course possible to alter these

assumptions, yet for instance assumption b) simplifies some

of the details required to build a the model.

In addition, it is also important to define further the exact
mechanism of how the agent decides to charge its car. We
need to define a few charging strategies or charging behaviour
that the agents should adhere to. The strategies are what will
have the most impact on the results, and will give insights on
how PEV agents may behave given certain conditions.

The charging strategies that are used in this work is pre-
sented below:

1. ”Dumb” charging: The agents charge whenever they have
the need and there is a free charging spot close by.

2. Probabilistic charging based on SOC: As seen in Fig. 1, most
PEV owners charge when their battery has between 0,2-0,8
SOC. With this strategy the agents do not start charging
as soon as they have the need. Instead they will charge
according to a certain probability that becomes higher and
higher the less power they have left on their battery. For
the sake of simplicity, we hence assume a linear probability
function, such that

Prsoc(SOC: SOCmin) =1 - g5t gean- (1)

SOcmax SOCmin

that is, the probability of charging, P rsoc at a given time
instance with a corresponding SOC; of agent n’s battery is
given by the difference to the desired minimum SOCpin
scaled with the difference to the maximum SOCyax(= 1).
3. Probabilistic charging strategy based on SOC and price:
Where the first two strategies allow for minimal interaction
between the agents, the agents here take into account the
price of electricity as well. The higher the price, the less
likely they are to charge. This approach allows indirect
communications through their response to the price, that
here change according to power demanded.
The price in our model may for simplicity determined by
how much of a specified maximal power capacity is used,
in a linear fashion. More formally the price, (t) at time t
is given as
P N (t) P, PEV
= mntC.-———— 2)

Pmax
where C is a scaling constant, N(t) is the number of
connected vehicles at time step t, PV is the power charged
by PEV i, and Pmax is the maximum charging capacity of
the power system. If C = ( max — min), then max and
min simply defines the range for the price.
We also add the assumption that all agents have available
electricity at a given price at their homes, home, Which is



higher than min. This reflect that many home owners in
Norway don’t buy their electricity on spot at their homes,
but with monthly contracts. To develop a probability model
based on price and SOC, we may start out with price alone.
To make the probability 0.5 for home, W€ may use
a function of the form

t:

1+°f
I:)rprice( t) = % 3
where F1( home) = 0. Moreover, if we let
( home — t)3
f =~ 7 4
1( 1) C home)? “)
where
— 3- In( home — min) (5)

|I"I( home)

A function describing likelihood to charge based on price
to be 0 at highest price and 1 at lowest, and fairly flat
at the middle, refer to Fig. 2, it will need to be of a
polynomial with a higher than 2. Hence cubic power in the
numerator of Eq.(4) is the easiest. we have a third order
polynomial function where P rprice( min) = 1, and hence
Prprice( t = 2( home — min)) = 0. However, we also

want the function to be less curved when ¢ > homes

to charge, see Fig. 2. To calculate the probability affected
by both price and SOC, we multiply these together and
multiply them by 2,

Prsoceprice( t) =2-Prsoc( t) - Prprice( ) (9

so that if they are both at their middle case (50% SOC and
t = home), then the joint probability will still be 50%
for charging.

III. CASE: IMPLEMENTING AN ABM OF PEVS FOR
TRONDHEIM

The simulation of the Agent Based Model has been im-
plemented in JAVA, as it is a widely used object-oriented
programming language. It facilitates the use of classes of
objects that intact, a native part of ABM. It is also fairly
straight forward to get to interact with Internet APIs.

To get a general impression of how the ABM, it is here
presented a UML class diagram. The Fig. 3 shows the model
architecture used. To get more information about the details of
this particular ABM, see [19] for the underlying model, and
[22] for the specifics of the model implemented here.

Overview of the ABM simulating PEV behaviour
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We multiply f; by f, to make the curve less curved above

Prabability for charging with a given price, =,

Prob__ (%)

Price, =,

Fig. 2: Probability for charging based on price.

t = home. It means it is less important how much the
electricity price is over home price, than how cheaper it is.
This is to reflect that many agents will be eager to be at
the margin, than to loose extra money if they really have

Fig. 3: Overview of high-level architecture of the agent based model[19].

The city of implementation in this model has been chosen
to be Trondheim, the city of residence of the Norwegian
University of Science and Technology (NTNU). The charging
stations used in the model, as displayed in Fig. 4, are the ones
actually excising in the city. An up-to-date list of stations and
their characteristics may upon request be accessed from [23]
and downloaded using their API. An API to Google Maps
was also used to find the distance and time for all the agent’s
driving routes, laying the basis for all the energy consumption
calculations.

At the heart of this model we have the PEV agents. To
introduce some diversity to the electric vehicle agents, it is
possible to include many types of cars, as well as different
agent characteristics (eg. different working times) etc, to make
the model more realistic or reach a desired level of detail.
Therefore a few different types of cars implemented as specific
types of electric vehicles for a certain agent, such as Tesla



Google

Fig. 4: Map of charging stations in Trondheim as of 12.06.2017.

Model S, Volkswagen eGolf and Nissan Leaf as can be seen
in table I. For this simulation each agent has a probability of
1/3 to have each of the cars.

Brand Nissan  Tesla Volkswagen
Model Leaf Model S E-Golf
Consumption Rate [kWh/km] 0,174 0,198 0,179
Charge Rate [kW] 6,6 10 7,2

Battery size [kWh] 30 100 24

TABLE I: Variety of cars implemented in simulation, data from [24] and [25]
IV. RESULTS FROM THE CASE

This section presents results from the simulations of the
ABM for the city Trondheim. It also presents the observed
variation in simulation data for two of the cases, and at the
end prognosis for PEV power demand in the future based on
this model.

A. Daily profiles of total demand and SOC for the ABM with
different charging strategies

After implementing the ABM in Java with different strate-
gies, a number of different simulation runs was conducted,
from which to compare the four different strategies. The
simulation runs were each done with 1500 agents over 10
days, with the maximum power of the grid set to 4500kW in
most cases. One should also keep in mind that all simulations
are based on several random realizations, and such one could
run even more iterations to get better insights in the results.

1) Dumb charging: Fig. 5 depicts the total demanded power
by both home and public chargers from the grid with the
dumb charging strategy. The graph shows that the charging
has a characteristic pattern, with larger amount of charging in
the evening at the home stations, indicating there are too few
chargers in the city. In Fig. 6 we see how the State of Charge
(SOC) of the battery of 100 out of the 1500 agents during
a 10-day period. We may observe that the agents, by design,
charge as soon as they have the opportunity, maintaining their
battery level close to maximum.

2) Probabilistic charging strategy based on SOC: Fig. 7
depicts the total demanded power from the grid. Again, it
shows that the power used for charging is almost twice as
much power from the home-stations compared to the city
ones. However, we observe that the graph has a more gradual
increase and decrease.Fig. 8 shows how 100 of the 1500 agents
store energy in their batteries during the simulation. As can be

so0

T
120

100

10001

Fig. 6: SOC during 10 days for 100 to 1500 EVs with dumb charging

observed from the graph, this strategy clearly makes it more
probable that the agents wait a while before charging their
batteries. However, it does not seem to generate a almost even
distribution around 80%-20% of SOC, as in Fig. 1.

Fig. 7: Total power demand from 1500 EVs during 10 days with charging strategy based
on SOC

Fig. 9 shows the power demand from the different charging
stations. Notably, charging station with ID: 0 with the highest
peak, corresponds to the agents charging at their homes. Two
of the other stations with quite high peaks are the stations
of ID: 1309 and ID: 66, corresponding to the largest charging
stations at Sirkus Shopping Mall and IKEA in Trondheim with
10 and 12 charging spots respectively.

3) Probabilistic charging strategy based on SOC and price:
The graph in Fig. 10 shows the total demanded power from
the grid when the maximum desired power level is set to 4500
kW. We here observe that the graph shows some of the main
characteristics of the previous cases, just more smoothed out,






