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Abstract—This paper describes a multistage stochastic mixed
integer programming problem for a hydro power producer that
maximizes profit in the low liquid intraday market and balancing
market. A comprehensive modelling framework with an internal
rolling horizon is presented and the continuous intraday market
is modelled using stochastic residual demand curves.

Index Terms—Operations Research, Power Generation Eco-
nomics, Economic forecasting, Profitability.

I. INTRODUCTION

A producer with dispatchable assets, such as a hydro power
producer, can offer its flexibility in multiple markets, which
makes the decision process complex. This article models a
Nordic hydro power producer, and the post-spot trade-off
between the multilateral intraday market (IM), a continous
double auction, and a marginal priced balancing market (BM)
without capacity reservation.

We offer a complete framework to formulate a post-spot
trading strategy, as well as a tool to quantify the value of
participating in the IM. Similar to [3], [4] and [5] a detailed
technical description of hydro power production. In line with
[1], and opposed to [6] and [7] the limited liquidity in post spot
markets is modelled in comprehensive detail. The IM liquidity
is described using residual demand curves, inspired by [2] who
applied the methodology to a centrally cleared intraday market.
Price drivers for the IM were investigated using price drivers
from the German intraday market [13] and [12], but as [11]
and [14] show, the Nordic market in its current maturity is
less predictable. To model continously updated information,
we apply a rolling horizon approach, as done by [8], [9] and
[10] in similar energy applications.

II. MARKET MODELLING

up to 45 minutes before production. This results in 33 hours of
post-spot bidding. It is assumed that IM-bidding is completed
prior to BM-bidding.

Fig. 1. Time line of the bidding problem.

IM is modelled based on historical order book data. The
residual demand curves are linearised in order to create a
tractable problem. The intraday demand was categorised into
3 different states (low, medium, high), and to describe the
relationship between bid volume and bid premium, linear
residual demand curves were fitted to the historical intraday
order depth. Each demand scenario has an associated linear
regression curve, and the total number of IM-scenarios is
generated by adding stochastic residuals to the linear re-
gression curves. Every scenario has an associated scenario
probability. Because the premium described by the demand
curves is a function of a given volume, the objective function
becomes non-linear. To obtain a linear model, the demand
curves are therefore linearised by dividing the demand into
volume segments. The size of the volume segments is the
upper bound of the volume that can be bid within that segment.
Each combination of volume segment and demand scenario
(block) is assigned an acceptance share, which is defined as the
historical probability that a bid within that block is accepted.

BM-premiums are forecasted using time series models and
Markov states to define the regulating state. Based on the
work of [15], auto regressive moving average (ARMA) models
are fitted to forecast upward (BM↑) and downward (BM↓)
regulated premiums, whereas the regulation state is defined
based on transition probabilities. Missing values in the input
data are handled according to [16]. Based on the correlation

Post-spot bidding is possible for each hour after IM opens. 
The uncertainties in demand, load and prices are assumed to 
decrease when the bid hour is closer to the production hour. An 
overview of the time horizon of the post-spot bidding problem 
can be seen in Fig. 1. Intraday bidding starts at 14:00 the day 
before production and IM-bids can be submitted up to one 
hour prior to production, whereas BM-bids can be submitted



Fig. 2. Theoretical residual demand curves for continuous intraday trading
with discretised volume segments.

presented in Table I, the BM-premiums and BM-volumes are
considered independent of each other except for the balancing
state, and the BM-volumes are therefore forecasted using
generalised extreme value (GEV) distributions similar to [17].

TABLE I
CORRELATION STUDY OF THE INTRADAY MARKET AND THE BALANCING

MARKET, 2015 - 2016

BM-pre.
/BM-vol.

BM↑-pre.
/IM-pre.

BM↓-pre.
/IM-pre.

BM↑-vol.
/IM-vol.

BM↓-vol.
/IM-vol.

Corr. 0.49 0.36 -0.40 0.14 -0.02

The empirical correlation between IM and BM is presented
in Table I. The correlation is based on Nord Pool data from
2015 - 2016 [18]. Although there is a correlation between the
BM and IM premium, they are treated as independent variables
in this study.

III. MATHEMATICAL MODEL

The mathematical model is a multistage SMIP where the
stochastic scenarios represent different realizations of intraday
demand, balancing market prices and production. The first
stage decision is to decide the intraday bid volume based on
a scenario dependent IM-price. Then, the acceptance shares
of the different bid segments are revealed, and the IM-volume
sold or bought is decided based on the bid volume in each
segment and their associated acceptance shares. The total
accepted bid volume for each scenario is thus the second
stage decision by simple recourse. After the IM-volumes
are decided, the producer has the possibility to bid in the
balancing market. This makes the balancing market volume
the third stage decision. The bid volume depends on an
uncertain balancing market price. After all commitments are
settled the total production is decided. For every bid hour,
the scenario structure is repeated. To handle the updated
information when bidding closer to the hour of operation, the
problem is formulated using a rolling horizon approach.

Table II defines the sets and their corresponding indices,
whereas the decision variables are presented in Table III.

TABLE II
SETS AND INDICES IN THE OPTIMISATION MODEL.

Set Index Explanation

S = {1,...,S} s ∈ S Set of scenarios s

H = {1,...,H} h ∈ H Set of production hours h

Hb = {1,...,Hb} h ∈ Hb Set of bid hours h

I = {1,...,I} i ∈ I Set of generators i

J = {1,...,J} j ∈ J Set of reservoirs j

F = {1,...,F} f ∈ F Set of production segments f

K = {1,...,K} k ∈ K Set of IM demand curve segments k

TABLE III
DECISION VARIABLES IN THE OPTIMISATION MODEL.

Variable Explanation

cshi Induced start-up cost for generator i in hour h for scenario s

dshi Discharge by generator i for scenario s

qshi Net production for generator i in hour h for scenario s

sshj Spill from reservoir j in hour h for scenario s

ushi 1 if generator i is committed in hour h for scenario s, 0 else
vshj Reservoir volume in reservoir j in hour h for scenario s

xBM
sh Volume committed to BM in hour h for scenario s

xE
shk Volume bid to IM in segment k in hour h for scenario s

The deterministic equivalent of the objective function of the
SMIP given by (1) maximizes profit for all scenarios s ∈ S
and production hours h ∈ H . The intraday income is given
by the IM-price, ρEshk, and the volume sold,

∑
k∈KΠskx

E
shk,

for the volume bid in each segment k ∈ K. Here, Πsk is
the acceptance share. The acceptance share decreases with
increasing bid premium and volume. In the balancing market,
the profit is given by the BM-price, ρBMsh , and the volume,
xBMsh . The production costs are given by the alternative cost
of using water, which is decided by the product of the constant
water value, W 0

j , the change in reservoir level and the induced
start-up cost, cshi. Because the total use of water for a
production hour is included in the objective, the day-ahead
profit must also be included as a parameter.

max
∑
s∈S

Prs[
∑
h∈H

(
∑
k∈K

Πskρ
E
shkx

E
shk + ρBMsh xBMsh )

−
∑
j∈J

W 0
j ηj(

∑
h∈H\1

(vs(h−1)j − vshj) + V 0
sj − vs1j)

−
∑
h∈H

∑
i∈I

cshi] +
∑
h∈H

PSpoth Xh (1)

The necessary constraints are given as follows:

|xEshk| ≤ |EEk |, s ∈ S, h ∈ H, k ∈ K (2)

|xBMsh | ≤ |EBMsh |, s ∈ S, h ∈ H (3)∑
k∈K

Πskx
E
shk +XE

sh + xBMsh +Xh =
∑
i∈I

qshi,

s ∈ S, h ∈ H (4)



∑
k∈K

xEshk +XE
sh + xBMsh +Xh ≤

∑
i∈I

Qmaxi ,

s ∈ S, h ∈ H (5)

qshi ≤ Qmaxi ushi, s ∈ S, h ∈ H, i ∈ I (6)

qshi ≥ Qmini ushi, s ∈ S, h ∈ H, i ∈ I (7)

vshj − vs(h−1)j = Ihj −
∑
i∈I

Γijdshi +
∑
j′∈J

Λjj′sshj′ ,

s ∈ S, h ∈ H\1, j ∈ J (8)

vs1j − V 0
sj = I1j −

∑
i∈I

Γijds1i +
∑
j′∈J

Λjj′ss1j′ ,

s ∈ S, j ∈ J (9)

qshi ≤ Aifushi +Bifdshi,

s ∈ S, h ∈ H, i ∈ I, f ∈ F (10)

dshi ≤ Diushi, s ∈ S, h ∈ H, i ∈ I (11)

cshi ≥ Ci(ushi −max[us(h−1)i, U
0
hi]),

s ∈ S, h ∈ H, i ∈ I (12)

cs1i ≥ Ci(us1i − U0
1i), s ∈ S, i ∈ I (13)

ωsh = ωζh, s ∈ Sζ , h ∈ Hζ , ζ ∈ Z (14)
Constraint (2) and (3) limit the volumes bid in the markets.

The upper intraday demand volume that can be bid within
each segment is EEk , while the BM-volume is limited by a
stochastic volume for each production hour, EBMsh .

The delivered obligations committed in the different markets
must be covered by the net production, qshi, and is taken
care of in (4). The constraint includes the IM-volumes sold
or bought in previous bid hours to be delivered in the given
production hour, XE

sh. For buy volumes it is possible to
reduce production as long as delivered obligations are fulfilled.
Because only a percentage of volumes bid to IM is answered
due to the low liquidity described by the acceptance share,
(5) is necessary to make sure that the volume bid to IM
does not exceed the total maximum production limitations,∑
i∈I Q

max
i .

The net production cannot exceed the generator’s capacity
limits, namely maximum production, Qmaxi , and minimum
production, Qmini , given by (6) and (7).

Change in reservoir level determines the alternative cost of
using water and is described by (8). For the initial hour, (9)
is used where V 0

sj is the initial volume in the reservoir. The
reservoir volume, vshj , increases with inflow, Ihj , and the
decrease is determined by the discharge, dshi, and spill, sshi.
For cascaded reservoirs, the discharge and spill for upstream
reservoirs affect the reservoirs downstream. Γij explains the
connection between reservoir j ∈ J and generator i ∈ I. Λjj′

explains the connection between two reservoirs, j and j′.
Generator bounds are obtained by (10) and (11). Production

is limited by a linearisation of the convex cost function
describing the correlation between production and discharge
(P-Q curve), with Aif as the intercept and Bif as the slope of

Algorithm 1: Complete rolling horizon model
for h ∈ H do

Generate residual demand curves and associated acceptance shares
for IM-scenarios

end for
for b ∈ Hb do

Generate BM-scenarios for BM-premiums and draw BM-volume
bounds
Merge IM- and BM-scenarios into one scenario tree
for h ∈ H do

Update dynamic input files (BM-scenarios, initial reservoir,
generator status, total IM-volumes)
if |H| < 24 then

Update time horizon of IM-scenarios
Update all input files to match time horizon

end if
Run optimisation model/solve SMIP
Update BM-premium and IM bid volumes

end for
end for

the function. Maximum discharge for each generator is given
by Di.

Start-up costs affect the profit and are modelled in (12) and
(13), which consider the initial hour. If the generator start-up
from one hour to the next, cshi, is assigned the start-up cost,
Ci. Since the generator may be running already due to spot
commitments, the original generator state in hour h ∈ H is
indicated by U0

hi.
Constraint (14) describes the non-anticipativity constraint

which links the equal stage decisions together and makes sure
that all decisions made at later stages are based on the same
information.

A. Rolling horizon approach

Due to the lag in price discovery, where the realised BM-
prices are not known before the hour after operation, there
will never be perfect information about the balancing market
at the time of bidding in the post-spot markets. The closer
the hour of operation, the less uncertain the forecasted BM-
scenarios are. Thus, the optimisation model is formulated
using an internal rolling horizon approach, which for each
bid-hour takes into account the updated BM forecast from
the previous bid-hours. The purpose of this is to obtain a
realistic model where the participants continuously bid in IM
throughout the day and have to take earlier traded volumes and
updated BM-forecasts into account. The producer is assumed
regulated according to the BM-bid the hour before operation,
and the model considers the BM-forecasts when placing IM-
bids for future bid hours. The IM-scenarios are considered
independent of bid hour, and are therefore generated for the
entire problem horizon. Dynamic parameters that are affected
by the previous bid hours, like BM-forecast, initial reservoir
level, generator status and total intraday commitments, must
however be updated during the rolling horizon in order to
keep the model as accurate as possible. A total overview of
the procedure used to run the rolling horizon multistage SMIP
is presented in Algorithm 1. For each bid hour, the multistage
SMIP is solved for the remaining production hours.



IV. CASE STUDY AND RESULTS

The outlined framework was tested on a Norwegian hydro
power producer located in Nord Pool’s bidding area NO2. The
first Wednesday in every month of 2016 is modelled to capture
seasonal differences described by input parameters as day-
ahead commitments, inflow, initial reservoir level and water
values.

An important feature of a stochastic programming problem
is the stability of the scenario tree.The preferable scenario tree
is small and still satisfies stability measures. In-sample and
out-of-sample stability testing as presented by [19] have been
performed for a varying number of IM- and BM-scenarios. The
tests show that the number of IM-scenarios have small impact
on the total stability, and the scenario tree is concluded stable
for 10 IM-scenarios and 30 BM-scenarios. This yields a total
of 300 scenarios for each bid hour.

Properties of the generated scenarios are presented in Table
IV. It can be seen that the IM-price normally is more profitable
than the BM-price for both buy and sell volumes. This
indicates that intraday participants are willing to accept higher
bid premiums, compared to the generally low BM-premiums.
The optimization problem of the power producer is however
not only about where the premiums are higher, the probability
of being dispatched in both markets must also be assessed. In
this case, the probability of regulation in the balancing market
is much higher than the intraday acceptance shares.

To measure the value of intraday trading the problem is
solved with the intraday trade volume fixed to zero. The results
can be seen in Table V. There is a marginal increase of profit
when including the possibility of intraday trading, with the
average value for all case dates quantified as 0.180 % or 115.3
e. For a hydro power producer with an income in the size of
several thousand Euros a day, the contribution from intraday
trading is small. Considering that bids are submitted for almost
every scenario, the low market liquidity is reflected by the
small added value of intraday trading.

Table V shows that the days in April, July, August and
September where only buy volumes are traded have a lower
average value of intraday trading. The average gain for these
days is only 0.130 %, compared to the day in October with
only sell bids which has a gain of 0.410 %. This indicates that
it is more profitable to sell additional volumes in IM than to
buy IM-volumes to restrain production.

The increased value from intraday trading is however low
due to the low market liquidity where few bids are accepted.
To perform a theoretical study which shows how the value of
intraday trading can develop with increased market liquidity,
or increased acceptance shares in this case, a future IM with
fictive liquidity is implemented. The acceptance shares ΠSell

sk

and ΠBuy
sk are increased to simulate a market with higher

demand and more participants. One date from each season of
the year is presented. The results of multiplying the acceptance
shares with a factor of 10 and 50 are shown in Table VI.
All other parameters are kept equal to the present model.

The scaling factors are chosen relatively high based on the
originally low acceptance shares.

Table VI shows that the value of including intraday trading
will increase with a more liquid IM. Since the value of intraday
trading is limited by the possibility to sell or buy volumes, it
is reasonable that the gain is not proportional to the scaling
factors. Larger scaling factors give the opportunity to buy or
sell larger volumes, but the option to produce more can be
limiting.

From the case study three main factors that influences the
value of the intraday market have been identified:
• The producer’s position in the market merit-order supply

curve
• The flexibility of the production capacity
• The liquidity of the intraday market
The days with water value close to spot price are the ones

that yield the highest profit from including intraday trading.
The interpretation is quite straightforward: If the market price
is much higher than the marginal cost (in our case: the water
value), it would normally be fully committed in the day-ahead
market. Likewise, if the market price is far lower than the
operating cost of the plant, it will not be committed in the day-
ahead market, and the volumes and premiums in the intraday
market are barely enough to grant a start-up. However, when
the water value is close to the spot price, the plant is likely
to run on the point of best efficiency in the day-ahead market,
with flexibility to ramp both up and down. The cost of doing
so will not be too far away from the spot price, and thus a
profit can be earned even with moderate IM premiums.

Days with only intraday buys gives less value from the
intraday market than in days with both buy and sales. This
is related to both the shape of the supply curve and the IM
premiums: If the market supply curve is convex, the premiums
for increasing production should be higher than for reducing
production with the same amount. Also for hydro power
plant, running below the point of best efficiency will increase
production costs, and therefore buying power back does not
necessarily reduce production costs proportionally.

The more the degrees of freedom in determining production,
the higher the possibilities are for making profit in the IM. Fac-
tors that typically increase production flexibility give higher
value - such as high reservoir filling in the storage reservoirs or
free spinning capacity of the generators after the commitment
in the day-ahead market. Large inflow on the other hand, often
reduces flexibility, since it becomes necessary to run the plant
in a certain manner to avoid spillage.

V. CONCLUSION

Modelling IM with stochastic residual demand curves gives
a more accurate presentation of the market by revealing the
actual demand and not only describing realised trades. An
advantage of the model presented in this paper is that it
makes it possible to quantify the value of participating in
IM for a hydro power producer. An internal rolling horizon
gives a real world approach by describing how the post-spot



TABLE IV
PERCENTAGE OCCURRENCE FOR FEATURES OF POST-SPOT TRADING: RELATIONSHIP BETWEEN INTRADAY BID TYPES AND POST-SPOT PRICES.

Date 06/01 03/02 02/03 06/04 04/05 01/06 06/07 03/08 07/09 05/10 02/11 07/12

% IM sell bids 59.26 11.67 60.93 0 13.70 81.30 0 0 0 100 63.52 99.07
% IM buy bids 41.30 87.41 85.25 100 86.30 17.79 100 100 100 0 36.48 0.74

% IM sell > BM 80.00 89.75 86.19 85.85 86.19 89.50 84.06 85.85 86.53 87.77 86.80 87.81
% IM buy < BM 95.48 98.10 96.27 97.12 96.54 97.38 97.21 97.12 96.73 96.46 95.84 96.85

TABLE V
OBJECTIVE VALUE FOR THE FIRST BID HOUR IN THE ANALYSIS. INCREASE IN PROFIT FROM INTRADAY TRADING.

Date 06/01 03/02 02/03 06/04 04/05 01/06 06/07 03/08 07/09 05/10 02/11 07/12

Spot+BM [e] 75,221 49,846 59,268 71,293 82,057 89,022 65,372 78,421 67,828 25,240 65,873 143,652
Spot+BM+IM [e] 75,383 49,970 59,366 71,311 82,181 89,118 65,472 78,519 67,974 25,344 66,021 143,819

∆ [e] 162.0 123.3 97.6 18.5 124 96.2 99.8 98.6 145.5 103.6 147.9 167
∆ [%] 0.215 0.247 0.165 0.026 0.151 0.108 0.153 0.126 0.215 0.410 0.225 0.116

TABLE VI
OBJECTIVE VALUE AND THE PERCENTAGE VALUE OF INTRADAY FOR TWO

INCREASED LIQUIDITY SCENARIOS.

Date 03/02 04/05 03/08 07/12

Spot+BM [e] 49,846 82,057 78,421 143,652
Incl. IM [e] 10*Πsk 51,137 83,016 79,197 144,994
Incl. IM [e] 50*Πsk 54,120 86,253 81,693 150,226

∆ [%] 10*Πsk 2.588 1.168 0.990 0.934
∆ [%] 50*Πsk 8.573 5.114 4.172 4.576

markets’ uncertainties develop while taking into account the
bids committed in the previous bid hours.

Applying the model framework to a realistic case study
shows that the value of intraday trading is higher when the
water value is close to the spot price, and when there is
production flexibility through available generator capacity and
water in the reservoirs. The gain is larger when selling in IM
than buying from IM in order to reduce own production. Due
to the low market liquidity, the value of intraday trading is
low compared to the overall profit of a hydro power producer.

ACKNOWLEDGMENT

Financial support from The Research Council of Norway,
project number 245284/E20 is greatly appreciated.

REFERENCES

[1] C. Weber, Adequate intraday market design to enable the integration of
wind energy into the European power systems, Energy Policy, 38(7):3155-
3163, 2010.

[2] A. Ugedo, E. Lobato, A. Franco, L. Rouco, J. Fernandez-Caro and J.
Chofre, Strategic bidding in sequential electricity markets, IEE Proceed-
ings - Generation, Transmission and Distribution, 153(4):431-442, 2006

[3] S.-E Fleten and T. K. Kristoffersen, Stochastic programming for op-
timizing bidding strategies of a nordic hydropower producer, European
Journal of Operational Research, (181):916-928, 2007.

[4] S.-E. Fleten, D. Haugstveit, J.-A. Steinsb, M. Belsnes and F. Fleis-
chmann, Bidding hydropower generation: Integrating short- and long-
term scheduling, Proceeding - 17th Power Systems Computations Con-
ference PSCC: 352-358, 2011.

[5] E. K. Aasgard, G. S. Andersen, and S.-E Fleten and D. Haugstvedt, Evalu-
ating a stochastic-programming-based bidding model for a multireservoir
system., IEEE Transaction on Power Systems, 29(4):1748-1757, 2014.

[6] E. Faria and S.-E. Fleten, Day-ahead market bidding for a Nordic hy-
dropower producer: taking the Elbas market into account, Computational
Management Science, 8(1-2):75101, 2011.

[7] T.K. Boomsma, N. Juul and S.-E. Fleten, Bidding in sequential electricity
markets: The Nordic case, European Journal of Operational Research,
283(3):797-809, 2014.

[8] P. Beraldi, A. Violi, N. Scordino, and N. Sorrentino, Short-term elec-
tricity procurement: A rolling horizon stochastic programming approach,
Applied Mathematical Modelling, 35(8):3980-3990, 2011.

[9] M. T. Devine, S. A. Gabriel and S. Moryadee, A rolling horizon ap-
proach for stochastic mixed complementarity problems with endogenous
learning: Application to natural gas markets, Computers & Operations
Research, 68:1-15, 2016.

[10] B. R. Champion and S. A. Gabriel, A multistage stochastic energy
model with endogenous probabilities and a rolling horizon, Energy and
Buildings, 135:338-349, 2017.

[11] R. Scharff and M. Amelin, Trading behaviour on the continuous intraday
market Elbas, Energy Policy, 88:544:557, 2016.

[12] E. Garnier, and R. Madlener, Balancing forecast errors in continuous-
trade intraday markets, Energy Systems, 6(3):361, 2015.

[13] R. Kiesel and F. Paraschiv, Econometric analysis of 15-minute intraday
electricity prices, Energy Economics, 64:77-90, 2017.

[14] E. Engmark and H. Sandven, Optimal post-spot bidding for a wind
power producer in the Nordic power market, unpublished, project report
in course TIø4500 at Norwegian University of Science and Technology,
2016.

[15] M. Olsson and L. Soder, Modeling Real-Time Balancing Power Market
Prices Using Combined SARIMA and Markov Processes, IEEE Transac-
tions on Power Systems, 23(2):443-450, 2008.

[16] E. Erdogan, M. Sheng, A. Beygelzimer and I. Rish, Statistical models for
unequally spaced time series, proceedings of the 2005 SIAM International
conference on data mining, 626-630, 2005.

[17] S. Jaehnert, H. Fahramand and L. G. Doorman, Modelling of prices
using the volume in the norwegian regulating power market, PowerTech,
2009 IEEE Bucharest, 2009.

[18] NordPool. Historical Market Data [Online] Availble:
http://www.nordpoolspot.com/historical-market-data/

[19] M. Kaut and S. W. Wallace, Evaluation of Scenario-Generation
Methods for Stochastic Programming, Pacific Journal of Optimization,
3(2):257271, 2007.


