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Abstract.
In this paper, we introduce a new concept for constructing prior dis-

tributions. We exploit the natural nested structure inherent to many
model components, which defines the model component to be a flex-
ible extension of a base model. Proper priors are defined to penalise
the complexity induced by deviating from the simpler base model and
are formulated after the input of a user-defined scaling parameter for
that model component, both in the univariate and the multivariate
case. These priors are invariant to reparameterisations, have a natural
connection to Jeffreys’ priors, are designed to support Occam’s razor
and seem to have excellent robustness properties, all which are highly
desirable and allow us to use this approach to define default prior distri-
butions. Through examples and theoretical results, we demonstrate the
appropriateness of this approach and how it can be applied in various
situations.

Key words and phrases: Bayesian theory, Interpretable prior distribu-
tions, Hierarchical models, Disease mapping, Information geometry,
Prior on correlation matrices.

1. INTRODUCTION

The field of Bayesian statistics began life as a sub-branch of probability theory.
From the 1950s onwards, a number of pioneers built upon the Bayesian frame-
work and applied it with great success to real world problems. The true Bayesian
“moment” began with the advent of Markov chain Monte Carlo (MCMC) meth-
ods. Coupled with user-friendly implementations of MCMC, such as OpenBUGS,
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JAGS, R-INLA, and Stan, the uptake of Bayesian models has exploded across fields
of research from astronomy to anthropology, linguistics to zoology. Limited only
by their data, their patience, and their imaginations, applied researchers have
constructed and applied increasingly complex Bayesian models. The spectacular
flexibility of the Bayesian paradigm as an applied modelling toolbox has had a
number of important consequences for modern science (see, for example, the spe-
cial issue of Statistical Science (Volume 29, Number 1, 2014) devoted to Bayesian
success stories).

The challenge underlying the proliferation of Bayesian methods is that it is
significantly easier to build, implement, and use a complex model than it is to
understand what it’s doing. This is particularly true when the model is built to
be potentially more complicated than the data in the sense that there are po-
tentially many more parameters than there are observations. For these models,
a balance between predictive power and parsimony is controlled by prior spec-
ification. Unfortunately, there has been very little work done on setting priors
for these models outside of high-dimensional regression problems, for which the
mathematics is tractable. In this paper, we propose a new technique for specifying
priors that can be applied to a large number of applied Bayesian models.

The problem of constructing sensible priors on model parameters becomes es-
pecially pressing when developing general software for Bayesian computation. As
developers of the R-INLA (see http://www.r-inla.org/) package, which per-
forms approximate Bayesian inference for latent Gaussian models (Rue, Martino
and Chopin, 2009; Lindgren, Rue and Lindström, 2011; Martins et al., 2013),
we are left with two unpalatable choices. We could force the user of R-INLA to
explicitly define a joint prior distribution for all parameters in the model. Ar-
guably, this is the correct thing to do, however, the sea of confusion around how
to properly prescribe priors makes this undesirable in practice. The second option
is to provide default priors. These, as currently implemented, are chosen by the
second author to be something he views as sensible. Default prior specification is
also present implicitly in the OpenBUGS and Stan manuals, which contain a large
number of fully-worked Bayesian analyses of real problems complete with prior
specifications. In this case, we do not know precisely the thinking that under-
scores the choice of prior, but we do know that they have been hugely influential.
This is not a satisfactory state of affairs.

This paper is our attempt to provide a broad, useful framework for building
priors for a large class of hierarchical models. The priors we develop, which we
call Penalised Complexity or PC priors, are informative priors. The information
in these priors is specified in terms of four underlying principles. This has a
twofold purpose. The first purpose is to communicate the exact information that
is encoded in the prior in order to make the prior interpretable and easier to
elicit. PC priors have a single parameter that the user must set, which controls
the amount of flexibility allowed in the model. This parameter can be set using
“weak” information that is frequently available (Gelman, 2006), or by appealing
to some other subjective criterion such as “calibration” under some assumptions
about future experiments (Draper, 2006).

Following in the footsteps of Lucien Le Cam (“Basic Principle 0. Do not trust
any principle.” Le Cam, 1990) and (allegedly) Groucho Marx (“Those are my
principles, and if you don’t like them. . . well, I have others.”), the second purpose
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of building PC priors from a set of principles is to allow us to change these princi-
ples when needed. For example, in Sections 4.5 and 7 we modify single principles
for, respectively, modelling and computational reasons. This gives the PC prior
framework the advantage of flexibility without sacrificing its simple structure.
We stress that the principles provided in this paper do not absolve modellers of
the responsibility to check their suitability (see, for example, Palacios and Steel,
2006, who argued that the principles underlying the reference prior approach
are inappropriate for spatial data). This is in line with David Draper’s call for
“transparent subjectivity” in Bayesian modelling (Draper, 2006).

We believe that PC priors are general enough to be used in realistically com-
plex statistical models and are straightforward enough to be used by general
practitioners. Using only weak information, PC priors represent a unified prior
specification with a clear meaning and interpretation. The underlying principles
are designed so that desirable properties follow automatically: invariance regard-
ing reparameterisations, connection to Jeffreys’ prior, support of Occam’s razor
principle, and empirical robustness to the choice of the flexibility parameter. We
do not claim that the priors we propose are optimal or unique, nor do we claim
that the principles are universal. Instead, we make the more modest claim that
these priors are useful, understandable, conservative, and better than doing noth-
ing at all.

1.1 The models considered in this paper

While the goals of this paper are rather ambitious, we will necessarily restrict
ourselves to a specific class of hierarchical model, namely additive models. The
models we consider have a non-trivial unobserved latent structure. This latent
structure is made up of a number of model components, the structure of which is
controlled by a small number of flexibility parameters. We are interested in latent
structures in which each model component is added for modelling purposes. We
do not focus on the case where the hierarchical structure is added to increase
the robustness of the model (See Chapter 10 of Robert, 2007, for a discussion
of types of hierarchical structure). This additive model viewpoint is the key to
understanding many of the choices we make, in particular the concept of the
“base model”, which is covered in detail in Section 2.4.

An example of the type of model we are considering is the spatial survival model
proposed by Henderson, Shimakura and Gorst (2002), where the log-hazard rate
is modelled according to a Cox proportional hazard model as

log(hazardj) = log(baseline) + β0 +

p∑
i=1

βixij + urj + vj ,

where xij is the ith covariate for case j, urj is the value of the spatial structured
random effect for the region rj in which case j occurred, and vj is the subject
specific log-frailty. Let us focus on a model component u ∼ N(0, τ−1Q−1), where
Q is is the structure matrix of the first order intrinsic CAR model on the regions
and τ is an inverse scaling parameter (Rue and Held, 2005, Chapter 3). The model
component u has one flexibility parameter τ , which controls the scaling of the
structured random effect. The other model components are v and β, which have
one and zero (assuming a uniform prior on β) flexibility parameters respectively.
We will consider this case in detail in Section 5.
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We emphasise that we are not interested in the case where the number of flex-
ibility parameters grows as we enter an asymptotic regime (here as the number
of cases increases). The only time we consider models where the number of pa-
rameters grows in an “asymptotic” way is Section 4.5, where we consider sparse
linear models. In that section we discuss a (possibly necessary) modification to
the prior specification given below (specifically Principle 3 in Section 3). We also
do not consider models with discrete components.

1.2 Outline of the paper

The plan of the paper is as follows. Section 2 contains an overview of common
techniques for setting priors for hierarchical models. In Section 3 we will define
our principled approach to design priors and discuss its connection to the Jeffreys’
prior. In Section 4, we will study properties of PC priors near the base model and
its behaviour in a Bayesian hypothesis testing setting. Further, we provide explicit
risk results in a simple hierarchical model and discuss the connection to sparsity
priors. In Section 5 we discuss the BYM-model for disease mapping with a possible
smooth effect of an ecological covariate, and we suggest a new parameterisation
of the model in order to facilitate improved control and interpretation. Section 6
extends the method to multivariate parameters and we derive principled priors
for correlation matrices in the context of the multivariate probit model. Section 7
contains a discussion of how to extend the framework of PC priors to hierarchical
models by defining joint PC priors over model components that take the model
structure into account. This technique is demonstrated on an additive logistic
regression model. We end with a discussion in Section 8. The Appendices host
technical details and additional results.

2. A GUIDED TOUR OF NON-SUBJECTIVE PRIORS FOR BAYESIAN
HIERARCHICAL MODELS

The aim of this section is to review the existing methods for setting non-
subjective priors for parameters in Bayesian hierarchical models. We begin by
discussing objective priors, which are frequently put forward as a “gold standard”
of prior specification. The second class of priors that we survey are what we call
“risk averse priors”, that is priors that come from the culture of a field rather than
from specific principles. Finally, we survey the more recent concept of “weakly-
informative” priors. We then consider a special class of priors that are important
for hierarchical models, namely priors that encode some notion of a base model.
Finally, we investigate the main concepts that we feel are most important for
setting priors for parameters in hierarchical models, and we look at related ideas
in the literature.

In order to control the size of this section, we have made two major decisions.
The first is that we are focussing exclusively on methods of prior specification
that could conceivably be used in all of the examples in this paper. The second
is that we focus entirely on priors for prediction. It is commonly (although not
exclusively Bernardo, 2011; Rousseau and Robert, 2011; Kamary et al., 2014)
held that we need to use different priors for testing than those used for prediction.
We return to this point in Section 4.3. A discussion of alternative priors for the
specific examples in this paper is provided in the relevant section. We also do not
consider data-dependent priors or empirical Bayes procedures.
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2.1 Objective priors

The concept of prior specification furthest from expert elicitation priors is that
of “objective” priors (Bernardo, 1979; Berger, 2006; Berger, Bernardo and Sun,
2009; Ghosh, 2011; Kass and Wasserman, 1996). These aim to inject as little
information as possible into the inference procedure. Objective priors are often
strongly design-dependent and are not uniformly accepted amongst Bayesians on
philosophical grounds; see for example discussion contributions to Berger (2006)
and Goldstein (2006), but they are useful (and used) in practice. The most com-
mon constructs in this family are Jeffreys’ non-informative priors and their ex-
tension “reference priors” (Berger, Bernardo and Sun, 2009). If chosen carefully,
the use of non-informative priors will lead to appropriate parameter estimates
as demonstrated in several applications by Kamary and Robert (2014). It can
be also shown theoretically that, for sufficiently nice models, the posterior re-
sulting from a reference prior analysis matches the results of classical maximum
likelihood estimation to second order (Reid, Mukerjee and Fraser, 2003).

While reference priors have been successfully used for classical models, they
have a less triumphant history for hierarchical models. The practical reason for
this is that reference priors are notoriously difficult to derive for complicated
models. A second barrier to the routine use of reference priors for hierarchical
models is that they depend on the ordering of the parameters. In some applica-
tions, there may be a natural ordering, however in many situations, such as the
ones encountered in this paper, any imposed ordering will be unnatural. Berger,
Bernardo and Sun (2015) proposed some work arounds for this problem, how-
ever it is not clear how to apply these to even moderately complex hierarchical
models (see the comment of Rousseau, 2015). In spite of these shortcomings,
the reference prior framework is the only complete framework for specifying prior
distributions.

2.2 Ad hoc, risk averse, and computationally convenient prior specification

The most common non-subjective approach to prior specification for hierar-
chical models is to use a prior that has been previously used in the literature for
a similar problem. This ad hoc approach is viewed as “good practice” in many
applied communities. It may be viewed as a risk averse strategy, in which the
choice of prior has been delegated to another researcher. The assumption is that
the community of people using this prior are doing it for a good reason and
continuing this practice is less risky than positing a different prior specification.
In the best cases, the chosen prior was originally selected in a careful, problem
independent manner for a similar problem to the one the statistician is solving
(for example, the priors in Gelman et al., 2013). More commonly, these priors
have been carefully chosen for the problem they were designed to solve (such
as the priors in Muff et al., 2015) and are inappropriate for the new application.
The lack of a dedicated “expert” guiding these prior choices can lead to troubling
inference. Worse still is the idea that, as the prior was selected from the literature
or is in common use, there is some sort of justification for it.

Other priors in the literature have been selected for purely computational
reasons. The main example of these priors are conjugate priors for exponential
families (Robert, 2007, Section 3.3), which facilitate easy implementation of a
Gibbs sampler. While Gibbs samplers are an important part of the historical
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development of Bayesian statistics, we tend to favour modern sampling methods
based on the joint distribution, such as those implemented in Stan, as they tend
to perform better.

Some priors from the literature are not sensible. An extreme example of this
is the enduring popularity of the Γ(ε, ε) prior, with a small ε, for inverse vari-
ance (precision) parameters, which has been the “default”1 choice in the Win-
BUGS (Spiegelhalter et al., 1995) example manuals. However, this prior is well
known to be a choice with severe problems; see the discussion in Fong, Rue and
Wakefield (2010) and Hodges (2013a). Another example of a bad “vague-but-
proper” prior is a uniform prior on a fixed interval for the degrees of freedom
parameter in a Student-t distribution. The results in the Supplementary Mate-
rial show that these priors, which are also used in the WinBUGS manual, get
increasingly informative as the upper bound increases.

One of the unintentional consequences of using risk averse priors is that they
will usually lead to independent priors on each of the hyperparameters. For com-
plicated models that are overparameterized or partially identifiable, we do not
think this is necessarily a good idea, as we need some sort of shrinkage or sparsity
to limit the flexibility of the model and avoid over-fitting. The tendency towards
over-fitting is a property of the full model and independent priors on the compo-
nents may not be enough to mitigate it (Pati, Pillai and Dunson, 2014; He et al.,
2007; He and Hodges, 2008).

While the tone of this section has been quite negative, we do not wish to
give the impression that all inference obtained using risk averse or computation-
ally convenient priors will not be meaningful. We only want to point out that
a lot of work needs to be put into checking the suitability of the prior for the
particular application before it is used. Furthermore, the suitability (or not) of
a specific joint prior specification will depend in subtle and complicated ways
on the global model specification. An interesting, but computationally intensive,
method for reasserting the role of an “expert” into a class of ad hoc priors is
the method of calibrated Bayes (Rubin, 1984; Browne and Draper, 2006), where
the hyper-parameters in the prior are chosen to ensure that, under correct model
specification, the credible sets are also confidence regions.

2.3 Weakly informative priors

Between objective and expert priors lies the realm of “weakly informative”
priors (Gelman, 2006; Gelman et al., 2008; Evans and Jang, 2011; Polson and
Scott, 2012). These priors are constructed by recognising that while you usually
do not have strong prior information about the value of a parameter, it is rare
to be completely ignorant. For example, when estimating the height and weight
of an adult, it is sensible to select a prior that gives mass neither to people who
are five metres tall, nor to those who only weigh two kilograms. This use of weak
prior knowledge is often sufficient to regularise the extreme inferences that can
be obtained using maximum likelihood (Le Cam, 1990) or non-informative priors.
To date, there has been no attempt to construct a general method for specifying
weakly informative priors.

Some known weakly informative priors, like the half-Cauchy distribution on the

1We note that this recommendation has been revised, however these priors are still widely
used in the literature.
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standard deviation of a normal distribution, can lead to better predictive inference
than reference priors (Polson and Scott, 2012). There are no general theoretical
results that show how to build priors with good risk properties for the broader
class of models we are interested in, but the intuition is that weakly informative
priors can strike a balance between fidelity to a strong signal, and shrinkage of
a weak signal. We interpret this as the prior on the flexibility parameter (the
standard deviation) allowing extra model complexity, but not forcing it.

2.4 Priors specified using a base model

One of the key challenges when building a prior for a hierarchical model is
finding a way to control against over-fitting. In this section, we consider a number
of priors that have been proposed in the literature that are linked through the
abstract concept of a “base model”. This can be seen as a specific type of “weak
information” that is especially important for nested models.

Definition 1. For a model component with density π(x | ξ) controlled by a
flexibility parameter ξ, the base model is the “simplest” model in the class. For
notational clarity, we will take this to be the model corresponding to ξ = 0. It will
be common for ξ to be non-negative. The flexibility parameter is often a scalar,
or a number of independent scalars, but it can also be a vector-valued parameter.

This allows us to interpret π(x | ξ) as a flexible extension of the base model,
where increasing values of ξ imply increasing allowance of deviations from the
base model. The idea of a base model is reminiscent of a “null hypothesis” and
thinking of what a sensible hypothesis to test for ξ is a good way to specify
a base model. We emphasise, however, that we are not using this model to do
testing, but rather to control flexibility and reduce over-fitting thereby improving
predictive performance.

A few simple examples will fix the idea.

Gaussian random effects Let x | ξ be a multivariate Gaussian with zero mean
and precision matrix τI where τ = ξ−1. Here, the base model puts all the
mass at ξ = 0, which is appropriate for random effects where the natural
reference is absence of these effects. In the multivariate case and conditional
on τ , we can allow for correlation among the model components where the
uncorrelated case is the base model.

Spline model Let x | ξ represent a spline model with smoothing parameter
τ = 1/ξ. The base model is the infinite smoothed spline which can be
a constant or a straight line, depending on the order of the spline or in
general the null space of its penalty matrix. This interpretation is natural
when the spline model is used as a flexible extension to a constant or in
generalised additive models, which can be viewed as a flexible extension of
a generalised linear model.

Time dependence Let x | ξ denote an auto-regressive model of order 1, unit
variance and lag-one correlation ρ. Depending on the application, then ei-
ther ξ = ρ and the base model is “no dependence in time” or ξ = 1− ρ and
the base model is no change in time.

The base model primarily finds a home in the idea of “spike-and-slab” priors
(George and McCulloch, 1993; Ishwaran and Rao, 2005). These models specify
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a prior on ξ as a mixture of a point mass at the base model and a diffuse ab-
solutely continuous prior over the remainder of the parameter space. These pri-
ors successfully control over-fitting and simultaneously perform prediction and
model selection. The downside is that they are computationally unpleasant and
specialised tools need to be built to do inference for these models. Furthermore,
as the number of flexibility parameters increases, exploring the entire posterior
quickly becomes infeasible.

In order to further consider what a non-atomic prior must look like to take
advantage of the base model, we consider the following Informal Definition.

Informal Definition 1. A prior π(ξ) forces overfitting (or overfits) if the
prior places insufficient mass at the base model.

A prior that overfits will drag the posterior towards the more flexible model
and the base model will have almost no support in the posterior, even in the case
where the base model is the true model. Hence, when using an overfitting prior,
we are unable to distinguish between flexible models that are supported by the
data and flexible models that are a consequence of the prior choice.

Informal Definition 1 is both uncontroversially true and completely useless
because it relies on the vague notion of “insufficient mass”. This condition can be
made very precise, at the cost of being impossible to verify for complex models
(Theorem 2.4, Ghosal, Ghosh and Van Der Vaart, 2000).

The aim of this paper is to provide practical advice for setting priors, and so
we commit the cardinal sin of mathematical sloppiness in an attempt to find a
“rule of thumb” for ensuring there is sufficient prior mass around the base model.
Hence we say that a prior overfits if its density in a sensible parameterisation is
zero at the base model. In Section 3, we argue that a “sensible parameterisation”
is in terms of the square-root of a Kullback-Leibler divergence between the base
model and a more flexible model. These terms are similar to the balls found in
the asymptotic theory of Ghosal, Ghosh and Van Der Vaart (2000) with one
important difference: because we set priors one component at a time (rather than
all at once), this condition can be easily checked numerically and the remainder
of the paper is devoted to using this condition to build a system for specifying
priors. This practical version of Informal Definition 1 will rule out a number of
suitable priors, but we believe it is a useful triage method for choosing priors that
ensure we don’t accidentally force our model to be more complex than necessary.

2.5 Desiderata for setting joint priors on flexibility parameters in hierarchical
models

We conclude this tour of prior specifications by detailing what we look for
in a joint prior for parameters in a hierarchical model and pointing out priors
that have been successful in fulfilling at least some of these. This list is quite
personal, but we believe that it is broadly sensible. We wish to emphasise that
the desiderata listed below only make sense in the context of hierarchical models
with multiple model components and it does not make sense to apply them to
less complex models. The remainder of the paper can be seen as our attempt to
construct a system for specifying priors that at least partially consistent with this
list.
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D1: The prior should not be non-informative Even if it was possible to
compute a non-informative prior for a specific hierarchical model, we are not con-
vinced it would be a good idea. Our primary concern is the stability of inference.
In particular, if a model is over-parameterised, i.e. too flexible, these priors are
likely to lead to badly over-fitted posteriors. Outside the realm of formally non-
informative priors, emphasising “flatness” can lead to extremely prior-sensitive
inferences (Gelman, 2006). This should not be interpreted as us calling for mas-
sively informative priors, but rather a recognition that for complex models, a
certain amount of extra information needs to be injected to make useful infer-
ences.

D2: The prior should be aware of the model structure Roughly speak-
ing, we want to ensure that if a subset of the parameters control a single aspect
of the model, the prior on these parameters is set jointly. This also suggests using
a parameterisation of the model that, as much as possible, has parameters that
only control one aspect of the model. Specific examples of this can be found in
Sections 5 and 7, as well as He et al. (2007) and He and Hodges (2008).

D3: When re-using the prior for a different analysis, changes in the
problem should be reflected in the prior A prior specification should be
explicit about what needs to be changed when applying it to a similar but dif-
ferent problem. An easy example is that the prior on the scaling parameter of a
spline model needs to depend on the number of knots (Sørbye and Rue, 2014).
Cui et al. (2010) suggested an approach for partitioning degrees of freedom to
individual effects in a hierarchical model. By putting a prior on these, they in-
duced a prior for the respective smoothing parameter. This approach has several
attractive features, and one is that the range of the degrees of freedom for a spline
model depends on the number of knots. Furthermore, it is invariant to a range
of reparameterisations, however its applicability is limited, but can be slightly
improved using approximations proposed by Lu, Hodges and Carlin (2007) and
Reich and Hodges (2008).

D4: The prior should limit the flexibility of an overparameterized
model This desideratum is related to the discussion in Section 2.4. It is unlikely
that priors that do not have good shrinkage properties will lead to good inference
for hierarchical models.

D5: Restrictions of the prior to identifiable submanifolds of the pa-
rameter space should be sensible As more data appears, the posterior will
contract to a submanifold of the parameter space. For an identifiable model,
this submanifold will be a point. Unfortunately, a number of the more complex
models that are formulated in real applications have parameters that cannot be
identified. In these partially identifiable (Gustafson, 2005) or singular (Watan-
abe, 2009) models, the prior is still present in the limiting posterior. In these
cases it is vital to specify it carefully. A case where it is not desirable to have a
non-informative prior on this submanifold is given in Fuglstad et al. (2015).

D6: The prior should control what a parameter does, rather than
its numerical value A sensible method for setting priors should be (at least
locally) indifferent to the parameterisation used. It does not make sense, for
example, for the posterior to depend on whether the modeller prefers working
with the standard deviation, the variance, or the precision of a Gaussian random
effect.
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The idea of using the distance between two models as a reasonable scale to
think about priors dates back to Jeffreys (1946) pioneering work to obtain priors
that are invariant to reparameterisation. Bayarri and Garćıa Donato (2008) build
on the early ideas of Jeffreys (1961) to derive objective priors for computing
Bayes factors for Bayesian hypothesis tests; see also Robert, Chopin and Rousseau
(2009, Sec. 6.4). They use divergence measures between the competing models
to derive the required proper priors, and call those derived priors divergence-
based (DB) priors. Given the prior distribution on the parameter space of a
full encompassing model, Consonni and Veronese (2008) used Kullback-Leibler
projection, in the context of Bayesian model comparison, to derive suitable prior
distributions for candidate submodels.

D7: The prior should be computationally feasible If our aim is to per-
form applied inference, we need to ensure that inference can be performed within
our computational budget. This will always lead to a very delicate trade-off be-
tween modelling and computation that needs to be evaluated for each problem.

D8: The prior should perform well This is the most difficult desideratum
to fulfill. Ideally, we would like to ensure that, for some appropriate quantities of
interest, the estimators produced using these priors have appropriate theoretical
guarantees. It could be that we desire good posterior contraction, asymptotic nor-
mality, good predictive performance under mis-specification, robustness against
outliers, admissibility in the Stein sense or any other “objective” property. At the
present time, there is essentially no knowledge of any of these desirable features
for the types of models that we are considering in this paper. As this gap in the
literature closes, it may be necessary to update recommendations on how to set a
prior for a hierarchical model to make them consistent with this new knowledge.

3. PENALISED COMPLEXITY PRIORS

In this section we will outline our approach to constructing penalised complexity
priors (PC priors) for a univariate parameter, postponing the extensions to the
multivariate case to Section 6.1. These priors, which are fleshed out in further
sections, satisfy most of the desiderata listed in Section 2.5. We demonstrate these
principles by deriving the PC prior for the precision of a Gaussian random effect.

3.1 A principled definition of the PC prior

We will now state and discuss our principles for constructing a prior distribu-
tion for ξ.

Principle 1: Occam’s razor. We invoke the principle of parsimony, for which simpler
model formulations should be preferred until there is enough support for a
more complex model. Our simpler model is the base model hence we want
the prior to penalise deviations from it. From the prior alone we should
prefer the simpler model and the prior should be decaying as a function of
a measure of the increased complexity between the more flexible model and
the base model.

Principle 2: Measure of complexity. We base our measure of complexity on the
Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951)

KLD (π(x | ξ)‖π(x | ξ = 0)) =

∫
π(x | ξ) log

(
π(x | ξ)

π(x | ξ = 0)

)
dx.
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The KLD is ubiquitous in the theory of Bayesian statistics and is once again
appropriate for the task at hand as it measures the information lost when
approximating a flexible model by the base model. Combining Principle 1
with a measure of complexity based on the KLD says that we want the prior
to have high mass in areas where replacing the flexible model by the base
model will not lead to much information loss. We note that the asymmetry
of the KLD is not troubling in this context as we are interested in measuring
how much more complex a model is than the base model, which does not
need to be reversible. A good analogy would be that, when walking between
home and a destination, the appropriate measure “distance” is time, which
is not necessarily symmetric in a hilly city, rather than physical distance,
which is symmetric. In order to use the KLD with Principle 1, we need it to
be interpretable as a “distance”. Using either asymptotic considerations (to
relate to the Fisher-information metric) or Pinsker’s inequality (to relate it
to the total-variation distance), it becomes clear that the natural way to
use the KLD in to define the (unidirectional) distance between two models
with densities f and g is d(f ||g) =

√
2KLD (f‖g). Hence, we consider d to

be a measure of complexity of the model f when compared to model g.
Principle 3: Constant rate penalisation. Penalising the deviation from the base

model parameterised with the distance d, we use a constant decay-rate r,
so that the prior satisfies the memoryless property

πd(d+ δ)

πd(d)
= rδ, d, δ ≥ 0

for some constant 0 < r < 1. This will ensure that the relative prior change
by an extra δ does not depend on d, which is a reasonable choice with-
out extra knowledge (see the discussion on tail behaviour in Section 2.4).
Deviating from the constant rate penalisation implies the assignment of dif-
ferent decay rates to different areas of the parameter space. However, this
will require a concrete understanding of the distance scale for a particular
problem, see Section 4.5. Further, the mode of the prior is at d = 0, i.e.
the base model. The constant rate penalisation assumption implies an ex-
ponential prior on the distance scale, π(d) = λ exp(−λd), for r = exp(−λ).
This corresponds to the following prior on the original space

(3.1) π(ξ) = λe−λd(ξ)
∣∣∣∣∂d(ξ)

∂ξ

∣∣∣∣ .
In some cases d is upper bounded and we use a truncated exponential as
the prior for d.

Principle 4: User-defined scaling. The final principle needed to completely define a
PC prior is that the user has an idea of a sensible size for the parameter
of interest or a property of the corresponding model component. This is
similar to the principle behind weakly informative priors. In this context,
we can select λ by controlling the prior mass in the tail. This condition is
of the form

(3.2) Prob(Q(ξ) > U) = α,

where Q(ξ) is an interpretable transformation of the flexibility parameter,
U is a “sensible”, user-defined upper bound that specifies what we think of
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as a “tail event”, and α is the weight we put on this event. This condition
allows the user to prescribe how informative the resulting PC prior is.

The PC prior procedure is invariant to reparameterisation, since the prior is
defined on the distance d, which is then transformed to the corresponding prior
for ξ. This is a major advantage of PC priors, since we can construct the prior
without taking the specific parameterisation into account.

The PC prior construction is consistent with the desiderata listed in Sec-
tion 2.5. Limited flexibility (D4), controlling the effect rather than the value
(D6), and informativeness (D1) follow from Principles 1, 2, and 4 respectively.
Lacking more detailed theory for hierarchical models, Principle 3 is consistent
with existing theory (D8). We argue that computational feasibility (D7) follows
from restricting our search to absolutely continuous priors. Building “structurally
aware” priors (D2) is discussed in Sections 5 and 7. The idea that a prior should
change in an appropriate way when the model changes is discussed in Section 5.
The desideratum that the prior is meaningful on identifiable submanifolds (D5)
is discussed in the context of spatial statistics in Fuglstad et al. (2015).

3.2 Are the tails of PC priors too light?

While the careful specification of the prior near the base model is necessary to
control against overfitting, it is also necessary to consider the tail behaviour in
order to ensure that complexity is not being penalised too harshly. Adhering to
Principle 3 leave PC priors with exponential tails on a distance scale. Contrary to
this, Gelman (2006); Gelman et al. (2008) argue that, when setting priors on the
standard deviation of a normal distribution, heavy tails are necessary for robust-
ness (O’Hagan and Pericchi, 2012). Unfortunately, this theory is only developed
for inferring location-scale families or natural parameters in exponential families
and it is unclear how to generalise these results to the types of models we are
considering. Piironen and Vehtari (2015) suggest that the heavy tails induced by
a half-Cauchy prior leads to poor numerical behaviour even in advanced MCMC
implementations like Stan and recommend using a Student-t distribution with
more than 2 degrees of freedom. Ghosh, Li and Mitra (2015) show that using pri-
ors with Cauchy-like tails on regression coefficients in logistic regression can lead
to unusually large inferred coefficients. In our experiments, we have found little
difference between half-Cauchy and exponential tails, whereas we found huge dif-
ferences between exponential and Gaussian tails, which performed badly when
the data was generated from a moderately flexible model. Hence, we did not find
compelling evidence that we needed to replace the exponential prior in Principle
3 with heavier tailed prior.

3.3 The PC prior for the precision of a Gaussian random effect

The classical notion of a random effect has proven to be a convenient way
to introduce association and unobserved heterogeneity. We will now derive the
PC prior for the precision parameter τ for a Gaussian random effect x, where
x ∼ N (0, τ−1R−1), with R � 0 known. In allowing R to be indefinite, this
derivation also includes popular intrinsic models such as CAR and thin-plate
spline models (Rue and Held, 2005). The natural base model is the absence of
random effects, which corresponds to τ = ∞. In the rank deficient case, the
natural base model is that the effect belongs to the nullspace of R, which also
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corresponds to τ =∞. This base model leads to a useful negative result.

Theorem 1. Let πτ (τ) be an absolutely continuous prior for τ > 0 where
E(τ) < ∞, then πd(0) = 0 and the prior overfits (in the sense of the practical
version of Informal Definition 1).

The proof is given in the Supplementary Material. Note that all commonly
used Γ(a, b) priors with expected value a/b <∞ will overfit. Frühwirth-Schnatter
and Wagner (2010) and Frühwirth-Schnatter and Wagner (2011) demonstrate
overfitting due to Gamma priors and suggest using a (half) Gaussian prior for
the standard deviation to overcome this problem, as suggested by Gelman (2006);
See also Roos and Held (2011) and the discussion of Lunn et al. (2009).

The PC prior for τ is, except for in the specification of λ, independent of R
and is derived in Appendix A.1 as a type-2 Gumbel distribution

(3.3) π(τ) =
θ

2
τ−3/2 exp

(
−θτ−1/2

)
, τ > 0, θ > 0.

The density is given in Eq. (3.3) and has no integer moments. This prior also
corresponds to an exponential distribution with rate θ for the standard deviation.
The parameter θ determines the magnitude of the penalty for deviating from
the base model and higher values increase this penalty. As previously, we can
determine θ by imposing a notion of scale on the random effects. This requires
the user to specify (U,α) so that Prob(1/

√
τ > U) = α. This implies that θ =

− ln(α)/U . As a rule of thumb, the marginal standard deviation of x with R = I,
after the type-2 Gumbel distribution for τ is integrated out, is about 0.31U when
α = 0.01. This means that the choice (U = 0.968, α = 0.01) gives Stdev(x) ≈ 0.3.
The interpretation of the marginal standard deviation of a random effect is more
direct and intuitive than choosing hyperparameters of a given prior.

The new prior is displayed in Figure 1 for (U = 0.968, α = 0.01), together with
the popular Γ(1, b) prior, where the shape is 1 and rate is b. We selected b so
that the marginal variance for the random effects are equal for the two priors.
Panel (a) shows the two priors on the precision scale and panel (b) shows the
two priors on the distance scale. The priors for low precisions are quite different,
and so are the tail behaviours. For large τ , the new prior behaves like τ−3/2,
whereas the Gamma prior goes like exp(−bτ). This is a direct consequence of
the importance the new prior gives to the base model, i.e. the absence of random
effects. Panel (b) demonstrates that the Gamma prior has density zero at distance
zero, and hence, does not prevent over-fitting.

We end with a cautionary note about scaling issues for these models and our
third desideratum. If R is full-rank, then it is usually scaled, or can be scaled,
so that (R−1)ii = 1 for all i, hence τ represents the marginal precision. This
leads to a simple interpretation of U . However, this is usually not the case if R is
singular like for spline and smoothing components; see Sørbye and Rue (2014) for
a discussion of this issue. Let the columns of V represent the null-space of R, so
that RV = 0. For smoothing spline models, the null-space is a low-dimensional
polynomial and R defines the penalty for deviating from the null space (Rue
and Held, 2005, Sec. 3). In order to unify the interpretation of U , we can scale
R so that the geometric mean (or some typical value) of the marginal variances
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Fig 1: Panel (a) displays the new prior (dashed) with parameters (U = 0.968, α =
0.01), and the Γ(shape = 1, rate = b) prior (solid). The value of a is computed so
that the marginal variances for the random effects are equal for the two priors,
which leads to b = 0.0076. Panel (b) shows the same two priors on the distance
scale demonstrating that the density for the Gamma prior is zero at distance
zero.

of x|V Tx = 0 is one. In this way, τ represents the precision of the (marginal)
deviation from the null space.

3.4 The effect of λ

Our fourth principle asserts that the scale of the prior should be chosen by
the user. This injects a very specific avenue of subjectivity into PC priors and it
is worth investigating how important this choice is. In our experiences working
with these priors, we have found that they are almost always insensitive to this
parameter providing that it is not set to an extremely poor value. An easy example
of this is found in Section 4.4, where a poor specification of λ leads to a very strong
prior that is in conflict with the data.

A more interesting case when the posterior is sensitive to the choice of scaling
was discussed by Guo, Rue and Riebler (2015). They considered prior specification
in bivariate meta-analysis models, where they attempt to simultaneously combine
information on sensitivity and specificity of a treatment. As meta-analyses typi-
cally only combine a small number of studies, the prior sensitivity that they found
is not particularly surprising and that PC prior framework allows for a sensible
way of constructing informative expert priors.

We conclude this discussion with a simulation study that shows that PC priors
are fairly insensitive to the choice of λ when there is at least a moderate amount of
information. In particular, we will consider the interesting problem of inferring the
degrees of freedom parameter ν in a Student-t distribution. This is a challenging
problem for medium-sized datasets, as tail properties are hard to estimate without
a lot of data.

To investigate the properties of the PC prior on ν and compare it with the
exponential prior on ν, we performed a simulation experiment using the model
yi = εi, i = 1, . . . , n, where ε is Student-t distributed with unknown d.o.f. and
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Fig 2: The 0.025-, 0.5- and 0.975-quantile estimates obtained from an equal-
weight mixture of posterior distributions of ν when fitting a Student-t errors
model with different priors for ν over 1 000 datasets, for each of the 12 scenarios
with sample sizes n = 100, 1 000, 10 000 and d.o.f. ν = 100, 20, 10, 5. The first four
intervals in each scenario correspond to exponential priors with mean 100, 20, 10,
5, respectively. The last seven intervals in each scenario correspond to the PC
prior with U = 10 and α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8.

fixed unit precision. Similar results are obtained for more involved models (Mar-
tins and Rue, 2013). We simulated data sets with n = 100, 1 000, 10 000. For the
d.o.f. we used ν = 5, 10, 20, 100, to study the effect of the priors under different
levels of the kurtosis. For each of the 12 scenarios we simulated 1 000 different
data sets, for each of which we computed the posterior distribution of ν using
one-dimensional quadrature. Then, we formed the equal-weight mixture over all
the 1 000 realisations to approximate the expected behaviour of the posterior dis-
tribution over different realisations of the data. Figure 2 shows the 0.025, 0.5 and
0.975-quantiles of this mixture of posterior distributions of ν when using the PC
prior with U = 10 and α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, and the exponential
prior, as recommended by Geweke (2006), with mean 5, 10, 20 and 100. Each row
in Figure 2 corresponds to a different d.o.f. while each column corresponds to a
different sample size n.

The full details of the simulation study, as well as more information about the
Student-t case, can be found in the Supplementary Material.

The first row in Figure 2 displays the results with ν = 100 in the simula-
tion which is close to Gaussian observations. Using the PC priors results in wide

imsart-sts ver. 2014/10/16 file: report_short.tex date: September 5, 2016



16

credible intervals in the presence of few data points, but as more data are pro-
vided the model learns about the high d.o.f.. Using an exponential prior for ν,
the posterior quantiles obtained depend strongly on the mean of the prior. This
difference seems to remain even with n = 1 000 and n = 10 000, indicating that
the prior still dominates the data. For all scenarios the intervals obtained with
the exponential prior for ν look similar, with the exception of scenarios with low
d.o.f. and high sample size, for which the information in the data is strong enough
to dominate this highly informative prior.

If we study Figure 2 column-wise and top-down, we note that the performance
of the PC priors are barely affected by the change in α. They seem to be almost
insensitive to the choice of α and perform well for all sample sizes. For the ex-
ponential priors when n = 100, we basically see no difference in inference for ν
comparing the near Gaussian scenario (ν = 100) with the strongly heavy tailed
one (ν = 5). The implication is that the results will be much more influenced by
the choice of the mean in the exponential prior than by the d.o.f. in the data.
Similarly, the exponential priors continue to be highly informative even for large
sample sizes. This informative behaviour can be seen in particular in the first row
(ν = 100).

We also inspected the coverage at a 95% level for all priors and simulation
settings. The coverage probabilities for all PC priors were very similar and always
at least 0.9, whereby they tended to be a bit too high compared to the nominal
level. For the exponential priors the results are ambiguous, either the coverage
probabilities are sensible while still being higher than the nominal level or they
are far too low, in several settings even zero.

This example sheds light on the consistency issue discussed by Hjort et al.
(2010, Ch. 1). A prior distribution represents prior belief, learnt before data is
observed, but it also fully specifies the Bayesian learning model. As more data
arrives it is expected that the learning model goes in the right direction. If it
does not, then the learning model (prior) has not been set well, even though the
prior might be appropriate as representing prior beliefs. In the Supplementary
Material, we show that priors on ν with finite mean do not respect the Occam’s
razor principle will invariably lead to bad learning models. Figure 2 illustrates
this point for the case of exponential priors.

4. SOME PROPERTIES OF PC PRIORS

In this section, we investigate some basic properties of PC priors for simple
models. In particular, we will investigate when the behaviour in the neighbour-
hood of the base model or the tail behaviour is important to obtain sensible
results. For most moderate-dimensional models, we find that the behaviour at
the base model is fundamentally important, while the tail behaviour is less im-
portant. In contrast, in very high-dimensional settings, we find that a heavier tail
than that implied by the principle of constant rate penalisation is required for
sound statistical inference.

For reasons of mathematical tractability, in this section we restrict ourselves to
a much smaller set of models than in the rest of the paper. Sections 4.1–4.3 focus
on direct observations of a single component model, while Sections 4.4–4.5 focus
on estimating the mean of a normal distribution with known variance. None of
these models fall within the family of realistically complicated models that are
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the focus of this paper. Unfortunately, there is very little theory for the types of
hierarchical models we are considering, so we are forced to consider these simpler
models in order to gain intuition for the more interesting cases.

4.1 Behaviour near the base model

To understand the PC prior construction better, we can study what happens
near ξ = 0 using the connection between KLD and the Fisher information metric.
We will assume the model is sufficiently regular at ξ = 0 to make the following
formal asymptotic arguments work. Let I(ξ) be the Fisher information at ξ. Using
the well known asymptotic expansion (Remark 1.4 Watanabe, 2009)

KLD (π(x | ξ)‖π(x | ξ = 0)) =
1

2
I(0)ξ2 + higher order terms,

a standard expansion reveals that our new prior behaves like

π(ξ) = I(ξ)1/2 exp (−λ m(ξ)) + higher order terms

for λξ close to zero. Here, m(ξ) is the distance defined by the metric tensor I(ξ),

m(ξ) =
∫ ξ
0

√
I(s)ds, using tools from information geometry. Close to the base

model, the PC prior is a tilted Jeffreys’ prior for π(x|ξ), where the amount of
tilting is determined by the distance on the Riemannian manifold to the base
model scaled by the parameter λ. The user-defined parameter λ thus determines
the degree of informativeness in the prior.

4.2 Large sample behaviour under the base model

A good check when specifying a new class of priors is to consider the asymp-
totic properties of the induced posterior. In particular, it is useful to ensure that,
for large sample sizes, we achieve frequentist coverage. While the Bernstein-von
Mises theorem ensures that, for sufficiently well-behaved models where the true
parameter lies in the centre of the parameter space, asymptotic coverage is inde-
pendent of (sensible) prior choice, the situation may be different when the true
parameter lies on the boundary of the parameter space. In most examples in this
paper, the base model defines the boundary of the parameter space and prior
choice now plays an important role (Bochkina and Green, 2014).

When the true parameter lies at the boundary of the parameter space, there
are two possible cases to be considered. In the regular case, where the derivative of
the log-likelihood at this point is asymptotically zero, Bochkina and Green (2014)
showed that the large-sample behaviour depends entirely on the behaviour of the
prior near zero. Furthermore, if the prior density is finite at the base model,
then the large sample behaviour is identical to that of the maximum likelihood
estimator (Self and Liang, 1987). Hence Principle 1 ensures that PC priors induce
the correct asymptotic behaviour. Furthermore, the invariance of our construction
implies good asymptotic behaviour for any reparameterisation.

4.3 PC priors and Bayesian hypothesis testing

PC priors are not built to be hypothesis testing priors and we do not recom-
mend their direct use as such. We will show, however, that they lead to consistent
Bayes factors and suggest an invariant, weakly informative decision theory-based
approach to the testing problem. With an eye towards invariance, in this section
we will consider the re-parameterisation ζ = d(ξ).
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In order to show the effects of using PC priors as hypothesis testing priors, let
us consider the large-sample behaviour of the precise test ζ = 0 against ζ > 0.
We can use the results of Bochkina and Green (2014) to show the following in
the regular case.

Theorem 2. Under the conditions of Bochkina and Green (2014), the Bayes
factor for the test H0 : ζ = 0 against H1 : ζ > 0, is consistent when the prior for
ζ does not overfit. That is, B01 → ∞ under H0 and B01 → 0 under H1, where
B01 denotes the Bayes factor for candidate model M0 against candidate model
M1.

Johnson and Rossell (2010) point out for regular models, that the rates at
which these Bayes factors go to their respective limits under H0 and H1 are
not symmetric. This suggests that the finite sample properties of these tests will
be suboptimal. The asymmetry can be partly alleviated using the moment and
inverse moment prior construction of Johnson and Rossell (2010), which can be
extended to this parameter invariant formulation in a straightforward way (see
Rousseau and Robert, 2011). The key idea of non-local priors is to modify the
prior density so that it is approximately zero in the neighbourhood of H0. This
forces a separation between the null and alternative hypotheses that helps balance
the asymptotic rates. Precise rates are given in the Supplementary Material.

The construction of non-local priors highlights the usual dichotomy between
Bayesian testing and Bayesian predictive modelling: in the large sample limit,
priors that lead to well-behaved Bayes factors have bad predictive properties
and vice versa. In a far-reaching paper, Bernardo (2011) suggested that this
dichotomy is the result of asking the question the wrong way. Rather than using
Bayes factors as an “objective” alternative to a proper decision analysis, Bernardo
(2011) suggests that reference priors combined with a well-constructed invariant
loss function allows for predictive priors to be used in testing problems. This also
suggests that PC priors can be used in place of reference priors to construct a
consistent, coherent and invariant hypothesis testing framework based on decision
theory.

4.4 Risk results for the normal means model

A natural question to ask when presented with a new approach for constructing
priors is are the resulting estimators any good?. In this section, we investigate this
question for the analytically tractable normal means model:

(4.1) yi|xi, σ ∼ N (xi, 1), xi|σ ∼ N (0, σ2), σ ∼ πd(σ), i = 1, . . . , p.

This model is the simplest one considered in this paper and gives us an opportu-
nity to investigate whether constant rate penalisation, which was used to argue
for an exponential prior on the distance scale, makes sense in this context. For
the precision parameter of a Gaussian random effect, the distance parameter is
the standard deviation, d = σ, which allows us to leverage our understanding of
this parameter and consider alternatives to this principle.

Let x0 ≡ (x1, . . . , xp) denote the the unknown vector of means. Then, for
an estimator δ(·), define the mean-square risk as R(x0, δ) = E

(
‖x0 − δ(y)‖2

)
,

where the expectation is taken over data y ∼ N(x0, I). The standard estimator

imsart-sts ver. 2014/10/16 file: report_short.tex date: September 5, 2016



PC PRIORS 19

δ0(y) = y is the best invariant estimator and obtains constant minimax risk
R(x0, δ0) = p. Classical results of James and Stein (1961); Stein (1981) show
that this estimator can be improved upon. We will consider the risk properties
of the Bayes’ estimators, which in this case is the posterior mean.

By noting that E(xi|y, σ) = yi(1 − E(κ|y)) for the shrinkage parameter κ =
(1 +σ2)−1, Polson and Scott (2012) derived the general form of the mean-square
risk. Using a half-Cauchy distribution on the standard deviation σ, as advocated
by Gelman (2006), the resulting density for κ has a horseshoe shape with infinite
peaks at zero and one. The estimators that come from this horseshoe prior have
good frequentist properties as the shape of the density of κ allows the component
to have any level of shrinkage. In general, the density for κ is related to πd(σ) by

πκ(κ) = πd

(√
κ−1 − 1

) 1

2
√
κ3 − κ4

.

Straightforward asymptotics shows how the limit behaviour of πd(σ) transfers
into properties of πκ(κ).

Theorem 3. If πd(σ) has tails lighter than a Student-t distribution with 2
degrees of freedom, then πκ(0) = 0. If πd(d) ≤ O(d) as d→ 0, then πκ(1) = 0.

This result suggests that the PC prior will shrink strongly, putting relatively
little prior mass near zero shrinkage, due to the relatively light tail of the expo-
nential. The scaling parameter λ controls the decay of the exponential, and the
effect of λ = − log(α)/U , with α = 0.01, on the implied priors on κ is shown in
Figure 3a for various choices of U . For moderate U , the PC prior still places a
lot of prior mass near κ = 0, in spite of the density being zero at that point. This
suggests that the effect of the light tail induced by the principle of constant penal-
isation rate, is less than Theorem 3 might suggest. For comparison, the horseshoe
curve induced by the half-Cauchy prior is shown as the dotted line in Figure 3a.
This demonstrates that PC priors with sensible scaling parameter place more
mass at intermediate shrinkage values than the half-Cauchy, which concentrates
the probability mass near κ = 0 and κ = 1. The overall interpretation of Fig-
ure 3a is that, for large enough U , the PC prior will lead to a slightly less efficient
estimator than the half-Cauchy prior, while for small signals we expect them to
behave similarly.

Figure 3a demonstrates also to which extent U controls the amount of in-
formation in the prior. The implied shrinkage prior for U = 1 (dot-dash line),
corresponds to the weakly informative statement that the effect is not larger than
3σ ≈ 0.93, has almost no prior mass on κ < 0.5. This is consistent with the in-
formation used to build the prior: if ‖x0‖ < 1, the risk of the trivial estimator
δ(y) = 0 is significantly lower than the standard estimator.

Figure 3b shows the risk using PC priors with U = 1 (solid line), U = 5
(dashed line), the half-Cauchy prior (dot-dashed line), as a function of ‖x0‖. The
mean-squared risk exceeds the minimax rate for large ‖x0‖ when U = 1 which is
consistent with the prior/data mis-match inherent in badly mis-specifying U = 1.
By increasing U to 5, we obtain almost identical results to the half-Cauchy prior,
with a slight difference only for really large ‖x0‖. Increasing U decreases the
difference.
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Fig 3: Display (a) shows the implied prior on the shrinkage parameter κ for
several different priors on the distance scale. These priors are the half-Cauchy
(dotted) and PC priors with scaling parameter λ = − log(0.01)/U for U = 1
(solid), U = 5 (dashed), and U = 20 (dot-dashed). Display (b) shows the mean
squared risk of the Bayes’ estimators for the normal means model with p = 7
corresponding to different priors on the distance parameter, against ‖x0‖. The
dash-dashed horizontal line is the risk of the näıve minimax estimator δ0(x) = x.
The solid line corresponds to the PC prior with U = 1. The dashed and dotted
lines, which are essentially overlaid, correspond respectively to the PC prior with
U = 5 and the half-Cauchy distribution.

The risk results obtained for the normal means model suggests that the PC
priors give rise to estimators with good classical risk properties, and that the
heavy tail of the half-Cauchy is less important than the finite prior density at the
base model. It also demonstrates that we can put strong information into a PC
prior, which we conjecture would be useful when the data consists of Poisson or
Binomial responses with link functions like the log and logit, as we have strong
structural prior knowledge about the plausible range for the linear predictor in
these cases (Polson and Scott, 2012, Section 5).

4.5 Sparsity priors

When solving high-dimensional problems, it is often expedient to assume that
the underlying truth is sparse, meaning that only a small number of the model
components have a non-zero effect. Good Bayesian models that can recover sparse
signals are difficult to build. Castillo and van der Vaart (2012) consider spike-and-
slab priors, that first select a subset of the components to be non-zero and then
place a continuous prior on these. These priors have been shown to have excel-
lent theoretical properties, but their practical implementation requires a difficult
stochastic search component. A more pleasant computational option builds a prior
on the scaling parameter of the individual model components. In the common case
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where the component has a normal distribution, the shrinkage properties of these
priors have received a lot of attention. Two examples of scale-mixtures of normal
distributions are the horseshoe prior (Carvalho, Polson and Scott, 2010; van der
Pas, Kleijn and van der Vaart, 2014) and the Dirichlet-Laplace prior (Pati, Pil-
lai and Dunson, 2014) which both were shown to have comparable asymptotic
behaviour to spike-and-slab priors when attempting to infer the sparse mean of
a high dimensional normal distribution. On the other hand, Castillo, Schmidt-
Hieber and van der Vaart (2014) showed that the Bayesian generalisation of the
LASSO (Park and Casella, 2008), which can be represented as a scale mixture
of normals, gives rise to a posterior that contracts much slower than the mini-
max rate. This stands in contrast to the frequentist situation, where the LASSO
obtains almost optimal rates.

For concreteness, let us consider the problem

yi ∼ π(y | β), β ∼ N (0,D), D−1ii
iid∼ π(τ),

where π(y|β) is some data-generating distribution, β is a p–dimensional vector
of covariate weights, π(τ) is the PC prior in (3.3) for the precisions {D−1ii } of the
covariate weights. Let us assume that the observed data was generated from the
above model with true parameter β0 that has only s0 non-zero entries. We will
assume that s0 = o(p). Finally, in order to ensure a priori exchangeability, we
set the scaling parameter λ in each PC prior to be the same.

This then raises the question: does an exponential prior on the standard devi-
ation, which is the PC prior in this section, make a good variable selection prior?
In this section we will show that the answer is no. The problem with the basic
PC prior for this problem is that the base model has been incorrectly specified.
The base model that a p–dimensional vector is sparse is not the same as the base
model that each of the p components is independently zero and hence the prior
encodes the wrong information. A more correct application of the principles in
Section 3.1 would lead to a PC prior that first selects the number of non-zero
components and then puts i.i.d. PC priors on each of the selected components. If
we measure complexity by the number of non-zero components, the principle of
constant rate penalisation requires an exponential prior on the number of compo-
nents, which matches with the theory of Castillo and van der Vaart (2012). Hence,
the failure of p independent PC priors to capture sparsity is not unexpected.

To conclude this section, we show the reason for the failure of independent PC
priors to capture sparsity. The problem is that the induced prior over β must
have mass on values with a few large and many small components. Theorem 4
shows that the values of λ that puts sufficient weight on approximately sparse
models does not allow these models to have any large components. Fortunately,
the principled approach allows us to fix the problem by simply replacing the
principle of constant rate penalisation with something more appropriate (and
consistent with D8). Specifically, in order for the prior to put appropriate mass
around models with the true sparsity, the prior on the standard deviation needs
to have a heavier tail than an exponential.

As π(τ) is an absolutely continuous distribution, the näıve PC prior will never
result in exactly sparse signals. This leads us to take up the framework of Pati,
Pillai and Dunson (2014), who consider the δ–support of a vector

suppδ(β) = {i : |βi| > δ},
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and define a vector β to be δ–sparse if | suppδ(β)| � p. Following Pati, Pillai and
Dunson (2014), we take δ = O(p−1). As s0 = o(p), this ensures that the non-zero
entries are small enough not to have a large effect on ‖β‖.

For fixed δ, it follows that the δ–support of β has a Binomial(p, αp) distribution,
where αp = Prob(|βi| > δp). If we had access to an oracle that told us the true
sparsity s0, it would follow that a good choice of λ would ensure αp = p−1s0.

Theorem 4. Let S = | suppp−1(β)|. If the true sparsity s0 = o(p), then the
oracle value of λ that ensures that the a priori expectation E(S) = s0 grows like

λ ∼ O
(

p
log(p)

)
.

Theorem 4 shows that λ is required to increase with p, which corresponds to a
vanishing upper bound U = O(p−1 log(p)). Hence, it is impossible for the above
PC prior to have mass on signals that are simultaneously sparse and moderately
sized.

The failure of PC priors to provide useful variable selection priors is essentially
down to the tails specified by the principle of constant rate penalisation. This
principle was designed to avoid having to interpret a change of concavity on the
distance scale for a general parameter. However, in this problem, the distance
is the standard deviation, which is a well-understood statistical quantity. Hence,
it makes sense to put a prior on the distance with a heavier tail in this case. In
particular, if we use a half-Cauchy prior in place of an exponential, we recover the
horseshoe prior on β, which has good shrinkage properties. In this case Theorem 6
in the Supplementary Material, which is a generalisation of Theorem 4, shows that
the inverse scaling parameter of the half-Cauchy must be at least O(p/ log(p)),
which corresponds up to a log factor with the optimal contraction results of van
der Pas, Kleijn and van der Vaart (2014). We note that this is the only situation
we have encountered in which the exponential tails of PC priors are problematic.

5. DISEASE MAPPING USING THE BYM MODEL

The application to disease mapping using the popular BYM-model (Besag,
York and Mollié, 1991) is particularly interesting since we are required to repa-
rameterise the model to see it as a flexible extension of two base models to which
it will shrink towards unless otherwise indicated by the data.

Mapping disease incidence is a huge field within public health and epidemi-
ology, and good introductions to the field exist (Lawson, 2006, 2013; Wakefield,
Best and Waller, 2000; Waller and Carlin, 2010). The observed counts yi in area i
with i = 1, . . . , n are commonly assumed to be conditionally independent Poisson
variables with mean Ei exp(ηi), where {Ei} are the expected number of cases. In
the BYM-model the log relative risk is given by ηi = µ+ zTi β + ui + vi where µ
is the overall intercept, β measures the effect of possibly region specific covari-
ates zi, v is a zero mean Gaussian with precision matrix τvI and represents an
unstructured random effect. In contrast, u is a spatial component saying that
nearby regions are similar. A first order intrinsic Gaussian Markov random field
model (Rue and Held, 2005, Ch. 3) was introduced by Besag, York and Mollié
(1991) as a model for u. Let G be the conditional independence graph of u,
where ∂i denotes the set of neighbours to node i and let n∂i be the corresponding
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number of neighbours. The conditional distribution of ui is

ui | u−i, τu ∼ N

 1

n∂i

∑
j∈∂i

uj , 1/ (n∂iτu)


where τu is the precision parameter; see Rue and Held (2005, Ch. 3) for details.
This model is intrinsic and penalises local deviation from its null space, which is
a constant level in the case of one connected component (Rue and Held, 2005,
Section 3). If the map has islands, the definition of the null-space is more complex,
see Hodges (2013b, Section 5.2.1). To prevent confounding with the intercept, we
impose the constraint that 1Tu = 0.

To complete the model, we need the prior specification for the intercept and
the fixed-effects β, as well as the prior for the two precision parameters τu and
τv. There are two main issues with the BYM model and the choice of priors.
The first, related to Desideratum D3, is that the spatial component is not scaled
(see Section 3.3). The marginal variance after imposing the 1Tu = 0 constraint
is not standardised, meaning that any recommended prior (like those suggested
by Bernardinelli, Clayton and Montomoli (1995)) cannot be transferred from one
graph to another, since the generalised variance depends on the graph, see Sørbye
and Rue (2014). The second issue, related to Desideratum D2, is that the struc-
tured component u cannot be seen independently from the unstructured compo-
nent v. This means that the priors for τu and τv should be (heavily) dependent,
and not independent as it is usually assumed.

To resolve these issues we assume a scaled spatially structured component u∗

where the generalised variance, computed as the geometric mean of the marginal
variances is equal to one, see Section 3.3 and Sørbye and Rue (2014); Riebler
et al. (2016). We then rewrite the log relative risk as

(5.1) ηi = µ+ zTi β +
1√
τ

(√
1− φ vi +

√
φu∗i

)
,

where 0 ≤ φ ≤ 1 is a mixing parameter. The marginal precision contribution from
u∗ and v is 1/τ , whereas the fraction of this variance explained by the spatial
term u∗ and the random effects v, are φ and 1−φ, respectively. Note that the two
hyperparameters (τ, φ) control very different parts of the prior and this naturally
allows for independent prior specification. First, we notice that the type-2 Gumbel
prior applies to the precision τ , as the natural base model is no effect from u∗

and v. For a fixed marginal precision, the base model is no spatial dependency
i.e. φ = 0. An increased value of φ will blend in spatial dependency keeping the
marginal precision constant, hence more of the variability will be explained by u∗

and the ratio is φ. The PC prior for φ is derived in Appendix A.2 and depends
on the graph G. Our notion of scale can be used to set (U,α) so that Prob(φ <
U) = α which determines the degree of penalisation. Similar re-parameterisations
have been discussed by Dean, Ugarte and Militino (2001), who did not consider
the scaling, and Wakefield (2007), who scaled the variance by the arithmetic
rather than geometric mean. The difference between these two scalings is subtle:
the arithmetic mean of the variances is a good way of finding a representative
value of the variance, whereas the geometric mean can be interpreted as finding
the variance of a consensus Gaussian distribution by logarithmically pooling the
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information each of the marginal distributions (Genest, Weerahandi and Zidek,
1984). Hence the geometric mean scaling is consistent with desideratum D6 as
it averages the “meaning” of the individual variances in the context of their
individual Gaussian distributions rather than the averaging the values. Neither
Dean, Ugarte and Militino (2001) nor Wakefield (2007) considered the differences
in the complexity of the two components when setting the prior on φ.

Riebler et al. (2016) compared the new parameterisation and its (shrinkage)
performance to alternative parameterisations in a simulation setting. Here, we
reanalyse larynx cancer mortality for men, registered in 544 districts of Germany
from 1986 to 1990 (Natario and Knorr-Held, 2003) to underline the learning
abilities. The total number of deaths due to larynx cancer was 7283, which gives
an average of 13.4 per region. An interesting part of modelling these data is the
semi-parametric estimation of the covariate effect of lung cancer mortality rates
in the same period. This covariate acts as an ecological covariate (Wakefield and
Lyons, 2010) to account for smoking consumption, which is known to be the most
important risk factor of the larynx cancer. As a smooth model for the ecological
covariate z, Natario and Knorr-Held (2003) used a second order random walk
model

(5.2) π(z | τz) ∝ (τzτ
∗
z )(m−2)/2 exp

(
−τzτ

∗
z

2

m∑
i=3

(zi − 2zi−1 + zi−2)
2

)

where m is the length of z. This spline model penalises the estimated second order
differences and its null space is spanned by 1 and (1, 2, . . . ,m). Similar to the
spatial component in the BYM model, this model component is not standardised
and τ∗z ensures that the generalised variance is one. The base model is here a
straight line which reduces to a linear effect of the ecological covariate, and the
type-2 Gumbel distribution is the resulting PC prior for τz. The log relative risk
results as ηi = µ+zi+

1√
τ

(√
1− φ vi +

√
φu∗i

)
, where zi follows the spline model

in (5.2), and whereby the ecological covariate z has been converted into the range
1, 2, . . . ,m for simplicity. See Rue and Held (2005, Ch. 3) for more details on this
spline model, and Lindgren and Rue (2008) for an extension to irregular locations.

We use a constant prior for the intercept and parameters (U = 0.2/0.31, α =
0.01) for the precision τ . For the prior for φ, we use (U = 1/2, α = 2/3) which
gives a 2/3 probability that the fraction of the marginal variance explained by
the random effect v is larger than 1/2. For the precision in the spline model we
also used (U = 0.2/0.31, α = 0.01).

Figure 4 (a) shows that the model learns from the data resulting in a posterior
concentrated around 1. This implies that only the spatial component contributes
to the marginal variance. The posterior for the precision τ (panel (b)) is more
concentrated than in earlier examples due to the relatively high average counts.
The effect of the ecological covariate (panel (c)) seems to be shrunk towards
the base model, i.e. a straight line, and is much more linear than the various
estimates by Natario and Knorr-Held (2003). We suppose that the reason lies in
over-fitting due to their choice of priors. The appropriateness of a linear effect of
the ecological covariate, is also verified in Sørbye and Rue (2011).
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Fig 4: The results for the larynx data in Germany using PC priors and the
reparameterised BYM model. Panel (a) shows the prior density for the mixing
parameter φ (dashed) and the posterior density (solid). Panel (b) shows the prior
density (dashed) and the posterior density (solid) for the precision τ . Panel (c)
shows the effect of the ecological covariate where the black solid line is the mean,
the dashed lines are the upper and lower 0.025-quantiles, and the gray solid line
is the best linear fit to the mean.

6. MULTIVARIATE PROBIT MODELS

The examples considered thus far have been essentially univariate, with higher
dimensional parameter spaces dealt with by assuming that independent priors
are sensible when parameters are controlling different parts of the model. In this
section, we will demonstrate that the PC prior methodology naturally extends
to multivariate parameters and illustrate this by means of multivariate probit
models.

Multivariate probit models have applications within sample surveys, longitu-
dinal studies, group randomised clinical trials, analysis of consumer behaviour
and panel data (Talhouk, Doucet and Murphy, 2012). They represent a natural
extension of univariate probit models, where the probability for success at the
ith subject is

Prob(yi = 1 | β) = Φ(xTi β), i = 1, . . . , n.(6.1)

Here, Φ(·) is the cumulative distribution function for the standard Gaussian dis-
tribution, xi a set of fixed covariates with regression coefficients β. The univariate
probit model can be reformulated into a latent variable formulation which both
improves the interpretation and eases computations. Let zi = xTi β+εi, and define
yi = 1 if zi ≥ 0, and yi = 0 if zi < 0. When {εi} is standard multivariate Gaussian
over all the n subjects, we obtain (6.1) after marginalising out εi. In the multivari-
ate extension we have m measurements of the ith subject, {yij : j = 1, . . . ,m}.
The latent vector for the ith subject is zi = XT

i β+εi where εi ∼ Nm(0,R), and
define yij = 1 if zij ≥ 0, and yij = 0 if zij < 0. The dependence within each sub-
ject, is encoded through the matrix R, which, in order to ensure identifiability,
is restricted to be a correlation matrix.

A Bayesian analysis of a multivariate probit model requires a prior for the
correlation matrix R. For the saturated model for R, Barnard, McCulloch and
Meng (2000) demonstrate the joint uniform prior π(R) ∝ 1 which gives highly
informative marginals centred at zero; see Talhouk, Doucet and Murphy (2012)
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for applications of this prior within multivariate probit models. The joint Jeffreys’
prior for R was used by Liu (2001), which places most prior mass close to ±1 in
high dimension. Chib and Greenberg (1998) suggest using a multivariate Gaussian
prior for R restricted to the subset where R is positive definite. Neither of these
previously applied priors for R is particular convincing.

6.1 Extending the univariate PC prior construction

The principles underlying the PC prior outlined in Section 3.1 can be extended
to the multivariate setting ξ ∈M with base model ξ = 0 ∈M. This multivariate
extension has all the features of the univariate case. As many interesting mul-
tivariate parameters spaces are not Rn, we will let M be a subset of a smooth
n-dimensional manifold. For example, when modelling covariance matrices M
will be the manifold of symmetric positive definite matrices, while the set of cor-
relation matrices is a convex subset of that space. A nice introduction to models
on manifolds can be found in Byrne and Girolami (2013), where the problem of
constructing useful MCMC schemes is also considered.

Assume that d(ξ) has a non-vanishing Jacobian. For each r ≥ 0, the level sets
θ ∈ Sr = {ξ ∈M : d(ξ) = r} are a system of disjoint embedded submanifolds of
M, which we will assume to be compact (Lee, 2003, Chapter 8). In the parlance
of differential geometry, the submanifolds Sr are the leaves of a foliation and the
decomposition M = R+ × (tr≥0Sr) gives rise to a natural coordinate system on
M. Hence the natural lifting of the PC prior concept ontoM is the prior that is
exponentially distributed in d(ξ) and uniformly distributed on the leaves Sd(ξ).

In some sense, this above definition is enough to be useful. A simple MCMC
or optimisation scheme would proceed in a “coordinate ascent” manner, moving
first in the distance direction and then along the leaf Sr. More efficient schemes,
however, may be derived from a more explicit density. To this end, we can locally
find a mapping ϕ(·) such that(d(ξ), ϕ(ξ)) = g(ξ). With this mapping, we get a
local representation for the multivariate PC prior as

(6.2) π(ξ) =
λ∣∣Sd(ξ)∣∣ exp (−λd(ξ)) |det(J(ξ))| ,

where Jij = ∂gi
∂ξj

is the Jacobian of g. While the definition of multivariate PC

priors is significantly more involved than in the univariate case, it is still useful.
In general, computational geometry can be used to evaluate (6.2) approximately
in low dimension. In the case where the level sets are simplexes or spheres, exact
expressions for the PC prior can be found. These situations occur when d(ξ) can
be expressed as

(6.3) d(ξ) = h
(
bT ξ

)
, b > 0, ξ ∈ Rn+

or

(6.4) d(ξ) = h

(
1

2
ξTHξ

)
, H > 0, ξ ∈ Rn,

for some function h(·) satisfying h(0) = 0, typically h(a) =
√

2a. The linear
case will prove useful for deriving the PC prior for general correlation matrices
in Section 6.2. The quadratic case will be fundamental to derive approximate
multivariate PC priors for hierarchical models, see Section 7.
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It is trivial to simulate from the PC prior when (6.3) or (6.4) holds. First we
sample d from the exponential distribution with rate λ. In the linear case (6.3),
sample s uniformly on an (n − 1)−simplex (by sampling z1, . . . , zn indepen-
dent from Exp(1) and set s = z/1Tz) and compute ξ = h−1(d)s/b. In the
quadratic case (6.4), sample s uniformly on an unit sphere (by sampling inde-
pendent standard Gaussians z1, . . . , zn and then set s = z/

√
zTz) and compute

ξ =
√

2h−1(d)H−1/2s. Using these direct simulation algorithms, it is a simple
change of variables exercise to derive the densities for the PC priors. In the linear
case with b = 1, the PC prior is

(6.5) π(ξ) = λ exp (−λd(ξ))× (n− 1)!

r(ξ)n−1
×
∣∣h′(r(ξ))

∣∣ , r(ξ) = h−1(d(ξ)),

in the quadratic case with H = I, the PC prior is

(6.6) π(ξ) = λ exp (−λd(ξ))
Γ
(
n
2 + 1

)
nπ

n
2 r(ξ)n−2

∣∣∣∣h′(1

2
r(ξ)2

)∣∣∣∣ , r(ξ) =
√

2h−1(d(ξ)).

The results for the general case, b > 0 and H > 0, follows directly after a linear
transformation of ξ.

6.2 A prior for general correlation matrices

Consider the model component x ∼ N (0,R) where R is a q × q correlation
matrix. The distance function to the base model, which corresponds to using the
identity matrix as correlation matrix, is given by d(R) =

√
− log(det(R)). This

distance function can be greatly simplified by considering a different parameter-
isation of the set of correlation matrices. Rapisarda, Brigo and Mercurio (2007)
show that every correlation matrix can be written as R = BBT , where B is a
lower triangular matrix with first row given by a 1 on the diagonal (first position)
and zeros in every other position and, for rows i ≥ 2, entries are given by

Bij =


cos(θij), j = 1;

cos(θij)
∏j−1
k=1 sin(θik), 2 ≤ j ≤ i− 1;∏i−1

k=1 sin(θik), j = i;

0, i+ 1 ≤ j ≤ q,

where θij ∈ [0, π]. The advantage of this parameterisation is that the distance

function is now given by d(R) =
√

2
∑q

i=2

∑i−1
j=1 γij , where γij = − log(sin(θij)) ∈

[0,∞) are the p = q(q − 1)/2 parameters. Using the γ-parameterisation, we are
in the linear case (6.3) and the PC prior is given by (6.5) with ξ = γ, h(a) =

√
2a

and n = p. The PC prior for θ follows directly after a change of variables exercise,
and is simplified by noting that the two branches of the mapping θij = θij(γij)
have the same Jacobian.

The scaling parameter λ controls the degree of compression of the parallelotope
with vertices given by the column vectors of R. For large values of λ, most of the
mass will be concentrated near parallelotopes with unit volume, while for small λ,
the volume could be significantly less than one. This parameter may be difficult
to visualise in practice, and we suggest calibrating the prior by drawing samples
from the model component and selecting a value of λ for which this component
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Fig 5: Panel (a) shows the symmetric marginal prior density for the correlation
computed from the PC prior for a 3× 3 correlation matrix with λ = 10 (solid), 5
(dashed) and 2 (dotted). Panel (b) shows the posterior marginals for the correla-
tions in the general model for the Six Cities study with λ = 0.1. The solid thick
line is for the exchangeable model. The marginal densities in the general model
are approximately identical.

behaves appropriately. Figure 5(a) shows the PC prior marginal for one of these
correlations for an exchangeable PC prior on a 3 × 3 correlation matrix, using
λ = 10, 5 and 2. Decreasing λ makes the marginal less tightened up around zero.

There is a complication when interpreting the PC prior for θ, namely that it
is not exchangeable due to the dependence of the Cholesky decomposition on the
ordering of the random effects. This can be rectified by summing over all order-
ings, however we have observed that this makes little difference in practice. While
we do not necessarily recommend summing out the permutations in practice, for
the figures in this section, we have computed the exchangeable PC prior.

6.3 The Six Cities study and exchangeable random effects

We will now illustrate the use of PC priors for R and reanalyse a subset of the
data from the Six Cities study discussed by Chib and Greenberg (1998, Sec 5.2)
using the data as tabulated in their Table 3. The Six Cities study investigates the
health effects of air pollution; refer to Chib and Greenberg (1998) for background.
The response is the wheezing status from n = 537 children in Ohio at ages 7, 8,
9 and 10 years, and the aim is to study the effect of the smoking habit of the
mother to the response. The model is

Prob(yij = 1 | β,R) = Φ (β0 + β1xi1 + β2xi2 + β3xi3) , j = 1, . . . ,m = 4,

where covariates are x1 representing age (centred at 9), x2 for smoking (1 =yes,
0 =no), and their interaction x3, respectively. Chib and Greenberg (1998) used
two models for R, the saturated or general case with m(m − 1)/2 parameters,
and the exchangeable case where all off-diagonal terms in R are the same. Our
analysis is made more comparable to Chib and Greenberg (1998) by adapting
their N4(0, 10−1I) prior for β.
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We chose the decay-rate λ by sampling from the PC prior for various values
of λ. We then estimated Prob(|ρij | > 1/2) and found the values of λ where
this probability was approximately 0.8 and 0.2. These two choices gave λ = 0.1
and 1.0. We then ran two long MCMC chains to obtain posterior samples after
disregarding the burn-in phase. The estimated posterior marginals for β2 (effect
of smoking) are shown in Figure 6(a) (solid and dashed lines). The choice of
λ seems to have only a minor effect on the posterior marginal for the effect of
smoking β2.

Since all the estimated correlations in R are somewhat similar in the general
model for R (Figure 5(b)), it is natural to investigate a simplified model with
an exchangeable correlation matrix where all correlations are the same, ρ. For
positive definiteness, we require −1/(m − 1) < ρ < 1. The fact that positive
and negative correlations are apparently very different, makes the selection of
the prior for ρ challenging. Due to the invariance property of the PC priors, this
asymmetry is automatically accounted for and the potential problem goes away.
We can easily compute the PC prior for ρ for any fixed base value ρ0. For ρ0 = 0,
which is the same base model as the correlation matrix PC prior, the distance
function to the base model is

d(ρ) =
√
− log ((1 + (m− 1)ρ)(1− ρ)m−1)

and the prior follows directly after noting that in this case we must also allow for
ξ < 0. The PC prior is shown in Figure 6(b) for λ = 0.1 (solid) and 1.0 (dashed).
The PC prior automatically adjusts the prior density for ρ < 0 and ρ > 0 due to
the constraint ρ > −1/(m− 1).

A second potential issue is the following: as we are changing the model forR, we
should, in order to get comparable results, use a comparable prior. By reusing the
values λ = 0.1 and 1.0 from the general case, we define the prior for ρ to penalise
the distance from the base model the same way in both parameterisations of R.
In this sense, the prior is the same for both models. We can then conclude that
the reduced variability of about 10% for β2 as shown in Figure 6(a) for λ = 0.1
(dotted) and λ = 1.0 (dashed-dotted), is due to the more restrictive exchangeable
model for R and not an unwanted effect from the prior distributions for R.

The results obtained with the PC priors are in this example in overall agree-
ment with those reported in Chib and Greenberg (1998).

7. DISTRIBUTING THE VARIANCE: HIERARCHICAL MODELS, AND
ALTERNATIVE DISTANCES

For complex models, it is unlikely that practitioners will be able to provide
information about the relative effect of each component in an hierarchical model.
Hence, we can no longer build informative independent priors on each component
but need to consider the global model structure. Looking back to the example in
Section 5, we were not able to control jointly the variance contribution from the
spline and the combined spatial/random effect term. It could be argued that in
these simple situations, this is less of a problem as priors could easily be tuned to
account for this effect and this strategy is well within current statistical practice.
In this section we argue and demonstrate that it is possible to control overall vari-
ance automatically using the PC prior framework. This requires, in concordance
with Desideratum D2, that the priors on the individual scaling parameters for
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Fig 6: Panel (a) shows the estimated posterior marginal for β2 (the effect of
smoking) for both the general model for R (λ = 0.1 (solid) and λ = 1.0 (dashed))
and the exchangeable model (λ = 0.1 (dotted) and λ = 1.0 (dashed-dotted)).
Panel (b) shows the PC prior for the exchangeable case with base-model ρ = 0,
for λ = 0.1 (solid) and 1.0 (dashed).

each component change as the global model changes. We will demonstrate this by
considering a logistic regression model with several linear and non-linear effects,
and show how we can take the global structure into account to control the overall
variance of the linear predictor, and controlling how each term contributes to it.
To achieve this, we will use a multivariate PC prior on the fractions of how much
each component contributes to the variance of the linear predictor.

The broader message of this section is that the PC prior framework can be
used to build priors that respect the global graphical structure of the underlying
model. Additionally, it is possible to build these priors automatically for new
models and data-sets (which can be integrated into software like R-INLA or Stan).
The priors depend on the graphical structure and the model design (or covariate
values), but do not, of course, depend on the observations. Following this path
into the future, we happily give up global invariance of reparameterisation, as we
are adding another source of information to our prior construction. Additional to
knowledge of the base model and the strength of the penalisation, we also require
expert information about the structure of the model. As with the previous two
information sources, this is not particularly onerous to elicit.

Our practical approach to handle multivariate PC priors in this setting is
to use a Taylor expansion around the base model, and approximate it using a
first or second order expansion. When the base model is an interior point in the
parameter space, then the second order approximation Eq. (6.4) gives the PC
prior in Eq. (6.6), while the linear approximation Eq. (6.3) is appropriate if the
base model is at the border of the parameter space leading to the PC prior in
Eq. (6.5). For the quadratic approximation, it is well known that

(7.1) KLD =
1

2
(ξ − ξ0)T I(ξ0)(ξ − ξ0) + higher order terms

where ξ0 is the base model and I(ξ0) is the Fisher information at the base model.
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This approximation has resemblance to the generalisation by Kass and Wasser-
man (1995, Sec. 3) of early ideas by Jeffreys (1961) for the purpose of hypoth-
esis testing in the the multivariate case. Eq. (7.1) in not unsound as measure
of complexity by itself, and adopting this as our second principle for practi-
cal/computational reasons, then Eq. (6.6) will be the corresponding PC prior,
but will not longer be invariant for reparameterisation. Hence, care needs to be
taken in order to choose a parameterisation for the second order expansion to be
sensible. This parameterisation is typically motivated by a variance-stabilising
transformation.

To fix ideas, we will discuss a dataset from Hastie and Tibshirani (1987) about
a retrospective sample of males in a heart-disease high-risk region of the Western
Cape, South Africa. These data are available as heart in the R-package catdata,
and we will use the model suggested by Wood and Kohn (1998, Sec. 6.4) changing
the link to logit. A total of 462 subjects are classified of have had (yi = 1) a heart
attack or not (yi = 0), and the measured risk factors are age at onset (Age),
systolic blood pressure (BP) and low density lipoprotein cholesterol (CR). We
use standardised covariates in this analysis. The linear predictor is

η = µ1 + τ−1/2 × g (Age,BP,CR)

where g(·) is some smooth function of the covariates. At this top-level, we can
use the structural information provided by the model to elicit the amount of
variability we expect from covariates. This information can be incorporated in the
prior for the precision parameter τ . We assume here that the effect of covariates
g(·) have zero mean and “unit variance”. We use the phrase “unit variance” for
βxx to describe a standardised covariate x and a covariate weight βx with unit
variance. The predicted probabilities from the regression model might mostly be
in the range [0.05, 0.95] leading to an interval [−2.94, 2.94] on the linear predictor
scale. We take the marginal standard deviation of the effect of the covariates to
be 2.94/1.96, which gives parameters U = 4.84 and α = 1% in the PC prior for
the precision in a Gaussian random effect (3.3). This prior will shrink the effect
of the covariates towards the intercept, which is the first base model.

At the next level in the model, we use an additive model for the covariates and
distribute the unit variance among the covariates,

g(Age,BP,CR) =
√
w1g1(Age) +

√
w2g2(BP) +

√
w3g3(CR)

where the weights live on a 2-simplex, i.e. w1 + w2 + w3 = 1 and wi ≥ 0, and
{gi(·)} are smooth functions (with unit variance). The variance contribution from
covariate Age, say, is then w1. Without additional knowledge, it is reasonable to
treat them equally, meaning that the base model for the weights is w1 = w2 =
w3 = 1/3. This reflects an a priori assumption of (conditional) exchangeability
between these model components.

Further one level down, we continue to distribute the variance, but now for each
gi(·) function and between a linear and (purely) non-linear effect. For covariate
Age, this becomes

g1(Age) =
√

1− φ1β1Age +
√
φ1f1(Age), φ1 ≥ 0.

Here, both β1 and f1(·) have unit variance, and f1(·) is a smooth (purely) non-
linear function. The natural base model is φ1 = 0 meaning that the variance
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Fig 7: Panel (a) displays the recursive structure of how the additive effect of the
covariates are built up, to control the variance contributed from each of the model
terms to the linear predictor. Panel (b) shows the histogram of w1 from a typical
joint PC prior for w using λ = 0.3.

in g1(Age) is only explained by the linear effect, as we do not want to involve
deviations from the linear effect without support from data.

Figure 7 (a) displays the graphical structure of the recursive decomposition of
the variance of g(Age,BP,CR). By following the path from the top node to the
relevant node we can determine the fraction of the variance explained by that
node. For example, the relative contribution to the variance from the linear effect
of covariate Age, is w1(1−φ1), and the relative contribution to the variance from
g3(CR) is w3.

In order to proceed with the analysis and computation of the PC prior, we need
to make some specific choices for the linear effects {βi} and the (purely) non-linear
effects {fi(·)}. For βi we use independent zero mean Gaussians with unit variance,
and for the non-linear effect, we use the second order random walk (5.2) which
corresponds to the integrated Wiener process used by Wood and Kohn (1998);
see Lindgren and Rue (2008). Figure 7 (b) displays the histogram of samples for
the first weight component w1 sampled from a typical PC prior for the weights
w using λ = 0.3. The histogram is centred at the base model w1 = 1/3, but still
supports weights close to 0 meaning that the covariate Age does not contribute
to the linear predictor, and close to 1 meaning that only Age contributes to the
linear predictor.

The PC prior in this example is computed as follows. The priors for φ follows
the computations described in Appendix A.2. The joint prior for w, depends
on the values for φ (but not too much in this example), and therefore has to be
recomputed when there is any change in φ. We use here (6.6) as an approximation
to the multivariate PC prior which only requires a numerical estimate of the
Hessian matrix at the base model. More details are available in Appendix A.3.
The results were obtained using R-INLA. The covariate estimates (given in the
Supplementary Material) are comparable to those in Wood and Kohn (1998)
obtained using MCMC based on independent diffuse and flat priors.
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8. DISCUSSION

Priors are the Bayesian’s greatest tool, but they are also the greatest point for
criticism: the arbitrariness of prior selection procedures and the lack of realistic
sensitivity analysis (which is addressed in Roos and Held (2011) and Roos et al.
(2014)) are serious arguments that current Bayesian practice need to be signifi-
cantly improved. In this paper, we have provided a principled, widely applicable
method for specifying priors on parameters that are difficult to directly elicit from
expert knowledge. These PC priors can be vague, weakly informative, or strongly
informative depending on the way the user tunes an intuitive scaling parameter.
The key feature of these priors is that they explicitly lay out the assumptions
underlying them and, as such, these assumptions and principles can be directly
critiqued and accordingly modified.

PC priors are defined on individual components. This distinguishes PC priors,
from reference priors, in which the priors depend on the global model struc-
ture. This global dependence is required to ensure a proper posterior. However,
the modern applied Bayesian is far more likely to approach their modelling us-
ing a component-wise and often additive approach. The directed acyclic graph–
approach pioneered by the WinBUGS inference engine, is now a standard tool
for specification of general Bayesian models. The additive approach pioneered
by Hastie and Tibshirani (1990) is now a standard approach within generalised
regression based models. Hence, the ability to specify priors in a component-wise
manner is a useful feature. It is worth noting that none of the examples in this
paper have known reference priors. We believe that PC priors are a valuable ad-
dition to the literature on prior choice. They are not designed as, and should not
be interpreted as, a replacement for reference priors, but rather a method to solve
a different set of problems.

This is not the whole story of PC priors. We still have to work them out on
a case by case basis, construct better guidance for choosing the scaling using
knowledge of the global model (like the link-function and the likelihood family),
and make them the default choice in packages like R-INLA. We aware that this
is an ambitious goal. First, R-INLA is a rather general purpose software which
allows the user to specify arbitrary models given that they fit into the modelling
language. The example of how the definition of the PC prior changes under a
sparsity assumption illustrates this challenge. Second, not all cases are straight
forward to work out. The over-dispersion parameter in the negative binomial
distribution, considered as an extension of the Poisson distribution, can not be
separated from the mean in the commonly known parameterisation. Hence, we
cannot compute the PC prior without knowing a typical value for the mean.
Re-thinking the negative binomial model and using a different parameterisation,
such as one using the parameters mean and variance-to-mean-ratio, may however
help here. We also need to get more experience deriving joint priors for two or
more parameters, such as a joint prior for the skewness and kurtosis deviation
from a Gaussian (Jones, 2009). We also have not considered PC priors on discrete
parameters. To do this, we need to find a sensible, computationally tractable no-
tion of distance for these problems. In this paper, we have focused on generic
specification, however Fuglstad et al. (2015) show that, in the case of hyperpa-
rameters for Gaussian random fields, if the distance knows about the structure
of the model component, the resulting priors perform very well. Hence, there is
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more work to be done on tailoring distance measures to specific problem classes.
Several of the examples in this paper have used the notion that model com-

ponents can be regarded as a flexible extension of a base model. This idea has
natural links to Bayesian non-parametrics. In particular, we consider many of
the examples, such as the logistic GAM model in Section 7, as a non-parametric
model that has been firmly rooted in a simpler parametric model. We believe
that this decomposition of the model into favoured parametric and extra non-
parametric components improves the interpretability of these models in many
applications. This is related to the ideas of Kennedy and O’Hagan (2001), where
the nonparametric component can be used to “calibrate” the covariate effect. An
alternative interpretation of this decomposition is that the nonparametric part
adds “robustness” to the linear model and the flexibility parameter gives an in-
dication of how far from the simple, interpretable, base model the data requires
you to depart.

There is a great deal of scope for further theoretical work on this problem.
Firstly, it would be useful to understand better the effect of the prior tail on the
inference. The results in this paper suggest that an exponential tail is sufficiently
heavy in low-dimensional problems, and the heavy tailed half-Cauchy distribution
only gives different results in the high dimensional sparse setting. However, it’s
not clear that this is truly a problem with the tail, as an examination of the
base model suggests that it is not shrinking towards sparse models. Hence the
question is “are heavy tails necessary in high dimensions, or are they just more
forgiving of our poor prior specification?”. Staying in the realm of sparse models,
it would be interesting to see if the models in Section 7 could be extended to high
dimensional sparse models. It may be possible to take inspiration in this case from
the Dirichlet–Laplace construction of Bhattacharya et al. (2012). More generally,
there are open questions relating to the large sample properties of hierarchical
models with PC priors, hypothesis testing for flexible models, Stein-type risk
properties for PC priors, and robustness against mis-specification.

The current practice of prior specification is not in a good shape. While there
has been a strong growth of Bayesian analysis in science, the research field of
“practical prior specification” has been left behind. There are few widely ap-
plicable guidelines for how this could or should be done in practice. We hope
that with this new principled approach to prior construction, we can reduce the
number of “cut and paste” prior choices from other similar research articles, and
instead use the derived tools in this paper to specify weakly informative or in-
formative priors with a well defined shrinkage. As always, if the user knows of
a better prior for their case, then they should use it. However, having a better
default proposal for how to construct priors is a significant advantage. The PC
prior framework was constructed because of our work with scientists on applied
problems and came out of a desire to derive and explain the prior information
that we were putting into hierarchical models. As such, we believe that these
priors are “fit for purpose” as tool for real-world applied statistics.

These new PC prior have made a difference to how we do and see Bayesian
analysis. We feel much more confident that the priors we are using do not force
over-fitting, and the notion of scale, which determines the magnitude of the ef-
fects, really simplifies the interpretation of the results. The fact that the prior
specification reduces to a notion of scale, makes them very easy to interpret and
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communicate. We feel that PC priors lay out a new route forward towards more
sound Bayesian analysis. Jimmie Savage (Lindley, 1983) suggested that we “build
our models as big as elephants”, while J. Bertrand (Le Cam, 1990) told us to “give
[him] four parameters and [he] shall describe an elephant; with five, it will wave
its trunk”. The modern practice of Bayesian statistics can be seen as a battle
between these two elephants, and with PC priors we hope to make it a fair fight.
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APPENDIX A: DERIVATION OF PC PRIORS

A.1 The PC prior for the precision in a multivariate Normal distribution

Let N (p)(µ,Σ) denote a multivariate normal distribution with dimension p.

The Kullback-Leibler divergence from N (p)
1 (µ1,Σ1) to N (p)

0 (µ0,Σ0) is
(A.1)

KLD
(
N (p)

1 ‖N
(p)
0

)
=

1

2

{
tr
(
Σ−10 Σ1

)
+ (µ0 − µ1)

TΣ−10 (µ0 − µ1)− p− ln

(
|Σ1|
|Σ0|

)}
.

In our setting, N (p)
1 denotes the flexible model and N (p)

0 the base model.
To derive the PC prior for τ where Σ1 = R/τ , R is a fixed matrix and Σ0 = 0,

we will study the limiting behaviour when Σ0 = R/τ0 for a high fixed value of
τ0. In the end we will look at the limit τ0 → ∞. For simplicity, assume R has

full rank. We then get KLD = p
2
τ0
τ

(
1 + τ

τ0
ln
(
τ
τ0

)
− τ

τ0

)
−→ p

2
τ0
τ , when τ � τ0,

and hence d(τ) =
√
pτ0/τ . We assign an exponential prior with rate λ to d and

derive the prior for τ using the ordinary change of variable transformation where
we set θ = λ

√
pτ0. This leads to the type-2 Gumbel distribution with parameter

θ, see Equation (3.3).

A.2 The PC prior for the mixing parameter in the BYM-model

We will now derive the PC prior for the mixing parameter φ in the new param-
eterisation for the BYM model. Let u be a n-dimensional standardised Gaussian
model with zero mean and precision matrix R > 0, v be an independent zero
mean random effects with unit variance N (0, I), and where the mixing param-
eter φ satisfies 0 ≤ φ ≤ 1. The more flexible model is

√
1− φ v +

√
φ u, and

the base model is v (i.e. the model flexible model when φ = 0). Let Σ0 = I and
Σ1(φ) = (1− φ)I + φR−1, then

2 KLD(φ) = tr(Σ1(φ))− n− ln |Σ1(φ)|

= nφ

(
1

n
tr(R−1)− 1

)
− ln |(1− φ)I + φR−1|

and d(φ) =
√

2KLD(φ). The interesting case is when R is sparse, for which
tr(R−1) is quick to compute (Erisman and Tinney, 1975; Rue and Martino, 2007).
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For the determinant term, we can massage the expression to facilitate the speedup
of computing with sparse matrices. Using the matrix identity (I + A−1)−1 =
A(A + I)−1, we get |(1 − φ)I + φR−1| = |φ−1R|−1|1−φφ R+ I|. An alternative
approach, is to compute the eigenvalues {γi} of R, which we need to do only
once. Let γ̃i = 1/γi, and we get |(1− φ)I + φR−1| =

∏n
i=1 (1− φ+ φγ̃i).

In the case where R is singular we introduce linear constraint(s) to ensure
that any realisation of u is in its null-space. It is now easier to use the latter
computational strategy, but redefine γ̃i as 1/γi if γi > 0 and γ̃i = 0 if γi = 0.

The PC prior for the mixing parameter in the hierarchical models in Sec-
tion 7 generalise the BYM-model as the base model is more general. Let Σ1(φ) =
(1 − φ)S1 + φS2, and where the base model is Σ0 = Σ1(1/2). The costly task
is to compute det(Σ1(φ)) for a sequence of φ’s. Using the Matrix determinant
lemma: det(A+UV T ) = det(I + V TA−1U) det(A) for compatible matrices A
(invertible), V and U , we can reduce the computational cost to essential one
evaluation of det(Σ1(φ)).

A.3 The PC prior for the variance weights in additive models

The joint PC prior of the weights w in Section 7 is computed as follows.
Let η∗ be the standardised linear predictor and xi the i’th vector of stan-
dardised covariates, then the model considered in Section 7 can be written as
η∗ =

∑
i

√
wi
(√

1− φiβixi +
√
φiAif i

)
, where Ai is a sparse matrix extracting

the required elements (or linear combinations thereof) of the Gaussian vector f i
representing the scaled second order random walk model. The covariance for the
linear predictor is then Cov(η∗) =

∑
iwi

(
(1− φi)xixTi + φiAiCov(f i)A

T
i

)
. In

order to improve the second order approximation Eq. (6.6), we reparameterise
the weights following the ideas in compositional data analysis (Aitchison, 2003),
using new parameters w̃i = log(wi/wn), for i = 1, . . . , n − 1 for n components.
This makes Cov(η∗) a function of w̃ with base model at w̃ = 0. The KLD can
then be computed from Eq. (A.1), and the PC prior follows from a numerical
approximation to the Hessian matrix of the KLD and Eq. (6.6).

APPENDIX B: SUPPLEMENTARY MATERIAL

The supplementary material contains the proofs of all theorems contained in
the paper. It also contains a detailed description of the Student-t simulation
study used in Section 3.4. The R-code for analysing all examples and generating
the corresponding figures in this report, is available at
www.r-inla.org/examples/case-studies/
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Bayarri, M. J. and Garćıa Donato, G. (2008). Generalization of Jeffreys divergence-based
priors for Bayesian hypothesis testing. Journal of the Royal Statistical Society, Series B 70
981–1003.

Berger, J. O. (2006). The Case for Objective Bayesian Analysis (with discussion). Bayesian
Analysis 1 385–402.

Berger, J. O., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference priors.
The Annals of Statistics 37 905–938.

imsart-sts ver. 2014/10/16 file: report_short.tex date: September 5, 2016



PC PRIORS 37

Berger, J. O., Bernardo, J. M. and Sun, D. (2015). Overall objective priors. Bayesian
Analysis 10 189–221.

Bernardinelli, L., Clayton, D. and Montomoli, C. (1995). Bayesian estimates of disease
maps: How important are priors? Statistics in Medicine 14 2411–2431.

Bernardo, J. M. (1979). Reference Posterior Distributions for Bayesian Inference. Journal of
the Royal Statistical Society, Series B 41 113–147.

Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing. In
Bayesian Statistics 9 1–68. Oxford University Press.
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