
Parameter Estimation for Breakage and
Coalescence Kernels in a Population
Balance Framework

Sindre Bakke Øyen

Chemical Engineering and Biotechnology

Supervisor: Brian Arthur Grimes, IKP

Department of Chemical Engineering

Submission date: June 2018

Norwegian University of Science and Technology

Summary

In this work, a zero-dimensional model in the population balance framework has been
developed for an oil-in-water emulsion in a batch continuously stirred tank reactor in or-
der to calibrate four parameters to experimental data: two parameters for breakage and
two parameters for coalescence. Three different regression approaches were employed:
sum of squared errors for the distributions (dSSE), weighted sum of squared errors for
the distributions (wdSSE) and sum of squared errors for the statistical mean (mSSE). The
non-linear regressions required good initial guesses, and therefore an appropriate param-
eter space was charted in two directions, keeping the breakage parameters constant. The
residual three-dimensional surface for the dSSE had a long, twisting valley with a clear
minimum. However, it also had large areas of flat gradients. Given a sufficiently good ini-
tial guess, gradient-based optimizers should therefore be applicable to the problem. The
same applied for the wdSSE, however, the valley was narrower and shallower. The mSSE
had multiple local minima, but the same valley was also observed here.

The previous findings for fixed breakage parameters were promising, and consequently,
the parameter search was augmented to four directions, resulting in a disproportional in-
crease in computational complexity. A coarse grid with lower resolution was therefore
used for an initial charting. Thereafter, the areas of flat gradients were cut out, and the sur-
faces were refined with a higher grid point density. The best solutions found for both the
coarse and the refined grid were then provided as initial guesses to a Levenberg-Marquardt
optimization routine from the GNU Scientific Library. A sensitivity analysis was per-
formed on the optimal parameter combination found for the coarse grid by perturbing the
initial guess. It was discovered that the optimal solutions found were also perturbed from
the nominal case. The findings were ambiguous and inconclusive. For future work, the
internal parameters of the routine should be adjusted in order to ensure desirable conver-
gence properties, and to ensure that the global minimum is found given that a point of
descension is provided.

Since measurement devices are expensive, it was also desirable to find a minimum
number of measurements required to obtain the same optimal parameter combination. The
best solutions found for both the coarse grid and the refined grid were subject to the ex-
periment, and for the dSSE, both initial guesses needed about 30 measurements of the
distribution in time for all parameters but one to stabilize. The objective function value
per degree of freedom for the wdSSE stabilized at 20 measurements in time for both ini-
tial guesses, however, it produced oscillatory behaviors for three parameters for the coarse
initial guess and two parameters for the refined initial guess. If the internal parameters of
the optimization routine is to be optimized in order to ensure consistent convergence, this
experiment should also be repeated to investigate whether the oscillations are connected
to the objective function formulation or internally to the optimization routine employed.

Finally, the optimal parameter combination found for all three regression approaches
were checked for validity by comparing their dynamical behaviors, their steady state lo-
cations and their temporal evolutions of the mean to the experimental measurements. It

i

was found that the dSSE and the wdSSE had very similar behaviors, and since the wdSSE
was inferior in every other way discovered, its future use is discouraged. The dynamical
behavior of the two was quicker than the experimental observations. At first, the distribu-
tion widened, pushing the peak of the distribution down, before it narrowed and pushed
the peak up again. The findings contradict the experimental data. Since the model failed
to account for the production of the long tail for small droplets, the distribution could not
widen at the end to push the peak down again. Therefore the modeled dynamical behavior
could not represent the observations properly. The modeled distribution reached steady
state somewhat early, but the agreement with the experimental steady state was satisfac-
tory, and both the mode of the distribution and the pronounced gradient at the end due
to coalescence were approximately correct. The mSSE, on the other hand, narrowed and
kept rising until it reached steady state. For the same reasoning as before, the distribution
could not widen again by producing small droplets, and therefore it failed to settle down
at the correct peak value. The dynamical behavior was too fast, and the steady state lo-
cation was unsatisfactory. The tracking of the mean was slightly better for this regression
approach, but not good enough to outweigh its discrepancies with respect to the dynamical
and steady state behavior. Allover, the dSSE performed better than the other two, making
it the best regression approach of the three employed.

ii

Sammendrag

I denne oppgaven ble en null-dimensjonal modell utviklet i populasjonsbalanserammever-
ket for en olje-i-vann-emulsjon i en batch kontinuerlig røretankreaktor for å kalibrere fire
parametre til eksperimentelle data: to parametre for bobleoppbrytning og to parametre for
koalesens. Tre forskjellige fremgangsmåter for regresjon ble benyttet: minste kvadraters
metode, vektet minste kvadraters metode og minste kvadraters metode på gjennomsnittet.
Den ikke-lineære regresjonen trengte gode initiale gjett, og et passende parameterrom ble
derfor kartlagt for fastsatte oppbrytningsparametre. Den tre-dimensjonale overflaten for
minste kvadraters metode hadde en lang, svingende dal med et tydelig minimum i bunnen.
Det var imidlertid også store områder med flate gradienter som kunne være vanskelig å
navigere. Gitt et godt gjett bør fortsatt gradient-baserte algoritmer klare å finne veien til
minimumet. Det samme gjaldt for vektet minste kvadraters metode, men her var dalen
smalere og grunnere. Minste kvadraters metode på gjennomsnittet hadde flere lokale min-
ima, men dalen ble også observert her.

De tidligere funnene for fastsatte oppbrytningsparametre så lovende ut, og derfor ble
parametersøket utvidet til fire retninger, noe som resulterte i en disproporsjonal økning
i beregningskompleksitet. Et grovt nett med lavere oppløsning enn tidligere ble derfor
benyttet for en initiell kartlegging. Deretter ble områder med flat gradient kappet vekk, og
overflatene av interesse ble raffinert med høyere nettpunkttetthet. De beste løsningene fun-
net både for det grove og det raffinerte nettet ble brukt som initiale gjett til en Levenberg-
Marquardt-optimialiseringsrutine i GNU Scientific Library. Den optimale parameterkom-
binasjonen funnet for det grove nettet ble deretter testet for sensitivitet ved å forskyve det
initiale gjettet. Det ble oppdaget at den optimale løsningen også ble forskjøvet av dette.
Funnene var tvetydige og mangelfulle. For fremtidig arbeid anbefales det at de interne
parametrene i den benyttede rutinen justeres for å sikre ønskede konvergensegenskaper,
og for å sikre at det globale minimumet blir funnet gitt at rutinen forsynes med et nedsti-
gende initielt punkt.

Siden måleapparater er kostbare, var det ønskelig å finne et minimum antall målinger
nødvendig for å få samme optimale parameterkombinasjon. De beste løsningene funnet
både for det grove nettet og det raffinerte nettet gjennomgikk eksperimentet, og for begge
de initiale gjettene trengte minste kvadraters metode ca. 30 målinger av fordelingen i tid
for at alle bortsett fra én parameter stabiliserte. Målfunksjonsverdien for vektet minste
kvadraters metode stabiliserte på 20 målinger i tid for både det grove og det raffinerte ini-
tiale gjettet, men denne regresjonsmetoden skapte oscillerende oppførsel for tre parametre
for det grove nettets initiale gjett og to parametre for det raffinerte nettets initiale gjett.
Hvis de interne parametrene i den benyttede rutinen optimaliseres for konsistent konver-
gens bør dette eksperimentet gjentas for å etterforske om den oscillerende oppførselen er
knyttet til målfunksjonsformuleringen eller internt til den benyttede optimaliseringsruti-
nen.

Til sist ble gyldigheten til de optimale parameterkombinasjonene testet for alle re-
gresjonsstrategier ved å sammenlikne den dynamiske oppførselen, steady state posisjonen

iii

og tidsutviklingen til gjennomsnittet med eksperimentelle målinger. Det ble oppdaget at
minste kvadraters metode og vektet minste kvadraters metode hadde veldig lik oppførsel,
og siden vektet minste kvadraters metode var underlegen på alle andre måter er dens frem-
tidige bruk frarådet. Den dynamiske utviklingen til de to regresjonsstrategiene var raskere
enn de eksperimentelle observasjonene. Først ble fordelingen bredere, noe som presset
toppen ned, deretter ble fordelingen smalere, noe som presset toppen opp igjen. Dette er
motsatt av hva som ble observert eksperimentelt. Siden modellen ikke tok hensyn til pro-
duksjonen av den lange halen for små dråpestørrelser kunne ikke fordelingen bli bredere
i slutten for å dytte toppen ned igjen. Derfor kunne ikke den modellerte dynamikken re-
produsere observasjonene korrekt. Den modellerte fordelingen når steady state noe tidlig,
men det er god korrespondanse mellom modellert steady state og målt steady state, og
både typetallet og den sterke kanten på høyre side på grunn av koalesens ble reprodusert
rett. Minste kvadraters metode av gjennomsnittet, på den annen side, ble smalere i starten
og fortsatte å stige helt til den nådde steady state. Ved samme argumentasjon som tidligere
klarte ikke fordelingen å bli bredere ved å produsere små dråper, slik at toppen gikk ned
igjen. Den dynamiske utviklingen var for rask og steady state posisjonen var ikke til-
fredsstillende. Sporingen av gjennomsnittet, derimot, var litt bedre for denne regresjon-
sstrategien enn for de to andre, men ikke så mye bedre at den oppveier den manglende
overensstemmelsen til den dynamiske og steady state oppførselen. Alt i alt var minste
kvadraters metode den regresjonsstrategien som presterte best av de tre, noe som gjør den
til den foretrukne regresjonsstragien.

iv

Preface

This thesis is submitted as part of a Master’s degree in collaboration with the Department
of Chemical Engineering, NTNU, and SUBPRO - Subsea Production and Processing. The
work is a continuation from the specialization project during the fall of 2017, a project that
was funded by SUBPRO. The thesis contains work on experimental data calibration and
parameter estimation on the zero-dimensional population balance equation developed for
an oil-in-water emulsion in a batch continuously stirred tank reactor.

The author would like to express his gratitude to Associate Professor Brian Arthur
Grimes for his exceptional assistance and patience along the way. He has been very helpful
throughout the last year. The author would also like to thank Seok Ki Moon and Marcin
Dudek for providing the author with experimental data. Last, but not least the author is
grateful to SUBPRO for their financial support covering his attendance at the Population
Balance Modeling Conference in Ghent, Belgium, May 2018.

Special thanks to Brian, Dag and Anja for proof-reading the thesis and being helpful
throughout the process. Your comments, feedback and support are appreciated.

Trondheim, June 2018 Sindre Bakke Øyen

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Table of Contents vii

List of Tables ix

List of Figures xi

List of Program Code xv

Abbreviations xvii

List of Latin Symbols xix

List of Greek Symbols xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 3

2 Mathematical Prerequisites 5
2.1 Finite Differences and Simple Integration 6
2.2 Weighted Residual Methods: Orthogonal Collocation 11
2.3 Other Frequently Used Methods . 18

2.3.1 Finding the Function . 18
2.3.2 The Methods of Moments . 19

vii

3 Population Balance Modeling 21
3.1 Closure Equations . 23
3.2 The Population Balance Equation for a Batch CSTR 25
3.3 Numerical Procedure . 31
3.4 Experimental Details and Measurements 34
3.5 Regression Approaches . 36

4 Results and Discussion 39
4.1 Charting the Parameter Space . 40
4.2 Augmenting the Search Space . 46
4.3 Parameter Estimation . 50

5 Conclusion 59
5.1 Further Work . 60

Bibliography 63

Appendix i

A Auxiliary Figures i
A.1 Charting Coalescence Experiment . i
A.2 Augmented Parameter Search, Coarse iii

A.2.1 Varying kb,1 and kb,2 . iii
A.2.2 Varying kb,1 and kc,1 . v
A.2.3 Varying kb,1 and kc,2 . vii
A.2.4 Varying kb,2 and kc,1 . ix
A.2.5 Varying kb,2 and kc,2 . xi
A.2.6 Varying kc,1 and kc,2 . xiii

A.3 Augmented Parameter Search, Refined xv
A.3.1 Varying kb,1 and kb,2 . xv
A.3.2 Varying kb,1 and kc,1 . xvii
A.3.3 Varying kb,1 and kc,2 . xix
A.3.4 Varying kb,2 and kc,1 . xxi
A.3.5 Varying kb,2 and kc,2 . xxiii
A.3.6 Varying kc,1 and kc,2 . xxv

B C++ Program xxvii
B.1 Source Files . xxix
B.2 Header Files . xcvii

C MATLAB Program cix
C.1 MATLAB Source Files . cix

viii

List of Tables

3.1 Fluid data for the emulsion considered 25
3.2 Physical data for the experiment measuring droplet volume density distri-

butions . 36

4.1 Optima for constant breakage parameters 44
4.2 Augmented parameter space, coarse . 47
4.3 Optimality table, coarse grid . 47
4.4 Augmented parameter space, refined . 48
4.5 Optimality table, refined grid . 48
4.6 Optimality table from parameter estimation, coarse initial guess 50
4.7 Optimality table from parameter estimation, refined initial guess 50
4.8 Objective function values after parameter estimation 51
4.9 Effect of perturbing the coarse initial guess on parameter estimation . . . 52

ix

x

List of Figures

1.1 Increasing interest in population balance modeling 2
1.2 Gravity separator for oil, water and gas 3
1.3 Experimental setup for measuring droplet size distributions 3

2.1 Forward, backward and central differences derivatives 8
2.2 Integral approximation by a finite Riemann sum 9
2.3 Integral approximation by trapezoids . 10
2.4 Equidistant grid in independent coordinate 11
2.5 Lagrange interpolating polynomials . 13
2.6 Derivative of Lagrange polynomials . 13
2.7 Family of Gauss collocation points . 14
2.8 Finite volume numerical scheme . 19

3.1 Illustration of breakage and coalescence phenomena 22
3.2 Remapping procedure, x. 33
3.3 Remapping procedure, w . 33
3.4 Experimental measurements for volume density distributions 35

4.1 Experimental measurements for volume density distributions 40
4.2 Insensitivities of negative exponential function 41
4.3 Initial conditions for breakage and coalescence only 42
4.4 Temporal evolution of breakage and coalescence only 43
4.5 Sum of squared errors, fixed breakage parameters 44
4.6 Weighted sum of squared errors, fixed breakage parameters 45
4.7 Sum of squared errors of the mean, fixed breakage parameters 46
4.8 Refined grid, increased objective function value. Varied kc,1 and kc,2 . . . 49
4.9 Refined grid, increased objective function value. Varied kb,1 and kb,2 . . . 49
4.10 Parameters, square root of SSE OFV per degree of freedom and square

root of SSE OFV as function of distributions chosen, coarse initial guess . 53
4.11 Parameters, square root of SSE OFV per degree of freedom and square

root of SSE OFV as function of distributions chosen, refined initial guess 54

xi

4.12 Parameters, square root of weighted SSE OFV per degree of freedom and
square root of weighted SSE OFV as function of distributions chosen,
coarse initial guess . 55

4.13 Parameters, square root of weighted SSE OFV per degree of freedom and
square root of weighted SSE OFV as function of distributions chosen, re-
fined initial guess . 55

4.14 Dynamical behavior for the three optimal parameter combinations 56
4.15 Steady state location for the three optimal parameter combinations 56
4.16 Dynamical behavior of the mean for the three optimal parameter combi-

nations . 57

A.1 Dynamical behaviors for the three optimal parameter combinations for the
coalescence experiment . i

A.2 Steady state locations for the three optimal parameter combinations for the
coalescence experiment . ii

A.3 Temporal evolutions of the mean for the three optimal parameter combi-
nations for the coalescence experiment ii

A.4 Sum of squared errors, coarse grid. Varying kb,1 and kb,2 iii
A.5 Weighted sum of squared errors, coarse grid. Varying kb,1 and kb,2 iv
A.6 Sum of squared errors of the mean, coarse grid. Varying kb,1 and kb,2 . . iv
A.7 Sum of squared errors, coarse grid. Varying kb,1 and kc,1 v
A.8 Weighted sum of squared errors, coarse grid. Varying kb,1 and kc,1 vi
A.9 Sum of squared errors of the mean, coarse grid. Varying kb,1 and kc,1 . . vi
A.10 Sum of squared errors, coarse grid. Varying kb,1 and kc,2 vii
A.11 Weighted sum of squared errors, coarse grid. Varying kb,1 and kc,2 viii
A.12 Sum of squared errors of the mean, coarse grid. Varying kb,1 and kc,2 . . viii
A.13 Sum of squared errors, coarse grid. Varying kb,2 and kc,1 ix
A.14 Weighted sum of squared errors, coarse grid. Varying kb,2 and kc,1 x
A.15 Sum of squared errors of the mean, coarse grid. Varying kb,2 and kc,1 . . x
A.16 Sum of squared errors, coarse grid. Varying kb,2 and kc,2 xi
A.17 Weighted sum of squared errors, coarse grid. Varying kb,2 and kc,2 xii
A.18 Sum of squared errors of the mean, coarse grid. Varying kb,2 and kc,2 . . xii
A.19 Sum of squared errors, coarse grid. Varying kc,1 and kc,2 xiii
A.20 Weighted sum of squared errors, coarse grid. Varying kc,1 and kc,2 xiv
A.21 Sum of squared errors of the mean, coarse grid. Varying kc,1 and kc,2 . . xiv
A.22 Sum of squared errors, refined grid. Varying kb,1 and kb,2 xv
A.23 Weighted sum of squared errors, refined grid. Varying kb,1 and kb,2 xvi
A.24 Sum of squared errors of the mean, refined grid. Varying kb,1 and kb,2 . . xvi
A.25 Sum of squared errors, refined grid. Varying kb,1 and kc,1 xvii
A.26 Weighted sum of squared errors, refined grid. Varying kb,1 and kc,1 xviii
A.27 Sum of squared errors of the mean, refined grid. Varying kb,1 and kc,1 . . xviii
A.28 Sum of squared errors, refined grid. Varying kb,1 and kc,2 xix
A.29 Weighted sum of squared errors, refined grid. Varying kb,1 and kc,2 xx
A.30 Sum of squared errors of the mean, refined grid. Varying kb,1 and kc,2 . . xx
A.31 Sum of squared errors, refined grid. Varying kb,2 and kc,1 xxi
A.32 Weighted sum of squared errors, refined grid. Varying kb,2 and kc,1 xxii

xii

A.33 Sum of squared errors of the mean, refined grid. Varying kb,2 and kc,1 . . xxii
A.34 Sum of squared errors, refined grid. Varying kb,2 and kc,2 xxiii
A.35 Weighted sum of squared errors, refined grid. Varying kb,2 and kc,2 xxiv
A.36 Sum of squared errors of the mean, refined grid. Varying kb,2 and kc,2 . . xxiv
A.37 Sum of squared errors, refined grid. Varying kc,1 and kc,2 xxv
A.38 Weighted sum of squared errors, refined grid. Varying kc,1 and kc,2 xxvi
A.39 Sum of squared errors of the mean, refined grid. Varying kc,1 and kc,2 . . xxvi

xiii

xiv

List of Program Code

B.1 CMakeLists.txt . xxix
B.2 main.cpp . xxxiii
B.3 bruteForceParamEstimation.cpp . xxxviii
B.4 chartMeanSSE.cpp . xli
B.5 checkSensitivity.cpp . xliv
B.6 testLogNormalInitialCondition.cpp . xlvi
B.7 testSolution.cpp . xlviii
B.8 Fluid.cpp . xlix
B.9 Grid.cpp . lix
B.10 Kernels.cpp . lxvi
B.11 PBModel.cpp . xciv
B.12 SystemProperties.cpp . xcvi
B.13 Fluid.h . xcvii
B.14 Grid.h . xcix
B.15 Kernels.h . ci
B.16 PBModel.h . cvii
B.17 SystemProperties.h . cviii
C.1 setLogNormal.m . cx
C.2 sensitivityAroundOptimum.m . cxi
C.3 setParams.m . cxii
C.4 rescaleInitial.m . cxiv
C.5 evalKernels.m . cxvii
C.6 evalSource.m . cxx
C.7 main.m . cxxiii
C.8 getSSE.m . cxxv
C.9 lagrangeInterpShowcase.m . cxxvi

xv

xvi

Abbreviations

B Bottom
BC Boundary condition
BVP Boundary value problem
CSTR Continuously stirred tank reactor
DQMOM Direct quadrature method of moments
DSD Droplet size distribution
dSSE Sum of squared errors on the distributions
E East
FVM Finite volume method
GSL GNU Scientific Library
H.O.T Higher order terms
LSM Least squares method
MOM Method of moments
mSSE Sum of squared errors on the mean
N North
ODE Ordinary differential equation
OFV Objective function value
PBE Population balance equation
PBM Population balance modeling
PDE Partial differential equation
PIDE Partial integro-differential equation
QMOM Quadrature method of moments
RHS Right hand side
S South
SMOM Standard method of moments
SSE Sum of squared errors
SV Subvolume
T Top
VDD Volume density distribution
W West
WRM Weighted residual methods
wdSSE Weighted sum of squared errors on the distributions

xvii

xviii

List of Latin Symbols

Symbol Definition Unit

A Area under curve -
a Recurrence coefficient for Jacobi polynomials -
aC Coalescence frequency s−1

B Daughter redistribution function for ξ and ξ′ m−1

b Recurrence coefficient for Jacobi polynomials -
b Discretized source vector -
BB Birth breakage m−3 x−1 s−1

BC Birth coalescence m−3 x−1 s−1

bΓ Source vector on Γ -
bΩ Source vector on Ω -
bp Source problem vector -
c Recurrence coefficient for Jacobi polynomials -
d Diameter m
DB Death breakage m−3 x−1 s−1

DC Death coalescence m−3 x−1 s−1

e Unit vector -
F Density function -
f Arbitrary function -
f Discretized function vector -
fΓ Arbitrary boundary source function -
fn Number density distribution m−3 x−1

f
(2)
n Pair number density distribution m−3 x−1

fv Volume density distribution m−1

fexpv Experimentally measured volume density distribution m−1

fnumv Numerically modeled volume density distribution m−1

G Breakage frequency for dimensionless radius s−1

g Arbitrary source function -
g Breakage frequency s−1

h Step size -
I Definite integral -
J Objective function value m−2 or µm2

K Effective rate of coalescence for dimensionless radii m3 s−1

k Chicken factor -
k1 Pre-factor for breakage -
k2 Exponential factor for breakage birth -
k3 Pre-factor for coalescence -
k4 Exponential factor for coalescence -

xix

KBB Extracted kernel for birth breakage -
KBC Extracted kernel for birth coalescence -
KDB Extracted kernel for death breakage -
KDC Extracted kernel for death coalescence -
kb,1 Dynamic breakage parameter -
kb,2 Exponential breakage parameter -
kc,1 Dynamic coalescence parameter -
kc,2 Exponential coalescence parameter -
N Number of discretization points -
N Number of distributions chosen -
n Number of total residuals (NpNt) -
Np Number of size classes measured -
Nt Number of measurements in time -
P Power supplied to emulsion by agitator W
p Number of parameters -
p Orthogonal polynomial -
R Residual vector -
r Radius m
Rm Maximum radius (characteristic length) m
req Equidistant radius between droplets m
r′ Radius of coalescing particle m
r′′ Radius of coalescing particle m
S Riemann sum -
S Source term m−3 x−1 s−1

t Time s
tc Drainage time s
tf Time of experiment (characteristic time) s
ti Interaction time s
u Variable transformation of x -
V Volume m3

v Eigenvector of T -
Vemulsion Total volume in the emulsion m3

Vl Volume of liquid emulsion in tank m3

Vm Maximum volume m3

Voil Volume of oil in the emulsion m3

Vr Volume in external coordinate m3

Vx Volume in internal coordinate x3

W Weight function -
w Integral weight corresponding to some collocation point -
w Weight function for weighted sum of squared errors -
x Arbitrary independent coordinate -
xΩ Collocation point vector on reference domain -
wΩ Integral weight vector on reference domain -
A Linear problem matrix on interior domain -
Ap Linear problem matrix on interior and boundary domain -

xx

B Linear boundary matrix -
D Golub-Welsch similarity transformation matrix -
g Gravitational field m s−2

I Identity matrix -
J Golub-Welsch matrix -
J Jacobian matrix -
J̃ Modified Golub-Welsch matrix for Gauss Lobatto grid -
M Newton matrix -
r External coordinate m3

T Tridiagonal matrix -
v Terminal velocity vector m s−1

vrel,t,d,d′ Relative velocity between two particles m s−1

vr Space velocity m s−1

vx Phase velocity x s−1

x Internal coordinate x
Y Environment vector -
P Set of partitions of independent coordinate -
Z Set of all integers -

xxi

xxii

List of Greek Symbols

Symbol Definition Unit

α Basis coefficient -
α Dimensionless interpolated domain for birth coalescence -
α Jacobi polynomial parameter -
β Daughter redistribution function x−1

β Jacobi polynomial parameter -
β Parameter vector (decision variables) -
Γ Boundary domain -
γ Coefficient in J -
γ Dimensionless interpolated domain for birth breakage -
γ Variable order step size -
∆ Partition for sectional methods -
δ Dirac’s delta function -
δ Number of particles coalescing -
∆x Change in variable x -
ε Turbulent energy dissipation rate m2 s−3

ε̄ Spatially averaged turbulent energy dissipation rate m2 s−3

η Vector to construct modified J -
κC Coalescence density m3 s−1

λ Eigenvalue -
µ Vector to construct modified J -
µ0 Value of finite integral of W -
µc Continuous phase dynamic viscosity Pa s
µj j-th moment of a function f -
ν Number of fragments born due to breakage -
ξ Dimensionless radius -
ξ′ Dimensionless radius for mother particle -
ξ′′ Dimensionless radius for mother particle -
ρc Continuous phase density kg m−3

ρd Dispersed phase density kg m−3

σ Surface tension N m−1

τ Coefficient in J -
τ Dimensionless time -
φ Trial function -
ϕ Volume fraction of oil in the emulsion -
ψ Dimensionless volume density distribution -
ΨE Probability of coalescence for dimensionless radii -
ψE Probability of coalescence -

xxiii

Ω Interior domain -
Ω Swept volume rate for dimensionless radii -
ω Subdomain of Ω -
ω Swept volume rate m3 s−1

ω Weight function in weighted resiudal methods -
ωΓ,I Weight function on Γ at collocation point I -
ωΩ,I Weight function on Ω at collocation point I -
∇x· Phase divergence operator x−1

∇r· Space divergence operator m−1

B Boundary linear function operator -
L Linear function operator -
` Lagrange interpolating polynomial -
O Order of accuracy -
RΓ Residual on Γ -
RΩ Residual on Ω -

xxiv

Chapter 1
Introduction

More than often, engineers are troubled with multi-phase systems where the product is de-
pendent on the particles involved. For a fluid-liquid emulsion, for instance, liquid droplets
or gas bubbles are dissolved in a continuous liquid phase, and the settling velocity, given
by Stoke’s law, is governed primarily by the droplet sizes. For hydrocyclones, the droplet
size will determine whether or not the droplet escapes the centrifugal forces or not, and
thus separation efficiency is directly correlated to the size of the droplet. In other systems,
such as bioreactors, the size of the cells are among the factors that determine the produc-
tion rate of a desired compound, but also the population of these cells are critical, as the the
total production rate is dependent on the production of each individual cell in the presence
of other cells in that particular environment. The droplet, bubble or particle surrounded by
such an environment is commonly referred to as the dispersed phase and the environment
is referred to as the continuous phase, both of which are important for the properties of the
total system.

As noted for the bioreactor example, the population of the cells are important for the
production rate. The classical transport equations applies to the behavior of single particles
[1], which motivates the development of an equation that acts as a conservation of mass,
volume (if applicable) or number of particles in the population of particles, droplets or
bubbles. The equation is reasonably called a population balance equation, and in the last
25 years this field of research has grown almost quadratically, as seen in Figure 1.1. The
increase may be related to the book written by Ramkrishna [1] in 2000, as there is little
growth from 1993 to 2000. The increasing interest in the field might also be a natural
consequence of an increasing level of complexity in modeling itself. Nevertheless, the
topic provides a detailed description of a dispersed system of multivariate populations,
and its use might be manifold, as seen above.

1.1 Motivation
Consider the gravity separator presented by Backi et al. [2] with an oil-in-water emulsion,
seen in Figure 1.2, where a mixture of oil, water and gas is fed in. The water phase has

1

Chapter 1. Introduction

Population Balance Publications Recent 25 Years

1995 2000 2005 2010 2015

Year [-]

0

200

400

600

800

1000

1200

1400
P

u
b

li
c

a
ti

o
n

s
 [

-]

Figure 1.1: The bar plot shows an increasing interest in the field of population balance modeling.
The data was downloaded from Webofknowledge May 21, 2018, with the keyword “population
balance modeling”.

a higher density, and thus its continuous phase lies at the bottom. Oil droplets dispersed
in the water phase, and water droplets dispersed in the oil phase, will travel according to
Stoke’s law

v =
gd2(ρd − ρc)

18µc
, (1.1)

where v is the terminal velocity vector, g is the gravitational field, d is the droplet diameter,
ρd and ρc are the dispersed and continuous phase densities, respectively, and µc is the
dynamic viscosity of the continuous phase. The terminal settling velocity determines how
fast the droplets rise (or sink) through the continuous phase in which it travels. When it
reaches the interface where the two immiscible liquids meet, it may merge with its own
phase. The separation efficiency of the two immiscible liquids is therefore determined by
the ability of the droplets to rise or sink, and this strongly depends on the droplet sizes,
as seen in (1.1). To improve on this efficiency under fluctuating operating conditions, it
is important to understand how the droplet size distribution (DSD) acts, as controlling the
separation effectively translates to controlling the DSD.

The generic population balance equation (PBE) contains terms that result in a non-
closed form of the equation itself, and those terms are usually referred to as kernels. These
kernels are system-dependent and some of the parameters that occur are experimentally
determined. Therefore experiments have to be conducted, and the experimental data has
to be compared to model calculations. The comparison results in an iterative procedure
of adjusting parameters and recalculating errors between measurements and calculations,
called parameter estimation. The procedure is crucial to reproduce and predict realistic

2

1.2 Objective

Figure 1.2: The gravity separator has an inlet in its upper left corner, where a mixture of oil, water
and gas flows in. The liquids form two separate phases and are separated due to density differences
and the weir that holds the water back. Gas leaves through the top right.

conditions, and for the model calculations to be useful.

1.2 Objective
As for the oil-in-water emulsion considered before, experimental data will be obtained for
the system seen in Figure 1.3. The measurements will produce a DSD for each point in
time, and a surface plot may be drawn for all measurements in that parallel. A model
will be developed in the population balance framework and model regression techniques
will be applied for recreating the experimental time evolution of the DSD. The techniques
applied will be the sum of squared errors for each droplet size, the weighted sum of squared
errors for each droplet size, and the sum of squared errors for the statistical mean for each
temporal measurement. The goal of this work is to estimate the parameters previously
mentioned under controlled circumstances to provide a model sufficiently good to predict
inlet conditions for downstream units, such as the separator in Figure 1.2. If successful,
this may remedy potentially propagating errors, increasing the overall performance of the
plant.

Figure 1.3: The experimental setup consists of a continuously stirred tank reactor, tubing to the
measurement device, MasterSizer 3000, and tubing back to the CSTR through a pump.

3

Chapter 1. Introduction

If the model fitting is satisfactory, this also motivates for employing a similar model
for pipe flow. The measurement devices under such conditions are typically expensive,
and minimizing the cost of equipment may be a goal from the perspective of a process
designer. The number of measurement devices is directly proportional to the cost, thus
the overall cost would be minimized by, among other factors, minimizing the number
of devices required. Therefore, the number of measurements required to arrive at the
same parameter combinations will also be explored in this work, as it would determine the
number of measurement devices required in the pipe.

4

Chapter 2
Mathematical Prerequisites

This chapter is dedicated to give a mathematical and theoretical background, as well as to
provide all the tools needed to numerically solve differential equations and integrate func-
tions over a domain Ω. The location of the grid points on which the function is evaluated,
the derivative of the function and its integral can sometimes be decentralized in the sense
that they are independent of each other. However, they can also be coupled in order to
improve the numerical accuracy, as will be shown later on.

There exist many numerical schemes, and they all have their advantages and disadvan-
tages. Some offer high local accuracy, but have high computational cost, some have low
computational cost, but offer low local accuracy, and some have trouble for stiff systems
in the sense that they cannot handle high gradients well. The numerical accuracy can be
critical for systems where conservation properties must hold, while at other times it is es-
sential that the computational complexity1 is kept to a minimum. This all depends on the
system at hand, and it would be wise to pick a numerical scheme that best suits the needs
of the system.

Any system of equations that are to be solved should be presented on its linear form

Lf(x) = g(x) on Ω (2.1a)
Bf(x) = fΓ(x) on Γ, (2.1b)

where L is the linear operator, f(x) is the function sought, g(x) is the source term, Ω is the
interior domain, B is the boundary operator, fΓ(x) is the function sought on the boundary
and Γ is the boundary domain. The system has the form of any linear system of equations
and can be solved on matrix form by left inversing

Af = b (2.2)

to obtain f . If the system of equations is non-linear, it can be linearized for an iterative
procedure. For instance, this can be done by implementing Newton iteration [3, 4] or

1Computational complexity is here defined as the amount of resources required for running a program.

5

Chapter 2. Mathematical Prerequisites

Picard iteration [3]. Newton linearization requires the solution of the linear system

M[fn(m+1) − fn(m)] = −R, (2.3)

where fn(m), is function n sought at iteration m, R is the residual and M is given by

M = I− γJ. (2.4)

I is the identity matrix, γ is the variable order step size and J is the Jacobian matrix.
Newton iteration offers local q-quadratic convergence [5], however, it does not guarantee
convergence. Picard iteration has a larger convergence radius, meaning that its initial
value for iteration is less significant than for Newton iteration, however, it also has slower
convergence, so there is a trade-off [6]. Picard iteration updates the function sought in the
following manner

fn+1 = kf(n+1)′ + (1− k)fn. (2.5)

f(n+1)′ is the temporary solution found after an iteration, and k is a value in the closed
interval [0, 1] that can be viewed as a “chicken factor”, in the sense that decreasing it will
weight the old solution more than the new one. In other words, if the new solution takes
too aggressive steps, this is constrained by lowering k. The value of fn to be used in the
next iteration is fn+1.

2.1 Finite Differences and Simple Integration
Finite differences is one of the simplest schemes for differentiation and can be divided into
three main categories: forward differences, backward differences and central differences.
For a first order derivative and some step length h, both forward and backward differences
have a local truncation error ofO(h), while central differences has a local truncation error
of O(h2). This is easily verified by a simple Taylor expansion

f(x+ h) = f(x) + h
df(x)

dx
+ H.O.T (2.6a)

f(x− h) = f(x)− hdf(x)

dx
+ H.O.T. (2.6b)

H.O.T are all higher order terms. Rearranging (2.6), replacing x and x+h by xi and xi+1

respectively, and truncating after the first derivative yields

df(xi)

dx
≈ f(xi+1)− f(xi)

h
, forward (2.7a)

df(xi)

dx
≈ f(xi)− f(xi−1)

h
, backward, (2.7b)

where all terms of order two and higher were neglected. This gives the desired results of
a local truncation error of O(h). Subtraction of (2.6a) and (2.6b) and truncating after the
second derivative yields the central differences

df(xi)

dx
≈ f(xi+1)− f(xi−1)

2h
, (2.8)

6

2.1 Finite Differences and Simple Integration

and a local truncation error of O(h2) as claimed. Of course, the derivatives introduced
in (2.7) and (2.8) can be used for any set of grid points x = [x1, x2, ..., xN], equidistant
or not. However, for central differences the denominator would change slightly for non-
equidistant grids. As seen, these derivatives only use information about the function sought
in two neighboring points, see Figure 2.1. Finite difference schemes with higher order of
truncation error also exist, but are not treated here. The second order derivative is deduced
similarly to the first order ones and are given as

d2f(xi)

dx2
≈ f(xi−1)− 2f(xi) + f(xi+1)

h2
, central (2.9a)

d2f(xi)

dx2
≈ f(xi)− 2f(xi+1) + f(xi+2)

h2
, forward (2.9b)

d2f(xi)

dx2
≈ f(xi−2)− 2f(xi−1) + f(xi)

h2
, backward. (2.9c)

Applying the linear operator L from (2.1) on the central differences first derivative would
yield the derivative matrix

A =



0 0 0 0 0 0 . . . 0
− 1
h 0 1

h 0 0 0 . . . 0
0 − 1

h 0 1
h 0 0 . . . 0

0 0 − 1
h 0 1

h 0 . . . 0
0 0 0 − 1

h 0 1
h . . . 0

...
...

...
...

.
...

0 0 0 0 0 − 1
h 0 1

h
0 0 0 0 0 0 . . . 0


, (2.10)

while applying it to the second derivative would yield the derivative matrix

A =



0 0 0 0 0 0 . . . 0
1
h2 − 2

h2
1
h2 0 0 0 . . . 0

0 1
h2 − 2

h2
1
h2 0 0 . . . 0

0 0 1
h2 − 2

h2
1
h2 0 . . . 0

0 0 0 1
h2 − 2

h2
1
h2 . . . 0

...
...

...
...

.
...

0 0 0 0 0 1
h2 − 2

h2
1
h2

0 0 0 0 0 0 . . . 0


. (2.11)

The boundary operator matrix B make sure that the boundary conditions (BCs) are sat-
isfied. When the solution is specified at the boundary it is called a Dirichlet boundary
condition, and when the derivative is specified at the boundary, it is called a Neumann
boundary condition [7]. The boundary operator B for Dirichlet BCs is simply

B =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (2.12)

7

Chapter 2. Mathematical Prerequisites

The first row being different from 0 implies a left BC, i.e. at x = x0, and the last row
being different from 0 implies a right BC, i.e. at x = xN . For the Neumann BCs, forward
differences can be used at the left boundary and backwards differences may be used at
the right boundary. Applying (2.7), the boundary operator applied to this kind of problem
yields

B =


− 1
h

1
h 0 . . . 0

0 0 0 . . . 0
...

...
.

...
0 0 . . . − 1

h
1
h

 . (2.13)

The right hand side (source) of the problem, g(x), will specify the boundaries in its top
and bottom element.

Central differences
x0 x1 x1 xixi-1 xi+1... ... xN

d
dx

Forward differences
x0 x1 x1 xixi-1 xi+1... ... xN

d
dx

Backward differences
x0 x1 x1 xixi-1 xi+1... ... xN

d
dx

Figure 2.1: First and second order finite differences numerical schemes. Derivatives use information
from two neighboring points at most.

In numerical mathematics, the term numerical integration consists of a collection of
ways to evaluate a finite integral. Numerical integration is often referred to as numerical
quadrature, or quadrature for short. One of the earliest references to the term was by
David Gibb [8], and it has since received a lot of attention because of the growing need to
evaluate complex integrals precisely. The simplest techniques for numerical integration is
probably rectangle approximations, trapezoidal approximations and Simpson’s method.

Consider the integral from left boundary a to right boundary b

I =

∫ b

a

f(x)dx, (2.14)

and let P be the set of partitions of the integral above

P = {[x0, x1], [x1, x2], ..., [xN−2, xN−1], [xN−1, xN]}. (2.15)

8

2.1 Finite Differences and Simple Integration

For a = x0 < x1 < ... < xN−1 < xN = b, the integral, I , can be approximated by
applying the finite Riemann sum

I ≈ S =

N∑
i=1

f(xi)∆xi, (2.16)

where ∆xi = xi − xi−1. The Riemann sum becomes exact when N →∞, that is

I = lim
N→∞

N∑
i=1

f(xi)∆xi, (2.17)

but from a computational perspective this is not a result that can be used. As (2.16) sug-
gests, the integral is approximated by rectangles of width xi − xi−1 and height f(xi), see
Figure 2.2. For small N , the approximation can be questionable.

y

Figure 2.2: An integral approximation by a finite Riemann sum of length N . The area is approxi-
mated by rectangles, and for small N , the approximation can be questionable.

As seen above, the approximation by rectangles can be coarse when N is small. This
can be remedied by using trapezoids instead of rectangles. The area of a trapezoid is

A =
b+ a

2
h, (2.18)

where b and a are lengths and h is the height. Applied to a function f(x) and using the
same indexing procedure as earlier, this translates to [9]

I ≈
N∑
i=1

Ai =
fi + fi−1

2
∆xi, (2.19)

where ∆xi = xi−xi−1. The trapezoidal approximation usually gives a smaller error than
the rectangle approximation. For an illustration of the trapezoidal approximation of the
quartic polynomial example used previously, see Figure 2.3.

9

Chapter 2. Mathematical Prerequisites

y

Figure 2.3: An integral approximation by N trapezoids. The error between the quadrature and the
analytical solution is smaller here than for the Riemann sum.

If the error is still unsatisfactory, a quadratic polynomial can be constructed in order to
interpolate between the three points (xi, fi), (xi+1, fi+1) and (xi+2, fi+2), and the area
under this polynomial can be evaluated. The sum of these areas approximate the original
function integral. Each polynomial constructed is on the form

fq(x) = a+ b(x− xi) + c(x− xi+1)(x− xi), (2.20)

and for the polynomial to pass through the points claimed, it is required that

a = fi (2.21a)

b =
fi+1 − fi
xi+1 − xi

(2.21b)

c =
1

xi+2 − xi+1

(
fi+2 − fi
xi+2 − xi

− fi+1 − fi
xi+1 − xi

)
. (2.21c)

Inserting the coefficients from (2.21) into (2.20) yields an interpolating polynomial of
degree two

fq(x) = fi + (fi+1 − fi)
x− xi

xi+1 − xi
+

(
fi+2 − fi
xi+2 − xi

− fi+1 − fi
xi+1 − xi

)
(x− xi+1)(x− xi)

xi+2 − xi+1
.

(2.22)
In the case of an equidistant grid, see Figure 2.4, all points are evenly spaced, i.e. h =

∆xi = xi − xi−1, i ∈ [1, N]. For the quadratic interpolation, the area under each inter-

10

2.2 Weighted Residual Methods: Orthogonal Collocation

Equidistant
x0 x1 x1 xixi-1 xi+1... ... xN

h h h h h h h h

Figure 2.4: An equidistant grid in the independent coordinate. The grid spacing is h = ∆xi =
xi − xi−1, i ∈ [1, N].

polant is its integral∫ x=xi+2

x=xi

fq(x)dx =

∫ x=xi+2h

x=xi

fq(x)dx

=

∫ u=2h

u=0

(
fi +

fi+1 − fi
h

u

+

(
fi+2 − fi

2h
− fi+1 − fi

h

)
u(u− h)

h

)
du

=

∫ u=2h

u=0

(
fi +

fi+1 − fi
h

u

+
1

2h2
(fi − 2fi+1 + fi+2u(u− h))

)
du

=
h

3
(fi + 4fi+1 + fi+2) ,

(2.23)

where u = x − x0 has been used as substitution. Repeating this integration for several
subdomains ω ⊂ Ω, results in the total approximation

I ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + ...+ 2fN−2 + 4fN−1 + fN) (2.24)

over Ω. The result is called Simpson’s 1/3 rule, named after the English mathematician
Thomas Simpson. The formula is precise to an order of h4, while that of trapezoids is
precise to an order of h3 [9]. This can be proved by a simple Taylor series expansion
followed by integration. For oscillatory functions, or functions that are non-smooth over
the interval, Simpson’s rule can yield poor results. Even though Simpson’s rule is relatively
high order, high order only translates to high accuracy when the function is smooth, or
when its polynomial expansion approximates the function well [10]. Thus it may give
poor results if the polynomial approximation is unsatisfactory.

2.2 Weighted Residual Methods: Orthogonal Collocation
The weighted residual methods (WRM) is a family of numerical methods that focuses on
finding the function value at fixed nodal points called collocation points. Therefore this
family of methods is similar to that of the family of discrete methods. Consider (2.1) on
its residual form [10]

RΩ = Lf(x)− g(x) on Ω (2.25a)
RΓ = Bf(x)− fΓ(x) on Γ. (2.25b)

11

Chapter 2. Mathematical Prerequisites

With respect to a certain weight function, ω, the methods try to drive the residual, R, to
zero over the entire domain, that is∫

Ω

ωΩ,IRΩdΩ +

∫
Γ

ωΓ,IRΓdΓ = 0, ∀I = 0, 1, ..., N, (2.26)

where N is the total number of collocation points. The WRM are all based on having
represented the function, f , as a trial function expansion. This trial function expansion is
a formulation of the sought function f as a series of trial functions φi(x) multiplied by
basis coefficients αi:

f(x) ≈ fN (x) =
N∑
i=0

αiφi(x). (2.27)

By choosing the trial functions as orthogonal polynomials such as Lagrange interpolating
polynomials [11]

`i(x) =

N∏
j=0
j 6=i

x− xj
xi − xj

, (2.28)

the basis coefficients can be chosen as the function value, f(xi), itself at the collocation
points, xi. This is due to the property of Lagrange polynomials being defined as

`j(xi) =

{
1, if i = j

0, if i 6= j
. (2.29)

The Lagrange interpolating polynomials are all of the same degree, and for degree N ,
there are N + 1 polynomials that interpolate f [11]. The five polynomials of degree four
are depicted in Figure 2.5. The numerical derivative of the function f can be found by
using the polynomial expansion

df(x)

dx
≈ d

dx

N∑
i=0

f(xi)`i(x) =

N∑
i=0

f(xi)
d`i(x)

dx
(2.30)

The resulting derivative matrix is represented by

A =


0 0 0 . . . 0

`′0(x1) `′1(x1) `′2(x1) . . . `′N (x1)
...

...
...

. . .
...

`′0(xN−1) `′1(xN−1) `′2(xN−1) . . . `′N (xN−1)
0 0 0 . . . 0

 , (2.31)

and as seen it uses information from all of the derivatives at all grid points, see Figure 2.6.
The matrix A is square and is comparable to those from finite differences in (2.10) and
(2.11). The boundary derivative may be specified as in (2.13):

B =


`′0(x0) `′1(x0) `′2(x0) . . . `′N (x0)

0 0 0 . . . 0
...

...
...

. . .
...

`′0(xN) `′1(xN) `′2(xN) . . . `′N (xN)

 . (2.32)

12

2.2 Weighted Residual Methods: Orthogonal Collocation

1 1.5 2 2.5 3 3.5 4 4.5 5

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
y

Lagrange Interpolating Polynomials

l
0
(x)

l
1
(x)

l
2
(x)

l
3
(x)

l
4
(x)

Figure 2.5: Lagrange interpolating polynomials. All polynomials take value of 0 in all nodes except
when the node index and the polynomial index are equal. Then the function takes the value of 1.

The Dirichlet boundary conditional matrix B is the same as in (2.12).

Lagrange Derivative

xixi-1 xi+1 ... xN-1 xN...x1x0

d
dx

Figure 2.6: As the figure shows, all collocation points in the grid contribute to the derivative at
x = xi.

The selection of the collocation points, xi, in the domain Ω are normally taken as
the roots of Jacobi polynomials [12]. If this is the case, there are three different types of
grids: Gauss, Gauss-Lobatto and Gauss-Radau. As seen in Figure 2.7, Gauss is without
endpoints, Gauss-Lobatto is with both endpoints and Gauss-Radau is with one endpoint.
The Jacobi polynomials are orthogonal, meaning∫ b

a

W (x)pi(x)pj(x)dx = 0, i 6= j. (2.33)

The weight function is dependent on which polynomials are chosen, but for the Jacobi
polynomials

W (x) = (1− x)α(1 + x)β , (2.34)

13

Chapter 2. Mathematical Prerequisites

Gauss-Lobatto

Gauss-Radau

Gauss

Figure 2.7: Gauss, Gauss-Lobatto and Gauss-Radau collocation points. Gauss is without endpoints,
Gauss-Lobatto is with both endpoints, and Gauss-Radau is with one endpoint.

where α and β can be viewed as parameters for shifting the collocation points towards one
or the other end of the domain. All orthogonal polynomials satisfy a three term recurrence
relationship

p−1(x) = 0

p0(x) = 1

pi+1(x) = (aix+ bi)pi(x)− cipi−1(x), −1 < i ∈ Z.
(2.35)

The coefficients ai, bi and ci are given by

ai =
(2i+ α+ β + 1)(2i+ α+ β + 2)

2(i+ 1)(i+ α+ β + 1)
(2.36a)

bi =
(2i+ α+ β + 1)(α2 − β2)

2(i+ 1)(i+ α+ β + 1)(2i+ α+ β)
(2.36b)

ci =
(i+ α)(i+ β)(2i+ α+ β + 2)

(i+ 1)(i+ α+ β + 1)(2i+ α+ β)
. (2.36c)

If any of the denominators in (2.36) take the value of zero, the coefficient itself takes the
value of zero. For α = β, the polynomials are called Gegenbauer polynomials, and among
the most known are Chebyshev polynomials (α = β = −1/2) and Legendre polynomials
(α = β = 0). For the latter, the weight of (2.34) takes the form

W (x) = 1, −1 < x < 1, (2.37)

and the recurrence coefficients simplify to

ai =
2i+ 1

i+ 1
(2.38a)

bi = 0 (2.38b)

ci =
i

i+ 1
. (2.38c)

14

2.2 Weighted Residual Methods: Orthogonal Collocation

Representing the coefficients from (2.36) on matrix notation

x


p0

p1

...
pN−2

pN−1

 =


− b1
a1

1
a1

0 . . . 0
c2
a2

− b2
a2

1
a2

. . . 0
...

.
...

0 . . . cN−1

aN−1
− bN−1

aN−1

1
aN−1

0 0 . . . cN
aN

− bN
aN




p0

p1

...
pN−2

pN−1

+


0
0
...
0
pN
aN

 (2.39)

and evaluating pN (x) at its roots yields the eigenvalue-form of (2.39)

xp(x) = Tp(x), (2.40)

where p is the vector of Jacobi polynomials and T is the tridiagonal matrix in (2.39).
As noted, the last polynomial in the chain, pN , is evaluated at its roots, which is why
the last term of (2.39) vanished (pN (xi) = 0 ∀i ∈ {0, 1, ..., N}). This is only true if
λip(λi) = Tp(λi), and consequently the problem of finding the collocation points reduces
to finding the eigenvalues of T. This procedure is called the Golub-Welsch algorithm, and
it is faster than root-finding algorithms such as Newton-Raphson iteration [10, 13]. For a
quicker numerical procedure, T may be transformed into the symmetric matrix

J = DTD−1 =



− b1
a1

(
c2
a1a2

)1/2

0 . . . 0(
c2
a1a2

)1/2

− b2
a2

(
c3
a2a3

)1/2

. . . 0

...
.

...

0 . . .
(

cN−1

aN−2aN−1

)1/2

− bN−1

aN−1

(
cN

aN−1aN

)1/2

0 0 . . .
(

cN
aN−1aN

)1/2

− bN
aN


.

(2.41)
As seen, the matrix is symmetric around its diagonal, and it can thus be simplified as such.
Adopting the notation of Jakobsen [10],

J =


τ1 γ1 0 . . . 0
γ1 τ2 γ2 . . . 0
...

. 0
0 . . . γN−2 τN−1 γN−1

0 0 . . . γN−1 τN

 , (2.42)

where τi = − bi
ai

and γi =
(

ci+1

aiai+1

)1/2

. If eigenvalues, λi, and eigenvectors, vi, of
T are found from (2.40) and compared to those of (2.41), they are identical. Thus, the
transformation in (2.41) has left the values of interest as they were. The integral weights
that will allow for numerical quadratures are found by normalizing each eigenvector and
multiplying its first element squared with the integral of the corresponding weight function,
that is

wi = µ0v
2
i,1, (2.43)

15

Chapter 2. Mathematical Prerequisites

where

µ0 =

∫ b

a

W (x)dx. (2.44)

For the Legendre polynomials, µ0 takes the value of 2, since W (x) = 1, a = −1 and
b = 1. The weights wi are used in the evaluation of the integral of f(x) [14]∫ 1

−1

f(x)dx =

∫ 1

−1

W (x)f(x)dx =

N∑
i=1

wif(xi). (2.45)

The above is valid for the Gauss quadrature, i.e. without endpoints. For boundary
value problems (BVPs), Gauss-Lobatto grids should be used instead. Then x0 = −1 and
xN = 1 must be enforced, and the matrix J must be modified. To enforce these criteria,
the modified matrix J̃ must enforce λ0 = −1 and λN = 1. Thus a polynomial pN+1(x)
is constructed so that

pN+1(x = −1) = pN+1(x = 1) = 0 (2.46)

is satisfied. The recurrence relationship (2.35) can be written for this system as

γN+1pN+1(x) = (x− τN+1)pN (x)− γNpN−1(x). (2.47)

This is seen by inspecting the last row of the matrix J. The enforcing condition in (2.46)
can be applied to (2.47) (note that the left hand side in the latter of the equations then
equate to zero):

τN+1pN (x = −1) + γNpN−1(x = −1) = −1pN (x = −1) (2.48a)
τN+1pN (x = +1) + γNpN−1(x = +1) = +1pN (x = +1). (2.48b)

This takes the form of (2.40)

xp(x) = Jp(x) + γNpN (x)eN , (2.49)

where eN is the unit vector (0, 0, ..., 1) of size N . This means that some vector η and µ
can be set so that the following is satisfied

[J− (−1)I]η = eN (2.50a)
[J− (+1)I]µ = eN , (2.50b)

which means that

ηi = − 1

γN

pi−1(x = −1)

pN (x = −1)
(2.51a)

µi = − 1

γN

pi−1(x = +1)

pN (x = +1)
. (2.51b)

To find the complete modified matrix, J̃, τN+1 and γN must be found. For this, the
equation set

τN+1 − ηNγ2
N = −1 (2.52a)

τN+1 − µNγ2
N = +1 (2.52b)

16

2.2 Weighted Residual Methods: Orthogonal Collocation

must be solved. The eigenvalues and eigenvectors can then be computed from

J̃ =

[
J γNeN

γNe
T
N τN+1

]
(2.53)

and the collocation points and quadrature weights can be computed as for the Gauss grid.
Now that both numerical integration by Gauss quadratures and numerical differenti-

ation by Lagrange derivatives have been treated, once again consider (2.26). For the or-
thogonal collocation method the weight function, ωI , is chosen as a Dirac delta δ(x−xI),
forcing the residual to zero at the collocation points. Other popular weighted residual
methods include the least squares method (LSM), where the weight function is taken as
the derivative of the residual with respect to its function value, ωI = dR

dfI
. The LSM will

not be treated here, but instead the weight function for the orthogonal collocation (OC)
method is applied to (2.26)∫

Ω

RΩ(x, f1, f2, ..., fN)δ(x− xI)dΩ = RΩ(x, f1, f2, ..., fN)|x=xI

=

N∑
i=0

Lfi`i(xI)− g(xI)

= 0.

(2.54)

The definition of the residual was used and inserted above. As (2.54) states, polynomial `i
is evaluated at all the collocation points xI , resulting in a matrix structure. Also, the func-
tion values sought, fi, are independent of the linear operator, L, so the prepared system of
equations can be written in accordance with (2.2) as

[A]ij = L`j(xi)
[f]i = f(xi)

[bΩ]i = g(xi).

(2.55)

To enforce appropriate BCs, the matrix A and the vector bΩ are modified in their first and
last row. These rows are set to 0, and the boundary matrix B is constructed

[B]ij =



1, i = j = 0, N
0, i = 0, j 6= 0
0, i = N, j 6= N

Dirichlet BC

`′j(x0), i = 0
`′j(xN), i = N
0, i 6= 0, N

Neumann BC

[bΓ]i =


ψ0, i = 0

ψN , i = N

0, i 6= 0, N

(2.56)

Obviously a mix of Dirichlet and Neumann BCs may also be specified if necessary. To

17

Chapter 2. Mathematical Prerequisites

construct the entire problem

Ap = A′ + B (2.57a)
[f]i = f(xi) (2.57b)
bp = b′Ω + bΓ, (2.57c)

where A′ and b′Ω are the modified matrix A and vector bΩ respectively. The problem is
solved by left inversing Ap. Should the problem be non-linear, Newton iteration or Picard
iteration can be applied as previously discussed.

2.3 Other Frequently Used Methods
The numerical methods frequently employed are normally split in two: those that focus on
finding the function itself, and those that focus on finding its statistical moments of order
j defined by [15]

µj =

∫ ∞
0

xjf(x)dx, (2.58)

where f(x) is the function whose moments are to be determined. The different methods
that can be employed are optimized for its use, and a lengthy description of them is not
the focus of this work, and will thus not be treated here. The different numerical methods
will, however, be presented to the reader for a broader list of options.

2.3.1 Finding the Function
For the methods that focus on finding the function itself, the WRM has already been ex-
plained in detail. The sectional methods may be called zero order methods. The methods
lump a portion of the independent coordinate together in a single cell (section) and this
cell is represented by a zero-order polynomial. Consequently, each cell takes the form
of a histogram or a bar diagram, and the function is represented by a set of bar diagrams
[16, 17]. Each partition is represented by

∆i = [xi+1/2 − xi−1/2], (2.59)

and the middle point of each partition, xi, is called a pivot or grid point. The indepen-
dent coordinate, x, is considered fixed throughout the entire pivot. The pivots can move
throughout the time horizon or they can be fixed (stationary), giving rise to the names mov-
ing pivot [18] and fixed pivot methods [19], respectively. Each cell may also be approxi-
mated by a low order polynomial. The method of zero-order polynomials may resemble
the form of Riemann sums depicted in Figure 2.2, whereas the low-order polynomial may
resemble the form of trapezoids (Figure 2.3), Simpson’s rule etc. For a density distribu-
tion, f(x, t), the density, F (t), can be found in each pivot by integrating the distribution
from its left to its right boundary

F (t) =

∫ xi+1/2

xi−1/2

f(x, t)dx. (2.60)

18

2.3 Other Frequently Used Methods

Among the most famous sectional methods is the fixed pivot technique developed by Ku-
mar and Ramkrishna due to its generality and robustness, as shown by the studies of Kumar
and Warnecke [20].

The finite volume method (FVM) is a multi-dimensional version of the finite differ-
ences scheme discussed previously. The idea is locate a control volume around the grid
points and evaluate fluxes coming in and out of this finite volume. This method describes
the net change in the function sought over finite volume elements, just as a partial dif-
ferential equation (PDE) describes the net change over an infinitesimally small volume
element [21]. Johnson [22] described the method for two dimensions with the x-y grid
depicted in Figure 2.8. Each cell (control volume) is shown as a dashed square, the grid
points are the filled circles and the unfilled circles are the boundary points containing the
boundary condition. As shown, the grid points are placed in the center of the control vol-
ume, and they communicate with four neighboring grid points. For an arbitrary point, P ,
the communication points are denoted N , W , E and S. These names denote the cardinal
directions north, west, east and south, respectively. For a three-dimensional FVM scheme,
the point, P , communicates with the grid point on top of it, T , and the grid point beneath
it, B, as well. The symbols denote top and bottom, respectively. Note that the FVM is also
a sectional method in the sense that the cells are sections of the full domain.

Figure 2.8: A finite volume numerical scheme. Each cell is marked by dashed lines, and each grid
point itself is modeled by its fluxes of some quantity in and out of the cell. The filled circles indicate
grid points and the unfilled ones are boundary points.

2.3.2 The Methods of Moments
For processes where the function itself is not of particular importance, the statistical mo-
ments defined in (2.58) might be sufficient. Consider a process only relying on the lower
order moments such as the statistical mean and the standard deviation defined by the first
and second order moment, respectively. Then it is not efficient to first find the function

19

Chapter 2. Mathematical Prerequisites

itself and then calculate the mean and standard deviation, but it may be computationally
faster to do a moment transformation on the function and find the moments themselves in-
stead. Should the function be needed at some point, it may be reconstructed by the method
of maximum entropy, which reconstructs the function by equally weighting all possible
distributions. As a result, the function is reconstructed in a least biased way, i.e. the recon-
structed function has the highest probability of resembling the real distribution. See Cover
[23] for a detailed explanation.

The methods of moments (MOM) are a family of numerical approaches on how these
equations can be solved. Without going into detail on each of them, some of them will
be listed here for comparison. The standard method of moments (SMOM) developed by
Randolph and Larson [24] and Hulburt and Katz [25] solves the time-dependent moment
transformation of the function sought for lower order moments. The method expands the
j-th moment and expresses it in terms of its lower order moments, k, where k ≤ j. The
set of equations must be entirely independent of the function and may only be expressed
as a function of these k-th order moments.

McGraw [26] proposed a method called the quadrature method of moments (QMOM)
that has received much more attention in population balance modeling. This method is
widely used, as it is both computationally efficient and has a broad range of applicable
problems. The method includes the approximation of f by a series expansion of Dirac
delta functions

f(x) ≈
N∑
i=1

wi(x)δ(x− xi), (2.61)

where the weightswi are determined from specialized algorithms consisting of lower order
moments. The weights are then applied and the moments are expressed by

µj =

N∑
i=1

wi(x)xji . (2.62)

Another closely related MOM is the direct quadrature method of moments (DQMOM)
developed by Marchisio and Fox [27] and Fan et al. [28], where the same procedure as
McGraw suggested is applied, only for a product sum of Dirac deltas. Surely there are
other MOMs as well, but to avoid a lengthy discussion of these, this section is truncated,
and the reader is redirected to Jakobsen [10].

20

Chapter 3
Population Balance Modeling

As noted in Chapter 1, population balance modeling (PBM) has grown as a field of re-
search, possibly by the influence of Ramkrishna [1]. He employed a local continuum
mechanical framework in order to establish an approach of population balance modeling
(PBM) frequently adopted. His PBE established a relation for countable particles and their
temporal (time) evolution. The particles also depend on their location in physical space and
their abstract property space. The former is defined in three dimensions, r = (r1, r2, r3),
and the coordinate system employed (cartesian, cylindrical or spherical) depend on the
geometry of the system considered. The latter of them is defined by some inherently pos-
sessed quantities, x = (x1, x2, ..., xm), where m is the number of quantities. The two
spaces, r and x, were referred to by Hulburt and Katz [25] as external and internal co-
ordinates, respectively, and together they define the state of the particle. Furthermore,
the particles are considered to depend on the environment variables (continuous phase for
fluid-liquid dispersions) defined by the vector Y = (y1, y2, ..., yn), where n is the number
of variables. Common examples of such variables include densities, pressures etc.

Dispersed in a continuous phase, the particles may undergo breakage, coalescence and
aggregation/agglomeration/coagulation, all of which are considered birth and death pro-
cesses. The latter three are not discussed here, but the interested reader is redirected to
papers that treat these topics [29]. Breakage is a phenomenon where a mother particle
breaks up (death process) into two or more fragments called daughter particles (birth pro-
cess). The phenomenon preserves mass, so that the mass of the mother particle equates
to the sum of masses for each daughter particle. Thus the mass of all mother particles
breaking at time t equates to the mass of all daughter particles born at time t. Considering
coalescence, two or more particles collide at some frequency, and at some probability they
merge (death process) into one bigger particle (birth process). The same principle as for
breakage applies here; the mass of all particles dying due to coalescence at time t equates
to the mass of all particles born due to coalescence at time t. The mechanisms of breakage
and coalescence are depicted in Figure 3.1a and Figure 3.1b, respectively. It is important
to note that a birth process cannot take place without having a corresponding death process
take place.

21

Chapter 3. Population Balance Modeling

(a) The illustration shows the phenomenon
called breakage, where a particle is torn apart
by turbulent stresses caused by velocity fluctu-
ations.

(b) The illustration shows the phenomenon
called coalescence, in which two colliding par-
ticles create a thin film which drains over time
and eventually ruptures.

Figure 3.1: The figure depicts the phenomenon of (a) breakage and (b) coalescence.

With these definitions, and with some simplified notation, Ramkrishna defined the
population balance as follows

∂fn(x, r, t)

∂t
+∇x · [vx(x, r,Y, t)fn(x, r, t)] +∇r · [vr(x, r,Y, t)fn(x, r, t)]

= S(x, r,Y, t),
(3.1)

where the dependent variables fn, vx, vr and S are the number density distribution func-
tion, the phase velocity vector, the space velocity vector and the source function, respec-
tively. The physical interpretation of the second term from the left corresponds to growth
due to motion in abstract property space, and the third term corresponds to growth due to
motion in the physical space.

The choice of internal coordinate is important, and the options available are manifold.
For instance, for a fermenting process, yeast cells may live in a solution containing a sub-
strate that the yeast cells consume in order to produce a chemical compound. If the product
inhibits the reaction, or for some other reason the yeast cells must be separated from this
solution, a microorganism flotation technique [30] may be applied in order to recover the
cells from the medium. This technique involves bubbling air into the reactor, and when the
yeast collides with the air bubbles, they stick to the bubbles and rise to the surface. When
they reach the surface, they form a froth, which is skimmed off, successfully recovering
the microorganism. For this example the internal coordinate may be chosen as the number
of yeast cells attached to an air bubble.

Usually, the choice of internal coordinate is less intricate than for the system above.
The diameter, d, of the particles is often picked as internal coordinate, because it is easily
measured, and it makes the PBE applicable to systems dependent on mass- or heat transfer,
where surface area is crucial. It also gives the PBE a simple physical meaning. If the
diameter, d, is chosen as internal coordinate, the PBE represents the number of particles
of a particular size, d, at a particular position in space, r, at a particular time, t. There
are no bounds for how many internal coordinates that may be applied to the PBE, and
systems with one or two internal coordinates are referred to as univariate (or monovariate)
or bivariate systems, respectively. For more than two internal coordinates, the system is
referred to as polyvariate.

Neglecting agglomeration/aggregation/coagulation, the source term of (3.1) consists

22

3.1 Closure Equations

of breakage and coalescence

S(x, r,Y, t) = BB(x, r,Y, t)−DB(x, r,Y, t)+BC(x, r,Y, t)−DC(x.r,Y, t), (3.2)

The subscript denotes which phenomenon the process is related to, and the base letter
refers to birth or death. In other words, BB and DB are birth and death due to breakage,
and BC and DC are birth and death due to coalescence, respectively.

3.1 Closure Equations
The population balance equation presented in (3.1) and (3.2) have some unclosed terms,
namely BB , DB , BC and DC . For a given phenomenon, the related birth and death
processes are modeled by the same constitutive equations, or kernels. However, how these
are modeled is a field of research on its own, and many proposals have been made [31, 32,
33, 34].

Concerning breakage, the modeling approaches are trifold: those based on reaction-
kinetic ideas [35], those based on the turbulent flow conditions [36], and those based on
kinetic ideas only [37]. Martı́nez-Bazán et al. [37] argued that turbulent stresses, σt,
caused by fluctuations in the velocity field will deform the particle considered. Whenever
the turbulent stress becomes greater than the surface restorative forces (surface tension),
σs, the particle breaks. This concept is based only on kinematics. Thus, the breakage
frequency depends on the surface tension, the particle diameter, and the velocity fluctua-
tions. Assuming that breakage occurs independently of other particles, the death term due
to breakage is then defined as

DB(x, r,Y, t) = g(x, r,Y, t)fn(x, r, t), (3.3)

where g is the breakage frequency. The birth term due to breakage also considers the
probability of formation, β(x, r;x′, r′,Y, t) of the particle considered due to breakage of
other particles. This is also referred to as the daughter distribution function, or daughter
redistribution function [38, 39], and the born fragments of state (x, r) are given by

BB(x, r,Y, t) =∫
Vx,SV

∫
Vr,SV

ν(x′, r′,Y, t)g(x′, r′,Y, t)β(x, r,x′, r′,Y, t)fn(x′, r′, t)dVr′dVx′ .

(3.4)

The average number of fragments born is denoted ν, and SV denotes the subvolume of
interest. To simplify, the number of fragments born due to breakage may be assumed to
be binary, i.e. ν = 2. Keeping the general fragmentation function would require another
semi-empirical closure, and it would require the fragmentation function to be found at
every time step. The assumption is not unreasonable, however, it is a simplification. Given
that breakage occurs, the probability over the entire subvolume has to equate to unity, i.e.,
if a particle breaks, new particles have to be formed. Mathematically this means∫

Vx,SV

β(x, r,x′, r′,Y, t)dVx′ = 1. (3.5)

23

Chapter 3. Population Balance Modeling

Imposing the assumptions of binary breakage, ν = 2, and that the particles born from
breakage are approximately located at the same place in physical space, (3.4) can be re-
duced to

BB(x, r,Y, t) =

∫
Vx,SV

2g(x′, r′,Y, t)β(x, r,x′, r,Y, t)fn(x′, r′, t)dVx′ . (3.6)

Note the change in β from (3.4) to (3.6).
The mechanism of coalescence was established in the previous section, and the coa-

lescence terms are considered to depend on a coalescence frequency, aC . This quantity is
dependent on the particles coalescing. For the formation of particles of state (x, r), parti-
cles of state (x′, r′) and particles of state (x′′, r′′) have to coalesce. The general expression
for this is denoted

BC(x, r,Y, t) =

1

δ

∫
Vr,SV

∫
Vx,SV

aC(x′′, r′′,x′, r′,Y, t)f (2)
n (x′′, r′′,x′, r′, t)dVx′′dVr′ ,

(3.7)

where δ denotes the number of particles coalescing. The event only gives rise to one
new particle, and the PBE is a number balance equation, so δ has to be included to avoid
duplicate contributions. The number function f (2)

n is the average number density distribu-
tion of parent particles (coalescing particles) of states (x′, r′) and (x′′, r′′). To simplify,
binary coalescence can be assumed, where only two particles are allowed to coalesce.
Then f (2)

n (x′′, r′′,x′, r′, t) ≈ fn(x′′, r′′, t)fn(x′, r′, t) and δ = 2. Physical spatially av-
eraging aC simplifies the birth term further, and gives rise to the coalescence density,
κC(x′′, r′′,x′, r′,Y, t). As seen, the integral spans the domain of the parent particle of
state (x′′, r′′) and a Jacobian transformation may be used to express it in terms of the child
particle of state (x, r). Imposing all assumptions just discussed yields

BC(x, r,Y, t) =

1

2

∫
Vx,SV

κC(x′′, r′′,x′, r′,Y, t)fn(x′′, r′′, t)fn(x′, r′, t)
∂(x′′, r′′)

∂(x, r)
dVx′ .

(3.8)

The same assumptions could be employed for the death process of coalescence, resulting
in

DC(x, r,Y, t) = fn(x, r, t)

∫
Vx,SV

κC(x′, r′,x, r,Y, t)fn(x′, r′, t)dVx′ . (3.9)

Even though equations for the birth and death processes have been established by (3.3),
(3.6), (3.8) and (3.9), new functions (g, β and κC) were also introduced. These functions
are what is collectively referred to as kernels. Coulaloglou and Tavlarides [31], Ross [35],
Martı́nez-Bazán [37, 40], Chen et al. [41], Vankova et al. [32] and many others have done
exceptional work on the breakage frequency, g, and the daughter distribution function, β.
The coalescence density is usually split in two, a swept volume rate, ω, and a probability of
coalescence, ψE , given a collision has occurred. Prince and Blanch [33] developed a swept
volume rate model based on the kinetic gas theory which is frequently adopted. However,

24

3.2 The Population Balance Equation for a Batch CSTR

the assumption that the particles are perfectly elastic, and that their relative velocities are
defined by |vrel,t,d,d′ | ≈ (v̄2

t,d+v̄2
t,d′)

1/2 have been questioned by some [10]. The formula
is based on the assumption that molecules are alike and can be considered hard spheres.
Particles considered in the PBE may be deformable and agglomerate (stick to each other).
The assumptions may therefore be violated. Chesters [34] and Kocamustafaogullari and
Ishii [42] among others have worked to develop coalescence efficiency models. No analyt-
ically available kernels are yet available for both breakage and coalescence, and all of the
four kernels discussed (g, β, ω and ψE) up until now are semi-empirical, that is, they are
derived from mechanical or kinetic concepts, but include fitting parameters that need to
be experimentally determined and validated. This is the greatest weakness of population
balance modeling.

3.2 The Population Balance Equation for a Batch CSTR
The population balance described in the previous section is general, with very few assump-
tions. This section is dedicated to derive a specific form of the PBE for a batch CSTR for
the experimental setup described in Chapter 1.2, Figure 1.3. The CSTR will consist of an
oil dispersed in a continuous water phase, and the required physical data of the emulsion
is given in Table 3.1. The temperature is well controlled, and the liquids are assumed
incompressible. The two conditions just mentioned imply that the densities of both the
oil and the water phase are constant. As a result, a mass conservation property translates
to a volume conservation property. The experimental data obtained will measure the oil
volume density distribution (VDD), fv(x, r, t), for given diameters, but the number den-
sity distribution can easily be converted into the VDD by multiplying the numbers by their
respective volumes. To get denser grid points over the domain, the radius is chosen as
internal coordinate as it easily relates to the diameter and volume.

Table 3.1: Fluid data for the oil (dispersed) and water (continuous) phases considered. The surface
tension for water is not relevant here.

Quantity Crude Oil B Water

Surface tension 22 mN m−1 -
Density 837 kg m−3 1000 kg m−3

The oil droplets are dispersed in a continuous water phase, and no mass transfer be-
tween the water and oil droplets are considered. It is assumed that there is no hydrostatic
pressure gradients of considerable magnitude either, so the droplets do not change size
due to pressure differences. Hence, no growth is apparent in the internal coordinate due
to motion in abstract property space. The growth of droplets is assumed to be purely from
breakage and coalescence phenomena, and as a consequence, the second term in (3.1) is
neglected.

The CSTR considered is assumed well enough mixed for the physical space depen-
dency to be negligible, and leaving the dependency in would only require more computa-
tional power and add complexity to the model. Adding this complexity also adds uncer-
tainty due to the lack of specific information on the spatial variance of the turbulent energy

25

Chapter 3. Population Balance Modeling

dissipation rate, ε. The third term in (3.1), denoting the change in the number density due
to motion in physical space is therefore neglected. Since volume is conserved, the PBE can
act as a volume conservation equation. Before inserting the radius as internal coordinate,
consider the number density distribution with volume as internal coordinate

∂fn(V (r), t)

∂t
=

∫ ∞
V (r)

2g(V (r′),Y, t)β(V (r′), V (r),Y, t)fn(V (r′), t)dV ′

− g(V (r)),Y, t)fn(V (r), t)

+

∫ V (r)/2

0

κC(V (r′), V (r′′),Y, t)fn(V (r′), t)

fn(V (r′′), t)
∂(V (r′′))

∂(V (r))
dV ′

− fn(V (r), t)

∫ ∞
0

κC(V (r′),Y, t)fn(V (r′), t)dV ′.

(3.10)

Droplets of volume V (r) may be formed by breakage from all larger droplets (V (r′) >
V (r)) or coalescence from all smaller droplets (V (r′) < V (r)). This is shown in the first
and third term of the right hand side (RHS), respectively. At the same time, droplets of this
volume, V (r), may be lost due to breakage, or from coalescing with other droplets of any
size. This is shown respectively in the second and fourth term of the RHS. The volume is
proportional to the cube of the radius, and inserting for radius as internal coordinate yields

∂fn(r, t)

∂t
=

∫ ∞
r

2g(r′,Y, t)β(r′, r,Y, t)fn(r′, t)dr′

− g(r,Y, t)fn(r, t)

+

∫ r/ 3√2

0

κC(r′, r′′,Y, t)fn(r′, t)fn(r′′, t)
∂(r′′)

∂(r)
dr′

− fn(r, t)

∫ ∞
0

κC(r′,Y, t)fn(r′, t)dr′.

(3.11)

The Jacobian transformation in the coalescence birth term is determined by utilizing the
volume conservation V (r) = V (r′) + V (r′′), meaning that r3 = r′3 + r′′3. Thus
∂r′′/∂r = ∂(r3 − r′3)1/3/∂r = r2/(r3 − r′3)2/3 = r2/r′′2. Introducing the VDD as
fv(r, t) = V (r)fn(r, t) and inserting into (3.11) transforms the PBE into

∂

∂t

(
fv(r, t)

V (r)

)
=

∫ ∞
r

2g(r′,Y, t)β(r′, r,Y, t)
fv(r

′, t)

V (r′)
dr′

− g(r,Y, t)
fv(r, t)

V (r)

+

∫ r/ 3√2

0

κC(r′, r′′,Y, t)
fv(r

′, t)

V (r′)

fv(r
′′, t)

V (r′′)

r2

r′′2
dr′

− fv(r, t)

V (r)

∫ ∞
0

κC(r′,Y, t)
fv(r

′, t)

V (r′)
dr′.

(3.12)

26

3.2 The Population Balance Equation for a Batch CSTR

The droplets are considered entirely spherical, and their volume is given by simple geomet-
ric considerations: V (r) = 4

3πr
3. From the assumption of constant density, the volume of

the drop does not have any temporal change. Hence, the first volume term can be placed
outside the time derivative

1

V (r)

∂fv(r, t)

∂t
=

∫ ∞
r

2g(r′,Y, t)β(r′, r,Y, t)
fv(r

′, t)

V (r′)
dr′

− g(r,Y, t)
fv(r, t)

V (r)

+

∫ r/ 3√2

0

κC(r′, r′′,Y, t)
fv(r

′, t)

V (r′)

fv(r
′′, t)

V (r′′)

r2

r′′2
dr′

− fv(r, t)

V (r)

∫ ∞
0

κC(r′,Y, t)
fv(r

′, t)

V (r′)
dr′.

(3.13)

The PBE as it stands in (3.13) can not be solved numerically because of its dependency
of infinite integrals for breakage birth and coalescence death. However, the contributions
from these terms will slowly decay as the radius increases, i.e. there exists a maximum
radius called Rm that could mimic the behaviors of the infinite integral, making it finite.
All contributions from radii above this value are assumed neglected. Introducing this
characteristic length, presents a finite form of (3.13)

1

V (r)

∂fv(r, t)

∂t
=

∫ Rm

r

2g(r′,Y, t)β(r′, r,Y, t)
fv(r

′, t)

V (r′)
dr′

− g(r,Y, t)
fv(r, t)

V (r)

+

∫ r/ 3√2

0

κC(r′, r′′,Y, t)
fv(r

′, t)

V (r′)

fv(r
′′, t)

V (r′′)

r2

r′′2
dr′

− fv(r, t)

V (r)

∫ Rm

0

κC(r′,Y, t)
fv(r

′, t)

V (r′)
dr′.

(3.14)

To lower the computational burden and stiffness of the rather stiff1 PBE, (3.14) will be
made dimensionless by introducing two new independent variables and one new dependent
variable. The radius has dimensions m and can be made dimensionless by dividing by a
characteristic length, namely Rm. The time can also be divided by some characteristic
time. This characteristic time is denoted tf , and is taken as the duration of the experiment,
i.e. the time from the first measurement is made until the last measurement is made.
Hence, the two independent variables introduced are ξ = r/Rm and τ = t/tf . This also
translates the volume to V (r) = V (Rmξ) = 4

3π(Rmξ)
3 = Vmξ

3. The dependent variable
fv(r, t) has units m−1 and is made dimensionless by multiplying by the same characteristic
length Rm, ψ(ξ, τ) = fv(r, t)Rm. The differentials in (3.14) will change according to the

1The term stiff is reagarded in this context as a rapid change in function value over small perturbations in
independent variable (large gradient). Numerical solvers often struggle with integrating stiff equations because
the step size taken must be reduced each iteration that is unsatisfactory. Step sizes reduced below tolerance raises
errors.

27

Chapter 3. Population Balance Modeling

definitions just made: ∂fv(r, t) = ∂ψ(ξ, τ)/Rm, ∂t = tf∂τ and dr = Rmdξ. The PBE
then reads

1

Rmtf

∂ψ(ξ, τ)

∂τ
=Vmξ

3

∫ 1

ξ

2g(ξ′Rm,Y, τ tf)β(ξRm, ξ
′Rm,Y, τ tf)

×ψ(ξ′, τ)

Rm

1

Vmξ′3
Rmdξ

′

−g(ξRm,Y, τ tf))
ψ(ξ, τ)

Rm

+Vmξ
3

∫ ξ
3√2

0

κC(ξ′Rm, ξ
′′Rm,Y, τ tf)

× ψ(ξ′, τ)

RmVmξ′3
ψ(ξ′′, τ)

RmVmξ′′3

(
ξRm
ξ′′Rm

)2

Rmdξ
′

−ψ(ξ, τ)

Rm

∫ 1

0

κC(ξ′Rm, ξRm,Y, τ tf)
ψ(ξ′, τ)

RmVmξ′3
Rmdξ

′.

(3.15)

The kernels, g, β and κC , now take r and t as their size and time arguments, however there
has been a change of variables, so the kernels must be remapped over to other domains.
The kernels are redefined accordingly

G(ξ,Y, τ) = g(ξRm,Y, τ tf) (3.16a)
B(ξ, ξ′,Y, τ) = β(ξRm, ξ

′Rm,Y, τ tf) (3.16b)
K(ξ′, ξ,Y, τ) = κC(ξ′Rm, ξRm,Y, τ tf). (3.16c)

By simplifying and canceling terms in (3.15) as well as inserting these new kernels cleans
up the PBE

∂ψ(ξ, τ)

∂τ
=tfRmξ

3

∫ 1

ξ

2G(ξ′,Y, τ)B(ξ, ξ′,Y, τ)
ψ(ξ′, τ)

ξ′3
dξ′

−tfG(ξ,Y, τ)ψ(ξ, τ)

+
tf
Vm

ξ3

∫ ξ
3√2

0

K(ξ′, ξ′′,Y, τ)
ψ(ξ′, τ)

ξ′3
ψ(ξ′′, τ)

ξ′′3

(
ξ

ξ′′

)2

dξ′

− tf
Vm

ψ(ξ, τ)

∫ 1

0

K(ξ′, ξ,Y, τ)
ψ(ξ′)

ξ′3
dξ′.

(3.17)

.
The PBE is now derived for the batch CSTR, however, (3.17) is not closed since ker-

nels have not yet been chosen. Choosing kernels is vital for this modeling task, and it has
been shown by Chen et al. [41] that different kernels produce different solutions. There-
fore the kernels chosen should reflect the system at hand. For the breakage kernels, the
breakage frequency,G, was chosen from Vankova et al. [32], because it was built based on
a turbulent oil-in-water emulsion, just as the system in mention. The daughter distribution
was chosen from Coulaloglou and Tavlarides [31], for the same reasons as the breakage

28

3.2 The Population Balance Equation for a Batch CSTR

frequency. Coulaloglou and Tavlarides based their work on a stirred, baffled tank, turbu-
lently agitating the liquid-liquid dispersion they considered.

The coalescence density, K, was split into a swept volume rate and a probability of
rupture, given a collision has occurred. When the droplets collide, they stick, and a thin
film of continuous phase liquid forms between them. The time it takes for this to drain
and eventually rupture, causing the droplets to coalesce, is called the drainage time, tc. If
the interaction time, ti, exceeds the drainage time, then the droplets may coalesce. The
coalescence efficiency is thus generally written

ψE(r, r′) = exp

(
− tc
ti

)
. (3.18)

Note that this efficiency, ψE , is different from the volume density distribution, ψ. The
drainage time can be modeled as a differential equation of the height of the film. When
the height drops to some critical height, the film ruptures.

The swept volume rate is usually split in three: turbulence-driven collisions, buoyancy-
driven collisions, and laminar shear-driven collisions. Normally the total swept volume
rate is the linear sum of them, and the rate used in this work is taken from Prince and
Blanch [33]. The coalescence efficiency was taken from Vankova et al. [32]. The kernels
for both breakage and coalescence is thus presented with radius as internal coordinate

g(r,Y) = kb,1
ε1/3

22/3r2/3

√
ρd
ρc

exp

[
−kb,2

σ

ρd25/3ε2/3r5/3

]
(3.19a)

β(r, r′) =
2.4

r′3
exp

[
−4.5

(2r3 − r′3)2

r′6

]
3r2 (3.19b)

ω(r′, r′′,Y) = 4
3
√

2kc,1ε
1/3(r′ + r′′)2(r′2/3 + r′′2/3)1/2 (3.19c)

ψE(r′, r′′,Y) = exp

[
−kc,2

ρ
1/2
c ε1/3

21/6σ1/2
(req(r

′, r′′))5/6

]
(3.19d)

req(r
′, r′′) =

1

2

(
1

r′
+

1

r′′

)−1

, (3.19e)

where kb,1, kb,2, kc,1 and kc,2 are model fitted parameters, ε is the turbulent energy dis-
sipation rate, σ is the surface tension of the dispersed droplets, ρd is the dispersed phase
density, ρc is the continuous phase density and req is the equidistant radius between the
two droplets. By inspecting (3.19), the environment vector is given by Y = (ρd, ρc, σ, ε)
From the chaotic nature of turbulence, the turbulent energy dissipation rate is stochastic is
spatially varying. Since the PBE derived was considered spatially invariant, the turbulent
energy dissipation rate is spatially averaged in order to produce a spatially invariant one
[43]

ε̄ =
P

ρcVl
. (3.20)

P is the power supplied to the emulsion by the agitator, and Vl is the volume of the emul-
sion.

Since ε is spatially averaged and uncertainties are related to it, the uncertainties prop-
agate into the kernels and the PBE. These uncertainties are captured by the parameters,

29

Chapter 3. Population Balance Modeling

kb,1, kb,2, kc,1, kc,2. If ε was known, the parameters should close to unity as noted by
Vankova et al., Chesters and Prince and Blanch [32, 34, 33]. This may not be the case.

In (3.19), the kernels were presented with dimensional radii as arguments. The PBE in
(3.17) is non-dimensional, and inserting the relation from (3.16) into (3.19) yields

G(ξ) = kb,1
ε1/3

22/3R
2/3
m ξ2/3

√
ρd
ρc

exp

[
−kb,2

σ

ρd25/3ε2/3R
5/3
m ξ5/3

]
(3.21a)

B(ξ, ξ′) =
1

Rm

2.4

ξ′3
exp

[
−4.5

(2ξ − ξ′3)2

ξ′6

]
3ξ′2 (3.21b)

Ω(ξ′, ξ′′) = R7/3
m 4

3
√

2kc,1ε
1/3(ξ′ + ξ′′)2(ξ′2/3 + ξ′′2/3)1/2 (3.21c)

ΨE(ξ′, ξ′′) = exp

[
−kc,2R5/6

m

ρ
1/2
c ε1/3

21/6σ1/2
(req(ξ

′, ξ′′))5/6

]
(3.21d)

req(ξ
′, ξ′′) =

1

2

(
1

ξ′
+

1

ξ′′

)−1

. (3.21e)

By inserting (3.21) into (3.17) and simplifying

∂ψ(ξ, τ)

∂τ
= k1ξ

3

∫ 1

ξ

2
1

ξ′2/3
exp

[
−k2

1

ξ′5/3

]
2.4

ξ′3
exp

[
−4.5

(2ξ3 − ξ′3)2

ξ′6

]
3ξ2ψ(ξ′, τ)

ξ′3
dξ′

− k1
1

ξ2/3

× exp

[
−k2

1

ξ5/3

]
ψ(ξ, τ)

+ k3ξ
3

∫ ξ
3√2

0

(ξ′ + ξ′′)2(ξ′2/3 + ξ′′2/3)1/2 exp

[
−k4

(
1

ξ′
+

1

ξ′′

)−5/6
]

× ψ(ξ′, τ)

ξ′3
ψ(ξ′′, τ)

ξ′′3

(
ξ

ξ′′

)2

dξ′

− k3ψ(ξ, τ)

∫ 1

0

(ξ′ + ξ)2(ξ′2/3 + ξ2/3)1/2

× exp

[
−k4

(
1

ξ′
+

1

ξ

)−5/6
]
ψ(ξ′, τ)

ξ′3
dξ′,

(3.22)

where the non-dimensional constants k1, k2, k3 and k4 are given by the model fitted pa-
rameters, the characteristic length and time, and the environment vector recently defined

30

3.3 Numerical Procedure

k1(Rm, tf ,Y) = tfkb,1
ε1/3

22/3R
2/3
m

√
ρd
ρc

(3.23a)

k2(Rm, tf ,Y) = kb,2
σ

ρd25/3ε2/3R
5/3
m

(3.23b)

k3(Rm, tf ,Y) =
tf
Vm

R7/3
m 4

3
√

2kc,1ε
1/3 (3.23c)

k4(Rm, tf ,Y) = kc,2R
5/6
m

ρ
1/2
c ε1/3

2σ1/2
. (3.23d)

For the solution of the PBE, these constants do not change, as no environment variables
change with time. They can therefore be computed before entering any solvers. To tidy up
(3.22), the kernels may be extracted as

KBB(ξ, ξ′,Y) = 2
1

ξ′2/3
exp

[
−k2

1

ξ′5/3

]
2.4

ξ′3
exp

[
−4.5

(2ξ3 − ξ′3)2

ξ′6

]
3ξ2 (3.24a)

KDB(ξ,Y) =
1

ξ2/3
exp

[
−k2

1

ξ5/3

]
(3.24b)

KBC(ξ′, ξ′′,Y) = (ξ′ + ξ′′)2(ξ′2/3 + ξ′′2/3)1/2 exp

[
−k4

(
1

ξ′
+

1

ξ′′

)−5/6
]

(3.24c)

KDC(ξ′, ξ,Y) = (ξ′ + ξ)2(ξ′2/3 + ξ2/3)1/2 exp

[
−k4

(
1

ξ′
+

1

ξ

)−5/6
]
. (3.24d)

and substituted in (3.22)

∂ψ(ξ, τ)

∂τ
= k1ξ

3

∫ 1

ξ

KBB(ξ, ξ′)
ψ(ξ′, τ)

ξ′3
dξ′

− k1KDB(ξ)ψ(ξ, τ)

+ k3ξ
3

∫ ξ
3√2

0

KBC(ξ′, ξ′′)
ψ(ξ′, τ)

ξ′3
ψ(ξ′′, τ)

ξ′′3

(
ξ

ξ′′

)2

dξ′

− k3ψ(ξ, τ)

∫ 1

0

KDC(ξ′, ξ)
ψ(ξ′, τ)

ξ′3
dξ′.

(3.25)

Equations (3.21), (3.23) and (3.25) close the set of equations, and the PBE can therefore
be solved.

3.3 Numerical Procedure
The population balance equation is a partial integro-differential equation (PIDE), and it
tends to be stiff. Therefore it is important to choose a numerical method of accuracy that
evaluates the integrals as well as the differentials precisely. A thorough introduction to

31

Chapter 3. Population Balance Modeling

numerical mathematics was given in Chapter 2, and emphasis was put on their accuracy.
Since the integrals require high precision, Riemann sums and trapezoids are not relevant.
The integrals are therefore approximated by higher order polynomials, starting from Simp-
son’s method. However, oscillations may occur at the boundaries for interpolating polyno-
mials with an equidistant grid. This is called Runge’s phenomenon, and as a consequence
of this, a higher density of grid points must be placed at the boundaries. This motivates
the use of Gauss, Gauss Lobatto or Gauss Radau quadratures. These numerical approx-
imations have a high density of collocation points at the endpoints, and they are of high
accuracy. The collocation points are roots of Jacobi polynomials and are therefore calcu-
lated on the domain where these polynomials are defined. This is not particularly useful
unless the model is remapped over to this reference domain, Ω, or inversely the colloca-
tion points are remapped to the physical domain, where the model is defined. A remapping
procedure for both the collocation points and Gaussian quadrature weights may be applied
to remap from Ω to the closed interval [x̂0, x̂N]

[x̂]i =
x̂N − x̂0

xΩ,N − xΩ,0
([xΩ]i − xΩ,0) + x̂0 (3.26a)

[ŵ]i =
x̂N − x̂0

xΩ,N − xΩ,0
[wΩ]i, (3.26b)

where i denotes that it is the i-th collocation point in the vector of collocation points.
To illustrate, consider Ω = [−1, 1] and x̂ ∈ [1, 10]. Then the remapping procedure will
preserve the spacing of the collocation points and weights. This is presented in Figure 3.2
and Figure 3.3, respectively. Note that the amplitude of the weight has changed in the
latter of them.

The Jacobi polynomials chosen are the ultraspherical Legendre polynomials on the
reference domain, Ω = (−1, 1), with weight function W (x) = 1. They are well known
for being robust in terms of the condition number of the coefficient matrix, as well as
having low errors as function of polynomial order [44]. The location of the roots depend
on the order of the polynomial. A higher order polynomial will result in more collocation
points, and according to the notation in (3.26), xΩ,0 and xΩ,N will move towards -1 and 1,
respectively. The endpoints -1, 1 are enforced with the Gauss Lobatto procedure discussed
in Chapter 2.

Since all the integrals in (3.25) are on different physical domains, a change of vari-
ables may be applied. In order to avoid defining one set of collocation points and integral
weights for all integrals, it is convenient that they span the same domain. Therefore they
are all remapped to the domain where the VDD is defined, namely [x̂0, x̂N] = [0, 1].
The coalescence death term is left as it is, but the birth terms are, however, rescaled by
introducing two new dimensionless quantities

γ =
ξ′ − ξ
1− ξ

(3.27a)

α =
ξ′

ξ
3√2

. (3.27b)

The introduced quantities also have Jacobian transformations, and those are reflected by

32

3.3 Numerical Procedure

-1 -0.5 0 0.5 1

Collocation point, x
i

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

Collocation point, x
i

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.2: The collocation points were remapped from the reference domain [-1, 1] to another
arbitrary domain [1, 10] for demonstration purposes.

-1 -0.5 0 0.5 1

Collocation point, x
i

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

In
te

g
ra

l
w

e
ig

h
t,

 w

2 4 6 8 10

Collocation point, x
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
m

a
p

p
e
d

 i
n

te
g

ra
l
w

e
ig

h
t,

 w
r

Figure 3.3: The integral weights were remapped from the reference domain [-1, 1] to an arbitrary
domain [1, 10] for demonstration purposes.

33

Chapter 3. Population Balance Modeling

the change in differentials in the integrals. The arising PBE that is ready for implementa-
tion reads

∂ψ(ξ, τ)

∂τ
= k1ξ

3

∫ 1

0

KBB(ξ, ξ′)
ψ([1− ξ]γ + ξ, τ)

ξ′3
(1− ξ)dγ

− k1KDB(ξ)ψ(ξ, τ)

+ k3ξ
3

∫ 1

0

KBC(ξ′, ξ′′)
ψ(ξα3√2

, τ)

ξ′3
ψ(ξ[1− α3

2]1/3, τ)

ξ′′3

(
ξ

ξ′′

)2
ξ
3
√

2
dα

− k3ψ(ξ, τ)

∫ 1

0

KDC(ξ′, ξ)
ψ(ξ′, τ)

ξ′3
dξ′,

(3.28)

or alternatively on fully discretized form

∂ψ(ξ, τ)

∂τ
= k1ξ

3
N∑
i=1

wiKBB(ξ, [1− ξ]γi + ξ)
ψ([1− ξ]γi + ξ, τ)

([1− ξ]γi + ξ)3
(1− ξ)

− k1KDB(ξ)ψ(ξ, τ)

+ k3ξ
3
N∑
i=1

wiKBC

(
ξαi
3
√

2
, ξ[1− α3

i

2
]1/3
)

×
ψ(ξαi3√2

, τ)(
ξαi
3√2

)3

ψ(ξ[1− α3
i

2]1/3, τ)

(ξ[1− α3
i

2]1/3)3

(
ξ

ξ[1− α3
i

2]1/3

)2
ξ
3
√

2

− k3ψ(ξ, τ)

N∑
i=1

wiKDC(ξi, ξ)
ψ(ξi, τ)

ξ3
i

,

(3.29)

As seen in the transition from (3.28) to (3.29), the equation is transformed to a system of
differential equations. The variables ψ, ξ and τ are therefore vectors. In each equation, the
VDD is interpolated from ξ′ over to γ and α for breakage and coalescence birth, respec-
tively. The interpolations are performed using Steffen’s method, a method of piecewise
cubic splines that preserves monotonicity (non-oscillatory behavior) in the polynomial
interpolated. The kernels are time independent, and to save computing power, they are
therefore evaluated before entering the solver. The weights are known and computed from
(2.43), (2.44) and (2.53).

3.4 Experimental Details and Measurements
In Chapter 1.2, the experimental setup was shown. The setup consists of a CSTR with
the oil-in-water emulsion, and to measure the VDD, a MasterSizer 3000 is used. This is
a light-scattering device that measures the diameter of a certain droplet. After measuring
all droplets, it returns the percentage of the total volume that is occupied by each size
class measured. The particular data set which will be regressed is shown in Figure 3.4.
The experimental radii of interest range from 1 µm to 200 µm. Also, each distribution

34

3.4 Experimental Details and Measurements

has been rescaled to match the phase fraction at which the experiment was conducted,
ϕ = Voil/Vemulsion = 0.7× 10−2 (0.7%)

fexpv (r, tj) =
ϕ∫ r=rN

r=r0
fexpv,0 (r, tj)dr

fexpv,0 (r, tj), (3.30)

where r0 = 1 µm and rN = 200 µm. If the solution of the PBE should ever violate the
mass balance, the integral at any given time should be unequal to the phase fraction. Thus,
the validity of a simulation can easily be checked by checking the integral at each time
step.

10
0

10
1

10
2

0

50

100

150

200

250

300

350

400

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
,
[1

/m
]

Experimental Measurements

t= 0s

t= 60s

t= 150s

t= 210s

t= 300s

t= 390s

t= 450s

t= 510s

t= 570s

t= 630s

t=1020s

t=1320s

t=1680s

t=2010s

t=2340s

t=2670s

t=2970s

Figure 3.4: The experimental data obtained from Moon [45]. Each distribution shown is a measure-
ment in time. The arrows show which direction the volume density distribution moves with respect
to time.

By inspecting Figure 3.4, it is observed that the distribution tends towards smaller
droplets as time passes on. This implies strong breakage, which is further confirmed by the
long leading edge. It should also be noted that the trailing edge is held back and has a steep
gradient. This may imply that coalescence produces droplets at this size, so that breakage
death and coalescence birth have reached an equilibrium at this size. Also it should be
pointed out how the distribution rises in the beginning. As the volume is constant, the area
under the distribution must also be constant, and therefore, if the distribution rises, it has
to narrow. At the end it settles down again, causing the distribution to widen. This is due
to the production of smaller droplets.

35

Chapter 3. Population Balance Modeling

Table 3.2: The table shows the physical data and some parameter values.

Quantity Value

ϕ 0.7× 10−2

P 0.366 W
Vl 725× 10−6 m3

Rm 500× 10−6 m
Vm 5.24× 10−10 m3

tf 2970 s
ρc 1000 kg m−3

ρd 837 kg m−3

σ 22× 10−3 N m−1

3.5 Regression Approaches
An equation can obviously be solved numerically, but it is not of relevance if it is not
experimentally validated and verified. Solving the PBE is no different; the PBE contains
four parameters in this case, and those are to be fitted to experimental data for the model
to be useful. The model was in the previous sections deduced for a batch CSTR, just as
the lab setup for the experimental data provided by Moon [45].

The main goal of this work is to validate the model derived, and the approaches on this
are trifold. All approaches are non-linear regression techniques, however the cost function
to optimize for varies. The first approach is to consider residuals between the modeled and
experimental data for all size classes measured and all measurements in time, i.e.

min
β

J =

Nt∑
j=1

Np∑
i=1

(fexpv (ri, tj)− fnumv (ri, tj ;β))2

s.t. βi ≥ 0,∀βi ∈ β,

(3.31)

where β is the fitting vector, composed of kb,1, kb,2, kc,1 and kc,2, Nt is the number of
measurements in time, and Np is the number of size classes measured. This formulation is
referred to as the sum of squared errors on the distributions (dSSE). As (3.31) suggests, the
PBE presented in (3.25) must be dimensionalized and interpolated back onto the domain
where the size classes are measured before the comparisons can be made, that is, the
residuals must be defined for the same radius and time, ri and tj . The minimization
statement requires the model to be solved iteratively, constantly trying new parameter
values to chart the descent direction. This can be time consuming, and emphasis should
be put on runtimes for the model evaluations.

The second technique of regression is very similar to the first, however a weighting
function will be imposed to inform the optimizer of which measurements should be em-
phasized. Since the model is spatially invariant, the high shear near the impeller will not
be reflected in the model. Hence, smaller droplets produced in experimental data may not
be accounted for. The weighting function may be chosen as a shifted Sigmoid function, or
an error function, so that the weighting on these small droplets approaches zero. With this

36

3.5 Regression Approaches

method, the objective is to be able to recreate the main trend without emphasizing droplets
that are unaccounted for. The weighting function is as follows2

w(r) =
1

1 + exp m−r
s

, (3.32)

where m = 6 µm is the r-value of the midpoint of the s-shaped function and s = 1 µm is
the slack of the function. Decreasing the slack will result in a steeper slope. The param-
eters m and s was chosen after inspecting the experimental measurements in detail. The
resulting optimization problem is written

min
β

J =

Nt∑
j=1

Np∑
i=1

w(ri)(f
exp
v (ri, tj)− fnumv (ri, tj ;β))2

s.t. βi ≥ 0,∀βi ∈ β.

(3.33)

This formulation is referred to as the weighted sum of squared errors on the distributions
(wdSSE).

The third technique employed will be slightly different, however the idea is the same.
The focus will be to locate the center of volume, referred to as the mean, µ. It is the first
statistical moment, and it is calculated from (2.58) with j = 1. The cost function will not
be a function of radii directly, since the mean is the average over the radial domain. The
problem reads

min
β

J =

Nt∑
i=1

(µexp(ti)− µnum(ti;β))2

s.t. βi ≥ 0,∀βi ∈ β.

(3.34)

This formulation is referred to as the sum of squared errors of the mean (mSSE). Fitting
the mean of the distribution may put less weight on fitting all measurements exactly, but
instead catch the main trend of where the distribution is shifting. Even though the objective
with this method is to fit the mean, the parameter combination to be found will produce
some modeled distribution which will be compared to experimental distributions. This is
to verify that the parameter combination indeed is a good one, not falling under the false
impression that a reasonably good fit for the mean is sufficient.

2Note that the weighting function, w(r), is not to be confused with the integral weights, wi. The former is
used in the minimization objective, and the latter is used to discretize integrals.

37

Chapter 3. Population Balance Modeling

38

Chapter 4
Results and Discussion

The population balance equation presented in (3.29) was solved using orthogonal collo-
cation as presented in Chapter 2, and implemented in MATLAB and C++. The com-
putational burden of performing parameter estimation on the PBE was found to be too
expensive for MATLAB and its built-in function lsqcurvefit, and so the program
was rewritten to object-oriented code in C++. The rewritten program made use of external
numerical libraries, specifically SUNDIALS [46] for the solution of ordinary differential
equations (ODEs), and GNU Scientific Library (GSL) [47] for linear algebra, interpolation
and parameter estimation. Dakota [48] was also unsuccessfully attempted for parameter
estimation.

As noted earlier, there are a few limitations to the model that was developed in Chapter
3. The model was developed for a zero-dimensional CSTR, that is, it has been assumed
spatially invariant. Consequently, the turbulent energy dissipation rate, ε̄, has been spa-
tially averaged as well. As a result, a high shear rate near the impeller of the tank is
unaccounted for. By inspecting Figure 4.1, there is a strong coalescence birth contribution
at the right tail. There is also strong breakage over the whole radial span. However, for the
breakage to be that strong for both large droplets and small droplets, and for coalescence
to be that strong for large droplets and weak for small droplets is contradictory, unless the
shear rate varies over the tank. Breakage is naturally dominant for large droplets, however,
when the production of small droplets becomes large, the collision frequency in (3.21d)
grows large, consuming the smaller droplets by coalescence. By this reasoning, the smaller
droplets could be produced due to either a) spatially varying ε, b) several fragments born
due to breakage, or c) unmodeled contribution from the pump in Figure 1.3. Either way,
the model fails to account for the small droplets, and emphasis will not be put on these,
but rather on the main trend of the evolution and the radii at which the distributions peak
(mode). The long tail pushes down the experimental distribution, and therefore, the value
of the peak is also anticipated to be off for the final fit.

39

Chapter 4. Results and Discussion

10
0

10
1

10
2

0

50

100

150

200

250

300

350

400
V

o
lu

m
e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
,

[1
/m

]
Experimental Measurements

t= 0s

t= 60s

t= 150s

t= 210s

t= 300s

t= 390s

t= 450s

t= 510s

t= 570s

t= 630s

t=1020s

t=1320s

t=1680s

t=2010s

t=2340s

t=2670s

t=2970s

Figure 4.1: The experimental data obtained from Moon [45]. Each distribution shown is a measure-
ment in time. The arrows show which direction the volume density distribution moves with respect
to time. The figure is reprinted from Chapter 3.4 for accessibility in the current chapter.

4.1 Charting the Parameter Space

Parameter estimation on non-linear functions results in non-linear regression. One of the
main issues regarding non-linear optimization is the non-convexities of the objective func-
tion formulations. Convex problems ensure that any local minimum is also the global
minimum [49]. For non-convex problems, this is not the case, which means algorithms
specializing in these minimization objectives may or may not find the global minimum.
Possibly it may get stuck in local minima, or encounter non-descending search directions
for bad initial guesses. Therefore, the parameter estimation of this non-convex problem
requires a good initial guess. Finding this guess requires knowledge of the behavior of the
model, and it requires the user to be familiar with how the errors will be a function of the
different parameter combinations.

By inspecting equations (3.23) and (3.24), it is seen that kb,2 and kc,2 are in the expo-
nential terms with negative signs. For an arbitrary negative exponent, the function looks
like the plot presented in Figure 4.2. When x → 0, the function takes the value of unity,
and when x → ∞, the function takes the value of zero. In between, the function is sensi-
tive to change. However, the values outside the interval [1× 10−3, 1× 101] approximate
to 1 and 0 respectively, and hence, the function can be considered insensitive to change
there. That means, there exist values for kb,2 and kc,2 for which the kernel is insensitive
to change. Keeping kb,1 and kc,1 constant may result in insensitivities in the objective
function with respect to the exponential parameters kb,2 and kc,2. This is explored further

40

4.1 Charting the Parameter Space

later.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
x
p

(-
x
)

Figure 4.2: For a negative exponential function, the function takes the value of 1 when x → −∞,
and 0 when x→∞. In between, the function is sensitive to change.

The author of this work previously familiarized himself with the model and the validity
range of the parameters to fit. He discovered that kb,1 and kc,1 mainly govern the dynam-
ical behavior of the VDD, and that kb,2 and kc,2 mainly govern where the steady state
VDD settles. Increasing kb,2 will decrease the influence of breakage on smaller droplets,
and increasing kc,2 will decrease the influence of coalescence on larger droplets. For the
duration of this experiment, tf , dynamical parameters (kb,1 and kc,1) above unity is unrea-
sonable as it makes the VDD reach steady state too fast. As a result, an upper bound could
be placed on these parameters.

Another approach was used to find bounds for the other two parameters. First, co-
alescence was disregarded (setting its dynamical parameter, kc,1, to zero), and then the
log-normal distribution depicted in Figure 4.3a was used as initial condition in the PBE.
Then, kb,2 was varied until droplets below some critical size was unaffected by breakage,
that is, breakage did not produce droplets below this size. This critical radius was deter-
mined from the experimental data in Figure 4.1 to be approximately 5 µm, and the modeled
dynamical evolution is shown in Figure 4.4a. With kb,1 = 3× 10−6, the parameter found
was kb,2 = 2× 10−4. Any smaller values would produce smaller droplets.

The same procedure was applied for coalescence with a different log-normal distribu-
tion. The objective here was to limit the contribution of coalescence below some criti-
cal radius. This radius was found from the experimental data to be approximately 40 µm.
Thus, breakage was disregarded (setting kb,1 to zero), and kc,2 was varied until coalescence
stopped producing droplets above 40 µm. With a dynamical parameter of kc,1 = 1× 10−4,
this value was found to be kc,2 = 3× 102. Any smaller value would produce larger

41

Chapter 4. Results and Discussion

droplets. The log-normal distribution used as initial condition is seen in Figure 4.3b, and
the evolution is seen in Figure 4.4b.

10
0

10
2

0

50

100

150

200

250

300

350

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]

Breakage

10
0

10
2

0

1000

2000

3000

4000

5000

6000

7000

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]

Coalescence

(a) (b)

Figure 4.3: Initial conditions used to find bounds for (a) kb,2 (breakage only), and (b) kc,2 (coales-
cence only).

By doing this experiment for both breakage and coalescence it was also found that
the parameters are, to some extent, coupled. This means, when switching off either phe-
nomenon, the parameters for the other phenomenon would not affect the dynamical behav-
ior of the VDD independently. Even though kb,1 and kc,1 mainly affect how fast the VDD
reaches steady state, they also to some extent determine where it settles. The magnitude
of contribution of coalescence can for instance be amplified by increasing kc,1, even for
values of kc,2 that would normally be limiting.

The goal of this work is to find the optimal parameter combination that drives the
residuals to their minimum. Suspecting coupled parameters and non-descending search
directions (flat gradients) motivated charting the search space for the objective functions
formulated in Chapter 3.5. The parameters found previously for breakage were held con-
stant, and the coalescence parameters were varied over an appropriate parameter space.
This experiment will from now on be referred to as the coalescence experiment. The cost
function in (3.31) – which is the sum of squared errors for the VDD (dSSE) – is presented
as a function of kc,1 and kc,2 in Figure 4.5. As observed, there seems to be some values of
kc,2 that flatten out the objective function as foreseen. However by traversing the space of
kc,1, the descent direction is found. The plot shows an objective function that somewhat
resemble the non-linear Rosenbrock function. It has a clear minimum at the bottom of
the valley, but this minimum is for a fixed set of breakage parameters, so whether it is the
global optimum or not is yet to be answered. The error rises quickly with regard to kc,2,

42

4.1 Charting the Parameter Space

10
0

10
2

0

100

200

300

400

500

600

700

800

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]

Breakage

10
0

10
2

0

1000

2000

3000

4000

5000

6000

7000

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]

Coalescence

(a) (b)

Figure 4.4: The log-normal experiment produced the temporal evolution of the volume density
distribution depicted. The cases were done for (a) breakage only, and (b) coalescence only.

and the steep gradient indicates that for some perturbations of the initial guess of kc,2, an
optimizer is likely to fail. Traversing larger values than kc,2 = 4× 103 gave a flat gradient
and is not presented here. The optimal parameter combination is given along with those
for the other regression approaches in Table 4.1.

The cost function in (3.33) – the weighted sum of squared errors for the VDD – is
presented as a function of the coalescence parameters, kc,1 and kc,2, in Figure 4.6. It
should be pointed out that since the weight function ranges from zero to unity, the wdSSE
can never take values greater than the original dSSE presented in Figure 4.5. It is observed
that the wdSSE has the same trends as the dSSE, which is to be expected. However,
it has narrowed and become shallower. This makes it harder to identify and provide an
initial guess inside the valley. Initializing a gradient-based optimizer at the flat areas will
probably not lead anywhere. Increasing the areas of flatness is therefore not desirable. The
optimal parameter combination is shown in Table 4.1, and surprisingly, it was very similar
to that of the dSSE. The findings were odd and required further investigation.

Finally, the coalescence experiment was completed by charting the sensitivities of the
mSSE as a function of kc,1 and kc,2. This is the third cost function formulated in Chapter
3.5, and it is seen in (3.34). The result is shown in Figure 4.7. Also here, the valley
twists along larger kc,1 and kc,2. The valley may be approached from the rightmost part
of the figure with a gradient-based optimizer. From that angle the cost function descends
gradually towards the minimum, making it possible to traverse the objective function down
to the optimal coalescence parameters. However, coming from small values of kc,2 may be
troubling. There is a large bump in the upper left corner of the figure, and this bump tells

43

Chapter 4. Results and Discussion

10
6

10
7

S
S

E
 [

1
/m

2
]

10
8

Unweighted Sum of Squared Errors

kc1 [-]

10
3

kc2 [-]

10
9

10
-4

10
2

10
7

10
8

Figure 4.5: The cost function in (3.31) is depicted as a function of the coalescence parameters, kc,1
and kc,2. The breakage parameters, kb,1 and kb,2, were held constant in the charting procedure. The
figure shows a clear minimum at the bottom of the valley.

the optimizer to move in the other direction. The bump may result in a returned “optimal”
value at approximately kc,1 = 1× 10−3 and kc,2 = 50. Obviously this is not optimal, and
the cost function takes values two orders of magnitude greater than the “true” optimum. It
is therefore true that for these breakage parameters, the mSSE has several local minima.

Table 4.1: By keeping the breakage parameters constant, the optimal coalescence parameters were
determined by charting an appropriate parameter space. The optima are listed for the different
optimization formulations. The objective function value is abbreviated OFV.

Method OFV kb,1 kb,2 kc,1 kc,2
dSSE 3.08× 106 3× 10−6 2× 10−4 8.54× 10−4 5.67× 102

wdSSE 2.94× 106 3× 10−6 2× 10−4 6.46× 10−4 5.17× 102

mSSE 6.20× 102 3× 10−6 2× 10−4 3.77× 10−3 8.89× 102

For the parameter combinations found in Table 4.1, the dynamic simulations were
carried out to compare the actual fit to the experimental data. The simulations show both
the temporal evolution, the steady state, and the fit of the mean, all of which are presented
in Appendix A.1. It is, for all cases, seen that breakage is not strong enough for any of
the optima. None of the optima seem to get the mean low enough (approximately 20 µm),
and none of them get the steady state solution correct. The variations between the normal
dSSE and the wdSSE are also not emphasized in either of the figures. The discoveries are
unsatisfactory, and they suggest that other breakage parameters should be attempted.

44

4.1 Charting the Parameter Space

10
7

S
S

E
 [

1
/m

2
]

Weighted Sum of Squared Errors

kc1 [-]

10
3

10
8

kc2 [-]
10

-4
10

2

10
7

10
8

Figure 4.6: The cost function of (3.33) is depicted as a function of the coalescence parameters, kc,1
and kc,2. The breakage parameters, kb,1 and kb,2, were held constant in the charting procedure. The
figure shows a clear minimum at the bottom of the valley, however, the valley is shallower, and it is
narrower than for the dSSE.

By the coalescence experiment, both of the suspected problems were confirmed; the
dSSE and the wdSSE contained flat gradients, and the mSSE contained multiple minima,
both of which complicates the optimization process due to the difficult gradient navigation.
However, both the dSSE and the wdSSE had clear minima at the bottom of a valley, and
there should be no difficulties of navigating the valley, given that a sufficiently good initial
guess is provided. The minimum may or may not be found for bad initial guesses, based
on some factors: a) the Jacobian step size taken, b) function tolerance and c) the choice
of algorithm. For greater Jacobian step sizes, the optimizer will take longer steps in the
defined search direction, and hopefully it will arrive at a point of descension. From there
it is likely to find its way through the valley. For smaller function tolerances, the optimizer
will keep navigating the flat areas until the relative change in the objective function is less
than the threshold. If this threshold is small enough, it may cross the flat area and arrive
at a point of larger gradients, successfully finding its way to the minimum. There exist
many different algorithms, and each algorithm specializes in different topics. Employing
an algorithm meant for navigating areas of flat gradients could also be attempted.

The three points just mentioned are for bad initial guesses. Hopefully this can be
avoided. The three “solutions” do not offer any guarantee of solving the problem, and at
best it may find the optimum. This is not good enough, and other methods were employed
to guarantee an initial guess at a point of descension. The methods include drawing the cost
function as a function of the two-dimensional parameter space, creating similar surface
plots as for Figure 4.5, Figure 4.6 and Figure 4.7, but for varying breakage parameters as

45

Chapter 4. Results and Discussion

10
4

2
]

Sum of Squared Errors, Mean

kc1 [-]

10
3

kc2 [-]

10
6

10
-4

10
2

10
3

10
4

10
5

Figure 4.7: The cost function of (3.34) is depicted as a function of the coalescence parameters, kc,1
and kc,2. The breakage parameters, kb,1 and kb,2, were held constant in the charting procedure. The
valley is pronounced right after a bump in the cost function.

well. That is, the coalescence experiment is repeated for different breakage parameters,
successfully charting the entire parameter space. The squared residual surfaces will be
shown from different viewpoints to highlight difficulties in the navigation problem.

4.2 Augmenting the Search Space
As expected, the breakage parameter combination used for the coalescence experiment
was not optimal. However, the findings of the experiment are still important and highly
relevant. The experiment has revealed the nature of the three optimization formulations, at
least in the coalescence parameter space. The discoveries show that a random initial guess
will be a bad idea, and that the parameter estimation task is non-trivial. Given the fit in
Appendix A.1, an augmented parameter search could possibly provide stronger breakage,
while still keeping the pronounced coalescence edge at large droplets. The augmentation
spanned four orders of magnitude in kb,1 and kc,1, and five orders of magnitude for kb,2
and kc,2. The parameter space is shown in Table 4.2.

The PBE is a stiff system, and some parameter combinations stiffens the system fur-
ther. Sometimes this resulted in long runtimes, and for a four-dimensional search space,
the computational burden grew significantly. To get sufficiently high accuracy per simula-
tion, 200 collocation points were used in the radial domain. By having a search space of
the dimensions specified in Table 4.2, even the coarse grid of 10 points in each direction
resulted in 10000 simulations with 200 collocation points in each simulation. This coarse

46

4.2 Augmenting the Search Space

Table 4.2: The table presents the coarse parameter space of the augmented parameter search. The
dSSE, wdSSE and the mSSE were charted in this parameter space.

Bound kb,1 kb,2 kc,1 kc,2

Lower 1× 10−7 1× 10−5 1× 10−7 1× 10−2

Upper 1× 10−3 1 1× 10−3 4× 103

search did not offer very high precision, but it displayed the nature and trend of the ob-
jective functions, and how they responded to changes in the different parameters, without
rendering the system too large. The coarse charting is shown in Appendix A.2 and the op-
timal parameter combination is threefold; there is one optimal parameter combination for
each optimization formulation. The three optimal combinations are listed in Table 4.31.
For visualization purposes, the surface plots are shown for varying parameters x and y at
the optimal parameter combination z and w. That is, the optimal parameter combination
was found, and the two-dimensional parameter variations are at the fixed, optimal combi-
nation of the other two parameters. As seen, there are vast areas of insensitivity for two
fixed, optimal parameters, some of them even coming from unsolvable PBEs arising from
stiff parameter combinations. Those combinations are the yellow areas. These insensitive
areas are not particularly interesting, and the sensitive areas were not accurate enough to
draw any conclusions.

Table 4.3: The optimal parameter combinations for the three different optimization formulations.
The combinations are crude, and they are for the coarse grid. The objective function value is abbre-
viated OFV.

Method OFV kb,1 kb,2 kc,1 kc,2
dSSE 2.25× 106 4.64× 10−5 4.64× 10−4 1.00× 10−3 2.28× 102

wdSSE 1.89× 106 4.64× 10−5 4.64× 10−4 1.00× 10−3 2.28× 102

mSSE 6.53 3.59× 10−4 5.99× 10−3 1.29× 10−4 2.28× 102

It is interesting to note that the 4!
2!(4−2)! = 6 different variations in Appendix A.2 were

very different in nature. Some of them, for instance variations in kb,1 and kc,1, produced
smooth, well-defined surfaces, whereas others, for instance variations in kb,1 and kc,2,
produced jagged surfaces, which can be difficult to extract any information from. For
fixed kb,2 and kc,1, the surfaces in Figure A.10, Figure A.11 and Figure A.12 will most
likely be hard to navigate, especially if the step size taken is relatively large. Those for
varying kb,2 and kc,2 are also jagged and can be hard to traverse. The other surfaces look
reasonable. All parameter spaces are relevant in the search of the minimum, and at some
point kb,1 and kc,2 has to be varied, possibly simultaneously. In that case, the optimizer
enters the jagged surfaces.

To find out whether the jaggedness was a matter of resolution or an inherent structure

1Note that the grids are very sensitive to change in their parameter values. The parameter search was compu-
tationally demanding, and the grids therefore had to be coarse. As a result, the optimalities are also coarse, and
possibly perturbed from the global optima.

47

Chapter 4. Results and Discussion

Table 4.4: The table presents the refined parameter space of the augmented parameter search. The
dSSE, wdSSE and the mSSE were charted in this parameter space.

Bound kb,1 kb,2 kc,1 kc,2

Lower 2.15× 10−6 1.29× 10−4 1.67× 10−5 1.30× 101

Upper 1.0× 10−3 2.15× 10−2 1× 10−3 4× 103

of the optimization formulations, the areas where the surfaces were sensitive to change
were subjected to a refined parameter search. The grid resolution was enhanced to 15
grid points in each direction (154 = 50625 simulations in total), and the search space
was contracted, removing areas of flat gradients. The refined search is viewed from all
six combinations of parameters in Appendix A.3, and the search space was condensed
from Table 4.2 to Table 4.4. By inspecting Figure A.28, Figure A.29 and Figure A.30,
it was discovered that the jaggedness in Figure A.10, Figure A.11 and Figure A.12 was
a matter of resolution, and that the true nature of the objective functions was s-shaped in
the two-dimensional parameter space. Some of the simulations still failed to solve, due to
small values of kc,2 or large values of kb,1. Decreasing kc,2 produces increasingly larger
droplets, and below a certain value, the distribution is pushed out of the radial domain
(r > Rm). High values of kb,1 increase the dynamics of breakage on magnitudes where
the PBE was unable to be integrated in time. The refined optimal parameter table is given
in Table 4.5.

Table 4.5: The optimal parameter combinations for the three different optimization formulations.
The combinations are still crude, even though they were refined from Table 4.3. The objective
function value is abbreviated OFV.

Method OFV kb,1 kb,2 kc,1 kc,2
dSSE 1.46× 106 2.99× 10−5 5.56× 10−4 5.56× 10−4 2.28× 102

wdSSE 1.06× 106 7.19× 10−5 8.02× 10−4 7.47× 10−4 1.51× 102

mSSE 7.09 2.68× 10−4 4.98× 10−3 7.20× 10−5 2.94× 101

By inspecting Table 4.3 and Table 4.5, it is found that the refined search actually
gave a worse objective function value (OFV) for the mSSE than the coarse grid, which
may seem peculiar. The parameter values are most notably changed in the coalescence
parameters, however the breakage parameters were also affected. The coalescence per-
spective is displayed in Figure 4.8. It is seen that the coalescence parameters that were
previously optimal are now significantly suboptimal. This must be a consequence of the
change in the breakage parameters from kb,1 = 3.59× 10−4 → kb,1 = 2.68× 10−4

and kb,2 = 5.99× 10−3 → kb,2 = 4.98× 10−3. The perturbation may seem small,
but it gave a significant change in the OFV. From a different perspective, the breakage
parameters were varied over the same coalescence parameters as for the coarse grid, see
Figure 4.9. It is seen that the resolution is still insufficient, and the grid is still very much
coarse. Since the exact same parameter combination is not available for the refined surface
plots, the exact same OFV was not produced.

48

4.2 Augmenting the Search Space

10
0

12.95

S
S

E
 [

m
2
]

10
5

129.5

Kc2 [-]

Mean Sum of Squared Errors

1295

Kc1 [-]

0.000167
0.000017

kb1 = 0.000268, kb2 = 0.00498

X: 227.6

Y: 0.0001292

Z: 119.9

Figure 4.8: The figure is a surface plot of varying kc,1 and kc,2 with perturbed breakage parameters
from the coarse grid. The objective function value has increased significantly.

10
2

10
4

S
S

E
 [

m
2
]

10
6

0.0013

Kb2 [-]

Mean Sum of Squared Errors

Kb1 [-]

0.0002150.0129 0.000021

kc1 = 0.000129, kc2 = 228

X: 0.004985

Y: 0.0004158

Z: 493.1

Figure 4.9: The figure is a surface plot of varying kb,1 and kb,2 with the same coalescence parame-
ters as from the coarse grid. The objective function value has increased significantly.

49

Chapter 4. Results and Discussion

4.3 Parameter Estimation
The optima from Table 4.3 and Table 4.5 were used as initial guesses in a trust-region
optimization method, specifically Levenberg-Marquardt. The optimization was performed
through the multifit non-linear driver of GSL with the methods
parameterEstimationSSE and parameterEstimationMean in the user-
defined PBModel class. The objective of the optimization was to identify the real global
minimum of the optimization formulations, and more importantly, how many experimental
distributions were necessary to stably converge to the same set of parameters. The number
of distributions will pre-determine the minimum required number of measurement devices
in a process design optimization, and is an important aspect of the current work.

The optimization routine employed used subroutines for scaling the parameters when
they differed in their order of magnitude, such as for the system considered. The Moré
damping strategy supposedly took care of rescaling the parameters so that the relative step
size was approximately the same. However, employing the optimization routine without
further considerations took the initial guess nowhere, and the same point was returned.
The parameters were then manually rescaled to around unity, and the Jacobian step size
was increased accordingly. The parameter search was then completed successfully and the
parameters returned with their 95 % confidence intervals are presented in Table 4.6 and
Table 4.7 for initial guesses from Table 4.3 and Table 4.5, respectively. The OFVs are
presented in Table 4.8.

Table 4.6: The table displays the optimal parameters resulting from the parameter estimation. The
initial guess provided was taken from Table 4.3.

Method kb,1 kb,2 kc,1 kc,2

dSSE (3.90± 0.03)× 10−5 (5.12± 0.03)× 10−4 (9.89± 0.03)× 10−4 (2.86± 0.02)× 102

wdSSE (3.92± 0.01)× 10−5 (5.80± 0.02)× 10−4 (9.06± 0.03)× 10−4 (2.76± 0.01)× 102

mSSE (3.56± 0.14)× 10−4 (6.13± 0.14)× 10−3 (1.18± 0.07)× 10−4 (2.29± 0.10)× 102

Table 4.7: The table displays the optimal parameters resulting from the parameter estimation. The
initial guess provided was taken from Table 4.5.

Method kb,1 kb,2 kc,1 kc,2

dSSE (2.90± 0.02)× 10−5 (5.62± 0.02)× 10−4 (5.81± 0.01)× 10−4 (2.50± 0.01)× 102

wdSSE (5.30± 0.04)× 10−5 (7.20± 0.04)× 10−4 (7.93± 0.05)× 10−4 (2.09± 0.02)× 102

mSSE (2.48± 0.09)× 10−4 (5.04± 0.12)× 10−3 (6.28± 0.53)× 10−5 (3.34± 0.11)× 101

It is interesting to note that the OFV for the dSSE and wdSSE became better by refining
the coarse grid, however, the opposite is true for the mSSE, see Table 4.3 and Table 4.5.
By providing an initial guess with a lower OFV, the parameter estimation results became
worse than if the initial guess with a higher OFV were to be provided, see Table 4.8. This
is both true for the dSSE, the wdSSE and the mSSE. The initial guess from the coarse grid
provided better results for both the dSSE and the wdSSE, and the initial guess from the
refined grid provided better results for the mSSE, even though these initial guesses were
arguably worse than their counterparts. The findings may be a result of the Jacobian step

50

4.3 Parameter Estimation

Table 4.8: Objective function values for the parameter estimation with coarse and refined initial
guesses.

Method Coarse Refined

dSSE 1.20× 106 1.30× 106

wdSSE 6.91× 105 7.27× 105

mSSE 5.17 4.28

size increase that was discussed previously. If the step size has been increased too much,
the initial step might be too large, so that starting closer to the optimum might actually
make the optimizer move past the optimum. It is also to be pointed out that breakage and
coalescence are competing phenomena, and their highly non-linear behavior can be hard to
estimate correctly, especially when their dynamical parameters grow large, which stiffens
the PBE further. Small changes in these parameters can lead to significantly different
behavior, as seen previously in Figure 4.9.

To check how sensitive the parameter estimation was to the initial guess, the optimal
initial parameter combination for the dSSE in Table 4.3 was perturbed by a factor of 2 in
each of the parameters. There are 14 different parameter combinations that were subject
to perturbation, and they are all listed in Table 4.9. It is seen that the initial guess matters,
and that the small perturbation of a factor 2 seems to move the optimal solution for all
cases. None of the perturbed cases have converged to the non-perturbed case. Some of the
perturbations resulted in solutions that were no longer even close to the nominal optimum.
This is true for perturbing a) kb,1 and kc,2, and b) kb,2 and kc,1. The latter even gives non-
sensical parameter values (negative). Perturbing kb,2 alone even produced smaller values
than the non-perturbed case, which is strange. It means that the value of kb,2 has moved
from a great value, past the non-perturbed optimal value, and to a smaller value. As seen
before, the error surfaces twist in at least two dimensions, so it might mean that the other
parameters were not at the point where the non-perturbed kb,2 was optimal. In this case,
the optimizer would move straight past the non-perturbed optimal kb,2.

The results from the perturbation experiment may also indicate that the Jacobian step
size taken was too large. There are many tunable internal parameters in the Levenberg-
Marquardt optimization routine employed, and the Jacobian step size is only one of many.
To confirm that the different optima found in Table 4.9 was not a matter of internal pa-
rameters, the parameter estimations should at least be attempted at lower Jacobian step
sizes and function tolerances. This would ensure that the perturbations have indeed put
the initial guess at a non-descending point. As previously seen from the surface plots, the
objective function values vary several orders of magnitude over the parameter space. If
the initial guesses were at non-descending points, they would most likely not converge to
the same order of magnitude as the non-perturbed case. Since all optima found (with a
few exceptions) are on the same order of magnitude, this may imply that they are in fact in
the valley. The optimization routine is subject to internal optimization if this work is to be
continued. This means that the internal parameters should be adjusted in order to ensure
desirable convergence properties, and to ensure that the global minimum is found given a
point of descension is provided. The experiment was neither repeated for the wdSSE, nor

51

Chapter 4. Results and Discussion

the mSSE.

Table 4.9: The table displays the effect of perturbing the coarse initial guess on the parameter
estimation, and the sensitivity of the optimizer with respect to the initial guess. The values are raised
to the power in the header of each column for readability.

Perturbation OFV [106] kb,1 [105] kb,2 [104] kc,1 [103] kc,2 [10−2]
kb,1 1.22 4.25± 0.03 5.26± 0.03 1.09± 0.00 2.88± 0.02
kb,1, kb,2 1.28 5.12± 0.02 5.59± 0.03 1.14± 0.01 2.64± 0.01
kb,1, kb,2, kc,1 1.20 4.23± 0.03 4.70± 0.02 1.30± 0.01 3.17± 0.01
kb,1, kb,2, kc,2 1.21 3.89± 0.02 3.53± 0.02 1.76± 0.01 3.78± 0.01
kb,1, kc,1 1.22 4.49± 0.03 4.29± 0.01 1.60± 0.01 3.40± 0.01
kb,1, kc,1, kc,2 1.30 5.03± 0.03 3.65± 0.02 2.26± 0.02 3.75± 0.02
kb,1, kc,2 56.3 12.4± 0.0 3.10± 0.00 1.33± 0.00 0.58± 0.00
kb,2 1.18 3.44± 0.02 4.61± 0.02 1.07± 0.01 1.20± 0.01
kb,2, kc,1 37.0 18.2± 0.0 −0.65± 0.00 0.93± 0.00 −1.11± 0.00
kb,2, kc,1, kc,2 1.23 4.46± 0.02 4.06± 0.02 1.71± 0.01 3.51± 0.01
kb,2, kc,2 1.21 4.34± 0.02 4.33± 0.02 1.53± 0.01 3.39± 0.01
kc,1 1.26 5.07± 0.02 4.89± 0.02 1.37± 0.00 2.92± 0.01
kc,1, kc,2 1.28 5.31± 0.03 4.76± 0.02 1.63± 0.01 3.19± 0.02
kc,2 1.19 3.50± 0.02 3.74± 0.02 1.52± 0.01 3.74± 0.01
No perturb 1.20 3.90± 0.03 5.12± 0.03 0.99± 0.00 2.86± 0.02

Up until now, all distributions have been used in all objective function formulations,
i.e. the residuals of 89 distributions with 80 measurements in each have been used. By us-
ing only some of these 89 distributions, the parameters could hopefully stabilize for some
minimum number of distributions. The costly measurement devices could then be reduced.
The last distribution should always be used because this is the distribution that would enter
downstream units. Therefore, this distribution can not be omitted from the objective func-
tion formulation. ForN distributions, theN−1 first distributions would be used to get the
dynamics right and the N -th distribution would be included last. The resulting parameter
combinations and their OFVs and OFVs per degree of freedom are presented as a function
of N distributions chosen in Figure 4.10, Figure 4.11, Figure 4.12 and Figure 4.13 for the
coarse and refined initial guesses for dSSE and wdSSE, respectively. In the figures, |J |
denotes the square root of the OFV, p is the number of parameters, and n− p denotes the
degrees of freedom. For the dSSE, the values of kb,1, kc,1, kc,2 and the OFV per degree
of freedom seems to stabilize more or less at approximately 30 distributions for both the
coarse and refined initial guess. The values of kb,2 does not seem to stabilize, and it can be
explained by the fact that including more distributions puts more weight on the last distri-
butions. From the experimental data, it is clear that the distributions shift towards smaller
droplets, and from the work prior to the coalescence experiment described earlier, it was
discovered that kb,2 controls which droplets are allowed to break. For smaller values of
kb,2, the critical radius – which is the radius where breakage starts to fade out – is shifted
towards smaller radii. This means that when more weight is put on distributions at smaller
radii, the values of kb,2 also decrease. Therefore the value does not seem to stabilize. The
number of distributions that seem to stabilize for the rest of the parameters are hence 30
distributions.

52

4.3 Parameter Estimation

20 40 60 80
2

4

6
K

b
1
 [

-]

10
-5

20 40 60 80

5

10

K
b

2
 [

-]

10
-4

20 40 60 80
0.5

1

1.5

K
c
1
 [

-]

10
-3

20 40 60 80
200

300

400

K
c
2
 [

-]

20 40 60 80

Number of distributions chosen, N [-]

0

200

400

|J
|

/
(N

-p
)

[1
/m

]

20 40 60 80

Number of distributions chosen, N [-]

0

500

1000

|J
|

[1
/m

]

Figure 4.10: Parameters, square root of the dSSE OFV per degree of freedom and square root of the
dSSE OFV as function of distributions chosen. The experiment is for initial guesses from the coarse
grid.

For the weighted case, the OFV per degree of freedom stabilizes earlier, even as early
as 20 distributions for the refined case. However all parameters produce oscillatory behav-
iors for the coarse initial guess, and kb,1, kb,2 and kc,2 produce oscillatory behaviors for the
refined initial guess. From the perturbation experiment, it was learned that perturbations
as small as a factor of 2 might have a significant impact on the optimal solution. From the
smallest parameter value produced to the largest parameter value produced, there seems to
be an offset by a factor of 2 for most parameters. The oscillatory behavior produced from
the wdSSE is therefore unsatisfactory, as it brings uncertainty along to the data fitting.

It was earlier mentioned that the perturbation experiment is ambiguous. This ambigu-
ity questions the validity of the optimum from the parameter estimations, and whether it
is the global optimum or not. Consequentially, the minimization of the number of mea-
surement devices is also questioned by this uncertainty. If the internal parameters are
to be optimized, the perturbation experiment should be repeated in order to ensure that
the convergence is consistent given the initial guess is still at a point of descension. For
internal parameters ensuring consistent convergence, the minimization of the number of
measurement devices should then be repeated to verify the results.

The best fit, i.e. the lowest OFV, that the Levenberg-Marquardt algorithm was able to
provide is shown for the dynamical behavior and the steady state for all objective function
formulations in Figure 4.14 and Figure 4.15, respectively. It is clear that the optimal
parameter combination retrieved from the dSSE and the wdSSE are very similar. The
dynamical behavior of the two regression approaches are nearly identical, and the same
goes for the steady state location. The benefits from doing a weighted SSE are therefore

53

Chapter 4. Results and Discussion

20 40 60 80

2

3

4
K

b
1
 [

-]

10
-5

20 40 60 80

5

10

K
b

2
 [

-]

10
-4

20 40 60 80
4

6

8

K
c
1
 [

-]

10
-4

20 40 60 80
200

250

300

K
c
2
 [

-]

20 40 60 80

Number of distributions chosen, N [-]

0

200

400

|J
|

/
(N

-p
)

[1
/m

]

20 40 60 80

Number of distributions chosen, N [-]

0

500

1000

|J
|

[1
/m

]

Figure 4.11: Parameters, square root of the dSSE OFV per degree of freedom and square root of the
dSSE OFV as function of distributions chosen. The experiment is for initial guesses from the refined
grid.

marginal, and from the previous findings, it has, on the contrary, only had negative effects
on the parameter estimation: the valleys from the surfaces became tighter and shallower,
and the fluctuations in the parameters are larger. Using the weighted SSE for parameter
estimation on the PBE in future work is therefore discouraged.

It is noteworthy that all optimal parameter combinations retrieved has reached a steady
state. The dSSE and wdSSE widen initially, pushing the peak down, before they tighten
and their peaks are pushed to their steady state location. The findings contradict the ex-
perimental data. The mSSE, on the other hand, tightens up and pushes the peak upwards,
but it fails to come down again, for reasons discussed earlier: the small droplets are un-
accounted for. However, from Figure 4.15 it is seen that it is not nearly wide enough to
fit the experimental steady state. All regression approaches seem to keep the pronounced
edge at the right tail coming from coalescence birth, which is desirable.

It should also be emphasized that the dynamics are very quick for all formulations,
causing them all to reach steady state quickly. Most of the experimental measurements
were approximately at steady state, meaning that the sum of squared errors formulations
(all of them) weight this steady state behavior heavily. The optimizer therefore made
parameter combinations that would get to this state as fast as possible, disregarding the
dynamical evolution. The steady state solution, however, is fairly good. As noted before,
the smaller droplets could not be accounted for, and as a result, the value of the peak was
also unaccounted for. The mode seems approximately correct, which is what was aimed
for.

54

4.3 Parameter Estimation

20 40 60 80
2

4

K
b

1
 [

-]

10
-5

20 40 60 80

5

10

K
b

2
 [

-]

10
-4

20 40 60 80

6

8

10

K
c
1
 [

-]

10
-4

20 40 60 80
200

300

400

K
c
2
 [

-]

20 40 60 80

Number of distributions chosen, N [-]

0

100

200

300

|J
|

/
(N

-p
)

[1
/m

]

20 40 60 80

Number of distributions chosen, N [-]

0

500

1000

|J
|

[1
/m

]

Figure 4.12: Parameters, square root of the wdSSE OFV per degree of freedom and square root of
the wdSSE OFV as function of distributions chosen. The experiment is for initial guesses from the
coarse grid.

20 40 60 80
4

6

8

K
b

1
 [

-]

10
-5

20 40 60 80

5

10

15

K
b

2
 [

-]

10
-4

20 40 60 80
5

10

K
c
1
 [

-]

10
-4

20 40 60 80

150

200

250

K
c
2
 [

-]

20 40 60 80

Number of distributions chosen, N [-]

0

200

400

|J
|

/
(N

-p
)

[1
/m

]

20 40 60 80

Number of distributions chosen, N [-]

0

500

1000

|J
|

[1
/m

]

Figure 4.13: Parameters, square root of the wdSSE OFV per degree of freedom and square root of
the wdSSE OFV as function of distributions chosen. The experiment is for initial guesses from the
refined grid.

55

Chapter 4. Results and Discussion

10
0

10
2

0

200

400
fv

 [
1

/m
]

SSE

10
0

10
2

0

200

400

fv
 [

1
/m

]

Experimental

10
0

10
2

0

200

400

fv
 [

1
/m

]

Weighted SSE

10
0

10
2

0

200

400

fv
 [

1
/m

]

10
0

10
2

0

200

400

600

fv
 [

1
/m

]

SSE of Mean

10
0

10
2

0

200

400

fv
 [

1
/m

]

Figure 4.14: The figure depicts the produced dynamical behavior of the different optimal parameter
combinations.

10
0

10
1

10
2

-100

0

100

200

300

400

500

600

700

V
o

lu
m

e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]

Volume Density Distribution at End of Experiment

SSE

Weighted SSE

SSE of Mean

Experimental

Figure 4.15: The figure depicts the produced steady state location of the different optimal parameter
combinations.

56

4.3 Parameter Estimation

The means of the distributions are shown in Figure 4.16. It is there seen that as a
consequence of getting a good fit on the dynamical and steady state behavior, the dSSE and
wdSSE also got a good fit on the temporal evolution of the mean. The objective function
formulation that aimed at fitting this value alone, the mSSE, has of course reached a better
fit. This fit is as close to the experimental data as can be, lying almost exactly on top of
the measurements. The mSSE produced a satisfactory fit for what was aimed for, however
the secondary output (the SSE of the distribution) was unsatisfactory. Since fitting the
regular dSSE automatically made the mean approximately fit, this regression approach
fits both objective functions automatically. Fitting the dSSE is therefore encouraged, and
the weighted SSE (wdSSE) along with the SSE of the mean (mSSE) objective function
formulations are discouraged.

500 1000 1500 2000 2500

Time[s]

15

20

25

30

35
Evolution of the Means

SSE

Weighted SSE

SSE of Mean

Experimental

Figure 4.16: The figure depicts the dynamical behavior of the mean for the different optimal param-
eter combinations.

Finally, it will be mentioned that the parameter values are, at most, five orders of
magnitude off unity, which is approximately the value used in the literature for the kernels
used [31, 32, 33, 34]. The parameters are correction factors for uncertainties related to
the a) modeling and b) turbulent energy dissipation rate, ε. The values being so far from
unity may imply there has been an overestimation of ε. The true value of ε may therefore
be smaller than the one calculated by (3.20). To get a better estimate of this quantity, the
zero-dimensional (physical space) model could be revised to a three-dimensional model,
and computational fluid dynamics could be employed to get a better understanding of
its spatial variations. It may also be interesting to try and account for multiple droplets
produced from breakage events, i.e. ν > 2, or/and multiple droplets consumed from
coalescence events, i.e. δ > 2. Third and last, the effect of the centrifugal pump used in
the experimental setup on ε is unknown and could be explored further. For instance, the

57

Chapter 4. Results and Discussion

turbine used to stir the emulsion could be switched off and the Reynolds number could be
measured with and without the turbine. This would give an indication on how the pump
affects the turbulence in the system, and also if there is any breakage occurring outside the
tank, which of course is unaccounted for by the model.

58

Chapter 5
Conclusion

A zero-dimensional volumetric population balance equation was employed to calibrate
four parameters to experimentally measured and rescaled volume density distributions.
Three regression approaches were attempted: sum of squared errors for the distribution
(dSSE), weighted sum of squared errors for the distribution (wdSSE) and sum of squared
errors of the mean (mSSE), all of which resulted in non-linear regression. The non-
convexity inherently present in a non-linear regression formulation proved difficult as far
as initial guesses go, and an appropriate parameter space was charted, attempting to pro-
vide a sufficiently good initial guess. Due to high computational burden, the charting was
done with a low resolution, making the surfaces look jagged. The surfaces were refined
and the resolution was improved. Suspicions about flat gradients and several local optima
were confirmed for both the coarse and the refined grid. The wdSSE looked similar to the
normal dSSE with the exception of being narrower and shallower. The best values received
from the charting for both the coarse and the refined grid were provided as initial guesses to
a Levenberg-Marquardt non-linear regression routine implemented in the GNU Scientific
Library, and optimal parameter combinations were found for all regression strategies.

To further check how sensitive the parameter estimation was with respect to the initial
guess, the initial guess was perturbed by a factor of 2. That is, all possible combinations
of parameters were multiplied by 2, one at a time, resulting in 14 different perturbations.
Some of the perturbations gave a significant change (an order of magnitude) in the objec-
tive function value. The other cases resulted in optima with objective function values of
the same order of magnitude. Since the surface plots vary several orders of magnitude over
the parameter space, this may imply that most of the perturbed initial guesses were still at
points of descension. The optimization routine employed is gradient-based, and most of
the perturbations should therefore have resulted in the same global optimum. This was not
the case, and the results are inconclusive.

Since experimental measurement devices are expensive, it was attempted to find the
minimum number of measurements necessary for the parameter combination to remain the
same, even for increasing number of measurements. Using the N − 1 first measurements
and the final N -th measurement, parameter estimations were performed on a correspond-

59

Chapter 5. Conclusion

ing objective function. The dSSE and the wdSSE displayed different behaviors. The dSSE
stabilized at 30 distributions with the exception of the parameter kb,2, which decreased
for more distributions. The objective function value per degree of freedom for the wdSSE
stabilized at 20 distributions, however, kb,1, kb,2 and kc,2 were oscillating. For this reason
it is hard to draw a conclusion for the wdSSE. It is still uncertain whether the oscillations
are connected to the internal parameters of the optimization routine employed or not. The
fact that kb,2 decreased with increasing N is due to the increase in the number of steady
state distributions chosen. As a result of the higher emphasis on the steady state, more
breakage, and hence lower kb,2, is favored.

Finally, the lowest objective function value produced and its corresponding parameter
combination for all regression approaches were used to confirm that the fit was truly a
good fit. The dSSE and the wdSSE had very similar behavior, both with respect to dy-
namics, steady state location and the temporal evolution of the mean. The dynamics were
too quick, however, they did settle approximately at the state of the final experimental dis-
tribution. The small droplets were unaccounted for due to a) spatially varying turbulent
energy dissipation rate, b) several fragments born due to breakage, c) contribution from
the centrifugal pump that is unaccounted for in the model formulation, or d) a combination
of the factors just mentioned. As a result, the value of the peak is also off, however, the
mode of the distribution and the pronounced right edge from coalescence fit the experi-
mental one. They also had a satisfactory fit on the temporal evolution of the mean. Fitting
the mSSE had similar dynamical behavior to the experimental distribution, however, this
regression approach also had quicker dynamics than what was experimentally observed.
The steady state location is also off, and it is too narrow. Being the secondary output, the
dynamics and steady state was not expected to fit. The primary output, being the mean,
had an exceptional fit, lying on top of the measurements. However, since fitting the dSSE
had better dynamics and steady state location, while also fitting the secondary output (the
mean) fairly well, this is the preferred regression approach. The wdSSE was inferior to the
dSSE in every way: the residual surfaces were narrower, shallower and harder to navigate,
the parameter combinations oscillate, and the actual fit was slightly worse. With all these
discoveries, the preferred regression strategy is the dSSE, as it fits the distributions, and as
a consequence it also fits the mean. Fitting the weighted SSE (wdSSE) or the SSE of the
mean (mSSE) is discouraged.

5.1 Further Work
For future work on this topic, the author would recommend to a) do more rigorous calcula-
tions on the turbulent energy dissipation rate, b) do experiments without the agitator to see
how the centrifugal pump affects the results, and possibly c) extend the model to account
for multiple droplets produced from breakage events, i.e. ν > 2. a) may include extending
the model to three dimensions in physical space and to do computational fluid dynamics
to extract information on the the turbulent energy dissipation rate. If the model still is to
maintain its simplicity, this variance can then be spatially averaged. b) will isolate if there
are any breakage events occurring inside the pump, or if the turbulent energy dissipation
rate is disturbed by the pump. c) will allow the model to produce many small droplets for
each breakage event, potentially recreating the observations.

60

5.1 Further Work

The perturbation experiment was ambiguous and inconclusive. Therefore the au-
thor would recommend to internally optimize the tunable parameters of the Levenberg-
Marquardt routine from the GNU Scientific Library. This includes adjusting the Jacobian
step size and the function tolerance in order to ensure desirable convergence properties,
and to ensure that the global minimum is found consistently given that a point of descen-
sion is provided. The results from the perturbation experiment and the minimization of the
number of measurement devices would consequentially have to be revised by repeating
the experiments.

Finally, a multi-objective function may be formulated to include the sum of squared
errors from the distribution, its mode and maybe also several of the statistical moments. It
may also be an option to formulate a multi-objective function that fits the sum of squared
errors from the volumetric and number density distribution. Since the number density
distribution would emphasize the smaller droplets even more, this objective function for-
mulation would require more information about the behaviors of the tail for small droplets,
whether it can be recreated theoretically or if it is the pump breaking the droplets.

61

Chapter 5. Conclusion

62

Bibliography

[1] D. Ramkrishna, Population Balances: Theory and Applications to Particulate Sys-
tems in Engineering. Elsevier Science, 2000.

[2] C. J. Backi and S. Skogestad, “A simple dynamic gravity separator model for sepa-
ration efficiency evaluation incorporating level and pressure control,” 2017 Proceed-
ings of the American Control Conference (ACC), pp. 2823–2828, 2017.

[3] M. Renardy, Numerical Methods. Society for Industrial and Applied Mathematics,
2000, no. 6.

[4] C. Hirsch, Iterative Methods for the Resolution of Algebraic Systems-Chapter 10.
Elsevier Ltd, 2007.

[5] J. E. Dennis, “Numerical methods for unconstrained optimization and nonlinear
equations,” Philadelphia, 1996.

[6] J. H. Ferziger, Computational methods for fluid dynamics, 3rd ed., M. Perić, Ed.
Berlin: Springer, 2002.

[7] A. H. D. Cheng and D. T. Cheng, “Heritage and early history of the boundary element
method,” Engineering Analysis with Boundary Elements, vol. 29, no. 3, pp. 268–302,
2005.

[8] D. Gibb, “A Course in Interpolation and Numerical Integration for the Mathemati-
cal Laboratory (Edinburgh Mathematical Tracts, No. 2) (Book Review),” pp. 67–68,
1916.

[9] S. R. Otto, “An Introduction to Programming and Numerical Methods in MATLAB,”
2005.

[10] H. A. Jakobsen, Chemical Reactor Modeling: Multiphase Reactive Flows. Cham:
Springer International Publishing: Cham, 2014.

[11] E. Kreyszig, Advanced engineering mathematics, 9th ed. Hoboken, N.J: Wiley,
2006.

63

[12] G. Szegö, Orthogonal polynomials, ser. Colloquium publications. New York: Amer-
ican Mathematical Society, 1939, vol. 23.

[13] J. Solsvik, S. Tangen, and H. A. Jakobsen, “Evaluation of weighted residual methods
for the solution of the pellet equations: The orthogonal collocation, Galerkin, tau
and least-squares methods,” Computers and Chemical Engineering, vol. 58, p. 223,
2013.

[14] J. Villadsen, Solution of differential equation models by polynomial approximation,
ser. Prentice-Hall international series in the physical and chemical engineering sci-
ences, M. L. Michelsen, Ed. Englewood Cliffs, N.J: Prentice-Hall, 1978.

[15] A. D. Randolph, Theory of particulate processes : analysis and techniques of con-
tinuous crystallization, 2nd ed., M. A. Larson, Ed. San Diego: Academic Press,
1988.

[16] M. Kostoglou and A. J. Karabelas, “On sectional techniques for the solution of the
breakage equation,” Computers and Chemical Engineering, vol. 33, no. 1, pp. 112–
121, 2009.

[17] M. Vanni, “Approximate Population Balance Equations for Aggregation-Breakage
Processes,” Journal of colloid and interface science, vol. 221, no. 2, p. 143, 2000.

[18] S. Kumar and D. Ramkrishna, “On the solution of population balance
equations by discretization—II. A moving pivot technique,” Chemical Engineering
Science, vol. 51, no. 8, pp. 1333–1342, 4 1996. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/000925099500355X

[19] ——, “On the solution of population balance equations by discretization—I.
A fixed pivot technique,” Chemical Engineering Science, vol. 51, no. 8, pp.
1311–1332, 4 1996. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0009250996884892

[20] J. Kumar and G. Warnecke, “Convergence analysis of sectional methods for solv-
ing breakage population balance equations-I: the fixed pivot technique,” Numerische
Mathematik, vol. 111, no. 1, pp. 81–108, 2008.

[21] S. V. Patankar, Numerical heat transfer and fluid flow, ser. Series in computational
methods in mechanics and thermal sciences. Washington: Hemisphere Publ., 1980.

[22] R. W. Johnson, Handbook of Fluid Dynamics, 2nd ed. Taylor & Francis Group,
CRC Press, 2016.

[23] T. M. Cover and J. A. Thomas, Maximum Entropy. Hoboken, NJ, USA: Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2005.

[24] A. D. Randolph, Theory of particulate processes : analysis and techniques of con-
tinuous crystallization, M. A. Larson, Ed. New York: Academic Press, 1971.

64

https://www.sciencedirect.com/science/article/pii/000925099500355X
https://www.sciencedirect.com/science/article/pii/000925099500355X
https://www.sciencedirect.com/science/article/pii/0009250996884892
https://www.sciencedirect.com/science/article/pii/0009250996884892

[25] H. Hulburt and S. Katz, “Some problems in particle technology: A statistical
mechanical formulation,” Chemical Engineering Science, vol. 19, no. 8, pp.
555–574, 8 1964. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0009250964850478

[26] R. Mcgraw, “Description of aerosol dynamics by the quadrature method of mo-
ments,” Aerosol Sci. Technol., vol. 27, no. 2, pp. 255–265, 1997.

[27] D. L. Marchisio and R. O. Fox, “Solution of population balance equations using the
direct quadrature method of moments,” Journal of Aerosol Science, vol. 36, no. 1,
pp. 43–73, 1 2005. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0021850204003052

[28] R. Fan, D. L. Marchisio, and R. O. Fox, “Application of the direct
quadrature method of moments to polydisperse gas–solid fluidized beds,”
Powder Technology, vol. 139, no. 1, pp. 7–20, 1 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0032591003002997

[29] S. Rigopoulos, “Population balance modelling of polydispersed particles in
reactive flows,” Progress in Energy and Combustion Science, vol. 36, no. 4,
pp. 412–443, 8 2010. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0360128509000690

[30] S. Schmideder, C. Kirse, J. Hofinger, S. Rollié, and H. Briesen, “Separation of mi-
croorganisms in bioprocesses by flotation: effect of dispersities,” in Population Bal-
ance Modeling Conference, Ghent, Belgium, 2018.

[31] C. A. Coulaloglou and L. L. Tavlarides, “Description of interaction processes in ag-
itated liquid-liquid dispersions,” Chemical Engineering Science, vol. 32, no. 11, pp.
1289–1297, 1977.

[32] N. Vankova, S. Tcholakova, N. D. Denkov, V. D. Vulchev, and T. Danner, “Emulsifi-
cation in turbulent flow: 2. Breakage rate constants,” Journal of Colloid And Interface
Science, vol. 313, no. 2, pp. 612–629, 2007.

[33] M. J. Prince and H. W. Blanch, “Bubble coalescence and break-up in air-sparged
bubble columns,” AIChE Journal, vol. 36, no. 10, pp. 1485–1499, 1990.

[34] A. Chesters, “THE MODELING OF COALESCENCE PROCESSES IN FLUID
LIQUID DISPERSIONS - A REVIEW OF CURRENT UNDERSTANDING,”
Chem. Eng. Res. Des., vol. 69, no. 4, pp. 259–270, 1991.

[35] S. L. Ross and R. L. Curl, “Measurement and models of the dispersed phase mixing
process,” in Joint Chem Eng Conf, Paper 29b, Symposium Series 139, Vancouver,
Canada, 1973.

[36] C. Tsouris and L. L. Tavlarides, “Breakage and coalescence models for drops in
turbulent dispersions,” AIChE Journal, vol. 40, no. 3, pp. 395–406, 1994.

65

https://www.sciencedirect.com/science/article/pii/0009250964850478
https://www.sciencedirect.com/science/article/pii/0009250964850478
https://www.sciencedirect.com/science/article/pii/S0021850204003052
https://www.sciencedirect.com/science/article/pii/S0021850204003052
https://www.sciencedirect.com/science/article/pii/S0032591003002997
https://www.sciencedirect.com/science/article/pii/S0360128509000690
https://www.sciencedirect.com/science/article/pii/S0360128509000690

[37] C. Martı́nez-Bazán, J. L. Montañés, and J. C. Lasheras, “On the breakup of an air
bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency,”
Journal of Fluid Mechanics, vol. 401, pp. 157–182, 1999.

[38] V. Alopaeus, M. Laakkonen, and J. Aittamaa, “Numerical solution of moment-
transformed population balance equation with fixed quadrature points,” Chemical
Engineering Science, vol. 61, no. 15, pp. 4919–4929, 2006.

[39] M. Petitti, M. Vanni, D. L. Marchisio, A. Buffo, and F. Podenzani, “Simulation of
coalescence, break-up and mass transfer in a gas–liquid stirred tank with CQMOM,”
Chemical Engineering Journal, vol. 228, pp. 1182–1194, 2013.

[40] C. Martinez-Bazan, J. Montanes, and J. Lasheras, “On the breakup of an air bub-
ble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting
daughter bubbles,” J. Fluid Mech., vol. 401, pp. 183–207, 1999.

[41] P. Chen, J. Sanyal, and M. P. Duduković, “Numerical simulation of bubble columns
flows: effect of different breakup and coalescence closures,” Chemical Engineering
Science, vol. 60, no. 4, pp. 1085–1101, 2005.

[42] G. Kocamustafaogullari and M. Ishii, “Foundation of the interfacial area transport
equation and its closure relations,” International Journal of Heat and Mass Transfer,
vol. 38, no. 3, pp. 481–493, 1995.

[43] J. Solsvik and H. A. Jakobsen, “Single drop breakup experiments in stirred liq-
uid–liquid tank,” Chemical Engineering Science, vol. 131, pp. 219–234, 2015.

[44] J. Solsvik and H. Jakobsen, “Solution of the Pellet Equation by use of the Orthogo-
nal Collocation and Least Squares Methods: Effects of Different Orthogonal Jacobi
Polynomials,” International Journal of Chemical Reactor Engineering, vol. 10, no. 1,
2012.

[45] S. K. Moon, “Experimental investigation of droplet breakage in the oil-in-water
emulsion in a stirred tank,” Trondheim, 2018.

[46] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, “{SUNDIALS}: Suite of nonlinear and differential/algebraic
equation solvers,” ACM Transactions on Mathematical Software (TOMS), vol. 31,
no. 3, pp. 363–396, 2005.

[47] M. Galassi, GNU Scientific Library Reference Manual, 3rd ed. [Online]. Available:
http://www.gnu.org/software/gsl/

[48] B. Adams, L. Bauman, W. Bohnhoff, K. Dalbey, M. Ebeida, J. Eddy, M. Eldred,
P. Hough, K. Hu, J. Jakeman, J. Stephens, L. Swiler, D. Vigil, and T. Wildey, Dakota,
A Multilevel Parallel Object-Oriented Framework for Design Optimization, Param-
eter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0
User’s Manual, 6th ed. Sandia Technical Report SAND2014-4633, 2017.

[49] J. Nocedal, “Numerical Optimization,” 2006.

66

http://www.gnu.org/software/gsl/

BIBLIOGRAPHY

67

BIBLIOGRAPHY

68

Appendix A
Auxiliary Figures

A.1 Charting Coalescence Experiment
The optimal parameter combinations found for the coalescence experiment produced the
dynamical behaviors, steady state locations and temporal evolutions of the mean seen in
Figure 4.14, Figure A.2 and Figure A.3, respectively.

10
0

10
2

0

200

400

fv
 [

1
/m

]

SSE

10
0

10
2

0

200

400

fv
 [

1
/m

]

Experimental

10
0

10
2

0

200

400

fv
 [

1
/m

]

Weighted SSE

10
0

10
2

0

200

400

fv
 [

1
/m

]

10
0

10
2

0

200

400

fv
 [

1
/m

]

SSE of Mean

10
0

10
2

0

200

400

fv
 [

1
/m

]

Figure A.1: The figure depicts the produced dynamical behaviors for the different optimal parameter
combinations received from the coalescence experiment.

i

Appendix A. Auxiliary Figures

10
0

10
1

10
2

0

50

100

150

200

250

300

350

400
V

o
lu

m
e
 D

e
n

s
it

y
 D

is
tr

ib
u

ti
o

n
 [

1
/m

]
Volume Density Distribution at End of Experiment

SSE

Weighted SSE

SSE of Mean

Experimental

Figure A.2: The figure depicts the produced steady state locations for the different optimal param-
eter combinations received from the coalescence experiment.

500 1000 1500 2000 2500

Time[s]

15

20

25

30

35
Evolution of the Means

SSE

Weighted SSE

SSE of Mean

Experimental

Figure A.3: The figure depicts the produced temporal evolutions of the mean for the different opti-
mal parameter combinations received from the coalescence experiment.

ii

A.2 Augmented Parameter Search, Coarse

A.2 Augmented Parameter Search, Coarse
The augmented parameter search can be viewed in 4!

2!(4−2)! = 6 ways, since the order of
changing the parameters does not matter. The different combinations are shown below in
their own subsection

A.2.1 Varying kb,1 and kb,2

10
-4

10
6

10
-3

Unweighted Sum of Squared Errors

Kb2 [-]

10
-7

10
7

10
-2

10
8

S
S

E
 [

1
/m

2
]

10
-6

Kb1 [-]

10
9

10
-5

10
-1

10
10

10
-4

10
0

10
-3

kc1 = 0.001, kc2 = 228

Figure A.4: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

iii

Appendix A. Auxiliary Figures

10
-4

10
-3

Kb2 [-]

10
6

Weighted Sum of Squared Errors

10
-7

10
-2

10
7

10
-6

Kb1 [-]

10
-1

S
S

E
 [

1
/m

2
]

10
-5

10
8

10
-4

10
0

10
-3

10
9

kc1 = 0.001, kc2 = 228

Figure A.5: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
-3

10
2

10
4

S
S

E
 [

m
2
]

10
-4

10
6

Kb1 [-]

10
-5

Mean Sum of Squared Errors

10
-6

Kb2 [-]

10
0

10
-1

10
-7

10
-2

10
-3

10
-4

kc1 = 0.000129, kc2 = 228

Figure A.6: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

iv

A.2 Augmented Parameter Search, Coarse

A.2.2 Varying kb,1 and kc,1

10
6

10
7

10
-3

10
8

10
9

S
S

E
 [

1
/m

2
]

10
10

10
-4

Kb1 [-]

Unweighted Sum of Squared Errors

10
-5

10
-6

10
-3

Kc1 [-]

10
-4

10
-5

10
-7

10
-6

10
-7

kb2 = 0.000464, kc2 = 228

Figure A.7: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

v

Appendix A. Auxiliary Figures

10
6

10
-3

10
7

10
8

S
S

E
 [

1
/m

2
]

10
-4

10
9

Kb1 [-]

10
-5

Weighted Sum of Squared Errors

10
-6

10
-3

Kc1 [-]

10
-4

10
-5

10
-7

10
-6

10
-7

kb2 = 0.000464, kc2 = 228

Figure A.8: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
-7

10
-7

10
2

10
-6

10
-6

S
S

E
 [

m
2
]

Mean Sum of Squared Errors

Kb1 [-] Kc1 [-]

10
-5

10
-5

10
4

10
-4

10
-4

10
6

10
-3

10
-3

kb2 = 0.00599, kc2 = 228

Figure A.9: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

vi

A.2 Augmented Parameter Search, Coarse

A.2.3 Varying kb,1 and kc,2

10
-3

10
-4

Kb1 [-]

10
-5

Unweighted Sum of Squared Errors

10
6

10
-2

10
7

10
-1

10
-6

Kc2 [-]

10
8

10
0

S
S

E
 [

1
/m

2
]

10
1

10
9

10
2

10
-7

10
10

10
3

kb2 = 0.000464, kc1 = 0.001

Figure A.10: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

vii

Appendix A. Auxiliary Figures

10
-3

10
-4

Kb1 [-]

10
-510

6

Weighted Sum of Squared Errors

10
-2

10
-1

10
7

10
-6

Kc2 [-]

10
0

S
S

E
 [

1
/m

2
]

10
1

10
8

10
2

10
-7

10
3

10
9

kb2 = 0.000464, kc1 = 0.001

Figure A.11: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
-7

10
-610

0

Mean Sum of Squared Errors

10
2

10
3

Kb1 [-]

10
-5

S
S

E
 [

m
2
]

10
2

10
4

Kc2 [-]

10
1

10
6

10
-4

10
0

10
-1

10
-3

10
-2

kb2 = 0.00599, kc1 = 0.000129

Figure A.12: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

viii

A.2 Augmented Parameter Search, Coarse

A.2.4 Varying kb,2 and kc,1

10
6

10
-7

10
-4

10
-6

10
8

Unweighted Sum of Squared Errors

S
S

E
 [

1
/m

2
]

10
-3

Kc1 [-]Kb2 [-]

10
-5

10
-2

10
10

10
-4

10
-1

10
-3

10
0

kb1 = 4.64e-05, kc2 = 228

Figure A.13: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

ix

Appendix A. Auxiliary Figures

10
-7

10
-610

6

Weighted Sum of Squared Errors

10
7

Kc1 [-]

10
-5

10
-4

S
S

E
 [

1
/m

2
] 10

8

Kb2 [-]

10
-3

10
-4

10
9

10
-2

10
-1

10
-3

10
0

kb1 = 4.64e-05, kc2 = 228

Figure A.14: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
-3

10
-4

Mean Sum of Squared Errors

10
0

Kc1 [-]

10
-5

10
0

10
2

10
-1

S
S

E
 [

m
2
] 10

4

Kb2 [-]

10
-2

10
-6

10
6

10
-3

10
-4

10
-7

kb1 = 0.000359, kc2 = 228

Figure A.15: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

x

A.2 Augmented Parameter Search, Coarse

A.2.5 Varying kb,2 and kc,2

10
6

10
7

10
-2

10
8

10
-4

S
S

E
 [

1
/m

2
]

Unweighted Sum of Squared Errors

10
-1

10
9

10
-3

10
10

10
0

Kb2 [-] Kc2 [-]

10
-2

10
1

10
2

10
-1

10
3

10
0

kb1 = 4.64e-05, kc1 = 0.001

Figure A.16: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xi

Appendix A. Auxiliary Figures

10
6

10
7

10
-4

S
S

E
 [

1
/m

2
] 10

8

10
-3

Kb2 [-]

10
9

10
-2

Weighted Sum of Squared Errors

10
-2

10
-1

Kc2 [-]

10
0

10
-1

10
1

10
2

10
0

10
3

kb1 = 4.64e-05, kc1 = 0.001

Figure A.17: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
2

10
-2

10
4

S
S

E
 [

m
2
]

10
6

10
-1

10
0

Mean Sum of Squared Errors

Kc2 [-]

10
1

10
0

10
2

10
-1

Kb2 [-]

10
-2

10
3

10
-3

10
-4

kb1 = 0.000359, kc1 = 0.000129

Figure A.18: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xii

A.2 Augmented Parameter Search, Coarse

A.2.6 Varying kc,1 and kc,2

10
6

10
-2

10
-7

10
7

10
8

10
-1

Unweighted Sum of Squared Errors

S
S

E
 [

1
/m

2
]

10
9

10
-6

10
0

10
10

Kc2 [-]Kc1 [-]

10
-5

10
1

10
2

10
-4

10
3

10
-3

kb1 = 4.64e-05, kb2 = 0.000464

Figure A.19: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xiii

Appendix A. Auxiliary Figures

10
-210

6

10
-7

10
-1

10
7

Weighted Sum of Squared Errors
S

S
E

 [
1
/m

2
]

10
-6

10
8

10
0

Kc2 [-]Kc1 [-]

10
9

10
1

10
-5

10
2

10
-4

10
3

10
-3

kb1 = 4.64e-05, kb2 = 0.000464

Figure A.20: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
-3

10
-4

S
S

E
 [

m
2
]

Kc1 [-]

10
-5

10
3

Mean Sum of Squared Errors

10
2

Kc2 [-]

10
5

10
1

10
-6

10
0

10
-1

10
-7

10
-2

kb1 = 0.000359, kb2 = 0.00599

Figure A.21: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xiv

A.3 Augmented Parameter Search, Refined

A.3 Augmented Parameter Search, Refined
The coarse parameter search was refined, and closer attention was put on areas of interest,
increasing the resolution to 15 grid points in each direction. The different viewpoints are
presented in the subsections below.

A.3.1 Varying kb,1 and kb,2

10
6

10
7

10
8

S
S

E
 [

1
/m

2
]

10
9

0.000215

10
10

Kb1 [-]

Unweighted Sum of Squared Errors

0.000021

0.0129

Kb2 [-]

0.0013

kc1 = 0.000557, kc2 = 228

Figure A.22: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xv

Appendix A. Auxiliary Figures

10
6

10
7

0.000215

S
S

E
 [

1
/m

2
] 10

8

10
9

Kb1 [-]

Weighted Sum of Squared Errors

0.000021 0.0129

Kb2 [-]

0.0013

kc1 = 0.000557, kc2 = 228

Figure A.23: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
2

Mean Sum of Squared Errors

S
S

E
 [

m
2
]

0.00130.000021

10
4

Kb2 [-]Kb1 [-]

10
6

0.000215
0.0129

kc1 = 7.2e-05, kc2 = 29.4

Figure A.24: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xvi

A.3 Augmented Parameter Search, Refined

A.3.2 Varying kb,1 and kc,1

10
6

10
7

10
8

S
S

E
 [

1
/m

2
]

10
9

10
10

0.000215

Unweighted Sum of Squared Errors

Kb1 [-]

0.000021

Kc1 [-]

0.000167
0.000017

kb2 = 0.000556, kc2 = 228

Figure A.25: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xvii

Appendix A. Auxiliary Figures

10
6

10
7

10
8

S
S

E
 [

1
/m

2
]

10
9

0.000215

Weighted Sum of Squared Errors

Kb1 [-]

0.000021

Kc1 [-]

0.000167
0.000017

kb2 = 0.000802, kc2 = 151

Figure A.26: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
2

S
S

E
 [

m
2
] 10

4

0.000021 0.000017

Mean Sum of Squared Errors

10
6

Kb1 [-]
Kc1 [-]

0.000215 0.000167

kb2 = 0.00498, kc2 = 29.4

Figure A.27: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xviii

A.3 Augmented Parameter Search, Refined

A.3.3 Varying kb,1 and kc,2

10
6

12.95
0.000215

Kb1 [-]

129.5

Kc2 [-]

Unweighted Sum of Squared Errors

0.000021

10
8

S
S

E
 [

1
/m

2
]

1295

10
10

kb2 = 0.000556, kc1 = 0.000557

Figure A.28: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xix

Appendix A. Auxiliary Figures

10
6

12.95

129.5 0.000215

Kc2 [-] Kb1 [-]

S
S

E
 [

1
/m

2
]

0.000021

Weighted Sum of Squared Errors

1295

10
8

kb2 = 0.000802, kc1 = 0.000747

Figure A.29: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

10
2

1295

S
S

E
 [

m
2
] 10

4

Mean Sum of Squared Errors

10
6

Kc2 [-]

129.5 0.000021

Kb1 [-]

0.000215
12.95

kb2 = 0.00498, kc1 = 7.2e-05

Figure A.30: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xx

A.3 Augmented Parameter Search, Refined

A.3.4 Varying kb,2 and kc,1

0.000017
10

6

Unweighted Sum of Squared Errors

Kc1 [-]

10
8

S
S

E
 [

1
/m

2
]

0.000167

Kb2 [-]

0.0013

10
10

0.0129

kb1 = 2.99e-05, kc2 = 228

Figure A.31: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xxi

Appendix A. Auxiliary Figures

10
6

10
7

0.000017

S
S

E
 [

1
/m

2
] 10

8

Weighted Sum of Squared Errors

10
9

0.0013

Kb2 [-] Kc1 [-]

0.000167
0.0129

kb1 = 7.19e-05, kc2 = 151

Figure A.32: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

0.000167

K
c
1
 [

-]

Mean Sum of Squared Errors

10
0

Kb2 [-]

0.000017

10
2

0.0129 0.0013

S
S

E
 [

m
2
] 10

4

10
6

kb1 = 0.000268, kc2 = 29.4

Figure A.33: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xxii

A.3 Augmented Parameter Search, Refined

A.3.5 Varying kb,2 and kc,2

10
6

10
8

S
S

E
 [

1
/m

2
]

0.0013

Kb2 [-]

12.95

Unweighted Sum of Squared Errors

10
10

Kc2 [-]

129.5
0.0129

1295

kb1 = 2.99e-05, kc1 = 0.000557

Figure A.34: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xxiii

Appendix A. Auxiliary Figures

10
6

12.950.0013

Kb2 [-]

S
S

E
 [

1
/m

2
]

129.5

Kc2 [-]

10
8

Weighted Sum of Squared Errors

0.0129 1295

kb1 = 7.19e-05, kc1 = 0.000747

Figure A.35: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

12.95

129.5

Kc2 [-]

Mean Sum of Squared Errors

10
0

10
2

1295

Kb2 [-]

S
S

E
 [

m
2
]

0.0013

10
4

0.0129

10
6

kb1 = 0.000268, kc1 = 7.2e-05

Figure A.36: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xxiv

A.3 Augmented Parameter Search, Refined

A.3.6 Varying kc,1 and kc,2

12.95

129.510
6

Kc2 [-]

0.000017

Unweighted Sum of Squared Errors

Kc1 [-]

10
8

1295

S
S

E
 [

1
/m

2
]

0.000167

10
10

kb1 = 2.99e-05, kb2 = 0.000556

Figure A.37: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE.

xxv

Appendix A. Auxiliary Figures

12.95

129.5

Kc2 [-]

10
6

12950.000017

Kc1 [-]

Weighted Sum of Squared Errors

0.000167

S
S

E
 [

1
/m

2
]

10
8

kb1 = 7.19e-05, kb2 = 0.000802

Figure A.38: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the weighted SSE.

10
0

S
S

E
 [

m
2
]

0.000167

Kc1 [-]

Mean Sum of Squared Errors

1295

10
5

Kc2 [-]

129.5

0.000017 12.95

kb1 = 0.000268, kb2 = 0.00498

Figure A.39: The parameter space is produced by holding the other two parameters constant at their
optimum. The figure is for the SSE of the mean.

xxvi

Appendix B
C++ Program

The C++ program had two dependencies: GSL and SUNDIALS. To make the program
run, the compiler was informed of the dependencies by use of a CMake program that is
printed below.

1 cmake_minimum_required(VERSION 3.9)

2 project(MasterProjectCpp)

3

4 set(CMAKE_CXX_STANDARD 11)

5

6 set(programs main testSolution testLogNormalInitialCondition

checkSensitivity chartMeanSSE↪→

7 bruteForceParamEstimation)

8 set(programs_dependencies

9 cmake-build-debug/crudeB.csv

10 results/raw_logNormal3.txt

11 Fluid.cpp Fluid.h

12 SystemProperties.cpp SystemProperties.h

13 Grid.cpp Grid.h

14 Kernels.cpp Kernels.h

15 PBModel.cpp PBModel.h

16)

17

18 ############################# SUNDIALS #############################

19 # Specify path to SUNDIALS header files

20 SET(SUNDIALS_INC_DIR

21 /Users/Sindre/Sundials/instdir/include

22 CACHE STRING

23 "Location of SUNDIALS header files")

24

25 # Add path to SUNDIALS header files

xxvii

Appendix B. C++ Program

26 INCLUDE_DIRECTORIES(${SUNDIALS_INC_DIR})

27

28 # Set search path for SUNDIALS libraries

29 SET(SUNDIALS_LIB_DIR /Users/Sindre/Sundials/instdir/lib)

30

31 # Find the SUNDIALS solver's library

32 FIND_LIBRARY(SUNDIALS_SOLVER_LIB

33 sundials_cvode ${SUNDIALS_LIB_DIR}

34 DOC "CVODE library")

35

36 # Find the NVECTOR library

37 FIND_LIBRARY(SUNDIALS_NVEC_LIB

38 sundials_nvecserial ${SUNDIALS_LIB_DIR}

39 DOC "NVECTOR library")

40

41 # Set an extra link directory if necessary (false if empty)

42 IF(EXISTS)

43 LINK_DIRECTORIES()

44 ENDIF()

45

46 # Set additional libraries

47 SET(SUNDIALS_EXTRA_LIB -lm CACHE STRING "Additional libraries")

48

49 # List of Sundials libraries shared across all examples

50 SET(SUNDIALS_LIBS ${SUNDIALS_SOLVER_LIB} ${SUNDIALS_NVEC_LIB}

${SUNDIALS_EXTRA_LIB})↪→

51 ### c
############↪→

52

53

54 ############################# GNU Scientific Library

#############################↪→

55 # Specify path to GSL header files

56 SET(GSL_INC_DIR

57 /Users/sindre/GSL/instdir/include

58 CACHE STRING

59 "Location of GSL header files")

60 # Add path to GSL header files

61 INCLUDE_DIRECTORIES(${GSL_INC_DIR})

62 # Set search path for GSL libraries

63 SET(GSL_LIB_DIR /Users/sindre/GSL/instdir/lib)

64 # Find library

65 FIND_LIBRARY(GSL_LIBRARY

66 gsl ${GSL_LIB_DIR}

67 DOC "GSL library")

68 FIND_LIBRARY(GSL_CBLAS

69 gslcblas ${GSL_LIB_DIR}

70 DOC "GSL BLAS Library")

xxviii

B.1 Source Files

71 # List of GSL libraries

72 SET(GSL_LIBS ${GSL_LIBRARY} ${GSL_CBLAS})

73 ### c
#########↪→

74 FOREACH(program ${programs})

75

76 # example source files

77 ADD_EXECUTABLE(${program} ${program}.cpp ${programs_dependencies})

78

79 # libraries to link against

80 TARGET_LINK_LIBRARIES(${program} ${SUNDIALS_LIBS} ${GSL_LIBS})

81

82 ENDFOREACH(program ${programs})

Listing B.1: CMakeLists.txt: Instructions for compiler

B.1 Source Files

1 /* Built-in header files */

2 #include <iostream>

3 #include <vector>

4

5 /* User-defined header files */

6 #include "PBModel.h"

7

8 int main(int argc, char **argv) {

9 std::ifstream fin(argv[1]);

10 if (!fin) {

11 std::cerr << "\nError: failure opening " << argv[1] << std::endl;

12 exit(-1);

13 }

14 /** c

*********************/↪→

15 /* Description of program

*/↪→

16 /** c

*********************/↪→

17 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

18 * We have some classes to help us solve the model:

19 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

20 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

xxix

Appendix B. C++ Program

21 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

22 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

23 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

24 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

25 * Utilizes all above classes

26 */

27

28 /** c

*********************/↪→

29 /* Input handling from Dakota

*/↪→

30 /** c

*********************/↪→

31 /* We are processing a input file of format

32 * 4 variables

33 * 0.000000000000000e+00 kb1

34 * 0.000000000000000e+00 kb2

35 * 0.000000000000000e+00 kc1

36 * 0.000000000000000e+00 kc2

37 * 80 functions

38 * 1 ASV_1:least_sq_term_1

39 * 1 ASV_2:least_sq_term_2

40 * 1 ASV_3:least_sq_term_3

41 * ...

42 * 1 ASV_80:least_sq_term_80

43 * 4 derivative_variables

44 * 1 DVV_1:kb1

45 * 2 DVV_2:kb2

46 * 3 DVV_3:kc1

47 * 4 DVV_4:kc2

48 * 0 analysis_components

49 * 1 eval_id

50 */

51 size_t i, j, k, num_vars, num_fns, num_deriv_vars; /* num means

number of */↪→

52 std::string vars_text, fns_text, dvv_text; /* Description

text (2nd column above) */↪→

53

54 // Get the parameter std::vector and ignore the labels

55 fin >> num_vars >> vars_text;

56 std::vector<double> x(num_vars);

57 for (i=0; i<num_vars; i++) {

58 fin >> x[i];

59 fin.ignore(256, '\n');

xxx

B.1 Source Files

60 }

61

62 // Get the ASV std::vector and ignore the labels

63 /* Possible ASV values:

64 * 1 (function value)

65 * 2 (gradient)

66 * 3 (function value and gradient)

67 * 4 (hessian)

68 * 5 (function value and hessian)

69 * 6 (gradient and hessian)

70 * 7 (function value, gradient and hessian)

71 */

72 fin >> num_fns >> fns_text;

73 std::vector<int> ASV(num_fns);

74 for (i=0; i<num_fns; i++) {

75 fin >> ASV[i];

76 fin.ignore(256, '\n');

77 }

78

79 // Get the DVV std::vector and ignore the labels

80 fin >> num_deriv_vars >> dvv_text;

81 std::vector<int> DVV(num_deriv_vars);

82 for (i=0; i<num_deriv_vars; i++) {

83 fin >> DVV[i];

84 fin.ignore(256, '\n');

85 }

86

87 /** c

*********************/↪→

88 /* Declaration of variables

*/↪→

89 /** c

*********************/↪→

90 const size_t Np = 200; /* Number of grid points

*/↪→

91 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

92 const std::string outName = "output1.dat"; /* Output filename

*/↪→

93 realtype kb1 = x[0], /* Model fitted parameters */

94 kb2 = x[1],

95 kc1 = x[2],

96 kc2 = x[3];

97 /* x[2] is actually the ratio kc1/kb1. kc1 = kb1*x[2] */

98

99 /** c

*********************/↪→

xxxi

Appendix B. C++ Program

100 /* Instantiation and solution

*/↪→

101 /** c

*********************/↪→

102 /* Helper classes */

103 Grid g = Grid(Np, 0, 1, 0, 0, 2);

104 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

105 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

106 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

107 /* Solution class */

108 PBModel m = PBModel(fileName, kb1, kb2, kc1, kc2, g, s, cont, disp,

0);↪→

109 m.solvePBE();

110

111 /** c

*********************/↪→

112 /* Output handling to Dakota

*/↪→

113 /** c

*********************/↪→

114 std::ofstream fout(argv[2]);

115 if (!fout) {

116 std::cerr << "\nError: failure creating " << argv[2] << std::endl;

117 exit(-1);

118 }

119 fout.precision(15); // 16 total digits

120 fout.setf(std::ios::scientific);

121 fout.setf(std::ios::right);

122

123 /** Evaluate residuals for t = tf (end of time horizon) **/

124 size_t M = m.getM(), N = m.getN();

125 double currentRes = 0;

126 if (!m.checkMassBalance()){

127 for (i = 0; i < M; i++) {

128 for (j = 0; j < N; j++) {

129 if (ASV[i] & 1) {

130 fout << " " << 1.e30 << " f" << i

* N + j + 1 << std::endl;↪→

131 }

132 }

133 }

134 } else {

135 for (i = 0; i < M; i++) {

136 for (j = 0; j < N; j++) {

137 if (ASV[i] & 1) {

138 currentRes = m.getResidualij((size_t) round(i * M /

M), j);↪→

xxxii

B.1 Source Files

139 fout << " " << currentRes << " f"

<< i * N + j + 1 << std::endl;↪→

140 }

141 }

142 }

143 }

144 fout.flush();

145 fout.close();

146 return 0;

147 }

Listing B.2: main.cpp: Program that was used to interface with Dakota

1 //

2 // Created by Sindre Bakke Øyen on 10.05.2018.

3 //

4

5 #include <iostream>

6 #include <chrono>

7 #include <ctime>

8 #include <vector>

9

10 /* User-defined header files */

11 #include "PBModel.h"

12

13 int main() {

14 /** c

*********************/↪→

15 /* Description of program

*/↪→

16 /** c

*********************/↪→

17 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

18 * We have some classes to help us solve the model:

19 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

20 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

21 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

22 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

23 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

24 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

xxxiii

Appendix B. C++ Program

25 * Utilizes all above classes

26 */

27

28 /** c

*********************/↪→

29 /* Declaration of variables

*/↪→

30 /** c

*********************/↪→

31 const size_t Np = 220; /* Number of grid points

*/↪→

32 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

33 realtype kb1 = 7.e-6, /* From testLogNormalInitialCondition.cpp */

34 kb2 = 2.e-4, /* From testLogNormalInitialCondition.cpp */

35 kc1 = 1.e-4, /* From testLogNormalInitialCondition.cpp */

36 kc2 = 3.e2; /* From testLogNormalInitialCondition.cpp */

37 kb1 = 8.e-6;

38 kb2 = kb2;

39 kc1 = 5.e-4;

40 kc2 = 4.e2;

41

42 size_t Npts = 10;

43 std::vector<gsl_matrix *> SSEvector(Npts*Npts, nullptr); /* 10x10

matrix of matrices */↪→

44 std::vector<gsl_matrix *> wSSEvector(Npts*Npts, nullptr); /* 10x10

matrix of matrices */↪→

45 std::vector<gsl_matrix *> meanSSEvector(Npts*Npts, nullptr); /*
10x10 matrix of matrices */↪→

46 std::vector<PBModel *> m(Npts*Npts*Npts*Npts, nullptr);

47 std::vector<realtype> kb1vec(Npts, 0);

48 std::vector<realtype> kb2vec(Npts, 0);

49 std::vector<realtype> kc1vec(Npts, 0);

50 std::vector<realtype> kc2vec(Npts, 0);

51

52 /* Set search space */

53 realtype kb1lb = log10(1.e-7), kb1ub = log10(1.e-3);

54 realtype kb2lb = log10(1.e-4), kb2ub = log10(1.e0);

55 realtype kc1lb = log10(1.e-7), kc1ub = log10(1.e-3);

56 realtype kc2lb = log10(1.e-2), kc2ub = log10(4.e3);

57 // realtype kb1lb = log10(2.15e-6), kb1ub = log10(1.e-3);

58 // realtype kb2lb = log10(1.29e-4), kb2ub = log10(2.15e-2);

59 // realtype kc1lb = log10(1.67e-5), kc1ub = log10(1.e-3);

60 // realtype kc2lb = log10(12.95), kc2ub = log10(4.e3);

61

62 size_t i, j, q, r, w;

63 for (i = 0; i < Npts; i++){

xxxiv

B.1 Source Files

64 kb1vec[i] = pow(10.0, (realtype) i / (Npts-1) * (kb1ub-kb1lb) +

kb1lb);↪→

65 kb2vec[i] = pow(10.0, (realtype) i / (Npts-1) * (kb2ub-kb2lb) +

kb2lb);↪→

66 kc1vec[i] = pow(10.0, (realtype) i / (Npts-1) * (kc1ub-kc1lb) +

kc1lb);↪→

67 kc2vec[i] = pow(10.0, (realtype) i / (Npts-1) * (kc2ub-kc2lb) +

kc2lb);↪→

68 }

69

70 /* Choose which distributions to include in objective function */

71 std::vector<size_t> dist_idx(27, 0);

72 j = 2;

73 for (i = 0; i < 26; i++){

74 if (i < 20) { dist_idx[i] = i; }

75 else {

76 j++;

77 dist_idx[i] = j*10;

78 }

79 }

80 dist_idx[dist_idx.size()-1] = 88;

81 /** c

*********************/↪→

82 /* Instantiation and solution

*/↪→

83 /** c

*********************/↪→

84 /* Helper classes */

85 Grid g = Grid(Np, 0, 1, 0, 0, 2);

86 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

87 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

88 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

89

90 /* Looping on all parameters */

91 size_t index_ijqr = 0, index_ij = 0, N = 0, M = 0;

92 std::vector<size_t>::iterator it;

93 realtype res = 0, wres = 0, meanres = 0, currentRes = 0, mid = 6.e-6,

slack = 1.e-6;↪→

94 for (i = 0; i < Npts; i++){

95 kb1 = kb1vec[i];

96 for (j = 0; j < Npts; j++){

97 kb2 = kb2vec[j];

98 index_ij = Npts*i + j;

99 SSEvector[index_ij] = gsl_matrix_calloc(Npts, Npts);

100 wSSEvector[index_ij] = gsl_matrix_calloc(Npts, Npts);

101 meanSSEvector[index_ij] = gsl_matrix_calloc(Npts, Npts);

102 for (q = 0; q < Npts; q++) {

xxxv

Appendix B. C++ Program

103 kc1 = kc1vec[q];

104 for (r = 0; r < Npts; r++) {

105 kc2 = kc2vec[r];

106 index_ijqr = (size_t) (i * pow(Npts, 3) + j *
pow(Npts, 2) + q * pow(Npts, 1) + r * pow(Npts,

0));

↪→

↪→

107 std::cout << index_ijqr << std::endl;

108 m[index_ijqr] = new PBModel(fileName, kb1, kb2, kc1,

kc2, g, s, cont, disp, 0);↪→

109 m[index_ijqr]->solvePBE();

110 M = dist_idx.size();

111 N = m[index_ijqr]->getN();

112 res = 0;

113 wres = 0;

114 meanres = 0;

115 for (it = dist_idx.begin(); it != dist_idx.end();

it++){↪→

116 for (w = 0; w < N; w++){

117 realtype dropSize =

gsl_vector_get(m[index_ijqr]->getR(), w);↪→

118 currentRes =

pow(m[index_ijqr]->getResidualij(*it, w),

2);

↪→

↪→

119 res += currentRes;

120 wres += currentRes *
m[index_ijqr]->getWeight(dropSize, mid,

slack);

↪→

↪→

121 }

122 meanres +=

pow(m[index_ijqr]->getResidualMean(*it), 2);↪→

123 }

124 if (m[index_ijqr]->checkMassBalance()){

125 gsl_matrix_set(SSEvector[index_ij], q, r, res);

126 gsl_matrix_set(wSSEvector[index_ij], q, r, wres);

127 gsl_matrix_set(meanSSEvector[index_ij], q, r,

meanres);↪→

128 }

129 else {

130 gsl_matrix_set(SSEvector[index_ij], q, r, NAN);

131 gsl_matrix_set(wSSEvector[index_ij], q, r, NAN);

132 gsl_matrix_set(meanSSEvector[index_ij], q, r,

NAN);↪→

133 }

134 delete m[index_ijqr];

135 }

136 }

137 }

138 }

xxxvi

B.1 Source Files

139 /* Write to file */

140 time_t rawtime;

141 struct tm * timeinfo;

142 char buffer[80];

143 time (&rawtime);

144 timeinfo = localtime(&rawtime);

145 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

146 std::string str(buffer);

147

148 std::ofstream fbparams("../results/parameterFiles/paramsBreakage" +

str + ".dat");↪→

149 std::ofstream fcparams("../results/parameterFiles/paramsCoalescence"

+ str + ".dat");↪→

150 std::ofstream fresiduals("../results/residualFiles/SSEallTimes" + str

+ ".dat");↪→

151 std::ofstream fwresiduals("../results/residualFiles/wSSEallTimes" +

str + ".dat");↪→

152 std::ofstream

fmeanresiduals("../results/residualFiles/meanSSEallTimes" + str +

".dat");

↪→

↪→

153 fbparams << "#kb1,#kb2\n";

154 for (i = 0; i < Npts; i++) {

155 fbparams << kb1vec[i] << "," << kb2vec[i] << std::endl;

156 }

157 fcparams << "#kc1,#kc2\n";

158 for (i = 0; i < Npts; i++) {

159 fcparams << kc1vec[i] << "," << kc2vec[i] << std::endl;

160 }

161 fresiduals << "#SSE\n";

162 for (i = 0; i < Npts; i++){

163 for (j = 0; j < Npts; j++) {

164 index_ij = i * Npts + j;

165 gsl_matrix *currentMat = SSEvector[index_ij];

166 for (q = 0; q < Npts; q++) {

167 for (r = 0; r < Npts; r++) {

168 fresiduals << gsl_matrix_get(currentMat, q, r) << ",";

169 }

170 fresiduals << std::endl;

171 }

172 gsl_matrix_free(currentMat);

173 }

174 }

175 fwresiduals << "#wSSE\n";

176 for (i = 0; i < Npts; i++){

177 for (j = 0; j < Npts; j++) {

178 index_ij = i * Npts + j;

179 gsl_matrix *currentMat = wSSEvector[index_ij];

180 for (q = 0; q < Npts; q++) {

xxxvii

Appendix B. C++ Program

181 for (r = 0; r < Npts; r++) {

182 fwresiduals << gsl_matrix_get(currentMat, q, r) <<

",";↪→

183 }

184 fwresiduals << std::endl;

185 }

186 gsl_matrix_free(currentMat);

187 }

188 }

189 fmeanresiduals << "#meanSSE\n";

190 for (i = 0; i < Npts; i++){

191 for (j = 0; j < Npts; j++) {

192 index_ij = i * Npts + j;

193 gsl_matrix *currentMat = meanSSEvector[index_ij];

194 for (q = 0; q < Npts; q++) {

195 for (r = 0; r < Npts; r++) {

196 fmeanresiduals << gsl_matrix_get(currentMat, q, r) <<

",";↪→

197 }

198 fmeanresiduals << std::endl;

199 }

200 gsl_matrix_free(currentMat);

201 }

202 }

203

204 fbparams.close();

205 fcparams.close();

206 fresiduals.close();

207 fwresiduals.close();

208 fmeanresiduals.close();

209 return 0;

210 }

Listing B.3: bruteForceParamEstimation.cpp: Program that was used to chart the parameter space

1 //

2 // Created by Sindre Bakke Øyen on 30.04.2018.

3 //

4

5 #include <iostream>

6 #include <chrono>

7 #include <ctime>

8 #include <vector>

9

10 /* User-defined header files */

11 #include "PBModel.h"

xxxviii

B.1 Source Files

12

13 int main() {

14 /** c

*********************/↪→

15 /* Description of program

*/↪→

16 /** c

*********************/↪→

17 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

18 * We have some classes to help us solve the model:

19 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

20 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

21 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

22 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

23 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

24 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

25 * Utilizes all above classes

26 */

27

28 /** c

*********************/↪→

29 /* Declaration of variables

*/↪→

30 /** c

*********************/↪→

31 const size_t Np = 200; /* Number of grid points

*/↪→

32 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

33 realtype kb1 = 7.e-6, /* From testLogNormalInitialCondition.cpp */

34 kb2 = 2.e-4, /* From testLogNormalInitialCondition.cpp */

35 kc1 = 1.e-4, /* From testLogNormalInitialCondition.cpp */

36 kc2 = 3.e2; /* From testLogNormalInitialCondition.cpp */

37 kb1 = 8.e-6;

38 kb2 = kb2;

39 kc1 = 5.e-4;

40 kc2 = 4.e2;

41

42 size_t Npts = 50;

43 std::vector<gsl_matrix *> residualVector(Npts*Npts, nullptr); /*
19x19 matrix of matrices */↪→

xxxix

Appendix B. C++ Program

44 std::vector<PBModel *> m(Npts*Npts, nullptr);

45 std::vector<realtype> k1vec(Npts, 0);

46 std::vector<realtype> k2vec(Npts, 0);

47 realtype k1lb = log10(5.e-5), k1ub = log10(5.e-3);

48 realtype k2lb = log10(40), k2ub = log10(4000);

49 size_t i, j, q;

50 for (i = 0; i < Npts; i++){

51 k1vec[i] = pow(10.0, (realtype) i / (Npts-1) * (k1ub-k1lb) +

k1lb);↪→

52 k2vec[i] = pow(10.0, (realtype) i / (Npts-1) * (k2ub-k2lb) +

k2lb);↪→

53 }

54 realtype k1, k2;

55

56 /** c

*********************/↪→

57 /* Instantiation and solution

*/↪→

58 /** c

*********************/↪→

59 /* Helper classes */

60 Grid g = Grid(Np, 0, 1, 0, 0, 2);

61 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

62 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

63 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

64 size_t index_ij = 0, N = 0, M = 0;

65 // for (i = 0; i < Npts; i++){

66 // k1 = k1vec[i];

67 // for (j = 0; j < Npts; j++){

68 // index_ij = i*Npts + j;

69 // k2 = k2vec[j];

70 // m[index_ij] = new PBModel(fileName, kb1, kb2, k1, k2, g, s,

cont, disp, 0);↪→

71 // m[index_ij]->solvePBE();

72 // M = m[index_ij]->getM();

73 // N = m[index_ij]->getN();

74 // residualVector[index_ij] = gsl_matrix_alloc(M, 1);

75 // for (q = 0; q < M; q++) {

76 // gsl_matrix_set(

77 // residualVector[index_ij], q, 0,

78 // m[index_ij]->getResidualMean(q)

79 //);

80 // }

81 // delete m[index_ij];

82 // }

83 // }

84

xl

B.1 Source Files

85 /* Write to file */

86 time_t rawtime;

87 struct tm * timeinfo;

88 char buffer[80];

89 time (&rawtime);

90 timeinfo = localtime(&rawtime);

91 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

92 std::string str(buffer);

93

94 // std::ofstream fparams("../results/paramsBreakage.dat");

95 std::ofstream fparams("../results/parameterFiles/paramsCoalescence" +

str + ".dat");↪→

96 // std::ofstream fresiduals("../results/residualFiles/residualsMeans"

+ str + ".dat");↪→

97 // std::ofstream fresiduals("../results/residualsNoDynamics.dat");

98 fparams << "#k1,#k2\n";

99 for (i = 0; i < Npts; i++) {

100 fparams << k1vec[i] << "," << k2vec[i] << std::endl;

101 }

102 // fresiduals << "#residuals\n";

103 // for (i = 0; i < Npts; i++){

104 // for (j = 0; j < Npts; j++) {

105 // index_ij = i * Npts + j;

106 // gsl_matrix *currentMat = residualVector[index_ij];

107 // for (q = 0; q < M; q++) {

108 // fresiduals << gsl_matrix_get(currentMat, q, 0) << ",";

109 // }

110 // fresiduals << std::endl;

111 // }

112 // }

113 fparams.close();

114 // fresiduals.close();

115 return 0;

116 }

Listing B.4: chartMeanSSE.cpp: Program that was used to chart the parameter space

1 //

2 // Created by Sindre Bakke Øyen on 25.04.2018.

3 //

4

5 #include <iostream>

6 #include <chrono>

7 #include <ctime>

8 #include <vector>

9

xli

Appendix B. C++ Program

10 /* User-defined header files */

11 #include "PBModel.h"

12

13 int main() {

14 /** c

*********************/↪→

15 /* Description of program

*/↪→

16 /** c

*********************/↪→

17 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

18 * We have some classes to help us solve the model:

19 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

20 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

21 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

22 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

23 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

24 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

25 * Utilizes all above classes

26 */

27

28 /** c

*********************/↪→

29 /* Declaration of variables

*/↪→

30 /** c

*********************/↪→

31 const size_t Np = 200; /* Number of grid points

*/↪→

32 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

33 realtype kb1 = 7.e-6, /* From testLogNormalInitialCondition.cpp */

34 kb2 = 2.e-4, /* From testLogNormalInitialCondition.cpp */

35 kc1 = 1.e-4, /* From testLogNormalInitialCondition.cpp */

36 kc2 = 3.e2; /* From testLogNormalInitialCondition.cpp */

37 kb1 = 8.e-6;

38 kb2 = kb2;

39 kc1 = 5.e-4;

40 kc2 = 4.e2;

41

42 size_t Npts = 100;

xlii

B.1 Source Files

43 std::vector<gsl_matrix *> residualVector(Npts*Npts, nullptr); /*
19x19 matrix of matrices */↪→

44 std::vector<PBModel *> m(Npts*Npts, nullptr);

45 std::vector<realtype> k1vec(Npts, 0);

46 std::vector<realtype> k2vec(Npts, 0);

47 realtype k1lb = log10(5.e-5), k1ub = log10(5.e-3);

48 realtype k2lb = log10(40), k2ub = log10(4000);

49 size_t i, j, q, r;

50 for (i = 0; i < Npts; i++){

51 k1vec[i] = pow(10.0, (realtype) i / (Npts-1) * (k1ub-k1lb) +

k1lb);↪→

52 k2vec[i] = pow(10.0, (realtype) i / (Npts-1) * (k2ub-k2lb) +

k2lb);↪→

53 }

54 realtype k1, k2;

55

56 /** c

*********************/↪→

57 /* Instantiation and solution

*/↪→

58 /** c

*********************/↪→

59 /* Helper classes */

60 Grid g = Grid(Np, 0, 1, 0, 0, 2);

61 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

62 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

63 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

64 realtype summation = 0;

65 size_t index_ij = 0, N = 0, M = 0;

66 for (i = 0; i < Npts; i++){

67 k1 = k1vec[i];

68 for (j = 0; j < Npts; j++){

69 index_ij = i*Npts + j;

70 k2 = k2vec[j];

71 m[index_ij] = new PBModel(fileName, kb1, kb2, k1, k2, g, s,

cont, disp, 0);↪→

72 m[index_ij]->solvePBE();

73 M = m[index_ij]->getM();

74 N = m[index_ij]->getN();

75 residualVector[index_ij] = gsl_matrix_alloc(M, N);

76 for (q = 0; q < M; q++) {

77 for (r = 0; r < N; r++) {

78 gsl_matrix_set(

79 residualVector[index_ij], q, r,

80 m[index_ij]->getResidualij(q, r)

81);

82 }

xliii

Appendix B. C++ Program

83 }

84 delete m[index_ij];

85 }

86 }

87

88 /* Write to file */

89 time_t rawtime;

90 struct tm * timeinfo;

91 char buffer[80];

92 time (&rawtime);

93 timeinfo = localtime(&rawtime);

94 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

95 std::string str(buffer);

96

97 // std::ofstream fparams("../results/paramsBreakage.dat");

98 std::ofstream fparams("../results/parameterFiles/paramsCoalescence" +

str + ".dat");↪→

99 std::ofstream fresiduals("../results/residualFiles/residualsDynamics"

+ str + ".dat");↪→

100 // std::ofstream fresiduals("../results/residualsNoDynamics.dat");

101 fparams << "#k1,#k2\n";

102 for (i = 0; i < Npts; i++) {

103 fparams << k1vec[i] << "," << k2vec[i] << std::endl;

104 }

105 fresiduals << "#residuals\n";

106 for (i = 0; i < Npts; i++){

107 for (j = 0; j < Npts; j++) {

108 index_ij = i * Npts + j;

109 gsl_matrix *currentMat = residualVector[index_ij];

110 for (q = 0; q < M; q++) {

111 for (r = 0; r < N; r++) {

112 fresiduals << gsl_matrix_get(currentMat, q, r) << ",";

113 }

114 fresiduals << std::endl;

115 }

116 }

117 }

118 fparams.close();

119 fresiduals.close();

120 return 0;

121 }

Listing B.5: checkSensitivity.cpp: Program that was used in the coalescence experiment to chart
objective functions

1 //

2 // Created by Sindre Bakke Øyen on 18.04.2018.

xliv

B.1 Source Files

3 //

4

5 #include <iostream>

6 #include <chrono>

7 #include <ctime>

8

9 /* User-defined header files */

10 #include "PBModel.h"

11

12 int main() {

13 /** c

*********************/↪→

14 /* Description of program

*/↪→

15 /** c

*********************/↪→

16 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

17 * We have some classes to help us solve the model:

18 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

19 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

20 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

21 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

22 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

23 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

24 * Utilizes all above classes

25 */

26

27 /** c

*********************/↪→

28 /* Declaration of variables

*/↪→

29 /** c

*********************/↪→

30 const size_t Np = 400; /* Number of grid points

*/↪→

31 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

32 // realtype kb1 = 2.6426477281e-07, /* Model fitted

parameters */↪→

33 // kb2 = 0,

34 // kc1 = 1.0138643992e+00*kb1,

xlv

Appendix B. C++ Program

35 // kc2 = 1.6791362386e-01;

36 realtype kb1 = 7.e-6,

37 kb2 = 5.e-4,

38 kc1 = 5.e-4*0,

39 kc2 = 6.e2;

40 /** c

*********************/↪→

41 /* Instantiation and solution

*/↪→

42 /** c

*********************/↪→

43 /* Helper classes */

44 Grid g = Grid(Np, 0, 1, 0, 0, 2);

45 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

46 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

47 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

48 PBModel m = PBModel(fileName, kb1, kb2, kc1, kc2, g, s, cont, disp,

1);↪→

49 m.solvePBE();

50 m.exportFv();

51 return 0;

52 }

Listing B.6: testLogNormalInitialCondition.cpp: Program that was used to do dynamic simulations
on log-normal initial conditions

1 #include <iostream>

2 #include <chrono>

3 #include <ctime>

4 #include <gsl/gsl_vector_double.h>

5

6 /* User-defined header files */

7 #include "PBModel.h"

8

9 int main() {

10 /** c

*********************/↪→

11 /* Description of program

*/↪→

12 /** c

*********************/↪→

13 /* This is the main program that solves the Population Balance

Equation (PBE)↪→

14 * We have some classes to help us solve the model:

15 * - Grid :: Contains all variables needed for Gaussian

quadrature rule↪→

xlvi

B.1 Source Files

16 * - Fluid :: Contains density, surface tension and

viscosity for a fluid↪→

17 * - SystemProperties :: Contains variables such as maximum radius,

volume of tanks etc↪→

18 * - Constants :: Contains parameters such as

k1,k2,k3,k4,kb1,kb2,kc1,kc2↪→

19 * - Kernels :: Contains kernels for breakage (KBB,kDB)

and coalescence (KBC,KDC)↪→

20 * - PBModel :: Solves the entire model by the use of an

ODE solver:↪→

21 * Utilizes all above classes

22 */

23

24 /** c

*********************/↪→

25 /* Declaration of variables

*/↪→

26 /** c

*********************/↪→

27 const size_t Np = 200; /* Number of grid points

*/↪→

28 char const *fileName = "crudeB.csv"; /* Experimental data

*/↪→

29 realtype kb1 = 8.e-6,

30 kb2 = 2.e-4,

31 kc1 = 1.e-4,

32 kc2 = 3.e2;

33 /* Guess for parameter estimating residuals */

34 // kb1 = 2.99e-5, kb2 = 5.556421e-4, kc1 = 5.57417e-4, kc2 = 227.596;

/* Refined */↪→

35 // kb1 = 4.64e-5, kb2 = 4.64e-4, kc1 = 1.00e-3, kc2 = 2.28e2; /*
Coarse */↪→

36 // kb1*=1; kb2*=1; kc1*= 1; kc2*= 1;

37

38 /* Guess for parameter estimating weighted residuals */

39 // kb1 = 7.1905e-05, kb2 = 8.01876e-4, kc1 = 7.46537e-4, kc2 = 151.12;

/* Refined */↪→

40 // kb1 = 4.64e-5, kb2 = 4.64e-4, kc1 = 1.00e-3, kc2 = 2.28e2; /*
Coarse */↪→

41

42 /* Guess for parameter estimating means */

43 // kb1 = 2.68e-4, kb2 = 4.98e-3, kc1 = 7.20e-5, kc2 = 2.94e1; /*
Refined */↪→

44 // kb1 = 3.59381e-4, kb2 = 5.99484e-3, kc1 = 1.29155e-4, kc2 =

227.592; /* Coarse */↪→

45

46

47

xlvii

Appendix B. C++ Program

48

49 /* Solve with parameters from optimizing residuals */

50 kb1 = 3.90e-5, kb2 = 5.12e-4, kc1 = 9.89e-4, kc2 = 2.86e2; /* Coarse

parameter estimation */↪→

51 // kb1 = 2.92088e-05, kb2 = 0.000601003, kc1 = 0.000573217, kc2 =

251.809; /* Refined */↪→

52

53 /* Solve with parameters from optimizing weighted residuals */

54 // kb1 = 3.92e-5, kb2 = 5.80e-4, kc1 = 9.06e-4, kc2 = 2.76e2; /*
Coarse parameter estimation */↪→

55

56 /* Solve with parameters from optimizing means */

57 // kb1 = 2.48e-4, kb2 = 5.04e-3, kc1 = 6.28e-5, kc2 = 3.34e1; /*
Refined parameter estimation */↪→

58

59 /* Solve with parameters from Dakota */

60 // kb1 = 3.e-6, kb2 = 2.e-4, kc1 = 3.77e-3, kc2 = 8.89e2;

61 /** c

*********************/↪→

62 /* Instantiation and solution

*/↪→

63 /** c

*********************/↪→

64 /* Helper classes */

65 Grid g = Grid(Np, 0, 1, 0, 0, 2);

66 Fluid disp = Fluid(0.837e3, 22.0e-3, 16.88e-3); /* Oil */

67 Fluid cont = Fluid(1.0e3, 1, 1); /* Water */

68 SystemProperties s = SystemProperties(500.0e-6, 725.0e-6, 0.366,

disp);↪→

69 PBModel m = PBModel(fileName, kb1, kb2, kc1, kc2, g, s, cont, disp,

0);↪→

70 // m.paramesterEstimationSSE();

71 // m.parameterEstimationMean();

72 m.solvePBE();

73 // m.exportFvSimulatedWithExperimental();

74 // m.exportFv();

75 m.exportMeans();

76 return 0;

77 }

Listing B.7: testSolution.cpp: Program that was used to do dynamic simulations on a specific pa-
rameter combination

1 //

2 // Created by Sindre Bakke Øyen on 05.03.2018.

3 //

xlviii

B.1 Source Files

4

5 #include "Fluid.h"

6

7 /* Constructors */

8 Fluid::Fluid() : rho(0), sigma(0), nu(0) {}

9

10 Fluid::Fluid(const Fluid &f) : rho(f.getRho()), sigma(f.getSigma()),

nu(f.getNu()){}↪→

11

12 Fluid::Fluid(realtype rho, realtype sigma, realtype nu) : rho(rho),

sigma(sigma), nu(nu) {}↪→

13

14 /* Getter methods */

15 realtype Fluid::getRho() const {

16 return rho;

17 }

18

19 realtype Fluid::getSigma() const {

20 return sigma;

21 }

22

23 realtype Fluid::getNu() const {

24 return nu;

25 }

26

27 std::ostream &operator<<(std::ostream &os, const Fluid &fluid) {

28 os << "rho: " << fluid.rho << " sigma: " << fluid.sigma << " nu: " <<

fluid.nu;↪→

29 return os;

30 }

31

32 /* Destructors */

33 Fluid::˜Fluid(){

34 }

Listing B.8: Fluid.cpp: C++ class to characterize fluids

1 //

2 // Created by Sindre Bakke Øyen on 06.03.2018.

3 //

4

5 #include "Grid.h"

6 #include <iostream>

7

8 /* Constructors */

9 Grid::Grid() = default;

xlix

Appendix B. C++ Program

10

11 Grid::Grid(const Grid &g):N(g.getN()), x0(g.getX0()), x1(g.getX1()),

alpha(g.getAlpha()),↪→

12 beta(g.getBeta()), mu0(g.getMu0()),

13 xi(gsl_vector_alloc(g.getN())),

14 w(gsl_vector_alloc(g.getN())),

15 D(gsl_matrix_alloc(g.getN(), g.getN())),

16 xipBB(gsl_matrix_alloc(g.getN(), g.getN())),

17 xipBC(gsl_matrix_alloc(g.getN(), g.getN())),

18 xippBC(gsl_matrix_alloc(g.getN(), g.getN()))

19 {

20 /* Memory has been allocated, copy values (not pointers) */

21 gsl_vector_memcpy(this->xi, g.getXi());

22 gsl_vector_memcpy(this->w, g.getW());

23 gsl_matrix_memcpy(this->D, g.getD());

24 gsl_matrix_memcpy(this->xipBB, g.getXipBB());

25 gsl_matrix_memcpy(this->xipBC, g.getXipBC());

26 gsl_matrix_memcpy(this->xippBC, g.getXippBC());

27

28 }

29

30 Grid::Grid(size_t N, realtype x0, realtype x1, realtype alpha, realtype

beta, realtype mu0)↪→

31 : N(N), x0(x0), x1(x1), alpha(alpha), beta(beta), mu0(mu0) {

32 this->w = gsl_vector_alloc(N);

33 this->xi = gsl_vector_alloc(N);

34 this->xipBB = gsl_matrix_alloc(N, N);

35 this->xipBC = gsl_matrix_alloc(N, N);

36 this->xippBC = gsl_matrix_alloc(N, N);

37 this->D = gsl_matrix_alloc(N, N);

38

39 /* Set xi, w, remap to [x0, x1] and derivative */

40 this->setQuadratureRule(); /* Sets xi and w */

41 this->remapGrid(); /* Remaps from [-1, 1] to

[x0, x1] */↪→

42 this->setLagrangeDerivativeMatrix(); /* In domain [x0, x1] as set

by constructor */↪→

43

44 /* Set rescaled xis */

45 this->setInterpolatedXis();

46 }

47

48 void Grid::coefs(size_t j, realtype *r){

49 /* Returns coefficients for three-term recurrence relationship for

Jacobi polynomials↪→

50 * The coefficients are

51 * r[0] = aj

52 * r[1] = bj

l

B.1 Source Files

53 * r[2] = cj

54 */

55 /* Note: j runs from 0 */

56 realtype a, div2, div3;

57 if ((alpha == beta) == -0.5){

58 r[0] = 2;

59 r[1] = 0;

60 r[2] = 1;

61 } else {

62 a = (2*j+alpha+beta);

63 r[0] = (a+1)*(a+2)/(2*(j+1)*(j+alpha+beta+1));

64 div2 = (2*(j+1)*(j+alpha+beta+1)*a);

65 if (div2 == 0){

66 r[1] = 0;

67 } else{

68 r[1] = (a+1)*(SUNRpowerI(alpha,2)-SUNRpowerI(beta,2))/div2;

69 }

70 div3 = ((j+1)*(j+alpha+beta+1)*a);

71 if (div3 == 0){

72 r[2] = 0;

73 } else{

74 r[2] = (j+alpha)*(j+beta)*(a+2)/div3;

75 }

76 }

77

78 }

79

80 /* Setter methods */

81 void Grid::setQuadratureRule() {

82 /* Computes the N-point Gauss Lobatto quadrature rule with Jacobi

polynomials↪→

83 * The function uses the Golub Welsch algorithm,

84 * xi = eigenvalues of Jtilde, wi = mu0 * (eigenvector vi of

Jtilde)ˆ2↪→

85 * Input args:

86 * alpha:: Coefficient to determine spacing of quadrature points

(alpha=beta=0 means Legendre)↪→

87 * beta :: Coefficient to determine spacing of quadrature points

88 * mu0 :: Integral of weight function from a to b (a=-1, b=1 for

Legendre)↪→

89 * */

90 /* Declare variables */

91

92 gsl_matrix *J, *Jtilde; /* Matrices used to obtain xi and w

*/↪→

93 gsl_matrix *I; /* Identity matrix (size NxN)

*/↪→

li

Appendix B. C++ Program

94 gsl_matrix *JmI, *JpI; /* Matrices J-I and J+I

*/↪→

95 gsl_matrix *T; /* Matrix to solve for gammap and taup+1

*/↪→

96 gsl_matrix_view subJt; /* Submatrix of Jtilde

*/↪→

97 gsl_matrix *eVecs; /* Matrix of eigenvectors of Jtilde

*/↪→

98

99 gsl_permutation *P1; /* Permutation matrix for LU factorization

*/↪→

100 gsl_permutation *P2; /* Permutation matrix for LU factorization

*/↪→

101

102 gsl_vector *ep; /* Basis vector (zero except for pth element

*/↪→

103 gsl_vector *eta, *mu; /* Eigenvectors of J+-I, lambdas = +-1

*/↪→

104 gsl_vector *rhs; /* Right hand side for retrieving gammap and

taup+1 */↪→

105 gsl_vector *taugamma; /* Vector to hold gammaP and tauN+1

*/↪→

106 gsl_vector *eVals; /* Vector of eigenvalues of Jtilde

*/↪→

107

108 size_t i, j; /* Iterators

*/↪→

109 int k = 2; /* Signum of permutation

*/↪→

110 realtype gammai; /* Used to store value for super and

subdiagonal */↪→

111 realtype taui; /* Used to store value for main diagonal

*/↪→

112 realtype gammaP; /* Last value of gamma

*/↪→

113 realtype tauPp1; /* Last value of tau

*/↪→

114 realtype etaP, muP; /* Last values of vectors eta and mu

*/↪→

115 realtype r1[3] = {0}; /* Holds coefficients from coefs function

*/↪→

116 realtype r2[3] = {0}; /* Holds coefficients from coefs function

*/↪→

117 realtype tmp; /* Temporary variable

*/↪→

118

119 /* Allocate memory for all needed matrices and vectors */

120 J = gsl_matrix_calloc(N-1, N-1);

lii

B.1 Source Files

121 Jtilde = gsl_matrix_calloc(N, N);

122 I = gsl_matrix_alloc(N-1, N-1);

123 JmI = gsl_matrix_alloc(N-1, N-1);

124 JpI = gsl_matrix_alloc(N-1, N-1);

125 T = gsl_matrix_alloc(2, 2);

126 subJt = gsl_matrix_submatrix(Jtilde, 0, 0, J->size1, J->size2);

127 eVecs = gsl_matrix_alloc(N, N);

128

129 P1 = gsl_permutation_alloc(N-1);

130 P2 = gsl_permutation_alloc(2);

131

132 ep = gsl_vector_alloc(N-1);

133 eta = gsl_vector_alloc(N-1);

134 mu = gsl_vector_alloc(N-1);

135 rhs = gsl_vector_alloc(2);

136 taugamma= gsl_vector_alloc(2);

137 eVals = gsl_vector_alloc(N);

138

139 /* Construct J (normally used to calculate the Gauss quadrature rule)

*/↪→

140 for (i = 0; i < N-2; i++){

141 this->coefs(i, r1);

142 this->coefs(i+1, r2);

143 taui = r1[1]/r1[0];

144 gammai = sqrt(r2[2]/(r1[0]*r2[0]));

145 gsl_matrix_set(J, i, i, taui); // Diagonal

146 gsl_matrix_set(J, i, i+1, gammai); // Superdiagonal

147 gsl_matrix_set(J, i+1, i, gammai); // Subdiagonal

148 }

149

150 /* Create all vectors and matrices to create Jtilde */

151 gsl_vector_set_basis(ep, ep->size-1); // (MxN)(Nx1) = (Mx1),

(J-I)eta=ep => ep in Rˆ(Mx1)↪→

152 gsl_matrix_set_identity(I);

153 gsl_matrix_memcpy(JmI, J);

154 gsl_matrix_memcpy(JpI, J);

155 gsl_matrix_sub(JmI, I);

156 gsl_matrix_add(JpI, I);

157

158 gsl_vector_set(rhs, 0, -1);

159 gsl_vector_set(rhs, 1, 1);

160

161 gsl_linalg_LU_decomp(JmI, P1, &k);

162 gsl_linalg_LU_solve(JmI, P1, ep, mu);

163 gsl_linalg_LU_decomp(JpI, P1, &k);

164 gsl_linalg_LU_solve(JpI, P1, ep, eta);

165

166 etaP = gsl_vector_get(eta, eta->size-1);

liii

Appendix B. C++ Program

167 muP = gsl_vector_get(mu, mu->size-1);

168

169 gsl_matrix_set(T, 0, 0, 1);

170 gsl_matrix_set(T, 0, 1, -etaP);

171 gsl_matrix_set(T, 1, 0, 1);

172 gsl_matrix_set(T, 1, 1, -muP);

173

174 /* Enforce xi0 = -1 and xiN = 1 */

175 gsl_linalg_LU_decomp(T, P2, &k);

176 gsl_linalg_LU_solve(T, P2, rhs, taugamma);

177

178 tauPp1 = gsl_vector_get(taugamma, 0);

179 gammaP = sqrt(gsl_vector_get(taugamma, 1));

180

181 gsl_matrix_swap(&subJt.matrix, J);

182

183 gsl_matrix_set(Jtilde, Jtilde->size1-2, Jtilde->size2-1, gammaP);

184 gsl_matrix_set(Jtilde, Jtilde->size1-1, Jtilde->size2-2, gammaP);

185 gsl_matrix_set(Jtilde, Jtilde->size1-1, Jtilde->size2-1, tauPp1);

186

187 /* The eigenvalues of Jtilde are the quadrature points and

188 * the first value of each eigenvector is used to obtain the

quadrature weights↪→

189 * */

190 gsl_eigen_symmv_workspace *ws;

191 ws = gsl_eigen_symmv_alloc(N);

192 gsl_eigen_symmv(Jtilde, eVals, eVecs, ws);

193

194 /* Find quadrature points */

195 gsl_vector_swap(xi, eVals);

196 /* Find weights */

197 for (i=0; i < N; i++){

198 tmp = gsl_matrix_get(eVecs, 0, i);

199 tmp *= tmp;

200 gsl_vector_set(w, i, tmp*mu0);

201 }

202

203 /* xi and w are reversed. 3/4 of the xi and w are sorted. Sort with

insertion sort */↪→

204 gsl_vector_reverse(xi);

205 gsl_vector_reverse(w);

206 i = 1;

207 while (i < xi->size){

208 j = i;

209 while ((j > 0) && (gsl_vector_get(xi, j-1) > gsl_vector_get(xi,

j))){↪→

210 /* Some value is less than previous: swap elements until it

is not */↪→

liv

B.1 Source Files

211 gsl_vector_swap_elements(xi, j, j-1);

212 gsl_vector_swap_elements(w, j, j-1); /* Remember that w_i

corresponds to xi_i: swap accordingly */↪→

213 j--;

214 }

215 i++;

216 }

217

218 /* END OF FUNCTION: FREE ALLOCATED MEMORY */

219 gsl_matrix_free(J);

220 gsl_matrix_free(Jtilde);

221 gsl_matrix_free(I);

222 gsl_matrix_free(JmI);

223 gsl_matrix_free(JpI);

224 gsl_matrix_free(T);

225 gsl_matrix_free(eVecs);

226

227 gsl_permutation_free(P1);

228 gsl_permutation_free(P2);

229

230 gsl_vector_free(ep);

231 gsl_vector_free(eta);

232 gsl_vector_free(mu);

233 gsl_vector_free(rhs);

234 gsl_vector_free(taugamma);

235 gsl_vector_free(eVals);

236 gsl_eigen_symmv_free(ws);

237 }

238

239 void Grid::remapGrid(){

240 /* Remap xi from [-1,1] to physical domain [this->x0, this->x1] */

241 realtype a0 = gsl_vector_get(this->xi, 0);

242 realtype b0 = gsl_vector_get(this->xi, this->N-1);

243

244 gsl_vector_scale(this->xi, (this->x1-this->x0)/(b0-a0));

245 gsl_vector_add_constant(this->xi, -a0*(this->x1-this->x0)/(b0-a0));

246

247 gsl_vector_scale(this->w, (this->x1-this->x0)/(b0-a0));

248 }

249

250 void Grid::setLagrangeDerivativeMatrix(){

251 realtype s = 1;

252 realtype wi, wj;

253 size_t i, j, k;

254 for (i = 1; i < this->N+1; i++){ /* Loop on rows */

255 s = 1;

256 for (k = 0; k < this->N; k++){

257 if (k != i-1){

lv

Appendix B. C++ Program

258 s /= gsl_vector_get(this->xi, i-1) -

gsl_vector_get(this->xi, k);↪→

259 }

260 }

261 wi = s;

262 for (j = 1; j < this->N+1; j++){ /* Loop on columns (l_j(x_i))

*/↪→

263 if (i==j){ /* Diagonal */

264 s = 0;

265 for (k = 0; k < this->N; k++){

266 if (k != i-1){

267 s += 1 / (gsl_vector_get(this->xi, i-1) -

gsl_vector_get(this->xi, k));↪→

268 }

269 }

270 gsl_matrix_set(D, i-1, j-1, s);

271 } else{ /* Off-diagonal */

272 s = 1;

273 for (k = 0; k < this->N; k++){

274 if (k != j-1){

275 s /= gsl_vector_get(this->xi, j-1) -

gsl_vector_get(this->xi, k);↪→

276 }

277 }

278 wj = s;

279 gsl_matrix_set(D, j-1, i-1, wi /

280 (wj * (gsl_vector_get(this->xi,

j-1)-gsl_vector_get(this->xi, i-1))));↪→

281 }

282

283 }

284 }

285 }

286

287 void Grid::setInterpolatedXis(){

288 size_t i, j;

289 realtype ai, bj, tmp;

290 realtype exp1, exp2;

291 for (i = 0; i < this->N; i++){

292 ai = gsl_vector_get(xi, i);

293 for (j = 0; j < this->N; j++){

294 bj = gsl_vector_get(xi, j);

295 exp1 = SUNRpowerR(bj, 3.0)/2;

296 tmp = 1.0 - exp1;

297 exp2 = SUNRpowerR(tmp, 1.0/3);

298 gsl_matrix_set(xipBB, i, j, (1.0-ai)*bj+ai);

/* Breakage birth */↪→

lvi

B.1 Source Files

299 gsl_matrix_set(xipBC, i, j, SUNRpowerR(2.0, -1.0/3)*ai*bj);

/* Coalescence birth */↪→

300 gsl_matrix_set(xippBC, i, j, ai*exp2);

/* Coalescence birth */↪→

301 }

302 }

303 }

304

305 /* Getter methods */

306 size_t Grid::getN() const {

307 return N;

308 }

309

310 realtype Grid::getX0() const {

311 return x0;

312 }

313

314 realtype Grid::getX1() const {

315 return x1;

316 }

317

318 realtype Grid::getAlpha() const {

319 return alpha;

320 }

321

322 realtype Grid::getBeta() const {

323 return beta;

324 }

325

326 realtype Grid::getMu0() const {

327 return mu0;

328 }

329

330 gsl_vector *Grid::getXi() const {

331 return xi;

332 }

333

334 gsl_vector *Grid::getW() const {

335 return w;

336 }

337

338 gsl_matrix *Grid::getD() const {

339 return D;

340 }

341

342 gsl_matrix *Grid::getXipBB() const {

343 return xipBB;

344 }

lvii

Appendix B. C++ Program

345

346 gsl_matrix *Grid::getXipBC() const {

347 return xipBC;

348 }

349

350 gsl_matrix *Grid::getXippBC() const {

351 return xippBC;

352 }

353

354 std::ostream &operator<<(std::ostream &os, const Grid &grid) {

355 size_t i, j, N = grid.getN();

356 gsl_vector *xi = grid.getXi();

357 gsl_vector *w = grid.getW();

358 gsl_matrix *D = grid.getD();

359 gsl_matrix *xipBB = grid.getXipBB();

360 gsl_matrix *xipBC = grid.getXipBC();

361 gsl_matrix *xippBC = grid.getXippBC();

362

363 os << "xi (Quadrature points):\n";

364 for (i = 0; i < N; i++){

365 os << std::setprecision(3) << gsl_vector_get(xi, i) << "\t";

366 }

367 os << "\n\nw (Quadrature weights):\n";

368 for (i = 0; i < N; i++){

369 os << std::setprecision(3) << gsl_vector_get(w, i) << "\t";

370 }

371 os << "\n\nD (Lagrange derivative matrix):\n";

372 for (i = 0; i < N; i++){

373 for (j = 0; j < N; j++){

374 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(D, i, j) << "\t";↪→

375 }

376 os << "\n";

377 }

378 os << "\n\nxipBB (Quadrature points birth breakage):\n";

379 for (i = 0; i < N; i++){

380 for (j = 0; j < N; j++){

381 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(xipBB, i, j) << "\t";↪→

382 }

383 os << "\n";

384 }

385 os << "\n\nxipBC (Quadrature points birth coalescence):\n";

386 for (i = 0; i < N; i++){

387 for (j = 0; j < N; j++){

388 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(xipBC, i, j) << "\t";↪→

389 }

lviii

B.1 Source Files

390 os << "\n";

391 }

392 os << "\n\nxippBC (Quadrature points birth coalescence):\n";

393 for (i = 0; i < N; i++){

394 for (j = 0; j < N; j++){

395 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(xippBC, i, j) << "\t";↪→

396 }

397 os << "\n";

398 }

399 return os;

400 }

401

402 /* Destructors */

403 Grid::˜Grid(){

404 gsl_vector_free(this->xi);

405 gsl_vector_free(this->w);

406 gsl_matrix_free(this->D);

407 gsl_matrix_free(this->xipBB);

408 gsl_matrix_free(this->xipBC);

409 gsl_matrix_free(this->xippBC);

410 }

Listing B.9: Grid.cpp: C++ class to set Gaussian grids with derivatives and integral weights

1 //

2 // Created by Sindre Bakke Øyen on 07.03.2018.

3 //

4

5 #include <gsl/gsl_matrix.h>

6 #include "Kernels.h"

7

8 /* Constructors */

9 Kernels::Kernels() = default;

10

11 Kernels::Kernels(const Kernels &k){

12 size_t N;

13 N = k.getKBB()->size1;

14

15 /* Allocate memory for kernels */

16 this->KBB = gsl_matrix_alloc(N, N);

17 this->KBC = gsl_matrix_alloc(N, N);

18 this->KDC = gsl_matrix_alloc(N, N);

19 this->KDB = gsl_vector_alloc(N);

20 /* Copy the values (not pointers) so we don't get memory leak */

21 gsl_matrix_memcpy(this->KBB, k.getKBB());

lix

Appendix B. C++ Program

22 gsl_matrix_memcpy(this->KBC, k.getKBC());

23 gsl_matrix_memcpy(this->KDC, k.getKDC());

24 gsl_vector_memcpy(this->KDB, k.getKDB());

25 }

26

27 Kernels::Kernels(realtype kb1, realtype kb2, realtype kc1, realtype kc2,

realtype tf,↪→

28 const Grid &grid, const SystemProperties &sysProps,

29 const Fluid &cont, const Fluid &disp) :

30 kb1(kb1), kb2(kb2), kc1(kc1), kc2(kc2), tf(tf), grid(grid),

31 KBB(gsl_matrix_calloc(grid.getN(), grid.getN())),

32 KBC(gsl_matrix_calloc(grid.getN(), grid.getN())),

33 KDC(gsl_matrix_calloc(grid.getN(), grid.getN())),

34 KDB(gsl_vector_calloc(grid.getN())){

35 this->initializeKs(cont, disp, sysProps);

36 this->setBreakageKernels();

37 this->setCoalescenceKernels();

38 }

39

40 void Kernels::setBreakageKernels() {

41 size_t i, j, N;

42 realtype xi_i, xipBBij;

43 gsl_vector *xi;

44 gsl_matrix *xipBB;

45

46 N = grid.getN();

47 xi = grid.getXi();

48 xipBB = grid.getXipBB();

49

50 for (i = 1; i < N; i++){

51 xi_i = gsl_vector_get(xi, i);

52

53 /* Death breakage */

54 gsl_vector_set(this->KDB, i,

55 this->k1

56 *1/SUNRpowerR(xi_i, (realtype) 2.0/3.0)

57 *SUNRexp(-this->k2/SUNRpowerR(xi_i, (realtype)

5.0/3.0)));↪→

58 for (j = 1; j < N; j++){

59 xipBBij = gsl_matrix_get(xipBB, i, j);

60

61 /* Birth breakage */

62 gsl_matrix_set(this->KBB, i, j,

63 this->k1

64 *(2*1/(realtype)SUNRpowerR(xipBBij, (realtype)

2.0/3.0))↪→

lx

B.1 Source Files

65 *SUNRexp(-this->k2/(realtype)SUNRpowerR(xipBBi c
j, (realtype)

5.0/3.0))

↪→

↪→

66 *(2.4/(realtype)SUNRpowerI(xipBBij, 3))

67 *SUNRexp(-4.5*(realtype)SUNRpowerI(

68 2*(realtype)SUNRpowerI(xi_i, 3) -

(realtype)SUNRpowerI(xipBBij, 3), 2↪→

69) /(realtype)SUNRpowerI(xipBBij, 6)

70)

71 *3*(realtype)SUNRpowerI(xi_i, 2)

72);

73 }

74 }

75 // /* Set first value to 0, to avoid NaN */

76 // gsl_vector_set(KDB, 0, 0);

77 // gsl_matrix_set(KBB, 0, 0, 0);

78 }

79

80 void Kernels::setCoalescenceKernels() {

81 size_t i, j, N;

82 realtype xi_i, xi_j, xipBCij, xippBCij;

83

84 gsl_vector *xi = grid.getXi();

85 gsl_matrix *xipBC = grid.getXipBC();

86 gsl_matrix *xippBC = grid.getXippBC();

87

88 N = grid.getN();

89 for (i = 1; i < N; i++){

90 xi_i = gsl_vector_get(xi, i);

91 for (j = 1; j < N; j++){

92 xi_j = gsl_vector_get(xi, j);

93 xipBCij = gsl_matrix_get(xipBC, i, j);

94 xippBCij = gsl_matrix_get(xippBC, i, j);

95 /* Birth coalescence */

96 gsl_matrix_set(this->KBC, i, j,

97 this->k3

98 *(realtype)SUNRpowerI(xipBCij+xippBCij, 2)

99 *(realtype)SUNRpowerR(

100 (realtype)SUNRpowerR(xipBCij,

(realtype) 2.0/3.0)↪→

101 +(realtype)SUNRpowerR(xippBCij,

(realtype) 2.0/3.0),↪→

102 (realtype) 1.0/2.0

103)*(realtype)SUNRexp(

104 -this->k4

105 *(realtype)SUNRpowerR(1/xipBCij+1/xipp c
BCij,

(realtype)-5.0/6.0)

↪→

↪→

lxi

Appendix B. C++ Program

106)

107);

108

109 /* Death coalescence */

110 gsl_matrix_set(this->KDC, i, j,

111 this->k3

112 *(realtype)SUNRpowerI(xi_j+xi_i, 2)

113 *(realtype)SUNRpowerR(

114 (realtype)SUNRpowerR(xi_j,

(realtype)2.0/3.0)↪→

115 +(realtype)SUNRpowerR(xi_i,

(realtype)2.0/3.0),↪→

116 (realtype)1.0/2.0

117)*(realtype)SUNRexp(

118 -this->k4

119 *(realtype)SUNRpowerR(1/xi_j + 1/xi_i,

(realtype)-5.0/6.0)↪→

120)

121);

122 }

123 }

124 }

125

126 /* Setter methods */

127 void Kernels::initializeKs(const Fluid &cont, const Fluid &disp, const

SystemProperties &s){↪→

128 realtype Rm = s.getRm();

129 realtype eps = s.getEps();

130 realtype rhoc = cont.getRho();

131 realtype rhod = disp.getRho();

132 realtype sigma = disp.getSigma();

133 realtype Vm = s.getVm();

134

135 realtype R23 = SUNRpowerR(Rm, 2.0/3);

136 realtype R53 = SUNRpowerR(Rm, 5.0/3);

137 realtype R73 = SUNRpowerR(Rm, 7.0/3);

138 realtype R56 = SUNRpowerR(Rm, 5.0/6);

139 realtype e13 = SUNRpowerR(eps, 1.0/3);

140 realtype e23 = SUNRpowerR(eps, 2.0/3);

141 realtype t13 = SUNRpowerR(2.0, 1.0/3);

142 realtype t23 = SUNRpowerR(2.0, 2.0/3);

143 realtype t53 = SUNRpowerR(2.0, 5.0/3);

144 realtype rho12 = SUNRpowerR(rhoc, 1.0/2);

145 realtype sigma12 = SUNRpowerR(sigma, 1.0/2);

146

147 this->k1 = tf*kb1*e13/(t23*R23)*SUNRsqrt(rhod/rhoc);

148 this->k2 = kb2*sigma / (rhod*t53*e23*R53);

149 this->k3 = tf/Vm*R73*4*t13*kc1*e13;

lxii

B.1 Source Files

150 this->k4 = kc2*R56*rho12*e13/(2*sigma12);

151 }

152

153 void Kernels::setTf(realtype tf) {

154 this->k1 *= tf / this->tf;

155 this->k3 *= tf / this->tf;

156 Kernels::tf = tf;

157 this->setBreakageKernels();

158 this->setCoalescenceKernels();

159 }

160

161 void Kernels::setKb1(realtype kb1) {

162 Kernels::kb1 = kb1;

163 }

164

165 void Kernels::setKb2(realtype kb2) {

166 Kernels::kb2 = kb2;

167 }

168

169 void Kernels::setKc1(realtype kc1) {

170 Kernels::kc1 = kc1;

171 }

172

173 void Kernels::setKc2(realtype kc2) {

174 Kernels::kc2 = kc2;

175 }

176

177 void Kernels::setNewK1(realtype kb1) {

178 this->k1 *= kb1 / this->kb1;

179 this->setKb1(kb1);

180 }

181

182 void Kernels::setNewK2(realtype kb2) {

183 this->k2 *= kb2 / this->kb2;

184 this->setKb2(kb2);

185 }

186

187 void Kernels::setNewK3(realtype kc1) {

188 this->k3 *= kc1 / this->kc1;

189 this->setKc1(kc1);

190 }

191

192 void Kernels::setNewK4(realtype kc2) {

193 this->k4 *= kc2 / this->kc2;

194 this->setKc2(kc2);

195 }

196

lxiii

Appendix B. C++ Program

197 void Kernels::setNewKs(realtype kb1, realtype kb2, realtype kc1, realtype

kc2){↪→

198 this->setNewK1(kb1);

199 this->setNewK2(kb2);

200 this->setNewK3(kc1);

201 this->setNewK4(kc2);

202 /* Also get new kernels because of new k's */

203 this->setBreakageKernels();

204 this->setCoalescenceKernels();

205 }

206

207 /* Getter methods */

208 gsl_matrix *Kernels::getKBB() const {

209 return KBB;

210 }

211

212 gsl_matrix *Kernels::getKBC() const {

213 return KBC;

214 }

215

216 gsl_matrix *Kernels::getKDC() const {

217 return KDC;

218 }

219

220 gsl_vector *Kernels::getKDB() const {

221 return KDB;

222 }

223

224 realtype Kernels::getK1() const {

225 return k1;

226 }

227

228 realtype Kernels::getK2() const {

229 return k2;

230 }

231

232 realtype Kernels::getK3() const {

233 return k3;

234 }

235

236 realtype Kernels::getK4() const {

237 return k4;

238 }

239

240 realtype Kernels::getKb1() const {

241 return kb1;

242 }

243

lxiv

B.1 Source Files

244 realtype Kernels::getKb2() const {

245 return kb2;

246 }

247

248 realtype Kernels::getKc1() const {

249 return kc1;

250 }

251

252 realtype Kernels::getKc2() const {

253 return kc2;

254 }

255

256 realtype Kernels::getTf() const {

257 return tf;

258 }

259

260 const Grid &Kernels::getGrid() const {

261 return grid;

262 }

263

264 /* Relational operators */

265 Kernels& Kernels::operator=(const Kernels &rhs){

266 this->k1 = rhs.getK1();

267 this->k2 = rhs.getK2();

268 this->k3 = rhs.getK3();

269 this->k4 = rhs.getK4();

270 this->kb1 = rhs.getKb1();

271 this->kb2 = rhs.getKb2();

272 this->kc1 = rhs.getKc1();

273 this->kc2 = rhs.getKc2();

274 this->tf = rhs.getTf();

275 size_t N = rhs.getGrid().getN();

276 this->KBB = gsl_matrix_calloc(N, N);

277 this->KBC = gsl_matrix_calloc(N, N);

278 this->KDC = gsl_matrix_calloc(N, N);

279 this->KDB = gsl_vector_calloc(N);

280 return *this;

281 }

282

283 std::ostream& operator<<(std::ostream &os, const Kernels &kernels) {

284 size_t i, j, N;

285 gsl_matrix *KBB = kernels.getKBB();

286 gsl_vector *KDB = kernels.getKDB();

287 gsl_matrix *KBC = kernels.getKBC();

288 gsl_matrix *KDC = kernels.getKDC();

289

290 N = KDB->size;

291 os << "KBB (Kernel birth breakage):\n";

lxv

Appendix B. C++ Program

292 for (i = 0; i < N; i++){

293 for (j = 0; j < N; j++){

294 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(KBB, i, j) << "\t";↪→

295 }

296 os << "\n";

297 }

298 os << "\n\nKDB (Kernel death breakage):\n";

299 for (i = 0; i < N; i++){

300 os << std::setw(8) << std::setprecision(3) <<

gsl_vector_get(KDB, i) << "\t";↪→

301 }

302 os << "\n\nKBC (Kernel birth coalescence):\n";

303 for (i = 0; i < N; i++){

304 for (j = 0; j < N; j++){

305 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(KBC, i, j) << "\t";↪→

306 }

307 os << "\n";

308 }

309 os << "\n\nKDC (Kernel death coalescence):\n";

310 for (i = 0; i < N; i++){

311 for (j = 0; j < N; j++){

312 os << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(KDC, i, j) << "\t";↪→

313 }

314 os << "\n";

315 }

316 return os;

317 }

318

319 Kernels::˜Kernels() {

320 gsl_vector_free(this->KDB);

321 gsl_matrix_free(this->KBB);

322 gsl_matrix_free(this->KBC);

323 gsl_matrix_free(this->KDC);

324 }

Listing B.10: Kernels.cpp: C++ class to characterize kernels

1 //

2 // Created by Sindre Bakke Øyen on 18.03.2018.

3 //

4

5 #include <gsl/gsl_vector_double.h>

6 #include <gsl/gsl_matrix.h>

lxvi

B.1 Source Files

7 #include <gsl/gsl_multifit_nlinear.h>

8 #include "PBModel.h"

9

10 /* Constructors */

11 PBModel::PBModel() = default;

12

13 PBModel::PBModel(char const *f, realtype kb1, realtype kb2, realtype kc1,

realtype kc2,↪→

14 const Grid &g, const SystemProperties &s,

15 const Fluid &cont, const Fluid &disp,

16 size_t decision):

17 filename(f), grid(g), sysProps(s), cont(cont), disp(disp),

cvode_mem(nullptr),↪→

18 kerns(Kernels(kb1, kb2, kc1, kc2, 1, g, s, cont, disp)){

19 int flag = 0;

20 /* Get rows and columns of csv file and initialize M and N

respectively */↪→

21 this->getRowsAndCols();

22

23 /* Allocate memory for member variables */

24 this->t = gsl_vector_alloc(this->M);

25 this->r = gsl_vector_alloc(this->N);

26 this->fv = gsl_matrix_alloc(this->M, this->N);

27 this->tau = gsl_vector_alloc(this->M);

28 this->fvSim = gsl_matrix_calloc(this->M, this->N);

29

30 /* These must be on another domain (xi, not r) */

31 this->psi = gsl_matrix_calloc(this->M, grid.getN());

32 this->NPsi = N_VNew_Serial(grid.getN());

33

34 /* Set experimental data: r, t, fv and rescale */

35 this->getDistributions();

36 if (decision) {

37 std::ifstream fin("../results/logNormal_mean_30_sd_10.txt");

38 std::string line;

39 getline(fin, line);

40 size_t i = 0;

41 while (getline(fin, line)){

42 i++;

43 }

44 gsl_vector_free(this->r);

45 this->r = gsl_vector_calloc(i);

46 gsl_matrix_free(this->fv);

47 this->fv = gsl_matrix_calloc(this->M, i);

48 gsl_matrix_free(this->fv);

49 this->fvSim = gsl_matrix_calloc(this->M, i);

50 fin.clear();

51 fin.seekg(0, fin.beg);

lxvii

Appendix B. C++ Program

52 getline(fin, line);

53 realtype val1 = 0, val2 = 0;

54 size_t j = 0;

55 while (std::getline(fin, line)){

56 std::stringstream linestream(line);

57 linestream >> val1 >> val2;

58 gsl_vector_set(r, j, val1);

59 gsl_matrix_set(this->fv, 0, j, val2);

60 j++;

61 }

62 fin.close();

63 this->N = i;

64 gsl_vector_view fvj0 = gsl_matrix_row(this->fv, 0);

65 for (j = 1; j < this->M; j++){

66 gsl_vector_view fvjj = gsl_matrix_row(this->fv, j);

67 gsl_vector_memcpy(&fvjj.vector, &fvj0.vector);

68 }

69 }

70

71 this->rescaleInitial();

72

73 /* Set final time of experiment and update kernels */

74 realtype tf = gsl_vector_get(this->t, this->M - 1);

75 this->kerns.setTf(tf);

76 /* Assign nondimensional time tau = t / tf */

77 gsl_vector_memcpy(this->tau , this->t);

78 gsl_vector_scale(this->tau, 1/this->kerns.getTf());

79 this->tRequested = gsl_vector_get(this->tau, 1);

80

81 /* Assign nondimensional initial distribution */

82 this->psiN = gsl_matrix_row(this->psi, 0);

83

84 /* Prepare CVode memory */

85 flag = this->prepareCVMemory();

86 if (flag == 1) perror("Failed to prepare ODE memory");

87 }

88

89

90 /* Helper methods */

91 void PBModel::getRowsAndCols(){

92 FILE *f = fopen(filename, "r");

93 if (f != nullptr) {

94 // Initialize variables

95 size_t rows = 0, cols = 0;

96 size_t i=0, j=1000, tmp = 0;

97 bool flag = false;

98 realtype val = 0;

99 const char s[2] = ",";

lxviii

B.1 Source Files

100 const int bufSize = 1000;

101 char line[bufSize], *toFree;

102

103 // Now loop over lines

104 while(fgets(line, sizeof line, f) != nullptr) {

105 rows++;

106 tmp = 0;

107 i = 0;

108 toFree = strdup(line);

109 while ((strsep(&toFree, s)) != nullptr) {

110 tmp++;

111 if (rows > TRASHROWS && tmp > TRASHCOLS){

112 if (toFree != nullptr) {

113 val = strtod(toFree, nullptr);

114 } else val = 1;

115 if (val != 0) flag = true;

116 else if (flag && val == 0){

117 i++;

118 }

119 }

120 }

121 flag = false;

122 if (rows > TRASHROWS && j > i) j = i;

123 if (tmp > cols) {

124 cols = tmp;

125 }

126 }

127 if (j > TRUNCATETHRESHOLD){

128 cols = cols - TRASHCOLS - j + TRUNCATETHRESHOLD;

129 } else cols = cols - TRASHCOLS;

130 rows = rows - TRASHROWS;

131 this->M = rows;

132 this->N = cols;

133 fclose(f);

134 } else {

135 perror(filename);

136 }

137 }

138

139 void PBModel::getDistributions() {

140 /* Declare needed variables */

141 char *hours, *minutes;

142 realtype h, m;

143 size_t i = 0, k = 0; // Index variables

144

145 const char s[2] = ",";

146 const size_t bufSize = 10*(this->N);

147 char line[bufSize], *token, *toFree, *timeStr;

lxix

Appendix B. C++ Program

148

149 /* Open file and start reading */

150 FILE *f = fopen(filename, "r");

151 if (f != nullptr) {

152 while (fgets(line, sizeof line, f) != nullptr) {

153 if (i == 0) {

154 i++;

155 continue;

156 }

157 toFree = strdup(line);

158 k = 0;

159 while((token = strsep(&toFree, s)) != nullptr){

160 if (k < TRASHCOLS){

161 if (k == 2){

162 if (i==1){

163 k++;

164 continue;

165 } else {

166 // Fetch time column

167 timeStr = strsep(&token, " ");

168 timeStr = token;

169 hours = strsep(&timeStr, ":");

170 minutes = timeStr;

171 h = strtod(hours, nullptr);

172 m = strtod(minutes, nullptr);

173 gsl_vector_set(t, i-TRASHROWS, h*3600+m*60);

174 k++;

175 continue;

176 }

177 } else {

178 k++;

179 continue;

180 }

181 }

182 if (k-TRASHCOLS < this->N) {

183 switch (i) {

184 case 1: {

185 /* Given sizes are diameter; we need radii.

Also they should be microns */↪→

186 gsl_vector_set(r, k - TRASHCOLS,

strtod(token, nullptr) / 2 * 1.e-6);↪→

187 break;

188 }

189 default: {

190 gsl_matrix_set(fv, i - TRASHROWS, k -

TRASHCOLS, strtod(token, nullptr));↪→

191 break;

192 }

lxx

B.1 Source Files

193 }

194 k++;

195 } else continue;

196 }

197 i++;

198 }

199 fclose(f);

200 gsl_vector_add_constant(t, -gsl_vector_get(t, 0));

201 for (i = 1; i < t->size; i++){

202 if (gsl_vector_get(t, i) - gsl_vector_get(t, i-1) == 0){

203 gsl_vector_set(t, i, gsl_vector_get(t, i) + 30);

204 // t_data[i] += 30;

205 }

206 }

207 gsl_vector_set(t, 0, 0);

208 if (gsl_vector_get(t, 1) - gsl_vector_get(t, 0) == 0){

209 gsl_vector_set(t, 1, gsl_vector_get(t, 1) + 30);

210 }

211 } else perror(filename);

212 }

213

214 void PBModel::rescaleInitial(){

215 /* Takes distributions, corresponding radii and phase fraction and

rescales the distributions↪→

216 * fv = phi/I * f0

217 * Approximate I by trapezoids: I = sum([r(i+1)-r(i)] *
[f(i+1)+f(i)]) from i=0 to N-1↪→

218 */

219 size_t i, j;

220 realtype I, rj, rjj, fij, fijj;

221

222 for (i = 0; i < M; i++){ /* Loop over rows */

223 I = 0;

224 for (j = 0; j < N-1; j++){ /* Loop over columns */

225 rj = gsl_vector_get(r, j); rjj = gsl_vector_get(r, j+1);

226 fij = gsl_matrix_get(fv, i, j); fijj = gsl_matrix_get(fv, i,

j+1);↪→

227 I += (rjj-rj) * (fijj+fij);

228 }

229 I = I/2;

230 gsl_vector_view rowJ = gsl_matrix_row(fv, i);

231 gsl_vector_scale(&rowJ.vector, PHI/I);

232 }

233 }

234

235 int PBModel::preparePsi(){

236 realtype xN, yN;

237 realtype *psiData = NV_DATA_S(this->NPsi);

lxxi

Appendix B. C++ Program

238 /* Allocate memory for Steffen spline on experimental psi */

239 gsl_vector_view fv0 = gsl_matrix_row(this->fv, 0);

240 gsl_vector *psi0 = gsl_vector_alloc(this->N);

241 gsl_vector_memcpy(psi0, &fv0.vector);

242 gsl_vector_scale(psi0, this->sysProps.getRm());

243

244 /* Create temporary experimental radius / Rm */

245 gsl_vector *tmp = gsl_vector_alloc(this->N);

246 gsl_vector_memcpy(tmp, this->r);

247 gsl_vector_scale(tmp, 1/sysProps.getRm());

248

249 gsl_interp_accel *acc = gsl_interp_accel_alloc();

250 gsl_spline *spline = gsl_spline_alloc(gsl_interp_steffen, this->N);

251 gsl_spline_init(spline, &tmp->data[0], &psi0->data[0], this->N);

252

253 for (size_t i = 0; i < grid.getN(); i++){

254 xN = gsl_vector_get(grid.getXi(), i);

255 /* We are not allowed to "interpolate" outside of experimental

radius */↪→

256 if (xN > gsl_vector_get(tmp, 0) && xN < gsl_vector_get(tmp,

this->N-1)) {↪→

257 yN = gsl_spline_eval(spline, xN, acc);

258 } else yN = 0; /* If we are outside of experimental radius, 0 our

distribution */↪→

259 gsl_vector_set(&psiN.vector, i, yN);

260 /* Assign initial condition to solution vector */

261 psiData[i] = yN;

262 }

263

264 gsl_vector_free(psi0);

265 gsl_vector_free(tmp);

266 gsl_spline_free (spline);

267 gsl_interp_accel_free (acc);

268

269 return 0;

270 }

271

272 int PBModel::prepareCVMemory(){

273 int flag = 0;

274 /* Call CVodeCreate to create the solver memory and specify the

275 * Backward Differentiation Formula and the use of a Newton iteration

*/↪→

276 this->cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);

277 if (checkFlag((void *)this->cvode_mem, "CVodeCreate", 0)) return(1);

278

279 /* Call CVodeInit to initialize the integrator memory and specify the

280 * user's right hand side function in y'=f(t,y), the inital time T0,

and↪→

lxxii

B.1 Source Files

281 * the initial dependent variable vector y. */

282 flag = CVodeInit(this->cvode_mem, dydt, gsl_vector_get(this->tau, 0),

this->NPsi);↪→

283 if (checkFlag(&flag, "CVodeInit", 1)) return(1);

284

285 /* Call CVodeSStolerances to specify the scalar relative tolerance

286 * and scalar absolute tolerance */

287 flag = CVodeSStolerances(this->cvode_mem, RTOL, ATOL);

288 if (checkFlag(&flag, "CVodeSStolerances", 1)) return(1);

289

290 /* Set the pointer to user-defined data */

291 flag = CVodeSetUserData(cvode_mem, this);

292 if(checkFlag(&flag, "CVodeSetUserData", 1)) return(1);

293

294 /* Create dense SUNMatrix for use in linear solves */

295 this->A = SUNDenseMatrix(this->grid.getN(), this->grid.getN());

296 if(checkFlag((void *)this->A, "SUNDenseMatrix", 0)) return(1);

297

298 /* Create dense SUNLinearSolver object for use by CVode */

299 this->LS = SUNDenseLinearSolver(this->NPsi, this->A);

300 if(checkFlag((void *)this->LS, "SUNDenseLinearSolver", 0)) return(1);

301

302 /* Call CVDlsSetLinearSolver to attach the matrix and linear solver

to CVode */↪→

303 flag = CVDlsSetLinearSolver(this->cvode_mem, this->LS, this->A);

304 if(checkFlag(&flag, "CVDlsSetLinearSolver", 1)) return(1);

305 return flag;

306 }

307

308 int PBModel::releaseCVMemory(){

309 CVodeFree(&this->cvode_mem);

310 SUNMatDestroy(this->A);

311 SUNLinSolFree(this->LS);

312 return 0;

313 }

314

315 int PBModel::checkFlag(void *flagvalue, const char *funcname, int opt){

316 int *errflag;

317

318 /* Check if SUNDIALS function returned NULL pointer - no memory

allocated */↪→

319 if (opt == 0 && flagvalue == NULL) {

320 fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed - returned NULL

pointer\n\n",↪→

321 funcname);

322 return(1); }

323

324 /* Check if flag < 0 */

lxxiii

Appendix B. C++ Program

325 else if (opt == 1) {

326 errflag = (int *) flagvalue;

327 if (*errflag < 0) {

328 fprintf(stderr, "\nSUNDIALS_ERROR: %s() failed with flag =

%d\n\n",↪→

329 funcname, *errflag);

330 return(1); }}

331

332 /* Check if function returned NULL pointer - no memory allocated

*/↪→

333 else if (opt == 2 && flagvalue == NULL) {

334 fprintf(stderr, "\nMEMORY_ERROR: %s() failed - returned NULL

pointer\n\n",↪→

335 funcname);

336 return(1); }

337

338 return(0);

339 }

340

341 bool PBModel::checkMassBalance() {

342 /* Only to be called after solvePBE method */

343 size_t i = 0;

344 realtype phaseFraction = 0;

345 realtype phasef = 0;

346 for (i = 0; i < this->M; i++){

347 gsl_vector_view psii = gsl_matrix_row(this->psi, i);

348 gsl_vector_view fvi = gsl_matrix_row(this->fvSim, i);

349 gsl_blas_ddot(this->grid.getW(), &psii.vector, &phaseFraction);

350 gsl_blas_ddot(this->r, &fvi.vector, &phasef);

351 if ((realtype) SUNRabs(phaseFraction - PHI)/PHI * 100 > 5){

352 /* More than relative 5% deviation. Mass not conserved */

353 return false;

354 }

355 }

356 /* At no time the mass was not conserved --> mass was conserved,

return true */↪→

357 return true;

358 }

359

360

361 /* Solver methods */

362 int PBModel::getRHS(N_Vector y, N_Vector ydot){

363 size_t i = 0, j = 0;

364 double integralBB; /* Stores integral value for BB */

365 double integralBC; /* Stores integral value for BC */

366 double integralDC; /* Stores integral value for DC */

367 realtype *ydata = NV_DATA_S(y);

368 realtype *ydotdata = NV_DATA_S(ydot);

lxxiv

B.1 Source Files

369

370 /* Fetch different grids */

371 size_t Np = this->grid.getN();

372 gsl_vector *w = grid.getW();

373 gsl_vector *xi = grid.getXi();

374 gsl_matrix *xipBB = grid.getXipBB();

375 gsl_matrix *xipBC = grid.getXipBC();

376 gsl_matrix *xippBC = grid.getXippBC();

377

378 /* Fetch different kernels */

379 gsl_matrix *KBB = kerns.getKBB();

380 gsl_vector *KDB = kerns.getKDB();

381 gsl_matrix *KBC = kerns.getKBC();

382 gsl_matrix *KDC = kerns.getKDC();

383

384 /* Point psiN.vector to ydata */

385 this->psiN.vector.data = ydata;

386

387 /* Allocate memory for our interpolated distributions */

388 gsl_matrix *psipBB = gsl_matrix_alloc(Np, Np);

389 gsl_matrix *psipBC = gsl_matrix_alloc(Np, Np);

390 gsl_matrix *psippBC = gsl_matrix_alloc(Np, Np);

391

392 /* Interpolate from (x,y)-pairs to (xx,yy)-pairs */

393 interpolatePsi(xi, &this->psiN.vector, xipBB, psipBB);

394 interpolatePsi(xi, &this->psiN.vector, xipBC, psipBC);

395 interpolatePsi(xi, &this->psiN.vector, xippBC, psippBC);

396

397 /* Allocate memory for integrands (and integrals?) */

398 /* IBB, IBC, IDC (and BB, DB, BC, DC?) */

399 gsl_matrix *IBB = gsl_matrix_calloc(Np, Np);

400 gsl_matrix *IBC = gsl_matrix_calloc(Np, Np);

401 gsl_matrix *IDC = gsl_matrix_calloc(Np, Np);

402 gsl_vector *B = gsl_vector_calloc(Np);

403 gsl_vector *C = gsl_vector_calloc(Np);

404

405 /* Open two files to write B and C to file */

406 std::ofstream bin("../results/breakage.dat", std::fstream::app);

407 std::ofstream cin("../results/coalescence.dat", std::fstream::app);

408 bin << this->tRequested * gsl_vector_get(this->t, this->M-1) << "\t";

409 cin << this->tRequested / gsl_vector_get(this->t, this->M-1) << "\t";

410 /* B = IBB*w - DB, C = IBC*w - IDC*w */

411 /* ydot[i] = B[i] + C[i] */

412 /* Loop over rows and columns and evaluate RHS */

413 for (i = 1; i < Np; i++){

414 realtype kdbi = gsl_vector_get(KDB, i);

415 realtype xii = gsl_vector_get(xi, i);

416 realtype psii = gsl_vector_get(&this->psiN.vector, i);

lxxv

Appendix B. C++ Program

417 for (j = 0; j < Np; j++){

418 /* Fetch indexed variables for easier typing */

419 realtype xipbbij = gsl_matrix_get(xipBB, i, j);

420 realtype xipbcij = gsl_matrix_get(xipBC, i, j);

421 realtype xippbcij = gsl_matrix_get(xippBC, i, j);

422 realtype xij = gsl_vector_get(xi, j);

423 realtype kbbij = gsl_matrix_get(KBB, i, j);

424 realtype kbcij = gsl_matrix_get(KBC, i, j);

425 realtype kdcij = gsl_matrix_get(KDC, i, j);

426 realtype psipbbij = gsl_matrix_get(psipBB, i, j);

427 realtype psipbcij = gsl_matrix_get(psipBC, i, j);

428 realtype psippbcij = gsl_matrix_get(psippBC, i, j);

429 realtype psij = gsl_vector_get(&this->psiN.vector, j);

430

431 /* Set integrand birth breakage */

432 realtype denomBB = SUNRpowerI(xipbbij, 3);

433 if (denomBB == 0) { gsl_matrix_set(IBB, i, j, 0); }

434 else {

435 gsl_matrix_set(IBB, i, j,

436 kbbij * psipbbij

437 / denomBB

438 * (1 - xii)

439);

440 }

441 /* Set integrand birth coalescence */

442 realtype denomBC1 = SUNRpowerI(xipbcij, 3);

443 realtype denomBC2 = SUNRpowerI(xippbcij, 3);

444 if (denomBC1 == 0 || denomBC2 == 0){ gsl_matrix_set(IBC, i,

j, 0); }↪→

445 else {

446 gsl_matrix_set(IBC, i, j,

447 kbcij

448 * psipbcij / denomBC1

449 * psippbcij / denomBC2

450 * (realtype) SUNRpowerI(xii / xippbcij, 2)

451 * xii / (realtype) SUNRpowerR(2.0, 1.0 /

3.0)↪→

452);

453 }

454 /* Set integrand death coalescence */

455 realtype denomDB = SUNRpowerI(xij, 3);

456 if (denomDB == 0) { gsl_matrix_set(IDC, i, j, 0); }

457 else {

458 gsl_matrix_set(IDC, i, j,

459 kdcij * psij / denomDB

460);

461 }

462 }

lxxvi

B.1 Source Files

463 /* Now do inner product of integrand and weights to evaluate

integrals */↪→

464 /* Populate B by BB - DB

465 * BB[i] = xiiˆ3 * IBB[i, :] * w = xiiˆ3 * ddot(IBB[i, :], w)

466 */

467 gsl_vector_view IBBrow = gsl_matrix_row(IBB, i);

468 gsl_vector_view IBCrow = gsl_matrix_row(IBC, i);

469 gsl_vector_view IDCrow = gsl_matrix_row(IDC, i);

470

471 /* Breakage */

472 gsl_blas_ddot(w, &IBBrow.vector, &integralBB);

473 /* B[i] = Birth breakage[i] - Death breakage[i] */

474 gsl_vector_set(B, i,

475 (realtype)SUNRpowerI(xii, 3)

476 *(realtype)integralBB

477 -kdbi*psii

478);

479

480 /* Coalescence */

481 gsl_blas_ddot(w, &IBCrow.vector, &integralBC);

482 gsl_blas_ddot(w, &IDCrow.vector, &integralDC);

483 /* C[i] = Birth coalescence[i] - Death coalescence[i] */

484 gsl_vector_set(C, i,

485 (realtype)SUNRpowerI(xii, 3)

486 *(realtype)integralBC

487 -psii*(realtype)integralDC

488);

489 ydotdata[i] = (realtype) (gsl_vector_get(B, i) +

gsl_vector_get(C, i));↪→

490

491 /* Write coalescence and breakage to file */

492 bin << gsl_vector_get(B, i) << "\t";

493 cin << gsl_vector_get(C, i) << "\t";

494 }

495 ydotdata[0] = 0;

496 bin << std::endl;

497 cin << std::endl;

498 bin.close();

499 cin.close();

500 /* Free allocated memory that is only used in current scope */

501 gsl_matrix_free(psipBB);

502 gsl_matrix_free(psipBC);

503 gsl_matrix_free(psippBC);

504 gsl_matrix_free(IBB);

505 gsl_matrix_free(IBC);

506 gsl_matrix_free(IDC);

507 gsl_vector_free(B);

508 gsl_vector_free(C);

lxxvii

Appendix B. C++ Program

509 return 0;

510 }

511

512 int PBModel::interpolatePsi(const gsl_vector *x, const gsl_vector *y,

const gsl_matrix *xx, gsl_matrix *yy){↪→

513 /* x and y is original data, xx and yy is interpolated data */

514 size_t i=0, j=0;

515 realtype xN, yN;

516 realtype x0 = gsl_vector_get(x, 0);

517 realtype xend = gsl_vector_get(x, x->size - 1);

518 gsl_interp_accel *acc = gsl_interp_accel_alloc();

519

520 gsl_spline *spline = gsl_spline_alloc(gsl_interp_steffen, x->size);

521 gsl_spline_init(spline, x->data, y->data, x->size);

522 /* Interpolate onto xx domain and get yy values */

523 for (i = 0; i < xx->size1; i++) { /* Loop over rows */

524 for (j = 0; j < xx->size2; j++) { /* Loop over columns */

525 xN = gsl_matrix_get(xx, i, j);

526 if (xN > x0 && xN < xend) {

527 yN = gsl_spline_eval(spline, xN, acc);

528 } else yN = 0; /* If we are outside of experimental radius, 0

our distribution */↪→

529 gsl_matrix_set(yy, i, j, yN);

530 }

531 }

532 gsl_spline_free (spline);

533 gsl_interp_accel_free (acc);

534 return 0;

535 }

536

537 int PBModel::interpolateFv(const gsl_vector *x, const gsl_vector *y,

const gsl_vector *xx, gsl_vector *yy){↪→

538 /* x and y is original data. xx and yy is interpolated data */

539 size_t i=0;

540 realtype xN, yN;

541 realtype x0 = gsl_vector_get(x, 0);

542 realtype xend = gsl_vector_get(x, x->size -1);

543 gsl_interp_accel *acc = gsl_interp_accel_alloc();

544

545 gsl_spline *spline = gsl_spline_alloc(gsl_interp_steffen, x->size);

546 gsl_spline_init(spline, x->data, y->data, x->size);

547 /* Interpolate onto xx domain and get yy values */

548 for (i = 0; i < xx->size; i++){

549 xN = gsl_vector_get(xx, i);

550 if (xN > x0 && xN < xend){

551 yN = gsl_spline_eval(spline, xN, acc);

552 } else yN = 0;

553 gsl_vector_set(yy, i, yN);

lxxviii

B.1 Source Files

554 }

555 gsl_spline_free (spline);

556 gsl_interp_accel_free(acc);

557 return 0;

558 }

559

560 int PBModel::timeIterate() {

561 int flag = CVode(this->cvode_mem, this->tRequested, this->NPsi,

&(this->tout), CV_NORMAL);↪→

562 if(checkFlag(&flag, "CVode", 1)) return 1;

563 // std::cout << "time requested: " << this->tRequested << ", time

produced: " << this->tout << std::endl;↪→

564 return 0;

565 }

566

567 int PBModel::solvePBE(){

568 int flag = 0;

569 /* Prepare psi for CVode */

570 flag = this->preparePsi();

571 if (flag != 0) perror("Failed to interpolate fv onto psi");

572 /* Prepare memory for integration */

573 flag = this->releaseCVMemory();

574 if (flag == 1) perror("Failed to release ODE memory");

575 flag = this->prepareCVMemory();

576 if (flag == 1) perror("Failed to prepare ODE memory");

577

578 size_t i = 0;

579 /* Write breakage and coalescence contributions to file */

580 std::ofstream bin("../results/breakage.dat");

581 std::ofstream cin("../results/coalescence.dat");

582 bin << "xi\n";

583 cin << "xi\n";

584 for (i = 0; i < this->grid.getN(); i++){

585 bin << gsl_vector_get(this->grid.getXi(), i) << "\t";

586 cin << gsl_vector_get(this->grid.getXi(), i) << "\t";

587 }

588 bin << std::endl;

589 cin << std::endl;

590 bin.close();

591 cin.close();

592

593 for (i = 1; i < this->M; i++){

594 /* Request new return time for ODE solver */

595 this->tRequested = gsl_vector_get(this->tau, i);

596

597 /* Take one time iteration at solving the ODE */

598 flag = this->timeIterate();

599 if (flag == 1) { break; }

lxxix

Appendix B. C++ Program

600

601 /* Copy data of current row into psi (psiN->data points to

solution data) */↪→

602 gsl_vector_view row = gsl_matrix_row(this->psi, i);

603 gsl_vector_memcpy(&row.vector, &(this->psiN.vector));

604 }

605

606 /** Interpolate solution back onto experimental radial domain **/

607 /** i.e. psi(xi, tau) --> fv(r, t) **/

608 /* Matrix fvSim will hold fv on experimental domain */

609 /* Create temporary matrix to hold fv on discretized domain */

610 gsl_matrix *tmpPsi = gsl_matrix_alloc(this->M, this->grid.getN());

611 /* Create temporary vector to hold simulated radii on [0, Rm] */

612 gsl_vector *tmpR = gsl_vector_alloc(this->grid.getN());

613 /* Copy original data */

614 gsl_vector_memcpy(tmpR, this->grid.getXi());

615 gsl_matrix_memcpy(tmpPsi, this->psi);

616 /* Scale original data */

617 gsl_vector_scale(tmpR, sysProps.getRm());

618 gsl_matrix_scale(tmpPsi, 1/sysProps.getRm());

619

620 for (i = 0; i < this->M; i++) {

621 gsl_vector_view tmpPsii = gsl_matrix_row(tmpPsi, i);

622 gsl_vector_view fvSimi = gsl_matrix_row(this->fvSim, i);

623 interpolateFv(tmpR, &tmpPsii.vector, this->r, &fvSimi.vector);

624 }

625 // this->printFvSimulated();

626 gsl_matrix_free(tmpPsi);

627 gsl_vector_free(tmpR);

628 return 0;

629 }

630

631

632 realtype PBModel::getResidualij(size_t i, size_t j){

633 /* fvSim was set in solvePBE method and should by now

634 * hold simulated fv on experimental radial domain

635 */

636 realtype fvSimVal = gsl_matrix_get(this->fvSim, i, j);

637 realtype fvExpVal = gsl_matrix_get(this->fv, i, j);

638 return (fvSimVal - fvExpVal);

639 }

640

641 double PBModel::getModeledMean(size_t t){

642 double s, rdfvsim, dr;

643 s = 0;

644 size_t i = 0;

645 for (i = 1; i < this->N; i++){

646 dr = gsl_vector_get(this->r, i) - gsl_vector_get(this->r, i-1);

lxxx

B.1 Source Files

647 rdfvsim = gsl_vector_get(this->r, i)

648 * (gsl_matrix_get(this->fvSim, t, i-1) +

gsl_matrix_get(this->fvSim, t, i));↪→

649 s += dr * rdfvsim / 2;

650 }

651 return (s / PHI * 1.e6);

652 }

653

654 double PBModel::getExperimentalMean(size_t t) {

655 double s, rdfvsim, dr;

656 s = 0;

657 size_t i = 0;

658 for (i = 1; i < this->N; i++){

659 dr = gsl_vector_get(this->r, i) - gsl_vector_get(this->r, i-1);

660 rdfvsim = gsl_vector_get(this->r, i)

661 * (gsl_matrix_get(this->fv, t, i-1) +

gsl_matrix_get(this->fv, t, i));↪→

662 s += dr * rdfvsim / 2;

663 }

664 return (s / PHI * 1.e6);

665 }

666

667 realtype PBModel::getResidualMean(size_t t){

668 /* t is time instant */

669 return (this->getModeledMean(t) - this->getExperimentalMean(t));

670 }

671

672 double PBModel::getWeightedResidual(size_t i, size_t j, double m, double

s){↪→

673 double x = gsl_vector_get(this->r, j);

674 double weight = this->getWeight(x, m, s);

675 return (this->getResidualij(i, j) * weight);

676

677 return 1.0;

678 }

679

680 double PBModel::getWeight(double x, double m, double s) {

681 return (1.0 / (1.0+exp((m-x)/s)));

682 }

683

684

685 /* Levenberg-Marquardt parameter estimation */

686 int PBModel::costFunctionSSE(const gsl_vector *x, gsl_vector *f) {

687 /* Evaluates the cost function at x

688 * x is the vector of parameters kb1, kb2, kc1, kc2 */

689 realtype kb1 = gsl_vector_get(x, 0) / 1.e5;

690 realtype kb2 = gsl_vector_get(x, 1) / 1.e4;

691 realtype kc1 = gsl_vector_get(x, 2) / 1.e4;

lxxxi

Appendix B. C++ Program

692 realtype kc2 = gsl_vector_get(x, 3) / 1.e-2;

693 this->kerns.setNewKs(kb1, kb2, kc1, kc2);

694 this->solvePBE();

695 double s = 1.e-6, m = 6.e-6;

696 size_t i = 0, j = 0;

697 size_t times = f->size / this->N;

698 for (i = 0; i < times-1; i++){

699 for (j = 0; j < this->N; j++){

700 size_t idx = i * this->N + j;

701 // gsl_vector_set(f, idx, this->getResidualij(i, j));

702 gsl_vector_set(f, idx, this->getWeightedResidual(i, j, m, s));

703 }

704 }

705 for (j = 0; j < this->N; j++){

706 size_t idx = (times-1)*this->N + j;

707 // gsl_vector_set(f, idx, this->getResidualij(M-1, j));

708 gsl_vector_set(f, idx, this->getWeightedResidual(M-1, j, m, s));

709 }

710 return GSL_SUCCESS;

711 }

712

713 int PBModel::costFunctionMean(const gsl_vector *x, gsl_vector *f){

714 double kb1 = gsl_vector_get(x, 0) / 1.e4;

715 double kb2 = gsl_vector_get(x, 1) / 1.e3;

716 double kc1 = gsl_vector_get(x, 2) / 1.e5;

717 double kc2 = gsl_vector_get(x, 3) / 1.e-1;

718 this->kerns.setNewKs(kb1, kb2, kc1, kc2);

719 this->solvePBE();

720 size_t i = 0;

721 size_t nRes = f->size; /* Number of residual means */

722 for (i = 0; i < nRes; i++){

723 gsl_vector_set(f, i, this->getResidualMean(i));

724 }

725 return GSL_SUCCESS;

726 }

727

728 int PBModel::paramesterEstimationSSE() {

729 const size_t Ntmin = 81; /* Minimum number of distributions chosen

*/↪→

730 const size_t Ntmax = 90; /* Maximum number of distributions chosen

*/↪→

731 size_t Nt = Ntmin; /* Number of distributions chosen

*/↪→

732 const size_t p = 4; /* Number of parameters

*/↪→

733 const realtype kb1 = this->getKerns().getKb1();

734 const realtype kb2 = this->getKerns().getKb2();

735 const realtype kc1 = this->getKerns().getKc1();

lxxxii

B.1 Source Files

736 const realtype kc2 = this->getKerns().getKc2();

737 do {

738 size_t N = Nt * this->N; /* Number of residuals */

739 size_t n = N;

740

741 const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;

742 gsl_multifit_nlinear_workspace *w;

743 gsl_multifit_nlinear_fdf fdf;

744 gsl_multifit_nlinear_parameters fdf_params =

745 gsl_multifit_nlinear_default_parameters();

746 fdf_params.h_df = 1.e-2;

747

748 std::cout << "Number of distributions: " << Nt << std::endl;

749

750 gsl_vector *f; /* Function */

751 gsl_matrix *J; /* Jacobian */

752 gsl_matrix *covar = gsl_matrix_alloc(p, p);

753

754 PBModel *d = this;

755 /* starting values */

756 double x1_scaling = 1.e5, x2_scaling = 1.e4, x3_scaling = 1.e4,

x4_scaling = 1.e-2;↪→

757 double x_init[4] = {kb1 * x1_scaling, kb2 * x2_scaling,

758 kc1 * x3_scaling, kc2 * x4_scaling};

759 gsl_vector_view x = gsl_vector_view_array(x_init, p);

760 double chisq, chisq0;

761 int status, info;

762

763 const double xtol = 1e-8;

764 const double gtol = 1e-8;

765 const double ftol = 1.e-4;

766

767 /* define the function to be minimized */

768 fdf.f = gatewayCostSSE;

769 fdf.df = NULL; /* set to NULL for finite-difference Jacobian

*/↪→

770 fdf.fvv = NULL; /* not using geodesic acceleration */

771 fdf.n = n;

772 fdf.p = p;

773 fdf.params = d;

774

775 /* allocate workspace with default parameters */

776 w = gsl_multifit_nlinear_alloc(T, &fdf_params, n, p);

777

778 /* initialize solver with starting point and weights */

779 gsl_multifit_nlinear_init(&x.vector, &fdf, w);

780

781 /* compute initial cost function */

lxxxiii

Appendix B. C++ Program

782 f = gsl_multifit_nlinear_residual(w);

783 gsl_blas_ddot(f, f, &chisq0);

784

785 /* solve the system with a maximum of 200 iterations */

786 status = gsl_multifit_nlinear_driver(200, xtol, gtol, ftol,

787 paramEstimationCallbackSSE,

NULL, &info, w);↪→

788

789 /* compute covariance of best fit parameters */

790 J = gsl_multifit_nlinear_jac(w);

791 gsl_multifit_nlinear_covar(J, 0.0, covar);

792

793 /* compute final cost */

794 gsl_blas_ddot(f, f, &chisq);

795

796 #define FIT(i) gsl_vector_get(w->x, i)

797 #define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

798

799 time_t rawtime;

800 struct tm *timeinfo;

801 char buffer[80];

802 time(&rawtime);

803 timeinfo = localtime(&rawtime);

804 strftime(buffer, sizeof(buffer), "%d-%m-%Y-%I:%M:%S", timeinfo);

805 std::string str(buffer);

806 std::stringstream ss;

807 ss << Nt;

808 std::string outputFilename =

"../results/parameterEstimation/wSSE/refined_initial_guess/"

+ ss.str() + "_dists_" + str + ".dat";

↪→

↪→

809 std::ofstream outfile;

810 outfile.open(outputFilename);

811

812 fprintf(stderr, "summary from method '%s/%s'\n",

813 gsl_multifit_nlinear_name(w),

814 gsl_multifit_nlinear_trs_name(w));

815 fprintf(stderr, "number of iterations: %zu\n",

816 gsl_multifit_nlinear_niter(w));

817 fprintf(stderr, "function evaluations: %zu\n", fdf.nevalf);

818 fprintf(stderr, "Jacobian evaluations: %zu\n", fdf.nevaldf);

819 fprintf(stderr, "reason for stopping: %s\n",

820 (info == 1) ? "small step size" : "small gradient");

821 fprintf(stderr, "initial |f(x)| = %f\n", sqrt(chisq0));

822 fprintf(stderr, "final |f(x)| = %f\n", sqrt(chisq));

823

824 {

825 double dof = n - p;

826 double c = GSL_MAX_DBL(1, sqrt(chisq / dof));

lxxxiv

B.1 Source Files

827

828 fprintf(stderr, "chisq/dof = %g\n", chisq / dof);

829

830 fprintf(stderr, "kb1 = %.3g +/- %.3g\n", FIT(0), c *
ERR(0));↪→

831 fprintf(stderr, "kb2 = %.3g +/- %.3g\n", FIT(1), c *
ERR(1));↪→

832 fprintf(stderr, "kc1 = %.3g +/- %.3g\n", FIT(2), c *
ERR(2));↪→

833 fprintf(stderr, "kc2 = %.3g +/- %.3g\n", FIT(3), c *
ERR(3));↪→

834

835 outfile << "#kb1,kb2,kc1,kc2,kb10,kb20,kc10,kc20,chisq/dof,#d c
ists,initial,final,iter\n";↪→

836 outfile << FIT(0) / x1_scaling << "," << FIT(1) / x2_scaling

837 << "," << FIT(2) / x3_scaling << "," << FIT(3) /

x4_scaling↪→

838 << "," << x_init[0] / x1_scaling << "," << x_init[1]

/ x2_scaling↪→

839 << "," << x_init[2] / x3_scaling << "," << x_init[3]

/ x4_scaling↪→

840 << "," << chisq / dof << "," << Nt

841 << "," << sqrt(chisq0) << "," << sqrt(chisq)

842 << "," << gsl_multifit_nlinear_niter(w) << "\n";

843 outfile << c * ERR(0) / x1_scaling << "," << c * ERR(1) /

x2_scaling↪→

844 << "," << c * ERR(2) / x3_scaling << "," << c *
ERR(3) / x4_scaling << "\n";↪→

845 outfile << fdf_params.h_df << "\n";

846 }

847 outfile.close();

848 fprintf(stderr, "status = %s\n", gsl_strerror(status));

849

850 gsl_multifit_nlinear_free(w);

851 gsl_matrix_free(covar);

852 Nt++;

853 } while (Nt < Ntmax);

854 return 0;

855 }

856

857 int PBModel::parameterEstimationMean() {

858 const size_t N = this->M;

859 const size_t p = 4;

860 const size_t n = N;

861

862 const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;

863 gsl_multifit_nlinear_workspace *w;

864 gsl_multifit_nlinear_fdf fdf;

lxxxv

Appendix B. C++ Program

865 gsl_multifit_nlinear_parameters fdf_params =

866 gsl_multifit_nlinear_default_parameters();

867 fdf_params.h_df = 1.e-2;

868

869 gsl_vector *f; /* Function */

870 gsl_matrix *J; /* Jacobian */

871 gsl_matrix *covar = gsl_matrix_alloc(p, p);

872

873 PBModel *d = this;

874 /* starting values */

875 double x1_scaling = 1.e4, x2_scaling = 1.e3, x3_scaling = 1.e5,

x4_scaling = 1.e-1;↪→

876 double x_init[4] = {this->kerns.getKb1() * x1_scaling,

this->kerns.getKb2() * x2_scaling,↪→

877 this->kerns.getKc1() * x3_scaling,

this->kerns.getKc2() * x4_scaling};↪→

878 gsl_vector_view x = gsl_vector_view_array(x_init, p);

879 double chisq, chisq0;

880 int status, info;

881

882 const double xtol = 1e-8;

883 const double gtol = 1e-8;

884 const double ftol = 1.e-4;

885

886 /* define the function to be minimized */

887 fdf.f = gatewayCostMean;

888 fdf.df = NULL; /* set to NULL for finite-difference Jacobian */

889 fdf.fvv = NULL; /* not using geodesic acceleration */

890 fdf.n = n;

891 fdf.p = p;

892 fdf.params = d;

893

894 /* allocate workspace with default parameters */

895 w = gsl_multifit_nlinear_alloc(T, &fdf_params, n, p);

896

897 /* initialize solver with starting point and weights */

898 gsl_multifit_nlinear_init(&x.vector, &fdf, w);

899

900 /* compute initial cost function */

901 f = gsl_multifit_nlinear_residual(w);

902 gsl_blas_ddot(f, f, &chisq0);

903

904 /* solve the system with a maximum of 200 iterations */

905 status = gsl_multifit_nlinear_driver(200, xtol, gtol, ftol,

906 paramEstimationCallbackMean,

NULL, &info, w);↪→

907

908 /* compute covariance of best fit parameters */

lxxxvi

B.1 Source Files

909 J = gsl_multifit_nlinear_jac(w);

910 gsl_multifit_nlinear_covar(J, 0.0, covar);

911

912 /* compute final cost */

913 gsl_blas_ddot(f, f, &chisq);

914

915 #define FIT(i) gsl_vector_get(w->x, i)

916 #define ERR(i) sqrt(gsl_matrix_get(covar,i,i))

917

918 time_t rawtime;

919 struct tm *timeinfo;

920 char buffer[80];

921 time(&rawtime);

922 timeinfo = localtime(&rawtime);

923 strftime(buffer, sizeof(buffer), "%d-%m-%Y-%I:%M:%S", timeinfo);

924 std::string str(buffer);

925 std::string outputFilename =

"../results/parameterEstimation/means_all_dists" + str + ".dat";↪→

926 std::ofstream outfile;

927 outfile.open(outputFilename);

928

929 fprintf(stderr, "summary from method '%s/%s'\n",

930 gsl_multifit_nlinear_name(w),

931 gsl_multifit_nlinear_trs_name(w));

932 fprintf(stderr, "number of iterations: %zu\n",

933 gsl_multifit_nlinear_niter(w));

934 fprintf(stderr, "function evaluations: %zu\n", fdf.nevalf);

935 fprintf(stderr, "Jacobian evaluations: %zu\n", fdf.nevaldf);

936 fprintf(stderr, "reason for stopping: %s\n",

937 (info == 1) ? "small step size" : "small gradient");

938 fprintf(stderr, "initial |f(x)| = %f\n", sqrt(chisq0));

939 fprintf(stderr, "final |f(x)| = %f\n", sqrt(chisq));

940

941 {

942 double dof = n - p;

943 double c = GSL_MAX_DBL(1, sqrt(chisq / dof));

944

945 fprintf(stderr, "chisq/dof = %g\n", chisq / dof);

946

947 fprintf(stderr, "kb1 = %.3g +/- %.3g\n", FIT(0), c * ERR(0));

948 fprintf(stderr, "kb2 = %.3g +/- %.3g\n", FIT(1), c * ERR(1));

949 fprintf(stderr, "kc1 = %.3g +/- %.3g\n", FIT(2), c * ERR(2));

950 fprintf(stderr, "kc2 = %.3g +/- %.3g\n", FIT(3), c * ERR(3));

951

952 outfile << "#kb1,kb2,kc1,kc2,kb10,kb20,kc10,kc20,chisq/dof,initia c
l,final,iter\n";↪→

953 outfile << FIT(0) / x1_scaling << "," << FIT(1) / x2_scaling

lxxxvii

Appendix B. C++ Program

954 << "," << FIT(2) / x3_scaling << "," << FIT(3) /

x4_scaling↪→

955 << "," << x_init[0] / x1_scaling << "," << x_init[1] /

x2_scaling↪→

956 << "," << x_init[2] / x3_scaling << "," << x_init[3] /

x4_scaling↪→

957 << "," << chisq / dof

958 << "," << sqrt(chisq0) << "," << sqrt(chisq)

959 << "," << gsl_multifit_nlinear_niter(w) << "\n";

960 outfile << c * ERR(0) / x1_scaling << "," << c * ERR(1) /

x2_scaling↪→

961 << "," << c * ERR(2) / x3_scaling << "," << c * ERR(3) /

x4_scaling << "\n";↪→

962 outfile << fdf_params.h_df << "\n";

963 }

964 outfile.close();

965 fprintf(stderr, "status = %s\n", gsl_strerror(status));

966

967 gsl_multifit_nlinear_free(w);

968 gsl_matrix_free(covar);

969 return 0;

970 }

971

972 ///* Fletcher-Reeves constrained optimization (parameter estimation) */

973 //double PBModel::fletcherReevesCostFunction(const gsl_vector *v) {

974 // realtype kb1 = gsl_vector_get(v, 0);

975 // realtype kb2 = gsl_vector_get(v, 1);

976 // realtype kc1 = gsl_vector_get(v, 2);

977 // realtype kc2 = gsl_vector_get(v, 3);

978 // this->kerns.setNewKs(kb1, kb2, kc1, kc2);

979 // this->solvePBE();

980 // double result = 0;

981 // size_t i = 0, j = 0;

982 // for (i = 0; i < this->M; i++){

983 // for (j = 0; j < this->N; j++){

984 // result += pow(this->getResidualij(i, j), 2);

985 // }

986 // }

987 // return result;

988 //}

989 //void PBModel::fletcherReevesParamEstimation(){

990 // size_t iter = 0;

991 // int status;

992 //

993 // const gsl_multimin_fdfminimizer_type *T;

994 // gsl_multimin_fdfminimizer *s;

995 //

996 // PBModel *m = this;

lxxxviii

B.1 Source Files

997 //

998 // gsl_vector *x;

999 // gsl_multimin_function_fdf func;

1000 // func.n = 4;

1001 // func.f = fletcherReevesGatewayCost;

1002 // func.df = NULL;

1003 // func.fdf = NULL;

1004 // func.params = m;

1005 //

1006 // /* Starting point */

1007 // x = gsl_vector_alloc(4);

1008 // double x_init[4] = { this->kerns.getKb1(), this->kerns.getKb2(),

1009 // this->kerns.getKc1(), this->kerns.getKc2() };

1010 // gsl_vector_set(x, 0, this->kerns.getKb1());

1011 // gsl_vector_set(x, 1, this->kerns.getKb2());

1012 // gsl_vector_set(x, 2, this->kerns.getKc1());

1013 // gsl_vector_set(x, 3, this->kerns.getKc2());

1014 //

1015 // T = gsl_multimin_fdfminimizer_conjugate_fr;

1016 // s = gsl_multimin_fdfminimizer_alloc (T, 4);

1017 //}

1018

1019 /* Getter methods */

1020 gsl_matrix *PBModel::getFv() const {

1021 return fv;

1022 }

1023

1024 gsl_vector *PBModel::getR() const {

1025 return r;

1026 }

1027

1028 gsl_vector *PBModel::getT() const {

1029 return t;

1030 }

1031

1032 size_t PBModel::getM() const {

1033 return M;

1034 }

1035

1036 size_t PBModel::getN() const {

1037 return N;

1038 }

1039

1040 const Grid &PBModel::getGrid() const {

1041 return grid;

1042 }

1043

1044 const Kernels &PBModel::getKerns() const {

lxxxix

Appendix B. C++ Program

1045 return kerns;

1046 }

1047

1048 const SystemProperties &PBModel::getSysProps() const {

1049 return sysProps;

1050 }

1051

1052 const Fluid &PBModel::getCont() const {

1053 return cont;

1054 }

1055

1056 const Fluid &PBModel::getDisp() const {

1057 return disp;

1058 }

1059

1060

1061 /* Printer methods */

1062 void PBModel::printExperimentalDistribution(){

1063 size_t i, j;

1064 std::cout << "The droplet size density distribution:" << std::endl;

1065 for (i=0;i<M;i++){

1066 for(j=0;j<N;j++){

1067 std::cout << std::setw(8) << std::setprecision(3) <<

gsl_matrix_get(fv, i, j) << "\t";↪→

1068 }

1069 std::cout << std::endl;

1070 }

1071 }

1072

1073 void PBModel::printSizeClasses() {

1074 size_t i = 0;

1075 std::cout << "Measured size classes: " << std::endl;

1076 for (i = 0; i < this->N; i++){

1077 std::cout << std::setw(10) << std::setprecision(7) <<

gsl_vector_get(this->r, i);↪→

1078 }

1079 std::cout << std::endl;

1080 }

1081

1082 void PBModel::printCurrentPsi(){

1083 realtype *data = NV_DATA_S(this->NPsi);

1084 size_t i = 0;

1085 std::cout << "Psi for the current time iteration is: " << std::endl;

1086 for (i = 0; i < grid.getN(); i++){

1087 std::cout << std::setw(8) << std::setprecision(2) << data[i];

1088 }

1089 std::cout << std::endl;

1090 }

xc

B.1 Source Files

1091

1092 void PBModel::printPsi(){

1093 size_t i = 0, j = 0;

1094 std::cout << "Nondimensionalized droplet size density distribution:"

<< std::endl;↪→

1095 for (i = 0; i < this->M; i++){

1096 for (j = 0; j < grid.getN(); j++){

1097 std::cout << std::setw(12) << std::setprecision(3) <<

gsl_matrix_get(psi, i, j);↪→

1098 }

1099 std::cout << std::endl;

1100 }

1101 }

1102

1103 void PBModel::printFvSimulated(){

1104 size_t i = 0, j = 0;

1105 std::cout << "Droplet size density distribution fvSim(r, t):" <<

std::endl;↪→

1106 for (i = 0; i < this->M; i++){

1107 for (j = 0; j < this->N; j++){

1108 std::cout << std::setw(12) << std::setprecision(3) <<

gsl_matrix_get(this->fvSim, i, j);↪→

1109 }

1110 std::cout << std::endl;

1111 }

1112 }

1113

1114 void PBModel::printDimensions(){

1115 std::cout << "Rows: " << this->M << ", Columns: " << this->N <<

std::endl;↪→

1116 }

1117

1118 void PBModel::printTime() {

1119 size_t i = 0;

1120 std::cout << "Time of measurement: " << std::endl;

1121 for (i = 0; i < this->M; i++){

1122 std::cout << std::setw(5) << std::setprecision(4) <<

gsl_vector_get(this->t, i);↪→

1123 }

1124 std::cout << std::endl;

1125 }

1126

1127 void PBModel::printTau(){

1128 size_t i = 0;

1129 std::cout << "Nondimensionalized time vector: " << std::endl;

1130 for (i = 0; i < this->M; i++){

1131 std::cout << std::setw(6) << std::setprecision(2) <<

gsl_vector_get(this->tau, i);↪→

xci

Appendix B. C++ Program

1132 }

1133 std::cout << std::endl;

1134 }

1135

1136

1137 /* Exporter methods */

1138 int PBModel::exportFvSimulatedWithExperimental() {

1139 time_t rawtime;

1140 struct tm * timeinfo;

1141 char buffer[80];

1142 time (&rawtime);

1143 timeinfo = localtime(&rawtime);

1144 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

1145 std::string str(buffer);

1146 std::string outputFilename = "../results/solutionFiles/pbe-" + str +

".dat";↪→

1147 std::ofstream outfile;

1148

1149 size_t i = 0, j = 0;

1150 outfile.open(outputFilename);

1151 outfile << "#r,#fv\n";

1152 for (i = 0; i < this->N; i++) {

1153 outfile << gsl_vector_get(this->r, i) << ",";

1154 for (j = 0; j < this->M; j++) {

1155 outfile << gsl_matrix_get(this->fvSim, j, i) << ",";

1156 }

1157 for (j = 0; j < this->M; j++){

1158 outfile << gsl_matrix_get(this->fv, j, i) << ",";

1159 }

1160 outfile << std::endl;

1161 }

1162 outfile.close();

1163 return 0;

1164 }

1165

1166 int PBModel::exportFv(){

1167 /* Create new matrix and vector to dimensionalize results */

1168 gsl_matrix *tmpfv = gsl_matrix_alloc(this->M, this->grid.getN());

1169 gsl_matrix_memcpy(tmpfv, psi);

1170 gsl_matrix_scale(tmpfv, 1/this->sysProps.getRm());

1171

1172 gsl_vector *tmpr = gsl_vector_alloc(this->grid.getN());

1173 gsl_vector_memcpy(tmpr, this->grid.getXi());

1174 gsl_vector_scale(tmpr, this->sysProps.getRm());

1175

1176 /* Export to file */

1177 time_t rawtime;

1178 struct tm * timeinfo;

xcii

B.1 Source Files

1179 char buffer[80];

1180 time (&rawtime);

1181 timeinfo = localtime(&rawtime);

1182 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

1183 std::string str(buffer);

1184 std::string outputFilename = "../results/solutionFiles/pbe-" + str +

".dat";↪→

1185 std::ofstream outfile;

1186

1187 size_t i = 0, j = 0;

1188 outfile.open(outputFilename);

1189 outfile << "#r,#fv\n";

1190 for (i = 0; i < this->grid.getN(); i++) {

1191 outfile << gsl_vector_get(tmpr, i) << ",";

1192 for (j = 0; j < this->M; j++) {

1193 outfile << gsl_matrix_get(tmpfv, j, i) << ",";

1194 }

1195 outfile << std::endl;

1196 }

1197 outfile.close();

1198

1199 /* Free temporary variables */

1200 gsl_matrix_free(tmpfv);

1201 gsl_vector_free(tmpr);

1202 return 0;

1203 }

1204

1205 int PBModel::exportPsi() {

1206 time_t rawtime;

1207 struct tm * timeinfo;

1208 char buffer[80];

1209 time (&rawtime);

1210 timeinfo = localtime(&rawtime);

1211 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

1212 std::string str(buffer);

1213 std::string outputFilename = "../results/solutionFiles/pbe-" + str +

".dat";↪→

1214 std::ofstream outfile;

1215

1216 size_t i = 0, j = 0;

1217 outfile.open(outputFilename);

1218 outfile << "#xi,#psi\n";

1219 for (i = 0; i < this->grid.getN(); i++) {

1220 outfile << gsl_vector_get(this->grid.getXi(), i) << ",";

1221 for (j = 0; j < this->M; j++) {

1222 outfile << gsl_matrix_get(this->psi, j, i) << ",";

1223 }

1224 outfile << std::endl;

xciii

Appendix B. C++ Program

1225 }

1226 outfile.close();

1227 return 0;

1228 }

1229

1230 int PBModel::exportMeans(){

1231 time_t rawtime;

1232 struct tm * timeinfo;

1233 char buffer[80];

1234 time (&rawtime);

1235 timeinfo = localtime(&rawtime);

1236 strftime(buffer,sizeof(buffer),"%d-%m-%Y-%I:%M:%S",timeinfo);

1237 std::string str(buffer);

1238 std::string outputFilename = "../results/solutionFiles/means-" + str

+ ".dat";↪→

1239 std::ofstream outfile(outputFilename);

1240 if (!outfile.good()) return 1;

1241

1242 outfile << "#modeled,#experimental" << std::endl;

1243 size_t t;

1244 for (t = 0; t < this->M; t++){

1245 outfile << this->getModeledMean(t) << "," <<

this->getExperimentalMean(t) << std::endl;↪→

1246 }

1247 return 0;

1248 }

1249

1250 /* Destructors */

1251 PBModel::˜PBModel(){

1252 gsl_matrix_free(this->fv);

1253 gsl_matrix_free(this->psi);

1254 gsl_vector_free(this->r);

1255 gsl_vector_free(this->t);

1256 gsl_vector_free(this->tau);

1257 /* NPsi->data points to a row in psi. psi is freed, so we cannot free

NPsi yet.↪→

1258 * Point NPsi->data to nullptr before freeing, so we don't encounter

memory issues.↪→

1259 */

1260 this->releaseCVMemory();

1261 NV_DATA_S(this->NPsi) = nullptr;

1262 N_VDestroy_Serial(this->NPsi);

1263 }

Listing B.11: PBModel.cpp: C++ class to represent the entire population balance equation

xciv

B.1 Source Files

1 //

2 // Created by Sindre Bakke Øyen on 05.03.2018.

3 //

4

5 #include "SystemProperties.h"

6

7 /* Constructors */

8 SystemProperties::SystemProperties() = default;

9

10 SystemProperties::SystemProperties(const SystemProperties &s) :

11 Rm(s.getRm()), Vl(s.getVl()), Vm(s.getVm()), P(s.getP()),

eps(s.getEps()) {}↪→

12

13 SystemProperties::SystemProperties(

14 realtype Rm, realtype Vl, realtype P, const Fluid &disp) :

15 Rm(Rm), Vl(Vl), P(P)

16 {

17 this->Vm = 4.0/3 * M_PI * SUNRpowerI(this->Rm, 3);

18 this->eps = this->P / (disp.getRho() * this->Vl);

19 }

20

21 /* Getter methods */

22 realtype SystemProperties::getRm() const {

23 return Rm;

24 }

25

26 realtype SystemProperties::getVl() const {

27 return Vl;

28 }

29

30 realtype SystemProperties::getVm() const {

31 return Vm;

32 }

33

34 realtype SystemProperties::getP() const {

35 return P;

36 }

37

38 realtype SystemProperties::getEps() const {

39 return eps;

40 }

41

42 /* Setter methods */

43

44 /* Friend methods */

45 std::ostream &operator<<(std::ostream &os, const SystemProperties

&properties) {↪→

xcv

Appendix B. C++ Program

46 os << "Rm: " << properties.Rm << " Vl: " << properties.Vl << " Vm: "

<< properties.Vm↪→

47 << " P: " << properties.P << " eps: " << properties.eps;

48 return os;

49 }

50

51 /* Destructors */

52 SystemProperties::˜SystemProperties(){}

Listing B.12: SystemProperties.cpp: C++ class to characterize the environment

xcvi

B.2 Header Files

B.2 Header Files

1 //

2 // Created by Sindre Bakke Øyen on 05.03.2018.

3 //

4

5 #ifndef MASTERPROJECTCPP_FLUID_H

6 #define MASTERPROJECTCPP_FLUID_H

7 /* Built-in header files */

8 #include <iostream> /* Used for input/output to console

*/↪→

9 #include <ostream> /* Used for overloading print

operator */↪→

10

11 /* External library header files */

12 #include <sundials/sundials_types.h>

13

14 class Fluid {

15 private:

16 realtype rho, sigma, nu;

17 public:

18 /* Constructors */

19 Fluid();

20 Fluid(const Fluid &f);

21 Fluid(realtype rho, realtype sigma, realtype nu);

22

23 /* Getter methods */

24 realtype getRho() const;

25 realtype getSigma() const;

26 realtype getNu() const;

27

28 friend std::ostream &operator<<(std::ostream &os, const Fluid &fluid);

29

30 /* Destructors */

31 ˜Fluid();

32 };

33

34

35 #endif //MASTERPROJECTCPP_FLUID_H

Listing B.13: Fluid.h: C++ header file for Fluid class

1 //

2 // Created by Sindre Bakke Øyen on 06.03.2018.

3 //

xcvii

Appendix B. C++ Program

4

5 #ifndef MASTERPROJECTCPP_GRID_H

6 #define MASTERPROJECTCPP_GRID_H

7 /* Built-in header files */

8 #include <ostream> /* Print to console

*/↪→

9 #include <iomanip> /* Manipulate output format

*/↪→

10

11 /* External library header files */

12 #include <sundials/sundials_types.h> /* Datatypes from sundials

*/↪→

13 #include <sundials/sundials_math.h> /* Math functions, power etc

*/↪→

14 #include <gsl/gsl_vector_double.h> /* Vectors

*/↪→

15 #include <gsl/gsl_matrix_double.h> /* Matrices

*/↪→

16 #include <gsl/gsl_linalg.h> /* Linear algebra

*/↪→

17 #include <gsl/gsl_blas.h> /* Basic linear algebraic

subprograms */↪→

18 #include <gsl/gsl_eigen.h> /* Eigenvectors and values

*/↪→

19

20 /* User-defined header files */

21

22 class Grid {

23 private:

24 gsl_vector *xi, *w;

25 gsl_matrix *D, *xipBB, *xipBC, *xippBC;

26 size_t N;

27 realtype x0, x1, alpha, beta, mu0;

28 /* Variables:

29 * xi :: Quadrature points

30 * w :: Quadrature weights

31 * D :: Lagrange derivative matrix

32 * xip's:: Interpolated quadrature points for birth terms

33 * N :: Number of grid points

34 * x0 :: Left boundary

35 * x1 :: Right boundary

36 * alpha:: Chooses Jacobi polynomial

37 * beta :: Chooses Jacobi polynomial

38 * mu0 :: The integral of the weight function in the domain [-1,1] */

39 public:

40 /* Constructors */

41 Grid();

42 Grid(const Grid &g);

xcviii

B.2 Header Files

43 Grid(size_t N, realtype x0, realtype x1, realtype alpha, realtype

beta, realtype mu0);↪→

44

45 /* Setter methods */

46 void coefs(size_t j, realtype *r);

47 void setQuadratureRule(); /* Gauss Lobatto rule */

48 void remapGrid(); /* Remaps grid to [x0, x1] domain */

49 void setLagrangeDerivativeMatrix();

50 void setInterpolatedXis();

51

52 /* Getter methods */

53 size_t getN() const;

54 realtype getX0() const;

55 realtype getX1() const;

56 realtype getAlpha() const;

57 realtype getBeta() const;

58 realtype getMu0() const;

59

60 gsl_vector *getXi() const;

61 gsl_vector *getW() const;

62 gsl_matrix *getD() const;

63 gsl_matrix *getXipBB() const;

64 gsl_matrix *getXipBC() const;

65 gsl_matrix *getXippBC() const;

66

67 friend std::ostream &operator<<(std::ostream &os, const Grid &grid);

68

69 /* Destructors */

70 ˜Grid();

71 };

72

73 #endif //MASTERPROJECTCPP_GRID_H

Listing B.14: Grid.h: C++ header file for Grid class

1 //

2 // Created by Sindre Bakke Øyen on 07.03.2018.

3 //

4

5 #ifndef MASTERPROJECTCPP_KERNELS_H

6 #define MASTERPROJECTCPP_KERNELS_H

7 /* User-defined header files */

8 #include "Grid.h"

9 #include "SystemProperties.h"

10

11 class Kernels {

xcix

Appendix B. C++ Program

12 private:

13 gsl_matrix *KBB, *KBC, *KDC; /* KDC is symmetric */

14 gsl_vector *KDB;

15

16 realtype k1, k2, k3, k4, kb1, kb2, kc1, kc2, tf;

17 Grid grid;

18 public:

19 /* Constructors */

20 Kernels();

21 Kernels(const Kernels &k);

22 Kernels(realtype kb1, realtype kb2, realtype kc1, realtype kc2,

realtype tf,↪→

23 const Grid &grid, const SystemProperties &sysProps,

24 const Fluid &cont, const Fluid &disp);

25

26 /* Setter methods */

27 void initializeKs(const Fluid &cont, const Fluid &disp, const

SystemProperties &s);↪→

28

29 void setTf(realtype tf);

30

31 void setKb1(realtype kb1);

32 void setKb2(realtype kb2);

33 void setKc1(realtype kc1);

34 void setKc2(realtype kc2);

35

36 void setNewK1(realtype kb1);

37 void setNewK2(realtype kb2);

38 void setNewK3(realtype kc1);

39 void setNewK4(realtype kc2);

40

41 void setNewKs(realtype kb1, realtype kb2, realtype kc1, realtype kc2);

42

43 // TODO: (Optional) Avoid double for loops and use elementwise

operations↪→

44 void setBreakageKernels();

45 void setCoalescenceKernels();

46

47 /* Getter methods */

48 gsl_matrix *getKBB() const;

49 gsl_matrix *getKBC() const;

50 gsl_matrix *getKDC() const;

51 gsl_vector *getKDB() const;

52 realtype getK1() const;

53 realtype getK2() const;

54 realtype getK3() const;

55 realtype getK4() const;

56 realtype getKb1() const;

c

B.2 Header Files

57 realtype getKb2() const;

58 realtype getKc1() const;

59 realtype getKc2() const;

60 realtype getTf() const;

61 const Grid &getGrid() const;

62

63 /* Relational operators */

64 Kernels &operator=(const Kernels &rhs);

65

66 /* Friend methods */

67 friend std::ostream& operator<<(std::ostream &os, const Kernels

&kernels);↪→

68

69 /* Destructors */

70 ˜Kernels();

71 };

72

73

74 #endif //MASTERPROJECTCPP_KERNELS_H

Listing B.15: Kernels.h: C++ header file for Kernels class

1 //

2 // Created by Sindre Bakke Øyen on 18.03.2018.

3 //

4

5 #ifndef MASTERPROJECTCPP_MODEL_H

6 #define MASTERPROJECTCPP_MODEL_H

7 /** c

****************/↪→

8 /* Preamble

*/↪→

9 /** c

****************/↪→

10 /* Built-in header files */

11 #include <cmath>

12 #include <ostream>

13 #include <fstream>

14 #include <sstream>

15 #include <cstdio>

16 #include <cstdlib>

17 #include <cstring>

18 #include <sys/stat.h>

19

20 /* External library header files */

21 #include <sundials/sundials_math.h> /* Math functions, power etc

*/↪→

ci

Appendix B. C++ Program

22 #include <sundials/sundials_types.h> /* Data types such as realtype

*/↪→

23 #include <cvode/cvode.h> /* prototypes for CVODE fcts.,

consts. */↪→

24 #include <nvector/nvector_serial.h> /* access to serial N_Vector

*/↪→

25 #include <sunmatrix/sunmatrix_dense.h> /* access to band SUNMatrix

*/↪→

26 #include <sunlinsol/sunlinsol_dense.h> /* access to band SUNLinearSolver

*/↪→

27 #include <cvode/cvode_direct.h> /* access to CVDls interface

*/↪→

28

29 #include <gsl/gsl_spline.h> /* Spline interpolation from GSL

*/↪→

30 #include <gsl/gsl_interp.h> /* Interpolation header from GSL

*/↪→

31 #include <gsl/gsl_multifit_nlinear.h> /* Non-linear multifit regression

*/↪→

32 #include <gsl/gsl_multimin.h> /* Multidimensional minimization

*/↪→

33 #include <gsl/gsl_matrix.h>

34

35 /* User-defined header files */

36 #include "Kernels.h" /* Contains kernels, override to

use other kernels */↪→

37 #include "Grid.h" /* Contains Gaussian quadrature

rule */↪→

38 #include "SystemProperties.h" /* Contains data from

experimental setup + fluid */↪→

39

40 /* Define constants for program to run */

41 #define RTOL RCONST(1.0e-4) /* Relative

integration tolerance */↪→

42 #define ATOL RCONST(1.0e-8) /* Absolute

integration tolerance */↪→

43 #define PHI RCONST(0.7e-2) /* Phase fraction

of oil in water */↪→

44 #define TRASHROWS RCONST(2) /* Rows in csv

not containing relevant data */↪→

45 #define TRASHCOLS RCONST(9) /* Columns in csv

not containing relevant data */↪→

46 #define TRUNCATETHRESHOLD RCONST(6) /* Truncate 0's

in csv if many consecutive 0's */↪→

47

48 /** c

****************/↪→

cii

B.2 Header Files

49 /* Class declaration

*/↪→

50 /** c

****************/↪→

51 class PBModel {

52 private:

53 char const *filename;

54 size_t M, N; /* Only used for experimental data */

55

56 /* Experimental data */

57 gsl_matrix *fv; /* size MxN */

58 gsl_vector *r, *t; /* size N, size M */

59

60 /* Modeled data */

61 realtype tout, tRequested;

62 gsl_matrix *psi; /* size Mxgrid.getN()

*/↪→

63 gsl_vector_view psiN; /* size grid.getN()

*/↪→

64 gsl_vector *tau; /* size M

*/↪→

65 gsl_matrix *fvSim; /* Holds modeled fv on experimental

radial domain (size MxN)*/↪→

66

67 /* Sundials variables for evaluating ODE */

68 SUNMatrix A;

69 N_Vector NPsi; /* size grid.getN() */

70 SUNLinearSolver LS;

71 void *cvode_mem;

72

73 /* Classes to help evaluate model */

74 const Grid grid;

75 Kernels kerns;

76 const SystemProperties sysProps;

77 const Fluid cont, disp;

78 public:

79 /* Constructors */

80 PBModel();

81 PBModel(char const *f, realtype kb1, realtype kb2, realtype kc1,

realtype kc2,↪→

82 const Grid &g, const SystemProperties &s, const Fluid &cont,

const Fluid &disp,↪→

83 size_t decision);

84

85 /* Helper methods */

86 void getRowsAndCols();

87 void getDistributions();

88 void rescaleInitial();

ciii

Appendix B. C++ Program

89 int preparePsi();

90 int prepareCVMemory(); /* Allocates memory for ODE solver and

prepares it for solution */↪→

91 int releaseCVMemory();

92 int checkFlag(void *flagvalue, const char *funcname, int opt);

93 bool checkMassBalance();

94

95

96 /* Solver methods */

97 int getRHS(N_Vector y, N_Vector ydot);

98 static int interpolatePsi(const gsl_vector *x, const gsl_vector *y,

const gsl_matrix *xx, gsl_matrix *yy);↪→

99 static int interpolateFv(const gsl_vector *x, const gsl_vector *y,

const gsl_vector *xx, gsl_vector *yy);↪→

100 int timeIterate();

101 int solvePBE();

102 realtype getResidualij(size_t i, size_t j);

103 double getModeledMean(size_t t);

104 double getExperimentalMean(size_t t);

105 realtype getResidualMean(size_t t);

106 double getWeightedResidual(size_t i, size_t j, double m, double s);

107 double getWeight(double x, double m, double s);

108

109

110 /* Non-linear least squares parameter estimation */

111 int costFunctionSSE(const gsl_vector *x, gsl_vector *f);

112 int costFunctionMean(const gsl_vector *x, gsl_vector *f);

113

114 int paramesterEstimationSSE();

115 int parameterEstimationMean();

116

117

118 // /* Fletcher-Reeves constrained optimization (parameter estimation)

*/↪→

119 // double fletcherReevesCostFunction(const gsl_vector *v);

120 // void fletcherReevesParamEstimation();

121

122

123 /* Setter methods */

124

125

126 /* Getter methods */

127 gsl_matrix *getFv() const;

128 gsl_vector *getR() const;

129 gsl_vector *getT() const;

130 size_t getM() const;

131 size_t getN() const;

132

civ

B.2 Header Files

133 const Grid &getGrid() const;

134 const Kernels &getKerns() const;

135 const SystemProperties &getSysProps() const;

136 const Fluid &getCont() const;

137 const Fluid &getDisp() const;

138

139

140 /* Print methods */

141 void printExperimentalDistribution();

142 void printSizeClasses();

143 void printCurrentPsi();

144 void printPsi();

145 void printFvSimulated();

146 void printTime();

147 void printTau();

148 void printDimensions();

149

150

151 /* Exporter methods */

152 int exportFvSimulatedWithExperimental();

153 int exportFv();

154 int exportPsi();

155 int exportMeans();

156

157

158 inline static bool fileExists(const std::string &fileName){

159 struct stat buf;

160 return (stat(fileName.c_str(), &buf) != -1);

161 }

162

163 /* Destructors */

164 ˜PBModel();

165 };

166 /* CVode trick */

167 inline int dydt(realtype t, N_Vector y, N_Vector ydot, void *user_data){

168 PBModel *obj = static_cast<PBModel *> (user_data);

169 int err = obj->getRHS(y, ydot);

170 return err;

171 }

172

173 /* Levenberg-Marquardt residuals trick */

174 inline int gatewayCostSSE(const gsl_vector *x, void *data, gsl_vector *f){

175 PBModel *obj = static_cast<PBModel *> (data);

176 int err = obj->costFunctionSSE(x, f);

177 return err;

178 }

179

180 /* Levenberg-Marquardt mean trick */

cv

Appendix B. C++ Program

181 inline int gatewayCostMean(const gsl_vector *x, void *data, gsl_vector

*f){↪→

182 PBModel *obj = static_cast<PBModel *> (data);

183 int err = obj->costFunctionMean(x, f);

184 return err;

185 }

186

187 inline void paramEstimationCallbackSSE(const size_t iter, void *params,

188 const

gsl_multifit_nlinear_workspace

*w){

↪→

↪→

189 gsl_vector *f = gsl_multifit_nlinear_residual(w);

190 gsl_vector *x = gsl_multifit_nlinear_position(w);

191 gsl_matrix *J = gsl_multifit_nlinear_jac(w);

192 double rcond;

193

194 /* compute reciprocal condition number of J(x) */

195 gsl_multifit_nlinear_rcond(&rcond, w);

196

197 fprintf(stderr, "iter %2zu: kb1 = %.10g, kb2 = %.10g, kc1 = %.10g,

kc2, = %.10g,"↪→

198 " cond(J) = %8.4f, |f(x)| = %.4f\n",

199 iter,

200 gsl_vector_get(x, 0),

201 gsl_vector_get(x, 1),

202 gsl_vector_get(x, 2),

203 gsl_vector_get(x, 3),

204 1.0 / rcond,

205 gsl_blas_dnrm2(f));

206 }

207

208 inline void paramEstimationCallbackMean(const size_t iter, void *params,

209 const

gsl_multifit_nlinear_workspace

*w){

↪→

↪→

210 gsl_vector *f = gsl_multifit_nlinear_residual(w);

211 gsl_vector *x = gsl_multifit_nlinear_position(w);

212 gsl_matrix *J = gsl_multifit_nlinear_jac(w);

213 double rcond;

214

215 /* compute reciprocal condition number of J(x) */

216 gsl_multifit_nlinear_rcond(&rcond, w);

217

218 fprintf(stderr, "iter %2zu: kb1 = %.10g, kb2 = %.10g, kc1 = %.10g,

kc2, = %.10g,"↪→

219 " cond(J) = %8.4f, |f(x)| = %.4f\n",

220 iter,

221 gsl_vector_get(x, 0),

cvi

B.2 Header Files

222 gsl_vector_get(x, 1),

223 gsl_vector_get(x, 2),

224 gsl_vector_get(x, 3),

225 1.0 / rcond,

226 gsl_blas_dnrm2(f));

227 }

228 ///* Fletcher-Reeves trick */

229 //inline double fletcherReevesGatewayCost(const gsl_vector *v, void

*params){↪→

230 // PBModel *obj = static_cast<PBModel *> (params);

231 // double err = obj->fletcherReevesCostFunction(v);

232 // return err;

233 //}

234 #endif //MASTERPROJECTCPP_MODEL_H

Listing B.16: PBModel.h: C++ header file for PBModel class

1 //

2 // Created by Sindre Bakke Øyen on 05.03.2018.

3 //

4

5 #ifndef MASTERPROJECTCPP_SYSTEMPROPERTIES_H

6 #define MASTERPROJECTCPP_SYSTEMPROPERTIES_H

7 /* Built-in header files */

8 #include <cmath>

9 #include <ostream>

10

11 /* External library header files */

12 #include <sundials/sundials_math.h> /* Math functions, power etc

*/↪→

13

14 /* User-defined header files */

15 #include "Fluid.h"

16

17 class SystemProperties {

18 private:

19 realtype Rm, Vl, Vm, P, eps;

20 public:

21 /* Constructors */

22 SystemProperties();

23 SystemProperties(const SystemProperties &s);

24 SystemProperties(

25 realtype Rm, realtype Vl, realtype P, const Fluid &disp);

26

27 /* Getter methods */

28 realtype getRm() const;

cvii

Appendix B. C++ Program

29 realtype getVl() const;

30 realtype getVm() const;

31 realtype getP() const;

32 realtype getEps() const;

33

34 friend std::ostream &operator<<(std::ostream &os, const

SystemProperties &properties);↪→

35

36 /* Destructors */

37 ˜SystemProperties();

38 };

39

40

41 #endif //MASTERPROJECTCPP_SYSTEMPROPERTIES_H

Listing B.17: SystemProperties.h: C++ header file for SystemProperties class

cviii

Appendix C
MATLAB Program

C.1 MATLAB Source Files

1 % Title: Set Distribution

2 % Author: Sindre Bakke Oyen

3 % Date (started): 07.06.2017

4 % Description: Sets a log normal distribution with mean mu

5 % and standard deviation sigma. The program plots the

6 % distribution and writes it to a tab separated textfile.

7 %% Set initials and create normal distribution

8 mean = 30e-6;

9 st = 10e-6;

10 var = stˆ2;

11 mu = log(mean/sqrt(1+var/meanˆ2));

12 sigma = sqrt(log(1+var/meanˆ2));

13 x = 0:1e-6:10e-6;

14 x = [x, 10.1e-6:0.1e-6:80e-6];

15 x = [x, 81e-6:5e-6:500e-6];

16 f = 1./(x*sigma*sqrt(2*pi)).*exp(-(log(x)-mu).ˆ2/(2*sigmaˆ2));

17 f(1) = 0;

18 %% Plot and check conservations

19 fig = figure();

20 fontProps.FontName = 'Calibri';

21 fontProps.FontSize = 14;

22 fontProps.FontWeight = 'bold';

23 hAxes = axes('Xscale', 'log');

24 set(hAxes, fontProps);

25 box(hAxes, 'on');

26 hold(hAxes, 'on')

27 title('Log Normal Distribution')

cix

Appendix C. MATLAB Program

28 xlabel('radius, R [m]')

29 ylabel('Number Density, f [-]')

30 xlim([1e-6 500e-6])

31 plot(x, f, 'Color', 'r', 'LineWidth', 2, 'Marker',...

32 'o', 'MarkerEdgeColor','r', 'MarkerFaceColor', 'none',...

33 'DisplayName', 'f(r)')

34 legend('s.t. = 60, mean = 350')

35 hLegend = legend(hAxes, 'show');

36 set(hLegend, fontProps, 'Location', 'NorthEastOutside');

37 editFigureProperties(fig);

38 %saveas(hFig, 'intial_logNormal2', 'epsc') 52

39 %% Write to normal distribution with radii to file

40 result_matrix = [x; f];

41 fid = fopen('raw_logNormal4.txt', 'w');

42 fprintf(fid, '%1s %10s \n', 'r', 'f_0');

43 fprintf(fid, '%1.9f %10.6f \n', result_matrix);

44 log(mean/sqrt(1+var/meanˆ2));

45 fclose(fid);

46 % END OF PROGRAM

Listing C.1: setLogNormal.m: Program that was used to set a log-normal distribution as initial
condition

1 function [idx1, idx2, idx3, idx4, opt] =

sensitivityAroundOptimum(SSEfile, breakFile, coalFile)↪→

2

3 A = importdata(SSEfile);

4 B = importdata(breakFile);

5 C = importdata(coalFile);

6

7 SSEs = A.data;

8 pb = B.data;

9 pc = C.data;

10

11 kb1 = pb(:, 1);

12 kb2 = pb(:, 2);

13 kc1 = pc(:, 1);

14 kc2 = pc(:, 2);

15

16 n1 = length(kb1);

17 n2 = length(kb2);

18 n3 = length(kc1);

19 n4 = length(kc2);

20

21 opt = 1e10;

22 for i = 1:n1

cx

C.1 MATLAB Source Files

23 for j = 1:n2

24 for q = 1:n3

25 for r = 1:n4

26 idx = (i-1)*n2*n3 + (j-1)*n3 + q;

27 currentVal = SSEs(idx, r);

28 if (currentVal < opt)

29 opt = currentVal;

30 idx1 = i;

31 idx2 = j;

32 idx3 = q;

33 idx4 = r;

34 end

35 end

36 end

37 end

38 end

39

40 end

Listing C.2: sensitivityAroundOptimum.m: Function that was used to find the optimal parameter
combinations and the objective function value

1 function [Vl, rhoc, rhod, sigma, Vmax, P, nu] = setParams(Rmax, flag)

2 % Set all parameters needed for the program to function

3

4 Vl = 725e-6; % Volume of liquid in tank [mˆ3]

5 rhoc = 1e3; % Density continuous phase (water) [kg/mˆ3]

6 %rhod = 0.837e3; % Density of dispersed phase (oil) [kg/mˆ3]

7 %nu = 16.88e-3; % Kinematic viscosity [mˆ2/s]

8 %sigma = 22e-3; % Surface tension [N/m]

9 %Rmax = 120e-6; % Maximum allowed radius of bubbles [m]

10 Vmax = 4/3*Rmaxˆ3; % Maximum volume [mˆ3]

11 %P = 0.366; % Power usage [W]

12

13 switch flag

14 case 1

15 % We chose crude oil B

16 rhod = 0.837e3;

17 nu = 16.88e-3;

18 sigma = 22e-3;

19 P = 0.366;

20 case 2

21 % We chose crude oil C

22 rhod = 0.911e3;

23 nu = 81.67e-3;

24 sigma = 19e-3;

cxi

Appendix C. MATLAB Program

25 P = 0.152;

26 otherwise

27 ME = MException('MATLAB:IllegalFlag', ...

28 ['You have passed in an illegal argument. '...

29 'Flag must be either 1 or 2. Received %i.\n'], flag);

30 throw(ME);

31 % Crude B:

32 % rhod = 0.837e3

33 % nu = 16.88e-3

34 % sigma = 22e-3

35 % P = 0.366

36 % Crude C:

37 % rhod = 0.911e3

38 % nu = 81.67e-3

39 % sigma = 19e-3

40 % P = 0.152

41 %

42 % eps = P / (rhod * Vl)

43 end

Listing C.3: setParams.m: Function that was used to set the values of the environment vector

1 function [fn, fv, r, t] = rescaleInitial(f0, phi, flag)

2 % Title: Rescale Initial

3 % Author: Sindre Bakke Oyen

4 % Date (started): 07.06.2017

5 % Description: This function should rescale an initial distribution

6 % and return both the number distribution function

7 % and its corresponding volumetric number distribution

8 % function.

9 %

10 % Output args:

11 % fn (array) :: number distribution function [1/mˆ3*m]

12 % fv (array) :: volumetric number distribution function [1/m]

13 % r (array) :: radial discretization

14 % Input args:

15 % f0 (csv) :: initial distribution with radii

16 % phi (scalar) :: volume fraction of dispersed phase

17 % flag (bool) :: whether f0 is a volumetric

18 % or a normal number distribution

19 % flag == 0 means f0 is a fv and

20 % flag == 1 means f0 is a fn

21 %

22 % This function should rescale the integral since

23 % I = integral (fv*dr) from rmin to rmax

24 % I = integral (v(r)*fn*dr) from rmin to rmax

cxii

C.1 MATLAB Source Files

25 % Rescale: fi = phi/I * f0, where i is either n or v

26 %%% c
%%↪→

27

28 % We shall utilize the trapezoidal rule:

29 % integral (f(x)dx) from a to b = h/2*sum(f(x_(k+1))+f(x_k))

30 % = (b-a)/2N * (f(x_1)+2f(x_2)+2f(x_3)+...+2f(x_N)+f(x_(N+1)))

31

32 %% Fetching out data from table

33 A = importdata(f0);

34 % Find index of density distribution

35 r = A.data(1, :) * 1e-6; % r is in micrometers

36 f = A.data(2:end, :);

37

38 r = r(1:80); % After this f-values are irrelevant

39 f = f(:, 1:80); % After this f-values are irrelevant

40

41 r = r / 2; % originally in diameters, now in radii

42

43 t = split(A.textdata(3:end, 3));

44 t = split(t(:, 2), ':');

45 hours = str2double(t(:, 1));

46 mins = str2double(t(:, 2));

47 hours = hours - hours(1);

48 mins = mins - mins(1);

49 t = hours * 3600 + mins * 60;

50 for i = 1:length(t)-1

51 if t(i+1) == t(i)

52 t(i+1) = t(i+1) + 30; %add 25 seconds to make them unique

53 end %if

54 end %for

55

56 %% Setting variables and preparing for integrating

57 rmin = r(1);

58 rmax = r(end);

59 N = length(r) - 1;

60

61 [rows, cols] = size(f);

62 fv = zeros(rows, cols);

63 fn = zeros(rows, cols);

64 switch flag

65 case 0

66 %% The initial distribution was a fv

67 for j=1:rows

68 I = 0;

69 for i = 1:N

70 I = I + (r(i+1) - r(i)) * (f(j, i+1) + f(j, i));

71 end %for i

cxiii

Appendix C. MATLAB Program

72 I = I / 2;

73 % trapz(r, f(j, :))

74 fv(j, :) = phi / I * f(j,:);

75 for i=1:cols

76 if r(i) == 0

77 fn(j, i) = 0; % There are no particles of radius = 0

78 else

79 fn(j, i) = fv(j, i)/(4/3*pi*r(i)ˆ3);

80 end %if

81 end %for i

82 end %for j

83 case 1

84 %% Initial distribution was fn

85 % The integrand is v(r)*fn

86 v = 4/3*pi*r.ˆ3;

87 integrand = v.*f;

88 I = integrand(1) + integrand(end);

89 for i=2:N

90 I = I + 2*integrand(i);

91 end %for

92 I = I * (rmax - rmin) / (2 * N);

93

94 fn = phi / I * f;

95 fv = fn*4/3*pi.*r.ˆ3;

96

97 otherwise

98 %% The received f0 was neither fv nor fn

99 ME = MException('MATLAB:IllegalFlag',...

100 ['You have passed in an illegal argument. '...

101 'Flag must be either 0 or 1. Received %i.\n'], flag);

102 throw(ME);

103

104 end % switch

105 end % function

Listing C.4: rescaleInitial.m: Function that was used to rescale the experimental measurements to
the phase fraction

1 function [kBB, kDB, kBC, kDC] = evalKernels(k2, k4, xis, flag)

2 % Title: evalKernels

3 % Author: Sindre Bakke Oyen

4 % Date (started): 14.06.2017

5 % Description: This function evaluates all breakage and coalescence

kernels↪→

6 % associated with them. The kernels for birth and death are

7 % evaluated individually as they are over different domains.

cxiv

C.1 MATLAB Source Files

8 %

9 % Output args:

10 % kBB (2D array):: Birth breakage rate of breakage

11 % kDB (1D array):: Death breakage rate of breakage

12 % kBC (2D array):: Birth coalescence rate of aggregation

13 % kDC (2D array):: Death coalescence rate of aggregation

14 %

15 % Input args:

16 % kg2 (scalar) :: Parameter for brekage frequency

17 % k4 (scalar) :: Parameter for coalescence exponent

18 % flag (scalar) :: contains information about which algorithm to

run↪→

19 %%% c
%%↪→

20 xi = xis.xi;

21 xipBB = xis.xipBB;

22 xipBC = xis.xipBC;

23 xippBC = xis.xippBC;

24 xipDC = xis.xipDC;

25 N = length(xi);

26 switch flag

27 case 0 % Double for loop

28 % Preallocate space for kernels

29 kBB = zeros(N, N);

30 kDB = zeros(N, 1);

31 kBC = zeros(N, N);

32 kDC = zeros(N, N);

33 for row=2:N

34 % DB

35 kDB(row) = 1/xi(row)ˆ(2/3) * exp(-k2/xi(row)ˆ(5/3));

36 for col=1:N

37 % BB

38 kBB(row, col) = 2 * 1/xipBB(row, col)ˆ(2/3) ...

39 *exp(-k2/xipBB(row, col)ˆ(5/3)) ...

40 *2.4/xipBB(row, col)ˆ3 ...

41 *exp(-4.5 * (2*xi(row)ˆ3-xipBB(row, col)ˆ3)ˆ2 ...

42 /xipBB(row, col)ˆ6)...

43 *3*xi(row)ˆ2;

44

45 % BC

46 kBC(row, col) = (xipBC(row,col)+xippBC(row,col))ˆ2 ...

47 *(xipBC(row,col)ˆ(2/3)+xippBC(row,col)ˆ(2/3))ˆ(1/2)

...↪→

48 *exp(-k4*(1/xipBC(row,col) + 1/xippBC(row,col)) ...

49 ˆ(-5/6));

50

51 % DC

52 kDC(row,col) = (xipDC(col)+xi(row))ˆ2 ...

cxv

Appendix C. MATLAB Program

53 *(xipDC(col)ˆ(2/3)+xi(row)ˆ(2/3))ˆ(1/2) ...

54 *exp(-k4*(1/xipDC(col) + 1/xi(row))ˆ(-5/6));

55 end %col

56 end %row

57

58 case 1 % Single for loop

59 % Preallocate space for kernels

60 kBB = zeros(N, N);

61 kBC = zeros(N, N);

62 kDC = zeros(N, N);

63 for row = 2:N

64 kBB(row, :) = 2 * 1./xipBB(row,:).ˆ(2/3) ...

65 .*exp(-k2./xipBB(row,:).ˆ(5/3)) ...

66 .*2.4./xipBB(row,:).ˆ3 ...

67 .*exp(-4.5*(2.*xi(row)ˆ3-xipBB(row,:).ˆ3).ˆ2 ...

68 ./xipBB(row,:).ˆ6) ...

69 .*3.*xi(row)ˆ2;

70

71 kBC(row,:) = (xipBC(row, :)+xippBC(row, :)).ˆ2 ...

72 .*(xipBC(row, :).ˆ(2/3)+xippBC(row, :).ˆ(2/3)).ˆ(1/2) ...

73 .*exp(-k4*(1./xipBC(row, :) + 1./xippBC(row, :)).ˆ(-5/6));

74

75 kDC(row, :) = (xipDC+xi(row)).ˆ2 ...

76 .*(xipDC.ˆ(2/3)+xi(row).ˆ(2/3)).ˆ(1/2) ...

77 .*exp(-k4*(1./xipDC + 1/xi(row)).ˆ(-5/6));

78 end %row

79 kDB = 1./xi.ˆ(2/3) .* exp(-k2./xi.ˆ(5/3));

80

81 case 2 % No for loops

82 xir = repmat(xi, 1, N);

83 xiprDC = repmat(xipDC, 1, N)';

84

85 kBB = 2 * 1./xipBB.ˆ(2/3) ...

86 .*exp(-k2./xipBB.ˆ(5/3)) ...

87 .*2.4./xipBB.ˆ3 ...

88 .*exp(-4.5*(2.*xir.ˆ3-xipBB.ˆ3).ˆ2./xipBB.ˆ6) ...

89 .*3.*xir.ˆ2;

90

91 kBC = (xipBC+xippBC).ˆ2 ...

92 .*(xipBC.ˆ(2/3)+xippBC.ˆ(2/3)).ˆ(1/2) ...

93 .*exp(-k4*(1./xipBC + 1./xippBC).ˆ(-5/6));

94

95 kDC = (xiprDC+xir).ˆ2 ...

96 .*(xiprDC.ˆ(2/3)+xir.ˆ(2/3)).ˆ(1/2) ...

97 .*exp(-k4*(1./xiprDC + 1./xir).ˆ(-5/6));

98 kDB = 1./xi.ˆ(2/3) .* exp(-k2./xi.ˆ(5/3));

99

100 otherwise

cxvi

C.1 MATLAB Source Files

101 ME = MException('MATLAB:IllegalFlag', ...

102 ['The flag received is illegal. '...

103 'Supported: 0, 1 or 2. Received: %i'], flag);

104 throw(ME);

105

106 end %function

Listing C.5: evalKernels.m: Function that was used to set the kernels

1 function RHS = evalSource(tau, psi, kern, const, xis, flag)

2 % Title: Evaluate Source

3 % Author: Sindre Bakke Oyen

4 % Date (started): 20.06.2017

5 % Description: This function should evaluate the right hand side of the

6 % nondimensionalized PBE. It will evaluate it for each radial

7 % discretization, meaning it will return an array of

8 % length = number of discretization points.

9 %

10 % Output args:

11 % RHS (array) :: source of bubbles of radius xi

12 % Input args:

13 % tau (array) :: dimensionless time

14 % psi (array) :: dimensionless volumetric density distribution

15 % kern (struct) :: contains all birth and death kernels

16 % const (struct) :: contains all constants, k1, k2, k3, k5 and phi

17 % flag (scalar) :: contains information about which algorithm to

run↪→

18 %%% c
%%↪→

19 xi = xis.xi;

20 xipBB = xis.xipBB;

21 xipBC = xis.xipBC;

22 xippBC = xis.xippBC;

23 xipDC = xis.xipDC;

24 N = length(xi);

25

26 % Fetch all kernels

27 kBB = kern.BB.k;

28 kDB = kern.DB.k;

29 kBC = kern.BC.k;

30 kDC = kern.DC.k;

31

32 % Fetch all constants

33 k1 = const.k1;

34 k3 = const.k3;

35 w = const.w;

cxvii

Appendix C. MATLAB Program

36

37 % Interpolate onto domains in terms of volume

38 psipBB = pchip(xi, psi, xipBB);

39 psipBC = pchip(xi, psi, xipBC);

40 psippBC = pchip(xi, psi, xippBC);

41 psipDC = pchip(xi, psi, xipDC);

42

43 switch flag

44 case 0 % Double for loop

45 % Preallocate space for integrands

46 IBB = zeros(N, N);

47 IBC = zeros(N, N);

48 IDC = zeros(N, N);

49

50 % Preallocate space for the source terms

51 BB = zeros(N, 1);

52 DB = zeros(N, 1);

53 BC = zeros(N, 1);

54 DC = zeros(N, 1);

55 for row=2:N % loop on xi

56 for col=1:N % loop on xi' and xi''

57 % BB

58 IBB(row, col) = kBB(row,col) ...

59 *psipBB(row, col)/xipBB(row,col)ˆ3 ...

60 *(1-xi(row));

61 % BC

62 IBC(row, col) = kBC(row, col) ...

63 *psipBC(row, col)/xipBC(row,col)ˆ3 ...

64 *psippBC(row,col)/xippBC(row,col)ˆ3 ...

65 *xi(row)ˆ2/xippBC(row, col)ˆ2 ...

66 *xi(row)*2ˆ(-1/3);

67 % DC

68 IDC(row, col) = kDC(row, col) * psipDC(col)/xipDC(col)ˆ3;

69 end %col

70 BB(row) = k1 * xi(row)ˆ3 * IBB(row, :)*w;

71 DB(row) = k1*kDB(row)*psi(row);

72 BC(row) = k3*xi(row)ˆ3 * IBC(row, :)*w;

73 DC(row) = k3*psi(row) * IDC(row, :)*w;

74 end %row

75

76 B = BB - DB; % Net breakage

77 C = BC - DC; % Net coalescence

78

79 RHS = B + C;

80

81 case 1 % Single for loop

82 % Preallocate space for integrands

83 IBB = zeros(N, N);

cxviii

C.1 MATLAB Source Files

84 IBC = zeros(N, N);

85 IDC = zeros(N, N);

86 for row=2:N

87 % BB

88 IBB(row, :) = kBB(row,:) ...

89 .*psipBB(row, :)./xipBB(row,:).ˆ3 ...

90 *(1-xi(row));

91 % BC

92 IBC(row, :) = kBC(row, :) ...

93 .*psipBC(row, :)./xipBC(row, :).ˆ3 ...

94 .*psippBC(row, :)./xippBC(row, :).ˆ3 ...

95 *xi(row)ˆ2./xippBC(row, :).ˆ2 ...

96 *xi(row)*2ˆ(-1/3);

97 % DC

98 IDC(row, :) = kDC(row, :) .* (psipDC./xipDC.ˆ3)';

99 end %row

100 BB = k1 * xi.ˆ3. .* (IBB*w);

101 DB = k1*kDB.*psi;

102 BC = k3*xi.ˆ3 .* (IBC*w);

103 DC = k3*psi .* (IDC*w);

104

105 B = BB - DB; % Net breakage

106 C = BC - DC; % Net coalescence

107

108 RHS = B + C;

109

110 case 2 % No for loops

111 xir = repmat(xi, 1, N); %xi without loops must have same

dimensions↪→

112

113 IBB = kBB.*psipBB./xipBB.ˆ3.*(1-xir);

114 IBC = kBC.* ...

115 psipBC./xipBC.ˆ3 ...

116 .*psippBC./xippBC.ˆ3 ...

117 .*xir.ˆ2./xippBC.ˆ2 ...

118 .*xir*2ˆ(-1/3);

119 IDC = kDC .* repmat((psipDC./xipDC.ˆ3)', N, 1);

120 IDC(1, :) = 0;

121

122 BB = k1 * xi.ˆ3 .* (IBB*w);

123 DB = k1*kDB.*psi;

124 BC = k3*xi.ˆ3 .* (IBC*w);

125 DC = k3*psi .* (IDC*w);

126

127 B = BB - DB; % Net breakage

128 C = BC - DC; % Net coalescence

129

130 RHS = B + C;

cxix

Appendix C. MATLAB Program

131 RHS;

132 otherwise

133 ME = MException('MATLAB:IllegalFlag', ...

134 ['The flag received is illegal. '...

135 'Supported: 0, 1 or 2. Received: %i'], flag);

136 throw(ME);

137

138 end %function

Listing C.6: evalSource.m: Function that was used to find the right hand side of the population
balance equation

1 % Title: Solution of the transient nondimensionalized PBE

2 % Author: Sindre Bakke Oyen

3 % Date (started): 13.06.2017

4 % Description: Main script for solving the transient nondimensionalized

5 % PBE. It rescales initial distribution, f*, to fv and sets

6 % the collocation points at the roots of Jacobi polynomials.

7 % The points are orthogonally collocated in xi, xi' and xi''.

8 %

9 % Notation:

10 % BB :: Birth brekage

11 % DB :: Death brekage

12 % BC :: Birth coalescence

13 % DC :: Death coalescence

14 % vp :: Generic variable v prime (v')

15 % vpp :: Generic variable v double prime (v'')

16 %%% c
%%↪→

17

18 clc

19

20 rng default;

21

22 %% Get initial distribution and discretize

23 phi = 0.7e-2;

24 f0 = 'Experimental/august/crudeB.csv';

25 [fn, fv, r, t] = rescaleInitial(f0, phi, 0);

26 Rmax = 120e-6;

27

28 [xi, A, B, w] = Collocation(198,1,1);

29 xi(1) = 1e-10;

30 N = length(xi);

31 alpha = xi;

32 gamma = xi;

33

cxx

C.1 MATLAB Source Files

34 % BB

35 xipBB = (1-xi)*gamma'+xi*ones(1, N);

36

37 % DC

38 xipDC = xi;

39

40 %BC

41 xipBC = 2ˆ(-1/3)*xi*alpha';

42 xippBC = xi*(1-alpha.ˆ3/2).ˆ(1/3)';

43 %% Setting parameters and constants

44 kb1 = 1.5e-6; % Model fitted parameter 1, g [-]

45 % Dynamics, breakage

46 kb2 = 1e-2; % Model fitted parameter 2, g [-]

47 % Steady state settlement, breakage

48 kc1 = 1.5e-5; % Model fitted parameter, probability[-]

49 % Dynamics, coalescence

50 kc2 = 5e2; % Model fitted parameter, efficiency [-]

51 % Steady state settlement, coalescence

52 ratio = kb1/kc1;

53

54 kb1 = 1e0;

55 kb2 = 1e3;

56 kc1 = 1e0;

57 kc2 = 1e3;

58

59 consts.Rmax = Rmax;

60 consts.xis.xi = xi;

61 consts.xis.xipBB = xipBB;

62 consts.xis.xipBC = xipBC;

63 consts.xis.xippBC = xippBC;

64 consts.xis.xipDC = xipDC;

65 consts.fv = fv;

66 consts.t = t;

67 consts.tf = t(end);

68 consts.r = r;

69 consts.Rmax = Rmax;

70 consts.w = w;

71 consts.phi = phi;

72

73 %% What search area to chart?

74 Niter = 40; % Number of iterations (Niter x Niter SSE matrix produced)

75 stepSize = 2; % The parameters charted will be multiplied by this

76 fprintf('1 : kb1, kb2\n')

77 fprintf('2 : kb1, kc1\n')

78 fprintf('3 : kb1, kc2\n')

79 fprintf('4 : kb2, kc1\n')

80 fprintf('5 : kb2, kc2\n')

81 fprintf('6 : kc1, kc2\n')

cxxi

Appendix C. MATLAB Program

82 flag = input('Which parameters would you explore? ');

83 steps = zeros(Niter, 1);

84 steps(end) = 1;

85 for i = Niter:-1:2

86 steps(i-1) = steps(i) / stepSize;

87 end %for

88 switch flag

89 case 1

90 k1_vec = kb1 * steps;

91 k2_vec = kb2 * steps;

92 p1 = kc1;

93 p2 = kc2;

94 case 2

95 k1_vec = kb1 * steps;

96 p1 = kb2;

97 k2_vec = kc1 * steps;

98 p2 = kc2;

99 case 3

100 k1_vec = kb1 * steps;

101 p1 = kb2;

102 p2 = kc1;

103 k2_vec = kc2 * steps;

104 case 4

105 p1 = kb1;

106 k1_vec = kb2 * steps;

107 k2_vec = kc1 * steps;

108 p2 = kc2;

109 case 5

110 p1 = kb1;

111 k1_vec = kb2 * steps;

112 p2 = kc1;

113 k2_vec = kc2 * steps;

114 case 6

115 p1 = kb1;

116 p2 = kb2;

117 k1_vec = kc1 * steps;

118 k2_vec = kc2 * steps;

119 otherwise

120 error('Flag does not match any of the given');

121 end %switch

122

123 %% Solve and chart sensitivity

124 eSquared = zeros(Niter, Niter);

125 parfor i = 1:Niter

126 k1 = k1_vec(i);

127 tmpSquared = zeros(Niter, 1);

128 for j = 1:Niter

129 k2 = k2_vec(j);

cxxii

C.1 MATLAB Source Files

130 tmpSquared(j) = getSSE(k1, k2, p1, p2, consts, flag);

131 end %for

132 eSquared(i, :) = tmpSquared;

133 end %parfor

134

135 createFigure();

136 ax = axes();

137 hold(ax, 'on');

138 set(ax, 'Xscale', 'log');

139 set(ax, 'Yscale', 'log');

140 set(ax, 'Zscale', 'log');

141 surf(k1_vec, k2_vec, eSquared)

142 xlabel('k_{b,1}')

143 ylabel('k_{b,2}')

144 zlabel('SSE')

145 view(3);

146 %% Set plot properties

147 greekeps = char(949); % Greek letter epsilon

148 greekphi = char(966); % Greek letter phi

149

150 colorMatrix{1} = sprintf('b');

151 colorMatrix{2} = sprintf('r');

152 colorMatrix{3} = sprintf('g');

153 colorMatrix{4} = sprintf('m');

154

155 fontProps.FontName = 'Calibri';

156 fontProps.FontSize = 14;

157 fontProps.FontWeight = 'bold';

158

159 %% Save variables for later plotting

160 now = strsplit(char(datetime())); % Cell of date and time

161 time = strsplit(now{2}, ':');

162 now = strcat('Results/Experimental/crudeB/', ...

163 now{1}, '-', time{1}, '_', time{2}, '_', time{3});

164 save(now)

165

166 % END PROGRAM

Listing C.7: main.m: The main program that solved the population balance equation

1 function [eSquared] = getSSE(k_1, k_2, p1, p2, consts, flag)

2 % Input flag :: decides what pair of parameters received

3 % 1 : kb1, kb2

4 % 2 : kb1, kc1

5 % 3 : kb1, kc2

6 % 4 : kb2, kc1

cxxiii

Appendix C. MATLAB Program

7 % 5 : kb2, kc2

8 % 6 : kc1, kc2

9 Rmax = consts.Rmax;

10 r = consts.r;

11 xi = consts.xis.xi;

12 w = consts.w;

13 fv = consts.fv;

14 t = consts.t;

15 tf = consts.tf;

16 phi = consts.phi;

17 %% Fetch betas and experimental values

18 switch flag

19 case 1 % chosen kb1, kb2

20 kb1 = k_1;

21 kb2 = k_2;

22 kc1 = p1;

23 kc2 = p2;

24 case 2 % chosen kb1, kc1

25 kb1 = k_1;

26 kb2 = p1;

27 kc1 = k_2;

28 kc2 = p2;

29 case 3 % chosen kb1, kc2

30 kb1 = k_1;

31 kb2 = p1;

32 kc1 = p2;

33 kc2 = k_2;

34 case 4 % chosen kb2, kc1

35 kb1 = p1;

36 kb2 = k_1;

37 kc1 = k_2;

38 kc2 = p2;

39 case 5 % chosen kb2, kc2

40 kb1 = p1;

41 kb2 = k_1;

42 kc1 = p2;

43 kc2 = k_2;

44 case 6 % chosen kc1, kc2

45 kb1 = p1;

46 kb2 = p2;

47 kc1 = k_1;

48 kc2 = k_2;

49 otherwise

50 error('Flag does not match any of the given\n');

51 end %switch

52 fv0 = fv(1, :);

53

54 %% Set the parameters and constants needed

cxxiv

C.1 MATLAB Source Files

55 [Vl, rhoc, rhod, sigma, Vmax, P, ˜] = setParams(Rmax, 1); % Crude B

56 eps = P / (rhod * Vl);

57

58 % Final constants

59 k1 = tf*kb1*epsˆ(1/3)/(2ˆ(2/3)*Rmaxˆ(2/3))*sqrt(rhod/rhoc);

60 k2 = kb2*sigma/(rhod*2ˆ(5/3)*epsˆ(2/3)*Rmaxˆ(5/3));

61 k3 = tf/Vmax * Rmaxˆ(7/3)*4*2ˆ(1/3)*kc1*epsˆ(1/3);

62 k4 = kc2*Rmaxˆ(5/6)*rhocˆ(1/2)*epsˆ(1/3)/(2*sigmaˆ(1/2));

63

64 %% Solve program

65 % Find kernels

66 [kern.BB.k, kern.DB.k, kern.BC.k, kern.DC.k] =...

67 evalKernels(k2, k4, consts.xis, 2);

68

69 % Store some constants needed for the source evaluation

70 const.k1 = k1;

71 const.k3 = k3;

72 const.w = w;

73

74 tau = t / tf;

75 psi0 = pchip(r/Rmax, fv0*Rmax, xi);

76

77 % Setting ODE options

78 options = odeset();

79 tic

80 [˜, psi] = ...

81 ode15s(@evalSource, tau, psi0, options, kern, const, consts.xis, 2);

82 t_ode = toc

83 deviation = abs((psi(end, :)*w - phi) / phi * 100);

84 if deviation > 5

85 fprintf('The mass is not conserved. Phase fraction deviation

%4.3f\n', deviation)↪→

86 end %if

87

88 if size(psi) ˜= size(fv)

89 eSquared = NaN;

90 else

91 fv_modeled = psi / Rmax;

92 fv_modeled = pchip(xi*Rmax, fv_modeled, r);

93 eSquared = sum(sum((fv_modeled - fv).ˆ2));

94 end

95 end %function

Listing C.8: getSSE.m: Function was used to get the sum of squared errors between experimental
data and numerical simulations

cxxv

Appendix C. MATLAB Program

1 clc

2

3 x0 = 1;

4 x1 = 5;

5 Np = 5;

6 xI = linspace(x0, x1, Np);

7

8 N = 100;

9 x = linspace(x0, x1, N);

10 ell = ones(N, N);

11

12 coefs = zeros(Np, Np);

13 for i = 1:Np

14 polynom=1;

15 denominator=1;

16 for j = 1:Np

17 if j˜=i

18 polynom=conv(polynom,[1 -xI(j)]);

19 denominator=denominator*(xI(i)-xI(j));

20 end

21 end

22 coefs(i,:)=polynom/denominator;

23

24 end

25

26 fig = figure();

27 ax = gca();

28 hold(ax, 'on');

29 legendCell = cell(Np, 1);

30 for i = 1:Np

31 plot(x, polyval(coefs(i, :), x), 'LineWidth', 2)

32 legendCell{i} = sprintf('l_%i(x)', i-1);

33 hold on;

34 end

35 plot(xI, zeros(length(xI), 1), 'o', 'LineWidth', 1.5, ...

36 'MarkerSize', 6, 'MarkerEdgeColor', 'k')

37 plot(xI, ones(length(xI), 1), 'o', 'LineWidth', 1.5, ...

38 'MarkerSize', 6, 'MarkerEdgeColor', 'k')

39 xlabel('x')

40 ylabel('y')

41 title('Lagrange Interpolating Polynomials')

42 legend(legendCell)

43 editFigureProperties(fig);

Listing C.9: lagrangeInterpShowcase.m: Program that was used to showcase Lagrange inteprolating
polynomials

cxxvi

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Program Code
	Abbreviations
	List of Latin Symbols
	List of Greek Symbols
	Introduction
	Motivation
	Objective

	Mathematical Prerequisites
	Finite Differences and Simple Integration
	Weighted Residual Methods: Orthogonal Collocation
	Other Frequently Used Methods
	Finding the Function
	The Methods of Moments

	Population Balance Modeling
	Closure Equations
	The Population Balance Equation for a Batch CSTR
	Numerical Procedure
	Experimental Details and Measurements
	Regression Approaches

	Results and Discussion
	Charting the Parameter Space
	Augmenting the Search Space
	Parameter Estimation

	Conclusion
	Further Work

	Bibliography
	Appendix
	Auxiliary Figures
	Charting Coalescence Experiment
	Augmented Parameter Search, Coarse
	Varying kb1 and kb2
	Varying kb1 and kc1
	Varying kb1 and kc2
	Varying kb2 and kc1
	Varying kb2 and kc2
	Varying kc1 and kc2

	Augmented Parameter Search, Refined
	Varying kb1 and kb2
	Varying kb1 and kc1
	Varying kb1 and kc2
	Varying kb2 and kc1
	Varying kb2 and kc2
	Varying kc1 and kc2

	C++ Program
	Source Files
	Header Files

	MATLAB Program
	MATLAB Source Files

