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Summary

As oil reserves become scarcer, oil production and recovery must be en-
hanced. The gas lift is one of the techniques used to enhance oil production
and recovery. It is usually used in reservoirs that suffer from insufficient
production rates because of inadequate reservoir pressures. The gas lift in-
jects gas, from external sources, into the fluid mixture flowing out of the
reservoir. This in turn will reduce the density of the fluid which enables the
reservoir pressure to lift the mixture to the top. Thus, the gas injection in-
creases the production rates of the oil. However the maximum gas injection
does not necessarily lead to maximum production of fluid or oil. Thus, gas
injection can be both advantageous and disadvantageous.

This thesis investigates a gas lifted network consisting of 3 wells and a
riser. Nonlinear dynamic equations were derived for the mass of liquid and
gas using the outflow rates from different component of the network. The
mathematical model used to describe the system takes into consideration
a three phase system consisting of oil, water and gas. In addition, the
model uses a simplified equation to represent the friction in the tubing. For
simulation purposes, the mathematical model was formulated as a system
of differential algebraic equations (DAEs) and simulated in Matlab

In this thesis, a real time optimization (RTO) problem is built to find the op-
timal steady state solutions for a given objective. The objective considered
is the maximization of liquid and minimization of gas injection. In addi-
tion, a nonlinear model predictive control (NMPC) is applied to the plant
to operate and track the solutions produced by the RTO. Both the RTO
and NMPC optimization problems built are solved using CasADi software.

The simulation studies have been carried out to test the open loop response
of the plant and the RTO steady states optima. Further, the NMPC sen-
sitivity to measurement noise is investigated. Finally, NMPC robustness
with respect to parameter changes in the closed loop structure is studied
and analyzed. The analysis and simulations show that the simplified gas lift
model represents the system dynamics as expected. In addition, the NMPC
built in this system is sensitive for highly noisy measurements while it is
accurate and stable for slightly noisy measurements. Finally, the control
structure of the entire gas lifted network is able to adapt to new optimal
operations when subject to disturbances. This is beneficial for future work
when considering optimizing the quality of production.
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Chapter 1
Introduction

The following work is inspired by the importance of optimizing reservoir pro-
duction and enhancing oil recovery to utilize energy resources to the fullest,
which can reduce environmental effects.

1.1 Motivation

As human population is growing rapidly, so is energy consumption and de-
mand. Energy consumption exerts demands on energy resources making
them scarcer. As energy resources become harder to extract, oil recov-
ery becomes exceedingly important and complex in various environments.
Hence, it is of great importance to optimize reservoir production and en-
hance oil recovery, to meet the rush for energy, while increasing profitability,
efficiency and productivity of well oil production.

Industry experts are convinced that much of the demands can be met with
artificial lift technologies, that can increase long term potential production
capabilities. About 90% of current oil wells worldwide operate with artificial
lifts for enhancing oil production [12]. More than 30,000 wells use the gas lift
technique, primarily because of its economic viability [12]. Generally, the
reservoir pressure in these wells is considered inadequate to assure oil flow
to the surface. Therefore, artificial lift techniques are essential to extend
life time of wells and boost oil production rates, profitability and reservoir
utilization. There are several major forms of artificial lifts which are used
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2 CHAPTER 1. INTRODUCTION

widely in the oil industry, these include: Sucker-rod (beam) pumping, elec-
trical submersible pumping (ESP), reciprocating and jet hydraulic pumping
systems and finally gas lifts, [3]. The emphasis of this master thesis is the
artificial gas lift.

Despite the many advantages of the gas lift such as increasing production,
and increasing utilization of resources in reservoirs, the gas lift is a highly
coupled and very nonlinear system. Under different conditions of gas in-
jection and pressures the system becomes highly unstable and can lead to
reduced oil production and damage. In the oil and gas industry, a major
objective is to maximize production and minimize costs, at operating points
which optimizes production. The focus of this thesis is to apply a simpli-
fied gas lift model and study different optimal points of operations under
different circumstances, using optimization and control techniques.

In this thesis a three well system and a riser sharing the same manifold
is considered. The production of oil is based on maximizing the total oil
outflow which is the sum of oil produced from each of the wells, as well
as, minimizing the injection of gas into the wells’ tubing, while operating
under stable conditions. A proper automated control scheme allows to op-
timize and maximize the total production of oil, and minimize the total gas
injection rate while operating under stable conditions.

For processes with multiple variables and constraints, such as the gas lifted
oil network, predictive control has been found to be a very good controller
design scheme. Many of artificial gas lifts wells with high production rates
operate with manual driven gas injection and production [12]. The intro-
duction of such control schemes is slow mainly due to the prohibitive cost
of well intervention to install new sensors and actuators [17], that have to
cope with very harsh conditions, such as, high pressure, temperatures and
vibrations [17]. There are several important articles related to the optimiza-
tion, control and modeling of gas lifts such as [7] on stabilization, and [8]
stabilization based on state estimation, also [17] and [23] for the modelling
and control of the gas lifts using NMPC.

1.2 Scope and emphasis

This master thesis is not a direct continuation of the project assignment.
The scope of this thesis is to modify the gas lift model by introducing a
simplified pressure loss due to friction equation and to introduce water cuts
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to the system. The reason for introducing a simplified friction term is to
create a more stable system to study the behavior when subject to distur-
bances. Further the water cut is introduced to study its effects on the total
production. With the simplified model, the scope is further to develop a
network consisting of 3 wells and a riser used for the application of a con-
trol structure consisting of a real time optimization (RTO) and a tracking
(NMPC). Both of which are developed during the work of this thesis. The
model inside the NMPC was integrated using the direct orthogonal colloca-
tion. The objective is to study the functionality and ability of the RTO to
produce optimal steady states under different circumstances as well as to
study the ability of the NMPC to produce suitable control trajectories to
track these points. Hence the emphasis is to study the gas lifted oil network,
and the development and application of RTO and tracking NMPC on such
system using CasADi software.

1.3 Outline of thesis

This thesis is outlined in the following way: Chapter 2 presents the gas
lift techniques and explains the main concept while also introducing the
necessity of optimization. In addition, the chapter motivates the concept
of optimization, as well as it introduces how optimal control problems are
formulated and solved. Finally, the hierarchy of control structure is pre-
sented to show the interconnection between different control layers in the
system. Chapter 3 presents the gas lifted oil network that was studied,
the three wells and a riser system. Moreover, it shows how the water cuts
were introduced to the system and how the pressures in different parts of
the plant were represented mathematically. Towards the end, the chapter
shows how the gas lifted oil network was represented as a system of dif-
ferential algebraic equations (DAEs). Further, Chapter 4 introduces the
steady state optimization and the dynamic optimization problems formula-
tions, and their solution methods. Hereafter, Chapter 4 presents the entire
control structure built on top of the plant using steady state and nonlinear
dynamic optimization of the gas lifted oil network, as well as the software
used in the simulations. In Chapter 5 simulation results and analysis are
presented for different case studies and tests on the promising control struc-
ture developed in the thesis. The conclusions are shown in Chapter 6 where
the recommended control structure and results are concluded, and future
work is noted. The appendices contain the constants used in the models
and the programming codes coded during the work of this thesis.





Chapter 2
Background

This chapter begins by presenting the gas lift technique in offshore oil pro-
duction. In addition, it justifies the need and benefits of optimization and
control in gas lifted systems. The reader of this chapter can also find brief
background and introduction to the formulation of optimization and con-
trol and the solution methods that are widely used to solve these optimal
control problems (OCPs). Finally, the structural decisions involved in the
control system design of a chemical plant are presented in the end.

2.1 The gas lift technique

In offshore oil production the pressure of the reservoir plays an important
role. The higher the pressure, the higher the oil production is, hence reser-
voir pressure is the main driving force in the offshore oil production. In
order to raise the oil production through the pipelines, the driving force
must be high, thus high reservoir pressure is desired. As the oil well ma-
tures during its lifetime, the reservoir pressure decreases due to large oil
extraction. Subsequently, when the reservoir pressure declines to a certain
point after several years of production, certain changes pertaining to fluids
occur in porous media, affecting reservoir performance significantly. The
latter could have significant economic effects, and thus gas-lift techniques
can be applied to solve this oil production issue [10]. The gas-lift is used
merely to inject gas near the bottom of the pipeline to reduce the bottom
fluid density, which in return reduces the weight of the fluids in order to

5



6 CHAPTER 2. BACKGROUND

successfully push the oil up.

To understand the process, one must take into consideration the changes
in the reservoir that occur during the pressure decline. These changes in-
clude: (1) changes in reservoir fluid volume and density. (2) changes in fluid
compressibility, viscosity and mobility. (3) changes in fluid composition due
to evaporation of lighter hydrocarbons from the liquid or condensation of
liquid from the gas. (4) changes in the gas to oil ratio (GOR) and water
cut (WC). For further reading on reservoir theory see [20]. Later in this
thesis, a comprehensive analysis on the effects of changes to water cut and
gas to oil ratios is conducted. The latter affects the well production rates
and ultimate recovery from a reservoir and design of surface facilities. The
reservoir pressure is a result of natural forces that trap the fluids within the
pores of the reservoir, porosity and permeability. When a hole is drilled into
a reservoir the fluids are allowed to escape, due to the pressure difference
between the bottom of the reservoir and the top end near the hole. The well
can be considered as that hole. When introducing the well to the reservoir,
the fluids are provided with a new flow path and start flowing through the
bottom of the pipeline to the top facilities, usually a gravity separator. In
order for the mixture fluid to choose the path through the well, the reservoir
pressure must be larger than the column pressure, which is larger than facil-
ity surface pressure. Otherwise, the oil will not be able to flow up through
the pipelines, and the system will fail to produce oil. Therefore, when the
bottom hole pressure is nearing the reservoir, employing an artificial gas-lift
will be beneficial [7].

A simple gas-lift model is depicted in Figure 2.1. The gas-lift introduces
extra gas source through the annulus around the tubing. The gas is usually
injected near the bottom of the tubing through an injection valve. When gas
is injected into the tubing and enters the fluid, it will consequently reduce
the average density of the mixture at that point. As the density of the fluid
mixture is decreased it will subsequently decrease the weight of the fluid,
which in turn cause a decline in the pressure drop in the tubing. As the
pressure declines to a certain point, and the pressure difference between the
reservoir and gas-lift is sufficient, oil will start flowing through the well to
the top. Gas-lift is an excellent technique to enhance production rates in
reservoirs that suffer from low production rate due to insufficient natural
reservoir pressure.

Gas-lifts are not always optimal, in some cases gas-lift techniques may harm
oil production rates. In some cases constraints imposed on the system may
cause instabilities. Instabilities in flow regimes cause severe oscillations that
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Figure 2.1: Representation of the gas lift design.

reduces average production and damage equipment. The most common
case is the casing heading instability, however, it is not in the scope of
this master thesis. Finally, when considering a system of wells sharing the
same manifold, the properties of the reservoirs, such as GOR and WC, must
be taken into consideration so that oil production from each well operates
efficiently and profitably.

2.1.1 Gas lift optimization

The need for optimization and control in the gas lift can be justified by
taking into consideration the relationship between production rates and gas
injection rates. To investigate the possible benefits of control, a compre-
hensive simulation study was performed using the gas lift setup that was
developed in this thesis. The gas lift model will be further discussed in
details in chapter 3, for which the constants used in the setup are presented
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in Appendix A.
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Figure 2.2: Production rate subject to gas injection rate. Maximum oil produc-
tion is also displayed.

Figure 2.2 shows the relationship curve between the production rate of oil
and the gas injection rate of a hypothetical well. Figure 2.2 indicates that
the production rate of oil increases rapidly to a certain point before it starts
dropping again. This implies that the injection rate of gas can be not only
advantageous but also disadvantageous. This relation or curve is justified
by hydrostatic pressure drop that cannot compensate the increased pressure
drop due to friction which is originating from increased gas flow inside the
tubing. This master thesis focuses on factors such as reservoir parameters,
gas injection rates, noises in measurements and multi-well system connected
with the same manifold, as the factors that might have an effect on opti-
mization.

The oil production is determined by the gas lift optimization procedure.
The common understanding about gas lift optimization is to obtain the
maximum production by manipulating the operating conditions. However,
the maximum production of oil does not necessary mean the maximum
profit if oil production is dependent on injection [11]. Therefore, in this
thesis different cases and scenarios of optimization are studied to show how
maximum oil production through liquid production optimization can be
obtained when subject to uncontrollable changes in parameters.
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2.2 Introduction to numerical optimization

To begin a study of a system, an objective must be identified. This ob-
jective is usually determined by the maximum profit a company can reach
meanwhile costs are at their minimum. The costs are primarily from energy
consumption and raw materials necessary to operate the chemical plant.
Certain unknown variables in the chemical plant affect the objectives, and
thus the aim of optimization is to find a good combination of these unknown
variables to reach the maximum or minimum goals. Furthermore, the op-
timization must occur within the bounds and constraints imposed on those
variables.

Prior to formulating an optimization problem, a model has to be developed
to decide suitable values and objectives for the different components of an
optimization problem [6]. There are three main components, an objective
function, decision variables and constraints. The objective function is a
scalar function which describes a property. Optimization is the maximiza-
tion or minimization of an objective function subject to constraints and
bounds. The decision variables may be real variables, integers or binary
variables. Constraints are normally divided into two types, equality con-
straints and inequality constraints. Hence, the optimization problem can be
formulated as follows:

min
x

f(x) (2.1a)

subject to

gi(x) = 0, i = 1,..,m (2.1b)

hj(x) ≤ 0, j = 1,...,n (2.1c)

xmin ≤ x ≤ xmax (2.1d)

Here f(x) is a scalar objective function that is subject to a set of equality
constraints gi(x) and inequality constraints hj(x) with i and j are disjunct
index sets. All these functions are dependent on x which is a set of deci-
sion variables constrained by lower and upper bounds, xmin ≤ x ≤ xmax.
Equation 2.1 represents a general mathematical formulation of optimization
problems. It is noteworthy to mention that since f(x) in Equation 2.1 is
scalar, the objective function can be easily transformed from a minimization
problem to a maximization problem by introducing a negative sign, as in
(−f(x)).
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Optimization problems vary based on their linearity, and convexity of the
objective function and constraints. This thesis, briefly discusses some classes
of optimization problems. A detailed explanation of classes of optimization
problems, are found in [15] and [9].

2.2.1 Classes of optimization problems

Constrained and unconstrained optimization: Equation 2.1 is a constrained
optimization problem. However, if the objective function f(x) can operate
freely without any restrictions under any conditions, then it’s said to be
relaxed from constraints and hence Equation 2.1 becomes merely:

min
x

f(x) (2.2)

Local and global optimization: Global optimization is an optimization prob-
lem that attempts to find the absolute smallest or largest point of the objec-
tive function. However, problems are mostly concerned with local minima
or maxima, which is the point at which the objective function is smaller or
larger than its neighboring points.

Convex and non-convex optimization: An optimization problem is convex
if the objective function f(x) is a convex function, and the feasible set of x
is convex. Furthermore, a problem is strictly convex if there is always only
one global or local solution. In Figure 2.3 convex and noncovex sets are
displayed. As indicated the straight line between any point in the set must
always lie within the borders of that set, if a line crosses the set then its
defined as nonconvex. the latter also applies for the definition of function
convexity, which is displayed in Figure 2.4.

Figure 2.3: On the left, a convex set is depicted. On the right, a nonconvex set
is depicted [9].
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Figure 2.4: On the left, a convex function is depicted. On the right, a nonconvex
function is depicted [9].

There are several types of of optimization problems defined by Equation
2.1. The following are the most common:

Linear Programming (LP): If the objective function f(x) is linear and all
constraints g(x) and h(x) are linear, then Equation 2.1 is a linear program
(LP), where d is a vector of known coefficients, which can be written as

min
x

dTx (2.3a)

subject to

gi(x) = aTi x− bi = 0, i = 1,..,m (2.3b)

hj(x) = aTj x− bj ≤ 0, j = 1,...,n (2.3c)

xmin ≤ x ≤ xmax (2.3d)

Quadratic Programming (QP): When the objective function f(x) is a quadratic
function and all the constraints are linear, it can be formulated as in Equa-
tion 2.4

min
x

xTQx+ dTx (2.4a)

subject to

gi(x) = aTi x− bi = 0, i = 1,..,m (2.4b)

hj(x) = aTj x− bj ≤ 0, j = 1,...,n (2.4c)

xmin ≤ x ≤ xmax (2.4d)

QP problems can be both convex or non convex depending on the quadratic
form of the objective function and the constraints. In Equation 2.4 Q is an
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n-dimensional symmetric matrix and if Q is positive semidefinite, Q � 0,
then Equation 2.4 is a convex problem. Q = 0 is by definition positive
semidefinite. Therefore Equation 2.4 turns into an LP problem which is
convex if the constraints are linear. In addition, QP problems can be non
convex if the Q matrix is negative definite.

Nonlinear Programming (NLP): An optimization problem defined by the
system’s constraints, over a set of unknown real variables, along with an
objective function to be maximized or minimized, in which some of the
constraints or the objective function are nonlinear. An NLP can be defined
similarly by Equation 2.1.

2.2.2 Solution methods

There are various solution methods for optimization problems. There are
explicit methods which can be used for simple problems, or iterative schemes
which are the common approach to optimization problems (OPs).

Algorithm 1 Iterative solution procedure of OPs

Given initial point x0 and stopping criteria
while stopping criteria not fulfilled do

Compute the next iteration point
end while

In the iterative algorithm procedure the optimization requires an initial
value x0, which is the measured value from the plant. To solve optimization
problems the most common approach is the sequential quadratic program-
ming (SQP) method, which does not require an initial feasible point, and
interior point method (IP). Furthermore, the stopping criteria include one
or several of the following: (i) a maximum allowed number of iterations,
(ii) progress matrices, the gradient of the objective function (∇f) or the
Lagrange ∇L of the objective funtion, and (iii) a characterization of the
optimal point,‖∇f‖ < ε or ‖∇L‖ < ε where ε > 0 is a chosen small value.

Interior point methods are good methods for solving nonlinear optimization
problems with inequalities such as Equation 2.1. The IP penalizes inequali-
ties by a barrier function and then solves it as in equality constrained case,
see [9] and [15].
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2.3 The optimal control problem

Optimal control regards the optimization of dynamic systems. Dynamic
systems are processes that are evolving in time and that are charaterized by
states x that allow us to predict the future behaviour of a process. These
dynamic systems can be controlled by inputs u. Typically, in order to
optimize some objective function these controls must be chosen optimally
while respecting the constraints. The process of finding suitable inputs u
for optimal control requires the discretization of the model in the predictive
state.

This thesis is confronted with a problem whose dynamic system lives in
continuous time and whose control inputs are a continuous profile [4]. A
continuous-time optimal control problem can be described as follows.

min
x,u

E(x(T )) +

∫ T

0
L(x(t),u(t))dt (2.5a)

subject to

x(0)− x0 = 0, (2.5b)

ẋ(t)− f(x(t),u(t)) = 0, t ∈ [0,T ], (2.5c)

g(x(t),u(t)) = 0, t ∈ [0,T ], (2.5d)

h(x(t),u(t)) ≤ 0, t ∈ [0,T ], (2.5e)

r(x(T )) ≤ 0, (2.5f)

Problem 2.5 and its variables are visualized in Figure 2.5. In Equation
2.5 the L(x,u) term is called the Lagrange term (not to be confused with
Lagrange function) and E(x(T )) is called a Mayer term. Further, t repre-
sents the time variable ∈ [0,T ], x(t) ∈ Rnx denotes a vector of state deci-
sion variables and u(t) ∈ Rnu denotes a vector of control decision variables.
Sub-equation 2.5c represents an equality constraint of the ODE model, Sub-
equation 2.5d is an additional equality constraint which is introduced for
DAE systems [4]. Furthermore, Sub-equation 2.5e represents other con-
straints that are usually present which are the path constraints inequalities,
for example upper and lower bounds of inputs umin ≤ u ≤ umax. Finally,
Sub-equation 2.5f describes the inequality terminal constraint, which is used
if the optimization has a fixed terminal or final state that is desired.
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Figure 2.5: Continuous time optimization problem. Displayed Initial value of x0,
along with the states x and control u depending on time. Further,
Path constraints h and terminal constraints r, where T is the predic-
tion horizon time.

2.4 Solving optimal control problems

There are two approaches to address continuous time optimal control prob-
lems, (i) indirect approach and (ii) direct approach see Figure 2.6. This
section briefly introduces the indirect and direct approaches to solve opti-
mal control problems [4].

Indirect Methods use the optimality conditions to derive a boundary value
problem (BVP) in ordinary differential equations (ODE). The BVP in the
indirect method is solved by first optimize, then discretize. Hence the opti-
mality conditions are described in the continuous form, and then discretized
to compute a numerical solution. The major drawback in this indirect meth-
ods is the difficulty of solving differential equations due to non-linearity, [4].

Direct Methods on the contrary to indirect methods, can be used to solve
optimal control problems without having to derive a BVP. Rather, direct
methods transform the optimal control problem into a finite NLP which
is then solved by numerical optimization that exploit the structure of the
problem. Hence, direct methods first discretize, then optimize. To elabo-
rate, the continuous time dynamic system is transformed into a discrete time
system and then the process of optimization is deployed. Direct methods
can easily treat all sort of constraints, as they are treated by well developed



2.4. SOLVING OPTIMAL CONTROL PROBLEMS 15

Direct Methods:

Transform into

NLP

Direct Multiple Shooting: 

Controls and node start 

values in NLP 

(Simultaneous)

Direct Collocation: 

Discretized controls and 

states in NLP 

(Simultaneous)

Single Shooting: Only

discretized controls in 

NLP (Sequential)

Indirect Methods:

Solve BVP

Figure 2.6: Classification of methods of optimal control problems.

NLP methods that deal with active changes [4]. There are two approaches
within the group of direct methods, namely, sequential (single shooting)
and simultaneous (multiple shooting and collocation) as can be seen in Fig-
ure 2.6. It is worth to note that simultaneous approaches can handle both
systems of differential algebraic equations (DAE) and ordinary differential
equations (ODE) [6].

Direct single shooting

In this method the model simulation and optimization are done sequentially.
Here the control trajectory is approximated and parametrized using piece-
wise smooth approximation, while the ODEs and DAEs are solved using
another integration solver.

The time horizon of the problem is divided into a set of grid-points as
t0 = 0 < t1 < ... < tN = tf . The control parametrization is denoted by
u(t; q), where q is the finite control parameter which is set to qk = u(t) for t ∈
[tk,tk+1] and 0 ≤ i ≤ m, to show the dependence on each interval [4]. After
the integration the states x(t; q) are obtained as a function of the previous
control parameters and finally the problem is moved to an NLP solver to
find the optimal control trajectory/sequence. Hence, sequential approach.
See Figure 2.7 for a schematic illustration of direct single shooting.
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Figure 2.7: Direct Single Shooting (DSS) discretization applied to the optimal
problem [14].

Direct multiple shooting

The idea behind direct multiple shooting approach is to shorten the long
integration dynamics which can be counterproductive for discretizing con-
tinuous optimal control problems into NLPs. This is done by limiting the
integration over short time intervals. This method performs a piecewise con-
trol discretization of the continuous control input u(t) = qi for t ∈ [ti,ti+1],
then it solves the ODE on each interval [ti,ti+1] starting with artificial initial
values si. See Figure 2.8 for an illustration of the artificial values.

Figure 2.8: Direct Multiple Shooting (DMS) discretization applied to the optimal
problem. On the left, initialized shooting nodes where solution is
violating constraints. On the right, the constraints are fulfilled after
NLP convergence [14].

ẋi(t,si,qi) = f(xi(t,si,qi),qi), t ∈ [ti,ti+1] (2.6a)

xi(t,si,qi) = si. (2.6b)

In multiple shooting method the integrals in the OCP are numerically com-
puted, and additional constraints are added to ensure the continuity condi-
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tion in Equation 2.6b. Thus, OCP based on multiple shooting produces the
NLP as in Equation 2.7.

min
s,q

E(s(m)) +

m−1∑
i=0

li(si,qi) (2.7a)

subject to

x0 − s0 = 0, (2.7b)

xi(ti+1,si,qi)− si+1 = 0, i ∈ [0,m− 1], (2.7c)

h(si,qi) ≤ 0, i ∈ [0,m], (2.7d)

r(sN ) ≤ 0, (2.7e)

Figure 2.9: Polynomial approximation (blue curve), actual system dynamic (blue
dotted curve), state derivative of polynomial (black line), derivative of
the system dynamics (black dotted line) and the piecewise constant
control input over the interval (blue lines). In addition, the slope
constraint (red arrow) which is done t each collocation point, and the
shooting gap constraint (red dashed circle) are displayed.

Direct collocation

The most relevant class of direct methods in this thesis is the direct tran-
scription method, direct collocation. The main distinction in this method is
that discretization occurs in both controls and states on a fixed fine grid N
intervals with c intermediate collocation points in each interval. The states
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in the collocation method are approximated by cubic polynomials and the
controls are described as piecewise linear function. There are several com-
mon choices of the polynomials, such as, (i) Gauss-Legendre scheme, (ii)
Radau points or (iii) Lobatto points. Collocation points differ in their posi-
tion in the interval, for example Radau has a collocation point at the end
of the interval. The collocation points are chosen based on different factors
for stability, sensitivity and convergence [4].

An illustration of the direct collocation method is displayed in Figure 2.9.
Figure 2.9 shows that in addition to the shooting gap constraints, a deriva-
tive equality constraint is added to the NLP. This is depicted by the red
arrow which has the following formulation ẋc − f(xc,u(t)) = 0.

2.5 Plantwide control

Plantwide control is concerned with the structural decisions involved in the
control system design of a chemical plant. In particular, plantwide control
is concerned with the questions ”which variables should be controlled, mea-
sured, manipulated and what links should be made between them?” [21].
For large chemical plants such as the oil production from a multi-well sys-
tem, it is important to have a suitable and stable control structure. The two
main objectives of a control structure is the long term economics and the
short term stability. Figure 2.10 shows the different layers constituting the
selection of control structures in chemical plants. Each layer in the control
hierarchy operates on a different time scale. Typically, the control struc-
ture includes (i) scheduling (weeks), (ii) site-wide (real-time) optimization
(days), (iii) local optimization (hours), (iv) Supervisory or Model predictive
control (MPC, minutes), and finally (v) Stabilizing and regulatory control
(seconds). Layers (ii) and (iii) deal with the economic optimization of the
system while the supervisory and regulatory layers are concerned with set-
point tracking from the layers above. Thus, these layers are interconnected
through the controlled variables [21].

The supervisory layer is a slow economic layer, whose objective is to perform
advanced economic control on controlled variables that are considered of
high worth. In return, this layer provides setpoints for controlled variables
of less economic significance in the lower regulatory layers. In this thesis
the supervisory control consists firstly of a real time optimization (RTO) to
find optimal steady states that can be passed further as tracking point of
the second layer. The second layer is done using model predictive control
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Figure 2.10: Typical control hierarchy in a chemical plant

(MPC) which attempts to track the optimal steady state point provided
by the RTO. Other advanced control structures can operate in this layer,
namely, cascade, ratio , decoupler valve position control, etc.





Chapter 3
System Description and Modeling

This chapter shows a modified approach for derivations of the gas lift and
riser models as basis of the models previously developed in [22] and [23].
The main modifications done to the model are:

1. The use of a simplified friction equation to produce a stable system
that reaches steady state.

2. The addition of water cuts which makes the gas lifted oil network a
three phase system.

The simplified schematic of the gas lift is illustrated in Figure 3.2. Reservoir
fluid flows through a perforated well, into the wellbore, upwards through
the tubing and through a production choke, before it enters the riser. Each
part of the network is treated as an independent building component of a
gathering network where any of the these systems can be represented gen-
erally by the structure shown in Equations 3.1. This chapter is dedicated to
introduce the reader to the gas lifted oil network models. Finally, formula-
tion of the entire network as a system of DAEs is developed. The resulting
model codes are given in Appendix C.1 and C.2.

3.1 Gas lifted oil network

This thesis connects the models developed for the gas lift and the riser
to a network of three wells, three gas lifts, and a single riser. A simple

21
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schematic of the entire system is depicted in Figure 3.1. In this gas lifted oil
network, the gas injection into each gas lift is assumed to be supplied from
different sources with similar properties and pressures, where these sources
are independent. Usually, it is possible to assume that the gas injection
is reused from top facilities such as gravity separators. Furthermore, the
manifold in the system is not a tank, rather, it is thought of as a point at
which all production flows from each well are gathered and jointly directed
in the riser to the topside. The flows in the system described in Figure
3.1 are always travelling vertically upwards at all points, hence there is
no horizontal flow movement. In addition, in Figure 3.1 all green shapes
represent a flow through a valve which is controlled by a manipulated valve
opening u as described in Equations 3.13 for gas injection, 3.35 for well
production and 3.53 for riser production.

Figure 3.1: System network of oil production. Three reservoirs (brown) with
three gas lifts connected by a manifold (Black) to pump oil jointly
through a riser. Green shapes indicate flows through a valve, namely,
gas injection into the gas lift, well production into manifold, and on
the top total production choke.
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As will be seen in the following sections, this system is highly coupled and
very nonlinear. In order to find the well production and solve the mathe-
matical models for the gas lifts, the manifold pressure calculated in the riser
model is required. Moreover, to find the manifold pressure in the riser the
production from the wells must be provided. Hence, there is the mutual
dependency. However, using advanced programming tools makes this sim-
ulation possible and successful. The software used is mentioned in the final
section of this chapter.

3.2 Generalized submodel

Generally, any of the subsystems of the gas lifted oil production network
can be described by the ODE system in Equations 3.1, where the subscript
c refers to any component of the network. In the case of this master thesis
the reference is c = {well 1, well 2, well 3, riser}. Further, the differential
states xc represent the mass of gas and liquid in each component of the
network. and can be described by the dynamic function fc. Equation 3.1b
represents algebraic variables of the DAE system by the algebraic function
gc, such as the pressures and mass flow rates of gas and liquid phases through
the reservoirs and valves.

ẋc = fc(xc,uc) (3.1a)

yc = gc(xc,uc) (3.1b)

3.3 Friction equation

This section introduces the new friction equation used in the tubing of the
gas lifted oil network. This is part one of the work in this thesis, and it
is one of the major changes produced in the modeling part to the models
developed in [23] and [22].

In the tubing of the gas lift and riser models, calculating the pressure drop
due to friction can be very challenging. Equations 14-19 in article [23]
define an average flow rate from the reservoir to the tubing, w̄res, which is
a constant in the model developed to avoid the circulating dependency and
mutual dependence of the friction to the flow. In addition, [23] introduces
superficial velocity terms which are necessary for the friction equation to
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reflect the volumetric flow rate which is dependent on the mass gas oil ratio
(GOR). Those superficial velocities are calculated for both the gas phase
in the tubing, and the liquid phase in the tubing. Then an average mixture
velocity is calculated by summing up the two superficial velocities. Finally,
a friction factor from the implicit Colebrook-White equation, [10], is used
to find the pressure loss due to friction from the top of the tubing down
to the injection point. Hence the friction model in [23], can be considered
as an estimated parameter that depends only on the injection rate in time,
given that it is the only time variant variable in Equations 14-19 in article
[23].

The friction model that is deployed in this thesis work, relies on mutual
dependency and standard fluid dynamics notations to describe the friction.
Namely the Hagen-Poiseuille equation, Equation 3.2. is used to describe the
pressure drop in the flow through a long cylindrical pipe of constant cross
section [16]. Previously, this equation was successfully applied to air flow
through a drinking straw and a hypodermic needle. Now this thesis applies
the equation to the tubing in gas lifted oil production. Because the gas lift
model is a highly nonlinear and coupled system, a minor change in some of
the parameters can result in different simulation run time and results. It is
important to use simple versions of the pressure drop due to friction.

Pfr = 128
µLQ

πD4
(3.2)

Q =
wout
ρ̄

(3.3)

In Equation 3.2 Pfr, is the pressure drop or pressure reduction, L is the
length of the pipe, µ is the dynamic viscosity, and D is the pipe diameter.
The volumetric flow rate can be calculated through Equation 3.3 where w is
the mixture mass flow rate out of the pipe, and ρ̄ is the average flow density
mixture over the pipe. The Hagen-Poiseuille equation is assumed to be valid
in the gas lift model due to its application on laminar flow. However, for
velocities and pipe diameters above a threshold, can lead to larger pressure
drop than calculated by the Hagen-Poiseuille equation. Further, the value
of the pressure drop in the gas lift is considerably low. Therefore calculating
pressure drop using 3.2 should be sufficient and its quantity remains well
defined even in the case of varying flows.
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3.4 Water cut

In addition to the new friction equation, the water cut, (WC), parameter is
introduced to take into consideration the water produced during reservoir
oil production. Hence, the behaviors of the three phases in the system are
taken into account. It is necessary to introduce WC in the calculations
to have a more accurate representation of the liquid densities in different
parts of the system during the life time of the reservoir. The change in WC
can be considered as a disturbance to the system as it becomes larger and
it’s effects become more significant. Hence, for changing WC values, the
density of liquid, ρL and the viscosity of the fluid, µ, must be adjusted. This
is done by applying the following equations:

ρL =
1

WC
ρwater

+ 1−WC
ρoil

(3.4)

µ =
µoil

(1 +WC)2.5
(3.5)

3.5 Well model

This section introduces the flow calculations of the gas lift model in the
annulus and tubing parts. The derivation of the equations are done derived
sequentially, while showing the necessary steps in the process. Furthermore,
this section also shows how the pressures, phase fractions and the frictions
are calculated, which are essential for the flow calculations. The list of
symbols is presented on page xvi and the constants used in the model are
shown on page 81. Finally in this section the modeling refers to Figure 3.2
which describes the gas lift design [23].

3.5.1 Basis and mass balances

The basis of the gas lift model consist of three states, (i) The mass of gas
in the annulus x1, (ii) The mass of gas in the tubing x2, and (iii) the mass
of liquid in the tubing x3. The gas lift is modeled as a vertical cylindrical
tank filled with gas at a constant temperature. The state Equations in 3.6
are simple mass balance equations for each phase (liquid and gas) in the
annulus part and the tubing part of the gas lift. Each mass balance is built
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by the inflow and the outflow of the respective control volume (annulus and
tubing). In the model represented by Equation 3.6a, wGa,in is the inlet mass
flow rate of gas supplied to the gas lift through the annulus, and wGa,inj
is the outlet mass flow rate injected at the bottom of the annulus to the
tubing, hence the subscript a denotes the annulus part. In the second part,
Equations 3.6b and 3.6c describe the mass balance of gas and liquid in
tubing, subscript t, respectively. Where wGt,out, wGres and wLres , denote
outlet gas mass flow from tubing, and inlet gas and liquid mass flow from
reservoir into tubing, respectively. Equation 3.6 takes into consideration
both gas and liquid present in the reservoir, hence it can describe the entire
gas lift model.

dx1

dt
= ẋ1 = wGa,in − wGa,inj (3.6a)

dx2

dt
= ẋ2 = wGa,inj + wGres − wGt,out (3.6b)

dx3

dt
= ẋ3 = wLres − wL,out (3.6c)

3.5.2 Flow into annulus

The modeling of the artificial gas lift presented in Figure 3.2 begins on
the annulus side, where the gas flow through the gas lift choke, wG,in on
the top left of Figure 3.2, is calculated. Through the gas lift choke and
annulus, only gas is present and thus the ideal gas law is a valid assumption
and hence the pressure on the top of the annulus can be derived using a
constant temperature Ta over the whole annulus. The latter assumption is
valid due to the slow variation in temperature over time [10]. The density
of gas before the choke can be calculated by Equation 3.7, where Pgs is the
pressure of the gas lift source and Mg is the gas molecular weight.

ρG,in =
PgsMg

TaR
(3.7)

The density of gas on the right side of the gas lift choke, annulus part, is
given by Equation 3.8. Which is a simple division of the gas mass by the
Total constant volume of the annulus, denoted by Va.
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Figure 3.2: Schematic representation of the gas lift model.

ρG,a =
x1

Va
(3.8)

Thus, the pressure at the top of the annulus Pa,top can be written as in
Equation 3.9.

Pa,top =
ρG,aRTa
Mg

(3.9)

Subsequently, the pressure of the annulus in the bottom near the injection
point Pa,btm can be calculated simply by adding the gravitational pressure
drop.

∆Pa = ρG,aLag (3.10)

Pa,btm = ∆Pa + Pa,top (3.11)
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Similarily, the density of gas can be found at the bottom of the annulus by
taking into consideration the ideal gas law, as follows

ρG,a,btm =
Pa,btmMg

TaR
(3.12)

Hence, the gas mass flow into the annulus is derived in Equation 3.13 which
is based on the valve model and the pressure difference on the top before
and after the gas lift choke.

wG,in = Kgsu2

√
ρG,a(Pgs − Pa,top) (3.13)

In Equation 3.13 the pressure drop is the driving force for the flow through
the gas lift choke, when Pgs is greater than Pa,top the flow though the choke
increases, given that Pgs is always greater than Pa,top. However, if Pgs is
lower than Pa,top there will be no flow through the choke. Usually Equation
3.13 is restricted by a max function to insure that the term under the
root is always positive semi definite, however in this thesis this function
was eliminated due to the use of optimizers that do not accept max or if
functions during optimization. That is, because the introduction of such
discontinuity into a model can have disadvantageous effects on the solver’s
ability to efficiently obtain an accurate solution due to the introduction of
non-smooth gradients. Further, Kgs is a constant valve parameter and u2 is
the choke opening, otherwise know as the input or the manipulated variable.

3.5.3 Gas injection into tubing

As shown in the previous section the valve model is a good mathematical
description of the flow over a point. Therefore, according to the valve model
the pressures, before and after a specific point of transfer, must be found.
The procedure in this section is simply to find expressions for the pressures
at different points of the tubing all the way down to the injection point,
once the latter is found the valve equation can be applied.

In this model the reservoir is assumed to be saturated, that is the pressure
of the reservoir is at its bubble point where it is ready to vaporize. Under
these circumstance the reservoir is completely in liquid phase. Subsequently,
everything below the injection point is assumed to be in liquid phase, see
Figure 3.2. Which implies that the length of the bottom hole, Lbh, is only
liquid. Hence, the average density of gas above the tubing can be calculated
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for the volume where gas is present, excluding the bottom hole area. This
becomes, the total volume of the tubing, Vt, subtracted by the liquid volume,
x3/ρL, all of which are above the injection point and excluding the bottom
hole volume, Vbh = SbhLbh. See Appendix A for constants used in the
model. Thus the average density of gas in the tubing above the injection
point can be formulated as in Equation 3.14.

ρ̄G,t =
x2

Vt + Vbh − x3
ρL

(3.14)

Additionally, The average density of the entire mixture of gas and liquid
in the tubing part above the injection point can be described by Equation
3.15.

ρ̄mix =
x2 + x3 − VbhρL

Vt
(3.15)

Utilizing Equation 3.14 and the Ideal gas law assumption, the pressure at
the top of the tubing can be obtained by the gas law.

Pt,top =
ρ̄G,topRTt
Mg

, (3.16)

The pressure at the bottom of the tubing near the injection point can be
found by merely adding hydrostatic pressure forces to pressure loss due
to friction. Thus, the pressure loss due to the gravitational force can be
described by Equation 3.17, where Lt denotes the length from the top of
the tubing down to the injection point. The average density of mixture in
the tubing , ρ̄mix, found earlier is used to account for the gas present along
the tubing.

∆Pt = ρ̄mixLtg, (3.17)

In addition, the pressure loss due to friction along the surface of the tubing,
Pt,fr, is found. This is done by applying the Hagen-Poiseuille Equations 3.3
and 3.2 to the tubing section above the gas injection point. Thus, Equations
3.18 and 3.19 are found. Where wout is the mass flow rate of mixture leaving
the tubing to account for the entire tubing. Since wout is yet to be found,
mutual dependency becomes noticeable.
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Qt =
wout
ρ̄mix

, (3.18)

Further, the pressure loss due to friction and wall stress in the tubing can
be formulated as in Equation 3.19. Where the average volume fraction in
the tubing, ᾱL,t, is described in Equation 3.32.

Pt,fr = 128
ᾱL,tµLtQt
πD4

t

. (3.19)

Finally, summing up the top pressure and the pressure losses will yield the
pressure on the bottom of the tubing near the gas injection point.

Pt,btm = Pt,fr + ∆Pt + Pt,top. (3.20)

Given that the pressures on both ends of the injection point are available,
the injected gas flow rate can be developed. This is done by combining
Equations 3.11, 3.12 and 3.20 in the valve model, which yields Equation
3.21. Where Kinj is the constant valve parameter.

wG,inj = Kinj

√
ρG,a,btm(Pa,btm − Pt,btm) (3.21)

Despite the absence of an actual valve at the injection point, Equation 3.21 is
an adequate description the flow. Therefore, it is assumed that the fraction
input, u, is always fully open. Hence, u = 1.

3.5.4 Flow from reservoir into tubing

This section shows how the mass flow rate out of the reservoir, wres, is
calculated.

Initially, the gas to oil ratio (GOR) is defined as the ratio between the
rate of gas and liquid mass flowing from the reservoir into the tubing,
w̄G,res,out/w̄L,res,out. GOR is an important given constant parameter in di-
mensionless metric units, which affects the productivity and efficiency of the
oil production from reservoirs [20]. GOR is used to find the mass fraction
of gas at the bottom of the tubing, through Equation 3.22.
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αmG,btm =
GOR

GOR+ 1
(3.22)

At the bottom hole, the pressure losses are formulated using the parameters
and constants for the bottom hole section. Where Lbh is the length of the
bottom hole section, Qbh is calculated using total reservoir outflow wres with
ρL since it is assumed that the flow in this section right before the exit is
at very high pressure and the mixture is in the liquid phase. Finally, the
diameter of the bottom hole is denoted with Dbh.

∆Pbh = ρLLbhg (3.23)

Qbh =
wres
ρL

(3.24)

Pbh,fr = 128
µLbhQbh
πD4

bh

(3.25)

Thus the pressure at the bottom hole Pbh is calculated by summing the
hydrostatic pressure force and the pressure loss due to friction at the bottom
of the tubing near the injection point, Pt,btm. Hence, Equation 3.26 is
formulated.

Pbh = Pt,btm + ∆Pbh + Pbh,fr (3.26)

The mass flow rate from the reservoir wres can be calculated by Equation
3.27, PI is a given parameter which describes the productivity index. PI
replaces the gain and the input fraction, that is, it describes the ability of
the reservoir to pump fluids from the reservoir to the tubing. In addition,
the pressure of the reservoir is also a given quantity Pres which, in general,
has a large effect on the production of oil from reservoirs.

wres = PI
√
Pres − Pbh (3.27)

When the fluid from the reservoir passes the bubble point part of the liquid
evaporates. Thus, the gas developed must be taken into consideration.
Moreover, αmG,btm can be used to find the liquid and gas mass flow from the
reservoir, according to Equations 3.28 and 3.29 respectively.
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wL,res = (1− αmG,btm)wres (3.28)

wG,res = (αmG,btm)wres (3.29)

3.5.5 Flow from tubing into manifold

Here, the mass flow out of the production choke is calculated. Previously,
expressions for the pressure on the top of the tubing, Pt,top, and the average
density over the tubing above the injection point, ρ̄mix, have been developed.
In this section a more accurate description of the mixture density on the
top of the tubing is developed. This is done by taking into consideration
the additional flows of liquid and gas flowing from the reservoir. Given that
the reservoir flow has been exposed to an environment with lower pressure.
The calculations here are based on the work of [22] and [23]. Using the
pressure at the bottom of the tubing Pt,btm, a more accurate expression for
the density at the same point is developed using the ideal gas law and the
temperature at the bottom hole, Tbh. The latter will yield Equation 3.30:

ρG,t,btm =
Pt,btmMg

TbhR
(3.30)

The density, ρG,t,btm, is a useful quantity that is utilized to produce the
volumetric fraction of liquid at the bottom of the tubing, through Equation
3.31.

αL,t,btm =
wL,resρG,t,btm

wL,resρG,t,btm + ρL(wG,res + wG,inj)
(3.31)

Further, the average volume fraction of liquid ᾱL,t inside the tubing above
the injection point is calculated as follows:

ᾱL,t =
x3 − VbhρL

VtρL
(3.32)

ᾱL,t can be considered as the average liquid volume fraction at the middle
of the tubing, which can be calculated from the liquid volume fractions
at both ends of the tubing. This is given the assumption made by [22],
which states that in a two phases vertical pipe the gradient is constant,
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given that the relationship between the pressure and the volume fraction is
linear. Therefore from the two quantities found above it is possible to use
the simple relation through Equation 3.33:

αL,t,top = 2ᾱL,t − αL,t,btm. (3.33)

Using the liquid volumetric fraction, αL,t,top, the density of mixture at the
top of the tubing can be expressed as the following:

ρmix,t,top = αL,t,topρL + (1− αL,t,top)ρ̄G,t (3.34)

The valve equation can be used to find the total mass flow rate exiting the
tubing through the production choke.

wout = Kpru1

√
ρmix,t,top(Pt,top − Pm) (3.35)

In Equation 3.35, u1 is the fraction input of the production choke, Kpr

is the production choke constant and Pm is the pressure at the manifold.
Pm is a very important quantity which depends on many variables such
as the top side pressure, friction pressure and the outflow through each
production choke from each well in the gathering system. The manifold
pressure calculations are show in Section 3.6.

Furthermore, to calculate the composition of the flow rate, the gas mass
fraction on the top side of the tubing αmG,t,top is required. This is expressed
via following

αmG,t,top =
(1− αL,t,top)ρ̄G,t

αL,t,topρL + (1− αL,t,top)ρ̄G,t
(3.36)

Finally, given αmG,t,top and wout, the gas and liquid mass outflows can be
expressed as the following:

wG,out = αmG,t,topwout (3.37)

wL,out = (1− αmG,t,top)wout (3.38)
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3.6 Riser model

The mathematical derivations of the flows and pressures through and in
the riser model, are developed here. The riser gathers all liquid and gas
outflows from the different wells through a manifold and pumps the oil
to top facilities. These facilities are usually gravity separators or other
advanced reservoir production equipment. The basis of the model is first
presented and later the mathematical modeling equations of the riser. In
this section all variables and constants are applied only to the riser, thus
similar notations do not explicitly mean that they are equivalent to other
variables developed earlier or after.

3.6.1 Mass balance in riser

The basis of the riser model consist of two states, (i) The mass of gas in
the riser x1, and (ii) the mass of liquid in the riser x2. The riser, similar
to the tubing in the gas lift, is modeled as a vertical cylindrical tank filled
with gas at a constant temperature. The state Equations 3.39 are also a
simple mass balance equations of each phase (liquid and gas) in the riser.
The mass balance equations in 3.39 are built using the total inflow of gas
and liquid from the wells and the outflow of gas and liquid from the riser.
Note, x1 and x2 are not equivalent to those in Section 3.5.

dx1

dt
= ẋ1 = wtot,G,in − wG,out,r (3.39a)

dx2

dt
= ẋ2 = wtot,L,in − wL,out,r (3.39b)

In Equations 3.39, wG,out,r and wL,out,r denote gas and liquid outflow rates
from the riser, respectively. Expressions for these quantities will be devel-
oped later in this part of the chapter. Moreover, wtot,G,in and wtot,L,in denote
the total inflow of both gas and liquid arriving from the wells, which are the
sum of the wells’ outflows. Equations 3.40 show the summing operation,
where n denotes the number of wells, in this case n = 3.
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wtot,L,in =
n∑
i=1

wL,out,i (3.40a)

wtot,G,in =
n∑
i=1

wG,out,i (3.40b)

3.6.2 Flow through top production choke

The riser model follows a similar modeling scheme and procedure as in the
tubing part of each well. The riser is simply a vertical cylindrical pipe
carrying the gathered fluids and gas from each well to the top side facilities.
The main driving force that pumps the fluids to the top is the pressure
differences. In order to find the production outflow, the valve equation is
used over the top production choke.

Initially, the manifold pressure, Pm, must be found. This is done by sum-
ming the pressure losses due to gravity and friction to the riser’s pressure at
the top. The density of the gas on the top side can be calculated according
to the following Equation:

ρG,top =
x1

Vr − x2
ρL

(3.41)

Where Vr is the total volume of the riser (cylindrical tank), and by sub-
tracting the volume occupied by the liquid, x2

ρL
, the total volume occupied

by gas in the riser is found. Hence, the pressure on the top side of the riser
is found using the ideal gas law:

Pr,top =
RTrρG,top

Mg
(3.42)

Further, to find the friction pressure loss the average density of the mixture
over the entire riser volume is required:

ρ̄mix =
x1 + x2

Vr
(3.43)
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Using the average density, the total volumetric flow is constructed using
Equation 3.44. Where wout,r is yet to be found, hence, the mutual depen-
dency appearance.

Qr =
wout,r
ρ̄mix

(3.44)

Using the the volumetric flow found above, the pressure loss due to friction
is found by applying Hagen-Poiseuille Equation 3.2. In Equation 3.2, Dr

denotes the riser’s diameter, Lr denotes the length of the riser, ᾱL is the
average volume fraction of liquid in the riser given in Equation 3.48, finally
µ designates the fluid’s viscosity constant.

Pr,fr = 128
ᾱLµLrQr
πD4

r

(3.45)

Furthermore, the pressure loss due to gravity is

∆Pr = ρ̄mixLrg. (3.46)

By summing up the pressures found above, an expression for the manifold
pressure can be developed as shown in Equation 3.47.

Pm = Pr,top + ∆Pr + Pr,fr (3.47)

Next, to a find a more accurate description of how the density varies on the
top side of the riser, a similar approach is done as in the previous section.
The average volume fraction of the liquid, ᾱL, inside the riser is calculated
as follows:

ᾱL =
x2

VrρL
(3.48)

Using the pressure at the manifold point, ideal gas law and the temperature
Tr, will yield an expression to the density at the bottom of the riser:

ρG,btm =
PmMg

RTr
(3.49)

Which is again a very useful quantity used to formulate a volumetric fraction
of liquid at the bottom of the riser, through Equation 3.50.
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αL,btm =
ρG,btmwtot,L,in

ρG,btmwtot,L,in + ρLwtot,G,in
(3.50)

Making the assumption that the volume fraction relationship is approxi-
mately linear in a vertical pipe [22], the top liquid volume fraction can be
found by:

αL,top = αL,btm + 2ᾱL (3.51)

Utilizing αL,top found above, a more accurate description of the mixture
density at the top, ρmix,top, is developed through:

ρmix,top = αL,topρL + (1− αL,top)ρG,top (3.52)

By combining the expression for ρmix,top and the valve model, the total mass
flow exiting the riser, wr,out, through the production choke is described by:

wout,r = Kpr,ru
√
ρmix,top(Pr,top − Ps) (3.53)

In Equation 3.53, Kpr,r is the production choke constant, Ps is the pressure
in the top facilities accepting the oil, and u is the fraction input of the valve
(otherwise know as the manipulated variable). The value of u here ranges
between 0 and 1 and describes the opening of the valve. In all of the case
studies in this thesis this valve is left fully open to maximize production.

Finally, the gas mass fraction on the top side of the riser, αmG,top, is used to
find the respective outflows of each phase. Namely the gas phase outflow,
wG,out,r, and the liquid phase outflow,wL,out,r. These are described by the
following equations respectively. The subscript L denotes total liquid or
fluid which contains oil and water

αmG,top =
(1− αL,top)ρG,top

αL,topρL + (1− αL,top)ρG,top
(3.54)

wG,out,r = αmG,topwout,r (3.55)

wL,out,r = (1− αmG,top)wout,r (3.56)
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3.7 Gas lifted oil network of DAEs

The mathematical models presented in this chapter are expressed by Dif-
ferential Algebraic Equations (DAEs). This is presented in the following
form:

ẋ = f(x,y,u,t)

0 = g(x,y,u,t)
(3.57)

Where f describes the differential part and g describes the algebraic part of
the DAE. This is a semi explicit DAE, where the differential and algebraic
parts are decomposed. DAEs are characterized by their index. The index
of a DAE is the smallest number of differentiation required to obtain an
ODE. The models of the system shown in Figure 3.1, can be described by
a DAE system with a large index number. Generally, the higher the index,
the greater the numerical difficulty becomes. The system’s DAEs can be
described by following:

Gas lift Differentials part

ẋ1 = wGa,in − wGa,inj (3.58a)

ẋ2 = wGa,inj + wGres − wGt,out (3.58b)

ẋ3 = wLres − wL,out (3.58c)

Gas lift Algebraic Part

0 = wG,inj − Kinj

√
ρG,a,btm(Pa,btm − Pt,btm) (3.58d)

0 = wres − PI
√
Pres − Pbh (3.58e)

0 = wout − Kpru1

√
ρmix,t,top(Pt,top − Pm) (3.58f)

Equations 3.58 describe how the DAE system was formulated for each of the
wells. In total there are three differential variables, {x1, x2, x3}i and three
algebraic variables, {wG,inj , wres, wout}i, where i = {well 1, well 2, well 3}
denotes the well number.

Similarly, A DAE system is also formulated for the riser model which has
the following form:

Riser Differentials part
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ẋ1 = wtot,G,in − wG,out,r (3.59a)

ẋ2 = wtot,L,in − wL,out,r (3.59b)

Riser Algebraic Part

0 = wout,r − Kpru
√
ρmix,r,top(Pr,top − Ps) (3.59c)

0 = wG,out − αmG,t,topwout (3.59d)

0 = wL,out − (1− αmG,t,top)wout (3.59e)

Manifold Algebraic Part

0 = Pm − (Pr,top + ∆Pr + Pr,fr) (3.59f)

Equations 3.59 describe how the DAE system was formulated for riser
model. In total there are two differential variables, {x1, x2} and three al-
gebraic variables, {wout, wG,out, wL,out}, as well as the algebraic manifold
pressure Pm variable.

All other quantities are not mutually dependent, therefore it is unnecessary
to include them in the DAE system rather they are treated accordingly
through a step by step algorithm.

3.8 Software package

For model simulation purposes the Matlab programming environment was
used. The well and riser models were implemented separately in Matlab

as script files, and coupled later in another script file which represents the
plant. The mathematical models for the gas lifted oil network were initially
solved using fsolve for steady state conditions, and later integrated using
the ode15s for dynamic DAE stiff systems. The ode15s was used because
it can solve problems with a singular mass matrix, otherwise known as
differential-algebraic equations (DAEs).





Chapter 4
Formulation of Optimization
Problems

In section 2.3 an OCP was developed and solved to produce a single optimal
control trajectory. One might use the obtained optimal control trajectory
solution to control the real process. However, because the real model typi-
cally deviates, from the model developed in the optimization problem, the
precomputed control trajectory is not always satisfying [4] and [15]. The
latter might lead to not reaching the points that the model trajectory pre-
dicted. Therefore, the process can be monitored for irregularities and unex-
pected behaviours during the time development. By being able to monitor
and detect model development, the optimal control inputs or trajectory can
be modified to get the best possible solution. For example, if the pressure
at the manifold is not at the set point due to gas to oil ratio changes in the
reservoir, the optimal control trajectory is recomputed. The latter is also
described as feedback control.

This chapter attempts to bridge the gap between optimization and con-
trol of the oil production system shown on page 22. This is done by first
presenting the concepts which merge feedback control with optimization.
Namely, Real Time Optimization (RTO) and Nonlinear Model Predictive
Control (NMPC). In addition, this chapter shows the methodology used to
build a nonlinear program from the collocation method and presents the
software package used to solve this large NMPC system.

41
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4.1 Real time optimization

One approach to compute the optimal feedback control mentioned earlier
is in real-time optimization (RTO) during the run-time of the process. For
example, in the case of the oil production, after the occurrence of a distur-
bance, the optimization is called to be solved again in order to compute the
control trajectory again. However, in reality the optimal control problem
might be simplified in order to speed up computation time, e.g. by pre-
dicting only a finite amount of time into the future, in addition, algorithms
might need to be adapted to new tasks, thus the optimization needs to be
solved again. This process is challenging and requires a long time, since
numerical optimization is usually carried out on embedded hardware, [4].
The advantages of RTO approach are the flexibility provided in formulating
the objective and the process model, and the capability to directly handle
equality and in equality constraints of nonlinear dynamic process models.

In this thesis the RTO method is used in order to find the optimal steady
state values of the input controls uopt,SS , and the differential and algebraic
states xopt,SS and zopt,SS , respectively. Hence, by solving this problem the
optimal steady states can be passed to another controller, which finds suit-
able control trajectories. The RTO control problem can be formulated via
the following:

min
u

L(x,z,u) (4.1a)

subject to

f(x,z,u) = 0, (4.1b)

g(x,z,u) = 0, (4.1c)

xlow ≤ x ≤ xhigh, (4.1d)

zlow ≤ z ≤ zhigh, (4.1e)

ulow ≤ u ≤ uhigh. (4.1f)

In Equations 4.1, the differential variables are represented as xc and the
algebraic variables as zc, where c = {well 1, well 2, well 3, riser}. These are
chosen based on the DAE system developed in Equations 3.58 and 3.59. In
addition, the control inputs of the system consist of 3 gas injection valves
(u2) into the wells, and 4 production valves (u1) from the wells and the
riser, see page 22 for plant visualization. Further, the objective function
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is the Lagrange term in the continuous form as discussed in 2.3. In this
case the RTO represents the economic objective of maximizing production
wL,out, while minimizing gas injection wG,inj , see Equations 3.59e and 3.58d
for the flow rates.

In Equations 4.1, f and g describe the differential and algebraic equations
in each component of the system. See section 3.7 where the models were
represented as a system of differential algebraic equations. In the RTO f
is constrained to be equal to zero in order to produce the optimal steady
state solutions, at which the dynamics are equal to zero.

Each of the variables x, z and u are subject to boundary conditions, which
are indicated by the inequalities 4.1d, 4.1e and 4.1f. The lower and up-
per bounds are specified in Appendix C.4. The boundary conditions are
essential and one of the main advantage of using the RTO method. They
indicate under which conditions the system should operate to optimize a
process, e.g., if the production valve of well 1 is desired to be open at
all times, then the inequality 4.1f is specified as {1 ≤ u1(t) ≤ 1⇒ u1 = 1}.
Similarly, values can be relaxed by the boundaries, e.g., if {0 ≤ u1(t) ≤ 1},
then u1 is allowed to be at any valve opening position. Hence, the RTO
produces the steady state point at which the production is optimal.

In conclusion, The RTO’s optimal control problem described by Equation
4.1, is solved less often in order to find the optimal steady state solutions of
the decision variables xopt,SS , zopt,SS and uopt,SS while taking into account
the disturbances that occur on the system periodically.

4.2 MPC strategy

During the operation of the real process, state variables and system param-
eters, such as the GOR and WC, are most likely subject to disturbances.
In addition, the plant measurements could be subject to low or high noise.
Hence, an optimal closed loop or feedback control approach would be much
preferable, giving the optimal control for a sufficiently large range of time
points t0, initial values x0 and parameters p0. In other words the solution is
computed at time t0 and recomputed at every time step where the final time
tf progresses with t0, i.e. tf − t0 = T . Here, T is the prediction horizon.
This approach is called Model Predictive Control (MPC), [9], [4],[15],[5].

The MPC strategy can be formulated in the following steps:
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1. Observe the system’s present state x̄0.

2. Predict and optimize the future behaviour of the system for N steps
in the prediction horizon starting with x̄0.

3. Apply the first control action uopt to the process to minimize cost of
the objective function.

4. Move the optimization horizon T one step forward and repeat the
same procedure.

Step (4) in the MPC is referred to as receding horizon control (RHC), due
to the allocation of the prediction time horizon T . See Figure 4.2 to see the
strategy of the receding horizon.

Figure 4.1 illustrates the overall MPC controller strategy. As can be seen,
the controller takes in initial values for the differential states, which are used
to predict the future values of the output variables based on the model.
Later, the optimization problem is solved using the collocation method.
Finally, the manipulated variables for the first time step are implemented
on the model/plant to fulfill the objectives and constraints. Here, the model
represents the gas lifted oil network sketched in Figure 3.1.

The principle of model predictive control is presented in Figure 4.3. The
limitation of the horizon to a finite length N allows to solve the problem
numerically. If N is large enough, it will be a good approximation of infinite
horizon problem. In Figure 4.3, the optimization is essentially solved for
each time step N , where the time steps are determined by the the sampling
period h. The latter yields the following: N = T

h .

To understand the different outcomes resulted by different values of N ,
h and T , different sampling periods were tested. Finally, it was decided
that, in the case of the gas lifted oil network, the prediction horizon time
is T = 4000s with a sampling period h = 200s, which yields N = 20 steps.
This is made by taking into consideration:

1. The time it takes for the system to reach steady state.

2. How often plant measurements are obtained.

3. How often disturbances occur.

Thereafter, the optimization problem is solved at every sampling time, to
produce a complete control trajectory, as can be seen in Figure 4.3. How-
ever, only the first control action, uopt, is applied to the plant. In the end
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Figure 4.1: The overall strategy of the receding horizon. Displayed the initial dif-
ferential states, x0. The MPC controller box (orange) includes the all
the operations within the optimization, (1) specifying objective func-
tions and constraints, (2) setting up and formulating an optimizer,
(3) optimization and predicting the model, (4) finding control trajec-
tory, u for each time step. Later, only the the first control action is
implemented uopt on the plant. The measured values are compared
with the reference provided by the RTO, and the future errors are
returned.

of the simulation the complete set of the states responses along the control
action inputs are registered.

The primary advantage of model predictive control over a single step opti-
mization is that MPC couples feedback control with open loop optimization,
by requiring a new solution from the open loop optimization based on the
future measured errors, see the following algorithm.

Algorithm 2 State feedback MPC procedure

for t = 0,1,2,3,... do
Obtain current state value from measurement data;
Solve the dynamic OCP on the prediction horizon T from t to t+N ;
Apply the first control action ut on the plant;

end for
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Figure 4.2: Receding horizon strategy depicted for two steps. The process is
repeated N times.

4.3 Nonlinear MPC

The gas lifted well network studied in this thesis operates under stiff per-
formance specifications due to large amount of constraints imposed on the
system and demanding economical consideration to operate the system close
to boundary. Because of the process model nonlinearity, the controller of
this system becomes a Nonlinear Model Predictive Control, (NMPC). The
basic principle shown in Figure 4.3 still applies.

In section 3.7 the gas lifted oil network is modelled according to the following
differential algebraic equation (DAE) system:

ẋ = f(x,y,u,t)

0 = g(x,y,u,t)
(4.2)

The optimal steady state solutions of x, z, and u are supplied by the RTO
through Equation 4.1. These states are assumed to be measurable. Thus,
from the optimal steady state solutions and the measured states, it is pos-
sible to return future errors. The errors are returned to the NMPC through
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the closed loop system, and the NMPC attempts to produce a control tra-
jectory that minimizes the errors. Hence, a tracking NMPC. The NMPC
optimization problem is formulated as follows:

min
u

N−1∑
t=0

1

2
(χt+1 − xreft+1)TQx(χt+1 − xreft+1)

+
1

2
(ζt+1 − zreft+1)TQz(ζt+1 − zreft+1)

+
1

2
(νt − ureft )TRt(νt − ureft )

+
1

2
∆uTt R∆t∆ut

(4.3a)

subject to

χ0 − x0 = 0, (4.3b)

χ̇(t)− f(χ(t),ζ(t),ν(t)) = 0, t ∈ [t0,tf ], (4.3c)

g(χ(t),ζ(t),ν(t)) = 0, t ∈ [t0,tf ], (4.3d)

χlow ≤ χ(t) ≤ χhigh, (4.3e)

ζ low ≤ ζ(t) ≤ ζhigh, (4.3f)

νlow ≤ ν(t) ≤ νhigh, (4.3g)

−∆uhigh ≤ u(t) ≤ ∆uhigh, (4.3h)

where

Qx � 0, (4.3i)

Qz � 0, (4.3j)

Rt � 0, (4.3k)

R∆t � 0, (4.3l)

∆ut = ut − ut−1. (4.3m)

In Equation 4.3, χ, ζ, and ν represent the predicted differential state, alge-
braic, and control input trajectories at time instance t for t ∈ [0,...,N − 1]

In Equation 4.3 the objective function includes the minimization of the dif-
ference between system current states and their respective reference points.
That is because the system needs to follow a reference trajectory that leads
to optimal production, hence the terms (χt+1 − xreft+1), (ζt+1 − zreft+1) and

(νt − ureft ). The reason for using index t+ 1 for the states χ and ζ is that
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the states of interest are χ1,...,χN ; ζ1,...,ζN since the initial states x0 are
fixed. Similarly, a quadratic penalty on ∆ut is imposed on the optimization
problem. Here, u is a parameter in the optimization problem. In this case,
the previous input u−1 is required to calculate ∆u. The terms in the objec-
tive function of the optimization problem above have weighting terms that
are used for system tuning. These parameters communicate to the opti-
mization program which variables have higher significance and are essential
to reach steady state robustly. Qx, Qz, Rt and R∆t are always positive
semidefinite matrices. Furthermore, the objective function is subject to the
nonlinear differential and algebraic constraints shown in Equations 4.3c and
4.3d. The equality constraint is imposed by setting the initial predicted
state χ0 equal to the actual state x0, which is obtained from measurement
data.

Upper and lower bounds are placed on the differential and algebraic states
and the control parameters. These include pressure and gas injection flow
rate limits in the system’s submodels. The control input constrains run
from 0 to N − 1 since uN−1 defines the control input on the time horizon
t ∈ [N − 1,N ]. The change in the control input is restricted by 4.3h. This
is usually an issue in optimization since valves do have limitations on their
dynamic performance, e.g. the step and speed with which a control input
may change.

Notice that economic measures like revenue or cost are often linear in one
or several states, and can be added to the objective function in Equation
4.3 as terms for minimization dxtxt, dztzt and dutut, where dxt, dzt and dut
include sales prices and the costs of input factors [19]. In this thesis they
are not included in the objective function. Thus, the NMPC merely tracks
optimal points of production provided by the RTO.

Equation 4.3 does not include any feedback control. Hence, it represents an
open loop nonlinear DAE optimization problem. The loop can be closed by
applying the the following algorithm:

Algorithm 3 NMPC procedure with state feedback

for t = 0,1,2,3,..., N − 1 do
Obtain current state of the model xt.
Solve the dynamic nonlinear OCP 4.3 on the prediction horizon T
from t to t+N .
Apply the first control action ut on the plant.

end for
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Figure 4.3: The principle of MPC. The top axis displays the open loop optimiza-
tion problem, calculated for one sampling period of the model. After
which only the first control action is applied to the model, and the
states and inputs are registered on the bottom axis.

The algorithm above creates a NMPC system using the optimization prob-
lem developed earlier. The key addition is obtaining the current state of the
system from the model plant and feeding it back to the optimization prob-
lem. Thereafter, determine whether the system is approaching the optimal
steady state solutions obtained in Eq.4.1. An illustration of the algorithm
is displayed in Figure 4.3. The red arrow shows that once the current states
are obtained and the optimization problem is solved over T , the first optimal
control action can be applied.

4.4 Discretization and transcription of OCPs

In section 2.4 the basics and background of direct collocation were presented.
The discretization method applied to the gas lifted oil network model, is the
direct orthogonal collocation. This section shows the discretization method
of a DAE system and the transcription of the OCP [13].
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The OCP in both the control and states are discretized on the collocation
interval t ∈ [tk,tk+1] ⊆ [t0,tf ], where k ∈ [0,...,N − 1], using a Kth-order
polynomial p(t,vk). The polynomial p depends on the coefficients xk. The
approximated polynomial is found by building Lagrange polynomials for the
set of collocation times tk,0,...,tk,d which are constructed as follows:

P =
K∏

j=0,j 6=i

t− tk,j
tk,i − tk,j

(4.4)

By combining the coefficients v and the Lagrange polynomials l(t) the fol-
lowing is obtained:

xk(t,xk) =

K∑
i=0

xk,iPk,i(t) (4.5)

Further the property of the Lagrange polynomial is as follows:

Pk,i(tk,j) =

{
1 if i = j
0 if i 6= j

(4.6)

The latter property entails that for i = 0,...,K the polynomial p will take a
unitary value at the collocation time tk,i and a zero at all other times tk,j 6=i.

Equation 4.5 is used for the simple ODE ẋ(t) = f(x(t),t). However, the
gas lifted well system is a DAE system. Thus, in order to account for the
algebraic variables an addition polynomial to Equation 4.5 is added.

xk(t,xk) =

K∑
i=0

xk,iPk,i(t) (4.7a)

zk(t,zk) =
K∑
i=1

zk,iPk,i(t) (4.7b)

Using the polynomials in Equation 4.7, the integration over the time inter-
val [tk,tk+1] can be performed by selecting collocation variables xk,i and zk,i
this is done by solving algebraic equations that ensure that the polynomial
in 4.7a is a precise rendering of the states trajectories. By enforcing several
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conditions, and assuming that the initial state value is available, the inte-
gration of the system over a time interval [tk,tk+1] can be found via solving
collocation equations.

Continuity: The initial condition must be enforced, that is, xk(tk,xk) =
xk. Here it is assumed that the initial state xk at the beginning of the
interval time = tk = tk,0 is measured. Consequently, xk(tk,xk) = xk = xk,0.
Satisfying the initial condition requires simply 0 = xk,0−xk to hold. Notice
that 4.7a has (K + 1) degrees of freedom (DOF), while 4.7b requires only
K DOF. The reason for the additional DOF in the differential polynomial
4.7a is to ensure the continuity of the states by forcing all shooting gaps to
close. This latter condition is unnecessary for the algebraic states which can
have discontinuous trajectory. Moreover, the continuity boundary condition
is also applied on the end of the interval, i.e. the beginning of the next
interval, 0 = xk,K − xk+1,0.

Dynamics: The dynamics on the remaining collocation times tk,1,...,tk,K
must satisfy the dynamics of the polynomial xk(t,xk). Hence, the following
equation is imposed:

δ

δt
xk(tk,i,xk) = F(xk(tk,i,xk)︸ ︷︷ ︸

=xk,i

,zk,i,uk) (4.8)

In the latter equation, δ
δtxk(tk,i,xk) denotes the time derivative of the La-

grange polynomials, and F denotes the model differential states as described
in section 3.7.

Algebraic: The dynamics of the algebraic states on all collocation times
tk,1,...,tk,K must not be subject to change. Thus they are equal to zero:

0 = G(xk(tk,i,xk)︸ ︷︷ ︸
=xk,i

,zk,i,uk) (4.9)

Where G denotes the model’s algebraic states derivatives δ
δt , as described

in section 3.7.

Control inputs: The control inputs are assumed to be piecewise constant in
the interval [tk,tk+1], which is given by:

u(t) = uk (4.10)
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Figure 4.4: Third order direct collocation in the interval [tk,tk+1]. From the top,
the differential states with (K + 1) DOF, the algebraic states with
(K) DOF, and the control input.

In the gas lifted oil network, it is sufficient to use the third order poly-
nomials K = 3. Moreover, by solving the collocation equations above, the
differential and algebraic states can be well approximated. Figure 4.4 shows
a simple and clear depiction of how the method works and how it is solved,
with the blue curves indicating the solution from the collocation equations.
Notice that, at the end of the interval, the continuity boundary condition
also applies 0 = xk,K − xk+1,0.

4.5 Nonlinear programming problem

After the discretization process, the OCP can be transcribed into a finite
dimensional nonlinear programming problem (NLP). The NLP is using a
software library for large scale nonlinear optimization of continuous sys-
tems. By using the third order polynomials in the discretization, the NLP
problem can be formulated as in Equation 4.11, in which all the equations
are discretized and optimized simultaneously in the collocation loop, using
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the collocation points for the states and controls.

min
uk

N−1∑
k=0

1

2
(χk+1 − xrefk+1)TQx(χk+1 − xrefk+1)

+
1

2
(ζk+1 − zrefk+1)TQz(ζk+1 − zrefk+1)

+
1

2
(νk − urefk )TR(νk − urefk )

+
1

2
∆uTkR∆∆uk

(4.11a)

subject to

χk+1 = f(χk,ζk, νk) + wk (4.11b)

0 = χk,0 − xk (4.11c)

0 = χ̇k(tk,i,χk)− F(χk(tk,i,χk),ζk,i,νk), (4.11d)

0 = G(χk(tk,i,χk),ζk,i,νk), (4.11e)

0 = χk,K − χk+1,0 (4.11f)

χlow ≤ χk,i ≤ χhigh, (4.11g)

ζ low ≤ ζk,i ≤ ζhigh, (4.11h)

νlow ≤ νk ≤ νhigh, (4.11i)

−∆uhigh ≤ ∆uk ≤ ∆uhigh, (4.11j)

where

Qx � 0, (4.11k)

Qz � 0, (4.11l)

R � 0, (4.11m)

R∆ � 0, (4.11n)

∆uk = uk − uk−1, (4.11o)

and

χ̇k(tk,i,χk) =
1

tk+1 − tk

K∑
i=0

χk,iβk,i. (4.11p)

Here, χk+1,i ∈ Rnχ , ζk+1,i ∈ Rnζ , and νk ∈ Rnν represent the predicted
differential state, algebraic, and control input at time instance k for k ∈
[0,...,N − 1] and collocation point i for i ∈ [1,...,K]. Notice that the sum of
the objective function in 4.11a is taken from i = 1,...,K. That is justified
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by the presence of algebraic variables, and the initial condition where i = 0
in the constraints. Furthermore, the constraints of the NLP are based on
the conditions of the collocation method, namely, the continuity, dynam-
ics and algebraic conditions. Finally, the time derivative of the Lagrange
polynomial is defined as in 4.11p, where βk,i are the weights produced af-
ter differentiation (see [18] and [1] for detailed differentiation), and can be
plugged in for the state dynamics constraints.

The NLP developed here uses the collocation points tk,i developed for poly-
nomials of the third degree by Gauss-Radau. That is because the Radau
Collocation chooses a set of collocation points that includes the end point
of the interval. This is an advantageous property for stiff systems [15].

The NMPC formalized in Equation 4.11 can be solved in a receding hori-
zon fashion, where at each time k, the measurement xk is assigned as the
initial state for the optimization problem. Then, the optimization problem
is solved to compute the optimal states and input trajectory over the pre-
diction horizon. Later only the first step of the optimal control sequence is
implemented on the plant, uk = ν1. Finally, at the time k + 1, new mea-
surements of the state xk+1 are obtained and the optimization procedure is
repeated, hence enabling feedback control [19].

4.6 The NMPC system and software package

The entire optimization and control system built in this thesis is described in
Figure 4.5. The figure shows the complete application of the mathematical
modeling of the network (Plant Model), developed in section 3. Moreover,
the real time optimization (RTO) program, Equation 4.1, is developed in
section 4.1. Finally, the nonlinear model predictive control (NMPC) pro-
gram, Equation 4.11, is formulated in section 4.3.

1. The RTO provides the system with the optimal steady state values of
x, z and u.

2. The NMPC takes in the measured states as the initial points and
attempts to minimize the objective function in Equation 4.11. There-
after, it applies the first step of the optimal control sequence ν1 = uopt
on the plant.

3. The plant runs and returns measured values for the states to the
NMPC.
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Usually, the NMPC is used to provide set-points to a lower regulatory layer
such as PI controllers (see Figure 2.10) from which the controllers manipu-
late the valves to keep the plant at optimal steady state operations. How-
ever, in this thesis the regulatory layer is not considered. Rather, the NMPC
is used directly to manipulate the valves in the gas lifted oil network.

This thesis uses the optimization software package CasADi (Computer al-
gebra system for Automatic Differentiation) to solve the OCP problems
developed, namely, the RTO in 4.1 and NMPC in 4.3 [2]. The software
uses simultaneous approach to solve the OCPs as described in Figure 2.6.
CasADi is a symbolic framework for algorithmic (a.k.a. automatic) differen-
tiation and numeric optimization, and allows users to construct scalar (SX)
or sparse (MX) symbolic expressions. These expressions efficiently use the
method of algorithmic differentiation in forward or reverse modes and graph
coloring techniques for generating complete, large and sparse Jacobians and
Hessians. CasADi makes it very simple to calculate the relevant derivatives
in the DAE system, which drastically reduces the efforts for users to find
derivatives (see [2] for a full manual guide and description of CasADi).
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Figure 4.5: A schematic representation of the optimal control strategy and design
of the gas lifted oil production network. Here, χ ∈ Rnχ , ζ ∈ Rnζ ,
and ν ∈ Rnν represent the predicted differential state, algebraic, and
control input respectively. In addition, the first control action uopt =
ν1,t is displayed.



Chapter 5
Numerical Case Examples

This chapter investigates the following:

1. The open loop step response of the system.

2. The relationship curve between oil production and gas injection.

3. NMPC with low and high magnitude noise.

4. RTO and NMPC robustness with regard to parameter changes.

In this thesis, the plant simulations are done in Matlab, where the system of
the DAEs is integrated using the function ode15s. For the open loop step
response simulations the ode15s is initialized using the steady state solu-
tions from the fsolve function. Further, the steady state OP in Equation
5.1 is solved using CasADi and the IPOPT plugin. Finally, the dynamic
OP is transformed into a discrete NLP problem, Equation 4.11, where the
model in the predictive state is integrated using the orthogonal collocation
method with 3rd degree radau collocation points and the NLP is solved
using the IPOPT Plugin.

Initially the RTO runs to find the optimal steady state solutions that are
supplied as tracking points to the NMPC. The NMPC runs to find optimal
control trajectory for the gas injection, of which only the first control action
is applied to the plant. Further, the plant (ode15s) runs to compute the
states, these are sent to the NMPC as the starting points of the following
iteration. In CasADi the IPOPT displayed at all times "Optimal solution

found".

57
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5.1 Open loop system simulation

This section investigates the modified mathematical model introduced in
Chapter 3. Initially, an open-loop response simulation is performed when
the wells have different reservoir pressures to check model stability. Later, a
step response simulation is done when wells have varying GORs and WCs
to investigate their effects. Towards the end, the relationship curve between
total oil production and gas injection is displayed.

Open loop step response

The objective here is to check the stability of the modified model. The
production chokes, u1,c for c ∈ [well1, well2, well3, riser], of the gas lifted
well network are kept fully open, given that there is no constraint on the
total production of oil. Hence, the steps are applied only on the control
inputs of the gas injection valves, u2,n in Equation 3.13, in which the sub-
script n ∈ [1,2,3] denotes the well number. The steady state solutions for
the states in Equations 3.58 are found using the function Fsolve when all
injection valves are half way opened, u2,n = [50%]. The parameters used in
the simulation are shown in Table 5.1. This choice is made to investigate
the step response with varying reservoir pressures.

Table 5.1: Parameters used in open loop step response on gas injection valves for
wells with varying reservoir pressure

Symb. Description Well 1 Well 2 Well 3 units

Pres reservoir pressure 140 150 160 bar
Kpr production choke constant 2.80 2.80 2.80 -
GOR mass gas oil ratio 0.15 0.15 0.15 -
PI productivity index 3.00 3.00 3.00 kg/s/Pa
WC water cut 0.15 0.15 0.15 -

Figure 5.1 shows the open loop step response when the gas injection valves
positions are adjusted to u2,n = [70%]. As can be seen, the system sta-
bly adjusts to new operations and reaches steady state after 2000s. This
indicates that the modified model is stable. In addition, with increasing
reservoir pressure the total production of liquid increases from the corre-
sponding well. The larger the pressure differences in the wells, the larger is
the driving force of the flow. Hence, more mass will escape to areas subject
to low pressure.
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Figure 5.1: On the top left, the gas injection step increase is displayed. On the
top right, the liquid outflows are displayed. On the bottom, total
liquid production from the riser with WC = 15% is displayed, as well
as the reference line (red) before the step response.
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Figure 5.2: Gas injection step increase u2,n = 70%. On the top, the manifold
pressure increase with reference line (red). On the bottom, the bot-
tom hole pressures in the wells.
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For higher gas injection rates, the overall oil production decreases and
reaches a new steady state point below the previous, as indicated by the
red dashed line in Figure 5.1. The system’s production rates are affected by
several factors in the gas lifted well network. The observation in Figure 5.1
can be justified by the trade off that is done between the pressures loss due
to friction, Equation 3.19, and the hydrostatic pressure in Equation 3.17. To
illustrate, the gas is injected into the wells in order to decrease the density
of the fluids in the tubing, thus decreasing the bottom hole pressure. When
the bottom hole pressure is decreased more oil escapes from the reservoirs
as the pressure difference increases. However, this is beneficial only to some
extent, given that the hydrostatic pressure drop cannot compensate the in-
creased friction loss which is originating from increased gas flow inside the
tubing.

Figure 5.2 shows the manifold and bottom hole pressures behavior when the
gas injection is increased. Although this leads to decrease in the bottom
hole pressure however this also leads to decline in the pressure difference
between top and bottom of the tubing. As indicated, the pressure at the
manifold increases when gas injection is increased. Thus, less oil is driven
out of the tubing and through the riser. Hence, the high coupling of the gas
lifted well network.

Effects of reservoir parameters on the system

This section briefly shows the GOR and WC effects on the total liquid and
oil production of the system. These quantities are based on the nature of the
reservoir and cannot be controlled or manipulated. Therefore, during the
life time of the reservoir these parameters are considered as disturbances.
The effects are studied by carrying an open loop step response on the gas
injection for wells with varying GORs and WCs. See Table 5.1.

(i) Water cut: The water cut was introduced to the model in Chapter
3.4. Figure 5.3 shows a step response done on the gas injection valves
into the wells with varying WCs. In addition Figure 5.3 shows the oil
production rates from the corresponding well. As can be seen, wells with
lower WCs produce more oil, which is expected, since WC is a fraction
quantity. On the other hand, the total production of liquid flow is slightly
decreased from the nominal value (red dashed line). This is justified by the
density and viscosity changes that have direct effects on the pressures in the
tubing. The larger the WC in the well, the higher the density of the mixture
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Figure 5.3: Step response simulation when u2,n is increased to 70% for wells with
varying water cuts, WC = 0.15, 0.10, 0.05, for wells 1, 2 and 3
respectively. Displayed on the top left, the gas injection into wells.
On the right, oil outflows from the wells. On the bottom, liquid and
oil outflows from the riser.

becomes, which leads to higher bottom hole pressures and less reservoir
outflow. However, Figure 5.3 indicates that the WC has insignificant effect
on the total production of liquid mixture, because there is no significant
increase in the density.

(ii) Gas to oil ratio: The GOR is an important parameter in dimensionless
metric units, which affects the productivity and efficiency of the oil pro-
duction from reservoirs. Figure 5.4 depicts liquid outflows from wells with
different GOR values. On the top left of Figure 5.4, although the same gas
injection step is applied to all wells, the gas entering the tubing through the
gas injection point varies due to fluid densities. The higher the GOR is, the
lower the density at the bottom of the tubing. On the top right, liquid pro-
duction is lowest for the well with the lowest GOR, well 3. Further, for well
1 the liquid production is the highest, with slightly higher production than
well 2. This shows that increasing GOR values is beneficial only to some
extent. The gas lift injects gas to minimize the density of the liquid at the
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Figure 5.4: Step response simulation when u2,n is increased to 70% for wells with
varying gas to oil ratios, GOR = 0.2, 0.15, 0.1, for wells 1, 2 and 3
respectively. Displayed on the top left, the gas injection into wells.
On the right, liquid outflows from the wells. On the bottom, liquid
outflow from the riser.

bottom of the tubing. The same phenomenon also applies to increasing gas
ratios. However, the overall production from the riser is less than the nom-
inal production point. This is caused by the trade off between hydrostatic
pressure loss and pressure loss due to friction. Notice, the gas lift network
in this system is highly coupled and nonlinear. This can be seen for very
low values of GOR, in which the ode15s will display abnormal simulations
and errors.

Effect of gas injection on production rates

This section attempts to justify the need for optimization in the gas lifted oil
network depicted in Figure 3.1. As shown earlier, different parameters and
operating conditions affect the gas lift system diversely. Thus to investigate
the possible benefits of optimal control, a simulation study was performed
using the parameter setup in Table 5.1.
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Figure 5.5: Total oil production rate woil,out from the riser subject to gas in-
jections in the three wells, where u2,n is the gas injection opening
position. The red cross shows the point at which maximum oil pro-
duction is achieved.

The relationship between gas injection and oil production is displayed in Fig-
ure 5.5. Figure 5.5 shows that the production rate of oil increases rapidly
to a certain point before it starts dropping again. This implies that the
injection rate of gas can be both advantageous and disadvantageous at dif-
ferent rates or valve opening positions. This curve is justified by the the
hydrostatic pressure drop that cannot compensate the increased friction loss
which is due to the increment of gas mass in the tubing parts of the wells.

Furthermore, Figure 5.6 shows the pressure difference between the bottom
hole pressure and the reservoir pressure, ∆P = Pres − Pbh. As indicated,
the pressure difference curve has a similar behavior as in the oil production
curve in Figure 5.5. This indicates that the main driver of oil production
is the bottom hole pressure Pbh. That is because the lower the bottom
hole pressure, the more oil will escape to the gas lift in pursuit of relieving
conditions. The red cross in Figure 5.6 depicts the point at which the
bottom hole pressure is lowest and the pressure difference is highest. This
relationship is also justified by the modeling Equation 3.27, where a decrease
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Figure 5.6: Reservoir pressure, Pres, and bottom hole pressure, Pbh, difference
subject to gas injection valve opening position, u2,n. The red cross
shows the point at which ∆P is maximized.

in the bottom hole pressure is beneficial since the term under the square
root increases with decreasing Pbh thus the reservoir production rate wres
increases.

5.2 Steady state optimization

The RTO is used to find the optimal steady state values of xopt,SS , zopt,SS ,
and uopt,SS , for differential states, algebraic, and gas injection control in-
puts, respectively. At all times the production chokes are left fully open
assuming that there are no constraints on the total production. Hence,
more liquid leads to more oil. This is done to achieve optimal production
conditions while operating within bounds and constraints. The optimal
steady state values are calculated less often to account for the occurrence
of disturbances in the plant model, eg. WC and GOR increase in the wells.
These optimal values are found by solving the optimization problem given in
Equation 5.1. The objective function in the optimal control problem below
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can be set based on the user’s desires. In Equation 5.1, different economic
objectives can be defined. In this thesis, the maximization of liquid mass
rate outflow from the riser and minimization of gas injection into wells are
considered as the objectives of the RTO. By making the choice of maximiz-
ing liquid, this directly leads to maximization of oil at all times regardless
of the variation of the uncontrolled water cut parameter, given that there
are no constraints on the production and that the production chokes are
left fully open. In addition, the choice for the minimization of gas injection
is merely to minimize costs of injection, assuming insufficient gas resources.
However, under different circumstances the objective of the RTO can be
modified to fit suitable conditions.

After setting the problem in the CasADi software, the IPOPT finds the
optimal steady state solutions. These solutions are moved forward to the
NMPC, see Figure 3.1 for set up and Appendix B for decision variables.
The same procedure is done several times within the limits of the prediction
horizon to investigate how the controller functions when disturbances occur.

min
u
− wL,out,r +

3∑
well=1

wG,in,well (5.1a)

subject to

f(x,z,u) = 0, (5.1b)

g(x,z,u) = 0, (5.1c)

xlow ≤ x ≤ xhigh, (5.1d)

zlow ≤ z ≤ zhigh, (5.1e)

ulow ≤ u ≤ uhigh. (5.1f)

When plugging uopt,SS , xopt,SS , and zopt,SS in the plant, the ode15s displays
that the system is at steady state. Hence, the RTO solutions are valid. This
simulation uses the parameters in 5.2 and the bounds in Appendix C.4.
Notice that for varying combinations of parameters values it is difficult to
find the optimal control solutions manually as in Figures 5.5 and 5.6. The
latter is due to high nonlinearity and high coupling of the gas lifted oil
network which leads to errors displayed by the ode15s. Thus, employing
the RTO method is very beneficial, but, a control trajectory is required to
control the system.
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Table 5.2: Parameter values used in NMPC simulations

Symb. Description Well 1 Well 2 Well 3 units

Pres reservoir pressure 140 150 160 bar
Kpr production choke constant 2.80 3.00 3.20 -
GOR mass gas oil ratio 0.15 0.10 0.15 -
PI productivity index 3.00 2.50 2.00 kg/s/Pa
WC water cut 0.15 0.10 0.05 -

5.3 NMPC case studies

The objective of the NMPC is to track the optimal steady state solutions
given by the RTO. The discrete NLP in Equation 4.11 is solved using the
IPOPT. In Equation 4.11 the outputs have to converge to the given refer-
ence points as much as possible while fulfilling the constraints. The values
considered for tracking are as shown in the objectives of Equation 4.11a.
Namely, the differential states, masses of gas and liquid, and algebraic vari-
ables, rates of liquid and oil and gas injection, in the gas lifted oil network.
This section discusses different cases such as noisy measurements and set-
point tracking of the NMPC.

Case 1: NMPC with measurement noise

In real processes the measurements are not always accurate, thus the con-
troller has to handle noisy measurements. It is important that the controller
is not sensitive to the noise, in order to avoid exposing the valves to continu-
ous wear and tear. In this case study, a random low and high noise is added
to the differential states given in Equations 3.58 and 3.59. The noise is gen-
erated using the randn function in MATLAB. The function selects a random
scalar from a standard normal distribution which is then multiplied by the
magnitude, eg. noise(x1) = rand(1)∗mag, where mag = 10−2, 10−3, 10−4.
The OCP is given in Equation 4.11 where xref , zref , uref are the steady state
optimal solutions supplied from by RTO. The RTO objectives are given in
Equation 5.1 for maximization of liquid outflow and minimization of gas in-
jections shown in 5.1a. Further, in Equation 4.11, when the measurement is
corrupted by noise, the closed loop dynamics become χk+1 = f(χk, ζk)+wk,
here wk ∈ Rnx .

Figure 5.7 shows the simulations done for low and high magnitude mea-
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Figure 5.7: On the left, the indirectly manipulated variables for low magnitude
noise (black), high magnitude noise (blue) and optimal set point from
RTO (red). On the right, the oil outflows for low magnitude noise
(black) and high magnitude noise (blue).

surements noise of the differential states. The simulation is done using the
parameters given in Table 5.2. The low magnitude noise added to the states
is of the order 10−4 on the gas mass in the annulus, and 10−3 on the gas
and liquid masses in the tubing parts of the network. On the other hand,
The high magnitude noise added to the states is of the order 10−3 on the
gas mass in the annulus, and of 10−2 on the gas and liquid masses in the
tubing of the network.

Figure 5.7 depicts the system’s gas injection on the left, and well oil pro-
duction on the right. The simulations indicate that the controller is more
sensitive to highly noisy measurements, thereby causing the system’s valves
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to be noisy, which in turn leads to increased oscillations and less stability
around the optimal point. For less noisy measurements (black lines), the
NMPC reaches the optimal steady state after 4000s. Hence, the objective
function 4.11a is satisfied. The reason why the noise measurements have
wavy curves and spikes is the sampling time. In this thesis, the sampling
time in the NMPC is 200s with a prediction horizon of 4000s. The choice is
made based on engineering intuitions and trials so that all optimal solutions
are satisfied. Further, the ode15s receives the first control action and runs
the plant for 200s before returning a new measurement to the NMPC.
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Figure 5.8: From the top: Manifold pressure with its reference point and bottom
hole pressures for low magnitude noise (black) and high magnitude
noise (blue).

Similar results are obtained In Figure 5.8, where the manifold pressure
and the bottom hole pressures are depicted. As can be seen, the manifold
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pressure does not show significant noise oscillations. Rather, it reaches its
optimal steady state value after 2000s. On the contrary, the bottom hole
pressures experience higher instabilities when subject to high measurement
noise. Hence, for highly noisy measurements the oil production becomes
noisy and less stable. This is shown in Figure 5.9, where the liquid, oil,
water, and gas outflows from the riser are depicted for both low and high
magnitudes of noise. As can be seen the liquid mass outflow out of the riser
oscillates around the optimal steady states point (red reference line), while
for low magnitudes the optimal point is fulfilled steadily.
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Figure 5.9: From the top: liquid, oil, water and gas outflows from the riser for
low magnitude noise (black) and high magnitude noise (blue). The
red reference line is for the optimal liquid mass rate.

Demonstrating high sensitivity to noise is a normal effect of the NMPC.
However, due to systems nonlinearity and coupling it is extra important
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to address noise issues. One possible solution is to enhance the NMPC
tuning. The system can be tuned by taking into consideration the weighting
parameters in the objective function in Equation 4.11. For example, the Rt
and R∆t can be adjusted to counter high noise effects.

Case 2: NMPC robustness with regard to parameter changes

Typically, during the life time of the reservoir the gas to oil ratio (GOR) and
water cut (WC) are subject to change. These changes can have significant
effects on the reservoir oil production. As discussed in chapter 3, the oil
production from the gas lifted oil network is subject to disturbances by
these uncontrollable natural parameters. This section investigates the RTO
responses and NMPC controller tracking ability when disturbances occur on
the GOR and WC in each of the reservoirs. The latter is done by running
the RTO, Equation 5.1, several times to account for these disturbances. The
RTO will produce new optimal steady state solutions, which are fed to the
NMPC as reference points. Further, The NMPC problem 4.11 is solved to
produce a suitable control trajectory to be applied on the plant. The plant
runs and returns the initial values of states for the next iteration in the
NMPC. The same procedure is repeated until the end of the simulation.

In this case, the differential, algebraic and control inputs are considered for
tracking to maximize oil production while minimizing gas injection, accord-
ing to Equation 4.11. The parameters used in this case are displayed in
Table 5.3.

Table 5.3: Parameters values used in NMPC disturbance simulations

Symb. Description Well 1 Well 2 Well 3 units

Pres reservoir pressure 140 150 160 bar
Kpr production choke constant 2.80 3.00 3.20 -
GOR mass gas oil ratio 0.15 0.10 0.05 -
PI productivity index 3.00 2.50 2.00 kg/s/Pa
WC water cut 0.15 0.10 0.05 -

Effects of GOR

Figure 5.10 shows the gas injection inflow rates into the wells with their
corresponding set points. These set points are provided by the RTO and
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displayed as the red reference line. In addition, the oil outflow rates from
each well are displayed on the right. The simulation is displayed when the
reservoirs GOR values are subject to increase by 10% at time 2000s, 20%
at time 4000s and 30% at time 6000s, from their initial values in Table 5.3.
As can be seen in the simulation results, at low GOR values wells 1 and 2
require high gas injection rates. This is due to the large hydrostatic pressure
in the tubing. Hence, by injecting more gas into the wells the densities are
reduced which leads to the reduction of the bottom hole pressure.
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Figure 5.10: Set point tracking of gas injection in the wells when the gas lifted
oil network is subject to GOR disturbances. On the left, algebraic
variables wG,in. On the right, oil outflows wOil,out.

Figure 5.10 shows how the NMPC controller attempts to track optimal
steady state values of the gas injection, wG,in, generated by the RTO. As can
be seen the NMPC ability to track the setpoints while satisfying boundary



72 CHAPTER 5. NUMERICAL CASE EXAMPLES

conditions and constraints of 4.11 is successful. On the left of Figure 5.10,
every 2000s a pump occurs due the disturbance appearance. In Figure 5.10
the gas injection rate into well 1 slowly reaches the steady state point after
700s. However, because well 2 is still not at steady state the controller in
well 1 is forced to find another trajectory until all wells reach their reference
points.

Further, for varying GORs the oil outflow from the wells slightly increases
in well 1 while it decreases in well 2 and 3. The latter is justified by the
bottom hole pressures in Figure 5.11.
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Figure 5.11: Set point tracking of the manifold pressure for new optimal steady
state solution when subject to GOR disturbances every 2000s. On
the bottom, bottom hole pressures Pbh for the wells.

In Figure 5.11 the manifold pressure is displayed, as well as its optimal
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steady state setpoint. In addition, the bottom hole pressures in each well
are depicted. As indicated, the bottom hole pressure in well 1 decreases
every 2000s with increasing GOR. From the conclusions drawn earlier, the
lower the bottom hole pressure is, the larger the oil production becomes.
The latter justifies why the oil outflow from well 1 increases while the oil
outflow from wells 2 and 3 decreases. Moreover, the manifold pressure Pm
increases with increasing GOR values. Figure 5.11 shows that the manifold
pressure steadily reaches the optimal steady state reference points every
time changes are applied to the GOR. This shows that the NMPC controller
is successful in tracking.
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Figure 5.12: Set point tracking of liquid outflow rate for new optimal steady
state solution, when subject to GOR disturbances. Additionally,
oil, water and gas outflow rates from the top production choke in
the riser are depicted.
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Finally, the total liquid, oil, water and gas outflows rates through the riser
choke are depicted in Figure 5.12. As observed, every 2000s the liquid out-
flow in the riser is adjusted and the NMPC controller steadily reaches the
optimal solution. In general, it can be seen that, to some extent, increasing
GOR values is beneficial. However, at time 4000s and 6000s it shows oth-
erwise, as both the total liquid production and the oil production decrease.

Figure 5.13: On the left set point tracking of the gas injection when subject to
WC increase every 2000s. On the right, the oil outflows from each
well in the gas lifted well network are depicted.

Effects of WC

The following simulations are made by assuming that the WC increases
during the lifetime of the reservoir. In Figure 5.13 the gas injection rates
are displayed with their corresponding set points. The red reference lines
are the steady state solutions found by the RTO. The RTO runs every
2000s to provide the NMPC controller with suitable set points for tracking.
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These set points are the optimal steady state solutions generated each time
a disturbance occur on the gas lifted oil network. The disturbances are
applied so that WC values are subject to increase by 10% at time 2000s,
20% at time 4000s, and 30% at time 6000s, from their initial values in
Table 5.3. The RTO finds new optimal points which are then tracked by
the NMPC. In Figure 5.13 after the occurrence of a disturbance, the RTO
runs to find the optimal steady state solutions, and the NMPC successfully
tracks these solutions as set points.
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Figure 5.14: On the top, set point tracking of the manifold pressure when subject
to WC increase. On the bottom, the bottom hole pressures for each
well in the gas lifted oil network are displayed.

Figure 5.14 depicts the manifold pressure with its corresponding setpoint,
as well as the bottom hole pressures in the gas lifts. As indicated, increasing
water cuts do not affect the system significantly. However the RTO does
find new steady state solutions which are insignificantly different. The idea
is that increasing WC will subsequently increase the density of the fluid
and the pressure at the bottom hole. Therefore for increasing WCs more
gas is required for injection to increase oil production.
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Figure 5.15 depicts the liquid, oil, water and gas outflow rates from the riser.
Given that there are no constraints on the total production and that the
quality of the product is not investigated, maximized production is desired
at all times. The total liquid outflow is not affected by changing water cuts
as expected, since all production chokes are left fully open and only gas
injection chokes are manipulated. Hence, more liquid implies more oil.
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Figure 5.15: Set point tracking of liquid outflow from riser, subject to WC in-
crease. Additionally, oil, water and gas outflow rates from the top
production choke are depicted.

The RTO objectives are usually determined over a long term of case stud-
ies, eg. gas injection costs, and waste water treatment at other top facilities
costs. In this thesis, the maximization of oil and minimization of gas injec-
tion are investigated. Given that there are no constraints on production,
quality and that all production chokes are fully open, it is reasonable to
assume that maximization of liquid leads to maximization of oil. However,
if there are constraints on the quality of product, one might need to adjust
the production chokes of the gas lifts so that it gives the best combination
of products from each well to reduce overall water production.



Chapter 6
Conclusion

In this work, the optimization of production subject to gas injection in a gas
lifted oil network consisting of three wells and a riser is taken into consider-
ation. In this thesis, the Hagen-Poiseuille equation is proposed to represent
the pressure loss due to friction in the tubing of the gas lifted oil network.
In addition, the water cut is introduced to the gas lifted network model to
account for a three phase system. The mathematical model is formulated
as a DAE system and implemented and integrated in MATLAB using the
ode15s. Further, a two layer control strategy is proposed in order to control
the system optimally and steadily. The first layer applies RTO to produce
optimal steady state solutions for maximization of liquid outflow and min-
imization of gas injection. The second layer employs NMPC strategy to
control the flow rates and the manifold pressure. The NMPC optimization
problem is formulated for a DAE system. The model inside the NMPC is
solved using the direct collocation approach using CasADi within the MAT-
LAB programming environment. Further, the simulations are conducted on
the model in order to analyze the behaviour of the system under differ-
ent circumstances. In addition, several numerical cases are carried out to
analyze the behaviour of the RTO and NMPC control system.

Initially, the gas lifted oil network behaviour is analyzed when the system
is subject to an open loop step response and parameter changes. It is
observed that the gas injection into the system can be both advantageous
and disadvantageous. This could lead to lower oil production and inefficient
operations when dealing with multiple gas lifts in a network. In addition, it
is observed that different parameter combinations such as GOR, WC, and

77
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reservoir pressures could lead to instabilities, and less oil production. Hence,
it is important to have a good control structure that takes into account the
system’s behavior under different conditions and constraints. Therefore,
the RTO is suggested to produce the optimal steady states solutions. The
RTO is tested by running the optimization problem and then plugging the
results into the plant. Further, the NMPC layer is employed to produce an
optimal control trajectory to track reference points. The NMPC behavior
is studied to analyze the performance of the controller to sensitivity in
measurement noise. It is observed that the controller is sensitive to highly
noisy measurements. Thus, large measurement noise could lead to wear and
tear of the injection valves. However, for low magnitudes of noise, the system
performs steadily and the control structure fulfills its objectives. Finally,
the control system is studied when disturbances in water cuts and gas to oil
ratios are applied. In all cases, the states converged to their optimal steady
state setpoints provided by the RTO, while satisfying constraints.

The simulations show that the modified model is a good representation of
the gas lifted oil network. In addition, the results show that the control
system built is able to effectively counter low measurement noise and pro-
duce new optimal steady state points for tracking. The results discussed in
the thesis show that the simplified model and the two layer control system
consisting of RTO and NMPC respectively are good modeling and control
approaches for production optimization.

Future work

In this thesis, the RTO and NMPC are designed by considering flow rates,
manifold pressures and the control valves of the injection of gas as the
decision variables of the RTO and NMPC. However, other variables can
be considered if the production quality is to be optimized, for example the
bottom hole pressure or the oil cut in the riser. This must done when
the production chokes of the wells are relaxed. In addition, it is not yet
discussed to what degree these measurements are really available in the real
facilities. Therefore, based on the actual availability of the measurements,
an estimator should be introduced to the gas lifted network control structure
when testing different scenarios. The choice of the estimator could be the
extended kalman filter (EKF), which is one of the widely applied estimators
for nonlinear systems. Finally, a better tuning scheme can be introduced to
the NMPC built in this thesis.
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Appendix A
Simulation Parameters

A.1 Subscripts

Table A.1: Subscripts

Subscripts

Symbol Description

a Annulus
t Tubing in both riser and wells
r Riser
top Top
btm Bottom
bh Bottom hole
L Liquid
G Gas
SS Steady State
opt Optimal solution
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A.2 Well Model

Table A.2: Well constants

Well Constants

Symbol Description Value

R Universal gas constant 8.314 J/Kmol
µOil Viscosity 3.64e-3 Pa · s
ρOil Oil density 900 kg/m3

ρwater Water density 1000 kg/m3

g Gravity 9.81 m/s2

MG Gas molecular weight 16.7e-3 Kg/mol
Tbh Temperature 400 K
Tt Temperature 369.4 K
Lbh Bottom hole length 75 m
Lt Tubing length 2048 m
Vt Tubing volume 25.03 m3

Sbh Bottom hole cross section 0.0141 m2

Kgs Gas lift choke constant 9.98e-5 -
Kinj Gas injection choke constant 1.4e-4 -
Pgs Pressure gas lift choke 140 bar
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A.3 Riser Model

Table A.3: Riser constants

Riser Constants

Symbol Description Value

R Universal gas constant 8.314 J/Kmol
µOil Viscosity 3.64e-3 Pa · s
ρOil Oil density 900 kg/m3

ρwater Water density 1000 kg/m3

g Gravity 9.81 m/s2

MG Gas molecular weight 16.7e-3 Kg/mol
Tr Temperature 369.4 K
Lr Riser length 250 m
Sr riser cross section 0.0507 m2

Ps Pressure Gas lift choke 20 bar





Appendix B
Decision Variables in The RTO and
NMPC

Table B.1: Manipulated variables in the gas lifted oil network

Symbol Description

u2,well1 Gas injection choke in well 1
u2,well2 Gas injection choke in well 2
u2,well3 Gas injection choke in well 3
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Table B.2: Differential decision variables

Well 1

Symbol Description

x1,a Mass of gas in annulus
x2,t Mass of gas in tubing
x3,t Mass of liquid in tubing

Well 2

Symbol Description

x1,a Mass of gas in annulus
x2,t Mass of gas in tubing
x3,t Mass of liquid in tubing

Well 3

Symbol Description

x1,a Mass of gas in annulus
x2,t Mass of gas in tubing
x3,t Mass of liquid in tubing

Riser

Symbol Description

x1,r Mass of gas in tubing
x2,r Mass of liquid in tubing
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Table B.3: Algebraic decision variables

Well 1

Symbol Description

winj Inflow of gas injection
wres Total outflow from reservoir
wout,t Total outflow from tubing

Well 2

Symbol Description

winj Inflow of gas injection
wres Total outflow from reservoir
wout,t Total outflow from tubing

Well 3

Symbol Description

winj Inflow of gas injection
wres Total outflow from reservoir
wout,t Total outflow from tubing

Riser

Symbol Description

wout Total outflow
wG,out Gas outflow
wL,out Liquid outflow
Pm Manifold pressure





Appendix C
Programming Codes

C.1 Well Code

function [ well]= well128 model(t,x,u,Pm,P res,PI,Kpr,GOR,WC)
% The purpose of this model is to represent mathematically a simplified
% dynamical model for a well with a gas lift . 1. we find the gas mass flow
% into the annulus thus we require to find some pressure relations . 2. we
% find the pressure on the bottom of the tubing next to the injection point
% thus finding mass gas flow injected to the tube. 3. we find bottom hole
% pressure and hence the reservoir mass flow. 4. we find the density on top
% of the tubing tto find the mass flow out and use it in the riser model.

import casadi.∗

% State variables of our model are x1 mass gas in annulus, x2 mass gas in
% tubing,x3 mass liquid in tubing
% xdot1 = w g in − w g inj
% xdot2 = w g inj + w g res − w g out
% xdot3 = w l res − w l out

% ODE variables
x(1) = x(1)∗1000; % mass of gas in annulus [kg]
x(2) = x(2)∗1000; % mass of gas in tubing
x(3) = x(3)∗1000; % mass of liquid in tubing

% DAE vriables
w res = x(4); %[kg/s]
w g inj = x(5);
w out = x(6);
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%%%%%%%%%%%%%%%%%%%%
% Call in parameters
PI = PI∗1e−6;
WC = WC/100;
GOR = GOR/100;
Kpr = Kpr∗1e−3;
Pm = Pm∗1e5;
P res = P res∗1e5;

% Parameters
Mg = 16.7e−3;
Va = 64.34;
Vt = 25.03;
Ta = 348;
R = 8.314;
P gs = 140e5;
g = 9.81;
Lt = 2048;
La = 2048;
Dt = 0.134;
T bh = 400;
Tt = 369.4;
Lbh = 75;
Sbh = 0.0141;
Vbh = Lbh∗Sbh;
Dbh = 0.134;
Kinj = 1.40e−4;
Kgs = 9.98e−5;
rho w = 1000;
rho o = 900;
rho l = 1/(WC/rho w + (1−WC)/rho o);
mu o = 3.64e−3;
mu = mu o/(1+WC)ˆ2.5;
%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
% first step is to find gas mass flow into the annulus
rho g a = x(1)/Va;
rho g in = P gs∗Mg/R/Ta;
P a t = rho g a∗R∗Ta/Mg;
% w g in = Kgs∗u(2)∗sqrt(rho g in∗max(P gs−P a t,0));
% w g in = Kgs∗u(2)∗sqrt(rho g in∗(P gs−P a t));
w g in = Kgs∗u(2)∗(rho g in∗(P gs−P a t))ˆ(0.5);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a l ave = (x(3)−Vbh∗rho l)/Vt/rho l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second step is to find gas mass flow injected into tubing
dP a = rho g a∗g∗La;
P a b = P a t + dP a;
rho g t ave = x(2)/(Vt+Vbh−x(3)/rho l);
rho mix ave = (x(3)+x(2)−Vbh∗rho l)/Vt;
P t t = rho g t ave∗R∗Tt/Mg;
Pd t = rho mix ave∗g∗Lt;

Q =a l ave∗w out/rho mix ave;

% and then we can add GOR to
P t fr = 128∗mu∗Lt∗Q/(pi∗Dtˆ4);
P t b = P t fr + Pd t + P t t;
rho g a b = P a b∗Mg/R/Ta;
% f1 = w g inj−Kinj∗sqrt(rho g a b∗max(P a b−P t b,0));
% f1 = w g inj−Kinj∗sqrt(rho g a b∗(P a b−P t b));
f1 = w g inj−Kinj∗(rho g a b∗(P a b−P t b))ˆ(0.5);
%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%
% now we want to find mass flow from reservoir and out of the whole system
% so we find pressure bottom hole in order to calculate the reservoir mass flow

a g b m = GOR/(GOR+1); % gas mass fraction at the bottom of tubing
dP bh = rho l∗g∗Lbh;
Q = w res/rho l; % should we use the average wres
P bh fr = 128∗mu∗Lbh∗Q/pi/Dbhˆ4;
P bh = P t b+dP bh+P bh fr;

% f2 = w res −PI∗max(P res−P bh,0); % include an fsolve
f2 = w res −PI∗(P res−P bh);
w l res = (1−a g b m)∗w res;
w g res = a g b m∗w res;

%%%%%%%%%%%%%%%%%%%%
% after finding the reservoir mass flow we are then able to calculate the
% actual volume fractions at the bottom of the tubing when reservoir mass
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% flow is included and no longer at the very hiiiigggh pressures of the
% well. using the new volume fraction we will be able to calculate the
% actual mixture density at the top of the tubing so that we have a correct
% mass flow out of the gas lift .
rho g t b = P t b∗Mg/R/T bh;

% we could calculate our way up
% a l ave = (x(3)−Vbh∗rho l)/Vt/rho l;
a l b = w l res∗rho g t b/(rho g t b∗w l res + rho l∗(w g res+w g inj));%

liquid volume fraction at bottom of tubing
a l t = 2∗a l ave − a l b ; %

liquid volume fraaction at top of the tubing Jahashahi Skogestad 2011
a g t m = (1−a l t)∗rho g t ave/( a l t ∗rho l+(1−a l t)∗rho g t ave); %

gas mass fraction at top of tubing

rho mix t t = rho l∗a l t + rho g t ave∗(1−a l t);

% f3 = w out −Kpr∗u(1)∗sqrt(rho mix t t∗max(P t t−Pm,0));
% f3 = w out −Kpr∗u(1)∗sqrt(rho mix t t∗(P t t−Pm));
f3 = w out −Kpr∗u(1)∗(rho mix t t∗(P t t−Pm))ˆ(0.5);
w g out = a g t m∗w out;
w l out = (1−a g t m)∗w out;
%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%
% formatting our state equations xdot(1,2,3)

xdot1 = w g in − w g inj;
xdot2 = w g inj + w g res − w g out;
xdot3 = w l res − w l out;
%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%
% Defining outputs of our model
xdot = 1e−3∗[xdot1;xdot2;xdot3];
residuals = [f1 ; f2 ; f3 ];
outflow = [w g out;w l out;w g in ];
y = [1e−5∗P a t; 1e−5∗P a b; 1e−5∗P t t; 1e−5∗P t b; 1e−5∗P bh];

well = [xdot;residuals ;outflow;y ];
%%%%%%%%%%%%%%%%%%%

Listing C.1: Source code for modeling the gas lift
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C.2 Riser Code

function [dots]= Riser128 model(t,x,u,flow1,flow2,flow3,WC r,Kp r,P s)

% the purpuse of this model is 1. to find the amount of oil and gas produced
% at the top of a riser before connecting it to a separator. 2. to find the manifold

pressure at the bottom of the riser

import casadi.∗

%%%%%%%%%%%%%%%%%%
% the system is represented such that xdot= f(x,u) , y=h(x,u) , x
% represents the mass of the phases liquid and gas which evolves according
% to f . the function h defines the variables y which gathers the input
% pressure and output mass flow rat variables for each phase
% ODE
x(1) = x(1)∗1000; % check why you have to multiple by 1000
x(2) = x(2)∗1000;

w out = x(3);
w g out = x(4);
w l out = x(5);

gas flow1 = flow1(1); oil flow1 = flow1(2); % this is meant to be liquid
flow and not oil flow

gas flow2 = flow2(1); oil flow2 = flow2(2);
gas flow3 = flow3(1); oil flow3 = flow3(2);

g f in = [gas flow1, gas flow2, gas flow3 ];
o f in = [ oil flow1 , oil flow2 , oil flow3 ];
%%%%%%%%%%%%%%%%%%%%%%

% call in Parameters
WC r = WC r/100; % mass water cut [fraction]
P s = 20∗1e5; % Pressure after riser production choke [Pa] this can be

adjusted later
Kp r = Kp r∗1e−3; % Production choke constant [−]

% given Parameters
Sr = 0.0507; % cross section riser [m2]
Lr = 250; % length riser [m]
Vr = Sr∗Lr; % volume riser [m3]
rho w = 1000; % water density [kg/m3]
rho o = 900; % oil density [kg/m3]
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rho l = 1/(WC r/rho w + (1−WC r)/rho o); % liquid density [kg/m3]
R = 8.314; % universal gas constant [J/mol/K]
g = 9.81; % gravity [m/s2]
Tr = 369.4; % riser temp. [K]
Mg = 16.7e−3; % gas molecular weight [kg/mol]
mu o = 3.64e−3;
mu = mu o/(1+WC r)ˆ2.5; % viscosity [Pa.s]
Dr = 0.134; % riser diameter [m]

a l ave = x(2)/Vr/rho l;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% first step is to find the manifold pressure
rho g t = x(1)/(Vr−x(2)/rho l);
rho mix ave = sum(x(1:2))/Vr; % average density around the entire riser
Q = a l ave∗w out/rho mix ave; % average volumetric flow
P r t = R∗Tr∗rho g t/Mg; % pressure at the top of the riser
Pd = rho mix ave∗g∗Lr; % pressure drop from t to b of riser
P fr = 128∗mu∗Lr∗Q/(pi∗Drˆ4); % pressure liquid friction with inner surface

area or riser
Pm = P r t+Pd+P fr; % pressure at manifold, first objective of this

model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% second step is to find mass flow rates of liquid and qas
% [SARRY] try using only average and see how results vary
% the reason for that is each well will have different densities of gas and
% liquid as they enter the bottom of the riser
% the reason we could do that is because we have Pm and this allows us to
% find the density at the maniflod aka bottom

% a l ave = x(2)/Vr/rho l; % average liquid volume fraction in
riser

rho g b = Pm∗Mg/R/Tr; % Density at the bottom of riser
a l b = sum(o f in)∗rho g b/(sum(g f in)∗rho l + sum(o f in)∗rho g b); % liquid

volume fraction at the bottom
a l t = 2∗a l ave − a l b; % this is a relation from Jahanshahi

and Skogestad (2011)
rho mix t = a l t∗rho l+(1−a l t)∗rho g t; % this is the density mix at the top

since it will vary from bottom to top
% f = w out − Kp r∗u∗sqrt(rho mix t∗max(P r t−P s,0)); % residule for

fsolve of w out
% f = w out − Kp r∗u∗sqrt(rho mix t∗(P r t−P s));
f = w out − Kp r∗u∗(rho mix t∗(P r t−P s))ˆ(0.5);
a m g t = (1−a l t)∗rho g t/((1−a l t)∗rho g t+a l t∗rho l) ; % gas mass fraction

at top of the riser
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f1 = w g out − a m g t∗w out; % residule for fsolve of w g out
f2 = w l out − (1−a m g t)∗w out; % residule for fsolve of w l out

xdot1 = sum(g f in)−w g out; % gas mass flow over riser
xdot2 = sum(o f in)−w l out; % liquid mass flow over riser

%%%%%%%%%%%%%%%%%%%%%%%%%%

% the output is [dots] of size 10:
%[xdot1, xdot2, f , f1 , f2 , Pm , mass gass out, mass water out,mass oil out,P r t]
dots=[xdot1∗1e−3;xdot2∗1e−3;f;f1;f2;1e−5∗Pm;w l out];%w g out;WC r∗w l out;(1−

WC r)∗w l out;P r t∗1e−5]; % if additional outputs are desired

Listing C.2: Source code for modeling the riser

C.3 Network Code

function [y] = network 128(t,x,u,p)

%latest change i did here was that i added L as an output of this model

% in this function we combine three wells towards a manifold that enters a
% riser . each of the wells will have different properties of PI,Kpr,GOR,WC,
% and will recieve Pm from the riser. The riser in return will accept
% values of gas and liquid flows from each well and the total flow to
% complete the circuit.
import casadi.∗

x well1 = [x(1:3) ; x(12:14) ]; % the fiirst 24 states are the ones taken into
account

x well2 = [x(4:6) ; x(15:17) ];
x well3 = [x(7:9) ; x(18:20) ];
x riser = [x(10:11); x(21:23) ];
Pm = x(24); % has been changed

% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% % Definig all constants to each model PI,P res,GOR, WC,K pr
% GOR = [0.15 ; 0.1 ; 0.15]; % for [well1 well2 well3 ]
% WC = [0.15 ; 0.1 ; 0.05]; % for [well1 well2 well3 ]
% Kpr = [2.8 ; 3.0 ; 3.2 ;3.4]; % for [well1 well2 well3 riser ]
%
% p=[GOR(1),WC(1),Kpr(1),...
% GOR(2),WC(2),Kpr(2),...
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% GOR(3),WC(3),Kpr(3),...
% Kpr(4)];
% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

% Definig all constants to each model PI,P res,GOR, WC,K pr, (Deafult)
GOR = [p(1); p(4); p(7)]∗100; % for [well1 well2 well3 ]
PI = [3 ; 2.5 ; 2]; % for [well1 well2 well3 ]
P res = [140 ; 150 ; 160]; % for [well1 well2 well3 ]
WC = [p(2); p(5); p(8)]∗100; % for [well1 well2 well3 ]
Kpr = [p(3); p(6); p(9); p(10) ]; % for [well1 well2 well3 riser ]

% % Definig all constants to each model PI,P res,GOR, WC,K pr
% GOR = [0.15 ; 0.1 ; 0.15]; % for [well1 well2 well3 ]
% PI = [3 ; 2.5 ; 2]; % for [well1 well2 well3 ]
% P res = [140 ; 150 ; 160]; % for [well1 well2 well3 ]
% WC = [0.15 ; 0.1 ; 0.05]; % for [well1 well2 well3 ]
% Kpr = [2.8 ; 3.0 ; 3.2 ;3.4]; % for [well1 well2 well3 riser ]

% % Definig all parameters equal, use this only when all p are equal
% GOR = [p(1); p(4); p(7)]∗100; % for [well1 well2 well3 ]
% PI = [3 ; 3 ; 3]; % for [well1 well2 well3 ]
% P res = [140 ; 140 ; 140]; % for [well1 well2 well3 ]
% WC = [p(2); p(5); p(8)]∗100; % for [well1 well2 well3 ]
% Kpr = [p(3); p(6); p(9); p(10) ]; % for [well1 well2 well3 riser ]

% % Definig all parameters equal,
% GOR = [p(1); p(4); p(7)]∗100; % for [well1 well2 well3 ]
% PI = [3 ; 3 ; 3]; % for [well1 well2 well3 ]
% P res = [150 ; 150 ; 150]; % for [well1 well2 well3 ]
% WC = [p(2); p(5); p(8)]∗100; % for [well1 well2 well3 ]
% Kpr = [p(3); p(6); p(9); p(10) ]; % for [well1 well2 well3 riser ]

u well1 = [u(1);u(2) ]; % for well 1
u well2 = [u(3);u(4) ]; % for well 2
u well3 = [u(5);u(6) ]; % for well 3
u riser = u(end); % for riser

%%%%%%%%%%%%%%%%%
%calling well model so we could find the flows and connect it to our riser
well1 = well128 model(t,x well1,u well1,Pm,P res(1),PI(1),Kpr(1),GOR(1),WC(1));

well2 = well128 model(t,x well2,u well2,Pm,P res(2),PI(2),Kpr(2),GOR(2),WC(2));

well3 = well128 model(t,x well3,u well3,Pm,P res(3),PI(3),Kpr(3),GOR(3),WC(3));
%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%
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% calling riser model to find Pm pressure and connect with well models
flow1= well1(7:8) ;
flow2= well2(7:8) ;
flow3= well3(7:8) ;

WC r = (flow1(2)∗WC(1) +flow2(2)∗WC(2) + flow3(2)∗WC(3))/ (flow1(2)+flow2(2)+
flow3(2));

riser = Riser128 model(t,x riser, u riser ,flow1,flow2,flow3,WC r,Kpr(4));

f = riser(6)− Pm;
%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%
% Organized outputs
diff = [well1(1:3) ; well2 (1:3) ; well3 (1:3) ; riser (1:2) ] ; % 11 xdots
alg = [well1(4:6) ; well2 (4:6) ; well3 (4:6) ; riser (3:5) ; f ] ;% 13 residuals

measurements=[riser(7);well1(7:end);well2(7:end);well3(7:end)];

% y: 24 elements consisting of all states (11), and fsolve variables (13) a simple
vector

% measurements consisting of the following :
% 1 w l out Riser %1
% 2 w g out
% 3 w l out
% 4 w g in
% 5 P a t WELL 1 %8
% 6 P a b
% 7 P t t
% 8 P t b
% 9 P bh
% 10 w g out
% 11 w l out
% 12 w g in
% 13 P a t WELL 2 %8
% 14 P a b
% 15 P t t
% 16 P t b
% 17 P bh
% 18 w g out
% 19 w l out
% 20 w g in
% 21 P a t WELL 3 %8
% 22 P a b
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% 23 P t t
% 24 P t b
% 25 P bh

y = [ diff ;alg ;measurements];
end

Listing C.3: Source code for the gas lifted network

C.4 RTO Code

function [xSS,uSS]=RTO network128(x0,u0,p)

% clc;
% clear; df
% close all ;

addpath(’C:\Users\sarriyh\Downloads\casadi−matlabR2014b−v3.2.3’)

import casadi.∗

% in this case the upper and lower bound of the production choke of the
% riser are equal such that is always open. in addition the objective
% function is to minimize injected gas and maximize oil production from
% riser .

% defining symbolic variables

% well 1
x1 = MX.sym(’x1’); % Mass of gas in annulus
x2 = MX.sym(’x2’); % Mass of gas in tubing
x3 = MX.sym(’x3’); % Mass of liquid in tubing
% well 2
x4 = MX.sym(’x4’); % Mass of gas in annulus
x5 = MX.sym(’x5’); % Mass of gas in tubing
x6 = MX.sym(’x6’); % Mass of liquid in tubing

% well 3
x7 = MX.sym(’x7’); % Mass of gas in annulus
x8 = MX.sym(’x8’); % Mass of gas in tubing
x9 = MX.sym(’x9’); % Mass of liquid in tubing

% riser
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x10 = MX.sym(’x10’); % Mass of gas in tubing
x11 = MX.sym(’x11’); % Mass of liquid in tubing

% algebraic variables

% well 1
x12 = MX.sym(’x12’); % Inflow of gas injection
x13 = MX.sym(’x13’); % Total outflow from reservoir
x14 = MX.sym(’x14’); % Total outflow from tubing

% well 2
x15 = MX.sym(’x15’); % Inflow of gas injection
x16 = MX.sym(’x16’); % Total outflow from reservoir
x17 = MX.sym(’x17’); % Total outflow from tubing

% well 3
x18 = MX.sym(’x18’); % Inflow of gas injection
x19 = MX.sym(’x19’); % Total outflow from reservoir
x20 = MX.sym(’x20’); % Total outflow from tubing

x21 = MX.sym(’x21’); % Total outflow
x22 = MX.sym(’x22’); % Gas outflow
x23 = MX.sym(’x23’); % Liquid outflow
x24 = MX.sym(’x24’); % Manifold pressure

x = [x1;x2;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14 ;...
x15;x16;x17;x18;x19;x20;x21;x22;x23;x24];

u1 = MX.sym(’u1’);
u2 = MX.sym(’u2’);
u3 = MX.sym(’u3’);
u4 = MX.sym(’u4’);
u5 = MX.sym(’u5’);
u6 = MX.sym(’u6’);
u7 = MX.sym(’u7’);

u=[u1;u2;u3;u4;u5;u6;u7];

% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% is that even correct ?????? i get the same solution

% Definig all constants to each model PI,P res,GOR, WC,K pr
% GOR = [0.15 ; 0.1 ; 0.15]; % for [well1 well2 well3 ]
% WC = [0.15 ; 0.1 ; 0.05]; % for [well1 well2 well3 ]
% Kpr = [2.8 ; 3.0 ; 3.2 ;3.4]; % for [well1 well2 well3 riser ]
%
% p=[GOR(1),WC(1),Kpr(1),...
% GOR(2),WC(2),Kpr(2),...
% GOR(3),WC(3),Kpr(3),...
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% Kpr(4)];
% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

model = network 128(0,x,u,p);
diff = model(1:11);
alg = model(12:24);
%L = model(25) ;
% lbg = zeros(24,1);
% ubg = lbg;

% lower and upper bounds x(diff and alg) and u x1..x24 represent the same
% quantities presented above

%diff wells and riser
x1 lb = 1e−3;
x2 lb = 1e−3;
x3 lb = 1e−3;
x4 lb = 1e−3;
x5 lb = 1e−3;
x6 lb = 1e−3;
x7 lb = 1e−3;
x8 lb = 1e−3;
x9 lb = 1e−3;
x10 lb = 1e−3;
x11 lb = 1e−3;
%algebraic wells
x12 lb = 1e−2;
x13 lb = 1e−2;
x14 lb = 1e−2;
x15 lb = 1e−2;
x16 lb = 1e−2;
x17 lb = 1e−2;
x18 lb = 1e−2;
x19 lb = 1e−2;
x20 lb = 1e−2;
%algebraic riser
x21 lb = 1e−2;
x22 lb = 1e−2;
x23 lb = 1e−2;
%manifold pressure
x24 lb = 0.1;

%DOF riser and wells production chokes and gas injection chokes
u1 lb=0.1;
u2 lb=0.1;
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u3 lb=0.1;
u4 lb=0.1;
u5 lb=0.1;
u6 lb=0.1;
u7 lb=1;
% setting the above in a vertical concatenation( a seriec of inconnected
% things)
lbx = vertcat(x1 lb,x2 lb,x3 lb,x4 lb,x5 lb,x6 lb,x7 lb,x8 lb,x9 lb,x10 lb,x11 lb ,...

x12 lb,x13 lb,x14 lb,x15 lb,x16 lb,x17 lb,x18 lb,x19 lb,x20 lb,x21 lb,x22 lb,
x23 lb,x24 lb) ;

lbu = vertcat(u1 lb,u2 lb,u3 lb,u4 lb,u5 lb,u6 lb,u7 lb) ;

% same as above only for UPPER bounds as can be seen the production is
% relaxed by allowing the bounds to be very large
x1 ub = 10e7;
x2 ub = 10e7;
x3 ub = 10e7;
x4 ub = 10e7;
x5 ub = 10e7;
x6 ub = 10e7;
x7 ub = 10e7;
x8 ub = 10e7;
x9 ub = 10e7;
x10 ub = 10e7;
x11 ub = 10e7;

x12 ub = 50e4;
x13 ub = 50e4;
x14 ub = 50e4;
x15 ub = 50e4;
x16 ub = 50e4;
x17 ub = 50e4;
x18 ub = 50e4;
x19 ub = 50e4;
x20 ub = 50e4;

x21 ub = 50e4;
x22 ub = 50e4;
x23 ub = 50e4;

x24 ub = 150e4;

u1 ub=1;
u2 ub=1;
u3 ub=1;
u4 ub=1;
u5 ub=1;
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u6 ub=1;
u7 ub=1;

ubx = vertcat(x1 ub,x2 ub,x3 ub,x4 ub,x5 ub,x6 ub,x7 ub,x8 ub,x9 ub,x10 ub,x11 ub,
x12 ub,x13 ub,x14 ub,x15 ub,x16 ub,x17 ub,...

x18 ub,x19 ub,x20 ub,x21 ub,x22 ub,x23 ub,x24 ub);

ubu = vertcat(u1 ub,u2 ub,u3 ub,u4 ub,u5 ub,u6 ub,u7 ub);

% decision variables
w = {}; % why does this work and why do we put w first what is w ? why

do brackets differ ?
w0 = []; % why does this work and why do we put w first what is w ?
lbw = [];
ubw = [];

% constraints
g = {};
lbg = [];
ubg = [];

w = {w{:},x,u}; % why does this work and why do we put w first what is w ?
lbw = [lbw;lbx;lbu ];
ubw = [ubw;ubx;ubu];
w0 = [w0;x0;u0]; % why does this work and why do we put w first what is w ?

%Add the system model as constraints
g = {g{:},vertcat( diff ,alg)};
lbg = [lbg;zeros(24,1) ];
ubg = [ubg;zeros(24,1) ];

%stage cost
L = −x23 +x19 +x16 +x13; % max oil min gas % PI used to affect results
% L = −x23; % max oil
% L = +x19 +x16 +x13; % min gas

% Economic objective
J = L;

nlp = struct(’x’ , vertcat(w{:}), ’ f ’ ,J, ’g’ , vertcat(g{:})) ;
solver = nlpsol(’ solver ’ , ’ipopt’ ,nlp); % NLP solver IPOPT
sol = solver( ’x0’ ,w0,’lbx’ ,lbw,’ubx’,ubw,’lbg’ , lbg, ’ubg’,ubg); % then we feed it

values initial lower and upper bounds of x and g

% Extracting solutions
w opt SS = full(sol .x);
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uSS=w opt SS(25:end);
xSS=w opt SS(1:24);

Listing C.4: Source code for RTO

C.5 Collocation Setup Code

function [B,C,D,d] = collocationSetup()
% Joel Andersson, joel@casadi.org, 2016
import casadi.∗

% Degree of interpolating polynomial
d = 3;

% Get collocation points
%tau root = [0 collocation points(d, ’legendre ’) ];
tau root = [0 collocation points (d, ’radau’) ];

% Coefficients of the collocation equation
C = zeros(d+1,d+1);

% Coefficients of the continuity equation
D = zeros(d+1, 1);

% Coefficients of the quadrature function
B = zeros(d+1, 1);

% Construct polynomial basis
for j=1:d+1

% Construct Lagrange polynomials to get the polynomial basis at the collocation
point

coeff = 1;
for r=1:d+1

if r ˜= j
coeff = conv(coeff, [1, −tau root(r)]) ;
coeff = coeff / (tau root(j)−tau root(r));

end
end
% Evaluate the polynomial at the final time to get the coefficients of the

continuity equation
D(j) = polyval(coeff , 1.0) ;

% Evaluate the time derivative of the polynomial at all collocation points to get
the coefficients of the continuity equation

pder = polyder(coeff);
for r=1:d+1
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C(j,r) = polyval(pder, tau root(r)) ;
end

% Evaluate the integral of the polynomial to get the coefficients of the quadrature
function

pint = polyint(coeff) ;
B(j) = polyval(pint, 1.0) ;

end

Listing C.5: Source code for collocation setup [2]

C.6 NMPC Code

function [w,w0,J,u nlp opt,x nlp opt] = optProblem net128 test0412(N,u0,p,x0,z0,
xz0 measured,uSS,xSS)

% xz0 measured should be a column vector of length nx+xz
% N pridiction horizon
% u0 and x0 z0 are merley initial states
% this optimization problem maximizes oil production from riser, while
% tries to simultaneuously minimize the injected gas into the system. the
% production chokes of the riser and lifts are always fully opened

addpath(’C:\Users\sarriyh\Downloads\casadi−matlabR2014b−v3.2.3’)
import casadi.∗

load(’Qxzu.mat’)

% Initial values these values could be changed for a better guess
% N= 20;
nx=11;
nz=13;
nu=7;
T=4000;
% T=200;

tf=T/N;

% lower and upper bounds x(diff and alg) and u
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%diff wells and riser
x1 lb = 1e−2;
x2 lb = 1e−2;
x3 lb = 1e−2;
x4 lb = 1e−2;
x5 lb = 1e−2;
x6 lb = 1e−2;
x7 lb = 1e−2;
x8 lb = 1e−2;
x9 lb = 1e−2;
x10 lb = 1e−2;
x11 lb = 1e−2;

%algebraic wells
x12 lb = 1e−2;
x13 lb = 1e−2;
x14 lb = 1e−2;
x15 lb = 1e−2;
x16 lb = 1e−2;
x17 lb = 1e−2;
x18 lb = 1e−2;
x19 lb = 1e−2;
x20 lb = 1e−2;

%algebraic riser
x21 lb = 1e−2;
x22 lb = 1e−2;
x23 lb = 1e−2;

%manifold pressure
x24 lb = 0.1;

%DOF riser and wells
u1 lb=1;
u2 lb=0.1;
u3 lb=1;
u4 lb=0.1; % works well also with mpc
u5 lb=1;
u6 lb=0.1;
u7 lb=0.1;

% setting the above in a vertical concatenation( a seriec of inconnected
% things)
lbx = vertcat(x1 lb,x2 lb,x3 lb,x4 lb,x5 lb,x6 lb,x7 lb,x8 lb,x9 lb,x10 lb,x11 lb) ;

lbz = vertcat(x12 lb,x13 lb,x14 lb,x15 lb,x16 lb,x17 lb,x18 lb,x19 lb,x20 lb,x21 lb,
x22 lb,x23 lb,x24 lb) ;
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lbu = vertcat(u1 lb,u2 lb,u3 lb,u4 lb,u5 lb,u6 lb,u7 lb) ;

% same as above only for UPPER bounds
x1 ub = 10;
x2 ub = 10;
x3 ub = 10;
x4 ub = 10;
x5 ub = 10;
x6 ub = 10;
x7 ub = 10;
x8 ub = 10;
x9 ub = 10;
x10 ub = 10;
x11 ub = 10;

x12 ub = 50;
x13 ub = 50;
x14 ub = 50;
x15 ub = 50;
x16 ub = 50;
x17 ub = 50;
x18 ub = 50;
x19 ub = 50;
x20 ub = 50;

x21 ub = 53;
x22 ub = 50;
x23 ub = 50; % this can be contrained by setting maximum amount of water however

then production chokes of the lifts must be relaxed
%x23 ub = 50;

x24 ub = 150;

u1 ub =1;
u2 ub =1;
u3 ub =1;
u4 ub =1;
u5 ub =1;
u6 ub =1;
u7 ub =1;

ubx = vertcat(x1 ub,x2 ub,x3 ub,x4 ub,x5 ub,x6 ub,x7 ub,x8 ub,x9 ub,x10 ub,x11 ub);

ubz = vertcat(x12 ub,x13 ub,x14 ub,x15 ub,x16 ub,x17 ub,x18 ub,x19 ub,x20 ub,
x21 ub,x22 ub,x23 ub,x24 ub);

ubu = vertcat(u1 ub,u2 ub,u3 ub,u4 ub,u5 ub,u6 ub,u7 ub);
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% begin p !!!!!!!!!!!!!!!!!!!!!!!!!!!
% Definig all constants for each model PI,P res,GOR, WC,K pr
% GOR = [0.15 ; 0.1 ; 0.15]; % for [well1 well2 well3 ]
% WC = [0.15 ; 0.1 ; 0.05]; % for [well1 well2 well3 ]
% Kpr = [2.8 ; 3.0 ; 3.2 ;3.4]; % for [well1 well2 well3 riser ]

% p=[GOR(1),WC(1),Kpr(1),...
% GOR(2),WC(2),Kpr(2),...
% GOR(3),WC(3),Kpr(3),...
% Kpr(4)];
%End p !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%%%%%%%%%%
% on this side we put the main ideas of collocation and then later add

uSS=uSS;
xSS=xSS;

% Collocation setup double check
[B,C,D,d]= collocationSetup();
% Build NLP solver
% empty NLP
w = {};
w0 = [];
lbw = [];
ubw = [];
J = 0;

g = {};
lbg = [];
ubg = [];

% initial conditions
X0 = MX.sym(’X0’,nx);
Z0 = MX.sym(’Z0’,nz);
w = {w{:},X0,Z0};
w0 = [w0;x0;z0]; % what are those two values ? x0 z0 in nmpc gaslift defined dx0 z0
lbw = [lbw;lbx;lbz ];
ubw = [ubw;ubx;ubz];
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% Begin penalty
ubd du = vertcat (0.1,0.1,0.1,0.1,0.1,0.1,0.1) ;
lbd du = vertcat(−0.1,−0.1,−0.1,−0.1,−0.1,−0.1,−0.1);
% End penalty

% formulate NLP
Xk=X0;
Zk=Z0;
Xkj={};
Zkj={};

g= {g{:},[X0;Z0]−[xz0 measured]}; % x0 closing the loop
lbg=[lbg;zeros(nx+nz,1)];
ubg=[ubg;zeros(nx+nz,1)];

for k=0:N−1
Uk =MX.sym([’U ’ num2str(k)],nu);
w ={w{:},Uk};
lbw =[lbw;lbu];
ubw =[ubw;ubu];
w0 =[w0;u0];

% Regularization term for control

% the below can be added or not
Jcontrol = (Uk−uSS)’∗diag(Qxzu(nx+nz+1:end,1))∗(Uk−uSS); % Add Q or R
weighting , uSS (reference point)

Xkj={};
Zkj={};

for j=1:d % d degree of collo . polynomial axˆ3 + bxˆ2 ...
Xkj{j}=MX.sym([’X ’ num2str(k) ’ ’ num2str(j)],nx); % this looks like (nx)x1

casadi.MX vector in this case 11x1 []
Zkj{j}=MX.sym([’Z ’ num2str(k) ’ ’ num2str(j)],nz);
w = {w{:},Xkj{j},Zkj{j}};
w0 =[w0;x0;z0]; % initial values only
lbw =[lbw;lbx;lbz ];
ubw =[ubw;ubx;ubz];

end

% loop over collocation points
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Xk end=D(1)∗Xk; %D(1) is the coeff of continuity eq. at polynomial at final time

for j=1:d
% Expression for the state derivative at the collocation point
xp = C(1,j+1)∗Xk; %coeff of collocation equation C is a 4x4 matrix

for r=1:d
xp=xp+C(r+1,j+1)∗Xkj{r};

end

model = network 128(0,[Xkj{j};Zkj{j}],Uk,p); % here p is supplied
diff = model(1:11); %hard coded
alg = model(12:24);

g={g{:},tf∗diff−xp,alg}; % dynamics and algebraic constraints
lbg = [lbg;zeros(nx,1); zeros(nz,1) ];
ubg = [ubg;zeros(nx,1);zeros(nz,1) ];

% add contribution to the states
Xk end=Xk end +D(j+1)∗Xkj{j};

end

% add control moves and penalty term in the objective Function
% Begin Penalty

if k>0
% Equality Constraint
g = {g{:},(Uk prev − Uk)};
lbg = [lbg;lbd du];
ubg = [ubg;ubd du];

% Include Penalty Term In Objective function with weight
J penalty= (Uk prev−Uk)’∗diag([ones(7,1)])∗(Uk prev−Uk); %weighting

should be added
J=J+J penalty;

end
% End Penalty

% New NLP variable for state at end of interval
Xk = MX.sym([’X ’ num2str(k+1) ], nx);
w = {w{:},Xk};
lbw = [lbw;lbx ];
ubw = [ubw;ubx];
w0 = [w0; x0];

% Shooting Gap constraint
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g = {g{:},Xk end−Xk};
lbg = [lbg;zeros(nx,1) ];
ubg = [ubg;zeros(nx,1)];

% regularization term for state variable
Jstate =([Xk;Zkj{j}] − xSS)’ ∗diag(Qxzu(1:nx+nz,1))∗ ([Xk;Zkj{j}] − xSS); % add

a Q weighting

% economic objective state cost if you would like to have an economic
% NMPC
Jecon = −Zkj{j}(12)+Zkj{j}(8)+Zkj{j}(5)+Zkj{j}(2); % max oil min gas

% Jecon2 = −Zkj{j}(12); % max oil
% Jecon3 = Zkj{j}(8)+Zkj{j}(5)+Zkj{j}(2); % min gas

% stage cost Cases
% J = J + Jstate; % tracking only
% J = J + Jstate + Jcontrol; % tracking and control

% if u like to have an economic NMPC

J = J + Jecon + Jstate + Jcontrol; % Mix tracking econ (stable)
% J = J + Jecon + Jcontrol; % Mix econ control (less stable)
% J = J + Jecon; % Pure econ max oil min gas(unstable)

% J = J + Jecon2; % Pure econ max oil(Doesnt work)
% J = J + Jecon2 + Jstate + Jcontrol; % Mix tracking econ2 (stable)

% J = J + Jecon3 + Jstate + Jcontrol; % Mix tracking econ3 (stable)
% J = J + Jecon3 ; % econ3 (doesnt work)

% save previous inputs
Uk prev=Uk;

end

nlp = struct(’x’ , vertcat(w{:}), ’ f ’ ,J, ’g’ , vertcat(g{:})) ; % note i removed p since
there is no need for it
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% if you would like some extra options
% options = struct;
% options.ipopt. tol = 1e−12;
% options. acceptable compl inf tol = 1e−6;
% solver = nlpsol(’ solver ’, ’ ipopt ’, nlp, options) ;
solver = nlpsol(’ solver ’ , ’ipopt’ , nlp); % i removed options for the time being
% sol = solver(’x0’, w0, ’p ’, paramModel.GOR, ’lbx’, lbw, ’ubx’, ubw, ’

lbg’, lbg, ’ubg’, ubg);
tic
sol = solver( ’x0’ ,w0,’lbx’ ,lbw,’ubx’,ubw,’lbg’ , lbg, ’ubg’,ubg); % then we feed it

values initial lower and upper bounds of x and g
toc
w opt SS = full(sol .x); % 24 initial x0 z0 then 20 loops of 7 24 24 24 11 to get value

take value every 90th

% the below is to stop when solver Error
success = strcmp(solver.stats . return status , ’Infeasible Problem Detected’);
if (success)

keyboard;
end

% this plotting function is taken from EKA
[u nlp opt, x nlp opt] = plotStatesGL test0412(w opt SS, lbw, ubw, N);

end

Listing C.6: Source code for NMPC

C.7 Control Structure Code

% This script is an MPC subject to Noise,
% noise can be simply removed by commenting it out

% This script uses optProblem net128 test0412,
% plotStatesGL test0412,network128...

% addpath(’C:\Users\sarriyh\Downloads\casadi−matlabR2014b−v3.2.3’)
% import casadi.∗

clc
clear
close all
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% begin !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% Definig all constants for each model PI,P res,GOR, WC,K pr
GOR = [0.15 ; 0.1 ; 0.15]; % for [well1 well2 well3 ]
WC = [0.15 ; 0.1 ; 0.05]; % for [well1 well2 well3 ]
Kpr = [2.8 ; 3.0 ; 3.2 ;3.4]; % for [well1 well2 well3 riser ]

p=[GOR(1),WC(1),Kpr(1),... % for well1
GOR(2),WC(2),Kpr(2),... % for well2
GOR(3),WC(3),Kpr(3),... % for well3
Kpr(4)]; % for riser

%End !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

x0 =[3.1933 0.5850 4.4132 3.3977 0.5601 5.0101 3.1600 0.5846 4.2971 0.2646 1.2903]’;

z0 =[15.6427 1.0425 15 14.3927 1.1855 20 14.6892 1.0511 28 48.0037 8.5439 39.4598
48.0963]’;

u0 =[1;0.5;1;0.6;1;0.5;1];

% Steady state values from RTO
[xSS,uSS] = RTO network128([x0;z0],u0,p);

% Pridiction horizon and run time
T = 4000;
% T = 200;
Nmpc = 20;
% Nmpc=200;
Nopt = 20;
ode time = T/Nopt;

% Initialization
xz append =[];
xz0 measured =[x0;z0];
u opt append =[];
outputs append=[];

% MPC itiration
tic
for i=1:Nmpc

fprintf ( ’\n MPC iteration = %d \n’,i);
% run optimization

[w,w0,J,u nlp opt,x nlp opt] = optProblem net128 test0412(Nopt,u0,p,x0,z0,
xz0 measured,uSS,xSS);
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% extract control input
u opt=u nlp opt(:,1);
u ode= u opt;
u opt append=[u opt append,u ode];

% Run Ode15s
M=diag([ones(1,11) zeros(1,13)]) ;
options=odeset(’Mass’,M);

% begin p !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
FF= @(t,x) [eye(24,24) zeros(24,25)]∗network 128(0,x,u ode,p);
% end p !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

tspan=0:1:ode time−1;
% [t,xz] = ode15s(FF,tspan,[x0;z0],options);

[ t ,xz] = ode15s(FF,tspan,xz0 measured,options);

% extract states and time
xz append =[xz append;xz];

% update xz0 measured
xz0 measured=[xz(end,:)]’;

%noise !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% % noise creation low order
% noise=zeros(24,1);
% noise(2)=rand(1)∗1e−4; %mass gass well 1
% noise(5)=rand(1)∗1e−4; % ” well 2
% noise(8)=rand(1)∗1e−4; % ” well 3
% noise(10)=rand(1)∗1e−4; % ” riser
%
% noise(1)=rand(1)∗1e−3; %
% noise(3)=rand(1)∗1e−3; %
% noise(4)=rand(1)∗1e−3; %
% noise(6)=rand(1)∗1e−3; %
% noise(7)=rand(1)∗1e−3; %
% noise(9)=rand(1)∗1e−3; %
% noise(11)=rand(1)∗1e−3; %

% noise creation high order
noise=zeros(24,1);
noise(2)=rand(1)∗1e−3; %mass gass well 1
noise(5)=rand(1)∗1e−3; % ” well 2
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noise(8)=rand(1)∗1e−3; % ” well 3
noise(10)=rand(1)∗1e−3; % ” riser

noise(1)=rand(1)∗1e−2; %
noise(3)=rand(1)∗1e−2; %
noise(4)=rand(1)∗1e−2; %
noise(6)=rand(1)∗1e−2; %
noise(7)=rand(1)∗1e−2; %
noise(9)=rand(1)∗1e−2; %
noise(11)=rand(1)∗1e−2; %
xz0 measured=xz0 measured+noise;
%noise !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

for n=1:1:ode time
% Passing extra parameters

panda=network 128(0,(xz(n,:))’,u ode,p);
% Removing [differentials ; residuals ]

panda(1:24)=[];
% Appending outputs

outputs append=[outputs append,panda];
end
end
toc

outputs append=outputs append’;

%save(’plant NMPC high noise.mat’,’uSS’,’xSS’,’outputs append’,’xz append’,’
u opt append’,’t’,’p ’,’ u0 ’,’ x0 ’,’ z0’)

Listing C.7: Source code for entire code structure
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