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Executive Summary

Kaibel column is studied as an energy efficient way of distillation. Kaibel column

and other thermally coupled arrangements are introduced in theoretical part with

focus on different approaches to control of these columns. The active vapor split

as a controlled variable is reviewed.

The pressure drop evolution in Kaibel column is studied to understand its de-

pendency on column variables. The known approaches for estimation of pressure

drop are summarized in theoretical part.

The pressure drop in Kaibel column is studied experimentally. The pressure

drop is strongly dependent on energy input. The total pressure drop increases, if

one of the branches is closed, and the magnitude depends on amount of packing.

The composition is also important factor for pressure drop, the feed with higher

molecular weight, the pressure drop is higher. The change of liquid split does not

have particular influence on pressure drop.

The model for pressure drop estimation in Kaibel column is created. The model

is able to compute steady state values for total pressure drop, pressure drop in

prefractionator, and main column, and vapor flows into respective branches. The

input variables are reboiler duty, vapor split and temperature and composition in

reboiler. The simulations show similar dependency on reboiler duty and vapor split

as seen during experiments.

Experimental verification of different control structures for Kaibel column is

reported. Product valves of distillate, and both side streams were used as manip-

ulated variables together with liquid split, resp. vapor split.

The four-point temperature control of Kaibel column is studied. Control struc-

ture with liquid split control can reject feed disturbances, and setpoint changes of

all variables.

For active vapor split control, the sensitivity of controlled temperature is strongly

dependent on the position of the step change in manipulated variable. The system

was able to reject setpoint change, liquid split disturbance and setpoint change of

side stream control loop temperature.

The five-point temperature control of Kaibel column was introduced. The ad-

dition of second control loop to the prefractionator enables both liquid and vapor

split control. The open loop experiments show incoherent responses for tempera-

tures in top part of prefractionator. The strong dependency on control loop S1 was

found. The sensitivity towards the liquid split is also rather low.
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Chapter 1

Introduction

1.1 Motivation

Distillation process is a preferred solution for separation of liquid mixtures in in-

dustry, for example in oil refineries. Distillation itself has high energy demand, and

it is desirable to minimize necessary energy input.

The motivation for reduction of energy consumption lies not only in economical

reasons, but as well in environmental ones. Mainly, the lower energy consumption

would cause higher reduction of emissions from energy production.

The one of possible solution how to reduce energy input is usage of Kaibel

column, which was discovered by Kaibel (1987). Kaibel column is a type of dividing

wall columns and enables separation of 4 components in one column. This oneshell

arrangement of the thermally coupled distillation column has potential not only

in energy savings, but as well in capital savings. In comparison to conventional

sequence of binary distillation columns the energy savings can arise to 30%, as it was

shown by Halvorsen and Skogestad (2006). The challenge lies in optimal operation

of the column, because all possible energy savings could be lost by operating out

of optimum.

The possibilities to enable optimal operation are researched, such as new control

structures. The usage of vapor split as a manipulated variable was already intro-

duced by Strandberg (2011). The experiments for vapor split control in this work

build up on work published in doctoral theses of Dwivedi (2013) and Strandberg

(2011).

As the vapor flow is strongly connected to pressure drop in the column, the

pressure in Kaibel column is the other part of focus. The experiments were per-

formed to capture the behavior, and the results were used to model of the pressure

3



4 CHAPTER 1. INTRODUCTION

drop for pilot plant Kaibel column.

The part of motivation for deeper study of pressure evolution was the pressure

build up phenomena, which occured during the previous project of mine, as this

was widely discussed in the report Korbelarova (2017), although not being satis-

factory explained. It was sought to reason this phenomena of pressure build up

and pulsating in the column.

1.2 Related work

Part of scope of this thesis lies in study of active vapor split as a manipulated

variable, the list of related works follows: Strandberg (2011) - Doctoral thesis fo-

cus on optimal operation of Kaibel distillation column and similar arrangements.

Dwivedi (2013) – Doctoral thesis contains simulation and experimental studies of

active vapor split control for different dividing wall column arrangements. Kvern-

land (2009) – Thesis introduces the model predictive control for Kaibel columns.

Korbelarova (2017) – Project work of mine which focus on practical operation of

laboratory Kaibel column. The other part of the scope lies in discussion of the

pressure phenomena connected to operation of Kaibel columns. The background

information about distilltion columns, their design and pressure prediciton comes

mainly from: Kister (1992) Maćkowiak and Maćkowiak (2014)

1.3 Project objectives

The main objectives of this Master’s project are:

1. Conduct experiments onlaboratory Kaibel column with active vapor-split

control

2. Introduce 5-point temperature control for Kaibel column

3. Conduct experiments on Kaibel column to study pressure drop dependency

on input parameters

4. Create the pressure drop model of Kaibel column

1.4 Outline

Thesis is divided into theoretical, experimental and modeling parts.
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� Chapter 2 focus on theory. First part summarizes published works about

Kaibel column and other distillation columns with focus on control structures,

and active vapor split. The other part of the chapter introduce ways for

pressure drop estimation for packed distillation columns, and the approach,

which was chosen for modeling.

� Chapter 3 shows the experimental setup of laboratory Kaibel column.

� Chapter 4 describes the pressure drop model of Kaibel column, its structure

� Chapter 5 summarize the results. First part is denoted to pressure drop ex-

periments, the changes in reboiler duty, vapor split valve position, and liquid

split are introduced to the system. The second part shows control experi-

ments, studied controller structures were: 4-point temperature control using

liquid split, 4-point temperature control using vapor split, and 5-point tem-

perature control using both liquid and vapor split as manipulated variables.

Final part shows results obtained by simulations.

� Chapter 6 contains discussion, conclusion and recommendations for further

work

1.5 Source Code

The attached ZIP file contains source code for pressure drop model of Kaibel col-

umn.
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Chapter 2

Kaibel Distillation Column

2.1 Kaibel Distillation Column

The Kaibel column was introduced by Kaibel (1987). The described column was

able to separate four-component mixture into pure compounds in one column.

The Kaibel column is a type of dividing wall column (DWC), i.e. the part of

column is separated by vertical partitioning wall. The dividing wall columns were

known since 1930s (Monro (1938), Wright (1949), Giroux (1980)), but the industrial

applications started in the middle of 1980s, around the time of introduction of

Kaibel column.

The schematic of Kaibel column is in figure 2.1. The 4-component feed mixture

enters the left branch of the column, which is called prefractionator. In prefrac-

tionator, the separation between lighter and heavier components occurs. In the

right branch, or in other term in main column, the separation is finished and the

products are drained. The energy input is provided by reboiler in the bottom of the

column, where heaviest product D is obtained. The streams for the side products

B and C withdrawal are situated along the main column. The top of the column is

equipped with total condenser, where the vapor flow is condensed into liquid, part

of the liquid is leaving the column as the lightest product A.

Kaibel column is able to replace conventional setup of three binary distillations

columns (see figure 2.2). The energy savings while using the Kaibel column, can

arise to 30%, as it was shown by Halvorsen and Skogestad (2006). The second

savings lies in lower capital costs, and the one-shell arrangement also occupies less

space.

The Kaibel column is thermally equivalent to Petlyuk arrangement for four

components. F. B. Petlyuk (1965) introduced the three-compound thermally cou-

7
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Figure 2.1: Kaibel column, 4-product dividing wall column, Strandberg (2011)

pled distillation column, which enabled separation of the products with significant

energy savings compare to conventional series of distillation columns. Petlyuk

modified the three-compound arrangement for four-component separation. Both

Petlyuk arrangements are shown in figure 2.3.

To illustrate the industrial applications of Kaibel columns and other dividing

wall column setups, data presented by Olujic (2016) at EFCE WP Fluid Separations

2016 are presented. Since the first DWC column was put in operation by BASF in

1985, and the industrial Kaibel column was introduced (see Olujić et al. (2009)),

more than 250 dividing wall columns were put in operation. More than 90% of

DWCs are equipped with packed beds, the rest consist of the tray dividing wall

columns, where the former ones are in use since 2000. The new multipurpose DWC

column was put in operation in 2010, this column enables batch distillation, side

product column and conventional two column sequence in one column.

2.2 Control of Kaibel Column

The control of Kaibel column, and other dividing wall columns was deemed chal-

lenging. One of the first control studies was published by Wolff and Skogestad

(1995), the control of Petlyuk column was achieved by three-point composition

control, and liquid split was proposed as a controlled variable.

It was found by Strandberg and Skogestad (2006), that the four-point tem-

perature control with inventory control can stabilize Kaibel column and prevent

”composition drift”. This was verified by conducting experiments on laboratory
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Figure 2.2: Conventional setup of 3 binary distillation columns for separation of
4-component mixture, Kvernland (2009)

Kaibel column, as reported in doctoral theses of Strandberg (2011), and Dwivedi

(2013).

Similarly, Qian et al. (2016) recently reported simulation results for tempera-

ture control of three product DWC. Among others, thee-point temperature control

structures were tested with liquid split, or vapor split, as manipulated variables.

The study confirms the previously reported results.

The optimal operation of three-product Petlyuk column was studied by Halvorsen

and Skogestad (1999). There is a rather narrow window, where it is possible to

achieve operation optimum. The liquid split and vapor split were related to boilup

in this study.

The results were confirmed by Dwivedi (2013) in his doctoral thesis (chapter 5)

where the simulation was broaden to four-product Kaibel column. It is shown that

close relation between energy usage (given by boilup) and vapor split exists. If the

vapor split shifts out of optimum due to disturbance, the energy usage increases.

The active control of vapor split enables to avoid this situation.

Previously mentioned doctoral thesis by Dwivedi (2013), is a comprehensive

study on usage of active vapor split for different dividing wall columns and Petlyuk

columns. Part of the results are confirmed experimentally.

Kvernland et al. (2010) studied the multivariable Model Predictive Controller

with a four-point temperature control for Kaibel column. The model can be fitted
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Figure 2.3:
Top: Petlyuk arrangement for separation of 3-component mixture, Strandberg
(2011)
Bottom: Petlyuk arrangement for separation of 4-component mixture, Dwivedi
(2013)
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to laboratory Kaibel column at NTNU, and the MPC control added into Labview

interface as Kvernland proposed in his diploma thesis later (Kvernland (2009)).

Yet another control structure was proposed by Dwivedi et al. (2012) on 2nd

Trondheim Gas Technology Conference. The 5-point temperature control structure

adds second controlled temperature in prefractionator to enhance the controllability

of prefractionator. The structure is similar to 4-point control, but temperatures

in prefracitonator are controlled by adjustment of both, the vapor and the liquid

split. This approach, which yet has to be verified, is further studied in this thesis.

2.3 Devices for Active Vapor Split Control

Different approaches for realization of active vapor split are researched, and some

of them are even patented.

Active vapor split device was realized on laboratory Kaibel column at NTNU

developed by Strandberg (2011). Two separate vapor valves in each column branch

are operated by external stepper motors. The rack and pinion assembly is used,

and vapor flow is adjusted by changing the cap position. Vapor split valves are

described in more detail in Experimental Setup section, see figures 3.4 and 3.5

showing pictures, and schematic of the vapor valves.

In 2014, King and Haas patented an external vapor control system, The vapor

flow is lead outside of the column and again redistributed to individual sections.

Experimental study by Ge et al. (2014) presents vapor split control by changing

of the angle of the blades on special tray. These blades are connected to axles

operated by external electrical motors. The implemented tray consist of adjustable

blades, vapor distribution plate, V shaped cups, and liquid downcomer. In 2017,

Joon Kang et al. (2017) introduced hydraulic driven active vapor split distributor

which lacks mechanical motor and other moving parts. Modified chimney tray

with special cups is added to both sections with the adjustable liquid level in each

section. And finally he vapor flow is manipulated by level controller, which is

adjusting the ratio between the liquid levels on the tray.

2.4 Pressure drop

The pressure drop is important parameter for column design and operation. The

pressure drop values and the approach for its estimation depends on the packing

type. This statements applies to the tray distillation columns as well, for example,

the pressure drop for sieve and valve trays calculations differ, but since the main
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focus lays due to experimental setup in the packing type columns, the tray columns

would not be further discussed.

The pressure drop is given by packing type, vapor flow, liquid load, and column

height, and diameter.

The total pressure drop for packing height ∆p/∆z consists of pressure drop given

by dry packing ∆p0/∆z and the liquid hold up quotient ∆p/∆p0, which denotes the

influence of liquid holdup on pressure drop. As stated in equation 2.1 by Mackowiak

(2010):
∆p

∆z
= ∆p0

∆z

∆p

∆p0
[Pa/m] (2.1)

The dry pressure drop estimation is important for estimation of gas velocity

flooding, and of the lower limit of operation range.

The irrigated pressure drop estimation is used for flooding prediction, pressure

drop estimation for whole range of liquid loads up to the flooding point.

For decades, the pressure drop and flooding points were estimated using Sherwood-

Eckert generalized pressure drop correlations (GDPR) chart. First this chart, intro-

duced by Sherwood et al. (1938) and modified by Lobo et al. (1945) contained line

of flooding points only. It was extended by Leva (1954), who added pressure drop

curves below the flooding for different packing. Further modifications were added

by Eckert (1975). Strigle (1994) modified the logarithmic scale to semilogarithmic,

which is the most current and used version. Furthermore, the diagram for random

packing was modified for structural packing by Kister and Gill (1992), who intro-

duced the generalized diagram for structural packing. The recent paper by Kister

et al. (2007) denotes the nowadays usage, and dos and dont’s in interpolations, and

correlations of GDPR.

The GDPR approach has its concurrence and buildup in the modeling and

computer modeling. The models for random packing for irrigated pressure drop

were published by authors like Stichlmair et al. (1989), Kister (1992), Billet and

Schultes (1991), Billet (1995), Maćkowiak (1991), the complete list of their work

up to 2014 was summarized in Maćkowiak and Maćkowiak (2014).

The structured packing models were reported by Rocha et al. (1993), Olujić

(1997), Shilkin and Kenig (2005), E. Brunazzin (1997), Stichlmair et al. (1989).

The software tools for prediction of hydraulic performance were developed by

commercial companies for their products. The first one was introduced by Sulzer

in 1998 named Sulpak and later renamed to Sulcol. TM Similar programs were in-

troduced; KG-TowerTM by Koch-Glitsch, Winsorp by Raschig, Rapsody by RTV,

Trayheart by WelChem, and Device Rating Program by DRP. AspenPlus, Hysis,

or other commercial process simulation programs provide built in hydraulic corre-
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lations from the vendors mentioned above.

The biggest resistance of the vapor flow is caused by column packing. Although,

some of the column internals can cause the restriction to the vapor flow especially

for low pressures, as it was shown by Rix and Olujic (2008). The article studies

the pressure drops caused by liquid collectors and distributors.

From practical point of view, the properties of particular packing need to be

established. These studies are using water-air mixture or other standard mixtures

(nonpolar ones) to find packing parameters. These parameters are then base for

calculations and modeling.

2.4.1 Modeling of the Pressure Drop in Experimental Kaibel

Column

The modeling of laboratory Kaibel column is complicated due to its experimental

setup. Packing in the column consist of glass Raschig rings with 6 mm in diameter,

and pieces of structural packing, which keeps the Raschig rings at given column

sections.

The well established models for random packing, like Billet (1995), are designed

for industrial applications, and lack the values for Raschig rings of this size and

material.

The structural packing models generally use geometry of the packing and other

parameters for pressure drop estimation.

The precise approach would require to combine models for structural and ran-

dom packing, and internals. This could be complex procedure to calculate though

due to measurement and its accuracy it’s not necessry overall as empirical approach

is prefered.

The empirical approach was adopted due to unusual experimental setup. Fol-

lowing equation 2.2 estimates pressure drop per packing bed height ∆p/∆z[Pa/m].

The equation is from Sulcol software package for columns with internal diameters

larger than one meter, also mentioned by Duss (2013). Although, since the labora-

tory column has diameter considerably smaller than one meter, the equation was

primarily used for modeling purposes.

∆p

∆z
= c f

dhG

ρG u2
Gs

2
(2.2)

where ∆z[m] is packed bed height, c f [−] represents drag coefficient, ρG [kg /m3]

is vapor density, uGs [m3/m2s] is superficial gas velocity. The hydraulic diameter of

gas flow channel dhG[m] depends on specific geometric area of packing ap [m3/m2],
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see equation 2.3.

dhG = 4ap (2.3)

First, experiments were conducted to establish the drag coefficient of the pack-

ing. The pressure drop was measured for different vapor flows in operating range,

and the drag coefficient was calculated from these values. The actual pressure drop

is then calculated using known resistance per packing multiplied by height of the

packing.

2.4.2 Experimental Estimation of Pressure Drop

The pressure drop for realized columns can be estimated by experimental measure-

ment, by pressure sensors with requisite precision and range installed alongside the

column. In industry, this measurement usually serves not only as a measurement,

but as well as a safety feature. The large increase of the pressure can indicate the

unstable operation state, such as lack of liquid in the reboiler. The safety proce-

dures are usually connected to the measurements, and shut-down procedure can

start automatically at the moment the unstable operation is indicated by pressure,

or other measurement.

For small pressure drops, the other possibility for estimation of the pressure drop

is to use U-tubes filled with liquid, which ends are connected to the measurement

points. The measurement is based on hydrostatics in gravitation field, on the

principle of the Pascal’s law. The hydrostatic pressure is estimated by equation 2.4,

where the pressure drop ∆p , is calculated from the level difference ∆h, gravitaionval

force g , and density of the liquid in U tube ρ.

∆p =∆hρg (2.4)

The experimental Kaibel column operates at the normal pressure, as the column

is open to the atmosphere on the top. The pressure measurements are realized

as U tubes with one end connected to the column and the other end open to

the atmosphere. The measured values indicates the pressure drop between point

of the measurement and the top of the column. The measurement points were

mainly chosen based on practicality of the realization, the list of measurement

points follows:

� Reboiler – measurement of total pressure drop

� Vapor split valves – measurement of pressure bellow and above the vapor
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split valves in prefractionator and main column (indicated as PA, PB, MA,

MB)

� Feed – measurement by feed entrance in prefractionator

� S1 – measurement by side stream 1 in main column

� S2 – measurement by side stream 2 in main column
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Chapter 3

Experimental Setup

This chapter explains the setup of the experimental column at Department of

Chemical Engineering, NTNU. The description of the experimental setup is based

on previously conducted experiments and my previous project work, which the

thesis is a continuation of.

3.1 Kaibel Column

The experimental column situated in laboratory Hall C at the Chemical Engineer-

ing Department, NTNU is shown in figure 3.1, (Strandberg, 2011). Kaibel column

is realized as a two-shell, although this geometry is thermodynamically equivalent

to dividing wall column. This column was built by Strandberg (2011) during his

Ph.D. studies at NTNU, more detail information about column could be found

there.

The column is made of glass sections produced by Normag Labortechnik in

Germany. The individual sections are connected by flanges. Flanges are attached

to aluminum frame by springs, which lowers the pressure on sections bellow, and

secures column position.

As seen in the figure 3.1 (Dwivedi, 2013), the column consists of 7 sections,

sections 1 and 2 (left branch) represents prefractionator, while 3 to 7 represent the

main column. The sections are vacuum coated, and covered by silver to minimize

heat loss. The inner diameters of the sections are written in table 3.1.

Column is packed by glass Raschig rings with diameter of 6 mm. The packing

high varies in column sections; the values are summarized in table 3.1. The height

equivalent of a theoretical plate (HETP) was estimated by Dwivedi (2013) to be

16 cm for this column.

17
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Figure 3.1: Picture and schematics of experimental Kaibel column, Dwivedi (2013),
from left to right:
Picture of experimental column
Schematic of location of temperature sensors
Schematic of the column secitons, with liquid split control structure
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Section Inner diameter Packing height
- [mm] [m]

1 50 1.10
2 50 1.60
3 70 0.65
4 50 0.65
5 50 0.65
6 50 0.75
7 50 0.90

Table 3.1: Specification of column sections

Figure 3.2: Picture of side stream product withdrawal. Swinging funnel leads the
liquid from collector outside the column as a product, or back as a reflux.

The valves ensuring the liquid split and product withdrawal are swinging fun-

nels operating at ON/OFF states controlled by externally placed solenoids. The

positions of funnel are changing with given period to ensure preferred liquid split,

and stable liquid flow in the column.

The side stream withdrawal is shown on figure 3.2, the swinging funnel inside

directs the liquid flow outside the column as a product, or back as a reflux.

The liquid split section is shown on schematic, figure 3.3, liquid is accumu-

lated in collector, the funnel directs the liquid flow according to solenoid either to

prefractionator on the left, or to main column on the right.

This column enables usage of vapor split as a manipulated variable. This is

facilitated by two vapor split valves developed by Strandberg (2011), see figure 3.4.
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Figure 3.3: Schematic of liquid split. Swinging funnel leads liquid flow according
to solenoid to prefractionator (left), or to main column (right).

Valves are operated by external electrical motors.

The schematic of vapor split valve is presented in figure 3.5. The rack and

pinion assembly is used, the vapor flow is adjusted by changing the cap position,

the liquid downcomer allows liquid to flow against vapor. Two valves are situated

in lower parts of section 2 and 6 in prefractionator, and main column, respectively.

The side stream coolers are installed to lower the temperature of leaving prod-

uct. The liquid seal on product stream, following coolers, avoids the leakage of

vapor through side stream, which would cause disturbance to the process. This

also work as indicators of pressure drop in respective column section. See figure

3.7.

The reboiler is kettle type electric boiler with maximal energy input 2.9 kWh.

Energy input is adjusted by thyristor. Reboiler capacity is 15 l, while operation

minimum is 3 l. Since the level control on reboiler is not implemented, the bottom

product is kept accumulating in reboiler during experiments.

The top of the column is equipped by condenser cooled by water. The condensed

product liquid flows back to column to split valve where is divided to distillate and

liquid reflux.

The feed is pumped into the system by a digital diaphragm dosing pump. Pos-

sible flow range is 0.2-20 l/h. The electric heater is installed alongside the feed

tube to preheat feed, and lower the disturbance caused by cold liquid entering the

column.

The column is operated at atmospheric pressure, the total pressure drop under

normal operation is about 0.016 bar.



3.1. KAIBEL COLUMN 21

Figure 3.4: Picture of vapor split valve.

Figure 3.5: Schematic of vapor split valve. The vapor flow is changed by adjusting
cap position through rack and pinion by electric motor.
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The separation of equimolar mixture of primary alcohols is studied. The feed

mixture consist of methanol, ethanol, 1-propanol and 1-butanol.

3.2 Control Structure

The decentralized control structure is implemented in the LabView control inter-

face. The control layer can consist of up to five feedback control loops. The

temperature measurements among the column were used as controlled variables.

As it was published by Strandberg (2011), the 4-point temperature control is

enough to ensure stable operation of 4-compound distillation columns, and avoiding

the ’drift’ of product composition.

The manipulated variables were chosen from degrees of freedom of this column.

Feed rate and feed composition, and the energy input were kept constant unless

used as disturbations. The remaining manipulated variables were used for control

purposes, these are summarized in the following list:

� Liquid split valve RL, ratio between liquid flow to prefractionator and total

flow from top section:

RL= L1

L3
(3.1)

� Vapor split valve RV, ratio between vapor flow to prefractionatorando total

flow from reboiler:

RV= V2

V7
(3.2)

� Distillate product split valve RD, ratio between liquid flow from top section

and total liquid flow of condensate:

RD= L3

L3 +D
(3.3)

� Side stream 1 product split valve RS1, ratio between liquid flow below the

side stream 1 and liquid flow above side stream 1:

RS1= L5

L5 +S1
(3.4)

� Side stream 2 product split valve RS2, ratio between liquid flow below the

side stream 2 and liquid flow above side stream 2:

RS2= L6

L6 +S2
(3.5)
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Loop name Manipulated variable Controlled variable

Control loops present in all structures:

D control loop RD TM3(T2)
S1 control loop RS1 TM8 (T9)
S2 control loop RS2 TM14 (T13)

Control Structure 1: liquid split

+RL control loop RL TP5(TP5)

Control Structure 2: vapor split

+RV control loop1 RV TP7(TP7)

Control Structure 3: vapor and liquid splits

+RL control loop RL TP1(TP1)
+RV control loop1 RV TP7(TP7)

Table 3.2: Feedback control loops and control structures.

where L, and V refers to liquid, resp. vapor flows in individual sections as defined

in figure 3.1.

Different control structures were used during experimental work. The control

loops used during experimental work are summarized in table 3.2. The product

control loops - D, S1 and S2, were used in combination with liquid split, vapor split,

or both. The controlled temperatures were chosen primarily according to sensitivity

towards respective manipulated variables, and secondarily to avoid the interactions

between control loops. The interactions were mainly discussed for proposed control

structure 3 from table 3.2.

There is one extra feedback control loop, which is not mentioned in table 3.2.

The feed is heated before enters the column, this controller regulates temperature

of heating element.

3.2.1 Parameters of the controllers

Some of the controller parameters, and other settings are known from previous

experiments and were presented by korb REF. The following table 3.3 summarizes

these results. The X denotes part of the parameters for RL and RV control loops.

The setpoint temperatures for prefractionator are not denoted because this tem-

perature is strongly dependent on feed composition. The controller parameters for

RV and RL control loops are skipped as these are part of project work and different

approaches are presented in the Result section.
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Name MV Min - Max Kp I CV Setpoint [°C]

D loop RD 0 - 1 -0.3 4 TM3(T2) 70
RL loop RL 0.3 - 0.7 -0.03 4 TP5(TP5) X
or RL loop 2 RL 0.3 - 0.7 X X TP1(TP1) X
RV loop RV 0.1 - 0.9 X X TP7(TP7) X
S1 loop RS1 0 - 1 -0.18 4 TM8(T9) 90
S2 loop RS2 0 - 1 -0.32 4.16 TM14(T13) 112
Feed flow - 0 - 10 0.65 - - - -
Reboiler - 0 - 2 - - - -
Feed Heater heat input 1 - 0 -0.03 10 Feedheat1 30-60

Table 3.3: Settings for Kaibel column: Limit values and PI Controller settings.

Figure 3.6: Vapor split RV controller - split range control.

3.2.2 Vapor Split Control

The vapor valves were described in previous section in general. The valves has 150

steps to operate on, but as it was shown by Dwivedi (2013), only the first 8 steps

are actually influencing the vapor flow. The regulation of vapor flow is desired

through increasing of the resistance for vapor flow by closing of the valves. The

vapor split controller is operating as split range controller, where one half of the

range is operated by vapor valve in prefractionator, and the second half is operated

by vapor valve in main column branch. The schematic description is in figure 3.6

by Dwivedi (2013).
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3.3 Pressure Measurement

Pressure is measured as difference of levels in U-tubes, where one end is connected

to the column and the other is open to the atmosphere. The measured value, height

of liquid column is easily transformed by formula for Pascal’s to pressure difference

between the column and atmosphere.

The positions of measurement U-tubes are situated by reboiler, on feed, on

product side streams S1 and S2, and on vapor split valves - above and below each

of them. Pictures of exemplar measurement sites, reboiler and side stream S2 are

presented in figure 3.7.

The reboiler measurement site is screened by camera, which is connected to the

PC on the first floor, and enables to capture a video. Videos of pressure changes

were scattered into pictures, where one picture every 30 seconds was saved and

analyzed for liquid column height using ImageJ software. The measurements of

others sites were noted in real time with intervals ranging between five and seven

minutes.

The pressure measurements for distillation column were performed during total

reflux experiments, where no feed was introduced to the column, no products were

withdrawn, and control loops were turned off.

Part of the experiments were carried with all compounds of feed mixture, while

the other ones were carried with butanol as the only compound to uncover the influ-

ence of composition, and temperature profile. Later, these groups would be referred

to as pressure 4-compound experiments resp. pressure butanol experiments.
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Figure 3.7: Picture of pressure measurements, reboiler and sidestream 2, which
works as liquid seals too. It ensures that the vapor is not leaking through the
tubes.



Chapter 4

Pressure Drop Model for

Kaibel Column

Pressure drop model for Kaibel column is created in MATLAB. Model uses built-

in solver for nonlinear systems fsolve to calculate steady state values of pressure

drop, and vapor flows from initial conditions.

4.0.1 Model Description

Pressure drop model is based on relatively simple principle. The pressure drop

is established as vapor flow from reboiler meets resistance of packing and other

internal parts on its way to the top of the column.

This column resistance is divided into sections. Seven of these sections copy

the sections of the packing. Two extra sections are formed by manipulated vapor

split valves, which change the ratio of vapor flow into each section by increasing

the flow resistance.

The figure shows the schematic of the model. Packing sections of the column are

denoted by numbers 1-7. PT is total pressure drop. PP represents pressure in pre-

fractionator, which consists of pressure drop caused by packing PP0.and adjustable

pressure drop caused by vapor valve PPV . Similarly, PM denotes pressure in main

column, which consists of pressure drop caused by packing PM0, and adjustable

pressure drop caused by vapor valve PMV .

The molar vapor flow from reboiler Vm splits into vapor flow in prefractionator

VP and main column VM .

27
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Figure 4.1: Schematic of pressure drop model
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The equation for resistance of packing is derived from Sulcol equation.

∆p

∆z
= c f 4ap AMrmi x zc RT bmi x pa (4.1)

where c f [−] is drag coefficient given by experiments, ap [m3/m2] specific geometric

area of packing, A[m2] column cross sectional area, Mrmi x [g /mol ] is molar weight

of the mixture, T bmi x [K l ] is boiling point of the mixture R[J/molK ] ideal gas

constant, zc is compressibility factor, pa atmospheric pressure. The properties of

gas mixture were based on average composition of each section.

With all constants multiplied by packing height we get the resistance of the

packing, as in equation for pressure drop as a function of molar vapor flow and

packing resistance:

∆p = RV 2
m (4.2)

The resistance of packing in column sections:

� RB bottom section

� RC top section

� RP0 packing in prefractionator

� RM0 packing in main column

Valve resistance RPV , RMV is adjustable, given by parameter k and valve position

z (0,8), which is calculated from RV:

RPV = kPV (zPV −8) (4.3)

RMV = kMV (zMV −8) (4.4)

Then, total resistance in prefractionator:

RP = RP0 +RPV (4.5)

Then, total resistance in main column:

RM = RM0 +RMV (4.6)

And finaly total resistance in whole column, i.e. total resistance:

RT = RB + RP +RP0

RP +RP0 +RM +RM0
+RC (4.7)
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Model Equations

The system of nonlinear equation is given.

Total pressure drop equation:

∆pT = RT ∗V 2
m (4.8)

Vapor flow split equation:

Vm =VP +VM (4.9)

At steady state, pressure drops for prefractionator and main column are equal:

∆pP =∆pM (4.10)

Delta pressure in prefractionator and main column:

∆pP = RP ∗V 2
P (4.11)

∆pM = RM ∗V 2
M (4.12)

Model Variables, Parameters and Initial values

Model inputs:

� Reboiler duty

� Vapor split

� Temperature in reboiler

� Composition in reboiler

Initial values:

� Vapor flow in prefractionator

� Vapor flow in main column

� Total pressure drop

� Pressure drop in prefractionator

� Pressure drrop in main column
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Parameters: Molar weights of alcohols; Liquid densities of alcohols; Boiling tem-

peratures of alcohols; Packing height; Column diameter; Drag coefficient; Specific

geometric area of packing; Coefficients for heat of vaporization; Average compo-

sition for each section; Ideal gas constant; Compressibility factor; Atmospheric

pressure; Valve resistance;

4.0.2 Model Structure

Model consist of several connected MATLAB functions.

� Kaibelpressure.m – is the main file running the model, the input data and

parameters are included

� pressuremodel.m – pressure drop model solved by fsolve

� vaporenthalpy.m – calculates heat of vaporization for given temperature,

and mixture composition

� reboilerduty.m – fits reboiler duty settings to actual energy input, adds

10% heat loss

� reboiler.m – calculates molar vapor flow from energy input

� drag_coeff.m – calculates drag coefficient for column packing, separate file,

not in model itself
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Chapter 5

Results

5.1 Pressure Drop Experiments

Various experiments were conducted to examine the factors influencing the pressure

drop. The experiments run at total reflux, with no feed entering and no product

withdrawal, although some leaking through the product steams was observed, the

phenomena is further analyzed in Discussion.

The examined factors were energy input (and consequently vapor flow), liquid

split and vapor split through closing one of the branches. In addition, one extra

factor was discovered after the first conducted experiments. The results for liquid

split changes did not show any coherent effect, and seemed biased. It was assumed

that the slow changes in composition (and temperature) could be the possible cause.

Therefore, the butanol was used instead the feed mixture as the only chemical in

the column.

Another circumstance occured soon after the first experimental runs, it was

found that the measuring points by vapor split valves PA, PB, MA and MB are

not reliable. It was observed, that the vapor is condensing in narrow measuring

tubes connecting the measuring hoses with split valves, the condensate is forming

liquid plug, and results in decreasing of measured values. The valve measurements

are omitted in presented results.

5.1.1 Change in Energy Input

The change in energy input is reported for butanol, and four compound experi-

ments. The pressure drop evolution is explained, together with changes in temper-

ature profile.

33
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Figure 5.1: The pressure drop evolution in reboiler, change in reboiler duty, butanol
experiment.

Butanol Experiment

The total pressure difference in reboiler for whole column after step change of

energy input (reboiler duty) is shown in figure 5.1. The plot summarizes data from

several butanol experiments. The operation of column at reboiler duty Q = 2 is not

stable. The flooding was observed in upper section of the column (section above

the connection of the two branches), this was indicated by sound of the Raschig

rings flooding inside of the column section. This unstable operation is given due to

difference in molecular weight of methanol and butanol, and therefore the difference

in volumetric flow. This phenomena was already explained by Strandberg (2011),

and it was the reason to enhance the column with wider ’Y’ section in the bottom

of the column.

For this reason, the step changes in reboiler duty from 2 to 1.8, the pressure

difference was not stabilized at higher reboiler duty 2.

The green line shows the step changes in reboiler duty from 2 to 1.8, the pressure

is stabilizing in the beginning, increasing from 2.1 to almost 2.4 kPa, then in

eight minute from the beginning, the step change is introduced, and the pressure

difference drops to 1.4 kPa in two minutes, and later stabilize at 1.26 kPa. The

change in pressure drop would be around 1.1 kPa.
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Figure 5.2: The temperature evolution, change in reboiler duty, butanol experi-
ment.

The blue line indicates the same step change, but there the step had to be

made before stabilizing pressure at reboiler duty 2 due to occurrence of flooding.

The step change was introduced shortly after beginning of the measurement. The

pressure change from nearly 2.1 kPa to 1.2 kPa in two minutes, later stabilizes in

20 minutes at 1.3 kPa. The change in pressure drop would be ca 0.9 kPa, which is

lower compare the other experiment, but it has to be noted that the initial pressure

was not stabilized, and probably would be higher.

The red line indicates change in reboiler duty from 1.8 to 1.6, the step change

was done soon after beginning of the measurement. The first point indicates steady

state pressure difference at reboiler duty 1.8, nearly 1.3 kPa, which drops in about

two minutes to 0.6 kPa and stabilizes there. The net pressure drop after step

change would be ca 0.7 kPa.

The changes in temperature profiles are visible on figure 5.2 for two step changes

from previous figure (blue and red line). Temperature changes after these steps

are relatively small. Its influence was observed for three the temperatures of all

measured. The light blue temperature curve at 120°C denotes T16 temperature

closest to the reboiler. This temperature drops around 0.2 °C after each step

change. Whereas, the other temperatures are on the top of the column. Blue T1

and red T2, are the temperatures which are shifting the most, these temperatures

drop down about 0.3-0.5°C before returning to the previous trend.
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Figure 5.3: The pressure drop evolution, change in reboiler duty, 4-compound
experiment.

It can be concluded that the changes in pressure drop in reboiler after inducing

the change in reboiler duty are significant, because the energy input has direct

impact on amount of evaporation heat, and directly influences vapor flow in the

column. The temperature for butanol experiments is not influenced, the most

significant change can be seen for the temperature in reboiler, and T1, and T2

temperatures on the top, which were stabilizing during conducted step changes.

4-compound Experiment

The pressure evolution for 4-compound mixture after the change in reboiler duty

is shown in figure 5.3.

The red line illustrates two changes of reboiler duty. First, the reboiler duty

changes from 1.8 to 2, and the pressure drop increases from 1.25 kPa to 2.1 kPa in

ca 10 minutes.

Later, the energy input is completely stopped, as during shutdown procedure.

The pressure drops to 250 Pa immediately after the step, then the decrease slows

down, and in tree minutes the pressure drop is almost 0. The slowing of the

response, is due to heat capacity of the reboiler, the heating element is still warm,

and the reboiler contains ca 8 liters of liquid at temperature close to the boiling
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Figure 5.4: The pressure drop evolution, change in reboiler duty from 2 to 1.8,
4-compound experiment, capturing evolution in time.

point.

The blue line shows step change fro 2 to 1.8, where the pressure drop changes

from old steady state at 2.05 kPa, to new one at 1.2 kPa in 8 minutes.

In comparison to butanol experiments, the steady state pressures are lower for

all 4 compounds present. For the same molar flow, the volumetric flow of butanol

is larger compare to 4-compound mixture, which is the reason for higher pressure

drop steady-state values.

Fgure 5.4 shows zoomed response of pressure drop in reboiler to change of

reboiler duty from 2 to 1.8. The pressure was measured for 2 hours to capture

evolution of pressure after this change. It was assumed, that the three variables

influences the overall pressure drop. These variables operates in different time

regions. Vapor flow decreases immediately after lowering of the energy input, and

the pressure drop decreases. Liquid flow decreases once the vapor flow is decreased,

because the net amount of condensing vapor is lower. This phenomena is slower,

because the liquid load changes has to progress through the whole column. The

slowest changes in pressure drop are caused by change of composition on column

stages, as the temperature profile shifts with change of energy input.

First, fast drop of pressure difference immediately following the step in energy

input is caused by lower vapor flow. The change of pressure drop has the biggest
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Figure 5.5: The temperature evolution, change in reboiler duty, 4-compound ex-
periment, capturing evolution in time.

magnitude compare to other pressure evolution. This step is due to change of vapor

flow. The slow increase from minimum to steady state value can be explained by

combination of vapor and liquid flow; the change in vapor flow drop is fast, while

the liquid load in the column is still height, the pressure drops to the minimal value,

as the liquid flow is decreasing the vapor flow is slightly increased together with

the pressure drop. The pressure drop is decreasing slightly during the remaining

measurement time, this can be caused by the slow composition shift.

Correspondingly, temperature profile changes after introducing the change of

reboiler duty. It is shown in figure 5.5. All temperature drops after step change

from 2 to 1.8, the magnitude of this drop depends on position of the temperature

measurement point. The bottom of the prefractionator is the most sensitive (TP6,

TP7) with drop of 4-5°C, upper part shows weaker dependency, dropping to 0.9°C

for TP1. The bottom of the column shows increasing trend in sensitivity, the

temperature by reboiler T16 decreases for 0.5°C, while temperature measurement

by the splitting of the column on prefractionator and main column (T17bw) drops

about 2°C. The main column, and top of the column shows similar responses to

induced change, the magnitude of this changes is ca 1°C for all measurements.

Experiment continues to observe slow changes at reboiler duty 1.8. Some of

the temperatures are slowly increasing with time, the temperatures in bottom part

of the column are getting closer to the temperature of reboiler. This increase is
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observable for the bottom of the prefractionator and main column as well. The top

of the column is heating up as well, but the slope is less steep.

This observation indicates the changes in composition profile. Some of the light

products are escaping from the column, and heavier components (as butanol), are

present in higher sections of the column. This would mean that less liquid is

present in the column, and the ammount of liquid in the reboiler is lower. This

would explain the slow decrease of pressure drop during measurement. On the other

hamd, higher abundance of heavier components alongside the column would cause

an increase of pressure drop, as the dependency of pressure drop on composition

was presented by comparison of 4-compound and butanol experiments. Probably,

the second effect is not that strong in comparison to the first one.

The step up in reboiler duty shows inverse dependencies to the first step de-

scribed above, after this change the temperatures continues the slow increase due

to composition change. Later, the reboiler duty is set to 0, and the cooling of the

column starts.

The reasons for light components escaping are further discussed in Discussion.

Pressure Measurement by Feed, S1 and S2

The measurement points located by feed entrance, side stream 1 and sidestream 2

are less advanced compare to reboiler measurement. The difference in liquid levels

is deducted using milimeter paper and ruler. The measurement were not captured

that often as well.

The change in pressure drop values of F, S1 and S2 measurements after reboiler

duty step change are summarized in table. Both experiments, 4-compound and

butanol are represented.

Pressure drop values for butanol experiment are higher in comparison to their

4-compound-experiment counterparts. The effect is most significant for high energy

input. And similarly, the difference between S2 and F pressure drops is more visible

for butanol experiments. For lower pressure, this difference is quite small.

The reboiler duty step change 2 to 1.8 for 4-compound experiments causes the

total pressure drop decrease form 2 kPa to 1.1 kPa, the other pressures are similarly

decreased to half of its value. The step back restores the values close to previous

steady states, i.e. ca 1kPa for F and S2, and ca 0.8kPa for S1.

The butanol experiment shows reboiler duty step change from 2 to 1.8, and 1.8

to 1.6. In the first case, reboiler pressure drops from 2.4 to 1.3 kPa, while S1, S2

and F decreases accordingly. The pressure drops F, S1, and S2 at reboiler duty 1.6

are low and the values are difference between them is small.
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Reboiler duty ∆p Reboiler ∆p F ∆p S1 ∆p S2
- [Pa] [Pa] [Pa] [Pa]

butanol experiments

2 2.03 0.85 1.06 0.99
1.8 1.19 0.41 0.52 0.51
1.8 1.12 0.35 0.46 0.45
2 2.03 0.73 0.92 0.85
2 2.06 0.75 0.96 0.93

4-compound experiments

2 2.4 0.85 1.06 0.99
1.8 1.3 0.43 0.58 0.51
1.8 1.3 0.43 0.58 0.451
1.6 0.6 0.09 0.14 0.18

Table 5.1: Pressure drop measurements for measurement points by reboiler, feed
inlet (F), product side stream 1 (S1) and product side stream 2 (S2). Change of
reboiler duty.

5.1.2 Change from Whole Column to Prefractionator and

Main Columm

The dependency of pressure drop in reboiler on position of vapor valves was mea-

sured. The vapor split valve at main column branch was closed completely, so the

vapor flows through prefractionator only, and oppositely the vapor split valve at

prefractionator column branch was closed to measure pressure for main column.

Experiments were carried with pure butanol, and for two different energy inputs.

The results are summarized in figure 5.6.

Whole Column to Prefractionator

The vapor split main valve was closed at two different reboiler duties. The blue

curve shows pressure difference in reboiler after change of vapor flow from whole

column in to prefractionator only at reboiler duty equal to 1.8, whereas the same

change at reboiler duty 1.6 is shown in red color.

At higher energy input, the pressure increases from 1.2 kPa to 1,67 kPa, the

pressure is getting close to new steady state in less than three minutes. For lower

reboiler duty the change goes from 0.6 to 0.8 kPa.

It is observed, that the change in pressure is larger for higher energy input, this

could be explained by nonlinear dependency of pressure on energy input. That

agrees with other observations, where some changes in pressure had higher magni-

tude for larger energy input, whereas for low energy input, these changes were not
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Figure 5.6: The pressure drop evolution, change in column branch: W – whole
column, P- prefractionator, M-main column, reboiler duty at 1.8 and 1.6, butanol
experiment.

observable.

Whole Column to Main Column

The green curve shows the experiment, where vapor split prefractionator valve was

closed at reboiler duty 1.8. The pressure drop in reboiler changes after the redi-

rection of vapor flow from whole column to main column only. It causes following

change of pressure change in reboiler; the pressure increases from 1.2 to 1.5 kPa

reaching the new steady state in two minutes after initial step.

If the steady states pressure drops at prefractionator and main column are com-

pared, the pressure drop in prefractionator is larger. It is due to different amount

of packing in each of the branches. High of the packing in prefractionator, i.e. sec-

tions 1 and 2, is 2.7 m, whereas in main column, it is 2.1 m. The packing sections

are smaller in main column, because there are internals installed for product side

streams drain (liquid collectors, liquid split product valves), and these internals do

not cause such a big vapor flow resistance as column packing.

The liquid split was at 0.5 during all experiments, so it should not interfere with

results. The temperature profiles did not change much during the valve closing.

The maximal temperature change were 0.2°C, the change is positive in the direction
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of vapor flow, and negative in direction of its lacking.

It is ought to be noted, that due to conducting of other experiments, the op-

posite steps from branches to the whole column mode were not captured. These

experiments, such as liquid split step changes, were usually stopped rather abruptly

due to low level of butanol in reboiler, because some of it escaped through product

streams during the experimental run. It is supposed that the steps, opening the

respective vapor valves would have response opposite to what was observed during

these experiments.

Pressure Measurement by Feed, S1 and S2

The feed pressure drop measurement is situated in the middle part of prefraction-

ator branch, while S1 is in upper third and S2 in bottom third of main column

branch. This location is favorable for studies of pressure drop evolution after di-

recting the vapor flow into one or the other branches.

Obtained results are summarized in table 5.2. Change of vapor flow from whole

column to prefractionator causes decrease in S1 and S2, while pressure drop by

feed increases for both tested reboiler duties.

The total pressure drop is increased as well, since the same vapor flow steams

to more narrow passage in middle section. For 1.8 reboiler duty, the change in

total pressure drop is 0.5 kPa, while increase by F measurement is 0.2 kPa. Feed

measurement indicates part of the induced change, the pressure drop increase for

upper prefractionator, section 1.

Step change from whole to main column at reboiler duty 1.8 causes total pres-

sure increase by 0.25 kPa, the magnitude of S1 and S1 increase is 0.07, resp. 0.13

kPa whereas F drops from 0.49 to 0.4 kPa. This behavior agrees with assumptions.

The magnitude of changes is smaller for main column in comparison to pre-

fractionator. This agrees with butanol experimental measurements, and proposed

explanation about different packing heights.

5.1.3 Liquid Split

The dependency of pressure drop on change of liquid split was studied.

Total Pressure Drop

The change of total pressure in reboiler due to liquid split change is described.

The pressure drop experiments for 4-compound mixture were carried, but no

clear results were found. The responses varied incoherently for positive and negative



5.1. PRESSURE DROP EXPERIMENTS 43

Reboiler duty Branch ∆p Reboiler ∆p F ∆p S1 ∆p S2
- - [Pa] [Pa] [Pa] [Pa]

1.8 W 1.18 0.29 0.44 0.46
1.8 P 1.67 0.25 0.34 0.464
1.6 W 0.59 0.09 0.14 0.18
1.6 P 0.80 0.04 0.07 0.25
1.8 W 1.22 0.30 0.47 0.49
1.8 M 1.47 0.37 0.59 0.40

Table 5.2: Pressure drop measurements for measurement points by reboiler, feed
inlet (F), product side stream 1 (S1) and product side stream 2 (S2), change in
column branch: W - whole column, P - prefractionator, M - main column, butanol
experiment.

step changes. It is believed, that the reason lies in composition changes which

effectively hides more subtle changes.

During butanol experiments, see figure 5.16, no direct effect of liquid split on

total pressure drop was observed. The liquid split step changes for whole column,

prefractionator and main column do not cause any measurable change. Pressure

drop vary independently on induced steps.

All experiments were conducted at reboiler duty 1.8. The absolute values of

pressure drop shows the already described effect of vapor direction into individual

column branches. The curves for whole column experiments have different absolute

values, this change in pressure drop during experimental day can be explained by

decreasing of the amount of the liquid in reboiler.

Pressure Measurement by Feed, S1 and S2

During pressure drop measurements for Feed, S1 and S2, no particular results were

obtained. The results for 4-compound mixture are biased by composition shift.

Butanol experiments do not show any results either, all pressure measurements

follows the variation of total pressure drop, and these changes are not related to

the liquid split changes.

5.1.4 Heat-up

The pressure and temperature evolution during start up of the column was studied.

The column is is heated up at reboiler duty 2 with feed mixture inside the column.

The heat-up experiment was conducted as a total reflux experiment where all the

product streams were closed, and the feed was stopped.
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Figure 5.7: The pressure drop evolution, change in liquid split for whole column
(W), prefractionator (P) and main column (M) , butanol experiment.

Temperature

The temperature increase and stabilization is captured in figure 5.8. The heating

up of the column starts from energy source – the reboiler. The energy is used to

heat up content in reboiler, about 8 liters of butanol with small amount of other

alcohols from feed mixture. Once the temperature increases to about 100°C, most

of the energy is used to vaporize liquid into vapor.

This vapor flows up and heats up sections above the reboiler, the vapor meets

cold internals of the column, and condensates. Energy is used to heat up the

column sections and internals. Its temperature increases up to the temperature of

the vapor, the energy consumption depends on heat capacity of the internals and

column walls Once part of the column reach evaporation temperature, the vapor

flow continue to the section above, and condensation occurs there on cold internals

until the section is heated up.

Since the Kaibel column consist of two branches, the vapor has to split into

prefractionator and main column. The vapor split ratio is naturally given by re-

sistance of the packing and other internal parts, as well as by liquid split, or this

ratio can be adjusted using vapor split valves.

From temperature measurements it is clear, that once the section is heated up,
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Figure 5.8: Heat-up of the column, and temperature stabilization during start up.
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the temperature increase is fast as a step change, later this increase slows down,

until the temperature settles on steady state. Once the top of the columns is heated

up, the vapor enters total condenser, where it changes its state, and flows back into

the column as a liquid. In figure 5.8, as T1 increases to stable point, most of

the other temperature starts decreasing towards the steady state, or continues in

increasing towards it.

The stabilization of the column into the steady temperature profile lasts ca

one hour. It is clear from the figure, that the changes after initial fast increase

for individual temperatures differ. This is due to diverse effects of vapor flow, and

liquid flow in opposite direction. The change in liquid flow is induced by vapor flow,

and naturally slower phenomena in general as liquid flows through the column.

Pressure

Figure 5.9 shows pressure change in pressure drop.

The pressure increase started with the increase of T16 reboiler temperature.

The increase slows down at 300 and 650 Pa, which agrees with the stop in in-

creasing temperature in reboiler at about 30°C and 32°C. Then both, pressure and

temperature start increasing again. Once T16 finishes the first jump, pressure is

about 920 Pa, at the same time the T15 temperature starts increasing, followed by

other temperatures. As the column is heated up, pressure drop increases, until the

top is heated up (T1), and pressure drop stabilizes at maximum, 2.1 kPa.

Pressure drop is increasing with increasing of the height in the column, which

vapor flow can reach before condensates.

5.2 Control Experiments

Different control structures for Kaibel distillation column were tested. Four to five

feedback control loops regulates chosen temperatures alongside the column. The

three loops are controlled using liquid split product valves D, S1 and S2. The forth

loop uses liquid split RL, or vapor split RV as manipulated variable. In 5-point

temperature control, both vapor and liquid split in use.

5.2.1 Liquid Split Control

Closed loop experiments for 4-point temperature control were carried. TP5 tem-

perature was used as a controlled temperature for liquid split control loop RL, the

other three control loops use product valves D,S1,S2 as manipulating variables.
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Figure 5.9: Heat-up of the column, pressure evolution during start up.

These experiments verify current controller settings, and serve as a comparison

to other control structures. The response to setpoint changes of all controlled

temperatures was measured together with rejection of disturbance of feed rate.

Feed-rate Disturbance

The figure 5.10 shows disturbance of the feed rate of 20%. The feed rate was

increased from 3 to 3.6 l/h at 9:38, and lowered back at 10:06.

In two minutes after the step change, the RL and S2 control loop are unable to

keep the setpoint temperatures and start decreasing. Both controllers compensate

for the disturbance, S2 temperature reaches desired setpoint in 10 minutes, while it

takes more than 15 minutes for the RL. This is due to lower gain of RL controller.

The magnitudes of the changes are 0.5 °C for both temperatures. Similar responses

are seen for the step back.

The other control loops – D, S1 - seems unaffected, this is due to farther distance

from the feed. Increase in feed rate causes higher load in the column. It is clear

from the figure, that the S1 controlled temperature T7 is more noisy compare to

the other temperatures, this is not due to difference of measuring device, but due to

proximity of the top of the main column branch, where colder liquid meets warmer

vapor, and temperature varies locally.
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Figure 5.10: Closed loop experiments, 4-point temperature control liquid split,
disturbance rejection: + 20 % feedrate at 9:38 and – 20% at 10:06, D setpoint
change from 70°C to 69°C at 10:33 and back at 10:53.
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The main disturbance is due to bigger load of colder feed entering the column.

The feed temperature is around 40°C for temperature setpoint of feed heat element

at 60°C. As the larger load is distributed through prefractionator, it affects RL

temperature TP5 and continues down towards reboiler, where S2 temperature T13

is affected.

D Setpoint Change

The same figure 5.10 shows the responses to change of setpoint in D temperature

T2 from 70 to 69°C at 10:33 and 10:53 back. The D temperature reaches new

setpoint in ca five minutes after initial change for both steps, for the step back the

D temperature overshoots the setpoint. The effect on other loops follows.

RL temperature is driven away for ca five minutes, with magnitude of this

changes less than 0.5°C in the same direction as D temperature changes. For S1

temperature, it is clear that some disturbance occurs the step down is not as visible

in the noise, while step up shows increase in temperature for almost 1°C before it

settles back in three minutes. The effect on S2 loop is rather small, following

the same direction as RL with smaller magnitude, there is a small decrease in

temperature after the second step, this can be explained by effect of other loops –

RL, S1, which are settling.

The other loops are affected by the amount of liquid flowing from the top of

the column, D manipulated variable.

The following figure 5.11 shows change in setpoints in variables RL, S1 and S2.

S1 Setpoint Change

New temperature setpoint for S1, is reached almost immediately after the step at

8:54. The other temperatures are almost unaffected, smaller changes are visible for

RL and S2 in the same direction, but this effect is so small, that it can be explained

as well by variation due to change in composition.

S2 Setpoint Change

The change in S2 temperature setpoint starts at 9:35, new setpoint is reached in

ca 7 minutes. The response to step back is bit faster, setpont is reached in 5

minutes without any overshoot. During the fist step, the S2 manipulation variable

saturates for initial response. These changes have no visible impact on the other

control loops.
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Figure 5.11: Closed loop experiments, 4-point temperature control liquid split,
setpoint changes +- 1°C: S1 starts at 8:54, S2 starts at 9:35, RL starts at 10:01.
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RL Setpoint Change

At 10:01 the setpoint changes in RL were introduced. For step down, the new

setpoint is reached after 10 min, for the step up the response is similar and it

overshoots the setpoint first. This change has an effect on S2 controlled tempera-

tures, while the other two are intact. The S2 temperature is disturbed in the same

direction as the change of RL with the magnitude of 0.3°C.

To conclude, the manipulated variables are able to handle all of the introduced

changes in reasonable time range. They operates in rather narrow range without

getting saturated for most of the cases, which agrees with the sensitivity of con-

trolled variables. The saturation in small scale occurs for S2 temperature change

for initial response of the controller.

5.2.2 Vapor Split Control

The usage of vapor split as a manipulated variable brings several challenges. As it

was mentioned, two vapor split valves situated in prefractionator and main column

enables the control of vapor split in whole range. The steps of valves are quite rough

due to over-dimension of the equipment, and in several occasions, the slipping of

the stepper motor, which moves the valves, was observed.

Open Loop

The open loop step response experiment was used to estimate the correct param-

eters for vapor split controller RV. The controlled temperature in RV loop is TP7

which is the most sensitive temperature, verified by experiments carried by Dwivedi

(2013). The manipulated variable RV range from 0 to 1. This value is translated

into position of the valves as explained in Experimental Setup.

The steps were conducted in whole range of RV, the response of TP7 is captured

in figure 5.12. It can be seen that the magnitude of the responses are dependent

on the position of the initial and final value of manipulated variable, i.e. the

temperature change is nonlinear to the change of RV.

First, set changes were conducted close to the middle value of 0.5, which agrees

with position where both valves are open. It can be observed, that the temperature

responses are of small magnitude. The first high peak at 115°C was caused by lack

of feed entering the column, and hides the response to the step change from 0.3

to 0.7. Later, the step changes were conducted closer to the edges of the RV

range. The temperature responses has larger magnitude compare to previous step

responses. The actual steps and temperature responses are summarized in a table

5.3.
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Figure 5.12: Open loop experiments, 4-point temperature control vapor split, RV
step changes.

RV ∆TP7
start - final [°C]

0.5 – 0.35 no visible change
0.35 – 0.65 0.37
0.65 – 0.5 0.26
0.5 – 0.3 0.5
0.3 – 0.7 disturbance
0. 5– 0.7 0.5
0.7 – 0.9 6.3
0.9 – 0.1 unstable
0.5 – 0.3 0.3
0.3 – 0.1 2.9

Table 5.3: RV Open loop step changes, ∆T P7 response after 5 minutes from the
initial change.
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Controller Tuning

It is clear, that the magnitude of TP7 temperature responses towards RV varies

along the range of manipulated variable. This change of sensitivity, can be also

concluded from active vapor split experiments presented by Dwivedi (2013). Their

controller tends to keep the RV at positions close to the boundaries on both sides,

where the temperature is more responsive, while the middle range is almost unused.

This causes difficulties to find correct parameters of the controller. The con-

troller gain KP is dependent on the step position, therefore the computed values

varies from 0.09 for the edges to 10 for the middle range.

Different controller settings and boundaries of manipulated variable were tried.

To summarize the observations:

� For large gain the temperature responded for changes close to middle range,

but was unstable for changes close to the edges.

� For smaller gain, the responses at the middle range are not observable, and

the controller tends to saturate in one of the extremes, and doesn’t reach the

desired steady state.

� RV boundaries 0.1 – 0.9 were used in most of the experiments to avoid com-

plete closing of vapor flow through one of the branches. Experiment with

lowering of the boundaries to 0.3 – 0.7, and thus usage of middle range only,

in combination with large controller gain did not bring desired effect.

It was conceded, that the main problem lies in the uncertainty of the responses

in the middle range, where the switch between vapor split valves occurs. It was

assumed, that some nonlinearity could be removed by using one valve only for

control of the vapor split, and lower the RV range to one half.

From open loop experiments, it is concluded that the controlled temperature

TP7 is more sensitive towards the changes of RV in its upper range. Note, that

observation of the last open loop steps 0.5 - 0.3 and 0.3 - 0.1 could have been biased

due to big disturbance caused by previous step 0.9 - 1. Even if the sensitivity is

the same for both valves, the possibility of measurement bias justify the choice.

Therefore, the boundaries of manipulated variable RV were set <0.5, 0.9>,

which means regulation of the vapor slit by split valve in the main column only.

The controller parameters were computed from the step change 0.7 to 0.9. The

SIMC rules for integrating processes (Skogestad (2003)) were used. The parameter

estimation for t auc = 2mi n, results in KP = 0.09, τI = 8. This controller would be

able to cover the changes close to upper boundary, due to small gain, but would

not be that responsive at lower part of the range.
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The setpoint temperature for controller was found by setting RV to manual

control at value 0.7. To avoid temperature drift and maintain control of the pre-

fractionator, the RL control of TP5 was turned on. Once, the steady state was

reached, the RL control loop was turned to manual, and RV control loop was

turned to on.

RV Setpoint Change

From figure 5.13, it can be seen that RV controller is able to keep steady state.

The step change of RV controlled temperature TP7 was introduced. The response

to step up is rather slow, controller steps from 0.7 to 0.8 almost immediately, but

it takes more than 15 minutes to reach new setpoint. There is visible pause, where

temperature stops increasing, this can be due to delay in between proportional and

integrating action of the controller, or due to some disturbance in feed composition.

The other control loops are unaffected by this change.

The TP5 temperature increases as the temperature in whole prefractionator

arise with larger vapor flow. The temperature responses for change of vapor flow

were captured, and are presented in Appendix B. To conclude, the temperature in

prefractionator increases with step up, and decreases with step down, the effect is

largest at the bottom of the branch, whereas at the top of it the change is hardly

observable. The main column seems unaffected by this changes, temperatures in

the bottom of the main column varies, but no visible trend is observable.

The step down in setpoint is faster compare to step up, in 10 minutes temper-

ature is close to new steady state. However, the temperature stays ca 0.3°C higher

than the steady state, the controller is unable to reach it in observed time range.

During the step down, RV manipulated variable reach values around 0.6, where the

temperature sensitivity to RV change is weak.

RL Disturbacne

The controller settings were tested for capability of disturbance rejection. The step

change of liquid split RL was introduced into the system, see figure 5.14. The step

from 0.4 to 0.45, increased the liquid load into the prefractionator. TP7 controlled

temperature decreases from steady state for five minutes, with the lowest value

differing from setpoint about 1.5°C, before it starts increasing and reach setpoint

in ca 10 minutes. The S2 controlled temperature T13 follows the same trend with

lower magnitude.

The manipulated variable increases before it almost saturates, and stays at 0.88.

After the disturbance is introduced, the oscillations of the controlled temperature
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Figure 5.13: Closed loop experiments, 4-point temperature control vapor split, TP7
step change.
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Figure 5.14: Closed loop experiments, 4-point temperature control vapor split, RL
disturbance.
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occur. The oscillations are locally distributed in the system, which it is visible from

oscillations of the S2 controlled temperature, but not from the others.

RV at 0.9 means that most of the vapor flows into prefractionator, as vapor

split valve in main column is almost closed.

The RL step from 0.45 to 0.4, decreases the liquid load, and TP7 increases

about 0.5°C before it settles back in ca 10 minutes. The oscillations disappear, as

RV controller decreases from saturation. This trend can be seen for S2 temperature

as well.

From the system reaction to RL at 0.45, stabilization of RV close to its limit

can be concluded that for given settings the system is on the edge of stable oper-

ation. Settings includes feed rate, energy input, controller settings, boundaries of

manipulated variables, and setpoint temperatures.

In this case, the newly introduced were RV controller settings and boundaries,

and RV temperature setpoint. The setpoint temperature was set the same way as

for RL controlled temperature; after start up, manipulated variable was kept at

desired steady state value manually, until the temperature settles, and then the

control loop was introduced. The temperature profile of prefractionator is strongly

dependent on feed composition, which slightly vary from batch to batch. For these

experiments, batch is formed by recycling products from product tanks and by

removing part of the butanol which accumulates in reboiler during operation.

The lowering of setpoint temperature would allow to move from the saturation

and avoid oscillations.

S2 Setpoint Change

The setpoint change for S2 controlled temperature T13 was introduced into the

system, see figure 5.15 The new steady state was reached after five minutes from

the initial step change at 9:58. The RV controlled temperature TP7 lowered bellow

setpoint, but not immediately after the step change, thus there could be other

reasons for this behavior. During this step, some small oscillations of RV, D and

S1 controlled temperatures occurs. This oscillations stays after the step change in

S2 setpoint back to initial value. It takes 15 minutes for S2 temperature to reach

the desired value after step back, the TP7 is increased temporarily to 90°C after

the new steady state of S2 is reached.

It can be concluded that, while the controller settings are not ideal, it is possible

to reject setpoint changes and disturbances in reasonable time. The controller’s

optimal value lays in good operating range, and avoids saturation, and complete

closing of the vapor valves.
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Figure 5.15: Closed loop experiments, 4-point temperature control vapor split, S2
step change.
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Oscillations were observed close to the upper boundary for RV. This can differ

for various setpoints for TP7. The other reason could be rather narrow boundaries

for liquid split RL (and chosen steady state). This idea is covered in Discussion.

5.2.3 5-point Temperature Control

Experiments were carried to verify new control structure, which was introduced

to improve the control of the column. The goal was to use two different temper-

atures in prefractionator as controlled variables for two separate control loops to

improve the speed of stabilization of the prefractionator temperatures. The ma-

nipulated variables available to use are liquid split RL and vapor split RV. The

vapor split control temperature is the same as in previous experiments, TP7 on

the bottom of the column is the most sensitive temperature for vapor split. The

same controller settings were used as in previous case. The possible temperatures

for liquid split control were TP1 to TP6. Temperature TP5, the most sensitive one

towards the RL, was declined due to high sensitivity towards the change of vapor

split, and the same reasoning applies to TP6. The two control loops would con-

tradict each other. TP4 is temperature measurement by feed entrance, therefore

the temperature variations are rather large and the temperature is most sensitive

to disturbances in feed rate, its temperature and composition, which summarize

the reasoning against using this temperature. TP3 measurement sensor is strongly

biased, unavailable for control purposes. The remaining temperatures TP1 and

TP2 have similar sensitivity towards RL variations, and the influence by vapor

split variation is smaller compare to TP5. Both temperatures seems as acceptable

choices for control variables.

Open Loop Experiments

As the first open loop experiments, figures 5.16 and 5.17 showed varying result,

more experiments were conducted to uncover the behavior. For experiments on

figures 5.16 and 5.17, S1 and S2 control loops were turned on.

Figure 5.16 shows temperature responses of TP1, TP2 and TP5 to step in RL.

After the first step change, RL from 0.5 to 0.3., the TP5 temperature starts in-

creasing; both TP1 and TP2 show small inverse response before start increasing.

A smaller RL step in opposite direction induces decreasing of all studied tempera-

tures.

In figure 5.17 is shown rest of the results from the same laboratory run. The RL

step change from 0.5 to 0.4 and back is introduced to the system. TP5 increases

and decreases accordingly. The response from TP1, and TP2 is weak, again the
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Figure 5.16: Open looop experiment, 5-point temperature control, RL step change,
TP1, TP2 and TP5 responses, closed loops D, S1, S2, open loop RV.

inverse response is observed. In this case, this inverse response last longer compare

to previous figure, and its magnitude is almost larger than the rest of the step.

The other set of experiments were carried to uncover the changes. The control

loops S1 and S2 were set to manual at steady state values to eliminate the influence

of respective control loops. RL was changed from 0.4 to 0.6 and back, see figure

5.18. The TP1 and TP2 temperatures show yet another not predicted behavior.

As the RL is increasing, the temperatures start responding in “correct” direction

(the same as TP5), but then starts increasing until reach peak and lowers bit again,

where it settles. After RL step from 0.6 to 0.4 is introduced, TP1 and TP2 starts

decreasing, the minimal values are reached and then increase towards steady state.

In comparison to other controlled temperature, the TP1 and TP2 copies the

response of S1 controlled temperature T7, and consequently D controlled temper-

ature T2. Since the S1 loop was on manual, the liquid split change influenced T7

and caused variations, which were distributed to prefractionator.

The last open loop experiment was conducted with all control loops closed,

namely D, S1 S2 and RV. Results are presented in figure ZZ. TP1 and TP2 shows

similar behavior as TP5 with smaller magnitude. After five minutes from original

change, the open loop responses are reversed by RV control, which tries to remove

the liquid split disturbance. The controller settings were calculated from initial
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Figure 5.17: Open looop experiment, 5-point temperature control, RL step change,
TP1, TP2 and TP5 responses, closed loops D, S1, S2, open loop RV.

Figure 5.18: Open looop experiment, 5-point temperature control, RL step change,
TP1, TP2 and TP5 responses, closed loop D, open loops S1, S2, RV.
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Figure 5.19: Open looop experiment, 5-point temperature control, RL step change,
TP1, TP2 and TP5 responses, closed loops D, S1, S2, RV.

responses.

Controller Tuning

The SIMC rules, by Skogestad (2003), were used to find the controller parameters.

Two different values of τc parameter were tried. Controllers with τc = 1mi n,

were too fast, and the liquid split variations were too big – changing from 0.3 to

0.6 every couple of minutes. This would cause big variations inside the column,

and even instability.

For τc = 2mi n, the parameter the RL variations are lower. The controller with

parameters KP =−1, and τI = 8 is shown in figure 5.20. TP1 controlled temperature

is increasing, but the increase of manipulated variable RL seems to only worsen it.

Then, RL is set to manual. It seems that for bigger variations of liquid split RL,

the “inverse” response prevail, and temperature TP1 shifts in the direction of T7

change.

5.2.4 Pressure Drop Modeling

Simulation results are summarized in table 5.4. The pressure values are smaller

compare to experimental results. This can be due to the used equation, which was

derived for columns with larger diameter. From experimental studies on random
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Figure 5.20: Controller Tuning, 5-point temperature control, controlled tempera-
tures and controller outputs vs. time
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Table 5.4: Results for pressure drop modeling

Reb. duty RV total pressure pressure P pressure M molar flow P molar flow M
- - [Pa] [Pa] [Pa] [mol/s] [mol/s]

2 0.5 455 98.15 98.15 0.0225 0.0266
2 0.3 456.3 98.89 98.89 0.0224 0.0267
2 0.1 457.67 99.6 99.6 0.0223 0.0268
2 0.7 457.63 99.37 99.37 0.0226 0.0264
2 0.9 460.17 100.56 100.56 0.0227 0.0263
1.8 0.5 265.7 57.31 57.31 0.0172 0.0203

packing, it is known that the dry pressure drop is smaller for smaller column diam-

eters. Parameter can be introduced into the pressure resistance equation for fitting

of the model to experimental results. The model shows expected results for change

of reboiler duty, and the vapor split change.



Chapter 6

Conclusions, Discussion, and

Recommendations for

Further Work

6.1 Discussion

The discussion chapter focus on description of peculiar behaviors, the most relevant

discussion is in Result section.

Pressure Measurement by Vapor Split Valves

The valves are equipped with two horizontal tubes with ca 5mm in diameter. Pres-

sure measurements were realized using silicone hoses molded in U-shape with one

end connected to the horizontal tube emerging from the vapor valve, and with the

other end open to the atmosphere.

It was observed, that some liquid was accumulated in these tubes, and also par-

tially in hoses. The main reason for it is seen in condensation of vapors in narrow

passage, where it stays and eventually forms liquid plug, which biases the measure-

ment. Capillary forces can be other reason for liquid accumulation, probably these

forces enhances the first effect.

There were several signs, that measured values were incorrect. The two mea-

surement points, PB and MB, which denotes the pressure bellow respective vapor

valves, sometimes differ, even-though the measured pressure should be equal, since

there is no packing or other internals between these two points. Also, as the lab-

65
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oratory run progressed in time, the measured values were getting lower, and some

even got into negative, which would indicate pressure in the column lower than in

atmosphere.

Pressure Buildup by Side Stream 2

Different approaches were introduced to en light the phenomena of pressure build

up and pulsating. The pressure build up was observable on liquid seal by side

stream 2 (S2), which is also used as pressure measurement. The pressure increases,

sometimes in form of pulses. Once the liquid seal is overcomed, the vapor is leaking

from the column through S2. The pressure increase is distributed inside the column,

the vapor leakage stops the vapor flow into the upper part of prefractionator.

The larger liquid seals to were equipped to the column for S1, and S2. The

effective height of these U tubes is ca 35cm. During experimental run, even these

new liquid seal was overcomed. This observation denotes pressure equal to more

than 35cm of height of liquid column. In comparison, the normal liquid column

height for total pressure drop in reboiler for this operation is ca 25-30 cm. Since

the pressure was larger, than total pressure drop in whole column, the source of

pressure build up has to be external.

Finally, the pressure phenomena was explained. The S2 product tube is quite

narrow, and on its way to product tank has to do two 90° turns, and leads almost

horizontally. The tube was replaced by wider silicone hose, and it was observed

that the liquid is accumulated above the entrance to the tank. The problem lies in

small throughput of the tank. When the liquid plug is formed and the pressure by

S2 is increasing.

Experiment – Model Mismatch

The simulation results show that model describes the phenomena rather well, but

the magnitude of these changes is low. In Maćkowiak and Maćkowiak (2014) is

written that - for random packing - the dry pressure drop depends on the diameter

of the column. This could explain the experiment-model mismatch. Parameter can

be introduced for better fit.

The other option could be that the chosen approach for estimation of pressure

restrictions is unsuitable for given experimental column. The empirical equation is

denoted for columns with considerably larger diameters.
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6.2 Conclusions

The theoretical part provides introduction to problematic of Kaibel column, divid-

ing wall columns, and other thermally coupled arrangements with focus on control

approaches. The practical implementations of vapor split control were shown. The

other part focus on pressure drop, and different approaches of pressure drop esti-

mation and modeling.

The pressure drop evolution in Kaibel column was studied experimentally. The

pressure drop is strongly dependent on energy input. The total pressure drop

increases, if one of the branches is closed, and the magnitude depends on amount

of packing in given section. The composition is also important factor for pressure

drop, the feed with higher molecular weight, the pressure drop is higher. The

change of liquid split does not have particular influence on pressure drop.

The model for pressure drop in Kaibel column was created. The model is able

to compute steady state values for total pressure drop, pressure drop in prefrac-

tionator, and main column, and vapor flows into respective branches. The input

variables are reboiler duty, vapor split and temperature and composition in reboiler.

The simulations show expected dependency on reboiler duty and vapor split. The

model was not fitted to experimental data.

The four-point temperature control of Kaibel column was studied. Control

structure with liquid split control can reject feed disturbances, and setpoint changes

of all variables.

The control structure with vapor split was introduced, and the open loop re-

sponses were studied. The sensitivity of controlled temperature is strongly depen-

dent on the position of the step change in manipulated variable. The controller was

tuned using only one of the valves to avoid non-linearity in responses, and avoid

saturation at boundaries. Even for this one-valve-control, the system was able to

reject setpoint change, liquid split disturbance and setpoint change of side stream

2 control loop temperature.

The five-point temperature control of Kaibel column was studied. The addition

of second control loop to the prefractionator enables both liquid and vapor split

control. The open loop responses for preferred controlled temperatures in prefrac-

tionator were conducted. The temperatures on top of the prefractionator show

incoherent responses, and the strong dependency on control loop S1 was found.

The sensitivity towards the liquid split is rather low. The steady operation closed

loop operation for 5-point control was not reached.
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6.3 Recommendations for Further Work

� Re-tune vapor split controller for wider rejection

� Try other controlled temperatures for five point control

� Fit the pressure model to experimental data



Appendix A

Acronyms and Abbreviations

DWC(s) Dividing wall collumn(s)

GDPR Generalized pressure drop correlation

B Bottom product

D Distillate, top product

RL Liquid split

RV Vapor split

S1 Upper side stream product

S2 Bottom sidestream product
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