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Summary

With the development of the oil production industry, a gas lift process has become

one of the most famous artificial lift techniques. The lift gas rate and oil production rate

relationship in the process has a clear maximum point which is called an extremum, and

keeping the system in the extremum achieves a maximum profit where the gradient be-

comes zero. This kind of control strategy is called extremum seeking control(ESC).

In a classic ESC, it assumes a dynamic plant as a static model and estimates the gra-

dient with a local linear static model resulting in a slower convergence to the extremum.

This is the main drawback of the classic ESC. Thus, this disadvantage motivated to start

this project with an idea that estimating the gradient with a local linear dynamic model

will achieve much faster convergence. The new strategy is named a dynamic ESC using

ARX model.

In the design of the dynamic ESC, a wave perturbation is decided to be not a sinusoidal

wave but a pseudo-random binary sequence(PRBS) wave. The reason behind this is that

diverse frequencies in the PRBS wave make the ARX model to estimate the gradient more

efficiently. Moreover, it turned out that the ARX model often has numerical spikes on the

estimated gradient. This problem could be revised by combining the ARX model with the

least square(LS) method and named as a Modified dynamic ESC.

With the newly developed control methods, three case studies with different plant mod-

els are performed. The first case study uses parallel heat exchangers with one split model

and the second and third case studies are a single gas-lifted oil well and multiple gas-

lifted oil wells respectively. The result obtained by the dynamic ESC is compared with

that obtained by the classic ESC, verifying the superior performance of the dynamic ESC.

Additionally, disturbances are applied to test the control strategy.
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Chapter 1
Introduction

In oil production industries, gas lift on oil wells is one of the most popular techniques in

artificial lift methods to improve oil production rate in mature fields as studied by Eikrem

et al. (2008). A simple sketch of a single gas lift well is illustrated in Figure 1.1. In detail,

the compressed lift gas is injected from surface to the bottom of the tubing through the

annulus. This lift gas forms a mixture with the fluid from the reservoir and the newly

formed fluid has a lower density than the fluid from the reservoir. As a result, the drop in

density decreases downhole pressure and consequently increases the oil production rate.
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Figure 1.1: A gas lift oil well

However, Peixoto et al. (2015) explained that excessive gas injection has a counter-

active effect on oil production rate. This is mainly because the injection of a large amount

of gas in the fluid produces a large frictional pressure drop. This leads to the relationship

between the gas injection rate and the oil production rate having a maximum point, so-

called an extremum. This tendency is well illustrated by Aliev et al. (2015) through their

study on mathematical modeling of gas lift process as shown in Figure 1.2.

Figure 1.2: The dependence of oil production rate on the gas injection rate
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With this background, Aliev et al. (2015) summarized that this kind of problem where

the input-to-output relationship has an extremum and keeping the output around the maxi-

mum value is the main issue is called extremum control or self-optimizing control, or more

precisely, extremum seeking control(ESC). According to Liu and Krstic (2012), extremum

seeking can also be well explained as a non-model based real-time optimization method

which can be used in a system having a minimum or maximum point where only limited

knowledge is approachable.

The concept of ESC was firstly emerged by Leblanc (1922), and it obtained popularity

after Krstić and Wang (2000) provided ”The first rigious proof of stability for an extremum

seeking feedback scheme”. Diverse developments in ESC towards faster and exact con-

vergence with sufficient stability are studied, see Hunnekens et al. (2014), Peixoto et al.

(2015), and Krishnamoorthy et al. (2016). The most popular approach is based on the sim-

ple fact that the gradient becomes zero at the extremum as suggested in Krishnamoorthy

et al. (2016). Specifically, the gradient estimation of the input-output map can lead the

system towards the extremum by a continuous integrating process.

A classic extremum seeking controller optimizes the steady-state gradient in real time

using a locally linear static model even though the plant is a nonlinear dynamic system,

explained in Krstić and Wang (2000). The main drawback of this approach stems from

using transient measurements for the estimation of a steady-state gradient. For an accurate

steady-state gradient estimation, the process has to settle down to steady-state before it can

be used. Almost all extremum seeking algorithm today assume a local linear static model

to estimate the steady-state gradient around the current operating time which makes the

convergence to the optimum very slow. This issue is the motivation to start this project

to figure out a new algorithm to accomplish faster convergence in the extremum seeking

controller.

The main idea to achieve the objective is using a local linear dynamic model to estimate

the steady-state gradient providing a faster update of the estimated gradient instead of a
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local linear static model. Among diverse dynamic models, ARX model is introduced and

it is named as a ”Dynamic extremum seeking controller”.
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Chapter 2
Basic Theory

In this chapter, a literature review on the existing classic ESC will be structured first.

mostly referring to Krstić and Wang (2000) and Krishnamoorthy et al. (2016). The basic

feedback control scheme of the classic ESC will be included, and the drawbacks will

be studied in more detail providing motivations to develop a new approach. This new

approach is named as the dynamic ESC. The reason behind the naming is that the classic

ESC assumes a plant as a static map while the dynamic ESC considers a plant as a dynamic

model.
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2.1 Classic Extremum Seeking Control

The classic ESC suggested by Krstić and Wang (2000) optimizes the steady state per-

formance of the output in real time by adding an external dither signal on the input. Figure

2.1 shows the basic structure of the classic ESC process which is a gradient-based model

in a discrete time setting with a sampling time Ts, see Krishnamoorthy et al. (2016).

Overall, the process includes a non-linear plant model, high pass filter(HPF), low pass

filter(LPF), gradient estimation unit, integral controller(C(s)) and a sinusoidal signal(asinωt).

The main procedure to find the extremum is estimating the gradient based on y values for

each step steps in u and using a controller(integral controller in this case) with a set-point

of the gradient at zero.

Figure 2.1: Classic ESC scheme implemented in discrete time

In terms of the plant model block, it consists of two parts, yss = f(uk) having a static

non-linearity and G(s) having a linear dynamic, suggested in Krstić and Wang (2000).

This kind of plant model is called Hammerstein and Wiener models in Abd-Elrady and

Gan (2008) as shown in Figure 2.2. The static gain of the plant( δyδu ) should be maintained

to be constant in one of the two blocks.
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Figure 2.2: Hammerstein and Wiener models

Equation (2.1) to (2.3) are provided by Krishnamoorthy et al. (2016), explaining the

high pass filter, the low pass filter, and the estimated optimizing variable respectively.

zk =
Th

Ts + Th
[zk−1 + yk − yk−1] (2.1)

ξu,k = (1− Ts
Ts + Tl

)ξu,k−1 +
Ts

Ts + Tl
zkαsin(ωt) (2.2)

Where Ju,k =
α

2
ξu,k

ûk = uk−1 + TsKiJu,k (2.3)

In detail, when the changes in the output yk − yk−1 enters the high pass filter, signals

with higher frequency than a cut-off time period Th can only pass the filter removing a

low-frequency part resulting in zk. This can also be explained as the DC component of y

is subtracted and yk is moved to have zero mean according to Krstić and Wang (2000).

After that, asinωt is multiplied to zk and it enters the low pass filter with a cut-off
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time constant Tl. Similarly, a DC component of the two sinusoidals Ju,k comes out which

is an estimated gradient, see Krstić and Wang (2000).

Finally, the integral controller generates an estimated input ûk+1 using the optimizing

variable Ju,k, looking for the gradient to be zero with a controller gain Ki. As a conse-

quence, the new input uk+1 is updated with sine perturbations.

However, there are some drawbacks in the classic ESC suggested in Krishnamoorthy

et al. (2016). The first and most important disadvantage in the classic ESC is its slow

transients to the new optimum after being disturbed. This slow dynamic is due to the

fact that the input(uk) and output(yk) data are dynamic data but the classic ESC uses a

local linear static model to estimate a steady state gradient. Specifically, the local linear

static model uses only parts of data reached a steady state and throws others away. This

wastes not only time to reach the steady state but also data obtained before the steady

state. This is the reason behind the fact that the local linear static model cannot efficiently

estimate a nonlinear dynamic plant system. As briefly mentioned in the chapter 1, this is

the motivation to start this project.

The second disadvantage is that the classic ESC loses its robustness when there are

disturbances with large amplitudes which changes frequently, which is well motivated by

Krishnamoorthy et al.Krishnamoorthy et al. (2016) by introducing a disturbance rejec-

tion block. To guarantee the stability of the dynamic ESC, the robustness towards large

disturbances has to be studied after development.

The last problem is originated from controller tuning. There are mainly five tuning

parameters, the high pass filter frequency, the low pass filter frequency, the amplitude and

frequency of sinusoidal perturbations, and the controller gain. In some cases, inadequately

decided tuning parameters seriously influence the accuracy and convergence speed of the

classic ESC, see Nešić (2009). Additionally, there is a controversial issue on the decision
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of the perturbation frequency. In specific, Nešić (2009) observed that the sine wave fre-

quency should be sufficiently small or large, while Tan et al. (2013) insisted that it has to

be located between the high pass filter frequency and low pass filter frequency. Thus, it

will be challenging to select different tuning parameters for achieving a fast and accurate

convergence in the classic ESC.

Even though various kinds of the ESC have been introduced such as using 1st-order

least-square method for gradient estimation provided in Hunnekens et al. (2014), all of

them has the same disadvantage caused from applying a static model to estimate a dynamic

system.

Therefore, introducing a dynamic model to estimate a nonlinear dynamic system in

the ESC will achieve much faster transients to the new optimum. As already mentioned,

this new approach is named as the dynamic extremum seeking controller or simply the

dynamic ESC. The dynamic ESC has one more advantage that the ARX model is capable

of estimating not only the gradient but also the time constant in transfer functions while

the classic ESC can only estimate the gradient. It is well described in 2.2.1.

A deep understanding of the dynamic ESC requires some knowledge of the ARX

model which is the most important idea and basis for this project, which will be stated

in the chapter 2.2.1.
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2.2 Dynamic Extremum Seeking Control

Overall, the dynamic ESC is based on the same idea with the classic ESC that the

gradient is estimated first, and a controller updates a new input value which can achieve

the zero set-point for the gradient.

The main difference between the dynamic ESC from the classic ESC is the gradient

estimation method. In detail, the slow transient to a new optimum in the classic ESC

results from the gradient estimation part. As already mentioned in the chapter 2.1, the data

of uk and yk are dynamic but the classic ESC uses a static model. Based on this fact, using

a dynamic model instead of a static model is considered since it can handle the input and

output data more efficiently for the gradient estimation. To realize this idea, ARX model,

which is a local linear dynamic model is considered in the dynamic ESC which is expected

to achieve a faster update of the estimated gradient.

Figure 2.3 illustrates a schematic control structure for the dynamic ESC. As the classic

ESC suggested by Krstić and Wang (2000), Hammerstein and Wiener’s models are used

to describe a plant in a simple way. In terms of the perturbation, αsinωt is applied firstly,

however, it is replaced with a pseudo-random binary sequence(PRBS) wave a wave with

diverse frequencies can estimate the ARX model better.

Figure 2.3: Dynamic ESC scheme using ARX method
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A deep understanding of the dynamic ESC requires some knowledge of the ARX

model which is the most important idea and basis for this study, which will be stated

in the chapter 2.2.1. With the basis, the algorithm will be provided in 2.2.2.

2.2.1 ARX model

Selecting models of dynamical systems is well identified in Ljung (1998). A basic

linear dynamic model with additive disturbance in discrete time system is specified as:

y(t) = G(q)u(t) +H(q)e(t) (2.4)

where

G(q) =

∞∑
k=1

g(k)q−k, and H(q) = 1 +

∞∑
k=1

h(k)q−k

In Equation (2.4), G(q) describes a relationship between the input u(t) and the output

y(t), and it is called the transfer function. The other term H(q)e(t) is an additive term at

the output comes from the disturbances where e(t) is white noise.

In a finite number of values, g(k) and h(k) can be considered as coefficients which

should be determined, and they can simply denoted by the vector θ. Thus the model can

be described as:

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2.5)

ARX model is a family of transfer function models which parametrizing G(q, θ) and

H(q, θ). It starts with specifying the input and output relationship as a linear difference
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equation:

y(t) + a1y(t− 1) + ...+ anay(t− na) = b1u(t− 1) + ...+ bnb
u(t− nb) + e(t) (2.6)

where

θ = [a1 a2 ... ana
b1 b2 ... bnb

]T

Additionally, by introducing some terms:

A(q) = 1 + a1q
−1 + ...+ ana

q−na , and B(q) = b1q
−1 + ...+ bnb

q−nb

This makes it possible to represent G and H as rational functions:

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
(2.7)

The polynomial parameter(θ) estimation is performed by a least square method. When

the ARX model finishes estimation providing θ, the dynamic discrete-time system model

can be converted into the dynamic discrete state-space model and dynamic continuous

time state-space system in sequence yielding A, B, C and D matrices in a state space

representation:

ẋ = Ax+Bu, and y = Cx+Du (2.8)

Where · is a notation for differentiation with respect to time. This process is explained

algorithmically in detail in 2.2.2.
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Thus, the estimated gradient(Ĵu) can be easily calculated by:

Ĵu =
dy

du
= −CA−1B +D (2.9)

Based on this ARX model structure, how the estimated A, B, C and D matrices in

Equation 2.8 are linked with variables in transfer functions will be explained. Both the

first and second-order transfer functions are introduced to give a better understanding.

First-order transfer function

First-order ARX model is used for estimating a system containing a first-order transfer

function as Equation (2.10).

G(s) =
k

τs+ 1
(2.10)

And the corresponding ARX model is

y(t) + a1y(t− 1) = b1u(t− 1) + e(t) (2.11)

where

θ = [a1 b1]
T

Parameters a1 and b1 are the two estimated variables by the 1st order ARX model, and

it gives A, B, C, and D matrices, which are [1× 1] in this case.

In regards to the plant model structure, the static non-linearity function f(u) gives an
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input yss for G(s). Thus, the relationship between y and yss can be stated in Fourier

domain as:

y = G(s) · yss =
1

τs+ 1
yss (2.12)

By a transformation from Fourier domain to time domain yields:

τ ẏ + y = yss (2.13)

By rearrangement,

ẏ =
yss − y

τ
(2.14)

Put y = x,

ẋ =
yss − x

τ
= −1

τ
x+

k

τ
yss (2.15)

Equation (2.8) can be written as a matrix form:

ẋ
y

 =

A B

C D


 x

yss

 (2.16)

and comparing Equation (2.16) with y = x and Equation (2.15) yields

14



A B

C D

 =

− 1
τ

k
τ

1 0

 (2.17)

In conclusion, the first-order ARX model estimates 2 parameters a1 and b1, or in its

final analysis, it estimates the gain of the system k and time constants τ .

Second-order transfer function

Second-order ARX model is used for estimating a system containing a second-order

transfer function as Equation (2.18).

G(s) =
τas+ 1

(τ1s+ 1)(τ2s+ 1)
=

γs+ 1

αs2 + βs+ 1
(2.18)

And the corresponding second-order ARX model is

y(t) + a1y(t− 1) + a2y(t− 2) = b1u(t− 1) + b2u(t− 2) + e(t) (2.19)

where

θ = [a1 a2 b1 b2]
T

Parameters a1, a2, b1, and b2 are the four estimated variables by the 2nd order ARX

model, and it gives A,B,C, and D matrices.
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Similar with the 1st order transfer function, yss is the input for G(s). In Fourier domain,

y = G(s) · yss =
γs+ 1

αs2 + βs+ 1
yss (2.20)

Equation (2.20) can be rearranged with respect to y
yss

, and z(s) is introduced for sim-

plifying a conversion to time domain,

y

yss
=

(γs+ 1)z(s)

(αs2 + βs+ 1)z(s)
(2.21)

Converting Equation (2.21) to time domain yields:

yss = αz + βż + z (2.22)

and

y = rż + z (2.23)

Put

x1 = ż, and x2 = z

where the relationship between ẋ2 and x1 becomes

ẋ2 = x1 (2.24)

Then, a set of equations can be obtained by applying x1 and x2 in Equation (2.22) and

(2.23) as

yss = αẋ1 + βx1 + x2 (2.25)
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y = γx1 + x2 (2.26)

Equation (2.25) can be rearranged in terms of ẋ1 as

ẋ1 = −β
α
x1 −

1

α
x2 +

u

α
(2.27)

Meanwhile, Equation (2.15) can be written in a second-order matrix form as

x =

ẋ1
ẋ2

 = A

x1
x2

+Byss =

a11 a12

a21 a22


x1
x2

+

b1
b2

 yss (2.28)

y = C

x1
x2

+Dyss = c1x1 + c2x2 + dyss (2.29)

Thus, comparing Equation (2.24), (2.26), and (2.27) with Equation (2.28) and (2.29)

provides A,B,C, and D matrices as

A =

−β
α − 1

α

1 0

 =

− τ1+τ2
τ1·τ2 − 1

τ1·τ2

1 0

 (2.30)

B =

 1
α

0

 =

 1
τ1·τ2

0

 (2.31)

C =

[
γ 1

]
=

[
τa 1

]
(2.32)
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D = 0 (2.33)

In conclusion, the second-order ARX model estimates 4 parameters a1, a2, b1, and b2.

At the same time, it can also be explained to estimate the system gain k and time constants

τa, τ1, and τ2 in its last analysis.

Therefore, from the analysis on the linkage between estimated variables and param-

eters in transfer functions, the second advantage of the dynamic ESC, ”it is possible to

estimate a controller gain and time constants in transfer functions”, is well explained.

2.2.2 Algorithm

A basic algorithm for the dynamic ESC is displayed in Algorithm 1 which is describing

the dynamic ESC procedures performed in Figure 2.3. Specifically, the input and output

values in the plant are filtered out by low pass filter and sets of data with a window size(l)

are built up. The filtering is not necessary if noise is not considered. The sets of data with

a window size(l) pass the zero mean unit where the average value is subtracted from the

data sets and they are moved to have a zero mean.

After that, the ARX model estimates parameters in a dynamic discrete time system,

and converts them into a state-space model in discrete time with idss generating A, B,

C, and D matrices. Then, the parameters are converted into a dynamic continuous time

state-space system by d2c, and the estimated steady-state gradient is calculated by Ju =

−CA−1B +D.

The estimated gradient is a controlled variable which has a setpoint of zero. A simple

integral controller is used to update the input with a controller gain Ki generating ûk+1,

and a pseudo-random binary sequence(PRBS) wave perturbation is added yielding uk+1.
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While the classic ESC uses a sinusoidal wave perturbations αsin(ωt), a PRBS wave

is applied in the dynamic ESC. The reason will be explained in section 3.1.

Main advantages of the dynamic ESC are (1) it converges faster to a new extremum, (2)

it uses all dynamic data for gradient estimation, (3) it is possible to estimate a controller

gain and time constants in transfer functions, (4) the tuning process is easier than the

classic ESC.

Algorithm 1 The dynamic ESC using ARX model
input: yk,uk

1: for k = 1→ n do

2: Data of the input and output values are built up with a window size l

3: vector uk ← [uk−l+1, uk−l+2, ..., uk]

4: vector yk ← [yk−l+1, yk−l+2, ..., yk]

5: Moved to have a zero mean

6: y0 ← yk − avg(yk)

7: u0 ← uk − avg(uk)

8: Gradient estimation with the ARX model using data sets of y0 and u0

9: data← iddata(y0, u0, Ts)

10: [A(q) B(q)]← arx[data, [1, 1, 0]] for 1st-order systems

11: [A(q) B(q)]← arx[data, [2, 2, 0]] for 2nd-order systems

12: [Ad Bd Cd Dd]← idss[A(q) B(q)]

13: [A B C D]← d2c[Ad Bd Cd Dd]

14: Ju,k ← −CA−1B +D

15: Integral Controller

16: ûk+1 ← uk +KiJu,k

17: Perturbation

18: uk+1 ← ûk+1 + prbs

19: end for
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Chapter 3
Design of the Dynamic ESC

In this chapter, the procedure to design the dynamic ESC will be explained. Since

almost all issues are caused by the model in the Case study 2, it is highly recommended

to see the process described in the section 5.1 to achieve a better understanding of the

process.

In short, the issues happen when the plant system changes from the first-order system

to the second-order system. The reasonable explanations stem from the difference in their

step responses and the ARX model.
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3.1 Decision of wave perturbations

When the dynamic ESC is developed, general steps used in this study can be listed as

below.

1. Apply a step change in the input and monitor the output changes.

This is to check if the plant model works properly.

2. Implement the ARX model and wave perturbations with a zero controller gain.

This is to check if the ARX model estimates the steady-state gradient as intended.

3. Turn on the controller and adjust tuning parameters such as a controller gain, win-

dow size, etc.

The steps are applied in Hammerstein-Weiner plant models with three different trans-

fer functions which are first-order transfer function, second-order transfer function without

zero, and second-order transfer function with zero. Please see chapter 5.1 for more infor-

mation on the plant process.

In brief, a sine wave perturbation works very well in the first-order system but not in

the second-order without zero system where the static non-linearity is illustrated as f(u) =

−0.1(u − 20)2 + 45 and the dynamic part is depicted as G(s) = 1
(174s+1)(60s+1) . The

simulation result of the step 2 where the controller is turned off is illustrated in the Figure

3.1. The blue solid lines are indicating the original input and output value containing

noise, and the orange dashed lines mean the steady-state values which are calculated from

the plant model.

In the Figure, the input and output move with sine wave perturbations but not updated

to a new value and the true steady-state gradient equals to 1. However, it is clearly indi-

cated that the steady-state gradient Ju is estimated as 0 by the ARX model. Even though
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sine wave perturbations with different frequencies and amplitudes are applied and other

tuning parameters are tried to change as well to solve the problem, none of them could

make the situation better.
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Figure 3.1: Simulation result for a single gas-liftd oil well model, second-order without zero system
using a dynamic ESC with sinusoidal perturbation: no control

Based on the fact that there was no such a problem in the first-order system, an ap-

proach for figuring out the cause of this matter comes from the difference between the first

and second-order system.

In specific, the step responses of the three different transfer functions are depicted in

Figure 3.2. The red dash-dot line is a step response to the second-order transfer function

without zero where the problem happened. With the figure below with zoomed-in in axis,

it is shown that there is almost no change in the response at the starting point due to the

secondary time lag response. Thus, sine waves with one frequency are discussed not to be

sufficient to obtain full information about y, so that the ARX model could not estimate the

gradient.
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Figure 3.2: Step responses of first and second-order transfer functions

To solve this problem, a pseudo-random binary sequence(PRBS) is introduced instead

of a simple sine wave. The PRBS generates a binary sequence with a vector length of N ,

which is set to be 1 in this project and it can be easily presented by idinput(N) in Matlab.

In principle, the PRBS wave perturbation can be implemented in Matlab with a simple

reminder logic as below. Since the rem(a,b) function in Matlab gives a reminder of a

divided b, a logic, ”if rem(simk, i) == 0, prbs = 1 ∗ idinput(1);”, updates a new

PRBS perturbation in every i steps of the simulation iterations.
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Figure 5.4 is obtained by the application of the PRBS wave perturbation in the input.

Differently from the sine wave perturbation in Figure 3.1, the ARX estimated gradient

successfully follows the true gradient.
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Figure 3.3: Simulation result for a single gas-liftd oil well model, second-order without zero system
using a dynamic ESC with PRBS perturbation: no control

This phenomenon results from the fact that the PRBS wave has a diverse range of

frequencies compared to a simple sinusoidal wave and this characteristic is more efficient

to make the ARX model estimate four parameters in the second-order system. This is

the reason behind the fact that the PRBS wave perturbation is suggested in Algorithm 1,

and the other case studies use the PRBS wave as well due to its advantage on the ARX

estimation.
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3.2 Combination of the ARX model with LS method

Another issue on the Figure 3.1 is that there are spikes in the estimated steady-state

gradient. The same problem occurred in the PRBS perturbation case as well. The spikes

make the system deviate from the optimal so that the estimated gradient converges to a

value which is not exactly zero.

After some additional simulations and observations, it became clear that the numerical

spikes are prone to firstly happen right after the estimated steady-state reaches zero, and

occasionally even after the convergence. Therefore, the ARX model is discussed as a

possible reason to explain such phenomena.

In specific, the second-order ARX model is:

y(t) + a1y(t− 1) + a2y(t− 2) = b1u(t− 1) + b2u(t− 2) + e(t) (3.1)

where θ = [a1 a2 b1 b2]
T

The second-order ARX model estimates four parameters stated in the θ vector. When

we consider a point near the extremum where Ju is close to zero, there is a change in the

input u, but almost no change in the output y which makes only one parameter can be

estimated as depicted in Figure 3.4. However, the ARX model still tries to estimate four

parameters, and this is the cause of the peaks. They are simply called numerical spikes or

numerical peaks.

Therefore, this discussion has an implication that there is a probability of the numerical

spikes near zero-gradient when the ARX model estimates more than one parameters, even

in a first-order system as well.
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Figure 3.4: The input and output relationship when the gradient is close to zero

Since the reason of the numerical spikes is expected to be the ARX model, a method

suggested solving this issue is combining a simple first-order least square(LS) method with

the ARX model in gradient estimation.

In specific, the ARX model can be switched with the LS method when Ju is close to

zero where numerical peaks may occur. This enables Ju to converge to zero fast enough

with the local linear dynamic model by the ARX method, and when it is sufficiently close

to zero, the switched LS method gives stability on the gradient estimation avoiding numer-

ical peaks.

In the simulations for each case study, this idea can be applied when serious numerical

spikes occur especially making serious deviations from the optimal. It is named as a

modified dynamic ESC. The algorithm is stated in Algorithm 2. The threshold to switching

the gradient estimation method is defined as ε.
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Algorithm 2 The modified dynamic ESC combining ARX model with LS method
input: yk,uk

1: for k = 1→ n do

2: Data of the input and output values are built up with a window size l

3: vector uk ← [uk−l+1, uk−l+2, ..., uk]

4: vector yk ← [yk−l+1, yk−l+2, ..., yk]

5: Moved to have a zero mean

6: y0 ← yk − avg(yk)

7: u0 ← uk − avg(uk)

8: if Ju,k−1 > ε then

9: Gradient estimation with the ARX model using data sets of y0 and u0

10: data← iddata(y0, u0, Ts)

11: [A(q) B(q)]← arx[data, [1, 1, 0]] for 1st-order systems

12: [A(q) B(q)]← arx[data, [2, 2, 0]] for 2nd-order systems

13: [Ad Bd Cd Dd]← idss[A(q) B(q)]

14: [A B C D]← d2c[Ad Bd Cd Dd]

15: Ju,k ← −CA−1B +D

16: else

17: Gradient estimation with the LS method using data sets of yk and uk

18: X ← [uk ones(size(uk))]

19: b← (X ′X)−1X ′yk

20: Ju,k ← b(1, 1)

21: end if

22: Integral Controller

23: ûk+1 ← uk +KiJu,k

24: Perturbation

25: prbs← idinput(1)

26: uk+1 ← ûk+1 + prbs

27: end for

28: ∗ ε is the threshold defined by the user
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Chapter 4
Case study 1 : Parallel heat

exchangers

4.1 Process description

With the successive development of the dynamic ESC in chapter 3, this first case study

introduces a general optimization problem as a plant model which is two parallel heat

exchangers with one split suggested and studied in Jäschke and Skogestad (2014).

In detail, the system has one inlet flow and it is divided into two streams with a split ra-

tio α. Each stream is heated by heat exchangers respectively, and they are merged together

yielding the outlet temperature, which is illustrated in 4.1.

In this process, the manipulated variable is the split ratio and the control objective is

maximizing the outlet temperature. Since this system has an obvious maximum point, it is

a great candidate for applying ESC.
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Figure 4.1: A schematic process diagram of a parallel two heat exchangers network with one split

The heat transfer rate is defined with heat transfer coefficient(U ), surface area(A) and

temperature difference in a heat exchanger. With an assumption that the energy is entirely

transferred into the single-phase fluid without heat loss, the energy balance can be written

as (4.1) and (4.2) for each heat exchanger.

Q1 = U ·A1 · (Th1 −
T1 + T0

2
) = F1 · cp1 · (T1 − T0) (4.1)

Q2 = U ·A2 · (Th2 −
T2 + T0

2
) = F2 · cp2 · (T2 − T0) (4.2)

Based on the fact that usually cold water is supplied and heated, T0 can be set as zero.

Additionally, F1 and F2 can be expressed as F0 ·α and F0 · (1−α) respecitvely as shown

in Figure 4.1. Thus, (4.1) and (4.2) can be formulated as below.
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U ·A1 · (Th1 −
T1
2
) = F0 · α · cp1 · T1 (4.3)

U ·A2 · (Th2 −
T2
2
) = F0 · (1− α) · cp2 · T2 (4.4)

By rearrangement, T1 and T2 are written as (4.5) and (4.6).

T1 =
Th1

α · k1 + 0.5
(4.5)

T2 =
Th2

(1− α) · k2 + 0.5
(4.6)

Where

k1 =
F0 · cp1
U ·A1

k2 =
F0 · cp2
U ·A2

Based on these temperatures, the outlet temperature Tout can be obtained by (4.7)

Tout =
α · F0 · cp1 · T1 + (1− α) · F0 · cp2 · T2

α · F0 · cp1 + (1− α) · F0 · cp2

=
α · cp1 · T1 + (1− α) · cp2 · T2

α · cp1 + (1− α) · cp2

(4.7)

Data for the parallel heat exchangers are provided in 4.1. T0 and F0 values are chosen,

and all other values related to the heat exchangers refer to Jäschke and Skogestad (2014).
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Variable Value Unit Description
T0 0 ◦C Cold feed temperature
F0 12 kg/s Total flow rate
cp1 30 kW/K Hot stream 1 heat capacity
cp2 50 kW/K Hot stream 2 heat capacity
Th1 120 ◦C Hot stream 1 temperature
Th2 220 ◦C Hot stream 2 temperature
U ·A1 50 ◦C Heat transfer coefficient· Heat exchanger 1 area
U ·A2 80 ◦C Heat transfer coefficient· Heat exchanger 2 area

Table 4.1: Data for Case study 1

The dynamics of the two exchangers and mixing point are first order and the time

constant is set to be 600s for all of them. All tuning parameters are suggested in Appendix

8.1.

The initial values of the variables in simulations are:

u = 0.9, [T1, T2, Tout] = [180.97, 818.83, 244.81]

32



4.2 Dynamic ESC using ARX model

Figure 4.2 represents the simulation result of the dynamic ESC on the two parallel

heat exchagners model. To see the gradual changes of the temperatures in each stream

(T1 and T2) and the outlet temperature(Tout) at the same time, they are all illustrated

in the first subplot with a yellow, purple, and blue solid line respectively. The second

subplot includes information of the input value which is the split ratio α, and the last plot

contains information of the estimated gradient and steady-state gradient with a blue solid

and orange dashed line.
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Figure 4.2: Simulation result for parallel heat exchangers with one split model using a dynamic
ESC

The result shows that the system is converging to the optimum at the first time, how-

ever, sudden numerical spikes happen in the gradient estimation and the system starts to

deviate after 4.5 · 104 iterations. As stated in the section 3.2, the idea to combine the ARX

model with the LS method is applied to remove the spikes and make the system converge

to the right extremum.
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4.3 Modified Dynamic ESC combining ARX model with

LS method

Figure 4.3 is obtained by applying the modified dynamic ESC mechanism. In detail,

the ARX method estimates the steady state gradient when the previously estimated gradi-

ent is larger than 50, and the LS method is used when it is same or smaller than 50.
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Figure 4.3: Simulation result for parallel heat exchangers with one split model using a modified
dynamic ESC with a threshold of 50

Overall, the estimated gradient converges to zero without numerical spikes. It is clearly

shown that most of the system is estimated by the ARX method, and it achieves a faster

convergence as intended. After the gradient becomes close to zero, the LS method makes

the convergence more stable not affecting the speed of the convergence.
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4.4 Comparison

In this section, the result obtained in the Figure 4.3 will be compared with the result

simulated by the classic ESC. The main objective of the comparison is to see the speed of

the convergence. Both cases are tuned as best as possible, please see the Appendix for the

information of tuning parameters.

Figure 4.4 is comparing the results obtained by the dynamic ESC and classic ESC with

blue and green solid line respectively. In the first subplot, only the outlet temperature is

indicated to show the result in a clear way.
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Figure 4.4: Simulation result comparison of a dynamic and classic ESC for two parallel heat ex-
changers with one split model

In specific, the system converges to the optimal around 5·105 iterations with the classic

ESC while the dynamic ESC requires only 10% of the iterations. The system moves to the

extremum very gradually and slowly in the case of the classic ESC. This fact proves the

usefulness of the dynamic ESC.
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4.5 Application of disturbance

Figure 4.5 shows a simulation result when a disturbance is applied. Since the main

role of a controller is counter-reacting to a disturbance and placing a process variable in

a set-point, this section will illustrate a performance of dynamic ESC in regards to the

disturbance.

In detail, the disturbance is applied in the inlet temperature of stream 1, Th1. Thus, the

equation (4.5) becomes (4.8) as below. The disturbance is set to be 40◦C.

T1 =
Th1 + d

α · k1 + 0.5
(4.8)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

0

0.5

1

u

u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

200

300

400

y

T
out

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

0

300

600

J
u

J
u

J
uss

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

0

20

40

d

disturbance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of Iterations 10
5

0

1

fl
a
g

1:ARX

0:LS

Figure 4.5: Simulation result for disturbed parallel heat exchangers with one split model using a
modified dynamic ESC with a threshold of 50

The result indicates that the input and output values are successfully converging to a

new extremum where the gradient becomes zero after the disturbance happens.
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Chapter 5
Case study 2 : Single gas-lifted oil

well

5.1 Process description

As shown in Figure 1.2, the relationship between the oil production rate and the gas

injection rate can be simplified as a polynomial equation. In Hammerstein and Weiner

model, this relationship represents a static non-linear part of the plant in Figure 2.3, yss =

f(u). The use of such simplified Hammerstein models for gas-lifted well is justified in

Peixoto et al. (2015) and Plucenio et al. (2009). Empirical models such as the one used

in this case study are also used in practice Hamedi et al. (2011). Therefore, Hammerstein

and Weiner’s model is assumed and the gas-lift model is simplified as a quadratic equation

in this second case study.

Specifically, Equation (5.1) can be used as a simple static non-linear quadratic system
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with unknown parameters a, b, and c, which has an extremum at (u, yss) = (a, b) when

the c is negative.

f(u) = c(u− a)2 + b = yss (5.1)

The constants in the Equation (5.1) are dependent not only on different wells but also

on operation situations and disturbances. In this project, the f(u) is not describing a real

system, and the constants are manually selected to have a clear maximum and small values

for the input and output. This is because when the values for u or y is large, it requires

too much computational time to converge. Using a simple model will provide a clear and

fast result and it will also help to develop the dynamic ESC model faster. Thus, the a, b,

and c are set to be 20, 45, and −0.1 respectively as Equation (5.2). Tuning parameters are

suggested in Appendix.

f(u) = −0.1(u− 20)2 + 45 = yss (5.2)

In this chapter, monitoring if the dynamic ESC algorithm is working well is the first

focus. For this, plant processes with different dynamics are tested, especially a first-order

transfer function, a second-order transfer function without zero, and a second-order trans-

fer function with zero are applied to add more complexity as Table 5.1. Each system with a

different transfer function is simulated one by one in section 5.2, 5.3, and 5.4 respectively.

The initial values of the variables are the same in all of the cases as:

u = 15, y = 42.5
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first-order
transfer function

second-order
transfer function without zero

second-order
transfer function with zero

G(s) = 1
τs+1

= 1
174s+1

G(s) = τas+1
(τ1s+1)(τ2s+1)

= 1
(174s+1)(60s+1)

G(s) = τas+1
(τ1s+1)(τ2s+1)

= 40s+1
(174s+1)(60s+1)

Table 5.1: Transfer functions for Case study 2

5.2 Dynamic ESC using ARX model for first-order sys-

tem

Figure 5.1 is illustrating the application of the dynamic ESC strategy on the first-order

system. The input, output, and estimated gradient are drawn with blue solid lines, and

orange dashed lines indicate steady-state values which is calculated from the plant model.
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Figure 5.1: Simulation result for a single gas-liftd oil well model, first-order system using a dynamic
ESC

39



In the figure, it is clearly indicated that the estimated gradient Ju follows the true

gradient, verifying the fact that the dynamic ESC using ARX model is successfully imple-

mented.

The system starts the gradient estimation after building some data sets, however, it can

be ignored to see the convergence speed since a process continuously works in a real plant

system.
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5.2.1 Comparison

Figure 5.2 is comparing simulation results for the first-order system obtained by the

dynamic and classic ESC. The blue solid lines illustrate the simulation with dynamic ESC

model. For the classic ESC, the values are stated with a green line.
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Figure 5.2: Simulation result comparison of a dynamic and classic ESC for a single gas-liftd oil
well with first-order system

In specific, the classic ESC converges to the extremum around 5 · 104 iterations while

the dynamic ESC only requires 3100 iterations. As already mentioned that there is no

need to wait to build data since a process is continuous and always build data, the window

size(720) can be subtracted from iterations to converge in the case of the dynamic ESC,

then it only takes 2380 iterations to the new extremum.

This result is extremely meaningful because a faster convergence is the main motiva-

tion to start this work. Numerically, only around 4% of the transient iteration steps are

needed for convergence with the application of the dynamic ESC compared to the classic

ESC.
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5.2.2 Application of disturbance

Figure 5.3 depicts the simulation result of a disturbed first-order single gas-liftd oil

well. The disturbance is applied in the static non-linear part and the equation (5.2) becomes

(5.3) as below, and the disturbance is set to be 2. The Modified dynamic ESC strategy is

used to avoid serious numerical spikes.

f(u, d) = −0.1(u− 20)2 + 45 + d (5.3)
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Figure 5.3: Simulation result for a disturbed single gas-liftd oil well model, first-order system using
a dynamic ESC

When the disturbance occurs, the system converges to the new extremum where (u, y) =

(20, 47) and the gradient equals to zero.
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5.3 Dynamic ESC using ARX model for second-order sys-

tem without zero

Figure 5.4 is obtained by the application of the dynamic ESC with PRBS wave pertur-

bation. As the previous first-order system, the estimated gradient follows the true gradient

as well. However, numerical spikes happen in the gradient estimation and they make a de-

viation from the true extremum as expected in section 3.2. In specific, the optimal value of

the input equals to 20 and the spikes firstly appear after 2000 iterations when the updated

input approaches to the optimal.
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Figure 5.4: Simulation result for a single gas-liftd oil well, second-order without zero system using
a dynamic ESC

As discussed in the 3.2, the strategy to combine the ARX model with the LS method

for the steady-state gradient estimation can be applied to remove the numerical spikes.
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5.3.1 Modified Dynamic ESC combining ARX model with LS method

Since the reason of the numerical spikes is expected to be the ARX model, a method

suggested solving this issue is combining a simple first-order least square(LS) method with

the ARX model in gradient estimation as section 3.2. Based on this idea, simulations with

different thresholds of the switching point are performed, and the best result is illustrated

in Figure 5.5. A flag is stating which method of them is used to estimate the gradient, 1

for the ARX model and 0 for the LS method.

Figure 5.5: Simulation result for a single gas-liftd oil well, second-order without zero system using
a modified dynamic ESC with a threshold of 0.1

Figure 5.5 is obtained with a tolerance of 0.1. In detail, the ARX model is used when

the mean value of the estimated gradient in the previous 10 steps is larger than 0. and the

Least square method is used when that is smaller than 0.30.

By applying the modified ESC, the numerical spikes are cleared out and the estimated

steady-state gradient successfully converges to zero.
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5.3.2 Comparison

The result obtained by a combination of the ARX model with LS method is compared

with the classic ESC in Figure 5.6. The tendency is similar to the first-order system that the

classic ESC requires 5·104 iterations while the dynamic ESC needs only 2500 iterations, or

when the window size is subtracted, 1780 transient iterations. This result means that only

3.6% of the iterations for the classic ESC are needed in the dynamic ESC for a transition

to a new optimum.
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Figure 5.6: Simulation result comparison of a dynamic and classic ESC for a single gas-liftd oil
well model with second-order without zero system

Additionally, the percentage 3.6% is similar to that in the first-order system which is

4%. With regards to the ARX model is combined with the LS method, this combination

is proven not to affect the overall number of iterations to converge. It is because most

of the important part is estimated by the ARX model and the LS method acts around the

zero gradient where the ARX model becomes problematic. It can be concluded that the

combination provides a faster and more robust result.
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5.3.3 Application of disturbance

As same as the first-order system, a disturbance is applied in the static non-linear part,

and it is set to be 10. The result is stated in Figure 5.7. In the simulation, the PRBS wave is

updated less frequently since the estimated gradient often could not follow the steady-state

gradient when only a small disturbance is applied.

Figure 5.7: Simulation result for a disturbed single gas-liftd oil well, second-order without zero
system using a modified dynamic ESC with a threshold of 0.1

As shown in the Figure, the system goes to the next optimum (u, y) = (20, 55) fast,

and the estimated gradient converges to zero as well after being disturbed.
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5.4 Dynamic ESC using ARX model for second-order sys-

tem with zero

Similar steps as the previous study are performed for this second-order with zero sys-

tem. The main difference of this process from the previous system is the existence of zeros

in the transfer function, and the idea is to see if the dynamic ESC works in the system with

more complexity. Figure 5.8 illustrates the simulation result using the second-order ARX

model.
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Figure 5.8: Simulation result for a single gas-liftd oil well, second-order with zero system using a
dynamic ESC

In detail, the dynamic ESC works very well and the gradient is successfully estimated

as zero. Compared with the result obtained for the second-order without zero system,

the numerical spikes are not serious and they do not make deviations from the extremum.

However, to guarantee safety and robustness, the combination of the ARX model with the

least square method is tried as well in section 5.4.1.
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5.4.1 Modified Dynamic ESC combining ARX model with LS method

Figure 5.9 is depicting the simulation result when the ARX model is combined with

the LS method. A tolerance is 0.001 which means that the ARX model is used when

the mean gradient in the last steps is larger than the tolerance. Since the spikes were not

serious and not frequent at the same time, it was possible to remove the spikes only with a

small tolerance.
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Figure 5.9: Simulation result for a single gas-liftd oil well, second-order with zero system using a
modified dynamic ESC with a threshold of 0.05

As the previous case, the numerical peaks are removed out. The estimated gradient

smoothly converges to zero.
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5.4.2 Comparison

The result of the modified dynamic ESC is compared with the classic ESC as in Figure

5.10. The classic ESC takes around 5 · 104 iterations to converge while the dynamic ESC

requires 3500 iterations or 2780 transient iterations which is 5.6% of the classic ESC.
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Figure 5.10: Simulation result comparison of a dynamic and classic ESC for a single gas-liftd oil
well with second-order with zero system

Overall, the classic ESC requires a significant number of iterations compared to the

dynamic ESC, verifying the superior ability of the dynamic ESC developed in this project.

The idea that estimating the dynamic system by the local linear dynamic model is resulted

to be more efficient than the local linear static model.

It is proven that the dynamic ESC is successfully working for both the first and second-

order systems, and the suggestion to combine the ARX model with the LS method is

worthwhile.
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5.4.3 Application of disturbance

A disturbance is applied as same as the previous case which is illustrated in Figure

5.11. The Modified dynamic ESC strategy is used to avoid serious numerical spikes, and

this case converges to the next optimum as well.

Figure 5.11: Simulation result for a disturbed single gas-liftd oil well, second-order with zero sys-
tem using a modified dynamic ESC with a threshold of 0.1
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Chapter 6
Case study 3 : Multiple gas lifted

oil wells

6.1 Process description

In the offshore gas and oil field, the number of oil wells is decided based on the limi-

tations of the drill rig and trade-offs as suggested in Gupta and Grossmann (2012). Thus,

although only one gas-lifted oil well is considered in the previous case studies, it is a nat-

ural step to consider multiple gas-lifted oil wells altogether. Figure 6.1 is describing an oil

field with 6 gas-lifted oil wells where the produced oil from each gas-produced oils from

each well are assumed to be possible to measure.
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Figure 6.1: A schematic process diagram of multiple gas lifted oil wells

In this process, lift gas is compressed first and pumped into the annulus of gas lifted

oil wells. More details of the gas injection process inside the wells are illustrated in the

Figure 1.1 where the lift gas is injected by an injection valve in the deep position in the oil

wells.

The greatest important difference from the Case study 1 and 2 is that this process

not only considers multiple inputs but also constraints. The constraints stem from the

limitations of a compressor or the amount of lift gas. This fact makes a maximum possible

amount of compressed lift gas wgl,max = umax so that the summation of the inputs
∑
ui

cannot exceed the maximum lift gas. Since the constraint should be tightly controlled to

obtain maximum profit, umax =
∑
ui. The amount of produced oil is notated as wo

which is a summation of the oil from each oil wells
∑
yi.

As the second case study, Hammerstein and Wiener’s model is used to describe each

gas-lifted oil wells. All of the static nonlinear parts is depicted by quadratic equations, and

they have similar dynamics as stated in Table 6.1.
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Static non-linearity, f(ui) Linear Dynamic, G(s)

Gas lifted oil well 1
f(u1) = −0.1(u1 − 20)2 + 45

= −0.1u1
2 + 4u1 + 5

1
174s+1

Gas lifted oil well 2
f(u2) = −0.5(u2 − 10)2 + 55

= −0.5u2
2 + 10u2 + 5

1
180s+1

Gas lifted oil well 3
f(u3) = −0.2(u3 − 15)2 + 55

= −0.2u3
2 + 6u3 + 10

1
170s+1

Gas lifted oil well 4
f(u4) = −0.05(u4 − 30)2 + 55

= −0.05u4
2 + 3u4 + 10

1
176s+1

Gas lifted oil well 5
f(u5) = −0.04(u5 − 25)2 + 40

= −0.04u5
2 + 2u5 + 15

1
180s+1

Gas lifted oil well 6
f(u6) = −0.1(u6 − 10)2 + 30

= −0.1u6
2 + 2u6 + 20

1
177s+1

Table 6.1: Description of 6 gas lifted oil wells for Case study 3

The initial values of the variables are:

(u1, y1) = (3, 16.1) (u2, y2) =(14, 47) (u3, y3) = (4, 30.8)

(u4, y4) = (24, 53.2) (u5, y5) =(1, 16.96) (u6, y6) = (10, 30)

Each gas-lifted oil wells have a different extremum. The maximum amount of lift gas

is set to be umax = 56, consequently, each oil wells cannot be on their extremum and

cannot be controlled by simply setting the gradient at zero as well. This leads to the need

for a new control strategy in chapter 6.2
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6.2 Control strategy

In plantwide control design, it is extremely important to select right control struc-

ture including the decision of controlled variable as suggested by Downs and Skogestad

(2011). In the study, they provided and proved a control strategy for parallel units which

corresponds to the plant model in this case study.

In specific, when the cost of each unit i equals to Li and the feed rates of each unit

i equals to ui, the total cost and feed rate can be written as L =
∑
Li and u =

∑
ui

respectively. The total feed rate u is assumed to be a constant. The optimal condition is

minimizing the total cost L as δL
δu = 0 where u is the vector of feed rates of each units i,

ui. Another assumption is that each unit is independent. Therefore, the cost of each unit

Li depends only on the feed rate of each unit ui. Additionally, when the total number of

units is n, the degrees of freedom is n − 1 so that the feed rate of the unit n is described

as un = u−
∑n−1
i=1 ui and consequently dun = −dui. Then the optimal condition can be

written as equation (6.1).

δL

δui
=
δ(L1 + L2 + ...+ Li + Ln)

δui
=
δLi
δui

+
δLn
δui

=
δLi
δui

− δLn
δun

= 0 (6.1)

or simply

δLi
δui

=
δLn
δun

(6.2)

Equation (6.2) means that the gradients of each unit are the same value. Thus, in the

process with 6 gas-lifted oil wells, the controlled variables are Ju1
= Ju2

= Ju3
= Ju4

=

Ju5 = Ju6 . Tuning parameters are suggested in Appendix.
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6.3 Dynamic ESC using ARX model

The simulation result of the 6 gas-lifted oil wells using the dynamic ESC is stated in

Figure 6.2. Based on the control strategy, the integral controllers have a setpoint where

all of the estimated gradients becomes the same. The controller gain is set to be the same

in each oil well, please see the Appendix for more information on tuning parameters.

In terms of the PRBS wave perturbation, the gas-lifted oil well 1&2, 3&4, and 5&6 are

assumed to affect each other. Thus, PRBS1 = −PRBS2, PRBS3 = −PRBS4, and

PRBS5 = −PRBS6.
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Figure 6.2: Simulation result for multiple gas lifted oil wells using a dynamic ESC

In the result, all of the systems converge to a point where the estimated steady-state

gradient becomes 1.5. This fact means that the control strategy is implemented well with

the dynamic. Even though there are some spikes in the gradient, they are not serious and

can be ignored since the estimated gradient is not converging to zero.

The result comparison with the classic ESC is not conducted in this case study. The

reason is that as pointed out in the section 2.1, the parameter tuning in the classic is diffi-
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cult and expected to be time-consuming. In detail, in this kind of multiple parallel systems,

the high pass filter frequency and the low pass filter frequency should be decided in each

oil well. Since only the system is very sensitive to its tuning, one wrong-decided tun-

ing parameter has a probability to make the whole system chaotic and a large number of

simulations will be required.
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Chapter 7
Discussion

With the motivation of figuring out a dynamic ESC algorithm which is expected to

achieve a faster convergence to a new extremum, the ARX model is introduced to estimate

the steady-state gradient which is a local linear dynamic model.

In the design of the dynamic ESC, the second case study provided some ideas. Specifi-

cally, a simple single input-output system is described by Hammerstein and Wiener models

and three different transfer functions are tested. The developed dynamic ESC algorithm

works perfectly in the first-order system that the estimated gradient follows the true gradi-

ent with a setpoint of zero. However, in the second-order without zero system, a problem

is caused that the estimated steady-state gradient could not follow the true gradient.

The approach to explain this behavior comes from the step responses of different trans-

fer functions since there was no such a problem in the first-order system. In detail, the step

response of the second-order system has a secondary time lag, and the sinusoidal wave

is not enough to obtain the full information of the output. With this approach, the PRBS

wave is introduced instead of a simple sinusoidal perturbation to provide multiple frequen-
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cies, and it could solve the problem. Due to a better performance of the ARX model for

the gradient estimation, the PRBS perturbation is used in all of the case studies.

The second problem is detected in the second order system as well. In detail, numerical

spikes happen and sometimes they make deviations from the extremum. The ARX model

accounts for this phenomenon with the observation that the spikes are prone to firstly

happen right after the estimated steady-state gradient becomes close to zero. In specific,

when there is a change in the input near the extremum, the output almost does not change

making the estimation of only one parameter possible, while the ARX model still tries to

estimate two parameters in the first-order system or four parameters in the second-order

system. This is the main drawback of the ARX model that the estimated gradient near zero

is not reliable and sometimes it makes serious problems.

To fix this limitation, the combination of the ARX model with the LS method is in-

troduced with the idea that the ARX model estimates gradient faster in the early stages,

and it is switched to the LS method when the estimated gradient is close enough to zero.

Although the LS method is a kind of a local linear static model, it could not affect the

iteration numbers to converge since most of the important part is estimated by the ARX

model. This implementation is concluded to work efficiently making the dynamic ESC

more robust.

With the progress in the development of the dynamic ESC algorithm, there is an at-

tempt to apply the dynamic ESC in a realistic plant system in the first case study with two

parallel heat exchangers with a split. Since the control objective is maximizing the outlet

temperature depending on the split ration, this process could be a perfect candidate for the

ESC.

In the second case study, a gas-lifted oil well is described with the Hammerstein and

Wiener’s model and three different transfer functions are applied.
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In the first and second case studies, the dynamic ESC is applied first and the modified

dynamic ESC is introduced When a deviation happens by numerical spikes. The results

are compared with the results obtained with the classic ESC, and it is revealed that the

dynamic ESC requires only less than 10% of the number of iterations compared to the

classic ESC.

Finally, the third case study applied multiple inputs system which is multiple gas-lifted

oil wells. There is the constraint in the amount of the lift gas and it is not possible to reach

the true extremum. Therefore, a new control strategy is introduced which is making the

gradient of each oil well the same.

The dynamic ESC could find the optimal point with the ARX model as well in the

multiple inputs system where all the gradients become 1.5. Since the setpoint of the gradi-

ent is not zero, the numerical spikes problem is not serious in this case. Additionally, each

oil wells have different dynamics and gains for the changes in the inputs, so that applying

different controller gains could improve the convergence.

In all case studies, it is clear the dynamic ESC achieve a much faster convergence

to a new optimum. The instabilities in the ARX estimation near zero-gradient could be

successfully diminished by combining the ARX model with the LS method.
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Chapter 8
Conclusion

In this project, the slow control performance of the classic ESC provided the biggest

motivation to develop the dynamic ESC. The main idea of this algorithm is introducing

a local linear dynamic model for the gradient estimation instead of a local linear static

model. One of the simple time-variant models is the ARX model, and it is implemented in

this project.

Overall, it is concluded that the dynamic ESC is successfully implemented in the three

case studies. The estimated steady-state gradient follows the true gradient, and the sys-

tem converged into the true extremum. Based on this study, several future works can be

suggested.

In the comparison with the simulation results of the classic ESC, it was shown that the

convergence time was hugely reduced in the dynamic ESC, especially only 3.6− 10% of

convergence time were needed for the dynamic ESC. It verifies that the dynamic ESC is

more efficient and faster control strategy than the classic ESC. This is very valuable result

for processs control applications, where the system dynamics in general are very slow.
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The first future work focuses on the ARX model. As explained in the section 2.2.1,

the polynomial parameter θ is estimated by a least square method. Because the estimated

steady-state gradient becomes closer to its setpoint even in one window, implementing

weighted least square method inside the ARX algorithm is expected to be efficient on the

gradient estimation. In this case, the arx function in Matlab cannot be used and a better

understanding of the ARX model itself will be necessary.

Secondly, the model predictive controller can be applied replacing a simple integral

controller when the process is a multi-variable system. Because a better controller gives

a better control, it is expected to improve the dynamic ESC algorithm especially in the

presence of constraints.
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Appendix

In this part, the tuning parameters are listed firstly in section 8.1, both for the dynamic

ESC and the classic ESC. The parameters are decided by a trial and error method, and the

best tuning parameters are only stated in tables.

In the case of the modified dynamic ESC, the simulation parameters are the same as

the dynamic ESC. One important value if the threshold to switch the ARX model with the

LS method which is stated in each section in the main part.

Secondly, the Matlab scripts for the simulations are attached for each case study.
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8.1 List of tuning parameters

Tuning parameters Notations Case study 1

Sampling time Ts 1s

Window size l 4 · 600

Controller gain Ki −1 · 10−7

PRBS calculation steps 600

PRBS amplitude 0.01

ARX order arx(data,[1,1,0])

Table 8.1: Tuning parameters for Case study 1:dynamic ESC

Tuning parameters Notations Case study 1

Sampling time Ts 1s

Controller gain Ki 1 · 10−8

Low pass filter frequency ωl 0.1 · 1
6000

High pass filter frequency ωh 5 · 1
6000

Sine perturbation frequency ω 1
6000

Sine perturbation amplitude α 0.01

Table 8.2: Tuning parameters for Case study 1:classic ESC
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Tuning
Notations

Case study 2

parameters G1 G2 G3

Sampling time Ts 1s 1s 1s

Window size l 4 · 180 4 · 180 4 · 180

Controller gain Ki 0.005 0.005 0.005

PRBS cal. steps 30 30 30

PRBS amplitude 1 1 1

ARX order arx(data,[1,1,0]) arx(data,[2,2,0]) arx(data,[2,2,0])

Table 8.3: Tuning parameters for Case study 2:dynamic ESC

Tuning
Notations

Case study 2

parameters G1 G2 G3

Sampling time Ts 1s 1s 1s

Controller gain Ki 0.005 0.005 0.005

Low pass filter
frequency ωl 0.1 · 1

800 0.1 · 1
1800 0.1 · 1

1800

High pass filter
frequency ωh 5 · 1

800 5 · 1
1800 5 · 1

1800

Sine perturbation
frequency ω 1

800
1

1800
1

1800

Sine perturbation
amplitude α 1 1 1

Table 8.4: Tuning parameters for Case study 2:classic ESC
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Tuning parameters Notations Case study 3

Sampling time Ts 1s

Window size l 3 · 180

Controller gain Ki

Gas lifted oil well 1 : 0.0005
Gas lifted oil well 2 : 0.0004
Gas lifted oil well 3 : 0.0010
Gas lifted oil well 4 : 0.0050
Gas lifted oil well 5 : 0.0010
Gas lifted oil well 6 : -

PRBS calculation steps 60

PRBS amplitude 0.1

ARX order arx(data,[1,1,0])

Table 8.5: Tuning parameters for Case study 3:dynamic ESC
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8.2 Matlab Script for Case study 1

8.2.1 Dynamic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 warning('off','all')

9

10 u = MX.sym('u',1); % split ratio - control input

11 T = MX.sym('T',1); % temperature - measured cost

12 T1 = MX.sym('T1',1); % temperature in channel 1

13 T2 = MX.sym('T2',1); % temperature in channel 2

14

15 w = MX.sym('w',1); % total flow rate

16 Th = MX.sym('Th',2); % temperature coming into each heaters

17 cp = MX.sym('cp',2); % specific heat capacity for 2 channels

18 UA = MX.sym('UA',2); % heat transfer coeffieicnt*area

19

20 tau1 = 600; tau2 = 600; tau3 = 600;

21 par.UA = [50;80]+273;

22 par.cp = [50;30];

23 par.Th = [120;220]+273;

24 par.w = 12;

25

26 Ts = 1;

27

28 k1 = w*cp(1)/UA(1);
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29 k2 = w*cp(2)/UA(2);

30 T1_ss = Th(1)/(u*k1 + 0.5);

31 T2_ss = Th(2)/((1-u)*k2 + 0.5);

32 T_ss = u*T1 + (1-u)*T2;

33

34 % ODE model

35 dT1 = (T1_ss - T1)/tau1;

36 dT2 = (T2_ss - T2)/tau2;

37 dT = (T_ss - T)/tau3;

38

39 diff = vertcat(dT1,dT2,dT);

40 diff = substitute(diff,cp,par.cp);

41 diff = substitute(diff,UA,par.UA);

42 diff = substitute(diff,Th,par.Th);

43 diff = substitute(diff,w,par.w);

44

45 x_var = vertcat(T1,T2,T);

46 p_var = vertcat(u);

47

48 L = -T; % cost function (econimic objective)

49

50 ode = struct('x',x_var,'p',p_var,'ode',diff,'quad',L);

51 opts = struct('tf',Ts);

52

53 % create IDAS integrator

54 F = integrator('F','cvodes',ode,opts);

55

56 %%

57 % initialization

58 xf = [180.9681,818.8306,244.8138];

59 u_in0 = 0.9;

60 u_in = u_in0;

61

62 Ki = -1e-07;
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63 i = 4*600;

64 nIter = 2*7*10ˆ4;

65 prbs=0;

66 h = waitbar(0,'Simulation in Progress...');

67

68 for sim_k = 1:nIter

69 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

70

71 Fk = F('x0',xf,'p',u_in);

72

73 xf = full(Fk.xf);

74 x_real(:,sim_k) = xf;

75 J_real(sim_k) = full(Fk.qf);

76

77 Ju_SS(sim_k) = ...

-0.5*par.Th(1)/(u_in*par.w*par.cp(1)/par.UA(1) + ...

0.5).ˆ2 + ...

78 0.5*par.Th(2)/((1-u_in)*par.w*par.cp(2)/par.UA(2) + ...

0.5).ˆ2;

79

80 sim.y(sim_k) = full(Fk.qf) + 0.000*randn(1);;

81 sim.u(sim_k) = u_in + 0.000*randn(1);

82

83 if sim_k>1

84 y_SS(sim_k) = sim.y(sim_k) + ...

(sim.y(sim_k)-sim.y(sim_k-1))*600; % inverse: G(s)ˆ-1

85 end

86 if sim_k > i

87

88 ymeas = sim.y(sim_k-i:sim_k)';

89 umeas = sim.u(sim_k-i:sim_k)';

90

91 Y0 = ymeas - mean(ymeas);

92 U0 = umeas - mean(umeas);
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93

94 data = iddata(Y0,U0,Ts);

95 sysARX = arx(data,[1,1,0]);

96 sysD = idss(sysARX);

97 sys = d2c(sysD);

98 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

99 Ju(sim_k) = Ju_hat;

100

101 if sim_k > i % I-controller

102 u_in0 = u_in0 +( 1*Ki*Ju_hat );

103 else

104 u_in0 = u_in0;

105 end

106 end

107

108 if rem(sim_k,600)==0 % calculate next prbs wave in ...

every 600 steps

109 prbs = 1*idinput(1);

110

111 end

112 u_in = max(0.001,min(0.999,u_in0+0.01*prbs));

113 end

114 close(h);

115

116 %% Plotting

117 figure(1)

118 set(0,'DefaultAxesFontSize', 18)

119

120 subplot(3,1,1)

121 hold all

122 plot(sim.u)

123 ylabel 'u'

124 legend('u','location','eastoutside')

125
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126 subplot(3,1,2)

127 hold all

128 plot(x_real')

129 ylabel 'y'

130 legend('T_1','T_2','T_{out}','location','eastoutside')

131

132 subplot(3,1,3)

133 hold all

134 plot(1.*Ju');

135 plot(Ju_SS,'--');

136 legend('J_u','J_{uss}','location','eastoutside');

137 ylabel 'Ju'

8.2.2 Modified Dynamic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 warning('off','all')

9

10 u = MX.sym('u',1); % split ratio - control input

11 T = MX.sym('T',1); % temperature - measured cost

12 T1 = MX.sym('T1',1); % temperature in channel 1

13 T2 = MX.sym('T2',1); % temperature in channel 2

14

15 w = MX.sym('w',1); % total flow rate

16 Th = MX.sym('Th',2); % temperature coming into each heaters

17 cp = MX.sym('cp',2); % specific heat capacity for 2 channels
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18 UA = MX.sym('UA',2); % heat transfer coeffieicnt*area

19

20 tau1 = 600; tau2 = 600; tau3 = 600;

21 par.UA = [50;80]+273;

22 par.cp = [50;30];

23 par.Th = [120;220]+273;

24 par.w = 12;

25

26 Ts = 1; % Sampling time

27

28 k1 = w*cp(1)/UA(1);

29 k2 = w*cp(2)/UA(2);

30 T1_ss = Th(1)/(u*k1 + 0.5);

31 T2_ss = Th(2)/((1-u)*k2 + 0.5);

32 T_ss = u*T1 + (1-u)*T2;

33

34 % ODE model

35 dT1 = (T1_ss - T1)/tau1;

36 dT2 = (T2_ss - T2)/tau2;

37 dT = (T_ss - T)/tau3;

38

39 diff = vertcat(dT1,dT2,dT);

40 diff = substitute(diff,cp,par.cp);

41 diff = substitute(diff,UA,par.UA);

42 diff = substitute(diff,Th,par.Th);

43 diff = substitute(diff,w,par.w);

44

45 x_var = vertcat(T1,T2,T);

46 p_var = vertcat(u);

47

48 L = -T; % cost function (econimic objective)

49

50 ode = struct('x',x_var,'p',p_var,'ode',diff,'quad',L);

51 opts = struct('tf',Ts);
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52

53 % create IDAS integrator

54 F = integrator('F','cvodes',ode,opts);

55

56 %%

57 % initialization

58 xf = [180.9681,818.8306,244.8138];

59 u_in0 = 0.9;

60 u_in = u_in0;

61

62 Ki = -1e-07;

63 l = 4*600;

64 nIter = 2*7*10ˆ4;

65 prbs=0;

66

67 h = waitbar(0,'Simulation in Progress...');

68 for sim_k = 1:nIter

69 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

70

71 Fk = F('x0',xf,'p',u_in);

72

73 xf = full(Fk.xf);

74 x_real(:,sim_k) = xf;

75 J_real(sim_k) = full(Fk.qf);

76

77 Ju_SS(sim_k) = ...

-0.5*par.Th(1)/(u_in*par.w*par.cp(1)/par.UA(1) + ...

0.5).ˆ2 + ...

78 0.5*par.Th(2)/((1-u_in)*par.w*par.cp(2)/par.UA(2) + ...

0.5).ˆ2;

79

80 sim.y(sim_k) = full(Fk.qf);

81 sim.u(sim_k) = u_in + 0.000*randn(1);

82
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83 if sim_k>1

84 y_SS(sim_k) = sim.y(sim_k) + ...

(sim.y(sim_k)-sim.y(sim_k-1))*600; % inverse: G(s)ˆ-1

85 end

86 if sim_k > l

87

88 ymeas = sim.y(sim_k - l:sim_k)';

89 umeas = sim.u(sim_k - l:sim_k)';

90

91 Ju(l) = 1; % initialization

92 Threshold = 50; % a threshold to switch the ARX ...

model to the LS method

93

94 if abs(Ju(sim_k-1)) > Threshold % ARX estimation

95

96 Y0 = ymeas - mean(ymeas);

97 U0 = umeas - mean(umeas);

98

99 data = iddata(Y0,U0,Ts);

100 sysARX = arx(data,[1,1,0]);

101 sysD = idss(sysARX);

102 sys = d2c(sysD);

103 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

104 Ju(sim_k) = Ju_hat;

105 flag(sim_k)=1;

106

107 else % LS estimation

108 Y = ymeas;

109 U = umeas;

110 X = [U ones(size(U))];

111 b = (inv(X'*X))*(X'*Y);

112 Ju_hat = b(1,1);

113 Ju(sim_k) = Ju_hat;

114 flag(sim_k)=0;
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115 end

116

117 if sim_k > l % I-controller

118 u_in0 = u_in0 +( 1*Ki*Ju_hat );

119 else

120 u_in0 = u_in0;

121 end

122 end

123

124 if rem(sim_k,600)==0 % calculate next prbs wave in ...

every 600 steps

125 prbs = 1*idinput(1);

126

127 end

128 u_in = max(0.001,min(0.999,u_in0+0.01*prbs));

129 end

130 close(h);

131

132 %%

133 figure(1)

134 set(0,'DefaultAxesFontSize', 18)

135

136 subplot(4,1,1)

137 hold all

138 plot(sim.u)

139 ylabel 'u'

140 legend('u','location','eastoutside')

141

142 subplot(4,1,2)

143 hold all

144 plot(x_real')

145 ylabel 'y'

146 legend('T_1','T_2','T_{out}','location','eastoutside')

147
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148 subplot(4,1,3)

149 hold all

150 plot(1.*Ju');

151 plot(Ju_SS,'--');

152 plot(k,'k:');

153 legend('J_u','J_{uss}','location','eastoutside');

154 ylabel 'Ju'

155

156 subplot(4,1,4)

157 hold all

158 plot(flag)

159 ylabel 'flag'

160 legend('1:ARX','0:LS','location','eastoutside')

8.2.3 Classic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 warning('off','all')

9

10 u = MX.sym('u',1); % split ratio - control input

11 T = MX.sym('T',1); % temperature - measured cost

12 T1 = MX.sym('T1',1); % temperature in channel 1

13 T2 = MX.sym('T2',1); % temperature in channel 2

14

15 w = MX.sym('w',1); % total flow rate

16 Th = MX.sym('Th',2); % temperature coming into each heaters
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17 cp = MX.sym('cp',2); % specific heat capacity for 2 channels

18 UA = MX.sym('UA',2); % heat transfer coeffieicnt*area

19

20 tau1 = 600; tau2 = 600; tau3 = 600;

21 par.UA = [50;80]+273;

22 par.cp = [50;30];

23 par.Th = [120;220]+273;

24 par.w = 12;

25

26 Ts = 1;

27

28 k1 = w*cp(1)/UA(1);

29 k2 = w*cp(2)/UA(2);

30 T1_ss = Th(1)/(u*k1 + 0.5);

31 T2_ss = Th(2)/((1-u)*k2 + 0.5);

32 T_ss = u*T1 + (1-u)*T2;

33

34 % ODE model

35 dT1 = (T1_ss - T1)/tau1;

36 dT2 = (T2_ss - T2)/tau2;

37 dT = (T_ss - T)/tau3;

38

39 diff = vertcat(dT1,dT2,dT);

40 diff = substitute(diff,cp,par.cp);

41 diff = substitute(diff,UA,par.UA);

42 diff = substitute(diff,Th,par.Th);

43 diff = substitute(diff,w,par.w);

44

45 x_var = vertcat(T1,T2,T);

46 p_var = vertcat(u);

47

48 L = -T; % cost function (econimic objective)

49

50 ode = struct('x',x_var,'p',p_var,'ode',diff,'quad',L);
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51 opts = struct('tf',Ts);

52

53 % create IDAS integrator

54 F = integrator('F','cvodes',ode,opts);

55

56 %%

57 % initialization

58 xf = [180.9681,818.8306,244.8138];

59 u_in0 = 0.9;

60 u_in = u_in0;

61

62 T = 6000; % sine perturbation time constant

63 Th = (0.2)*T; % High pass filter time constant

64 Tl = 10*T; % Low pass filter time constant

65 amplitude = 0.01; % sine perturbation amplitude

66

67 Ki = 1e-08; % intergtal controller gain

68 nIter = 1e6;

69 ARX = 1;

70 prbs = 0;

71

72 %intitalization

73 z(1) = 0;

74 x(1) = 0;

75 u_esc(1) = u_in0;

76 y_esc(1) = xf(3);

77 sim.u(1) = u_in0;

78 sim.y(1) = xf(3);

79 J(1) = y_esc(1);

80 u_hat(1) = u_esc(1);

81 f = 1/T; % sine perturbation frequency

82

83 % filter coefficients

84 al = Ts/(Ts + Tl);
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85 ah = Th/(Ts + Th);

86

87 h = waitbar(0,'Simulation in Progress...');

88 for sim_k = 2:nIter

89 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

90

91 Fk = F('x0',xf,'p',u_in);

92 xf = full(Fk.xf);

93

94 sim.y(sim_k) = xf(3) + 0.00*randn(1);

95 sim.u(sim_k) = u_in + 0.00*randn(1);

96

97 y_esc(sim_k) = sim.y(sim_k);

98 J(sim_k) = sim.y(sim_k);

99 u_hat(sim_k) = sim.u(sim_k);

100

101

102 z(sim_k) = ah*z(sim_k-1) + ah*J(sim_k) - ah*J(sim_k-1); ...

% High pass filter

103 x(sim_k) = ((1-al)*x(sim_k-1) + ...

al*z(sim_k)*sin(2*pi*f*Ts*(sim_k))); % correlation and ...

Low pass filter

104 % Ju = x.*2/amplitude;

105 u_hat(sim_k) = u_hat(sim_k-1) + Ts*Ki*x(sim_k).*2/amplitude; ...

% integration

106 u_esc(sim_k) = u_hat(sim_k) + amplitude*sin(2*pi*f*Ts*(sim_k)); ...

% estimated optimal input + dither

107

108 u_in = max(0.001,min(0.999,u_esc(sim_k)));

109 end

110 close(h);

111

112 %% Plotting

113 figure(1)
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114 subplot(311)

115 hold all

116 plot(sim.y)

117 ylabel 'y'

118

119 subplot(312)

120 hold all

121 plot(sim.u)

122 ylabel 'u'

123

124 subplot(313)

125 hold all

126 plot(x.*2/amplitude)

127 ylabel 'J_u'
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8.3 Matlab Script for Case study 2

8.3.1 Plant process with First order transfer function

Dynamic ESC

1 clear

2 clc

3 warning('off','all')

4

5 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

6 addpath('D:\matlab')

7 import casadi.*

8

9 Ts = 1; % Sampling time

10 y = MX.sym('y');

11 u = MX.sym('u');

12 tau = (174/Ts);

13

14 % ODE model

15 dx1 = ((-0.1*uˆ2+4*u+5) - y)/tau;

16

17 ode = struct('x',y,'p',u,'ode',dx1,'quad',y);

18 opts = struct('tf',Ts);

19

20 % create IDAS integrator

21 F = integrator('F','cvodes',ode,opts);

22

23 %%

24 % initilization

25 xf = 42.5;

26 u_in0 = 15;
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27 u_in = u_in0;

28

29 Ki = 0.005; % Controller gain

30 l = 4*180; % Window size

31 nIter = 2*3600;

32 ARX = 1;

33 prbs = 0;

34

35 h = waitbar(0,'Simulation in Progress...');

36 for sim_k = 1:nIter

37 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

38

39 Fk = F('x0',xf,'p',u_in);

40 xf = full(Fk.xf);

41

42 sim.y(sim_k) = xf + 0.00*randn(1);

43 sim.u(sim_k) = u_in + 0.00*randn(1);

44 sim.JuSS(sim_k) = -0.2*u_in+4;

45

46 if sim_k>1

47 sim.ySS(sim_k) = sim.y(sim_k) + ...

(sim.y(sim_k)-sim.y(sim_k-1))*tau; % inverse: G(s)ˆ-1

48 end

49

50 if sim_k > l

51 ymeas = sim.y(sim_k-l:sim_k)';

52 umeas = sim.u(sim_k-l:sim_k)';

53 if ARX

54 Y0 = ymeas - mean(ymeas);

55 U0 = umeas - mean(umeas);

56

57 data = iddata(Y0,U0,Ts);

58 sysARX = arx(data,[1,1,0]);

59 sysD = idss(sysARX);
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60 sys = d2c(sysD);

61 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

62 Ju(sim_k) = Ju_hat;

63 end

64 if sim_k > l % I-controller

65 u_in0 = u_in0 + Ki*Ju_hat ;

66 else

67 u_in0 = u_in0 ;

68 end

69 end

70

71 if rem(sim_k,30)==0 % calculate next prbs wave in every 30 steps

72 prbs = 1*idinput(1);

73 end

74 u_in = u_in0+ prbs; % add perturbation

75 end

76 close(h);

77

78 %% Plotting

79

80 figure(1)

81 subplot(311)

82 hold all

83 plot(sim.y)

84 plot(sim.ySS,'--')

85 grid on

86 ylabel 'y'

87 legend('y','y_{ss}','location','Northeastoutside')

88

89 subplot(312)

90 hold all

91 plot(sim.u)

92 grid on

93 ylabel 'u'
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94 legend('u','location','Northeastoutside')

95

96 subplot(313)

97 hold all

98 plot(Ju)

99 plot(sim.JuSS,'--')

100 grid on

101 ylabel 'J_u'

102 xlabel 'Number of iterations'

103 legend('J_u','J_{uss}','location','Northeastoutside')

Classic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1;

9 y = MX.sym('y');

10 u = MX.sym('u');

11 tau = (174/Ts);

12

13 % ODE model

14 dx1 = ((-0.1*uˆ2+4*u+5) - y)/tau;

15

16 ode = struct('x',y,'p',u,'ode',dx1,'quad',y);

17 opts = struct('tf',Ts);

18

19 % create IDAS integrator
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20 F = integrator('F','cvodes',ode,opts);

21

22 %%

23 % initialization

24 xf = 42.5;

25 u_in0 = 15;

26 u_in = u_in0;

27

28 T = 800; % sine perturbation time constant

29 Th = (0.2)*T; % High Pass Filter

30 Tl = 10*T; % Low Pass filter

31 amplitude = 1; % sine amplitude

32

33 Ki = 0.005; % intergtal controller gain

34 nIter = 4*1e5;

35 ARX = 1;

36

37 %intitalization

38 z(1) = 0;

39 x(1) = 0;

40 u_hat(1) = 15;

41 y_esc(1) = 42.5;

42 sim.u(1) = 15;

43 sim.y(1) = 42.5;

44 J(1) = y_esc(1);

45 u_hat(1) = u_hat(1);

46 f = 1/T; % sine perturbation frequency

47

48 % filter coefficients

49 al = Ts/(Ts + Tl);

50 ah = Th/(Ts + Th);

51

52 h = waitbar(0,'Simulation in Progress...');

53 for sim_k = 2:nIter
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54 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

55

56 Fk = F('x0',xf,'p',u_in);

57 xf = full(Fk.xf);

58

59 sim.y(sim_k) = xf + 0.005*randn(1);

60 sim.u(sim_k) = u_in + 0.005*randn(1);

61

62 y_esc(sim_k) = sim.y(sim_k);

63 J(sim_k) = sim.y(sim_k);

64 u_hat(sim_k) = sim.u(sim_k);

65

66

67 z(sim_k) = ah*z(sim_k-1) + ah*J(sim_k) - ah*J(sim_k-1); ...

% High pass filter

68 x(sim_k) = ((1-al)*x(sim_k-1) + ...

al*z(sim_k)*sin(2*pi*f*Ts*(sim_k))); % correlation and ...

Low pass filter

69 % Ju = x.*2/amplitude;

70 u_hat(sim_k) = u_hat(sim_k-1) + Ts*Ki*x(sim_k).*2/amplitude; ...

% integration

71 u_esc(sim_k) = u_hat(sim_k) + amplitude*sin(2*pi*f*Ts*(sim_k)); ...

% estimated optimal input + dither

72

73 u_in = u_esc(sim_k);

74 end

75 close(h);

76 %% Plotting

77 figure(1)

78 subplot(311)

79 hold all

80 plot(sim.y)

81 ylabel 'y'

82
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83 subplot(312)

84 hold all

85 plot(sim.u)

86 ylabel 'u'

87

88 subplot(313)

89 hold all

90 plot(x.*2/amplitude)

91 ylabel 'J_u'

8.3.2 Plant process with second order transfer function

Dynamic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1; % Sampling time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 x1 = MX.sym('x1');

12 x2 = MX.sym('x2');

13 tau = (174/Ts);

14

15 tau_1 = 174;

16 tau_2 = 60;

17 tau_a = 40; % tau_a = 0 and 40 are studied
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18

19 [a, b, c, d] = tf2ss([0 tau_a 1],[tau_1*tau_2 tau_1+tau_2 1]);

20

21 % ODE model

22 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

23 dx1 = a(1,1)*x1+a(1,2)*x2+b(1,1)*(-0.1*uˆ2+4*u+5);

24 dx2 = a(2,1)*x1+a(2,2)*x2+b(2,1)*(-0.1*uˆ2+4*u+5);

25 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*uˆ2+4*u+5);

26

27 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

28 opts = struct('tf',Ts);

29

30 % create IDAS integrator

31 F = integrator('F','cvodes',ode,opts);

32

33 %%

34 % initialization

35 xf = [0; 42.5/c(1,2)];

36 u_in0 = 15;

37 u_in = u_in0;

38

39 Ki = 0.005; % Controller gain

40 l = 4*180; % Window size

41 nIter = 4*3600;

42 ARX = 1;

43 pbrs = 0;

44

45 h = waitbar(0,'Simulation in Progress...');

46 for sim_k = 1:nIter

47 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

48

49 Fk = F('x0',xf,'p',u_in);

50 xf = full(Fk.xf);

51
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52 sim.y(sim_k) = c*xf + 0.00*randn(1);

53 sim.u(sim_k) = u_in + 0.00*randn(1);

54 sim.ySS(sim_k) = -0.1*u_inˆ2+4*u_in+5;

55 sim.JuSS(sim_k) = -0.2*u_in+4;

56

57 if sim_k > l

58 ymeas = sim.y(sim_k-l:sim_k)';

59 umeas = sim.u(sim_k-l:sim_k)';

60 if ARX

61 Y0 = ymeas - mean(ymeas);

62 U0 = umeas - mean(umeas);

63

64 data = iddata(Y0,U0,Ts);

65 sysARX = arx(data,[2,2,0]);

66 sysD = idss(sysARX);

67 sys = d2c(sysD);

68 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

69 Ju(sim_k) = Ju_hat;

70 end

71

72 if sim_k > l % I-controller

73 u_in0 = u_in0 +Ki*Ju_hat ;

74 else

75 u_in0 = u_in0 ;

76 end

77 end

78

79 if rem(sim_k,30)==0

80 pbrs = 1*idinput(1);

81 end

82 u_in = u_in0+ pbrs; % add perturbation

83 end

84 close(h);

85 %% Plotting
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86 figure(1)

87 subplot(311)

88 hold all

89 plot(sim.y)

90 plot( sim.ySS,'--')

91 grid on

92 ylabel 'y'

93 legend('y','y_{ss}','location','Northeastoutside')

94

95 subplot(312)

96 hold all

97 plot(sim.u)

98 set(gca,'FontSize',20);

99 grid on

100 ylabel 'u'

101 legend('u','location','Northeastoutside')

102

103 subplot(313)

104 hold all

105 plot(Ju)

106 plot(sim.JuSS,'--')

107 grid on

108 ylabel 'J_u'

109 legend('J_u','J_{uss}','location','Northeastoutside')

Modified Dynamic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')
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6 import casadi.*

7

8 Ts = 1; % Sampling time

9 y = MX.sym('y');

10 u = MX.sym('u');

11 x1 = MX.sym('x1');

12 x2 = MX.sym('x2');

13 tau = (174/Ts);

14

15 tau_1 = 174;

16 tau_2 = 60;

17 tau_a = 0; % tau_a = 0 and 40 are studied

18

19 [a, b, c, d] = tf2ss([0 tau_a 1],[tau_1*tau_2 tau_1+tau_2 1]);

20

21 % ODE model

22 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

23 dx1 = a(1,1)*x1+a(1,2)*x2+b(1,1)*(-0.1*uˆ2+4*u+5);

24 dx2 = a(2,1)*x1+a(2,2)*x2+b(2,1)*(-0.1*uˆ2+4*u+5);

25 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*uˆ2+4*u+5);

26

27 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

28 opts = struct('tf',Ts);

29

30 % create IDAS integrator

31 F = integrator('F','cvodes',ode,opts);

32

33 %%

34 % initialization

35 xf = [0; 42.5/c(1,2)];

36 u_in0 = 15;

37 u_in = u_in0;

38

39 Ki = 0.005; % Controller gain
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40 l = 4*180; % Window size

41 nIter = 4*3600;

42 pbrs = 0;

43

44 h = waitbar(0,'Simulation in Progress...');

45 for sim_k = 1:nIter

46 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

47

48 Fk = F('x0',xf,'p',u_in);

49 xf = full(Fk.xf);

50

51 sim.y(sim_k) = c*xf + 0.00*randn(1);

52 sim.u(sim_k) = u_in + 0.00*randn(1);

53 sim.ySS(sim_k) = -0.1*u_inˆ2+4*u_in+5;

54 sim.JuSS(sim_k) = -0.2*u_in+4;

55

56 if sim_k > l

57 ymeas = sim.y(sim_k-l:sim_k)';

58 umeas = sim.u(sim_k-l:sim_k)';

59

60 Ju(l) = 1; % initialization

61 Threshold = 0.1; % a threshold to switch the ARX model ...

to the LS method

62 % 0.1 for tau_a=0, 0.05 for tau_a=40

63

64 if Ju(sim_k-1) > Threshold % ARX estimation

65

66 Y0 = ymeas - mean(ymeas);

67 U0 = umeas - mean(umeas);

68

69 data = iddata(Y0,U0,Ts);

70 sysARX = arx(data,[2,2,0]);

71 sysD = idss(sysARX);

72 sys = d2c(sysD);
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73 Ju_hat = (-sys.C*(sys.A\sys.B) + sys.D);

74 Ju(sim_k) = Ju_hat;

75 flag(sim_k) = 1;

76 else % LS estimation

77 Y = ymeas;

78 U = umeas;

79 X = [U ones(size(U))];

80 b = (inv(X'*X))*(X'*Y);

81 Ju_hat = b(1,1);

82 Ju(sim_k) = Ju_hat;

83 flag(sim_k) = 0;

84 end

85

86 if sim_k > l % I-controller

87 u_in0 = u_in0 +Ki*Ju_hat ;

88 else

89 u_in0 = u_in0 ;

90 end

91 end

92

93 if rem(sim_k,30)==0

94 pbrs = 1*idinput(1);

95 end

96 u_in = u_in0+ pbrs; % add perturbation

97 end

98 close(h);

99

100 %%

101

102 figure(1)

103 subplot(411)

104 hold all

105 plot(sim.y)

106 plot(sim.ySS,'--')
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107 grid on

108 ylabel 'y'

109 legend('y','y_{ss}','location','Northeastoutside')

110

111 subplot(412)

112 hold all

113 plot(sim.u)

114 grid on

115 ylabel 'u'

116 legend('u','location','Northeastoutside')

117

118 subplot(413)

119 hold all

120 plot(Ju)

121 plot(sim.JuSS,'--')

122 grid on

123 ylabel 'J_u'

124 legend('J_u','J_{uss}','location','Northeastoutside')

125

126 subplot(414)

127 hold all

128 plot(flag)

129 grid on

130 ylabel 'flag'

Classic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')
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6 import casadi.*

7

8 Ts = 1; % Sample time

9

10 y = MX.sym('y');

11 u = MX.sym('u');

12 x1 = MX.sym('x1');

13 x2 = MX.sym('x2');

14 tau = (174/Ts);

15

16 tau_1 = 174;

17 tau_2 = 60;

18 tau_a = 40; % tau_a = 0 and 40 are studied

19

20 [amplitude,b,c,d] = tf2ss([0 tau_a 1] , [tau_1*tau_2 tau_1+tau_2 1]);

21

22 % ODE model

23 % dx/dt=Ax+Bu, y=Cx+Du, x=[x1 x2]', A=2X2 matrix

24 dx1 = amplitude(1,1)*x1+amplitude(1,2)*x2+b(1,1)*(-0.1*uˆ2+4*u+5);

25 dx2 = amplitude(2,1)*x1+amplitude(2,2)*x2+b(2,1)*(-0.1*uˆ2+4*u+5);

26 y = c(1,1)*x1+c(1,2)*x2+d*(-0.1*uˆ2+4*u+5);

27

28 ode = struct('x',vertcat(x1,x2),'p',u,'ode',vertcat(dx1,dx2),'quad',y);

29 opts = struct('tf',Ts);

30

31 % create IDAS integrator

32 F = integrator('F','cvodes',ode,opts);

33

34 %%

35 % initialization

36 xf = [0; 42.5/c(1,2)];

37 u_in0 = 15;

38 u_in = u_in0;

39
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40 T = 1800; % sine perturbation time constant

41 Th = (0.2)*T; % High Pass Filter time constant

42 Tl = 10*T; % Low Pass Filter time constant

43 amplitude = 1; % sine amplitude

44

45 Ki = 0.001; % Controller gain

46 nIter = 4e5;

47 ARX = 1;

48

49 %intitalisation

50 z(1) = 0;

51 x(1) = 0;

52 u_hat(1) = 15;

53 y_esc(1) = 42.5;

54 sim.u(1) = 15;

55 sim.y(1) = 42.5;

56 J(1) = y_esc(1);

57 u_hat(1) = u_hat(1);

58 f = 1/T;

59

60 % filter coefficients

61 al = Ts/(Ts + Tl);

62 ah = Th/(Ts + Th);

63

64 h = waitbar(0,'Simulation in Progress...');

65 for sim_k = 2:nIter

66 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

67

68 Fk = F('x0',xf,'p',u_in);

69 xf = full(Fk.xf);

70

71 sim.y(sim_k) = c*xf + 0.005*randn(1);

72 sim.u(sim_k) = u_in + 0.005*randn(1);

73
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74 y_esc(sim_k) = sim.y(sim_k);

75 J(sim_k) = sim.y(sim_k);

76 u_hat(sim_k) = sim.u(sim_k);

77

78 z(sim_k) = ah*z(sim_k-1) + ah*J(sim_k) - ah*J(sim_k-1); ...

% High pass filter

79 x(sim_k) = ((1-al)*x(sim_k-1) + ...

al*z(sim_k)*sin(2*pi*f*Ts*(sim_k))); % correlation and ...

Low pass filter

80 % Ju = x.*2/amplitude;

81 u_hat(sim_k) = u_hat(sim_k-1) + Ts*Ki*x(sim_k).*2/amplitude; ...

% I-controller

82 u_esc(sim_k) = u_hat(sim_k) + amplitude*sin(2*pi*f*Ts*(sim_k)); ...

% estimated optimal input + dither

83

84 u_in = u_esc(sim_k);

85 end

86 close(h);

87

88 %% Plotting

89 figure(1)

90 subplot(311)

91 hold all

92 plot(sim.y)

93 ylabel 'y'

94

95 subplot(312)

96 hold all

97 plot(sim.u)

98 ylabel 'u'

99

100 subplot(313)

101 hold all

102 plot(x.*2/amplitude)

101



103 ylabel 'J_u'

102



8.4 Matlab Script for Case study 3

8.4.1 Dynamic ESC

1 clear

2 clc

3

4 addpath ('D:\matlab\casadi-matlabR2014b-v3.2.3')

5 addpath('D:\matlab')

6 import casadi.*

7

8 Ts = 1;

9

10 y1 = MX.sym('y1');

11 u1 = MX.sym('u1');

12 tau1 = (174/Ts);

13

14 y2 = MX.sym('y2');

15 u2 = MX.sym('u2');

16 tau2 = (180/Ts);

17

18 y3 = MX.sym('y3');

19 u3 = MX.sym('u3');

20 tau3 = (170/Ts);

21

22 y4 = MX.sym('y4');

23 u4 = MX.sym('u4');

24 tau4 = (176/Ts);

25

26 y5 = MX.sym('y5');

27 u5 = MX.sym('u5');

28 tau5 = (180/Ts);
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29

30 y6 = MX.sym('y6');

31 u6 = MX.sym('u6');

32 tau6 = (177/Ts);

33

34 % ODE model

35 dx1 = ((-0.1*u1ˆ2+4*u1+5) - y1)/tau1;

36 dx2 = ((-0.5*u2ˆ2+10*u2+5) - y2)/tau2;

37 dx3 = ((-0.2*u3ˆ2+6*u3+10) - y3)/tau3;

38 dx4 = ((-0.05*u4ˆ2+3*u4+10) - y4)/tau4;

39 dx5 = ((-0.04*u5ˆ2+2*u5+15) - y5)/tau5;

40 dx6 = ((-0.1*u6ˆ2+2*u6+20) - y6)/tau6;

41

42 % cost functions

43 L1 = -y1;

44 L2 = -y2;

45 L3 = -y3;

46 L4 = -y4;

47 L5 = -y5;

48 L6 = -y6;

49

50 ode1 = struct('x',y1,'p',u1,'ode',dx1,'quad',L1);

51 ode2 = struct('x',y2,'p',u2,'ode',dx2,'quad',L2);

52 ode3 = struct('x',y3,'p',u3,'ode',dx3,'quad',L3);

53 ode4 = struct('x',y4,'p',u4,'ode',dx4,'quad',L4);

54 ode5 = struct('x',y5,'p',u5,'ode',dx5,'quad',L5);

55 ode6 = struct('x',y6,'p',u6,'ode',dx6,'quad',L6);

56

57 opts = struct('tf',Ts);

58

59 % create IDAS integrator

60 F1 = integrator('F','cvodes',ode1,opts);

61 F2 = integrator('F','cvodes',ode2,opts);

62 F3 = integrator('F','cvodes',ode3,opts);
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63 F4 = integrator('F','cvodes',ode4,opts);

64 F5 = integrator('F','cvodes',ode5,opts);

65 F6 = integrator('F','cvodes',ode6,opts);

66

67 %%

68 % initialization

69 xf1 = 16.1;

70 u_in01 = 3;

71 u_in1 = u_in01;

72

73 xf2 =47;

74 u_in02 = 14;

75 u_in2 = u_in02;

76

77 xf3 = 30.8;

78 u_in03 = 4;

79 u_in3 = u_in03;

80

81 xf4 = 53.2;

82 u_in04 = 24;

83 u_in4 = u_in04;

84

85 xf5 = 16.96;

86 u_in05 = 1;

87 u_in5 = u_in05;

88

89 xf6 = 30;

90 u_in06 = 10;

91 u_in6 = u_in06;

92

93 ARX = 1;

94 prbs1 = 0;

95 prbs2 = 0;

96 prbs3 = 0;
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97 prbs4 = 0;

98 prbs5 = 0;

99 prbs6 = 0;

100 y_SS1 = xf1;

101 y_SS2 = xf2;

102 y_SS3 = xf3;

103 y_SS4 = xf4;

104 y_SS5 = xf5;

105 y_SS6 = xf6;

106 umax = 56; % constraint

107

108 Ki = 0.0005; % intergtal controller gain

109 l = 3*180; % window size of data

110 nIter = 40000;

111

112 h = waitbar(0,'Simulation in Progress...');

113 for sim_k = 1:nIter

114 waitbar(sim_k /nIter,h,sprintf('Time: %0.0f min',sim_k*Ts/60))

115 warning('off','all')

116

117 Fk1 = F1('x0',xf1,'p',u_in1);

118 Fk2 = F2('x0',xf2,'p',u_in2);

119 Fk3 = F3('x0',xf3,'p',u_in3);

120 Fk4 = F4('x0',xf4,'p',u_in4);

121 Fk5 = F5('x0',xf5,'p',u_in5);

122 Fk6 = F6('x0',xf6,'p',u_in6);

123

124 xf1 = full(Fk1.xf);

125 xf2 = full(Fk2.xf);

126 xf3 = full(Fk3.xf);

127 xf4 = full(Fk4.xf);

128 xf5 = full(Fk5.xf);

129 xf6 = full(Fk6.xf);

130
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131 Ju_SS1(sim_k) = -0.2*u_in1+4; % steady state gradient

132 Ju_SS2(sim_k) = -1*u_in2+10;

133 Ju_SS3(sim_k) = -0.4*u_in3+6;

134 Ju_SS4(sim_k) = -.1*u_in4+3;

135 Ju_SS5(sim_k) = -0.08*u_in5+2;

136 Ju_SS6(sim_k) = -.2*u_in6+2;

137

138 sim.y1(sim_k) = xf1 + 0.00*randn(1);

139 sim.y2(sim_k) = xf2 + 0.00*randn(1);

140 sim.y3(sim_k) = xf3 + 0.00*randn(1);

141 sim.y4(sim_k) = xf4 + 0.00*randn(1);

142 sim.y5(sim_k) = xf5 + 0.00*randn(1);

143 sim.y6(sim_k) = xf6 + 0.00*randn(1);

144

145 sim.u1(sim_k) = u_in1 + 0.00*randn(1);

146 sim.u2(sim_k) = u_in2 + 0.00*randn(1);

147 sim.u3(sim_k) = u_in3 + 0.00*randn(1);

148 sim.u4(sim_k) = u_in4 + 0.00*randn(1);

149 sim.u5(sim_k) = u_in5 + 0.00*randn(1);

150 sim.u6(sim_k) = u_in6 + 0.00*randn(1);

151

152 if sim_k>1

153 y_SS1(sim_k) = sim.y1(sim_k) + ...

(sim.y1(sim_k)-sim.y1(sim_k-1))*tau1; % inverse: G(s)ˆ-1

154 y_SS2(sim_k) = sim.y2(sim_k) + ...

(sim.y2(sim_k)-sim.y2(sim_k-1))*tau2;

155 y_SS3(sim_k) = sim.y3(sim_k) + ...

(sim.y3(sim_k)-sim.y3(sim_k-1))*tau3;

156 y_SS4(sim_k) = sim.y4(sim_k) + ...

(sim.y4(sim_k)-sim.y4(sim_k-1))*tau4;

157 y_SS5(sim_k) = sim.y5(sim_k) + ...

(sim.y5(sim_k)-sim.y5(sim_k-1))*tau5;

158 y_SS6(sim_k) = sim.y6(sim_k) + ...

(sim.y6(sim_k)-sim.y6(sim_k-1))*tau6;
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159 end

160

161 if sim_k > l % ARX estimation part

162 ymeas1 = sim.y1(sim_k-l:sim_k)';

163 ymeas2 = sim.y2(sim_k-l:sim_k)';

164 ymeas3 = sim.y3(sim_k-l:sim_k)';

165 ymeas4 = sim.y4(sim_k-l:sim_k)';

166 ymeas5 = sim.y5(sim_k-l:sim_k)';

167 ymeas6 = sim.y6(sim_k-l:sim_k)';

168

169 umeas1 = sim.u1(sim_k-l:sim_k)';

170 umeas2 = sim.u2(sim_k-l:sim_k)';

171 umeas3 = sim.u3(sim_k-l:sim_k)';

172 umeas4 = sim.u4(sim_k-l:sim_k)';

173 umeas5 = sim.u5(sim_k-l:sim_k)';

174 umeas6 = sim.u6(sim_k-l:sim_k)';

175

176 if ARX

177 Y10 = ymeas1 - mean(ymeas1);

178 Y20 = ymeas2 - mean(ymeas2);

179 Y30 = ymeas3 - mean(ymeas3);

180 Y40 = ymeas4 - mean(ymeas4);

181 Y50 = ymeas5 - mean(ymeas5);

182 Y60 = ymeas6 - mean(ymeas6);

183

184 U10 = umeas1 - mean(umeas1);

185 U20 = umeas2 - mean(umeas2);

186 U30 = umeas3 - mean(umeas3);

187 U40 = umeas4 - mean(umeas4);

188 U50 = umeas5 - mean(umeas5);

189 U60 = umeas6 - mean(umeas6);

190

191 data1 = iddata(Y10,U10,Ts);

192 data2 = iddata(Y20,U20,Ts);
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193 data3 = iddata(Y30,U30,Ts);

194 data4 = iddata(Y40,U40,Ts);

195 data5 = iddata(Y50,U50,Ts);

196 data6 = iddata(Y60,U60,Ts);

197

198 sysARX1 = arx(data1,[1,1,0]);

199 sysD1 = idss(sysARX1);

200 sys1 = d2c(sysD1);

201 Ju_hat1 = -sys1.C*(sys1.A\sys1.B) + sys1.D;

202 Ju1(sim_k) = Ju_hat1;

203

204 sysARX2 = arx(data2,[1,1,0]);

205 sysD2 = idss(sysARX2);

206 sys2 = d2c(sysD2);

207 Ju_hat2 = -sys2.C*(sys2.A\sys2.B) + sys2.D;

208 Ju2(sim_k) = Ju_hat2;

209

210 sysARX3 = arx(data3,[1,1,0]);

211 sysD3 = idss(sysARX3);

212 sys3 = d2c(sysD3);

213 Ju_hat3 = -sys3.C*(sys3.A\sys3.B) + sys3.D;

214 Ju3(sim_k) = Ju_hat3;

215

216 sysARX4 = arx(data4,[1,1,0]);

217 sysD4 = idss(sysARX4);

218 sys4 = d2c(sysD4);

219 Ju_hat4 = -sys4.C*(sys4.A\sys4.B) + sys4.D;

220 Ju4(sim_k) = Ju_hat4;

221

222 sysARX5 = arx(data5,[1,1,0]);

223 sysD5 = idss(sysARX5);

224 sys5 = d2c(sysD5);

225 Ju_hat5 = -sys5.C*(sys5.A\sys5.B) + sys5.D;

226 Ju5(sim_k) = Ju_hat5;
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227

228 sysARX6 = arx(data6,[1,1,0]);

229 sysD6 = idss(sysARX6);

230 sys6 = d2c(sysD6);

231 Ju_hat6 = -sys6.C*(sys6.A\sys6.B) + sys6.D;

232 Ju6(sim_k) = Ju_hat6;

233 end

234

235 if sim_k > l % I-controller

236 u_in01 = u_in01 +0.0005*(Ju_hat1-Ju_hat2);

237 u_in02 = u_in02 +0.0004*(Ju_hat2-Ju_hat3);

238 u_in03 = u_in03 +0.001*(Ju_hat3-Ju_hat4);

239 u_in04 = u_in04 +0.005*(Ju_hat4-Ju_hat5);

240 u_in05 = u_in05 +0.001*(Ju_hat5-Ju_hat6);

241 u_in06 = umax - (u_in01+u_in02+u_in03+u_in04+u_in05);

242 end

243 end

244

245 if rem(sim_k,60)==0 % calculate next prbs wave in every ...

60 steps

246 prbs1 = 1*idinput(1);

247 prbs2 = -prbs1;

248 prbs3 = 1*idinput(1);

249 prbs4 = -prbs3;

250 prbs5 = 1*idinput(1);

251 prbs6 = -prbs5;

252 end

253

254 u_in1 = u_in01+0.1*prbs1;

255 u_in2 = u_in02+0.1*prbs2;

256 u_in3 = u_in03+0.1*prbs3;

257 u_in4 = u_in04+0.1*prbs4;

258 u_in5 = u_in05+0.1*prbs5;

259 u_in6 = u_in06+0.1*prbs6;
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260 end

261 close(h);

262

263 %% Plotting

264 figure(1)

265 set(0,'DefaultAxesFontSize', 18)

266

267 subplot(6,3,1)

268 hold all

269 plot(sim.u1)

270 ylabel 'u_1'

271 subplot(6,3,4)

272 hold all

273 plot(sim.u2)

274 ylabel 'u_2'

275 subplot(6,3,7)

276 hold all

277 plot(sim.u3)

278 ylabel 'u_3'

279 subplot(6,3,10)

280 hold all

281 plot(sim.u4)

282 ylabel 'u_4'

283 subplot(6,3,13)

284 hold all

285 plot(sim.u5)

286 ylabel 'u_5'

287 subplot(6,3,16)

288 hold all

289 plot(sim.u6)

290 ylabel 'u_6'

291

292 subplot(6,3,2)

293 hold all
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294 plot(sim.y1)

295 plot(y_SS1, '--')

296 ylabel 'y_1'

297 subplot(6,3,5)

298 hold all

299 plot(sim.y2)

300 plot(y_SS2, '--')

301 ylabel 'y_2'

302 subplot(6,3,8)

303 hold all

304 plot(sim.y3)

305 plot(y_SS3, '--')

306 ylabel 'y_3'

307 subplot(6,3,11)

308 hold all

309 plot(sim.y4)

310 plot(y_SS4, '--')

311 ylabel 'y_4'

312 subplot(6,3,14)

313 hold all

314 plot(sim.y5)

315 plot(y_SS5, '--')

316 ylabel 'y_5'

317 subplot(6,3,17)

318 hold all

319 plot(sim.y6)

320 plot(y_SS6, '--')

321 ylabel 'y_6'

322

323 subplot(6,3,3)

324 hold all

325 plot(1.*Ju1')

326 plot(Ju_SS1,'--')

327 ylabel 'J_u1'
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328 subplot(6,3,6)

329 hold all

330 plot(1.*Ju2')

331 plot(Ju_SS2,'--')

332 ylabel 'J_u2'

333 subplot(6,3,9)

334 hold all

335 plot(1.*Ju3')

336 plot(Ju_SS3,'--')

337 ylabel 'J_u3'

338 subplot(6,3,12)

339 hold all

340 plot(1.*Ju4')

341 plot(Ju_SS4,'--')

342 ylabel 'J_u4'

343 subplot(6,3,15)

344 hold all

345 plot(1.*Ju5')

346 plot(Ju_SS5,'--')

347 ylabel 'J_u5'

348 subplot(6,3,18)

349 hold all

350 plot(1.*Ju6')

351 plot(Ju_SS6,'--')

352 ylabel 'J_u6'
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