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Abstract

Safe and efficient operation of subsea processing systems imposes strict requirements with
respect to equipment design and reliability. This is to avoid accidental shutdowns, which
can lead to expensive maintenance engagements. For that reason, health monitoring meth-
ods are applied to monitor and evaluate the condition of the overall system in real-time.
However, when finding the optimal operation policy, the health condition is generally not
reviewed directly. As a consequence, this may cause overly restrictive operation. This
study will suggest to combine control and condition monitoring of the Åsgard gas com-
pression station, in order to prevent the operation policy from being sub-optimal. In this
manner, the obtained optimal plan of action for operation will seek to sustain the reliabil-
ity of the subsea system. This makes it possible to forecast the health of the system and
manage the operation accordingly, rather than just reacting to it.

This thesis proposes a model predictive control (MPC) approach for integrating health
monitoring and control. The scheme will seek to ensure safe operation and an economic
optimal control policy for the subsea station. Risk measures that estimate the risk of fail-
ure are used for condition monitoring purposes. In this work, Conditional Value-at-Risk
(CVaR) with respect to the random variable remaining useful life (RUL) of equipment is
incorporated into the optimal control problem to assess the condition of system equip-
ment. CVaR estimates the risk of failure in a conservative manner by bringing the extreme
RUL of equipment outcomes into focus for a confidence level, α. The theoretical analysis
shows that minimization of unavailability of equipment coincides with the maximization
of CVaR with respect to RUL of equipment. Control of the predicted CVaR with respect
to RUL of equipment is employed to enforce safe operation until the next maintenance
engagement.

The numerical simulations show that the predicted CVaR with respect to the RUL of equip-
ment decreases with time until the next maintenance engagement, which is scheduled to
happen in five years. The average RUL of the 0.1% worst RUL outcomes has been calcu-
lated to be to just above five years at the startup of the plant. A higher confidence level
gives rise to higher values for CVaR with respect to RUL of equipment. In this approach,
maximizing profit in terms of gas production while maximizing average RUL of the 0.1%
worst RUL outcomes gives a production profile where the gas production rate decreases
with time.

The overall conclusion from this work is that health-aware control with risk measures
for condition monitoring has the potential to manage the reliability of a subsea plant. Nev-
ertheless, the accuracy of the system model and the implementation of the risk measure
estimate influence the ability of the controller to predict the risk of failure.
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Sammendrag

Sikker og effektiv drift av prosessystemer på havbunnen stiller strenge krav til reliabilitet
og design av utstyr. Dette er for å unngå tilfeldig driftsstans av prosessanlegg og kost-
bart vedlikeholdsarbeid. Av denne grunn brukes overvåkingsmetoder for å observere og
evaluere tilstanden til hele systemet i sanntid. Generelt sett vurderes ikke systemts til-
stand direkte når den optimale kontrolstrategien for driften av systemet utformes. Dette
kan imidlertid føre til altfor restriktiv drift av prosessanlegget. Denne oppgaven vil foreslå
å kombinere kontroll og tilstandsovervåking av gasskompresjonsstasjonen på Åsgard fel-
tet for å forhindre at kontrollstrategien blir suboptimal. På denne måten vil den optimale
kontrolstrategien for driften av systemet forsøke å opprettholde reliabiliteten av prosessan-
legget på havbunnen. Denne metoden gjør det mulig å administrere driften av anlegget i
henhold til prognoser for tilstanden til systemet, i stedet for å bare respondere på obser-
vasjoner.

Denne oppgaven benytter modell prediktiv kontroll (MPC) til å integrere tilstandsoverv-
åking og kontroll. Denne metoden vil prøve å sikre trygg drift av anlegget og en økonomisk
optimal kontrollstrategi for undervannsanlegget. Tilstandsovervåkingen vil benytte risiko-
evalueringer for å anslå risikoen for svikt i systemet. I dette arbeidet er Conditional Value-
at-Risk (CVaR) med hensyn til den stokastiske variabelen for gjenværende levetid (RUL)
av utstyr, innarbeidet i det optimale kontroll problemet for å vurdere tilstanden til utstyret.
CVaR anslår risikoen for svikt på en konservativ måte ved å fokusere på de ekstreme
tilfellene av RUL for et gitt konfidensnivå, α. Den teoretiske analysen viser at minimialis-
ering av utilgjengelighet av utstyr sammenfaller med maksimering av CVaR med hensyn
til RUL. Kontroll av CVaR med hensyn til RUL er anvendt for å opprettholde trygg drift
av anlegget frem til neste planlagte vedlikeholdsarbeid.

De numeriske simuleringene viser at CVaR med hensyn til RUL synker med tiden frem
til neste planlagte vedlikeholdsarbeid om fem år. Gjennomsnittlig RUL av de 0,1% verste
utfallene av RUL er kalkulert til å være litt over fem år ved oppstart av anlegget. Et høyere
konfidensnivå resulterer i høyere verdier for CVaR med hensyn til RUL. Ved å maksimere
inntekt i form av gassproduksjon parallellt med å maksimere gjennomsnittlig RUL av 0,1%
dårligste utfallene av RUL, blir utfallet at produksjonsraten av gass synker med tiden.

Den overordnede konklusjonen fra dette arbeidet er at MPC kombinert med risikomålinger
for tilstandsovervåking har potensial til å håndtere reliabiliteten til prosessystemer på
havbunnen. Systemmodellens nøyaktighet og implementeringen av mål på risiko påvirker
kontrollerens evne til å forutsi risikoen for svikt.
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2.4 Scenario tree with robust horizon NR = 2, prediction horizon N = n and
number of scenarios S = 9 illustrating the connection between the non-
anticipativity constraints. (Verheyleweghen and Jäschke, 2017c). . . . . . 12
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time, t, at t = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Closed loop state profiles with noise for the compressor speed, ucomp, and
the choke opening, uchoke, with confidence levels, α = 0.1%. . . . . . . 49

xiv



List of Symbols

Nµ Dimensionless viscosity number. -

qmax Maximum allowable flow in compressor to avoid choking. m3/s

qmin Minimum allowable flow in compressor to prevent surge. m3/s

α Confidence level for risk measurements. %

αs Cyclone separation efficiency. %

βk Discounting factor for risk measures at time k. -

δl Liquid film thickness in the cyclone wall. m
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Chapter 1
Introduction

Subsea processing technology is developed to overcome many challenges associated with
topside oil and gas operations. This technology enables production from reservoirs and
fields previously deemed too remote in arctic or hostile environments. The main purpose
with subsea processing systems is to strengthen the economic result from the operation
through cost reduction and increase in production. Subsea technology is a mature technol-
ogy that has been applied in a number of oil fields on the Norwegian continental shelf, i.e.
Troll and Åsgard (McClimans et al., 2006). However, since each field is unique, unsolved
problems still exists (Moreno-Trejo and Markeset, 2011a,b). Each field brings new indus-
trial challenges and demands in terms of design, operation and reliability of the subsea
systems.

1.1 Motivation
New challenges arise when operating oil and gas systems on the seabed. Inaccessibility of
the subsea plant is one of the most crucial challenges when shifting topside equipment to
the seabed. Maintenance engagements are considerably rare for subsea systems, as they
require specialized intervention ships to carry out operations on the bottom of the ocean.
Consequently, unplanned shutdowns, which may cause expensive maintenance engage-
ments are attempted to be avoided at every opportunity. Because of this, safe and efficient
operation of subsea plants imposes strict requirements both with respect to equipment de-
sign and reliability. Information about the condition of the system can be used to establish
effective maintenance policies and to forecast the health condition of system components
in the future. Condition monitoring techniques are applied to evaluate the health of the
subsea system in real-time. Unfortunately, if the decision-making process does not han-
dle the information from the condition monitoring system explicitly, the process might be
overly restrictive (Verheyleweghen and Jäschke, 2017b). This study will suggest to com-
bine control and condition monitoring in order to prevent sub-optimal operation. This is
to obtain an optimal control policy for operation, without compromising the reliability of
the plant.

1



Chapter 1. Introduction

1.2 Scope of Work
This master thesis focuses on the subsea gas compression station at the Åsgard field, as
depicted in Figure 1.1. This study proposes a model predictive control (MPC) approach
for integrating condition monitoring and control. In this manner, the obtained optimal plan
of action for operation will seek to sustain the reliability of the subsea station. Financial
risk measures are not commonly employed in process control. However, risk controlling
techniques that consider the risk of failure are used for condition monitoring purposes for
the subsea plant. Numerical tests are performed to evaluate if the chosen risk measure is
suitable for risk control of the subsea plant. In detail, this involves implementing a suited
risk measure in the form of MATLAB code in the optimal control problem. Addition-
ally, the closed-loop MPC is implemented in MATLAB to add random disturbance to the
optimization.

Figure 1.1: Artist rendition of the Åsgard gas compression station. Copyright: Aker Solutions.

1.3 Previous Work
The term health-aware control is a design that integrates prognostics and health monitoring
(PHM) and control to ensure reliable and efficient operation of systems subject to instru-
mental faults and hazards (Escobet et al., 2012). In this approach, the obtained control
policy for operation will seek to sustain the reliability of the system. Condition monitor-
ing methods are generally combined with PHM to assess the system condition. In recent
years, there have been several attempts at combining condition monitoring techniques and
MPC. This is a predictive control scheme that combines feedback control with periodic
optimization of the system model subject to constraints in order to generate optimal con-
trol policies (Morari and Lee, 1999). There have been several attempts at incorporating

2



1.4 Outline

PHM in the objective function or the constraints in the optimization. Pereira et al. (2010)
attempted to distribute the control effort in a simulated tank level control system by im-
posing constraints directly on the accumulated actuator degradation in the optimization
problem. Salazar et al. (2016) employed PHM explicitly in the constraints in the pumps
in a drinking water system. Sanchez et al. (2015) proposed to minimize damage on wind
turbine blades by including a prognosis that was based on fatigue in the objective function.

This master thesis is a continuation of a project work on health-aware control of the subsea
gas compression station at the Åsgard field (Ims, 2017). This study was originally based on
a mathematical model of the Åsgard subsea gas compression station implemented in MAT-
LAB by supervisor Adriaen Verheyleweghen. First efforts at optimizing the subsea system
was handled as part of the work with the project thesis (Ims, 2017). Two health propaga-
tion models for condition monitoring were investigated, the degradation of equipment and
hazard functions for remaining useful life (RUL) of equipment. In the first method, Paris’
law for crack propagation was used to predict degradation of equipment. Constraints were
applied on allowable accumulated degradation of system to enforce safe operation. In the
second approach, the hazard function for RUL of equipment acted as a chance constraint
on RUL of equipment. Constraints were applied on allowable cumulative hazard to en-
sure reliable operation until the next maintenance engagement. The results in terms of the
economic outcome are somewhat unexpected. The operational strategy is more profitable
when the cumulative hazard function for RUL of equipment is used to monitor the health
condition development

A detailed separator model has also been implemented as part of the work with the project
to provide accurate predictions of liquid carry over to the wet-gas compressor. A new sep-
arator model is proposed to reduce uncertainty and enable enhanced production through
less conservative operations. The mathematical model designed is based on a correlation
between the cyclone separation efficiency and the dimensionless re-entrainment number.

1.4 Outline
Chapter 1 gives a brief introduction to the study. The motivation for this work and scope
is described here. This chapter also includes an overview of previous work on the same
subject. Chapter 2 discusses the topics of optimization theory and optimal control. The
chapter provides details on relevant optimization problem formulations. Towards the end,
the features and structure of the model predictive control framework are presented. Chap-
ter 3 provides a detailed description of risk measures, both static and dynamic, for risk
controlling purposes. The topic of risk control in optimization problems is considered at
the end of Chapter 3. Chapter 4 presents a process description of the subsea gas com-
pression station at the Åsgard field. The model equations for the choke, the separator and
the compressor are given here. Chapter 5 addresses the full optimal control problem in
detail. Chapter 6 presents the results obtained working with this study. Chapter 7 contains
concluding remarks and suggestions for future work.
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Chapter 2
Optimization and Optimal Control

”For since the fabric of the universe is most perfect, and is the work of a most wise Creator,
nothing whatsoever takes place in the universe in which some relation of maximum and
minimum does not appear.”

— Leonhard Euler

It is an indisputable fact that people optimize by making decisions for the sole intention
of maximizing their quality of life in some way or another (Kiranyaz et al., 2014). For
this reason, optimization has found applications in a number of areas. Investors aim to
form portfolios that obtain a high rate of return while preventing extreme risk. Manufac-
turers seek ultimate productivity from operation and design of their processes. Engineers
intend to improve system performance of their model by modifying parameters (Nocedal
and Wright, 2006).

Optimization has been a fundamental concept in human history long before mathemati-
cal models and computers were developed. The conception of optimization is the process
of locating the optimum of systems (Kiranyaz et al., 2014). The underlying idea of opti-
mization originates from the work of Euler and Lagrange (Nocedal and Wright, 2006) in
the 1800s. Advances in the theory of optimization were managed by the likes of Gauss and
Newton. Newton and Gauss presented iterative techniques for shifting against an optimal
state. George Dantzig introduced a general linear programming formulation and invented
the Simplex method in 1947 (Gill et al., 2008). This led to optimization being introduced
in other areas outside mathematics. Further study in the area of optimization led to the
formation of dynamic optimization by Bellman (1954), as well as the unfolding of non-
linear solvers such as IPOPT (Wächter and Biegler, 2006). Dynamic optimization is also
known as the modern term dynamic programming which employs solving sub-problems
inside larger decision problems. With these advancements, optimization has become a
widespread tool utilized in various areas like science, engineering and finance.
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Chapter 2. Optimization and Optimal Control

Optimization can be applied in numerous areas within chemical engineering. Process
control is one field in particular which benefits greatly from optimization. Optimization
problems solved in process control are most frequently referred to as optimal control prob-
lems (OCPs). The complexity and structure of the optimization problem will influence
what solver methods are suitable for the OCP. Furthermore, in process control, minor al-
terations in operating conditions can have enormous impact on system performance. For
that reason, it is convenient to have a systematic approach for locating the optimal operat-
ing conditions which yield the most profitable outcome. Model predictive control (MPC)
is an optimization based control strategy often employed in process industries (Lucia et al.,
2013b). The MPC scheme yields an optimal sequence of control inputs which is obtained
by means of mathematical optimization. This work will apply the MPC framework in or-
der to obtain the optimal trajectory of control inputs for the subsea gas station at the Åsgard
field. Section 2.1 will give a brief introduction to optimization theory. Relevant forms of
optimization problems such as dynamic optimization as well as dynamic stochastic opti-
mization will also be presented here. At last, Section 2.2 will discuss the MPC scheme
applied for optimization of the Åsgard subsea gas compression station.

2.1 Optimization Theory
In computer science and mathematics, the general understanding of an optimization prob-
lem is finding the optimal solution out of all possible solutions. Optimization problems
are categorized based on whether the variables involved are discrete or continuous. The
focus of this work will be continuous optimization problems formulated with constraints.
The canonical form of a general continuous optimization problem is

min
x,z,u

Φ(x, z,u,p)

s.t. f(x, z,u,p) ≤ 0

g(x, z,u,p) = 0.

(2.1)

f(x, z,u,p) ≤ 0 are labeled the inequality constraints and g(x, z,u,p) = 0 are referred to
as the equality constraints (Biegler, 2010). The latter two terms define the feasible set of
solutions for the optimization problem. Φ(x, z,u,p) ∈ R is the objective function to be
optimized. The objective function is integrated into the optimization problem formulation
to enable differentiation of the feasible solutions. By convention, the common design of
an mathematical optimization problem defines a matter of minimization. A maximization
problem can be considered by employing the negative of the objective function.

Problems of the general form given in Equation 2.1 can be classified according to the
characteristics of the objective function and constraints, i.e. linear, nonlinear and convex
(Kiranyaz et al., 2014). Optimization problems in which the objective function or some of
the constraints are nonlinear are referred to as non-linear optimization problems. Chapter
4 will present model equations of nonlinear nature. The process of solving an optimization
problem of non-linear characteristics is called nonlinear programming (NLP).
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2.1 Optimization Theory

The idea of convexity is significant in optimization (Kiranyaz et al., 2014). In general,
many real-life optimization problems possess this characteristic. Convex optimization
problems are simpler to solve both in theory and practice. The convex term can be adapted
to both functions and sets. A set S ∈ Rn is considered a convex set if the direct line
between any two points x and y in S, lies exclusively within S (Biegler, 2010). Figure 2.1
display an example of a convex set S and a non-convex set S′ with two points x and y.

(a) Convex set S with two points x and
y.

(b) Non-convex set S′ with two points x
and y.

Figure 2.1: Example of a convex set, S, and a non-convex set, S′, with two points, x and y, explicitly
marked.

An arbitrary function f is considered a convex function if its domain S is a convex set and
if for any two points x and y in S, the following feature is fulfilled (Biegler, 2010):

f(κx+ (1− κ)y) ≤ κf(x) + (1− κ)f(y), ∀ κ ∈ [0, 1]. (2.2)

Figure 2.2 display an example of a convex function f and a non-convex function f ′ de-
fined on a set S with two points x and y.

x

f(x)

y

f(y)

(a) Convex function f defined on a set S with two
points x and y.

x

f ′(x)

y

f ′(y)

(b) Non-convex function f ′ defined on a set S with two
points x and y.

Figure 2.2: Example functions of a convex function, f , and a non-convex function, f ′, with two
points, x and y, explicitly marked.
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The solution obtained when solving the optimization problem given in Equation 2.1 is
in fact a global solution if the objective function in the optimization problem and the fea-
sible domain are both convex (Kiranyaz et al., 2014). This is applicable when solving
convex problems with both local and global solvers. However, solving a non-convex op-
timization problem with a local solver, cannot guarantee that the minimum point obtained
is a global minimum. Solving a non-convex optimization problem with a global solver
will, in most cases, locate a global minimum. Nevertheless, this is rather computational
demanding and not recommended. The concept of convexity is not discussed any further
as it is considered to be outside the scope of this thesis.

2.1.1 Dynamic Optimization
Mathematical optimization problems emerging from multistage decision processes occur
in various areas like science, engineering and finance. Multistage optimization problems
can be broken down into a sequence of simpler sub-problems to facilitate complex prob-
lems. This is a simplification that allows for decomposing of complex decision processes
into a string of elementary decision stages over time. This is commonly referred to as dy-
namic optimization (Bellman, 1954). Dynamic optimization problems solved in process
control are called dynamic optimal control problems. Dynamic optimal control is a rather
widespread form of OCP in which the optimal state of the system alters with time. The
process of solving dynamic optimization problems is called dynamic programming.

The design of a general dynamic optimization problem gives rise to some trivial assump-
tions. Suppose that the dynamic system to be optimized can be described by differential-
algebraic equations (DAEs). The DAEs are expressed with respect to an independent
variable representing time, t. On that regard, defined initial conditions at time t = 0 are
necessary for finding a solution to the dynamic optimization problem. The order of the
differential equations determine the number of initial conditions that are required for solv-
ing the DAE. In the area of process engineering, DAEs are generally stated as initial value
problems with initial conditions (Biegler, 2010),

f
(
x(t), z(t),u(t),p

)
=

dx
dt

g
(
x(t), z(t),u(t),p

)
= 0

x(0) = x0.

(2.3)

Equation 2.3 introduces some generic notation. g denotes the algebraic equations and f
denotes the differential equations. x(t) ∈ Rnx represents the differential variables while
x0 are initial states at time t = 0. z(t) ∈ Rnz denotes the algebraic variables. u(t) ∈ Rnu
are the control variables. x(t), z(t) and u(t) are functions of time, t ≥ 0. p ∈ Rnp repre-
sents the time-independent parameters. Based on the set of DAEs given in Equation 2.3,
assume that with designated values of x(t), u(t) and p, z(t) can be obtained exclusively
by g (Biegler, 2010).

In a dynamic environment, the objective function defines the target of every decision stage
in the optimization. Assume that the optimization problem has a fixed time horizon, tf .
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The objective function can be formulated as∫ tf

0

Φ
(
x(t), z(t),u(t),p

)
dt. (2.4)

The constraints defined in Equation 2.3 and the objective function defined by Equation 2.4
are merged to formulate a dynamic optimization problem. Assuming that the dynamic op-
timization problem is a matter of minimization, the problem can be formulated as (Biegler,
2010)

min
x,z,u

∫ tf

0

Φ(x(t), z(t),u(t),p)dt

s.t. f(x(t), z(t),u(t),p) =
dx
dt

g(x(t), z(t),u(t),p) = 0

x(0) = x0.

(2.5)

Equation 2.5 may yield solutions which are not within a safe operating domain or phys-
ically not feasible. Because of this, bounds must be imposed on particular variables in
order to limit the scope of operation. The limits can be inflicted based on the design of the
system operation, for instance the maximum allowable pressure inside a compressor. The
bounds can be enforced to guarantee a physically consistent system. In this regard, the
following equation will yield feasible solutions that abide by the lower- and upper bounds
for x, z and u and fulfills the constraints specified in Equation 2.3,

min
x,z,u

∫ tf

0

Φ(x(t), z(t),u(t),p)dt

s.t. f(x(t), z(t),u(t),p) =
dx
dt

g(x(t), z(t),u(t),p) = 0

x(0) = x0

xlb ≤ x ≤ xub

zlb ≤ z ≤ zub

ulb ≤ u ≤ uub.

(2.6)

In the equation above the subscript lb represents lower bounds and the subscript ub indi-
cates upper bounds.

There are two different schemes for solving dynamic optimization problems, indirect and
direct methods (Verheyleweghen and Jäschke, 2017b). The indirect method provides solu-
tions with continuous input profiles, while the direct methods are based on time discretiza-
tion and give approximate solutions. Despite this, efficient solution algorithms and easy
implementation of the direct methods make this approach more applicable. In the con-
text of this work, a direct method will be used to solve the dynamic optimization problem
for the subsea station. The direct methods solve the optimization problem numerically
by transforming the DAE to a non-linear programming (NLP) problem via discretization.
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Furthermore, existing direct methods can be divided into three forms, based on how the
dynamics of the DAE are threaded (Verheyleweghen and Jäschke, 2017b). That is single
shooting, multiple shooting and direct collocation. The direct collocation method will be
used to solve this particular optimization problem. In this manner, the state trajectories
are approximated by orthogonal polynomials (Diehl, 2011). Further details of the direct
collocation method will not be discussed here.

The discretization of a continuous problem refers to dividing the time into a fixed set
of intervals. Assume that the initial time horizon, tf , can be separated into N number of
time periods and that each time step is denoted k. For this reason, the continuous objective
function from Equation 2.4 can be estimated by a Riemann sum by separating the time
horizon into a finite number of distinct points,∫ tf

0

Φ
(
x(t), z(t),u(t),p

)
dt =

N∑
k=1

Φk(x(tk+1), z(tk+1),u(tk),p)∆tk. (2.7)

x(tk+1) and z(tk+1) represents the values of the differential and algebraic variables at the
termination of the time period k. ∆tk denotes the duration of time period k. x0 is pre-
sumed to be provided as it is not a decision variable. Hence, x and z are evaluated at tk+1

and the input u is sampled at tk.

The dynamic optimization problem defined by Equation 2.6 together with the new ob-
jective function in Equation 2.7 give rise to a set of optimization problems. This implies
that the optimization problem in each time step k is only conditional on information from
previous time steps. The following Equation 2.8 displays an advanced formulation of the
dynamic optimization problem (Biegler, 2010):

min
x,z,u

N∑
k=1

Φk(xk+1, zk+1,uk,p)∆tk,

s.t. fk(xk, zk,uk,p) = xk+1, ∀k = 1, .., N

gk(xk, zk,uk,p) = 0, ∀k = 1, .., N

xlb ≤ x ≤ xub, ∀k = 1, .., N

zlb ≤ z ≤ zub, ∀k = 1, .., N

ulb ≤ u ≤ uub, ∀k = 0, .., N − 1.

(2.8)

Equation 2.8 has made some abbreviations in terms of notation. y(tk) is reduced to yk, in
which y is one of the variables.

2.1.2 Dynamic Stochastic Optimization
In the area of process control, uncertainties can arise from system measurements or model
mismatch. Problems of optimization under uncertainty are characterized as stochastic. A
stochastic problem formulation is considered to ensure robustness against disturbance and
uncertainty in the system model. Dynamic stochastic optimization will be core for the
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optimization routine for the Åsgard subsea gas compression station.

There are several techniques for incorporating uncertainty in optimization problems. In
the context of this work, scenario decomposition techniques are employed to account for
uncertainty in physical parameters in the optimization routine for the subsea system (Lu-
cia et al., 2013b). A scenario-based approach to uncertainty will convert the distributions
for the uncertain physical parameters, p, to discrete values by having a finite number of
parameter realizations (Lucia et al., 2013b; Hans et al., 2015). A scenario is a combination
of different parameter realizations with associated probability of occurrence as illustrated
in Figure 2.3. The scenario will act as a path from the root to the leaf of the scenario tree
(Verheyleweghen and Jäschke, 2017a).

Figure 2.3: Scenario tree with robust horizon NR = 2, prediction horizon N = n and number of
scenarios S = 9 (Verheyleweghen and Jäschke, 2017c).

It is rather challenging to create a scenario tree that captures all aspects of the uncertainty
in the system. However, it is preferable to build the tree as small as possible for com-
plex optimization problems. The size of the optimization problem will grow exponentially
with the number of uncertain parameters evaluated and the prediction horizon (number of
stages, N ). A robust horizon, NR is introduced to limit the problem by branching the tree
until a certain stage (Lucia et al., 2013a). Then, the uncertainty is assumed to be constant
until the end of the prediction horizon. In the context of this work, the scenario tree is
generated using combinations of minimum, maximum and expected uncertain parameter
realization (Lucia et al., 2013b).
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The deterministic equivalent of the dynamic stochastic optimization problem with a scenario-
based approach to uncertainty can be expressed as

min
xl,k,ul,k,zl,k

S∑
l=1

pl

N∑
k=1

Φk(xl,k+1, zl,k+1,ul,k,p)∆tk,

s.t. fl,k(xl,k, zl,k,ul,k,p) = xl,k+1, ∀ l = 1, ...S, k = 1, .., N

gk(xl,k, zl,k,ul,k,p) = 0, ∀ l = 1, ...S, k = 1, .., N

xlb ≤ x ≤ xub, ∀ l = 1, ...S, k = 1, .., N

zlb ≤ z ≤ zub, ∀ l = 1, ...S, k = 1, .., N

ulb ≤ u ≤ uub, ∀ l = 1, ...S, k = 0, .., N − 1

S∑
l=1

Al,kul,k = 0, ∀ l = 1, ...S, k = 1....N.

(2.9)

In Equation 2.9, S denotes the number of scenarios and pl is the probability of occurrence
for scenario l. A represents the non-anticipativity constraints, which are imposed such that
decisions at the nodes in the scenario tree which are based on the same information are
equal (Lucia et al., 2013b). Figure 2.4 illustrates how the non-anticipativity constraints are
enforced between the connecting nodes in the scenario tree. Scenario decomposition is
a technique for solving large multistage problems by relaxing the non-anticipativity con-
straints and solving the resulting scenario sub-problems in parallel. Increasing penalties
are added in the sub-problems which will eventually ensure non-anticipativity. The ad-
vantage of this method is that the sub-problems are much smaller and easier to solve. The
drawback is that convergence of the master problem can be very slow.

Figure 2.4: Scenario tree with robust horizonNR = 2, prediction horizonN = n and number of sce-
narios S = 9 illustrating the connection between the non-anticipativity constraints. (Verheyleweghen
and Jäschke, 2017c).
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The dynamic stochastic optimization problem given in Equation 2.9 may be solved with
a nonlinear programming (NLP) solver such as IPOPT (Wächter and Biegler, 2006).Note
that the uncertainty that is taken into consideration in the stochastic problem formulation
is the uncertainty in physical parameters. In the context of this study, the time of failure for
the subsea station is assumed to be a stochastic variable as well. Uncertainties in regard to
system reliability will be discussed in Chapter 3.

2.2 Model Predictive Control
Model predictive control (MPC) is an optimization-based control strategy often employed
in process industries (Lucia et al., 2013b). It is an advanced method of process control
recognized for its excellent ability for controlling complex systems. The MPC principle
is based on repeated optimization of the model of the plant, subject to constraints (Morari
and Lee, 1999). The model predictive controller applies the model of the system to predict
its future behaviour and optimize future inputs (Lucia et al., 2013b).

Model predictive control is a combination of optimal control and a closed-loop method.
Optimal control is generally referred to as open-loop control. Open-loop control solves
an optimal control problem (OCP) and computes a sequence of input signals (Lucia et al.,
2013b). The sequence of input signals obtained from the open-loop optimization is applied
to the actual system. In general terms, assuming that the dynamic optimization problem is
solved with a direct method, the OCP can be formulated as Equation 2.8 (Biegler, 2010).
In the context of this study, a dynamic stochastic optimization problem is implemented to
obtain efficient solutions with scenario based methods to account for uncertainty in phys-
ical parameters (Lucia et al., 2013b). Because of this, the optimal control problem that is
solved in the open-loop optimization can be written as Equation 2.9.

In model predictive control, the optimal control is linked with a closed-loop method to
overcome deviations between the predicted and the actual behavior of the system. Devia-
tions arise due to disturbances and model mismatch. The closed-loop method implements
the first control input achieved from the open-loop optimization. In addition, the most
recent measurements from the open loop-optimization will act as new initial conditions
for the differential states. In the context of this work, the closed loop solves the open-loop
optimization problem repeatedly with a receding time horizon. This is done by decreasing
the prediction horizon by one time step for each open-loop optimization (Seborg et al.,
2010). The closed-loop simulation introduces random disturbance on control inputs to ob-
tain the optimal control strategy for operation of the subsea system.

Figure 2.5 illustrates the interplay of the open-loop optimization and the closed-loop
method of the actual plant. The figure illustrates how the model predictive controller pre-
dicts the optimal inputs after systematically resetting the initial conditions in the optimal
control problem to the most recent measurements. The most recent input is implemented as
the first control input in the optimal control problem. The open-loop optimization is done
to predict optimal control inputs for a particular prediction horizon, N (Verheyleweghen
and Jäschke, 2017c).
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Figure 2.5: Illustration of the sequence of events in a model predictive controller (Verheyleweghen
and Jäschke, 2017c).
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Chapter 3
Reliability and Risk Management

Safe and efficient operation of subsea plants imposes strict requirements both with respect
to equipment design and reliability. Information about the condition of the system can be
used to make effective maintenance policies and to forecast the health condition of system
components in the future. Condition monitoring techniques can be applied to evaluate the
health of the subsea system in real-time. This study suggests to combine condition moni-
toring methods and optimal control. In doing so, the obtained optimal control strategy for
operation will seek to ensure safe operation. This makes it possible to forecast the health
of the system and manage the operation accordingly, rather than just reacting to it.

In recent years, there have been several attempts at combining condition monitoring tech-
niques and model predictive control (MPC). Condition monitoring methods are coupled
with prognostics and health monitoring (PHM) in order to improve the maintenance policy
so that the predicted remaining useful life (RUL) of equipment can be increased. There
have been several attempts at incorporating PHM in the objective function or the con-
straints in the OCP. The work carried out in the project thesis investigated the use of ac-
cumulated compressor degradation to estimate the condition of equipment for the Åsgard
subsea gas compression station (Ims, 2017). However, by imposing hard constraints on the
degradation of equipment, essential factors for ensuring a reliable operation are omitted.
The degradation of equipment ignores the potential loss of production. Loss of production
is defined as when RUL of equipment is shorter than the time until the next maintenance
engagement (Verheyleweghen and Jäschke, 2018). RUL of equipment is a random variable
that accounts for uncertainty in equipment reliability. Because of the stochastic nature of
reliability and degradation, it is impossible to set hard constraints on the RUL of equipment
(Verheyleweghen and Jäschke, 2018). Regular chance constraints on RUL of equipment
can be imposed to ensure that the probability of RUL of equipment being greater than the
time until the next maintenance intervention, is sufficient. However, optimal control prob-
lems with regular chance constraints neglect the effect of occurrence of extreme events.
Safe control and decision making operations require the attention of unlikely events that
can yet have disastrous consequences if realized (Singh et al., 2017).
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The theory of financial risk estimates, which stem from the area of stochastic finance, can
be applied to transcend the limitations of regular chance constraints in optimal control
problems (Herceg et al., 2017). The combination of financial risk assessments and MPC is
commonly referred to as risk-averse MPC. The application and design of risk-averse MPC
has in recent years been introduced into the field of process engineering (Herceg et al.,
2017). This study will investigate the use a risk-based OCP formulation to quantify the
effect of tail risk, that is, the impact of extreme RUL of equipment outcomes. Risk assess-
ments will be included into the optimization of the subsea station for condition monitoring
purposes. Percentile limitations on RUL of equipment in the form of risk measures will be
investigated as means for steering system reliability in real-time. Section 3.1 will discuss
the discovery of faults in the system which are applied as health indicators for the RUL
of equipment. Section 3.2 will elaborate on necessary properties for an acceptable risk
measure and suggest suitable risk measures to employ for condition monitoring. Section
3.3 will discuss the application of risk measures in the optimization routine of the Åsgard
subsea gas compression station.

3.1 Diagnostics and Prognostics
This study will apply risk monitoring techniques in conjunction with optimal control in
order to limit the risk of failure. Failure can be any kind of unavailability of the system.
Unavailability can be interpreted as the degree to which a system or component is not
operational and accessible when required for use (Geraci et al., 1991). The concept of
diagnostics deals with the discovery and surveillance of faults and hazards in a system
(Verheyleweghen and Jäschke, 2017a). Prognostics on the other hand concerns the abil-
ity to anticipate health development and estimate the RUL of equipment (Verheyleweghen
and Jäschke, 2017a). A variety of diagnostics and prognostics techniques are applied to
monitor vulnerable parts in subsea systems. For example, measurements of electrical resis-
tance can be applied to estimate corrosion and erosion rates (Verheyleweghen and Jäschke,
2017a). Vibration monitoring of rotating instruments are generally employed to evaluate
faults on the impeller blades, shaft and bearings (Heng et al., 2009).

In order to limit the scope of this thesis, a simplifying assumption has been made that only
the most vulnerable components in the system are considered. For that reason, a charac-
teristic health indicator hi is considered for diagnostics of the condition of the equipment.
Chapter 4 will give a description of hi specific to the Åsgard subsea gas compression sta-
tion. Furthermore, propagation models for RUL of equipment in the form of risk measures
will be investigated for condition monitoring. The random variable RUL of equipment is
denoted ψ and is assumed to be Weibull distributed. The Weibull distribution is a com-
monly used distribution in reliability engineering with probability density function (Song
et al., 2017),

fψ(t) = lim
dt→0

P(t ≤ ψ < t+ dt)

dt
=

{
Kw
λw

(
t
λw

)(Kw−1)
e−
(

t
λw

)Kw
t ≤ 0

0 t > 0,
(3.1)

where Kw = Kw(hi) is the shape parameter and λw = λw(hi) is the scale parameter
(Jiang and Murthy, 2011).
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3.2 Risk Measure
In recent years, attention has been paid to financial risk assessments and their ability to
manage risk in areas outside finance. One interesting feature in particular is that financial
risk measures can be expressed as percentile conditions for random variables. For that
reason, risk measure formulations can be considered as prognostics models for condition
monitoring of subsea plants. A risk measure can be designed to quantify the random RUL
of equipment, ψ = ψ(x, z,u,p), by a functional R : ψ → R that can function as a sub-
stitute for gross RUL distribution (Capolei et al., 2015). Consequently, R(ψ(x, z,u,p)) is
referred to as a risk measure with respect to RUL of equipment. Risk quantification allows
for efficient decision processes. Specifically, risk assessment of two RUL scenarios ψ1

and ψ2; implies comparison of the numerical values of R(ψ1) and R(ψ2).

R is a substitute for the distribution of ψ, of which various R formulations comprehend
with different aspects of the RUL distribution (Capolei et al., 2018). The quality of the risk
assessment depends on the traits of the risk measure in question. Hence, it is significant to
have a particular set of attributes that define a capable risk measure. In the context of this
work, the coherence and aversion axioms introduced by Artzner et al. (1999); Rockafellar
(2007); Krokhmal et al. (2011) will be of interest.

3.2.1 Coherent Averse Measures of Risk
Coherent averse measures of risk are functionals R : ψ → R. Axiomatic analysis of risk
measures was proposed by Artzner et al. (1999):

A1 Risk aversion:

• R(c) = −c for constants c (constant equivalence)

• R(ψ) > -E[ψ] for non-constant ψ ( aversion).

A2 Positive homogeneity:
R(λψ) = λ R(ψ) for all ψ and all constants λ > 0

A3 Sub-additivity:
R(ψ1 + ψ2) ≤ R(ψ1) + R(ψ2) for all ψ1 and ψ2

A4 Closure:
∀c ∈ R, the set {ψ|R(ψ) ≤ c} is closed

A5 Monotonicity
R(ψ1) ≥ R(ψ2) when ψ2 ≥ ψ1

It is vital to elaborate on these axioms in order to better grasp the underlying concepts of
a proper risk measure. Axiom (A1) expresses the principle of risk aversion. A risk-averse
controller does not have confidence in the expected value of a stochastic variable, E[ψ],
and prefers a deterministic value for RUL. The risk of a deterministic RUL yields the
following relation: R(c) = -c, which implies R(E[ψ]) = -E[ψ]. This means that R(ψ) > -
E[ψ] can be rephrased toR(ψ)>R(E[ψ]) for ψ 6= c and constant c (Capolei et al., 2015).
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The positive homogeneity axiom (A2) guarantees consistency under scaling. In financial
risk management, positive homogeneity suggests that the risk of a portfolio is proportional
to its magnitude (Klüppelberg et al., 2014). In the context of this work, this axiom implies
that the risk of failure is proportional to the control input. However, this might not be the
case for complex subsea systems. In addition, if units of ψ are converted to a new currency,
the risk is unambiguously scaled accordingly. Hence, this axiom facilitates that the units
of measurements of R(ψ) are equal to those of ψ (Capolei et al., 2015).

The sub-additivity axiom (A3) conveys the fundamental principle for risk attenuation
through diversification (Capolei et al., 2015). In financial risk management, sub-additivity
suggests diversification to be beneficial. Hence, the risk of adding two separate portfolio
risks are always riskier than the risk of two joint portfolios (Klüppelberg et al., 2014). Ax-
iom (A3) in conjunction with the constant equivalence attribute from axiom (A1), R(c) =
-c, results in the property of translational invariance,

R(ψ + c) = R(ψ)− c. (3.2)

In financial risk management, translation invariance suggests that adding a particular quan-
tity of funds reduces the risk by the same amount (Klüppelberg et al., 2014). The trans-
lation invariance principle presents a reasonable approach for defining a satisfactory risk
(Artzner et al., 1999; Rockafellar, 2007). The closure axiom (A4) implies that the risk
measure, R(ψ), is finite and continuous (Rockafellar and Uryasev, 2013).

The monotonicity axiom (A5) implies that ψ1 is viewed as riskier than ψ2, given that
all possible realizations of ψ2 is greater than every realization of ψ1 (Capolei et al., 2015).
In terms of financial risk management, monotonicity suggests that a portfolio with greater
future returns on investments has less risk. That is, if portfolio P1 constantly has worse
values than portfolio P2 under almost all scenario realizations, then the risk of P1 ought to
be greater than the risk of P2 (Klüppelberg et al., 2014). In the context of this work, this
axiom implies that if the controller input u1 is more gentle than input u2, then u1 will yield
less risk. In general, this axiom suggests that small valve openings and low compressor
speed should provide little risk of failure.

Risk measures that comply with axioms (A1)-(A4) are referred to as averse measures of
risk (Krokhmal et al., 2011; Rockafellar, 2007). However, risk measures that fulfill axioms
(A2)-(A5) and the constant equivalence property in axiom (A1) are referred to as coherent
risk measures as stated in Artzner et al. (1999); Krokhmal et al. (2011). Note that if risk
measures comply with the positive homogeneity axiom (A2) and the sub-additivity axiom
(A3), it implies convexity of the risk measure in question (Rockafellar, 2007; Krokhmal
et al., 2011). As previously mentioned, the convexity feature is rather significant in opti-
mization problems, as it permits the optimizer to locate globally optimal solutions (Capolei
et al., 2015). In the context of this study, ψ = ψ(x, z,u,p) is non-convex in terms of
the control input u. Hence, the optimization problem is non-convex and the use of lo-
cal/convex solvers can only be expected to yield local minimums.
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3.2 Risk Measure

In literature, multiple coherent averse risk measures have been investigated for the pur-
pose of optimization. Coherent averse risk measures such as Conditional Value-at-Risk
(CVaR) introduced by Rockafellar and Uryasev (2000) are universally accepted for man-
aging financial risk in optimization problems. CVaR is an extension to Value-at-Risk (VaR)
introduced by Morgan, JP (1994); Jorion (2006). However, VaR is not a coherent averse
risk measure and does not qualify as a proper risk measure. Despite this, the underlying
concepts of VaR are rather essential for the interpretation of CVaR.

3.2.2 Value-at-Risk
Value-at-Risk (VaR) is possibly the most renowned risk measure in financial risk man-
agement in present time (Morgan, JP, 1994; Jorion, 2006). It can be interpreted as the
minimum expected value for a random variable given a certain confidence level, α. In
the context of this study, VaR is estimated with respect to remaining useful life (RUL) of
equipment, ψ. Assuming that the probability density function (PDF) for ψ given in Equa-
tion 3.1 is continuous and strictly monotonic. The cumulative distribution function (CDF),
Fψ , can be written as

Fψ(x) = P[ψ ≤ x] =

∫ x

−∞
fψ(t)dt. (3.3)

Note that P is the probability operator and fψ is the probability density function of ψ. The
Value-at-Risk with confidence level α ∈(0,1) of a random RUL variable, ψ, is defined as
(Jorion, 2006)

VaRα(ψ) = qψ(α). (3.4)

qX(α) is the quantile with confidence level α. The quantile function specifies, for a given
probability α in the probability distribution of the random variable, the value x for which
P[ψ ≤ x] = α. Hence, the quantile function can be mathematically expressed as (Rock-
afellar and Uryasev, 2000)

qψ(α) = inf{x ∈ R : P[ψ ≤ x] = α}
= inf{x ∈ R : Fψ(x) = α}
= F−1

ψ (α)

= x.

(3.5)

F−1
ψ (α) is the inverse cumulative distribution function (ICDF) with confidence level α.

This results in the following expression for calculating Value-at-Risk at level α ∈ (0,1) of
a random RUL of equipment variable, ψ:

VaRα(ψ) = qψ(α) = inf{x ∈ R : Fψ(x) = α} = F−1
ψ (α). (3.6)

Conceptually, VaRα(ψ) denotes the minimum expected value for RUL of equipment with
a confidence level, α. This risk measure is defined in such a way that the probability of
values for RUL of equipment greater than VaRα(ψ) is less than or equal to α. Thus, the
chance of a values for RUL of equipment less than VaRα(ψ) is less than or equal to 1-α.
Figure 3.1 illustrates the RUL of equipment distribution with the value for VaRα explicitly
marked at α.
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Figure 3.1: Illustration of a probability density function of RUL of equipment, ψ, with the value for
VaRα explicitly marked at confidence level, α.

VaRα is expressed as a quantile in Equation 3.6 which acts as a chance constraints on RUL
of equipment (Krokhmal et al., 2011). This is also referred to as the failure probability
constraint in the area of reliability (Rockafellar and Royset, 2010). However, VaRα does
not consider the tail of the RUL distribution. The RUL outcomes beneath the α-quantile
are not taken into account when calculating VaRα. As a consequence, extreme RUL out-
comes are neglected which may result in catastrophic consequences. In addition, VaRα
lacks highly desired properties such as convexity and sub-additivity, which may limit its
application (Artzner et al., 1999). This will not be elaborated on as it is considered to be
out of the scope of this work.

3.2.3 Conditional Value-at-Risk

Conditional Value-at-Risk (CVaR) is introduced as an extension to Value-at-Risk to over-
come deviations in VaR calculations. CVaR was introduced by Rockafellar and Uryasev
(2000) and fulfills all axioms for a coherent averse measure of risk according to section
3.2.1. Rockafellar and Uryasev (2002) defined CVaRα as the average of VaRα,

CVaRα(ψ) =
1

α

∫ α

0

VaRγ(ψ)dγ

=
1

α

∫ α

0

F−1
ψ (γ)dγ.

(3.7)

CVaR is as an extension of VaR and serves as an approximation of the chance constraint in
Equation 3.6. The new risk measure serves with the same purpose, which is to limit, with
confidence level α, the probability of having RUL of equipment greater than the time until
the next maintenance engagement. However, CVaRα, in contrast to VaRα, considers the
tail of the RUL distribution beneath the α-quantile. CVaRα calculates the average RUL
that occur beneath VaRα which implies that the most unlikely and worst possible outcomes
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are emphasized for low values of α. Essentially, CVaR estimates risk in a more conserva-
tive manner by bringing the extreme RUL outcomes into focus. Figure 3.2 illustrates the
RUL of equipment distribution with values for CVaRα and VaRα explicitly marked at α.

Figure 3.2: Illustration of a probability density function of RUL of equipment, ψ, with the values
for VaRα and CVaRα explicitly marked at confidence level, α.

Note that both VaRα and CVaRα are examples of static risk measures which are calcu-
lated for one time period. The next section will present dynamic risk measures as a natural
extension to static risk measures.

3.2.4 Dynamic Risk Measure
In financial risk management, dynamic risk measures are applied in dynamic portfolio se-
lection problems, in which investment arrangements can change over time (Chen et al.,
2017). Dynamic risk measures, also referred to as multi-period risk measures, are risk es-
timates that reckon with a longer time horizon than the static. Dynamic risk measures are
risk estimates which are adjusted as new information becomes available. More explicitly,
the risk measures are conditional on available information at the time of the risk evaluation
(Acciaio and Penner, 2011). In this study, dynamic risk measures will be applied in the
dynamic optimal control problem in the model predictive controller, in which the optimal
input strategy may change over time.

Dynamic decision problems are often expressed as discrete, multi-stage, control problems
(Chen et al., 2017). Because of this, the dynamic risk function considered here will be
evaluated at a number of distinct points. The dynamic risk function will adopt the same
notation as a dynamic optimization problem from Section 2.1.1, in which k denotes a par-
ticular time period and N is the number of time steps. As a consequence, a dynamic risk
measure is a conditional risk function that can be defined at time k as Rk,N (Ruszczyński,
2010). As time progresses from the startup of the plant at k = 1 to k = N , the risk function
{Rk,N}Nk=1 will provide an estimate of the risk associated with the remaining time until
the next maintenance engagement.
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Section 3.2.1 introduced the coherence and aversion axioms as necessary characteristics
for a proper static risk measure. Similar axiomatic analysis is essential when shifting to a
dynamic environment. A dynamic risk measure, {Rk,N}Nk=1 , is a conditional risk function
that must attain axioms (A1)-(A5) for each time-interval k = 1,...,N , in order to qualify
as a coherent averse risk measure (Chen et al., 2017). However, additional features must
be examined when shifting to a dynamic environment in a model predictive controller.
Conditions like information monotonicity and dynamic time consistency are significant
particularly in relation to the optimal control problem (Chen et al., 2017). The principle
of information monotonicity is used to differentiate risk measures subject to various in-
formation processes. Information processes are captured by so called filtrations, Fk ∈ F,
that represent the information available at time k. The conditional risk measure under an
arbitrary filtration process at time k is denoted by Rk,N (ψk,N |{Fk, ....FN}), where ψk,N
= (ψk, ..., ψN ) denotes the RUL process over the periods from k to N . A risk measure
is said to be Fk-adapted if the risk assessment at time k, is independent of information to
be disclosed in the future. A dynamic risk measure is said to be information monotone
according to the following definition (Pflug and Romisch, 2007)

Definition 3.2.1. A dynamic risk measure {Rk,N}Nk=1 is information monotone if for any
two filtrations {F1, .., FN} and {F ′

1, .., F
′

N} we have that Fs ∈ F
′

s , s = k, ...., N and
Rk,N (ψk,N |{F

′

k, .., F
′

N}) ≤ Rk,N (ψk,N |{F1, .., FN}).

In financial risk management, Definition 3.2.1 supports the concept that for a given portfo-
lio, more accessible information will never cause a rise in risk disclosure but usually give
more effective control of risk (Chen et al., 2017). The idea of information monotonicity is
analogous to the principle of non-anticipativity introduced in Section 2.1.2.

Dynamic time consistency deals with consistency in the form of both risk measures and
optimal control strategies. Wang (1999) originally described the concept of dynamic time
consistency as risk assessments where past and future evaluations do not contradict each
other (Riedel, 2004). Essentially, consistency over time ensures that subsequent knowl-
edge will not affect past risk evaluations or control solutions (Chen et al., 2017). The idea
is based on a rather simple understanding: given two input policies u1 and u2, if u1 is
riskier than u2 under a specific risk measure in the future, then u1 is riskier than u2 under
the same measure today (Wang, 1999). A dynamic risk measureRk,N is dynamically time
consistent according to the following definition (Chen et al., 2017)

Definition 3.2.2. If for any two points on the time horizon, k = 1 < τ < θ ≤ N ,
and input policies u1 and u2, the condition Rθ,N (ψθ,N (u1)) ≤ Rθ,N (ψθ,N (u2)) implies
that Rτ,N (ψτ,N (u1)) ≤ Rτ,N (ψτ,N (u2)), then the dynamic risk measure, {Rk,N}Nk=1 , is
dynamically time consistent.

Adopting the concept in Definition 3.2.2 to control would suggests that the optimal control
policy determined at t = 0 indicates its optimality in the future as well (Chen et al., 2017).
However, in practice, the optimal input policy for an optimal control problem may fail to
satisfy dynamic time consistency. Moreover, in most cases, the dynamic time consistency
of optimal control policies relies on the consistency of the dynamic risk measure. Imple-
menting a dynamic time consistent risk measure in the optimal control problem will most
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often result a dynamically time consistent optimal strategy for inputs (Chen et al., 2017).
On the other hand, applying a dynamic time inconsistent risk measure will give a incon-
sistent optimal input policy.

Multi-period risk measures existing in literature today may be sorted into three categories:
terminal, additive and recursive risk measures (Chen et al., 2017). Terminal risk measures
are risk measures formulated in terms of the terminal outcome of the RUL of equipment.
Additive risk measures arise when the risk evaluations are performed separately in differ-
ent time periods before they are combined as one. The main difference between terminal
and additive is that in the case of terminal risk measures the period-wise losses of profit
are aggregated prior to applying the risk measure. However, the additive risk measure ag-
gregates the risk measures instantaneously. There is a catch to the previous method: most
terminal risk measures are not dynamically time consistent (Chen et al., 2017). Since ad-
ditive risk measures are simple extensions if terminal risk measures, the additive risk mea-
sures may also be dynamically time inconsistent. Finally, recursive risk measures arise
from assessing dynamic risk exposure over time recursively. Unfortunately, incorporating
recursive risk measures to dynamic optimization problems may lead to rather complex nu-
merical matters (Chen et al., 2017).

Terminal
Rk,N (ψk,N ) = ϕk

(
ψN |FN

)
(3.8)

Additive

Rk,N (ψk,N ) =

N∑
k=1

βk ϕ
(
ψk|Fk

)
(3.9)

Recursive

Rk,N (ψk,N ) =

N∑
s=k+1

E
[
ϕs
(
ψs|Fs−1

)
|Fk
]

(3.10)

ψk represents the distribution of RUL of equipment at time k. ϕ denotes an arbitrary static
risk measure, i.e. ϕ = CV aRα. Fk represents filtration at time k. βk is a discount factor
from k = 1, ...., N .

3.3 Risk Control
Up to this point, the main focus has been risk measures and their properties. Furthermore,
this thesis will stress the importance of the risk measure’s sustainability for the formula-
tion of risk control problems. Risk measures will be incorporated into the optimal control
problem to obtain an optimal control strategy for operation in-line with specified risk pref-
erences.

Rockafellar and Uryasev (2000, 2002) presented Conditional Value-at-Risk (CVaR) as a
means for estimating and minimizing risk in control problems. CVaR estimates the risk
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in a more conservative manner by bringing the extreme RUL outcomes into focus as it
calculates the average of the α-percent lowest profit realizations. Consequently, CVaR is
excellent at attenuating unlikely events which can yet have disastrous effects if realized to
enforce safe control and decision-making operations. CVaR adheres to the coherence and
aversion axioms proposed by Artzner et al. (1999); Rockafellar (2007); Krokhmal et al.
(2011) and qualifies as proper risk measure. For this reason, CVaR will be applied for
calculating the risk of failure with respect to RUL of equipment.

As seen in previous sections, the adaption of static risk measures to a multi-stage setting is
fairly complicated. The characteristics of the dynamic risk measures for multi-stage prob-
lems are essential to ensure efficient risk control. Information monotonicity, coherence
and dynamic time consistency arise as significant features for dynamic risk measures in
optimal control (Chen et al., 2017). By adapting an additive multi-period risk measure for-
mulation of CVaR into the model predictive control scheme, the concepts of information
monotonicity and coherency are assumed to be satisfied. However, the additive form of
CVaR fails to fulfill dynamic time consistency. The time-inconsistency of the dynamic risk
measure, will give a dynamically time inconsistent optimal control strategy for operation
and thus result in a sub-optimal solution. However, the degree of sub-optimality might be
small, and can be tolerated by the decision maker in exchange for an optimization problem
that is much easier to solve. For that reason, the concept of dynamic time consistency will
be given a lower priority and the additive risk measure will be applied for estimating the
risk of failure in optimal control. The resulting risk estimate that will be employed in the
optimization can be expresses as

Rk,N (ψk,N ) =

N∑
k=1

βk CVaRα
(
ψk|Fk

)
=

N∑
k=1

βk
1

α

∫ α

0

VaRγ(ψk|Fk)dγ

=

N∑
k=1

βk
1

α

∫ α

0

F−1
ψk

(γ)dγ.

(3.11)

For simplicity, the α-domain is discretized by assuming that lim ∆γ → 0 and the final risk
estimate can be expressed as

Rk,N (ψk,N ) =

N∑
k=1

(
βk

1

α

α∑
j=0

(
F−1
ψk

(j) ∆γ
))

. (3.12)

Equation 3.12 formulates the dynamic risk measure that will be included into the optimiza-
tion of the subsea station for condition monitoring purposes. This is a type of percentile
limitations on RUL of equipment that will be integrated into the optimal control problem
to ensure safe operation in in real-time. Chapter 5 will elaborate on how this particular
risk measure is integrated in the OCP formulation.
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Chapter 4
Model Development

The underlying process explored in this work is the subsea gas compression station at
the Åsgard field. A brief process description of the subsea plant will be given in Section
4.1. Section 4.2 will present the equation structures and fundamental assumptions for the
derivation of the model for the subsea plant. The models for the choke, the separator and
the compressor are discussed in this chapter. The model equations for the compressor
and the choke valve are provided by Verheyleweghen and Jäschke (2017b). The separator
model is developed as part of the study with the project thesis (Ims, 2017). The model
equations and corresponding assumptions are included in this thesis to better grasp the
fundamental process explored in this study.

4.1 Process Description

The subsea gas compression station at the Åsgard field is the very first compressor to be
installed and operated on the seabed. It is considered to be pioneering compression tech-
nology (Setekleiv et al., 2016). The purpose of the gas compression station is to boost
the pressure of the reservoir stream such that it will surpass pressure drop in transporta-
tion pipes to topside facilities. However, the maturity level of the technology is limited
for multiphase (Verheyleweghen and Jäschke, 2017b). Hence, the gas and liquid com-
ponents are separated to allow an increase in pressure. A process diagram of the subsea
gas compression station is illustrated in Figure 4.1. The system consists of a well choke
that controls the reservoir stream entering the gas compression station. A separator down-
stream from the well choke separates liquid from gas. Incomplete separation causes liquid
droplets to exit the separator with the gas through the gas outlet. The liquid pressure is
subsequently boosted by a pump and the gas pressure is increased in a wet-gas compressor
(Verheyleweghen and Jäschke, 2017b).
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Figure 4.1: Process diagram of the subsea gas compression station in the Åsgard field adapted from
Verheyleweghen and Jäschke (2017a).

4.2 Model Description
This section will describe the equations defining the model for the Åsgard subsea gas
compression station. The models for the choke, the separator and the compressor are
discussed in this section. Simplified thermodynamics are used for the compressor model.
Also, the model for the degradation of the bearings in the wet-gas compressor is reviewed
here. The pipeline and the pump are not modeled, but will be included in future work.
Lastly, it is assumed that the fluid in the system can be described as liquid and gas.

4.2.1 Choke
The system make use of a well choke to enable control of the flow of hydrocarbons from
the reservoir. The mass flow through a valve is assumed to be given by the standard valve
equation (Grimholt and Skogestad, 2015),

ṁ1 = f(z) Cd Achoke
√
ρ1(P1 − P2). (4.1)

ṁ1 is the mass flow rate entering the valve and Cd represents the valve constant. P1 is
the inlet pressure and P2 represents the outlet pressure from the valve. Achoke denotes
the cross sectional area of the valve and ρ1 is the density of the flow. f(z) is the valve
characteristics, where z denotes the valve opening. z ranges between 0 and 1 when com-
pletely open (Grimholt and Skogestad, 2015). In the context of this work, linear valve
characteristics is assumed,

f(z) = z, where z ∈ [0, 1]. (4.2)

The choke opening is a control input and is denoted z = uchoke. For simplicity, Achoke
and ρ1 are assumed to be constant across the valve. The resulting flow through the valve
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is given by a simplified valve equation,

ṁ1 = ṁ1,l + ṁ1,g = uchokecchoke
√
P1 − P2, (4.3)

where cchoke is a choke constant, and uchoke denotes the opening of the choke valve (Ver-
heyleweghen and Jäschke, 2017b). ṁ1,l and ṁ1,g denotes inlet mass flow rate for liquid
and gas, respectively.

4.2.2 Separator
The presented separator model is developed as part of the project on ”Modelling of Åsgard
subsea gas compression station for condition monitoring purposes”, which was conducted
by Julie Berge Ims during the autumn of 2017 (Ims, 2017). The content of this section is
based on said project, but is repeated here for the convenience of the reader.

A variety of well developed separator models are available for gas-liquid separation. In this
particular case, it is essential to develop a detailed separator model to be able to accurately
predict liquid carry over. A detailed model reduces uncertainty and provides opportunity
to shift constraints in the optimal control problem. Shifting constraints can make the oper-
ation less conservative and thus more profitable. In terms of subsea operating conditions,
the separator model must also be able to handle higher pressure and higher flow rates. In
this regard, the separator model developed for the subsea gas compression station at the
Åsgard field is based on a Statoil patented separator for liquid-gas separation of an inlet
flow which predominantly contains gas. The separator unit is developed to be able to sep-
arate the last liquid droplets from a gas flow, both at high flow rates and high pressure
(Fredheim et al., 2013).

The Statoil patented separator consists of a spinlet inlet configuration and axial flow cy-
clones (AFCs) (Fredheim et al., 2013; Aguilera and Carlui, 2013). The separator is a
vertical standing vessel with an inlet for the liquid-gas flow and outlets for gas- and liq-
uid flows. The inlet is a spinlet arrangement for flow distribution to receive and make the
flow move in rotational movements around the vertical axis of the main container towards
a porous pipe configuration. The axial flow cyclone exploits centripetal forces to sepa-
rate light and heavy components in the fluid. The fluid is likely to follow a helical path
where heavier components will accumulate at the outer peripheral of the helical trail, while
lighter components will gather in the center along the vertical axis. Gravitational forces
will also contribute to separate heavier components, whereas lighter components may rise
towards the gas outlet (Fredheim et al., 2013).

The separator may contain a wired mesh demister in the gas outlet between the container
wall and the upper end of the tubular wall (Fredheim et al., 2013). An illustration of a
separator with wired mesh pads is shown in Figure 4.2. However, due to the maturity level
of the technology, mesh pads are currently not considered an option for subsea processing
systems due to the risk of clogging (Setekleiv et al., 2016).
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Figure 4.2: Illustration of a separator unit (with mesh pads) patented by Statoil (Fredheim et al.,
2013).

A steady state model was developed by Austrheim (2006) for a scrubber with a mesh pad
used for primary separation and axial flow cyclones for separating the last droplets from
the gas stream. In view of the risk of clogging for subsea processing systems, this study
will only concentrate on the axial flow cyclone section of the steady state model. A mathe-
matical model based on flow development, fluid properties and cyclone geometry has been
developed to correlate the dimensionless re-entrainment number and separation efficiency
in a cyclone (Austrheim, 2006). This mathematical correlation has been fundamental in
this particular separator model.

Re-entrainment Number

The performance degradation of the AFC applied in Austrheim (2006) was dominated
by some type of re-entrainment mechanism rather than insufficient separation of small
droplets. The separation efficiency is governed by the re-entrainment of liquid which
has settled on the separator wall. Various mechanisms for re-entrainment of liquid into
a gas stream is described in Austrheim (2006). Figure 4.3 illustrates the re-entrainment
mechanisms ”Roll wave” and ”Wave undercut”.

Figure 4.3: Re-entrainment mechanisms in the axial flow cyclone (Austrheim, 2006).
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The ”Roll wave” mechanism is associated with droplets that are cut of a roll-wave peak.
This is the dominant mechanism in liquid film with high Reynolds number and in the
transition regime (Austrheim, 2006). The ”Wave undercut” mechanism is connected to
cutting a wave peak. This is a governing mechanism in liquid film with relatively low
Reynolds number. In the context of this study, it assumed that the liquid film on the
cyclone wall is in the transition regime. A force balance was applied as a criterion for the
eruption of re-entrainment. The retaining force, Fσ , of the surface tension, σ, between the
two phases was evaluated with the drag force from the gas flow on the liquid wave peak,
Fd. Roll wave re-entrainment was presumed to be feasible if the drag force acting on the
wave top exceeded the retaining force (Austrheim, 2006),

Fd ≥ Fσ. (4.4)

The outburst of such re-entrainment mechanism depends on the Reynolds number of the
liquid film, ReL, on the cyclone wall and the dimensionless viscosity number, Nµ (Aus-
trheim, 2006). The criterion for the eruption of entrainment in the transition regime was
expressed as

µl ug,s
σ

√
ρg
ρl
≥ 11.78N0.8

µ Re−1/3
L for Nµ ≥

1

15
,

µl ug,s
σ

√
ρg
ρl
≥ 1.35Re−1/3

L for Nµ ≤
1

15
.

(4.5)

In Equation 4.5, ρl is the density in the liquid film on the cyclone wall and ρg is the gas
density. ug,s is the superficial gas velocity. µl denotes the viscosity of the liquid film and
σ denotes the interfacial tension between the liquid and the gas phase. Furthermore, it is
assumed that liquid carry-over is a constant fraction of entrained liquid. Thus the liquid
flow, Q̇l, on the cyclone wall must be corrected for this (Austrheim, 2006). Hence, the
expression for the Reynolds number, ReL for the liquid film on the cyclone wall results in:

ReL =
ρl ulδl
µl

=
ρl Γ

µl
=

ρl Q̇l αs
µl Pw

. (4.6)

Neither the liquid film thickness, δl, nor the liquid film velocity, ul, are known at this
stage. The product of the two quantities, Γ, is the volumetric liquid flow, Q̇l, per unit
wetted perimeter, Pw. The liquid flow, Q̇l, is assumed to be constant and equal to 10% of
the volumetric gas flow, Q̇g . (Q̇lαs ) is the corrected volumetric liquid flow. αs is here
the separation efficiency in the axial flow cyclone. The wetted perimeter of the cyclone,
Pw, must take into account the direction of the gas flow (Austrheim, 2006). If the cyclone
body is flattened to a rectangle, the circumference in the container is the length of the short
side as depicted in Figure 4.4.
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Figure 4.4: Illustration of the lower section of the cyclone when it is flattened. The wetted perimeter
of the cyclone is marked as the diagonal. The figure is adapted from Austrheim (2006).

The wetted perimeter can be defined with the equation

Pw =
π D

cos θ̂
, (4.7)

where the angle, θ̂, is used to indicate the direction of the gas flow. It denotes the rel-
ative angle to the swirl and is assumed to be approximately θ̂ = 45◦. D is the diameter
of the cyclone. Furthermore, the force balance in equation 4.4 accounts for changes in
shear stress acting on the liquid wave due to the drag force from the gas flow through the
dimensionless viscosity number, Nµ (Austrheim, 2006). This parameter is used to analyze
the viscous force induced by internal flow. The viscosity number is defined through the
following relation:

Nµ =
µl√

ρl σ
√

σ
al ∆ρ

. (4.8)

∆ρ = ρl − ρg and al is the centrifugal acceleration acting on the liquid film,

al =
2 u2

l,tg

D
, (4.9)

where the tangential velocity component of the liquid film, ul,tg, is unknown at this stage.
The tangential components of the shear stress acting on the wall due to the liquid film and
on the liquid film due to the gas are τw,tg and τi,tg , respectively. The tangential shear
stresses are defined as

τi,tg = fg,i
ρg u

2
r,tg

2
, (4.10)

τw,tg = fl,w
ρl u

2
l,tg

2
= τi,tg. (4.11)

Assumptions about the gas velocity relative to the liquid film velocity are defined as

ug,tg >> ul,tg ⇒ ur,tg ≈ ug,tg. (4.12)
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Based on these assumptions the tangential liquid velocity can be expressed as

ul,tg =

√
fg,i ρg u2

g,tg

fl,w ρl
. (4.13)

ug,tg is the tangential gas velocity which will be discussed later. The f ’s are friction factors
which have not yet been measured for liquid flow on a cyclone wall (Austrheim, 2006).
However, friction factors developed for annular flow in pipes were used by Austrheim
(2006) and the same approximation is done in this study as well. fg,i is the friction factor
for gas on the liquid film and is expressed through the following relation:

fg,i = 0.005

[
1 + 300

2δl
D

]
. (4.14)

fg,i is the friction factor for liquid on the wall and is expressed as

fi,w =
(
K ·RemL

)2
. (4.15)

K = 3.73 and m = −0.47 for 2 < ReL < 100. K = 1.962 and m = −1/3 for
100 < ReL < 1000. Note that this study will assume that the liquid film on the cyclone
wall is in the transition regime. Consequently, K and m for the friction factor for liquid
on the cyclone wall are equal to 1.926 and -1/3, respectively. The friction factors depend
on the thickness of the liquid film, δl, on the cyclone wall. Liquid film thickness, δl, can
be found from

Γ =
Q̇l
Pw

= ul δl ⇒ δl =
Q̇l

Pw ul
, (4.16)

where liquid film velocity can be expressed as

ul =
ul,tg

cos(θ̂)
. (4.17)

The expression for the liquid film thickness, δl, can thus be simplified based on Equation
4.7, 4.16 and 4.17,

δl =
Q̇l

π D ul,tg
cos2 θ̂. (4.18)

The tangential gas velocity, ug,tg , increases with radius, similar to a solid body rotation.
The gas viscosity is low relative to the liquid. Hence, the velocity profile for the tangential
gas velocity close to the cyclone wall will resemble a loss-free-vortex profile (Austrheim,
2006). The tangential gas velocity in the cyclone can therefore be considered as some-
thing between a loss-free vortex and a solid body rotation. However, the gas velocity at
the liquid-gas interface on the cyclone wall is more important for re-entrainment analyzes.
The wall gas velocity is illustrated in Figure 4.5 where θ is the angle of the tangential gas
velocity at the cyclone wall. θ is assumed to be constant and equal to 45o.
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Figure 4.5: Illustration of flow coordinates at the cyclone wall adapted from Austrheim (2006).

Furthermore, the superficial gas velocity, ug,s, is assumed to be a factor 0.8 less than
the vertical gas velocity, uz , close to the cyclone wall in the middle section of the cyclone
(Austrheim, 2006). For this reason, the superficial gas velocity can be calculated with
respect to the tangential gas velocity, ug,tg , and θ according to

ug,s = 0.8
(
uz
)

= 0.8
(
ug,tg · tan(θ)

)
. (4.19)

Based on all these expressions, a dimensionless re-entrainment number,E, has been devel-
oped to characterize the cyclone separation efficiency, αs, where the separation is governed
by re-entrainment (Austrheim, 2006),

E(αs, ul,tg, a) =

µl ug,s
σ

(
ρg
ρl

)0.8

Na
µ Re−1/3

L

. (4.20)

Excellent correlation between the cyclone separation efficiency and the dimensionless re-
entrainment number may indicate that the separation efficiency is governed by liquid re-
entrainment, not insufficient separation of smaller droplets (Austrheim, 2006). The cor-
relation between the cyclone separation efficiency and the dimensionless re-entrainment
number is expressed as

αs = A · E(αs, ul,tg, a) + B. (4.21)

a is a constant used to fit the re-entrainment number with the separation efficiency. It
proved to be appropriate with a = 0.4 for this model. A and B are constants for the linear
model. In the context of this work, A and B, are assumed to be equal to -0.1345 and 1.01,
respectively.

Numerous approximations are made for this separation unit. One assumption in partic-
ular is the fact that the inlet flow predominantly contains gas. In reality, the separator
should be able to handle various GVFs and tangential gas velocities. The physical proper-
ties of the gas and liquid phase will also vary. This should be addressed in future work.
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4.2 Model Description

4.2.3 Compressor
The system is equipped with a compressor in order to increase the pressure in the gas
flow downstream from the separator. The compressor is modeled as a standard polytropic
compressor (Verheyleweghen and Jäschke, 2017b). The polytropic relation is given by

T4

T3
=

(
P4

P3

) 1
w

. (4.22)

T4 and T3 is the outlet and inlet temperature to the compressor, respectively. The outlet
and inlet pressure to the compressor are denoted P4 and P3, respectively. w is given in
terms of the adiabatic correlations,

w = η · γ

1− γ
, (4.23)

γ =
1

2

(
Cp,3

Cp,3 − R
+

Cp,4
Cp,4 − R

)
. (4.24)

Here, R is the standard gas constant and η is the compressor efficiency. Cp,3 and Cp,4
denote the heat capacity for the inlet and outlet gas stream, respectively. The heat ca-
pacity, Cp, can be a expressed as a polynomial with respect to temperature, T , using the
expression

Cp = (b1 + b2T + b3T
2 + b4T

−4)R, (4.25)

where T is the temperature in the respective stream. b1 - b4 are polynomial parameters
based on the chemical composition in the stream. The compressor efficiency, η, may
be expressed in terms of the volumetric flow upstream to the compressor, q3, and the
compressor speed, ucomp,

η = f(q3, ucomp) =
c1 q̂

2 + c2 q̂ + c3
q̂2 + c4 q̂ + c5

, (4.26)

q̂ =
q3

ucomp.
. (4.27)

c1 - c5 are polynomial parameters. The function f is given by a polynomial fit to the
compressor map from Aguilera and Carlui (2013). This is unique to each compressor.
Furthermore, the compressor head, H , is given by

H = w
Z · R · (T4 − T3)

gM
, (4.28)

where g denotes the gravitational constant and M represents the molar mass in the stream
(Verheyleweghen and Jäschke, 2017b). Z is the compressibility factor of the gas upstream
to the compressor. Moreover, the compressor head, H , can also be expressed as a polyno-
mial function of the volumetric inlet flow to the compressor, q3, according to the following
relation:

H =

(
c6q̂

2 + c7 q̂ + c8

)
· fwood. (4.29)
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fwood is the Woods correction factor. c6 - c8 are polynomial parameters. The compress-
ibility factor, Z, can be found by utilizing Dranchuk and Abou-Kassems equation of state
(Dranchuk et al., 1975),

Z = 1 +

(
A1 +

A2

Tpr
+
A3

T 3
pr

+
A4

T 4
pr

+
A5

T 5
pr

)
· σc

+

(
A6 +

A7

Tpr
+
A8

T 2
pr

)
· σ2

c −

(
A7

Tpr
+
A8

T 3
pr

)
· σ5

c ·A9

+A10(1 +A11σ
2
c )

(
σ2
c

T 3
pr

)
exp(−A11σ

2
c ).

(4.30)

A1-A11 are polynomial parameters for the compressibility factor. σc is given by

σc = 0.27

(
Ppr
Tpr

)
Z. (4.31)

Ppr and Tpr represents the pseudo-reduced pressure and temperature, respectively. Kay
(1936) proposed that the pseudo-reduced pressure, Ppr, can be calculated using simple
mole relations,

Ppr =
P3

Ppc
=

P3

Pc × c3
, (4.32)

where P3 is the pressure upstream to the compressor, Ppc is the pseudo-critical mixture
temperature, Pc are the critical temperatures for the components in the mixture and c3 is
the composition of chemical compounds in the stream. Kay (1936) proposed an equivalent
calculation method for the pseudo-reduced temperature, Tpr,

Tpr =
T3

Tpc
=

T3

Tc × c3
, (4.33)

where T3 is the temperature upstream to the compressor, Tpc is the pseudo-critical mix-
ture temperature and Tc are the critical temperatures for the components in the stream.
It is apparent that Z in Equation 4.30 is conditional on Z into σc, which itself relies on
Z. Consequently, the equations explaining the model give rise to a semi-implicit index-1
DAE (Verheyleweghen and Jäschke, 2017b).

fwoods is a Woods correction factor, that considers liquid at the inlet of the wet gas com-
pressor (Hundseid et al., 2008).

fwood =
1

ρ3,avg
ρ3

√
GV F3 · ρ3,avgρ3

. (4.34)

ρ3 is the density upstream to the compressor. The average density, ρ3,avg , of the wet gas
compressor entry is

ρ3,avg = GV F3 · ρ3 + (1 +GV F3)ρ3,l. (4.35)

34
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ρ3,l represents the density of the condensate in the gas stream entering the compressor.
GV F3 denotes the gas-volume fraction of the gas stream upstream to the compressor,

GV F3 =
q3,g

q3,g + q3,l
, (4.36)

where ρ3,g represents the density of the gas in the gas stream entering the compressor.
Furthermore, the compressor power can be calculated using the energy balance

Pow =
H q3 ρ3 g

η
. (4.37)

In addition, compressor surging or choking are undesired physical phenomena which may
occur in a wet gas compressor (Verheyleweghen and Jäschke, 2017b). For this reason, the
variables Srg and Stw are employed to signal surge as Stonewall conditions (compressor
choking), respectively. Values less than zero for Srg and Stw suggest either surge or
choke.

Srg = q̂ − qmin (4.38)

Stw = qmax − q̂ (4.39)

qmin denotes the minimum allowable flow in the compressor in order to prevent surge.
qmax denotes the maximum allowable flow in the compressor order to avoid compressor
choking.

Compressor Bearing Degradation

This particular system is complex with a large number of components for which diagnos-
tics and prognostics can be challenging. In order to limit the scope of this thesis, a simpli-
fying assumption has been made that only the most vulnerable components in the system
are considered. The bearings in the wet-gas compressor are considered to be vital in the
operation, and should be replaced immediately if broken. The bearings are prone to faults
as they have multiple moving parts and a complex mechanical setup (Verheyleweghen and
Jäschke, 2017a). For that reason, the only dynamics of interest is the wet-gas compressor
bearing degradation model (Verheyleweghen and Jäschke, 2017b). The compressor bear-
ings will degrade according to Paris’ law of crack propagation. Paris’ crack propagation
model is commonly used for surface defects (Paris and Erdogan, 1963). This model states
that the crack length, h, will develop according to

dh

dncycles
= Dcomp · (∆Kcomp)

n, (4.40)

where n is a numerical exponent, ncycles is the number of cycles, Dcomp is a material
constant and ∆Kcomp denotes the range of strain. This can be reformulated into a model
for the development of a bearing crack length, h,

dh

dt
= h · cParis

(
T 2
comp · ucomp

)
= h · cParis ·

(
Pow2

ucomp

)
, (4.41)
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where it is assumed that the torque, Tcomp, can be used as health indicator for gross strain
(Bechhoefer et al., 2008). cParis is a lumped parameter and is estimated from past values
(Verheyleweghen and Jäschke, 2017a).

The bearing crack-length is applied as a health indicator for the remaining useful life
(RUL) of equipment. RUL of equipment is assumed to be Weibull distributed with shape
and scale-parameters. It is assumed that the shape parameter,Kw, and the scale parameter,
λw, depend on degradation of equipment, h (Verheyleweghen and Jäschke, 2018),

Kw(h) = ka + kb · h + kc · h2 (4.42)

λw(h) = λa − λb · h− λc ·
√
h (4.43)

Note that degradation of equipment is a function of inputs, h = h(u). In the context of this
study, system failures which are independent of operational decisions are neglected. This
should however be addressed in future work.

36



Chapter 5
Optimal Control Problem
Formulation

The optimal control problem (OCP) for the subsea gas compression station at the Åsgard
field is formulated in the same manner as the dynamic stochastic optimization problem
presented in Equation 2.9. Section 5.1- 5.3 will specify the objective function, constraints
and bounds for the optimization of this particular subsea station. The full optimal control
problem for the open-loop optimization will be presented in Section 5.4. The optimization
is conducted with respect to a particular time horizon. The start-up of the plant is at t =
0. The next maintenance engagement is scheduled to take place at time t =tf . At last, the
parameters in the Weibull distribution for the remaining useful life (RUL) of equipment
variable will be discussed in Section 5.5.

5.1 Objective Function

In context of this study, the main target with the optimization of this subsea system is to
improve the economic outcome from the operation through cost reduction and increase
in production. However, safe and efficient operation imposes stringent requirements with
respect to equipment reliability. Hence, the ultimate objective is twofold:

1. Prevent premature failure of the subsea system

2. Maximize net profit from operation.

The first objective is referred to as the reliability objective, φr. The reliability objective is
defined as minimizing unavailability of the system in terms of loss of production. Chapter
3 presented Conditional Value-at-Risk (CVaR) as a risk measure estimate for assessing
the risk of failure. Consequently, minimizing unavailability of the system corresponds to
maximizing CVaR with respect to RUL of equipment, ψ, for a given confidence level, α,
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over the expected lifetime of the operation. The reliability objective can be formulated as

φr = −Rk,N (ψk,N ) = −
N∑
k=1

βk CVaRα
(
ψk|Fk

)
= −

N∑
k=1

βk
1

α

∫ α

0

VaRγ(ψk|Fk)dγ

= −
N∑
k=1

βk
1

α

∫ α

0

F−1
ψk

(γ)dγ

= −
N∑
k=1

(
βk

1

α

α∑
j=0

(
F−1
ψk

(j) ∆γ
))

.

(5.1)

The inverse cumulative distribution function (ICDF) for the Weibull distribution, F−1
ψ ,

with respect to ψ, is the quantile function,

F−1
ψ = qψ(α, λw,Kw) = λw(− ln(1− α))1/Kw . (5.2)

The final reliability objective can be expressed as

φr = −
N∑
k=1

βk
1

α

∫ α

0

F−1
ψk

(γ)dγ

= −
N∑
k=1

(
βk

1

α

α∑
j=0

(
F−1
ψk

(j) ∆γ
))

= −
N∑
k=1

(
βk

1

α

α∑
j=0

(
qψk(j, λw,Kw) ∆γ

))

= −
N∑
k=1

(
βk

1

α

α∑
j=0

(
λw(− ln(1− j))1/Kw ∆γ

))
.

(5.3)

Note that φr = φr(x, z,u,p), λw = λw(x, z,u,p) and Kw = Kw(x, z,u,p). The second
objective is referred to as the economic objective, φe = φe(x, z,u,p). The economic
objective can be written in the following manner (Verheyleweghen and Jäschke, 2018)

φe(x, z,u,p) = E
(∫ tf

0

cost(x, z,u,p) · c(t) dt
)
. (5.4)

E is the expected value operator, cost(x,z,u,p) is the cost associated with the states, in-
puts and parameters and c(t) is the discounting term. The profit is weighted from time
t = 0 to t = tf by discounting future value of money at a periodic rate of return, called
the discount rate. This is a way to measure profit by including present and all future dis-
counted cash flows, called the Net present value (NPV) (Kurt, 2016). Equation 5.5 gives a
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general definition of NPV:

NPV(x, z,u,p, i, N) =

N∑
k=1

(
cost(xk+1, zk+1,uk,p) · c(t)

)

=

N∑
k=1

(
cost(xk+1, zk+1,uk,p) · (1 + i)−tk

)
.

(5.5)

Here, i is the discount rate and N is the number of time periods. The objective is to
maximize NPV of the production which is measured in terms of the gas production rate
downstream from the compressor. Therefore, the economic objective can be expressed as

φe(x, z,u,p) =

∫ tf

0

(
− ṁgas(x, z,u,p)

(1 + i)t

)
dt

=

N∑
t=1

(
− ṁgas(xk+1, zk+1,uk,p)

(1 + i)tk

)
.

(5.6)

Note that ṁgas = ṁgas(x, z,u,p). The dynamic stochastic optimization problem formu-
lated in Equation 2.9 is formulated as a minimization problem. The economic objective
and the reliability objective are matters of maximization and hence the negative of the ob-
jectives are applied. The reliability objective and the economic objective generate a multi-
objective function in the dynamic stochastic optimization problem. Equation 2.9 employs
scenarios to incorporate uncertainty in physical parameters into the optimization routine.
For that reason, the scenario-based deterministic equivalent of the objective function can
be formulated as

S∑
l=1

N∑
k=1

Φ =

S∑
l=1

N∑
k=1

φe + ωφr

=

S∑
l=1

N∑
k=1

(
− ṁgas

(1 + i)tk

)
+ ω

(
− βk 1

α

α∑
j=0

(
λw(− ln(1− j))1/Kw∆γ

))
.

(5.7)

ω is applied as a weighting factor between the two objectives. The weighing factor sets
the decision maker’s attitude towards risk. As a consequence, the choice of the weight of
risk and the risk measure in the objective is fundamental for the nature and formulation of
the problem (Dupačová and Kozmı́k, 2015; Kozmık, 2015). In the context of this work,
the weighting factor is assumed to be constant and equal to 0.5. The discount term in the
dynamic risk measure, βk, is assumed to be constant in all time intervals. The value for
βk is assumed to be equal to 0.05.
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5.2 Constraints

The subsea system is described by a set of nonlinear Differential Algebraic Equations
(DAEs) given in Chapter 4. In order to enforce feasible solutions, the set of DAEs are
incorporated into the optimization problem formulation as constraints on the algebraic
equations, g, and the differential equations, f. Section 2.1.1 also made assumptions that
the optimization problem could be formulated as an initial value problem. The initial
bearing crack-length is set to 0.01 mm and the initial condition for the time variable is
equal to 0. Consequently, the following constraints are imposed on system variables to
enforce a feasible solution:

fl,k(xl,k, zl,k,ul,k,p) = xl,k+1

gl,k(xl,k, zl,k,ul,k,p) = xl,k+1

h0 = 0.01

t0 = 0.0.

(5.8)

5.3 Upper and Lower Bounds

The optimal control problem with objective function given in Equation 5.7 and constraints
given in Equation 5.8 may yield solutions which are not within a safe operating domain
or physically not feasible. As a consequence, bounds are enforced on inputs, ucomp and
uchoke, related to allowable operating range for flow through the compressor and the choke.
Bounds on surge, Srg, and Stonewall, Stw, conditions for compressor choking according
to the allowable operating range must be imposed. Limitations on Pout is necessary to
ensure flow trough the pipeline to the topside (Verheyleweghen and Jäschke, 2017b). The
resulting lower-and upper bounds are

0.75 ≤ ucomp ≤ 1.05

0 ≤ uchoke ≤ 1

0 ≤ Srg
0 ≤ Stw
150 bar ≤ Pout.

(5.9)
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5.4 Optimal Control Problem

The objective function defined by Equation 5.7 together with the constraints from Equation
5.8 and the variable bound in Equation 5.9 will give rise to a set of optimization problems,

min
x,z,u

S∑
l=1

pl

N∑
k=1

(
− ṁgas

(1 + i)tk

)
+ ω

(
− βk 1

α

α∑
j=0

(
λw(− ln(1− j))1/Kw∆γ

))
s.t. fl,k(xl,k, zl,k,ul,k,p) = xl,k+1

gl,k(xl,k, zl,k,ul,k,p) = 0

h0 = 0.01

t0 = 0.0

0.75 ≤ ucomp ≤ 1.05

0 ≤ uchoke ≤ 1

0 ≤ Srg
0 ≤ Stw
150 bar ≤ Pout.

(5.10)

The probability of occurrence, pl, is assumed to be equal for all scenarios.

5.5 Weibull Parameters

The remaining useful life (RUL) of equipment variable is assumed to be Weibull dis-
tributed with some interesting parameters, the scale parameter, λw, and the shape param-
eter, Kw. Assumptions were made that both shape and scale parameters were dependent
on the degradation variable, h. The characteristics of the scale and shape parameters are
key in investigating the RUL of equipment distribution of the system. Different shape
parameters affect the failure rate in the following manner (Jiang and Murthy, 2011):

1. Kw < 1 Suitable for modelling early failure due to problems with production

2. Kw = 0 Suitable for modelling failure due to pure coincidence

3. Kw > 1 Suitable for modelling wear-out failure due to degradation of equipment
after some time

The shape parameter represents the slope of the Weibull distribution and in the context of
this work, it is appropriate to use a positive shape parameter. The failures occurring are
assumed to be ”wear-out”-failures as they will commence due to ”the aging process”. The
scale parameter represents the variance of the Weibull distribution. The scale parameter
was assumed to be greater than zero. Also, it is assumed to decrease over time since the
RUL of equipment distribution has a greater variance earlier in the production. Due to the
lack of failure data, the final relationship between the shape, Kw, and scale, λw, parameter
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and the crack length, h, is assumed to be

Kw = 4.55 + 0.1h + 0.1h2, (5.11)

λw = 5.7− 1.2h− 2.8
√
h. (5.12)

For implementation in a real systems, the parameter values must be adjusted to reflect
the expected degradation profile of the given system. Historical data from the OREDA
database or similar can be used for this purpose (OREDA Participants, 2002).
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Chapter 6
Results and Discussion

This chapter will review the results of the performed study. Section 6.1 will give a brief
overview of the model predictive control (MPC) scheme that is employed for optimization
of the subsea station. Details on the implementation in MATLAB will be assessed in
Section 6.2. Results obtained from the open-loop optimization will be analyzed in Section
6.3 At the end, the optimal control strategy for the subsea station achieved from closed-
loop MPC simulation will be discussed in Section 6.4.

6.1 Model Predictive Control Framework
The ambition of this study is to employ a model predictive control (MPC)-like frame-
work to obtain a control policy that maximizes the net present value (NPV) of production
without jeopardizing the reliability of the subsea gas compression station at the Åsgard
field. For that reason, health monitoring methods are applied to monitor the condition of
the overall system in real-time. This study investigates the idea of risk minimization to
manage condition monitoring in optimization of a subsea system. A risk measure that
considers the risk of failure is used to assess the health of the subsea plant. Essentially,
integrating risk monitoring techniques into the optimization procedure refers to ensuring
that the subsea system stays operational until the next maintenance intervention. In the
context of this work, the next maintenance engagement is scheduled to take place five
years after the start-up of the plant. However, the simulation is conducted with initial time
horizon tf = 1 as a simplification in the calculations. Initial values for the two differential
variables, wet-gas compressor bearing crack length, h, and time, t, was set to 0.01 mm at
t = 0 years, respectively. The simulation was carried out with a fixed compressor strain on
the bearing fault in the wet-gas compressor.

A scenario-based method is employed to account for the uncertainty in the physical param-
eter cParis in the bearing crack length propagation model in Equation 4.41. The scenarios
represent discrete parameter realizations, namely the 90% percentile, the 10% percentile,
and the nominal value. The stochastic optimal control problem (OCP) expressed in Equa-
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tion 5.10 is solved with initial prediction horizon N = 20 and a robust horizon of NR = 1
for the scenario tree. This OCP is solved in the open-loop optimization and computes a
sequence of input signals to the actual plant. The closed loop MPC solves the optimization
problem repeatedly with a receding time horizon. The closed-loop simulation introduces
random disturbance on control inputs in order to obtain the optimal operational control
strategy for the subsea system. The numerical results obtained in this study are based on
the chosen set of parameters and assumptions for this system. Simulation parameters are
listed in Appendix A.

6.2 Implementation in MATLAB
The original system is implemented in MATLAB by Adriaen Verheyleweghen and serves
as the open-loop optimization algorithm in the MPC. The open-loop optimization problem
is implemented in MATLAB using the open-source external software package CasADi
(Andersson, 2013). The optimization problem is solved with IPOPT (Wächter and Biegler,
2006). The original script is modified for risk controlling purposes. Risk monitoring
is enforced through risk measure estimates which are stated as algebraic equations and
added into the original system. The closed-loop MPC is implemented to add random dis-
turbance to the open-loop optimization. The initial separator model provided by Adriaen
Verheyleweghen was altered with a new separator model developed through the study with
the project thesis (Ims, 2017). The resulting MATLAB code is provided in Appendix B.

6.3 Open-loop Optimization with Risk Control
The model predictive controller repeatedly solves an open-loop optimization problem to
predict the optimal control policy. The open-loop optimization algorithm is modified with
risk monitoring techniques to assess the unavailability of equipment. Minimizing unavail-
ability of equipment can be rephrased to maximizing an additive multi-period risk mea-
sure formulation of Conditional Value-at-Risk (CVaR) with respect to remaining useful
life (RUL) of equipment. As a consequence, the optimal control strategy is obtained by
maximizing profit and CVaR with respect to RUL of equipment over the expected lifetime
of the operation.

6.3.1 Risk Control
Value-at-Risk and Conditional Value-at-Risk calculations in financial risk management
usually employ a confidence level α = 1-5%. In the context of this study, the confidence
level, α, is applied as a tuning parameter in the optimization problem. Table 6.1 presents
the predicted values for VaRα and CVaRα at t = 0 obtained from the first open-loop opti-
mization with a nominal value for the uncertain parameter cparis = 1.0. The table shows an
obvious trend that both VaRα and CVaRα are increasing with increasing α. Even though
higher values for VaRα and CVaRα may imply shrinking probability for failure, the in-
creasing level of confidence may be non satisfactory for subsea operation. The confidence
level ought to be selected at a lower value to obtain a more reliable control strategy for the
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subsea plant.

Table 6.1: Value-at-Risk and Conditional Value-at-Risk for different confidence levels, α. The
values are obtained from the first open-loop optimization at t = 0.

α [%] VaRα [Years] CVaRα [Years]
1 9.83 8.09
2 11.46 9.41
3 12.54 10.29
4 13.38 10.96
5 14.07 11.52

Confidence levels of 1-5% are assumed to be non satisfactory for subsea processing sys-
tems. Operating on the seabed gives rise to higher demands in terms of safety and relia-
bility. Maintenance engagements are considerably rare for subsea systems, as it requires
specialized intervention ships to carry out operations on the bottom of the ocean. Conse-
quently, unplanned shutdowns which may cause expensive maintenance engagements are
avoided at every opportunity. In this study, it is assumed that α = 0.1% would give an
acceptable risk level. Consequently, CVaRα represents the average RUL of equipment of
the 0.1% lowest RUL of equipment outcomes. Figure 6.1 illustrates the probability density
function (PDF) of RUL of equipment with values for VaRα and CVaRα explicitly marked
at α = 0.1%. The values are obtained from the first open-loop optimization at t = 0 with a
nominal value for the uncertain parameter cparis = 1.0.
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Figure 6.1: The probability density function of RUL of equipment, ψ, with values for VaRα and
CVaRα explicitly marked at α = 0.1%. The values are obtained from the first open-loop optimization
at t = 0.
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Figure 6.1 depicts the predicted values at t = 0 for VaRα and CVaRα from the first open-
loop optimization. The plot shows the that expected minimum value of RUL of equipment
(VaRα) is just below six years and that the average RUL beneath that (CVaRα) is just above
five years. This may imply that with this particular set of parameters and assumptions, the
chance of RUL of equipment less than five years at t = 0 is sufficiently small for subsea
operation. It is assumed that the obtained CVaRα has a confidence level of α = 0.1%. The
constraints are satisfied so the solution achieved from the optimization should produce a
level of confidence for the risk of failure equal to α = 0.1%. The actual level of confidence
can be checked by running Monte Carlo simulations to test if CVaRα represents the aver-
age RUL of the 0.1 % lowest RUL outcomes for the given time horizon. This should be
verified in future work.

From the previous analysis, it is assumed that α = 0.1% gives an acceptable risk level.
The results from the first open-loop optimization for VaRα and CVaRα with α = 0.1% are
illustrated in Figure 6.2. The plots show the predicted behaviour for VaRα and CVaRα
with three lines indicating the individual scenarios. Figure 6.2 illustrates how VaRα and
CVaRα decreases with time with confidence level α = 0.1%. Essentially, VaRα and CVaRα
decreases with decreasing RUL of equipment. This may be to prevent an overly conser-
vative operation. Nevertheless, the non-convex nature of the system equations resulted in
a non-convex optimization problem. Solving a non-convex optimization problem with the
local solver, IPOPT, cannot guarantee that the minimum point obtained is a global mini-
mum. In this regard, there might exist better solutions with the same α.
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(a) VaRα , as a function of time, t, with α = 0.1%.
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(b) CVaRα , as a function of time, t, with α = 0.1%.

Figure 6.2: The state profiles for VaRα and CVaRα from the first open-loop optimization with
confidence level α = 0.1%.
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6.3 Open-loop Optimization with Risk Control

RUL of equipment is employed to account for uncertainty in equipment and is assumed
to be Weibull distributed with shape and scale parameters. The bearing crack-length is
applied as a health indicator for the RUL of equipment distribution. The risk captured by
CVaR can be directly affected by shaping the RUL-distribution. The RUL of equipment-
distribution can be formed by influencing the states x by adjusting the inputs u. Figure
6.3a shows the predicted degradation of the bearing crack-length from the first open-loop
optimization with a nominal value for cparis = 1.0. The corresponding RUL of equipment
distribution at degradation levels h1, h2 and h3 are depicted in Figure 6.3b. Essentially
the expected RUL increases with decreasing degradation. That is reasonable as a smaller
crack-length would suggest that the system is operational for a longer time, compared to a
larger crack-length.
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Figure 6.3: Evolution of the degradation of equipment, h, and the RUL of equipment- distributions
at degradation levels h1, h2 and h3 with α = 0.1%.

6.3.2 Optimization of Production
Maximizing of CVaRα with respect to RUL of equipment, without any profit evaluation,
can lead to decisions that are overly restrictive. Consequently, this study investigates an
optimal control policy with respect to both risk and profit. The profit is measured as the
net present value (NPV) of gas production downstream from the wet-gas compressor. The
predicted gas production profile from the first open-loop optimization is illustrated in Fig-
ure 6.4 with three lines indicating the individual scenarios. The optimization found it
profitable to maximize gas production in the beginning. The NPV concept in the objective
function in Equation 5.10 favours early gas production rather than late production. After
approximately 3.5 years of operation, the system realized that the predicted loss of profit
until the next maintenance intervention is rather small and less valuable. The plant re-
sponded by increasing the inputs to squeeze more gas production out of the system. This
may indicate that the specified maintenance horizon might have been too short. Preferably,
the next maintenance should have been planned later.
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Figure 6.4: Open-loop state profile for the gas production rate, ṁgas, as a function of time, t, at t =
0.

Another interpretation of this production profile is that perhaps the weighting, ω, should
have been different. ω, is a tuning parameter in the optimization routine and affects the
outline of the control strategy. The choice of weight in the objective function in Equation
5.7 is essential to the nature and formulation of the problem. In the context of this study,
ω is assumed to be constant and equal to 0.5 to enforce a risk averse operation. Higher
values for ω would result in a more conservative operation. On the other hand, applying
significantly lower values for ω would give a control strategy where risk is weighted very
little. As a consequence, the plant would end up favouring maximum production for the
entire operation horizon. Employing a time-dependent ω might have given a consistently
declining production rate. This should be discussed in future work.

There are several instrumental factors to this production profile. An important contrib-
utor to the behaviour of the controller could be that net present value of gas production
downstream from the wet-gas compressor is measured in terms of money, while the risk of
failure is measured in years. A simplified assumption is made that the conversion rate be-
tween money and years is 1:1. In relation to Equation 5.7, the summation of two different
currencies is not desirable and may cause errors. Improvements to the proposed relation
between the risk of failure and profit is imperative. This must be addressed in future work.

Previous study on health-aware control of the subsea gas compression station at the Åsgard
field was handled as part of the work with the project thesis (Ims, 2017). Here, the degra-
dation of equipment were used for condition monitoring purposes. Paris’ law for crack
propagation was used to predict degradation of equipment. Based on a rational mindset,
the degradation of equipment as a health propagation model ought to yield a more eco-
nomically profitable operation as it imposes constraints directly on the fault indicator. In-
corporating risk control into the optimization routine for the subsea system would suggest
a more conservative operational strategy as it seeks to limit loss of production. However,
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the outcome is a little contradicting as constraints on the bearing crack-length yields a less
profitable control policy than integrating risk control in the optimization routine.

6.4 Closed-loop Optimization with Risk Control

The closed-loop model predictive controller adds random disturbances on the inputs to the
open-loop optimization problem in order to obtain an optimal control strategy for opera-
tion of the subsea plant. In the context of this work, a shrinking time horizon will be used
by decreasing the prediction horizon by one time step for each open loop optimization.
Figure 6.5 presents the optimal control policy from the closed loop simulation for the two
control inputs, compressor speed, ucomp, and choke opening, uchoke. The plots correlate
with the gas production rate results obtained from open-loop optimization in Figure 6.4.
The optimization found it profitable to maximize gas production in the beginning. After
approximately 3.5 years of operation, the system realized that the predicted loss of profit
until the next maintenance intervention is rather small and less valuable. Figure 6.5 shows
that the plant responded by increasing the inputs to squeeze more gas production out of
the system. The reasons for this production outline were discussed in the previous section.
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Figure 6.5: Closed loop state profiles with noise for the compressor speed, ucomp, and the choke
opening, uchoke, with confidence levels, α = 0.1%.

The optimal control control problem is solved with a dynamically time inconsistent risk
measure. As a consequence, the resulting optimal control policy depicted in Figure 6.5
is dynamically time inconsistent. This gives a sub-optimal solution. However, the degree
of sub-optimality might be small. Closed-loop simulations without disturbance provided
an invariable optimal control policy throughout the optimization routine in-spite of the
dynamic time inconsistency. This was tested by applying the nominal value for all the sce-
nario realizations for the random variable cparis. This may indicate that the additive form
of CVaR perhaps could yield a dynamic time-consistent optimal control policy after all.
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Nevertheless, dynamic time inconsistency of the dynamic risk measure must be addressed
in future work.
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Chapter 7
Concluding Remarks and Further
Work

7.1 Concluding Remarks

This master thesis proposed a model predictive control (MPC) approach for integrating
health monitoring and control to achieve an economic optimal control policy, without jeop-
ardizing the safety of the Åsgard gas compression station. Risk controlling techniques that
consider the risk of failure were used for condition monitoring purposes. The risk measure
Conditional Value-at-Risk (CVaR) with respect to remaining useful life (RUL) of equip-
ment was implemented in the form of MATLAB code in the optimization routine in the
MPC. The optimized strategies obtained with the open-loop optimization were predictive
control strategies without disturbance. For that reason, a closed loop was implemented in
MATLAB with receding horizon to include random disturbances on inputs. Due to the
lack of data from the real subsea gas compression station at the Åsgard field, it was impos-
sible to derive exact parameters for the risk measure used to estimate the risk of failure.
Based on a particular set of parameters and assumptions made for this system, the optimal
control policy sought safe operation until the next maintenance intervention. Two tuning
parameters, the weighting between the reliability and the economic objective, β, and the
confidence level for the risk measure, α, were used to tune the system.

The numerical simulation showed that the average RUL of the 0.1% worst RUL outcomes
was calculated be to just above five years at t = 0. As expected, the predicted CVaR with
respect to RUL of equipment decreases with time until the next maintenance engagement,
which is scheduled to happen in five years. Implementing the risk measure with higher
confidence levels gave rise to higher values for CVaR with respect to RUL of equipment.
However, maximizing of CVaR with respect to RUL itself, without any profit evaluation,
can lead to decisions that are overly restrictive. Consequently, this study found an optimal
control policy with respect to both risk and mean profit. By doing so, the optimization
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found it profitable to decrease the gas production rate with time.

The overall conclusion from this work, is that health-aware control with risk measures
for condition monitoring has the possibility to master the reliability of a subsea plant.
Nevertheless, the accuracy of the system model and the implementation of the risk mea-
sure estimate influence the controllers ability to predict the risk of failure. The non-convex
nature of the system equations resulted in non-convex optimization problem. Solving a
non-convex optimization problem with a local solver, IPOPT, cannot guarantee that the
minimum point obtained is a global minimum. In this regard, there might exist better
solutions with the same α. In addition, the dynamic risk measure chosen for this study
is dynamic time inconsistent which in turn yielded a dynamic time inconsistent optimal
control policy. However, the degree of sub-optimality might be small as the closed-loop
simulations without disturbance provided an invariable optimal control policy throughout
the optimization.

7.2 Further Work
There are many possible paths to follow in future research to improve this approach to risk
control and optimization. A reasonable next step would be to look for improvements to the
proposed relation between the reliability objective and the economic objective. As of now,
the two objectives are not in the same currency and the relation between the risk of fail-
ure and the profit must be analyzed. Furthermore, attention must be paid to the dynamic
time inconsistency of the dynamic risk measure which is applied in the optimization of
this subsea system. The additive form of the multi-period risk measure CVaR is generally
not dynamically time consistent. This ought to be improved in future work. In general,
two approaches can be adopted to master time-inconsistency: either analyze the optimal
control policies in detail and enforce conditions to overcome dynamic time inconsistency,
or introduce modifications of the risk measure and then generate dynamic time consistent
strategies (Chen et al., 2017).

Furthermore, the formulation of the optimal control problem can be changed to minimiz-
ing the unavailability whilst constraining the minimum expected economic profit. This
indicates that the objective is to minimize the risk of failure while constraining the mini-
mum expected economic profit from operation.
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Hundseid, O., Bakken, L. E., Grüner, T. G., Brenne, L., Bjorge, T., 2008. Wet gas perfor-
mance of a single stage centrifugal compressor. In: ASME Turbo Expo 2008: Power for
Land, Sea, and Air. American Society of Mechanical Engineers, pp. 661–670.
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Klüppelberg, C., Straub, D., Welpe, I. M., 2014. Risk-A Multidisciplinary Introduction.
Springer.

Kozmık, V., 2015. Multiperiod Risk Measures.

Krokhmal, P., Zabarankin, M., Uryasev, S., 2011. Modeling and optimization of risk. Sur-
veys in operations research and management science 16 (2), 49–66.

Kurt, D., 2016. Net Present Value (NPV) Definition | Investopedia. Investopedia. Re-
trieved 2018-04-25.

Lucia, S., Finkler, T., Engell, S., 2013a. Multi-stage nonlinear model predictive control
applied to a semi-batch polymerization reactor under uncertainty. Journal of Process
Control 23 (9), 1306–1319.

Lucia, S., Subramanian, S., Engell, S., 2013b. Non-conservative robust nonlinear model
predictive control via scenario decomposition. In: Control Applications (CCA), 2013
IEEE International Conference on. IEEE, pp. 586–591.

McClimans, O., Fantoft, R., et al., 2006. Status and new developments in subsea process-
ing. In: Offshore Technology Conference. Offshore Technology Conference.

Morari, M., Lee, J. H., 1999. Model predictive control: past, present and future. Computers
& Chemical Engineering 23 (4-5), 667–682.

Moreno-Trejo, J., Markeset, T., 2011a. Identifying challenges in the development of sub-
sea petroleum production systems. In: IFIP International Conference on Advances in
Production Management Systems. Springer, pp. 287–295.

Moreno-Trejo, J., Markeset, T., 2011b. Mapping factors influencing the selection of sub-
sea petroleum production systems. In: IFIP International Conference on Advances in
Production Management Systems. Springer, pp. 242–250.

Morgan, JP, 1994. Riskmetrics.

Nocedal, J., Wright, S. J., 2006. Numerical Optimization, 2nd Edition. Springer, New
York, NY, USA.

55



OREDA Participants, 2002. Offshore reliability data handbook, 4th. ed. SINTEF, Trond-
heim.

Paris, P., Erdogan, F., 1963. A critical analysis of crack propagation laws. Journal of basic
engineering 85 (4), 528–533.

Pereira, E. B., Galvão, R. K. H., Yoneyama, T., July 2010. Model Predictive Control using
Prognosis and Health Monitoring of actuators. In: 2010 IEEE International Symposium
on Industrial Electronics. pp. 237–243.

Pflug, G. C., Romisch, W., 2007. Modeling, measuring and managing risk. World Scien-
tific, Singapore.

Riedel, F., 2004. Dynamic coherent risk measures. Stochastic processes and their applica-
tions 112 (2), 185–200.

Rockafellar, R. T., 2007. Coherent Approaches to Risk in Optimization Under Uncertainty.
Tutorials in Operations Research 3, 38–61.

Rockafellar, R. T., Royset, J. O., 2010. On buffered failure probability in design and opti-
mization of structures. Reliability Engineering & System Safety 95 (5), 499–510.

Rockafellar, R. T., Uryasev, S., 2000. Optimization of Conditional Value-at-Risk. Journal
of Risk 2, 21–41.

Rockafellar, R. T., Uryasev, S., 2002. Conditional value-at-risk for general loss distribu-
tions. Journal of banking & finance 26 (7), 1443–1471.

Rockafellar, R. T., Uryasev, S., 2013. The fundamental risk quadrangle in risk manage-
ment, optimization and statistical estimation. Surveys in Operations Research and Man-
agement Science 18 (1-2), 33–53.
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Appendix A
Simulation Parameters

Table A.1 lists some necessary parameters for the simulation of the model predictive con-
troller for the subsea gas compression station at the Åsgard field.

Table A.1: Simulation parameters

Parameter Description Value Unit
tf Time until the next maintenance intervention. 1 Years
S Number of scenarios. 3 -
N Number of time periods. It is the length of the horizon. 20 -
pl Probability of occurrence for scenario l. 1/3 %

ka Parameter in shape parameter equation. 4.55 -
kb Parameter in shape parameter equation. 0.1 -
kc Parameter in shape parameter equation. 0.1 -
λa Parameter in scale parameter equation. 5.7 -
λb Parameter in scale parameter equation. 1.2 -
λc Parameter in scale parameter equation. 2.8 -
βk Discounting factor for risk measures at time k. 0.05 -
ṁ1 Mass flow rate entering the valve. 0.9 kg/s
cchoke Choke constant. 0.1671 kg/s

√
bar

P1 Pressure upstream to the valve. 100 bar
uchoke Initial choke opening. 0.565 -
σ Interfacial/surface tension between two phases. 2.2 mN/m
µl Viscosity in liquid film in separator. 0.096 cP
D Separator diameter. 2 m
K Parameter in expression for friction factor fg,i. 1.926 -
m Parameter in expression for friction factor fg,i. -1/3 -
ug,tg Tangential gas velocity in cyclone. 3.75 m/s
θ Angle of gas velocity on AFC wall. 45 o

θ̂ Angle to indicate direction of gas flow. 45 o

A Parameter for the correlation between E and α. -0.1345 -
B Parameter for the correlation between E and α. 1.01 -
a Parameter for the Re-entrainment number,E. 0.4 -
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cParis Nominal value for parameter in Paris’ law. 2.4 s/J2

g Gravitational constant. 9.81 m/s2

ucomp Initial compressor speed. 0.85 -
R Gas constant. 8.31446 J/K mol
T3 Temperature upstream to the compressor. 350 K
h0 Initial bearing degradation. 0.01 mm
c1 Parameter in the expression for η. 0.582 -
c2 Parameter in the expression for η. -2.398 -
c3 Parameter in the expression for η. 2.752 -
c4 Parameter in the expression for η. - 3.969 -
c5 Parameter in the expression for η. 4.303 -
c6 Parameter in the expression for H . -0.9937 -
c7 Parameter in the expression for H . 2.256 -
c8 Parameter in the expression for H . 1.888 -
A1 Parameter in the expression for Z. 0.3265 -
A2 Parameter in the expression for Z. -1.0700 -
A3 Parameter in the expression for Z. -1.0700 -
A4 Parameter in the expression for Z. 0.01569 -
A5 Parameter in the expression for Z. -0.05165 -
A6 Parameter in the expression for Z. 0.5475 -
A7 Parameter in the expression for Z. -0.7361 -
A8 Parameter in the expression for Z. 0.1844 -
A9 Parameter in the expression for Z. 0.1056 -
A10 Parameter in the expression for Z. 0.6134 -
A11 Parameter in the expression for Z. 0.7210 -
qmin Minimum allowable flow to prevent surge. 1.163 m3/s
qmax Maximum allowable flow to svoid Stonewall cond. 2.286 m3/s
i Discount rate for net present value calculations. 0.015 -
ω Weighting factor in objective function. 0.5 -
t0 Initial time. 0 Years
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Appendix B
MATLAB code

B.1 Stream Definition
1 function stream = def_stream(name,x,init,Ti,Pi,mgdoti,mcdoti)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that creates a stream object for the system.

5 %@input : name of the stream (name), composition of the stream (x),

6 % boolean variable indicating if it is inital stream (init),

7 % temperature in the stream (Ti), pressure in the stream(Pi),

8 % gas flow rate (mgdoti), liqiud flow rate (mcdoti)

9 %@output : stream object (stream)

10

11 %@author : Adriaen Verheyleweghen

12 %@organization: Department of Chemical Engineering, NTNU, Norway

13 %@requires : MATLAB R2016a (not tested in other releases)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

17 import casadi.*
18

19 nm = num2str(name); % SCALING FACTORS

20 T = MX.sym(['T_',nm]); % Temperature

21 P = MX.sym(['P_',nm]); % Pressure

22 mgdot = MX.sym(['mgdot_',nm]); % Mass flow rate

23 mcdot = MX.sym(['mcdot_',nm]); % Mass flow rate

24

25 z = struct(); % Decision variables

26 p = struct(); % Extra parameters

27 algs = struct(); % Residuals Equaitons

28

29 %% Declare variables
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30

31 Z = MX.sym(['Z_',nm]); % Compressibility

32 Cp = MX.sym(['Cp_',nm]); % Heat capacity

33 rho = MX.sym(['rho_',nm]); % Density of gas

34 Vgdot = MX.sym(['Vgdot_',nm]); % Gas volumetric flow

35 Vcdot = MX.sym(['Vcdot_',nm]); % Liquid Volumetric flow

36 GVF = MX.sym(['GVF_',nm]); % Gas-volume-fraction

37

38 %% Concatenate variables

39

40 z.T = T;

41 z.P = P;

42 z.mgdot = mgdot;

43 z.mcdot = mcdot;

44

45 z.Z = Z;

46 z.Cp = Cp;

47 z.rho = rho;

48 z.Vgdot = Vgdot;

49 z.Vcdot = Vcdot;

50 z.GVF = GVF;

51

52 %% Define properties

53

54 % Molar masses [kg/mol]

55 M_ =[...

56 16.04, ... % C1

57 30.07, ... % C2

58 44.10, ... % C3

59 58.12, ... % n-C4

60 72.15, ... % n-C5

61 86.18, ... % n-C6

62 18.02, ... % H2O

63 44.01, ... % CO2

64 28.01, ... % N2

65 58.12, ... % i-C4

66 72.15, ... % i-C5

67 ];

68

69 M = M_*x';

70 p.M = M;

71 p.x = x;

72

73 % Critical temperatures [K]

74 Tc_ =[...

75 190, ... % C1

76 305, ... % C2

77 370, ... % C3
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78 425, ... % n-C4

79 469, ... % n-C5

80 507, ... % n-C6

81 647, ... % H2O

82 304, ... % CO2

83 126, ... % N2

84 408, ... % i-C4

85 460, ... % i-C5

86 ];

87

88 % Pseudo-critical mixture temperature [K]

89 %

90 % Calculated from Kay's rule:

91 % W.B. Kay - "Gases and Vapors At High Temperature and Pressure-Density

92 % of Hydrocarbon" (1936)

93 %

94 % Known to be innaccurate, see for instance

95 % R.P. Sutton - "Compressibility Factors for High-Molecular-Weight

96 % Reservoir Gases" (1985)

97

98 Tpc = Tc_*x';

99

100 % Pseudo-reduced temperature [-]

101 Tpr = (T*1E2) / Tpc;

102

103 % Critical pressures [Pa]

104 Pc_ =[...

105 4.60551724137931E6, ... % C1

106 4.88137931034483E6, ... % C2

107 4.25034482758621E6, ... % C3

108 3.80000000000000E6, ... % n-C4

109 3.37241379310345E6, ... % n-C5

110 3.01379310344828E6, ... % n-C6

111 22.0620689655172E6, ... % H2O

112 7.38344827586207E6, ... % CO2

113 3.39000000000000E6, ... % N2

114 3.64896551724138E6, ... % i-C4

115 3.39000000000000E6, ... % i-C5

116 ];

117

118 % Pseudo-critical mixture pressure [Pa]

119 Ppc = Pc_*x';

120

121 % Pseudo reduced pressure [-]

122 Ppr = (P*1E7) / Ppc;

123

124 % Compressibility factor

125 %
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126 % Calculated using Dranchuk and Abou-Kassem EOS

127 % P.M. Dranchuk and H. Abou-Kassem - " Calculation of Z Factors For

128 % Natural Gases Using Equations of State" (1975)

129

130 A1 = 0.3265;

131 A2 = -1.0700;

132 A3 = -0.5339;

133 A4 = 0.01569;

134 A5 = -0.05165;

135 A6 = 0.5475;

136 A7 = -0.7361;

137 A8 = 0.1844;

138 A9 = 0.1056;

139 A10 = 0.6134;

140 A11 = 0.7210;

141

142 % Compressibility factor (Z)

143 % is calculated using Dranchuckand Abou Kassems eq

144 % where tmp is a temporary variable using in the calculation

145 tmp = 0.27*Ppr/(Z*Tpr);

146

147 algs.Z = -Z + 1+(A1+A2/Tpr+A3/Tprˆ3+A4/Tprˆ4+A5/Tprˆ5)*tmp + ...

148 (A6+A7/Tpr+A8/Tprˆ2)*tmpˆ2 - ...

149 (A7/Tpr+A8/Tprˆ2)*A9*tmpˆ5 + ...

150 A10*(1+A11*tmpˆ2)*(tmpˆ2/Tprˆ3)*exp(-A11*tmpˆ2);

151

152 % Heat capacity

153 % Cp = ( c1 + c2*T + c3*Tˆ2 + c4 *Tˆ-2)*R where R is gas constant

154 %

155 % Coefficients from:

156 % "http://www.personal.utulsa.edu/˜geoffrey-price/Courses

157 % /ChE7023/HeatCapacity-HeatOfFormation.pdf

158 % coefficients for different molecules

159

160 coeffs =[...

161 1.702, 9.081E-3, -2.164E-6, 0; ... % C1

162 1.131, 19.225E-3, -5.561E-6, 0; ... % C2

163 1.213, 28.785E-3, -8.824E-6, 0; ... % C3

164 1.935, 36.915E-3, -11.402E-6, 0; ... % n-C4

165 2.464, 45.351E-3, -14.111E-6, 0; ... % n-C5

166 3.025, 53.722E-3, -16.791E-6, 0; ... % n-C6

167 3.470, 1.450E-3, 0, 0.121E5; ... % H2O

168 5.457, 1.045E-3, 0,-1.157E5; ... % CO2

169 3.280, 0.593E-3, 0, 0.040E5; ... % N2

170 1.677, 37.853E-3, -11.945E-6, 0; ... % i-C4

171 2.464, 45.351E-3, -14.111E-6, 0; ... % i-C5

172 ];

173
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174 % Calculating the heat capacity according to the composition

175 c = x*coeffs;

176 R = 8.31446;

177 algs.Cp = -(Cp*1E2) + (c(1) + c(2)*(T*1E2) +...

178 c(3)*(T*1E2)ˆ2 + c(4)*(T*1E2)ˆ(-2))*R;

179

180 % Density

181 algs.rho = -(rho*1E2) + (P*1E7)*(M*1E-3)/(8.3144*Z*(T*1E2));

182

183 % Volumetric flow rate

184 rho_condensate = 10;

185 algs.Vgdot = -(mgdot*1E2) + (Vgdot)*(rho*1E2);

186 algs.Vcdot = -(mcdot*1E2) + (Vcdot)*(rho_condensate*1E2);

187

188 % GVF

189 algs.GVF = -GVF + Vgdot/(Vgdot+Vcdot);

190

191 %% Define stream object

192

193 stream = struct();

194 stream.z = z;

195 stream.p = p;

196 stream.algs = algs;

197

198 if init

199

200 %% Initialize

201

202 test = [T-Ti;P-Pi;mgdot-mgdoti;mcdot-mcdoti];

203

204 % Creating a rootfinding function to solve

205 rf_function = Function('rf_function',{casadi_struct2vec(z)},...

206 {vertcat(test,casadi_struct2vec(algs))});

207

208 % Create a solver for rootfinding problem

209 rf = rootfinder('rf','kinsol',rf_function);

210

211 % Initial guess

212 Zi = 0.89;

213 Cpi = 40;

214 rhoi = 68;

215 Vgdoti = 179.743;

216 Vcdoti = 19.97;

217 GVFi = 0.9;

218

219 z0 = [Ti,Pi,mgdoti,mcdoti,Zi,Cpi,rhoi,Vgdoti,Vcdoti,GVFi]';

220

221 % Converting a CasADi matrix to a MATLAB dense matrix
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222 stream.z0 = full(rf(z0));

223

224 end

.
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B.2 Choke

1 function [choke,outlet] = choke(namein,nameout,inlet,Zi)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that creates a choke object for the system.

5 %@input : name of the choke (namein), name of the output stream

6 % (nameout), conditions for the inlet stream (inlet),

7 % controller input for choke opening (Zi)

8 %@output : choke object (choke), outlet stream object (outlet)

9

10 %@author : Adriaen Verheyleweghen

11 %@organization: Department of Chemical Engineering, NTNU, Norway

12 %@requires : MATLAB R2016a (not tested in other releases)

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

16 import casadi.*
17

18 nm = num2str(namein);

19

20 outlet = def_stream(nameout,inlet.p.x,false,[],[],[],[]);

21

22 % Declearing necessary variables

23 Z = MX.sym(['Z_',nm]); % Cchoke opening

24 dP = (inlet.z.P*1E7)-(outlet.z.P*1E7); % Change in pressure

25 m = (inlet.z.mgdot*1E2)+(inlet.z.mcdot*1E2); % Total mass flow

26 Cv = 0.4*.4179402833086; % Choke constant

27

28 % Creating a struct to hold the input (choke valve opening) variable

29 u = struct();

30 u.Z = Z;

31

32 % Algebraic equations

33 algs.m = m - Cv*Z*sqrt(dP);

34 algs.mgdot = outlet.z.mgdot - inlet.z.mgdot;

35 algs.mcdot = outlet.z.mcdot - inlet.z.mcdot;

36 algs.T = outlet.z.T - inlet.z.T;

37

38 % Creating a choke struct

39 choke = struct();

40 choke.u = u;

41 choke.algs = algs;

42

43 %% Initialize

44 test = [Z-Zi;casadi_struct2vec(inlet.z)-inlet.z0];

45

46 % Creating a rootfinding function to solve

XI



47 rf_function = Function('rf_function',...

48 {vertcat(casadi_struct2vec(inlet.z),...

49 casadi_struct2vec(outlet.z),Z)},{vertcat(test,...

50 casadi_struct2vec(outlet.algs),casadi_struct2vec(algs))});

51

52 % Create a solver for rootfinding problem

53 rf = rootfinder('rf','kinsol',rf_function);

54

55 % Initial guess

56 z0in = inlet.z0;

57 z0out = z0in;

58 z0out(2) = z0out(2)*Zi;

59

60 % Converting a CasADi matrix to a MATLAB dense matrix

61 z0 = full(rf(vertcat(z0in,z0out,Zi)));

62 outlet.z0 = z0(length(inlet.z0)+1:2*length(inlet.z0));

63 end

.
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B.3 Separator

1 function [separator,outletg,outletl] = separator(namein,nameoutg,nameoutl,inlet)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that creates a separator object for the system.

5 %@input : name of the separator (namein), name of the gas output

6 % stream (nameoutg), name of the liquid output stream

7 % (outputl), conditions for the inlet stream (inlet)

8 %@output : separator object (separator), gas outlet stream object

9 % (outletg), liquid outlet stream object (outetl)

10

11 %@author : Adriaen Verheyleweghen

12 %@modified : Julie Berge Ims

13 %@organization: Department of Chemical Engineering, NTNU, Norway

14 %@requires : MATLAB R2016a (not tested in other releases)

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16

17 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

18 import casadi.*
19

20 nm = num2str(namein);

21

22 % Creating streams for outlet gas and outlet liquid stream

23 outletg = def_stream(nameoutg,inlet.p.x,false,[],[],[],[]);

24 outletl = def_stream(nameoutl,inlet.p.x,false,[],[],[],[]);

25

26 % Declare necessary variables

27 u_l_tg = MX.sym(['u_l_tg_',nm]); % Tangential liquid vel

28 delta_l = MX.sym(['delta_l_',nm]); % Film thickness on wall

29 alpha = MX.sym(['alpha_',nm]); % Cyclone efficiency

30 re_ent = MX.sym(['re_ent_',nm]); % Re-entrainment number

31 f_l_w = MX.sym(['f_l_w_',nm]); % Frict. factor film/wall

32 f_g_i = MX.sym(['f_g_i_',nm]); % Frict. factor gas/film

33 N_my = MX.sym(['N_my_',nm]); % Viscosity number

34 a_l = MX.sym(['a_l_',nm]); % Force on liquid film

35 Re_l = MX.sym(['Re_l_',nm]); % Reynold nr liq. stream

36

37 % Algebraic variables

38 z = struct();

39 z.u_l_tg = u_l_tg;

40 z.theta_l = delta_l;

41 z.alpha = alpha;

42 z.re_ent = re_ent;

43 z.f_l_w = f_l_w;

44 z.f_g_i = f_g_i ;

45 z.N_my = N_my;

46 z.a_l = a_l;
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47 z. Re_l = Re_l;

48

49 % Declare necessary parameters

50 D = 2 * 10ˆ(-2); % Inner vessel diameter

51 rho_l = 10 * 10ˆ(2); % Liquid density

52 rho_g = inlet.z.rho * 10ˆ(2); % Gas density

53 Vgdot = (inlet.z.Vgdot)*10ˆ(-5); % Gas volumetric flow rate

54

55 % Declare necessary parameters for the separator

56 Vldot = 0.1*Vgdot; % Volumetric liquid flow

57 angle = pi/4; % Angle film/cyclone body

58 my_l = 9.6e-8*rho_l; % Viscosity of liquid

59 sigma = 2.2e-3; % Interfacial tension

60 u_g_tg = 3.75; % Tangential gas velocity

61 u_g_s = 0.8* u_g_tg * tan(angle); % Superficial gas velocity

62

63

64 % --- provided that the Re_L is in the transition regime

65 % laminar flow 2 < Re_L < 100 K = 3.73 m = -0.47

66 % transisiton regime 100< Re_L <1000 K = 1.926 m = -1/3

67

68 K = 1.926;

69 m = -1/3;

70

71 % Model fitting parameters Austrheim(2007)

72 a_const = 0.4;

73 A = -0.1345;

74 B = 1.01;

75

76 % Declare necessary expressions

77 algs = struct();

78

79 algs.u_l_tg = - u_l_tg+sqrt((f_g_i*1E-2)* rho_g * ((u_g_tg)ˆ2)/ ...

80 (f_l_w * rho_l));

81 algs.theta_l = - (delta_l*1E05)+((cos(angle))ˆ2) * Vldot/(pi*D*u_l_tg);

82 algs.alpha = - alpha + A * re_ent + B;

83 algs.Re_l = - Re_l*1E2 + alpha * Vldot * rho_l * cos(angle)/ ...

84 (pi *D * my_l);

85 algs.a_l = - a_l + (( u_l_tg)ˆ2 )/ D/2;

86 algs.N_my = - N_my*1E-3 + my_l/ sqrt(rho_l * sigma * ...

87 sqrt(sigma/(a_l * (rho_l-rho_g))) );

88 algs.f_g_i = - f_g_i*1E-2 + 0.005*(1 + 300 * (delta_l*1E05)/D/2);

89 algs.f_l_w = - f_l_w+ (K*(Re_l*1E2)ˆm)ˆ2;

90 algs.re_ent = - re_ent + (my_l * u_g_s *((rho_g/rho_l)ˆ0.8 )/ ...

91 (sigma * ((N_my*1E-3)ˆa_const) * (Re_l*1E2) ˆ(-1/3)));

92

93

94 algs.gas = struct();
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95 algs.gas.mg = outletg.z.mgdot - inlet.z.mgdot*alpha;

96 algs.gas.mc = outletg.z.mcdot - inlet.z.mcdot*(1-alpha);

97 algs.gas.T = outletg.z.T - inlet.z.T;

98 algs.gas.P = outletg.z.P - inlet.z.P;

99

100 algs.liq = struct();

101 algs.liq.mg = outletl.z.mgdot - inlet.z.mcdot*(1-alpha);

102 algs.liq.mc = outletl.z.mcdot - inlet.z.mcdot*alpha;

103 algs.liq.T = outletl.z.T - inlet.z.T;

104 algs.liq.P = outletl.z.P - inlet.z.P;

105

106 separator = struct();

107 separator.z = z;

108 separator.algs = algs;

109

110 %% Initialize

111 test = [casadi_struct2vec(inlet.z)-inlet.z0];

112

113 % Vector for all variables

114 vec = [ u_l_tg delta_l alpha re_ent f_l_w f_g_i N_my a_l Re_l]';

115

116 % Creating a rootfinding function to solve

117 rf_function = Function('rf_function',...

118 {vertcat(casadi_struct2vec(inlet.z),...

119 casadi_struct2vec(outletg.z),...

120 casadi_struct2vec(outletl.z),vec)},...

121 {vertcat(casadi_struct2vec(outletg.algs),...

122 casadi_struct2vec(outletl.algs),...

123 casadi_struct2vec(algs),test)});

124

125 % Create a solver for rootfinding problem

126 rf = rootfinder('rf','kinsol',rf_function);

127

128 % Initial guess

129 a=0.95;

130 z0in = inlet.z0;

131 z0in(9) = 0.1;

132 z0outg = z0in;

133 z0outg(3) = z0outg(3)*a;

134 z0outg(4) = z0outg(4)*(1-a);

135 z0outg(8) = z0outg(8)*a;

136 z0outg(9) = z0outg(9)*(1-a);

137

138 z0outl = z0in;

139 z0outl(4) = z0outl(4)*a;

140 z0outl(3) = z0outl(3)*(1-a);

141 z0outl(9) = z0outl(9)*a;

142 z0outl(8) = z0outl(8)*(1-a);
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143

144 vec_guess=[0.2205 5.2609 0.900 0.9749 0.1230 0.7 1.7 1.2155 1.655653]';

145

146 % Converting a CasADi matrix to a MATLAB dense matrix

147 z0 = full(rf(vertcat(z0in,z0outg,z0outl,vec_guess)));

148 outletg.z0 = z0(1*length(inlet.z0)+1:2*length(inlet.z0));

149 outletl.z0 = z0(2*length(inlet.z0)+1:3*length(inlet.z0));

150 separator.z0 = z0(end-8:end);

151

152 end

.
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B.4 Compressor

1 function [comp,outlet] = compressor(namein,nameout,inlet,Ni,hi)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that creates a coompressor object for the system.

5 %@input : name of the inlet stream (namein), name of the output

6 % stream (nameout), conditions for the inlet stream (inlet),

7 % inital compressor speed (Ni), inital bearing crack length

8 % in the compressor (hi)

9 %@output : compressor object (comp), outlet stream from compressor

10 % (outlet)

11

12 %@author : Adriaen Verheyleweghen

13 %@modified : Julie Berge Ims

14 %@organization: Department of Chemical Engineering, NTNU, Norway

15 %@requires : MATLAB R2016a (not tested in other releases)

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

18 import casadi.*
19

20 nm = num2str(namein);

21 % Creating a stream 'object' for the outlet stream

22 outlet = def_stream(nameout,inlet.p.x,false,[],[],[],[]);

23

24 % Compressor variables and parameters

25 N = MX.sym('N'); % Normalized compressor speed

26 h = MX.sym('h'); % Compressor bearing crack length

27

28 gamma = MX.sym(['gamma_',nm]); % Average adiabatic ratio

29 k = MX.sym(['k_',nm]); % k = n/(n+1)

30 nu = MX.sym(['nu_',nm]); % Compressor efficiency

31 H = MX.sym(['H_',nm]); % Compressor head

32 Pow = MX.sym(['Pow_',nm]); % Compressor power consumption

33 srg = MX.sym(['srg_',nm]); % Indicates surge

34 stw = MX.sym(['stw_',nm]); % Indicates Stonewall

35 Paris = MX.sym(['Paris_',nm]); % Lumped parameter

36 a = MX.sym(['a_',nm]); % Wear parameter

37

38 % Struct for equations

39 algs = struct(); % Algebraic equations

40 odes = struct(); % Ddifferential equations

41

42 % Structs for variables

43 z = struct(); % Algebraic variables

44 x = struct(); % Differential variables

45 u = struct(); % Inputs

46 p = struct(); % Parameters
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47

48 u.N = N;

49 x.h = h;

50 z.gamma = gamma;

51 z.k = k;

52 z.nu = nu;

53 z.H = H;

54 z.Pow = Pow;

55 z.srg = srg;

56 z.stw = stw;

57 z.Paris = Paris;

58 p.a = a;

59

60 % Extract variables from streams

61 T1 = inlet.z.T *1E2;

62 T2 = outlet.z.T *1E2;

63 P1 = inlet.z.P *1E7;

64 P2 = outlet.z.P *1E7;

65 Cp1 = inlet.z.Cp *1E2;

66 Cp2 = outlet.z.Cp *1E2;

67 q1 = (inlet.z.Vgdot+inlet.z.Vcdot);

68 M1 = inlet.p.M *1E-3;

69 Z1 = inlet.z.Z;

70 rho1 = inlet.z.rho *1E2;

71 GVF1 = inlet.z.GVF;

72

73 % Parameters

74 g = 9.80665; % Gravitational constant

75 R = 8.31446; % Universal gas constant

76 rho_l = 10; % Density of liquid

77

78 c1 = 0.582; % Parameters for the fit nu = f(q)

79 c2 = -2.398;

80 c3 = 2.75;

81 c4 = - 3.969;

82 c5 = 4.303;

83

84 c6 = -0.9937; % Parameters for the fit H = f(q)

85 c7 = 2.256;

86 c8 = 1.888;

87

88 qmin = 1.163; % Minimum allowable flow at N=1 (surge line)

89 qmax = 2.286; % Maximum allowable flow at N=1 (choke line)

90

91 %% Define the residuals

92 head_par = 4; % Head adjustment parameter

93

94 qN = q1/N; % Flow corresponding to N=1 (fan laws)
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95 rho_avg1 = GVF1*rho1+(1-GVF1)*rho_l; % Average density

96 f_wood = 1/(rho_avg1/rho1*sqrt(rho_avg1/rho1*GVF1)); % Woods cor.fac.

97

98 algs.nu = nu - (c1*qNˆ2 + c2*qN + c3)/(qNˆ2 + c4*qN + c5);

99 algs.T = (H*1E3) - k*Z1*R/(g*M1)*(T2-T1);

100 algs.H = H - head_par*(c6*qNˆ2 + c7*qN + c8)*Nˆ2*f_wood;

101 algs.k = k - nu*gamma/(gamma-1);

102 algs.gamma = gamma - 1/2*( Cp1/(Cp1-R) + Cp2/(Cp2-R));

103 algs.P = T2/T1 - (P2/P1)ˆ(1/k);

104

105 algs.Pow = (Pow*1E7) - (H*1E3)*q1*rho1*g/nu;

106 algs.srg = srg - (qN-qmin);

107 algs.stw = stw - (qmax-qN);

108 algs.mg = inlet.z.mgdot - outlet.z.mgdot;

109 algs.mc = inlet.z.mcdot - outlet.z.mcdot;

110 algs.Paris = Paris - Powˆ2/N;

111

112 %% Define the dynamics

113 odes.dh = a*2.4*Paris*h;

114

115 %% Collect the variables and equations into struct

116 comp = struct();

117 comp.z = z;

118 comp.x = x;

119 comp.u = u;

120 comp.p = p;

121 comp.algs = algs;

122 comp.odes = odes;

123

124 %% Initialize

125 test = [N-Ni;h-hi;casadi_struct2vec(inlet.z)-inlet.z0];

126

127 % Creating a rootfinding function to solve

128 rf_function = Function('rf_function',...

129 {vertcat(casadi_struct2vec(inlet.z),casadi_struct2vec(outlet.z),...

130 casadi_struct2vec(z),N,h)},{vertcat(test,...

131 casadi_struct2vec(outlet.algs),casadi_struct2vec(algs))});

132

133 % Create a solver for rootfinding problem

134 rf = rootfinder('rf','kinsol',rf_function);

135

136 % Initial guess

137 guess = [1.2,4,0.77,9,0.96,0.4,075,1.1]';

138

139 z0in = inlet.z0;

140 z0out = z0in; z0out(2) = z0out(2)*1.4;

141

142 % Converting a CasADi matrix to a MATLAB dense matrix
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143 z0 = full(rf(vertcat(z0in,z0out,guess,Ni,hi)));

144 outlet.z0 = z0(length(inlet.z0)+1:2*length(inlet.z0));

145 comp.z0 = z0(2*length(inlet.z0)+1:end-2);

146 end

.
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B.5 Subsea Model

1 function [x_struct,z_struct,u_struct,x0_struct,z0_struct,u0_struct,...

2 p_struct,ode,alg]= subsea_model(u_choke, u_comp)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %@Course : Master Thesis Spring 2018

5 %@Task : Function that creates an object that defines the subsea

6 % system for with a choke, a separator and a separator.

7 % Four streams connecting the units are also created.

8 %@input : Choke opening (u_choke), compressor speed (u_comp)

9 %@output : Differential states (x_struct), algebraic states (z_struct)

10 % control inputs (u_struct), initial conditions for

11 % differential states (x0_struct, initial conditions for

12 % alfebraic states (z0_struct), inital values for inputs

13 % (u0_struct), parameters (p_struct), differential eguations

14 % (ode), algebraic equations (alg)

15

16 %@author : Adriaen Verheyleweghen

17 %@modified : Julie Berge Ims

18 %@organization: Department of Chemical Engineering, NTNU, Norway

19 %@requires : MATLAB R2016a (not tested in other releases)

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

22

23 % Link to Casadi installation folder

24 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

25 import casadi.*
26 addpath([pwd,'/functions'])

27

28 % Declare necessary parameters for stream 1

29 x = [.92,.05,.02,.005,.005,0,0,0,0,0,0]; % Composition of the fluid

30 T1 = 3.5; % Inlet temperature 350 K

31 P1 = 1.0; % Inlet pressure 100 bar

32 mgdot1 = 0.9; % Inlet gas mass flow rate

33 mcdot1 = 0; % Inlet liquid mass flow

34

35 % Declare other necessary parameters for the process

36 comp_0 = 0.01; % Init. comp. bearing degr.

37

38

39 % First well: def_stream(name,x,init,Ti,Pi,mgdoti,mcdoti)

40 stream1 = def_stream('1',x,true,T1,P1,mgdot1,mcdot1);

41

42 % Choke: choke(namein,nameout,inlet,Zi)

43 [chk,stream2] = choke('chk','2',stream1,u_choke);

44

45 % Separator: separator(namein,nameoutg,nameoutl,inlet)

46 [sep,stream3,stream5] = separator('sep','3','5',stream2);
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47

48 % Compressor: compressor(namein,nameout,inlet,Ni,hi)

49 [comp,stream4] = compressor('comp34','4',stream3,u_comp,comp_0);

50

51 %% Concatenate the decision variables

52

53 % Algebraic variables

54 z_struct = struct();

55

56 % Remove unneeded variables (to reduce size of system)

57 z_struct.stream1 = rmfield(stream1.z, ...

58 {'Cp'});

59 z_struct.stream2 = rmfield(stream2.z, ...

60 {'Cp','Vcdot','GVF'});

61 z_struct.stream3 = rmfield(stream3.z, ...

62 {});

63 z_struct.stream4 = rmfield(stream4.z, ...

64 {'rho','Vgdot','Vcdot','Z','GVF'});

65 z_struct.stream5 = rmfield(stream5.z, ...

66 {'Cp','rho','Vgdot','Vcdot','Z','GVF'});

67 z_struct.separator = sep.z;

68 z_struct.compressor = comp.z;

69

70 % Same for the struct of initial conditions

71 z0_struct = struct();

72 z0_struct.stream1 = rmfield(casadi_vec2struct(stream1.z, ...

73 stream1.z0), ...

74 {'Cp'} ...

75 );

76 z0_struct.stream2 = rmfield(casadi_vec2struct(stream2.z, ...

77 stream2.z0), ...

78 {'Cp','Vcdot','GVF'} ...

79 );

80 z0_struct.stream3 = rmfield(casadi_vec2struct(stream3.z, ...

81 stream3.z0), ...

82 {} ...

83 );

84 z0_struct.stream4 = rmfield(casadi_vec2struct(stream4.z, ...

85 stream4.z0), ...

86 {'rho','Vgdot','Vcdot','Z','GVF'} ...

87 );

88 z0_struct.stream5 = rmfield(casadi_vec2struct(stream5.z, ...

89 stream5.z0), ...

90 {'Cp','rho','Vgdot','Vcdot','Z','GVF'} ...

91 );

92 z0_struct.separator = sep.z0;

93 z0_struct.compressor = comp.z0;

94
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95 % Differential variables

96 x_struct = struct();

97 x_struct.compressor = comp.x;

98

99 x0_struct = struct();

100 x0_struct.compressor = comp_0;

101

102 % Inputs

103 u_struct = struct();

104 u_struct.compressor = comp.u;

105 u_struct.choke = chk.u;

106

107 u0_struct = struct();

108 u0_struct.compressor = u_comp;

109 u0_struct.choke = u_choke;

110

111 % Parameters

112 p_struct = struct();

113 p_struct.a = comp.p.a;

114 p_struct.GVF = stream1.z.GVF;

115

116 %% Define equations

117

118 % Algebraic equations

119 sep_algs = sep.algs;

120 sep_algs.gas = rmfield(sep_algs.gas,{'T','P'});

121 sep_algs.liq = rmfield(sep_algs.liq,{'T','P'});

122

123 alg = [ ...

124 casadi_struct2vec(rmfield(stream1.algs, ...

125 {'Cp'} ...

126 )); ...

127 casadi_struct2vec(rmfield(stream2.algs, ...

128 {'Cp','Vcdot','GVF'} ...

129 )); ...

130 casadi_struct2vec(rmfield(stream3.algs, ...

131 {} ...

132 )); ...

133 casadi_struct2vec(rmfield(stream4.algs, ...

134 {'rho','Vgdot','Vcdot','Z','GVF'} ...

135 )); ...

136 casadi_struct2vec(rmfield(stream5.algs, ...

137 {'Cp','rho','Vgdot','Vcdot','Z','GVF'} ...

138 )); ...

139 casadi_struct2vec(rmfield(chk.algs, ...

140 {'T'} ...

141 )); ...

142 casadi_struct2vec(sep_algs); ...
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143 casadi_struct2vec(rmfield(comp.algs,{})); ...

144 ];

145

146 % Differential equations

147 ode = [ ...

148 casadi_struct2vec(comp.odes); ...

149 ];

150

151 % Boundary conditions

152 s1 = {...

153 {'stream1','T'}, ...

154 {'stream2','T'}, ...

155 {'stream3','T'}, ...

156 {'stream5','T'}, ...

157 {'stream1','P'}, ...

158 {'stream2','P'}, ...

159 {'stream3','P'}, ...

160 {'stream5','P'}, ...

161 };

162

163 v1 = {...

164 3.5, ...

165 3.5, ...

166 3.5, ...

167 3.5, ...

168 1.0, ...

169 .9, ...

170 .9, ...

171 .9, ...

172 };

173

174 for i=1:length(s1)

175 cell = s1{i};

176 z = z_struct.(cell{1}).(cell{2});

177 z_struct.(cell{1}) = rmfield(z_struct.(cell{1}),cell{2});

178 z0_struct.(cell{1}) = rmfield(z0_struct.(cell{1}),cell{2});

179 alg = substitute(alg ,z,v1{i});

180 ode = substitute(ode ,z,v1{i});

181 end

182 end

.
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B.6 Open-loop Optimization

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %@Course : Master Thesis Spring 2018

3 %@Task : Open-loop optimization to obtain optimal control policy for

4 % : the subsea system.

5 %@input : none

6 %@output : none

7

8 %@author : Adriaen Verheyleweghen

9 %@modified : Julie Berge Ims

10 %@organization: Department of Chemical Engineering, NTNU, Norway

11 %@requires : MATLAB R2016a (not tested in other releases)

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13

14 % Provide path to Casadi installation

15 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

16 import casadi.*
17

18 % Creating a model for optimization

19 [dae_x,dae_z,dae_u,˜,dae_z0,dae_u0,dae_p,dae_ode,dae_alg] = ...

20 subsea_model(u_choke, u_comp);

21

22 % Size of time step

23 dt = 0.05;

24

25 % Vector with time steps

26 hlist = repmat(dt,1,N);

27

28 % Sum of all time steps

29 tf = sum(hlist);

30

31 %% Variable declarations

32

33 % Stochastic variables: GVF and degradation speed

34 dae_stoc.a = dae_p.a;

35 dae_stoc.GVF = dae_z.stream1.GVF;

36 dae_z.stream1 = rmfield(dae_z.stream1,'GVF');

37 dae_z0.stream1 = rmfield(dae_z0.stream1,'GVF');

38

39

40 % CVaR variables

41 CVaR = struct( 'diff',MX.sym('diff'), ...

42 'var',MX.sym('var'), ...

43 'cvar',MX.sym('cvar') ...

44 );

45

46 % Profit variable
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47 Profit = struct('profit',MX.sym('profit'));

48

49 % RUL variables

50 RUL = struct('lambda',MX.sym('lambda'), ...

51 'K',MX.sym('K') ...

52 );

53

54 % Scale parameter

55 la = 5.7;

56 lb = 1.2;

57 lc = 2.8;

58 lambda = @(h) la - lb*h - lc*sqrt(h) ;

59

60 % Shape parameter

61 ka = 4.55;

62 kb = 0.1;

63 kc = 0.1;

64 K = @(h) ka + kb*h + kc*(h)ˆ2 ;

65

66 % Weibull quantile function

67 var = @(lambda,k,alpha) (lambda*(-log(1-alpha))ˆ(1/k));

68

69 % Differential variables

70 dae_x.clock = struct('time',MX.sym('time'));

71

72 % ODE expressions

73 dae_ode=[dae_ode 1];

74

75 % Algebraic variables

76 dae_z.RUL = struct('lambda',RUL.lambda, ...

77 'K',RUL.K);

78

79 dae_z.CVaR = struct('var',CVaR.var, ...

80 'cvar',CVaR.cvar);

81

82 dae_z.Profit = struct('profit',Profit.profit);

83

84 % Algebraic initial conditions

85 dae_z0.RUL = struct('lambda',la, ...

86 'K',ka);

87

88 dae_z0.CVaR = struct('var',1, ...

89 'cvar',0.8);

90

91 dae_z0.Profit = struct('profit',0.08);

92

93 % Algebraic expressions

94 dae_alg = [dae_alg; ...
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95 dae_z.RUL.lambda - lambda(dae_x.compressor.h); ...

96 dae_z.RUL.K - K(dae_x.compressor.h); ...

97 dae_z.CVaR.var - var(lambda(dae_x.compressor.h), ...

98 K(dae_x.compressor.h),alpha); ...

99 dae_z.CVaR.cvar - cvar_func(lambda(dae_x.compressor.h), ...

100 K(dae_x.compressor.h),alpha); ...

101 dae_z.Profit.profit - (dae_z.stream4.mgdot)*(dt*(1+0.015)ˆ ...

102 (-60*dae_x.clock.time)) ...

103 ];

104

105 %% Optimal Control Problem set-up

106

107 % DAE-struct

108 dae = struct;

109 dae.x = casadi_struct2vec(dae_x);

110 dae.z = casadi_struct2vec(dae_z);

111 dae.p = casadi_struct2vec(dae_u);

112 dae.s = casadi_struct2vec(dae_stoc);

113 dae.ode = casadi_struct2vec(dae_ode);

114 dae.alg = dae_alg;

115

116 % Objective function

117 dae.quad = ( -dae_z.Profit.profit - dae_z.CVaR.cvar*0.025)';

118

119 %% Direct Collocation set-up

120

121 % Number of variables

122 nx = size(dae.x,1);

123 nu = size(dae.p,1);

124 nz = size(dae.z,1);

125 ns = size(dae.s,1);

126

127 % Degree of interpolating polynomial

128 d = 3;

129

130 % Obtain collocation points of specific order and scheme.

131 tau_root = casadi.collocation_points(d, 'radau');

132

133 % Obtain a function for collocation

134 collfun = simpleColl(dae,tau_root);

135 nlp = {};

136

137 %% Scenario-based collocation

138

139 % Three scenarios, based on "one" uncertain parameter, a

140 for scen=1:3

141

142 % Symbolic primitive with given dimensions nx
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143 X0s = MX.sym('X0',nx);

144

145 % Cell array [N+1,1] of empty matrices. Symbolic primitives

146 Xs = cell(N+1,1);

147 for i=1:N+1

148 Xs{i} = MX.sym(['X_' num2str(i)],nx);

149 end

150

151 % Cell array [N,1] of empty matrices.Symbolic primitives with for-loop

152 XCs = cell(N,1);

153 Zs = cell(N,1);

154 Us = cell(N,1);

155 Ss = cell(N,1);

156

157 for i=1:N

158 XCs{i} = MX.sym(['XC_' num2str(i)],nx,d);

159 Zs{i} = MX.sym(['Z_' num2str(i)],nz,d);

160 Us{i} = MX.sym(['U_' num2str(i)],nu,1);

161 Ss{i} = MX.sym(['S_' num2str(i)],ns,1);

162 end

163

164 V_block = struct();

165 V_block.X = Sparsity.dense(nx,1);

166 V_block.XC = Sparsity.dense(nx,d);

167 V_block.Z = Sparsity.dense(nz,d);

168 V_block.U = Sparsity.dense(nu,1);

169

170 % Bounds on states and constraints

171 lbx = {};

172 ubx = {};

173 lbg = {};

174 ubg = {};

175

176 % Objective function

177 f = 0;

178

179 % List of constraints

180 g = {};

181

182 % List of all decision variables (determines ordering)

183 V = {};

184 %% Define bounds

185

186 % Bounds at 0<t<tf

187 x_lb_k = casadi_vec(dae_x, -inf);

188 x_ub_k = casadi_vec(dae_x, inf);

189 u_lb_k = casadi_vec(dae_u, 0,'N',0.75,'Z',0);

190 u_ub_k = casadi_vec(dae_u, inf,'N',1.05,'Z',1);
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191 z_lb_k = casadi_vec(dae_z, -inf,'srg',0,'stw',0, ...

192 'stream4',{'P',1.5});

193 z_ub_k = casadi_vec(dae_z, inf);

194

195 % repeat for each collocation point

196 z_lb_k = repmat(z_lb_k',d)';

197 z_ub_k = repmat(z_ub_k',d)';

198

199 % Gather all bounds at 0<t<tf

200 lbx_k = {casadi_vec(V_block, 0,'X',x_lb_k,'U',u_lb_k,'Z',z_lb_k)};

201 ubx_k = {casadi_vec(V_block,inf,'X',x_ub_k,'U',u_ub_k,'Z',z_ub_k)};

202

203 % Bounds at t=tf

204 x_lb_tf = {x_lb_k};

205 x_ub_tf = {x_ub_k};

206

207 % Initial guess

208 guess = [];

209 x_guess = casadi_struct2vec(dae_x0);

210 z_guess = casadi_struct2vec(dae_z0);

211 u_guess = casadi_struct2vec(dae_u0);

212

213 for k=1:N

214

215 % Add decision variables xc: collocation points

216 V = [V {casadi_vec(V_block,'X',Xs{k},'XC',XCs{k}, ...

217 'Z',Zs{k},'U',Us{k})}];

218

219 % Vector with inital guess

220 guess =[guess;[repmat(x_guess,d+1,1);repmat(z_guess,d,1);u_guess]];

221

222 lbx = [lbx lbx_k];

223 ubx = [ubx ubx_k];

224

225 if k==1

226 tmp = {Xs{k}-X0s};

227 g = [g tmp];

228 lbg = [lbg {zeros(size(tmp{:}))}];

229 ubg = [ubg {zeros(size(tmp{:}))}];

230

231 % Enforce nonanticipativity

232 if scen==1

233 U1 = Us{1};

234 else

235 tmp = {Us{k}-U1};

236 g = [g tmp];

237 lbg = [lbg {zeros(size(tmp{:}))}];

238 ubg = [ubg {zeros(size(tmp{:}))}];
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239 end

240 end

241

242 % Obtain collocation expressions

243 coll_out = collfun.call({hlist(k),Xs{k},XCs{k},Zs{k},Us{k},Ss{k}});

244

245 tmp = coll_out(2);

246 g = [g tmp]; % System dynamics

247 lbg = [lbg {zeros(size(tmp{:}))}];

248 ubg = [ubg {zeros(size(tmp{:}))}];

249

250 tmp = coll_out(3);

251 g = [g tmp]; % Algebraic constraints

252 lbg = [lbg {zeros(size(tmp{:}))}];

253 ubg = [ubg {zeros(size(tmp{:}))}];

254

255 tmp = {Xs{k+1}-coll_out{1}};

256 g = [g tmp]; % Gap closing constraints

257 lbg = [lbg {zeros(size(tmp{:}))}];

258 ubg = [ubg {zeros(size(tmp{:}))}];

259

260 % Cost function

261 f = f + coll_out{4};

262 end

263

264 % Add final x to decision variables

265 V = [V , Xs(end)];

266 guess = [guess ; 1;1];

267

268 % Bounds for final t

269 lbx = [lbx x_lb_tf];

270 ubx = [ubx x_ub_tf];

271

272 %% Define the NLP

273 nlp{scen} = struct('x',vertcat(V{:}), ...

274 'f',f, ...

275 'g',vertcat(g{:}), ...

276 'p',vertcat(X0s,Ss{:}) ...

277 );

278 end

279

280 % Generate the full-space NLP by combining the individual scenario problems

281 nlp_full_space = nlp{1};

282 for i = 2:scen

283 nlp_full_space.x = horzcat(nlp_full_space.x,nlp{i}.x);

284 nlp_full_space.g = vertcat(nlp_full_space.g,nlp{i}.g);

285 nlp_full_space.p = vertcat(nlp_full_space.p,nlp{i}.p);

286 nlp_full_space.f = nlp_full_space.f + nlp{i}.f;
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287 end

288

289 nlpfun = Function('nlp',nlp_full_space,char('x','p'),char('f','g'));

290

291 opts = struct('warn_initial_bounds',false, ...

292 'gather_stats',true, ...

293 'print_time',false, ...

294 'ipopt',struct('linear_solver','mumps', ...

295 'max_iter',5E2, ...

296 'warm_start_init_point','yes', ...

297 'mu_init',1E-5, ...

298 'replace_bounds','yes', ...

299 'print_level',5, ...

300 'tol',1E-8) ...

301 );

302

303 % Creating nlp sovler for the nlp_full_space system with the options 'opts'

304 solver = nlpsol('solver','ipopt',nlp_full_space,opts);

305

306 % Scenario realizations

307 b1 = [scenparam(1),1];

308 b2 = [scenparam(2),1];

309 b3 = [scenparam(3) ,1];

310

311 % Scenarios

312 s11 = [b1;repmat(b1,N-1,1)]';

313 s22 = [b2;repmat(b2,N-1,1)]';

314 s33 = [b3;repmat(b3,N-1,1)]';

315

316 %% Solve the NLP

317

318 x0 = casadi_struct2vec(dae_x0);

319 x0_orig= repmat(guess(:),1,scen);

320

321 res = solver('x0',x0_orig, ...

322 'p',[full(x0);s11(:);full(x0);s22(:);full(x0);s33(:)], ...

323 'lbg',zeros(size(nlp_full_space.g)), ...

324 'ubg',zeros(size(nlp_full_space.g)), ...

325 'lbx',repmat(vertcat(lbx{:}),1,scen), ...

326 'ubx',repmat(vertcat(ubx{:}),1,scen) ...

327 );

328

329 %% Plotting

330

331 close all

332 figure('units','normalized','outerposition',[0 0 1 1])

333 hold on

334
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335 input_comp = [];

336 input_choke = [];

337 for i = 1:scen

338

339 % Plotting Variables

340 vars_Z = {'stream4.mgdot','RUL.K','RUL.lambda','Profit.profit',...

341 'CVaR.cvar','CVaR.var'...

342 };

343 vars_X = {'compressor.h'};

344 vars_U = {'compressor.N','choke.Z'};

345

346 dim = size(casadi_struct2vec(V_block));

347 tmp = DM(reshape(full(res.x),[res.x.size1(),scen]));

348 res_split = vertsplit(tmp,dim(1));

349

350 while true % Plotting

351

352 % number of plots

353 n_plots = length(vars_Z)+length(vars_X)+length(vars_U);

354 flr = floor(sqrt(n_plots));

355 cei = ceil(sqrt(n_plots));

356 if flr==sqrt(n_plots)

357 plot_dims = [flr,flr];

358 elseif flr*cei>=n_plots

359 plot_dims = [flr,cei];

360 else

361 plot_dims = [cei,cei];

362 end

363

364 counter = 1;

365

366 res_Z = {};

367 res_X = {};

368 res_XC = {};

369 res_U = {};

370

371 for r = res_split(1:end-1)

372 r = full(r{:});

373 r = r(:,i);

374 rs = casadi_vec2struct(V_block,r(:));

375 res_Z = [res_Z {rs.Z} ];

376 res_X = [res_X {rs.X} ];

377 res_XC = [res_XC {rs.XC}];

378 res_U = [res_U {rs.U} ];

379 end

380 res_Z = full([res_Z{:}])';

381 res_X = full([res_X{:}])';

382 res_XC = full([res_XC{:}])';
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383 res_U = full([res_U{:}])';

384

385 input_comp(i) = res_U(1,1);

386 input_choke(i) = res_U(1,2);

387 %% Plot Z

388 [nr,nc] = size(res_Z);

389 mat_Z = mat2cell(res_Z,[nr],ones(nc,1));

390 indices_Z = casadi_vec2struct(dae_z,1:nc);

391

392 t_z = [];

393 tmp = N*(cumsum([0 hlist(1:end-1)]));

394 for t=1:length(tmp); t_z =[t_z tmp(t)+tau_root*hlist(t)*N]; end

395 t_z = t_z'/N;

396

397 z_lb = full(z_lb_k(:,1));

398 z_ub = full(z_ub_k(:,1));

399 for j = 1:length(vars_Z)

400 subplot(plot_dims(1),plot_dims(2),counter)

401 counter = counter+1;

402 hold on

403 str = strsplit(vars_Z{j},'.');

404 index = full(indices_Z.(str{1}).(str{2}));

405 plot(t_z,ones(size(t_z)).*z_lb(index),'r--')

406 plot(t_z,ones(size(t_z)).*z_ub(index),'r--')

407 plot(t_z,mat_Z{index})

408 xlim([0,N*dt])

409 title(vars_Z(j))

410 xlabel('Time')

411 ylabel(str{2})

412 end

413 %% Plot X

414

415 [nr,nc] = size(res_XC);

416 mat_XC = mat2cell(res_XC,[nr],ones(nc,1));

417 indices_XC = casadi_vec2struct(dae_x,1:nc);

418

419 t_xc = [];

420 tmp = N*(cumsum([0 hlist(1:end-1)]));

421 for t=1:length(tmp); t_xc =[t_xc tmp(t)+tau_root*hlist(t)*N]; end

422 t_xc = t_xc'/N;

423

424 xc_lb = full(x_lb_k(:,1));

425 xc_ub = full(x_ub_k(:,1));

426 for i = 1:length(vars_X)

427 subplot(plot_dims(1),plot_dims(2),counter)

428 counter = counter+1;

429 hold on

430 str = strsplit(vars_X{i},'.');
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431 index = full(indices_XC.(str{1}).(str{2}));

432 plot(t_xc,ones(size(t_xc)).*xc_lb(index),'r--')

433 plot(t_xc,ones(size(t_xc)).*xc_ub(index),'r--')

434 plot(t_xc,mat_XC{index})

435 xlim([0,N*dt])

436 title(vars_X(i))

437 xlabel('Time')

438 ylabel(str{2})

439 end

440 %% Plot U

441 [nr,nc] = size(res_U);

442 mat_U = mat2cell(res_U,[nr],ones(nc,1));

443 indices_U = casadi_vec2struct(dae_u,1:nc);

444

445 t_u = N*(cumsum([0 hlist(1:end-1)]));

446 t_u = t_u'/N;

447

448 u_lb = full(u_lb_k(:,1));

449 u_ub = full(u_ub_k(:,1));

450 for i = 1:length(vars_U)

451 subplot(plot_dims(1),plot_dims(2),counter)

452 counter = counter+1;

453 hold on

454 str = strsplit(vars_U{i},'.');

455 index = full(indices_U.(str{1}).(str{2}));

456 plot(t_u,ones(size(t_u)).*u_lb(index),'r--')

457 plot(t_u,ones(size(t_u)).*u_ub(index),'r--')

458 stairs(t_u,mat_U{index})

459 xlim([0,N*dt])

460 title(vars_U(i))

461 xlabel('Time')

462 ylabel(str{2})

463 end

464 hold off

465 break

466 end

467 end

.
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B.7 Closed-loop Control

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %@Course : Master Thesis Spring 2018

3 %@Task : Closed-loop model predictive controller. Solves open-loop

4 % optimization problem periodically and adds random

5 % disturbance to the inputs

6 %@input : none

7 %@output : none

8

9 %@author : Julie Berge Ims

10 %@organization: Department of Chemical Engineering, NTNU, Norway

11 %@created : February 2018

12 %@requires : MATLAB R2016a (not tested in other releases)

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 clear

16 clc

17

18 % Provide path to Casadi installation

19 addpath('/Users/juliebergeims/downloads/casadi-matlabR2015a-v3.0.0')

20 import casadi.*
21

22 %% Parameterization of open-loop

23

24 % Initial values for the differential states

25 dae_x0 = struct('compressor',struct('h',0.01) ,...

26 'clock',struct('time',0.0));

27

28 % Initial process input

29 u_comp = 0.85; % Compressor speed [input]

30 u_choke = 0.565; % Choke opening [input]

31

32 % Number of time steps for prediction horizon

33 N = 20;

34

35 % CVaR parameters

36 alpha = 0.001; % Confidence level for risk

37

38 % Uncertain parameter realizations

39 scenparam = [0.9 1 1.1];

40 %% Closed-lopp simulation

41

42 run OL_main

43 %close all

44

45 % DAE-struct for integration

46 int_dae = struct('x', dae.x, ...
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47 'z', dae.z, ...

48 'p',[dae.p ; dae.s], ...

49 'ode', dae.ode, ...

50 'alg', dae.alg );

51

52 % Integrator using DAE-integrator "idas"

53 DAE_integrator = integrator('integrator', ...

54 'idas',int_dae, struct('t0',0,'tf',0.05));

55

56 % Integrating the DAE-struc

57 sol = DAE_integrator('x0', res_X(1,:)', ...

58 'z0', res_Z(1,:)', ...

59 'p', [res_U(1,:),scenparam(3) , 1]');

60

61 % Obtaining initial measured state(X) and first control input (U)

62 x_temp(1,:) = sol.xf.full()';

63 u_temp_comp(1,:) = input_comp(:);

64 u_temp_choke(1,:) = input_choke(:);

65

66 % Repeat process with shrinking horizon

67 for w = 2:1:20

68

69 % Using first control input from the OL opt

70 u_comp = res_U(1,1);

71 u_choke= res_U(1,2);

72

73 % Updating initial conditions

74 dae_x0.compressor.h = x_temp(w-1,1) + rand(1,1)*x_temp(w-1,1)/10;

75 dae_x0.clock.time = x_temp(w-1,2) + rand(1,1)*x_temp(w-1,2)/10;

76

77 % OL opt by decreasing the prediction horizon by on time step

78 N = N-1;

79 run OL_main

80 close all

81

82 % Integr. the DAE-struct

83 sol = DAE_integrator('x0',sol.xf.full(), ...

84 'z0',sol.zf.full(), ...

85 'p', [res_U(1,:),scenparam(3), 1]');

86

87 % Obtaining the CL states and inputs

88 x_temp(w,:) = sol.xf.full()';

89 u_temp_comp(w,:) = input_comp(:);

90 u_temp_choke(w,:) = input_choke(:);

91 end

.
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B.8 Conditional Value-at-Risk
1 function cvar_out = cvar_func(lambda,k,alpha )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Calculating Conditional Value-at-Risk at time t for lambda,

5 % k and alpha

6 %@input : scale parameter(lambda) and shape parameter (k) in the

7 % Weibull distribution, confidence level for risk (alpha)

8 %@output : value for Conditional Value-at-Risk

9

10 %@author : Julie Berge Ims

11 %@organization: Department of Chemical Engineering, NTNU, Norway

12 %@created : February 2018

13 %@requires : MATLAB R2016a (not tested in other releases)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % Weibull quantile function

16 quantile = @(lambda,k,alpha) (lambda*(-log(1-alpha))ˆ(1/k));

17

18 % VaR-variable declaration

19 var_out = 0;

20

21 % Step-size in integration

22 dy = 0.0001;

23

24 % Integrating VaR from 0.0 to alpha

25 for i = 0.00:dy:alpha

26 var_out = var_out + (quantile(lambda,k, i))*dy;

27 end

28

29 % Dividing the integral by alpha

30 cvar_out = var_out/alpha;

31

32 end

.
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B.9 CasADi Function for Collocation

1 function [G] = simpleColl(dae,tau_root)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3

4 %@Task : Function that generates a function for collocation

5 %@input : differential algebraic equations (dae), struct (tau_root)

6 %

7 %@output : collocation function (G)

8

9 %@author : Joris Gillis, Rien Quirynen, Joel Andersson,

10 % Sebastien Gros and Moritz Diehl

11 %@modified : Adriaen Verheyleweghen

12 %@organization: Faculty of Engineering, University of Frieburg, Germany

13 %@requires : MATLAB R2016a (not tested in other releases)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 import casadi.*
17

18 daefun = Function('fun',dae,char('x','z','p','s'),...

19 char('ode','alg','quad'));

20

21 % Degree of interpolating polynomial

22 tau_root = [0, tau_root];

23

24 d = length(tau_root)-1;

25

26 % Coefficients of the collocation equation

27 C = zeros(d+1,d+1);

28

29 % Coefficients of the continuity equation

30 D = zeros(d+1,1);

31

32 % Dimensionless time inside one control interval

33 tau = SX.sym('tau');

34

35 % For all collocation points

36 for j=1:d+1

37 % Construct Lagrange polynomials to get the polynomial basis at the

38 % collocation point

39 L = 1;

40 for r=1:d+1

41 if r ˜= j

42 L = L * (tau-tau_root(r))/(tau_root(j)-tau_root(r));

43 end

44 end

45 lfcn = Function('lfcn', {tau},{L});

46 out = lfcn.call({1.0});
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47

48 % Evaluate the polynomial at the final time to get the coefficients

49 % of the continuity equation

50 D(j) = full(out{1});

51

52 % Evaluate the time derivative of the polynomial at all collocation

53 % points to get the coefficients of the continuity equation

54 tfcn = lfcn.tangent();

55 for r=1:d+1

56 out = tfcn.call({tau_root(r)});

57 C(j,r) = full(out{1});

58 end

59 end

60

61 % Time step

62 h = MX.sym('h',1);

63

64 % State variable

65 CVx = MX.sym('x',dae.x.size1(),1);

66

67 % Helper state variables

68 CVCx = MX.sym('x',dae.x.size1(),d);

69

70 % Algebraic variables

71 CVz = MX.sym('z',dae.z.size1(),d);

72

73 % Fixed parameters (controls)

74 CVp = MX.sym('p',dae.p.size1());

75 CVs = MX.sym('s',dae.s.size1());

76

77 X = [CVx CVCx];

78

79 g_alg = {};

80 g_cont = {};

81

82 % For all collocation points

83 quad_k = 0;

84 for j=2:d+1

85

86 % Get an expression for the state derivative at the collocation point

87 xp_jk = 0;

88 for r=1:d+1

89 xp_jk = xp_jk + C(r,j)*X(:,r);

90 end

91 % Add collocation equations to the NLP

92 out = daefun.call({CVCx(:,j-1),CVz(:,j-1),CVp,CVs});

93 ode = out{1};

94 alg = out{2};
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95 quad = out{3};

96 quad_k = h*quad_k+quad;

97 g_cont = [g_cont {h*ode - xp_jk}];

98 g_alg = [g_alg {alg}];

99 end

100 % Get an expression for the state at the end of the finite element

101 xf_k = 0;

102 for r=1:d+1

103 xf_k = xf_k + D(r)*X(:,r);

104 end

105 G = Function('G',{h,CVx,CVCx,CVz,CVp,CVs},... % Inputs

106 {xf_k,vertcat(g_cont{:}),vertcat(g_alg{:}),quad_k}); % Outputs

107

108 end

.

XL



B.10 CasADi Struct

1 function [out] = casadi_struct(s,varargin)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function for creating a struct from a set of input

5 % arguments

6 %@input : input arguments (varargin), struct (s)

7 %

8 %@output : struct (out)

9

10 %@author : Joris Gillis, Rien Quirynen, Joel Andersson,

11 % Sebastien Gros and Moritz Diehl

12 %@modified : Adriaen Verheyleweghen

13 %@organization: Faculty of Engineering, University of Frieburg, Germany

14 %@requires : MATLAB R2016a (not tested in other releases)

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16

17 import casadi.*
18

19 out = struct;

20

21 origs = s;

22

23 if ischar(varargin{1})

24 default = 0;

25 else

26 default = varargin{1};

27 varargin = varargin(2:end);

28 end

29

30 tmp = {default,varargin{:}};

31

32 subs = {};

33

34 for i = fliplr(1:length(tmp)/2)

35 c = varargin{2*i};

36 if isa(c,'cell')

37 try

38 subs = {subs{:},varargin{2*i-1},s.(varargin{2*i-1}),c};

39 s = rmfield(s,varargin{2*i-1});

40 tmp = {tmp{1:2*i-1},tmp{2*(i+1):end}};

41 catch err

42 rethrow(err)

43 end

44 end

45 end

46
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47 for j = 1:length(subs)/3

48 arg = subs{3*j};

49 out.(subs{3*j-2}) = casadi_struct(subs{3*j-1},arg{:});

50 end

51

52 for k=fieldnames(s)'

53 k = k{1};

54 found = -1;

55 for l=1:length(varargin)/2

56 if strcmp(varargin{2*l-1},k)

57 found = l;

58 break;

59 end

60 end

61 if found>0

62 if isa(s.(k),'struct')

63 e = casadi_struct(s.(k),varargin{2*found:end});

64 else

65 e = varargin{2*found};

66 end

67 if isscalar(e)

68 dims = size(s.(k));

69 e = repmat(e,dims(1),dims(2));

70 end

71 dims = size(s.(k));

72 assert(size(e,1)==dims(1))

73 assert(size(e,2)==dims(2))

74 else

75 if isa(s.(k),'struct')

76 e = casadi_struct(s.(k),tmp{1:end});

77 else

78 dims = size(s.(k));

79 e = default*DM.ones(dims(1),dims(2));

80 end

81 end

82 out.(k) = e;

83 end

84 out = orderfields(out,origs);

85 end

.
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B.11 CasADi Vector
1 function [out] = casadi_vec(varargin)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function for creating a vector from a set of input

5 % arguments

6 %@input : input arguments (varargin)

7 %

8 %@output : vector (out)

9

10 %@author : Joris Gillis, Rien Quirynen, Joel Andersson,

11 % Sebastien Gros and Moritz Diehl

12 %@organization: Faculty of Engineering, University of Frieburg, Germany

13 %@requires : MATLAB R2016a (not tested in other releases)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 out = casadi_struct2vec(casadi_struct(varargin{:}));

16 end

.
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B.12 CasADi Struct to Vector
1 function [out] = casadi_struct2vec(s)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that converts a struct to a vector

5 %@input : struct (s)

6 %

7 %@output : vector (out)

8

9 %@author : Joris Gillis, Rien Quirynen, Joel Andersson,

10 % Sebastien Gros and Moritz Diehl

11 %@organization: Faculty of Engineering, University of Frieburg, Germany

12 %@requires : MATLAB R2016a (not tested in other releases)

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 flat = {};

16 if isstruct(s)

17 for f=fieldnames(s)'

18 flat = {flat{:} casadi_struct2vec(s.(f{1}))};

19 end

20 out = vertcat(flat{:});

21 elseif iscell(s)

22 for i=1:length(s)

23 flat = {flat{:} casadi_struct2vec(s{i})};

24 end

25 out = vertcat(flat{:});

26 else

27 try

28 out = vec(s);

29 catch

30 import casadi.*
31 out = vec(DM(s));

32 end

33 end

34 end

.
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B.13 CasADi Vector to Struct

1 function [out] = casadi_vec2struct(s,vec)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %@Course : Master Thesis Spring 2018

4 %@Task : Function that converts a vector to a struct

5 %@input : vector (vec), struct (s)

6 %

7 %@output : struct (out)

8

9 %@author : Joris Gillis, Rien Quirynen, Joel Andersson,

10 % Sebastien Gros and Moritz Diehl

11 %@modified : Adriaen Verheyleweghen

12 %@organization: Faculty of Engineering, University of Frieburg, Germany

13 %@requires : MATLAB R2016a (not tested in other releases)

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 import casadi.*
17 assert(isvector(vec))

18 try

19 vec.sparsity();

20 catch

21 vec = DM(vec);

22 end

23 flat = {};

24 if isstruct(s)

25 out = struct;

26 sizes = 0;

27 for f=fieldnames(s)'

28 dim = size(casadi_struct2vec(s.(f{1})));

29 sizes = [sizes,sizes(end)+dim(1)];

30 end

31 comps = vertsplit(vec,sizes);

32 i = 1;

33 for f=fieldnames(s)'

34 out.(f{1}) = casadi_vec2struct(s.(f{1}),comps{i});

35 i = i+1;

36 end

37 elseif iscell(s)

38 out = cell(size(s));

39 sizes = 0;

40 for i=1:length(s)

41 n = size(casadi_struct2vec_new(s{i}),1);

42 sizes = [sizes,sizes(end)+n];

43 end

44 comps = vertsplit(vec,sizes);

45 for i=1:length(s)

46 out{i} = casadi_vec2struct(s{i},comps{i});

XLV



47 end

48 else

49 out = reshape(vec,size(s));

50 end

51 end

.
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