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Abstract— We teach a real robot to grasp real fish, by training
a virtual robot exclusively in virtual reality. Our approach
implements robot imitation learning from a human supervisor
in virtual reality. A deep 3D convolutional neural network
computes grasps from a 3D occupancy grid obtained from depth
imaging at multiple viewpoints. In virtual reality, a human
supervisor can easily and intuitively demonstrate examples of
how to grasp an object, such as a fish. From a few dozen of these
demonstrations, we use domain randomization to generate a
large synthetic training data set consisting of 100 000 example
grasps of fish. Using this data set for training purposes, the
network is able to guide a real robot and gripper to grasp
real fish with good success rates. The newly proposed domain
randomization approach constitutes the first step in how to
efficiently perform robot imitation learning from a human
supervisor in virtual reality in a way that transfers well to
the real world.

I. INTRODUCTION

In robotics, robust grasping and manipulation of objects
is still a challenging task to automate, in particular for
biological, non-rigid and deformable objects such as fish.
Inspired by the ability of humans to perform such tasks,
we investigate how to efficiently transfer the knowledge of
a human to the robot, via a combination of 1) a virtual
reality (VR) interface for demonstrating the task, 2) domain
randomization over components of the task to generate a
large synthetic data set, and 3) deep learning on this large
data set. Our hypothesis is that through our approach, VR can
serve as an efficient medium for demonstrating complex tasks
to robots. A first step towards testing this hypothesis was pre-
sented in earlier work [16], where both training and testing
was done entirely in VR. In this paper we take another step,
testing this hypothesis, by demonstrating that a robot trained
entirely in virtual reality can grasp real fish. We describe
an approach where a human supervisor can easily teach a
robot how to grasp fish in a VR environment. Grasping
and picking fish from a box is an example of a challenging
grasping task involving a cluttered scene of multiple highly
deformable objects. In today’s fishing industry, many simple
and repetitive tasks are still performed by human workers
due to difficulties in automating handling of the fish. This
task is therefore ideal for demonstrating the capabilities of
our approach applied to relevant industrial problems.

An essential aspect of imitation learning, from a human
supervisor, is the system in which the human demonstrates
the task. This system should be intuitive and easy to use and
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additionally, the supervisor should not have to demonstrate
the task many times, which is often necessary when training
deep learning models. Therefore, we have developed a sys-
tem where the supervisor’s actions are not used directly to
train the robot, but rather used to generate large amounts of
synthetic training data through domain randomization over
relevant components of the grasping task. This enables us
to train a deep neural network (DNN) for grasp detection,
from scratch, using only a few dozen manually-demonstrated
example grasps.

Training of our system is done exclusively on synthetic
data, since this enables efficient development and testing of
our approach. Testing of the system is done on real data
and with a real robot and gripper. This succeeds in our
case, since domain randomization, over the possible poses
and dimensions of the virtual fish and the parameters of the
virtual 3D camera, ensures that a 3D CNN can perform well
on real data encountered during tests with real fish.

A. Related work

Robot grasping is an active ongoing research field. There
are several methodologies applicable to robot grasping based
on visual input, such as imitation learning and reinforcement
learning, based on real or synthetic data. Imitation learning
is a generic approach [1], [2], [3] in which a human or
algorithmic supervisor demonstrates a task, e.g. a grasping
action specified by a pose and gripper configuration, with a
corresponding state space consisting of visual information.
Based on a set of demonstrations, a learning algorithm, such
as support vector machines (SVM), regularized regression [4]
or artificial neural networks [5], [6], [7], [8], [9], [10], learns
to find or evaluate the mapping between the visual state and
the grasping action. In reinforcement learning (RL) there is
no supervisor to demonstrate how to perform the task, instead
there is a reinforcement signal provided to the learning
algorithm. Imitation learning has the advantage of efficiently
discovering state-action mappings that work reasonably, with
the disadvantage that this may require a large data set of
demonstration examples. Contrary to this, RL, e.g. using
artificial neural networks [11], has the disadvantages of
slow learning speed and difficulty of accurately defining
a suitable objective function for more complex tasks. The
advantages of RL algorithms are that they do not require a
human supervisor, and RL algorithms can potentially learn
to perform beyond the capabilities of a supervisor.

Synthetic data generation is a well-known and successful
approach to training deep learning systems [13], [14], prior to
applying them to real-world data. In particular, an approach
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Fig. 1. A robot is tasked with picking fish from a box. The robot has a
RealSense 3D camera (A) and gripper (B) mounted on its end effector. The
task is to pick fish from a box (C) and place them in a second box (D).

called domain randomization has been shown to enable
robust training on synthetic data that directly works on real-
world data without additional training [15]. Domain random-
ization involves randomizing over the relevant components of
a task to generate synthetic data that has enough variation to
generalize to real data. A novelty of our approach for domain
randomization is that it begins with an intuitive virtual reality
interface where a human supervisor can easily provide a
low or moderate number of demonstration examples. These
examples are then used in a domain randomization process
over the camera viewpoints, projector-camera occlusion, the
physical interactions of the fish and the box, and the pre-
viously demonstrated grasps of the human supervisor. This
enables us to generate the large data sets required for deep
learning, while including the intent of the human supervisor.
In principle, this is similar to the algorithmic supervisor
approach presented in [17]. A few differences between our

work and [17] are: 1) in our work the grasps are placed
by a human supervisor in VR, instead of an algorithmic
supervisor; 2) in our work an end-to-end 3D CNN directly
computes 6-DOF grasps from the input 3D occupancy grid,
whereas [17] uses a GQ-CNN to evaluate multiple randomly-
sampled and pre-aligned parallel-jaw grasps on depth images
and select the grasp with the highest quality.

Our previous work [16] applied 3D convolutional neural
networks (3D CNN) to robot grasping. Previously, 3D CNNs
have been successfully applied to e.g. 3D shape recognition
[4], [12]. Our main motivation in working with volumetric
occupancy grid representations of point clouds, and 3D
CNNs to analyze them, is to develop the foundation for
deep learning in robotics applications that are camera- and
viewpoint-agnostic. Hence the 3D CNN can work in an
occupancy grid that is constructed by integrating 3D informa-
tion obtained from multiple depth images, multiple cameras
and/or multiple viewpoints. Multiple viewpoints and cameras
can provide a more complete coverage of a scene. A single-
view depth image will have occluded regions, and moving
the depth camera to one or more other locations will provide
a better view of the occluded regions. Fusing these two views
into a single occupancy grid will provide a more complete
view. The advantage of the 3D CNN approach is thus that can
be invariant or agnostic to the number of views or the number
of cameras that generate the 3D data, and it can work on the
complete view, as long as domain randomization is done
over the types of views that are possible. Compared to our
previous work [16], we have added domain randomization
over the projector-camera offset, as well as coded an entirely
new implementation of the 3D CNN in TensorFlow [18].

Our main contribution is to show that our approach to
robot imitation learning from a human supervisor in VR
transfers well to the real world, with a low or moderate
number of demonstrations by the human supervisor. This
validates our previous work [16], which was done entirely
in VR.

II. SYSTEM AND TASK DESCRIPTION

Our experiments are carried out on a 6-DOF Denso VS
087 robot arm mounted on a steel platform. An overview of
the system can be seen in Fig. 1. The task is for a robot to
pick up small fish of the species Atlantic herring (Clupea
harengus) out of a box and place them in a second box, so
that each fish can be weighed and processed individually. In
this paper we focus on the first part of this task - grasping
and picking the fish out of the box and placing them in
the second box. A custom two-finger wormdrive gripper was
designed, with compliant 3D-printed finger tips. The gripper
consists of a single stepper motor attached to a 3D-printed
hand. A wormscrew is mounted on the stepper motor axle
and this drives two wormwheels - one for each finger. With
the exception of the stepper motor, the entire gripper is 3D
printed. Fig. 1 shows a closeup of the gripper and how the
fingers are compliant enough to conform to the shape of
small fish. The gripper is controlled by an Arduino, and has
an adjustable gripper opening.
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Fig. 2. The presented approach to robot imitation learning in VR, where a) the human supervisor provides a few example grasps by grasping fish from
the box, b) domain randomization is used to generate a large synthetic data set based on the few example grasps, c) the deep neural network is trained on
the large data set, and d) the grasp output from the trained deep neural network is used to control a gripper to grasp real fish.

An Intel RealSense SR300 depth camera is placed on the
robot end-effector. The robot moves to three different poses
and the camera acquires three depth images that are projected
into an occupancy grid. The occupancy grid is processed by
a 3D CNN implemented in TensorFlow. The output of the 3D
CNN is a grasp certainty for each location in a downsampled
3D grid, and corresponding 6-DOF grasps defined by grasp
placement position and orientation vectors for each location
in that grid. A grasp is selected at the 3D location with the
highest grasp certainty. The robot is commanded to perform
this grasp, by placing the gripper, closing it and picking up
the fish.

III. ROBOT LEARNING

We use a deep 3D CNN to estimate grasps from an
occupancy grid. We propose the use of VR to generate large
amounts of synthetic training data in order to be able to train
a deep learning model with many parameters. An illustration
of our approach is shown in Fig. 2.

A. VR interface for demonstrating the task

A VR interface was created where a user - in this case
a human supervisor - can enter a virtual environment and
demonstrate the task for the robot as shown in Fig. 2a. The
user has a controller in his hand, which in VR appears to him
as a gripper, similar to the gripper mounted on the robot end
effector. The environment was created with the Unity game
engine and the VR-equipment used the HTC-Vive head-
mounted display and hand-held motion controllers.

Fish are instantiated in mid-air and dropped using sim-
ulated physics that model the deformation and friction
characteristics of the pelagic fish species herring (Clupea
harengus). The fish physics were modelled using joints and
colliders in the Unity game engine. Each fish consists of
seven 3-DOF spring-damper revolute joints connecting eight
rigid collider segments that approximate the fish shape. The
coefficients of the spring-damper joints were hand-tuned
until they visually matched the pose and dynamics of real
fish recorded in various static and dynamic deformation
scenarios. For rendering a realistic fish mesh, a neutral-
pose fish mesh was rigged and weight-painted using the
colliders. The purpose of weight painting is to smoothly

deform the continuous neutral-pose fish mesh using a discrete
set of colliders as its ”skeleton”. Friction coefficients of each
collider were hand-tuned to visually match the sliding motion
of real wet fish. This relatively simple physics modelling was
complex enough to provide visually realistic images, while
simple enough to render tens of fish at interactive rates (90
Hz).

Simulated fish physics ensures that the fish land in natural
poses in a fish box placed in front of the robot. The task
of the human supervisor is to grasp the fish and move the
fish from this box to another box, using the gripper in his
hand (see Fig. 2a). In this way, the user gets the impression
that he is showing the robot how to perform the task, in an
easy and intuitive way. Since the user is told to grasp the
fish in a way that enables him to pick it up and place it in
a second box, he will naturally use a grasp that is suited for
that task. If e.g. the task had been a different one, such as
placing the fish in a narrow hole, the user would probably
grasp the fish differently. Hence, this is an effective way of
getting the user to demonstrate grasps that are suitable for
a given task. For each fish grasped by the user, the grasp is
logged with regards to its position and orientation relative
to the fish. An example of these logged grasps can be seen
in Fig. 5. This is the demonstration part of our imitation
learning approach. In traditional imitation learning, a large
number of demonstration examples are required. The number
of required examples scales with the number of parameters
in the model that is being taught. Models with very many
parameters, such as large neural networks, may require on
the order of tens of thousands of demonstrations in order to
adequately learn the task without overfitting to the training
data. For a user this is clearly too much work, and an
alternative approach is needed to generate a sufficiently large
and realistic training data set.

B. Generating large amounts of synthetic data by domain
randomization

Based on the logged grasps, we propose to use domain
randomization that includes information on the human su-
pervisor’s grasp intent, as a method for generating a large
training data set from a few demonstrations, with no further
human supervision. As in the previous section, the fish are
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Fig. 3. Two examples (top row and botom row) illustrating the domain randomization approach for generating a large data set, by a) dropping a random
number of fish in the box, using realistic fish physics, b) placing each of the logged grasps onto each fish, c) pruning the grasps based on collision
heuristics.
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Fig. 4. The architecture of the 3D CNN consists of stacked convolutional layers, with striding (instead of max pooling) used to reduce the output
resolution. The dense layers are swapped for 1× 1× 1 convolutions to enable inputs of varying sizes. The activation functions for the feature extraction
layers are rectified linear units, and in the last layer, l̂ has a sigmoid activation function and the rest have linear activations.

instantiated and dropped into the fish box, as shown in Fig.
3a. By randomizing over the number of fish, and the position
and orientation of each fish before dropping them into the
box, this provides domain randomization over the possible
ways in which fish can realistically be positioned relative to
each other in a box.

Instead of the human supervisor demonstrating the grasp
for each randomly generated box of fish, we instantiate all of
the previously logged grasps onto each of the fish in the box,
as shown in Fig. 3b. However, not all of the grasps are valid
for all of the fish, given their current pose and position in
the box (i.e. closeness to the walls etc.). Therefore, for every
fish, all of the logged grasps are automatically checked using

collision heuristics to see if they collide with the environment
or with the other objects in the scene in any way. The ones
that do not are kept and the rest are discarded, resulting in a
set of plausible grasps as shown in Fig. 3c. This three-step
approach provides domain randomization over the possible
ways a human supervisor would probably grasp the fish,
based on what know from the previously logged grasps.

An orthographically projected depth image is rendered of
the entire fish box and the list of valid grip vectors are
recorded along with the depth image. The field of view and
resolution of the virtual 3D camera is such that each pixel
in the orthographically projected depth image can be read as
an xyz-coordinate in millimeters given in camera coordinates



Fig. 5. The logged grasps after demonstration of two grasps in virtual
reality. As the fish bends and twists, the grasps follow, making them valid
for the fish regardless of pose.

(with an offset of imagewidth/height
2 in the xy-direction).

Some 3D cameras, such as the Intel RealSense SR300, work
by projecting a light pattern from a projector that is offset
from the actual camera. Because some of the scene is visible
to the camera but occluded to the projector, the result is
depth shadows, areas in the depth image with unknown depth
values. This effect is simulated with the virtual 3D camera as
well. The depth data we generate in simulation can therefore
be thought of as coming from a perfectly calibrated real
3D camera. To provide robust learning, we randomize the
position and orientation of the virtual 3D camera and the
offset between the projector and the camera, thus creating
variations in the amount of missing data in the depth images
due to the occlusion of the projector illumination. This is our
final component of domain randomization.

C. Neural network

The depth images are projected into a 3D occupancy grid,
and we use a 3D CNN to estimate grasps from a receptive
field volume in the occupancy grid, and split the problem up
into three sub-problems

• Detecting probable grasp locations
• Estimating the precise grip point
• Estimating the orientation of the gripper
The architecture of the network is shown in Fig. 4. For a

volume of size 31× 31× 31, the output is a vector

ŷ =
[
l̂ p̂ d̂1 d̂2

]
, (1)

where l̂ ∈ [0, 1] is a label that estimates the certainty that the
input volume contains a valid grasp, p̂ estimates the position
of a grasp within the input volume, d̂1 and d̂2 estimate the
orientation of the grasp.

The network is fully convolutional and has sliding dense
layers, meaning that the dimensions of the output from the
network is dependent on the dimensions of the input volume.
For larger inputs, the result is a grasp detector, capable of
detecting multiple grasps within the input volume.

The predictions for the three sub-problems are output from
the same network and trained jointly because of the high

Fig. 6. The orientation of the gripper is defined by two vectors d1 (red)
and d2 (blue). The position p is at the intersection of these two vectors.

dependence between the different objectives. The total cost
for training example i is given by

J (i) = J
(i)
C + l(i)(0.1 · J (i)

O + 0.1 · J (i)
P ), (2)

where J
(i)
C is the classification cost, J

(i)
O the orientation

estimation cost, J
(i)
P the position estimation cost, l(i) is

the true label for training example i. Note that for false
examples, no updates are done to the position and orientation
estimators. For classification of valid grasps, the binary cross
entropy function

J
(i)
C = −l(i) log(l̂(i)) + (1− l(i)) log(1− l̂(i)) (3)

is used, and for regression on the precise grasp point p(i)

within the given volume we use the squared error cost
function

J
(i)
P =

1

2
||p̂(i) − p(i)||2. (4)

The orientation of the gripper is defined unambiguously
with two three dimensional vectors, each describing a direc-
tion in 3D-space (see Fig. 6). The total orientation cost for
the N = 2 orientation vectors is given by

J
(i)
O =

N∑
k=1

1

2
||d̂(i)

k − d
(i)
k ||

2, (5)

where dk
(i) and d̂

(i)
k for k ∈ 1, 2 respectively denote the

true and estimated orientation vectors for training example
i.

D. Preparing data for training

During training, the input to the network is a receptive
field volume of size 31 × 31 × 31 and the ground truth
grasp certainty l(i) is either 1 or 0 (i.e. the volume does
or does not contain a valid grasp). Training examples with
true labels are simply created by cropping volumes of the
synthetically created depth images centered around one of
the valid grasp points for that image. The crop is offset
randomly from the middle by some amount in order to
create training vectors for the grip point estimator as well.
In our experiments we generate false training examples (i.e.
areas with a low probability of containing a grasp), simply
by cropping random volumes of the occupancy grid and



Fig. 7. Examples of grasp vectors placed by the 3D CNN in the occupancy grid of synthetic (left) and real (right) data.
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Fig. 8. Examples of predicted grasps on synthetic data, showing the
contents of the receptive field and the predicted grasp vectors.

labelling them as false examples. Because the volumes that
contain valid grasp are vastly outnumbered by the volumes
that do not, the result is a false-data set with mostly true,
but also some false, negatives.

IV. EXPERIMENTS AND RESULTS

A. Generating synthetic data

Domain randomization was used to prepare the synthetic
data set. In our experiments, 35 grasps were shown in

Fig. 9. Examples showing grasping of real fish.

VR. With these grasps, 3334 different random scenes were
generated, each with a random number of fish between 1
and 25. For each of these scenes, 3 depth images were
generated by randomly selecting a viewpoint and projector-
camera offset. The result of this is more than 10000 synthetic
depth images of fish boxes containing between 1 and 25 fish.
From these depth images, 100000 examples were cropped
where 50% of the data set did not contain a grasp.

B. Training the 3D CNN

The data was split into a training set of 100000 examples
and a validation set of 4000 examples. The 3D CNN was
trained with the Adam [19] optimizer on the training set.
Early stopping was used to stop training before the cost
function started increasing on the validation set. After a
few hours the training was stopped, and the 3D CNN was
tested on some synthetic data and visualized to inspect the
outputs of the 3D CNN, before proceeding to real-world
tests. The 3D CNN takes as input an occupancy grid and
outputs grasp certainties and grasps for the entire volume of
the occupancy grid. Examples of a full synthetic occupancy
grid with predicted grasps is shown in Fig. 7 (left), and
examples of two receptive fields with predictions can be seen
in Fig. 8.

C. Experimental protocol

The 3D CNN was evaluated in an experiment with real
fish. The setup included the robot with a box in front of
it, where fish are placed. The fish box also contains some
water. The robot is tasked with picking fish, one at a time,
from that box and placing them into a second box. This
setup is shown in Fig. 1. The goal of the experiment was to
measure the grasping success rate and failure rate, in picking
up the fish from the first box and placing it into the second
box. We also wanted to determine the types of failures. The
experimental protocol was as follows:

1) Place a box of 25 fish in front of the robot.
2) Scan the box and compute the occupancy grid.
3) Detect grasps for the entire occupancy grid and select

the most certain grasp.
4) Attempt the grasp.



5) If successful grasp, goto point 2.
6) If unsuccessful, log the failure type and randomize box:

a) Remove the box from in front of the robot.
b) Pour contents of the box into a second box.
c) Pour contents of the second box back into the

first box.
d) Place the box back in front of the robot.
e) Goto point 2.

The grasping was continued until the box was empty.

D. Failure types

A grasp was judged as a success if a fish was successfully
moved from one box to another. If the robot failed to do so
the grasp was judged as a failure. The two main reasons for
failure were bad grasps and collisions. A failure was logged
in the bad grasps category if:

1) The robot failed to pick up the fish.
2) The fish was dropped during transfer to the second

box.
Collisions were logged in three separate subcategories:

1) Gripper collisions within the 3D CNN’s receptive field.
2) Gripper collisions on approach to an otherwise valid

grasp.
3) Robot and camera collisions.

The category ”NN failures” in Table I excludes the failures
from the second and third collision failure types. These
failures should not be credited to the 3D CNN because the
conditions for success are unobservable for the neural net-
work. Additionally failed grasps where the highest predicted
grasp certainty was less than 0.50 were not included in ’NN
failures’.

E. Real-world test results

Example grasps can be seen in Fig. 9, showing how the
gripper approaches the grasp point, places the grasp and
begins picking up the fish. Fig. 7 (right) shows an occupancy
grid computed during the real-world tests.

The experimental protocol was performed on a total of
seven boxes, and the successes and failures were catego-
rized. The results are summarized quantitatively in Table I.
Referring to that table, we see successes and failures of the
grasping task, as well as the success and failures attributed
to the neural network (NN). There are two boxes that deviate
significantly from the others. Box 2 contained fish that were
not very fresh, resulting in an oily film on the fish and a very
greasy box after repeated randomization of it. This affected
the depth imaging and resulted in more slippery and soft fish
that were difficult to grasp. The average grasp certainty l̂ is
significantly lower for box two, suggesting the quality of the
imaging was affected by the oily film. During the experiment
on box 3, the gripper failed after 19 grasp attempts and a
replacement part had to be 3D printed, and the experiments
continued the next day.

The overall success rate was 74 %, and this increased to
80 % when excluding failures that could not be attributed to
the neural network. On average the successful grasps had a

TABLE I
GRASPING RESULTS ON REAL FISH

Success NN NN Avg.
Box (%) Success Failure success (%) failure l̂

1 71 % 25 10 78 % 7 1.00
2 57 % 25 19 71 % 10 0.84
3 74 % 14 5 74 % 5 1.00
4 86 % 25 4 86 % 4 1.00
5 81 % 25 6 83 % 5 0.99
6 83 % 25 5 96 % 1 0.99
7 76 % 25 8 76 % 8 1.00

All 74 % 164 57 80 % 40 0.97

higher predicted grasp certainty than the unsuccessful ones,
0.98 and 0.92 respectively. This suggests that a threshold on
grasp certainty values could yield better results by minimiz-
ing failed grasp attempts.

V. DISCUSSION AND FUTURE WORK

The results of our work, suggest that our approach to
domain randomization in virtual reality is an efficient method
of transferring knowledge to a robot. Based on only a
few demonstration examples, a sufficiently large and diverse
synthetic data set was generated that was capable of training
a large 3D convolutional neural network. The real-world
experiments showed an overall grasping success rate of 74 %,
which increases to 80 % when considering only the failures
that could be attributed to the neural network. The task of
grasping slippery fish, with a narrow elastomer gripper, is
very unforgiving with respect to grasp placement errors. If
the grasp is placed with a significant offset, in any direction,
from fish’s center of gravity, the probability of the fish sliding
or dropping out of the gripper increases. Therefore the task
requires precise grasp placement. To achieve this at greater
than 80 % success rate, our conclusion is that the receptive
field size will have to be increased. Increasing the receptive
field size will enable the neural network to observe more
of the fish and its pose and position relative to the box and
other fish. These factors can reduce collisions and improve
grasp placement accuracy. This results in a larger 3D CNN.
For example, increasing the receptive field from 31×31×31
to 63 × 63 × 63 will result in an eightfold increase in the
number of parameters in the neural network, and a similar
increase in training time and the required amount of training
data. Considering the limited observations that can be made
within a small receptive field (see Fig. 8) it is understandable
that an larger receptive field may improve the ability of the
neural network to estimate accurate grasp placements. For
this reason, our future work will be focused on increasing
the receptive field size. We will also adjust the dimensions
of the gripper used in the domain randomization, so that it
better matches the dimensions of the actual end-effector and
robot gripper. We expect that this will reduce the number of
errors attributed to collisions with the box. Other avenues of
future work, include learning sequences of actions, such as
patterned packing (i.e. packing fish in a box according to a
predefined number of layers and orientation of the fish in



each layer), without re-grasping the fish after picking it out
of the first box.

Our hypothesis from the onset is that through our ap-
proach, VR can serve as a efficient medium for demon-
strating complex tasks to robots. A step towards testing
this hypothesis was presented in this paper, and the results
are promising enough to maintain our hypothesis. One may
question whether the presented approach is unnecessarily
complex for picking fish, and that we should have compared
it to a baseline, such as antipodal grasp sampling with
automated grasp placement. Investigating this was outside
the scope of this paper, since our focus was on testing our
hypothesis as a step towards more challenging applications
of our approach.

Beyond our application to grasping and handling fish, we
will also expand the domain randomization methodology and
neural network architecture presented to the more generic
problem of grasping and handling multiple types of objects.
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