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The wake behind a quarter-of-ring concave curved cylinder is investigated in this paper
by means of direct numerical simulations. The plane of curvature is aligned with the
uniform incoming flow. We have appended straight extensions to both ends of the curved
part of the cylinder, such that free ends are eliminated from the simulations. The effect
of the vertical extension, i.e., the straight extension with its axis normal to the inflow, is
carefully studied and turns out to be significant. The results from several different Reynolds
numbers (Re = 100–500) are presented, from which a clear picture of the wake transition
behind this configuration could be sketched. The concave curved cylinder wake consists of
different flow regimes along the span. Oblique shedding, vortex dislocations, and various
shedding frequencies are captured in different flow regimes. At Re � 300, the flow regimes
change abruptly, but at Re = 400 and 500, the changes are continuous, so the boundaries
between them are difficult to observe. A frequency band, instead of one single dominating
frequency, manifests itself in the three-dimensional (3D) energy spectrum.
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I. INTRODUCTION

A. The curved cylinder wake

As a commonly encountered configuration in many engineering applications, a curved cylinder is
specially favored by the engineers in the marine and offshore community, where we have catenary
risers hanging in the sea, pipelines laying on the seabed bended in all directions, anchor lines,
etc. Most of these examples are from underwater installations, under which context the dynamics
of the curved cylinder structures are heavily affected by the currents in the ocean, generating
complex wakes which apparently need special considerations in the design phase. However, our
understanding of the curved cylinder wake is still limited, mostly due to the complexity of the flow.

Unlike the well-addressed straight circular cylinder wake, to define a curved cylinder configura-
tion is more complicated. In addition to the cylinder diameter and fluid-cylinder relative speed, the
radius of curvature and the flow direction also become dominating control parameters. As reviewed
in Ref. [1], the early research on the curved cylinder wake mostly considered the flow normal to the
plane of curvature; see, e.g., Ref. [2].

References [3,4] were among the first to investigate the curved cylinder wake when the incoming
flow direction is in the plane of curvature. Reference [4] was probably the first that comprehensively
compared the wake of two different curved cylinder configurations with the flow in the plane
of curvature. The two configurations were referred to as convex and concave curved cylinder,
respectively. A configuration is called convex when the flow is towards the outer face of the curved
cylinder, while the concave configuration has the opposite flow direction.

Reference [4] showed the distinctly different features between the convex and concave curved
cylinder wakes at Re = 100 and 500. In the convex case, the vortex shedding is slightly curved
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following the curved span, while in the concave curved cylinder wake, the vortex shedding is heavily
suppressed by the axial flow at the leeward side. Reference [1] investigated the convex curved
cylinder configuration and for the first time reported the turbulent wake behind it. The concave
curved cylinder wake is, on the other hand, more complex, and only more recently have researchers
described this wake in detail.

Reference [5] reported a series of experiments of two concave curved cylinders with different
curvatures at Reynolds numbers lower than 916 and carefully studied the wakes behind them. While
they kept the incoming flow towards the inner face of the curved cylinder, different inflow angles
were considered. In their work, they concluded that the concave curved cylinder wake has distinctly
different flow regimes. Regime 1 is the nonshedding regime dominated by a counter-rotating vortex
pair. Regime 2 has oblique shedding and a low dominating frequency. Regime 3 is the normal vortex
shedding regime with a higher dominating frequency, while regime 4 is another nonshedding regime
with streamwise vortices. Similar flow regimes were previously proposed for the wake behind an
inclined straight cylinder in Ref. [6]. The oblique shedding is also known from straight cylinder
wakes. It is caused by end effects (3D effect) in experiments, and the frequency of the oblique shed-
ding is directly related to the oblique angle [7]. When oblique shedding happens, the 3D instability
of the cylinder wake, i.e., the well-known mode A and mode B, will be postponed [8]. The oblique
shedding in a concave curved cylinder wake is otherwise caused by the strong axial flow along the
curved span. To what extent this axial flow affects the overall wake has not been studied before.

Oblique and cellular vortex shedding in wakes behind straight cylinders with a spanwise nonuni-
formity has been extensively studied; see e.g., Ref. [9] and references therein. The two most promi-
nent configurations are (1) a uniform circular cylinder in shear flow [10] and (2) a tapered cylinder
in uniform flow [11]. One can postulate an analogy between these two configurations and the wake
behind a curved cylinder by assuming the shedding frequency to be given as f = St U0 sin θ/D.
The shedding frequency varies along the span of the cylinder if either (1) the incoming velocity
U0 or (2) the diameter D or (3) the angle θ between the inflow and the cylinder axis (see Fig. 1)
varies along the span. The envisaged frequency variation may lead to oblique and/or cellular vortex
shedding. The analogy between variable U0 and variable D was addressed in Ref. [9], whereas the
hypothesized analogy also with variable θ , i.e., a curved cylinder, has not been examined so far.

Aside from the wake studies, there are also some experimental studies focused on free-oscillating
curved cylinders, which is more related to vortex-induced vibration (VIV) problems. Since VIV is
out of the scope of the present study, interested readers are directed to Refs. [12–14] and the relevant
references therein.
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FIG. 1. (a) Three-dimensional computational domain for the concave cylinder configuration. Notice the
domain is not to scale. (b) Projection sketch of the geometry in the symmetry plane, the (x, z) plane at y/D = 0.
The origin of the configuration is marked as O.
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B. Computational issues

Differently from the experimental study [5], where free ends (and free surface) show up, the
previous numerical studies all try to avoid free ends in the simulations and accordingly have special
considerations of the boundary conditions. Therefore, straight extensions are usually used in the
numerical studies. Depending on their axial directions, we refer to them as the vertical and
horizontal extension, respectively. Some numerical aspects for curved cylinder wake simulations
have been addressed in earlier studies, for both convex and concave configurations.

The horizontal extension has its span aligned with the incoming flow and is adopted to get
rid of the free ends in the computational domain. Therefore, a horizontal extension is normally
extended all the way to the outlet (for convex configuration) or the inlet (for concave configuration)
of the computational domain (see the examples in Refs. [15,16], respectively). In a convex curved
cylinder simulation, the length of the horizontal extension Lh is simply determined by the size of
the computational domain. In a concave curved cylinder wake, however, we also need to consider
the interaction between the horizontal extension and the inlet boundary. The influence of Lh for a
concave configuration was carefully studied in Ref. [16], in which the authors suggested Lh = 10D

to be a minimum choice.
The vertical extension has its span normal to the incoming flow, and it has been used to reduce

the influence of the free-slip boundary at the upper end of the configuration. Reference [4] first
considered this extension and used a 6D-long vertical extension, i.e., Lv = 6D. Reference [15]
was a careful study of the length effects of the vertical extension for a convex curved cylinder.
However, the length effects of the vertical extension for a concave curved cylinder wake has never
been addressed before.

In addition to the numerical considerations, we should also keep in mind that straight extensions
are relevant and important in real-life engineering applications. The curved cylinder part rarely
appears isolated in an installation. No matter whether in a hanging riser or in a pipeline system,
the curved part is usually connected with straight extensions. Therefore, to treat the curved cylinder
together with its straight extensions as one object also offers more practical information for the
real-life configurations. For this reason, we first aim to carefully study the length effect of the vertical
extension in the present study, by means of direct numerical simulations. Second, we will investigate
the wake transition of a concave curved cylinder as the Reynolds number increases.

II. FLOW PROBLEM AND COMPUTATIONAL ASPECTS

A. Flow configuration

We consider a quarter-of-ring curved cylinder whose diameter is D, and the radius of the ring
(curvature) is R = 12.5D. The geometry is adopted from the previous study [4]. The concave
configuration will be studied, i.e., the free-stream is directed towards the inner face of the ring.
The flow configuration defined in the present study is shown in Fig. 1(a), while the geometry in the
symmetry plane is depicted in Fig. 1(b). The Reynolds number is defined based on the free-stream
velocity U0 and cylinder diameter D, i.e., Re = U0D/υ, where υ is the kinematic fluid viscosity.
In this study, we investigate the wake behind this configuration for Reynolds numbers ranging from
Re = 100 to 500.

We hereby define the streamwise direction as the x direction, crossflow direction as the y

direction, and the vertical direction as the z direction. The origin O is located at the center of
the curvature, as shown in Fig. 1. The computational domain has dimensions of Lx , Ly , and
Lz in the respective directions. The boundary conditions defined in the simulations are listed
below:

Inlet boundary: uniform free stream, i.e., ui = (u, v,w) = (U0, 0, 0)

Outlet boundary: Neumann boundary conditions for the velocity components (∂u/∂x = ∂v/∂x =
∂w/∂x = 0) and zero pressure (p = 0)
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Two vertical side boundaries normal to the y direction: free-slip boundaries, i.e., v = 0, and
∂u/∂y = ∂w/∂y = 0

Two horizontal side boundaries normal to the z direction: free-slip boundaries, i.e., w = 0, and
∂u/∂z = ∂v/∂z = 0

The surface of the cylinder is treated as a no-slip and impermeable wall.

As depicted in Fig. 1, straight extensions were appended to the two ends of the quarter-ring,
as already mentioned in the Introduction. The horizontal extension length Lh = 10D, as suggested
in Ref. [16] for the same configuration, is fixed for all simulations. The vertical extension length
Lv , however, will be given different values, in order to study its effect on the wake. A list of the
parameters of all the DNS simulations in this study is presented in Table I. It is noteworthy that,
unlike Refs. [4,16], a boundary layer profile around the cylinder cross section at the inlet boundary
is not prescribed in the present study. Because we have examined, through a test case, that an inflow
boundary layer around the cylinder at the inlet has a negligible influence on the flow when the
horizontal extension is 10D long.

B. Numerical methods

In our DNS study, the time-dependent full Navier-Stokes equations for incompressible fluid are
directly solved:

∂ui

∂xi

= 0 (1)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ υ
∂2ui

∂xj ∂xj

(2)

A well-verified second-order finite volume DNS/LES code MGLET [17] was utilized to conduct
all the simulations. In MGLET, Eqs. (1) and (2) are discretized on 3D staggered Cartesian grids.

TABLE I. Detailed information of all simulations.

Vertical Total number
Min grid extension Domain size of grid points

Purpose Case Re size (�/D) length (Lv/D) (Lx/D × Ly/D × Lz/D) (million)

Grid GI-coarse 500 0.03 18 46.08 × 34.56 × 57.6 110
independence GI-medium 500 0.02 18 51.2 × 38.4 × 51.2 221
study GI-fine 500 0.015 18 46.08 × 34.56 × 57.6 407
(GI series) GI-fine2 500 0.0125 18 56.0 × 33.6 × 56.0 1040

GI-400m 400 0.02 24 51.2 × 38.4 × 51.2 257
GI-400f 400 0.015 24 46.08 × 34.56 × 57.6 460

Vertical VE-0D 200 0.02 0 51.2 × 38.4 × 25.6 109
extension VE-6D 200 0.02 6 51.2 × 38.4 × 38.4 146
study VE-12D 200 0.02 12 51.2 × 38.4 × 38.4 182
(VE series) VE-18D 200 0.02 18 51.2 × 38.4 × 51.2 221

VE-21D 200 0.02 21 51.2 × 38.4 × 51.2 239
VE-24D 200 0.02 24 51.2 × 38.4 × 51.2 257

Wake study RE-100 100 0.02 24 51.2 × 38.4 × 51.2 257
(Re series) RE-200 200 0.02 24 51.2 × 38.4 × 51.2 257

RE-300 300 0.02 24 51.2 × 38.4 × 51.2 257
RE-400 400 0.02 24 51.2 × 38.4 × 51.2 257
RE-500 500 0.015 24 48.0 × 38.4 × 57.6 637
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FIG. 2. An example (case VE-12D) of the multilevel grids. The slice of the grid box distribution in the
symmetry plane, i.e., the (x, z) plane at y/D = 0, is shown. Each square represents a 3D grid box, while each
grid box, regardless of its size, contains the same amount (N × N × N ) of grid cells. Therefore, the square
size also indicates the different levels of grid resolution. One can find five levels of grids, among which the first
four levels are indicated with numbers.

The discretized equations are integrated in time with Williamson’s third-order Runge-Kutta scheme
[18], while pressure corrections are achieved by Stone’s strongly implicit procedure (SIP) [19]. The
representation of the cylindrical geometry inside the Cartesian grid is accomplished by an immersed
boundary method (IBM). The details of this IBM and its validation can be found in Ref. [20]. The
same code has recently been used for DNS of wake flow with the same geometry [1,16].

A local grid refinement method [21] is utilized in the gridding process of all the computational
cases listed in Table I. The mesh is constructed by cubic Cartesian grid boxes, in each of which
N × N × N Cartesian grid cells are uniformly distributed. In the interesting regions (such as regions
close to the geometry, and where complex flow phenomena take place), the grid boxes are locally
refined by splitting each of them further into eight child boxes. Each child box holds the same
amount of uniformly distributed grid cells (N × N × N ) as the grid box before refinement (parent
box). In other words, the grid resolution on a child level is two times finer than that on the parent
level. In the cases listed in Table I, depending on the different minimum grid size �, a mesh may
have four to six levels of grids. Figure 2 gives an impression of the multigrid hierarchy by showing
the grid box distributions in the symmetry plane.

It is noteworthy that, due to the use of multilevel grids, the computational domain size must
be adjusted to an integer number times the size of the coarsest grid box (decided by the grid size
in the coarsest level and N ) and therefore may not be an integer. In Table I, one may also notice
the identical Lz for cases VE-18D, VE-21D, and VE-24D, despite the different vertical extension
lengths. This is because even in case VE-24D, the distance between the lower edge of the cylinder
and the bottom boundary layer is 24.2D and already larger than in earlier studies [1,16]. Therefore,
we claim that the blockage effect is negligibly small.
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TABLE II. Force coefficients for grid independence study. Note that the four first columns are for simula-
tions at Re = 500 whereas the two last columns are for simulations at Re = 400. Numerical specifications are
provided in Table I.

Cases GI-coarse GI-medium GI-fine GI-fine2 GI-400m GI-400f

CFx-m 0.901 0.887 0.884 0.884 0.945 0.941
CFy-rms 0.0330 0.0311 0.0306 0.0305 0.0452 0.0447

C. Grid refinement study

As listed in Table I, we choose the largest Reynolds number considered in this study, i.e., Re =
500, for the grid independence test. Four different meshes were generated: GI-coarse, GI-medium,
GI-fine, and GI-fine2. The vertical extension Lv = 18D was fixed in the grid independence test, the
reason for this choice will be further discussed in the next section. Here we compare the results from
the four different meshes. Each of the four cases has been run for at least 900 time units (900D/U0),
in order to let the flow develop properly.

Table II lists the time-averaged drag coefficient (CFx-m) and the root mean square of the side
force coefficient (CFy-rms ) obtained from the four simulations. Note that the time-averaged side
force is zero in all simulations. The drag force and side force are captured for the whole geometry,
i.e., including both vertical and horizontal extensions, and the coefficients were normalized by the
inflow velocity and projected area (Sp = 31D2 for Re = 500 grid test; Sp = 37D2 for Re = 400
grid test), as

CF = F/0.5 ρ U 2
0 Sp. (3)

From the data in Table II, we notice that except for case GI-coarse, the other three cases all
produce very similar results both for CFx-m and CFy-rms , which strongly indicate that the last three
meshes for Re = 500 produce very similar solutions of the wake flow. In Fig. 3(a) we plot the mean
axial velocity along a concentric arc of the curved part of the cylinder in the symmetry plane, 1D

from the leeward face of the cylinder. The location of this concentric arc is shown in Fig. 3(b). Since
this concentric arc is located close to the geometry, the local tangential velocity represents the axial
flow and is calculated based on the time-averaged streamwise velocity 〈u〉 and vertical velocity 〈w〉,
as also sketched in Fig. 3(b). The abscissa is measured by the angle θ , defined in Fig. 3(b). We
would like to mention here, that the time-averaged cross-flow velocity 〈v〉 is zero everywhere in the
symmetry plane, which is in agreement with the zero mean side force mentioned above. Moreover,
the axial velocity uax slightly exceeds U0 as θ → 0◦ in Fig. 3. This indicates a modest blockage
effect even though the distance between the horizontal part of the cylinder and the free-slip boundary
at the bottom of the computational domain exceeds 20D. However, the <2% blockage is negligibly
small for all practical purposes. On the other hand, the substantial uax as θ → 90◦ reflects a nonzero
vertical velocity, which is typical for oblique vortex shedding, as discussed in Refs. [9,10].

In Fig. 3(a) we observe that the four velocity distributions from the grid studies show the same
trends. Only when it comes to the end, i.e., at the interface of the curved part of the cylinder and the
vertical extension, can we see different trends. Similar as what was presented in Table II, the GI-
coarse case shows the largest deviation from the other three cases, indicating that the coarsest mesh
is not sufficiently fine to give reliable results. Aside from that, the distributions for GI-medium, GI-
fine, and GI-fine2 show good agreements with each other. We could barely observe any differences
between the results from GI-fine and GI-fine2.

The data in Table II shows that the computed force coefficients for the GI-fine and GI-fine2
meshes are accurate to within 2%, and the axial velocity variations in Fig. 3 are indistinguishable.
However, for a DNS simulation, a small drop in the minimum grid size � leads to large increase
in the total number of grid points. For instance, the total number of grid points in the GI-fine2 case

094804-6



WAKE BEHIND A CONCAVE CURVED CYLINDER

uax/U0

(a)

(b)

u
w uax

0o 10o 20o 30o 40o 50o 60o 70o 80o 90o

θ

θ

FIG. 3. (a) The mean axial velocity uax/U0 plotted along a concentric arc of the curved cylinder whose
radius is 14D, i.e., 1D behind the leeward face of the curved cylinder. Results from cases GI-coarse, GI-
medium, GI-fine, and GI-fine2 are plotted. (b) The curved dashed line indicates the concentric arc along which
the mean axial velocities in (a) are plotted. Re = 500. The physical interpretation of the peculiar variation of
the axial velocity is deferred to the discussion concerning Fig. 7 in Sec. III.

is twice that of GI-fine and amounts to more than 109 grid points. Considering that GI-fine2 and
GI-fine give almost identical results, the GI-fine2 mesh is apparently over-refined. Since we aim to
run the simulations longer for later discussions, GI-fine has been chosen as the final mesh for the
highest Re (= 500) considered in this study.

The very small discrepancy between GI-fine and GI-medium at Re = 500 makes it reasonable to
assume that the mesh for GI-medium may be sufficiently fine to resolve the wake at a lower Re =
400. For this reason, we conducted another grid independence study for Re = 400, indicated as
GI-400m and GI-400f in Table I. The force coefficients from GI-400m and GI-400f were also shown
in Table II. The results indicate that the minimum grid size � = 0.02D gives satisfactory results.
The mesh size for GI-400m is acceptable for performing series of simulations and is therefore
adopted for all lower Reynolds numbers (Re � 300) without any further grid studies.

III. INFLUENCE OF THE VERTICAL EXTENSION

In this section, we present the results from a detailed study of the influence of the vertical
extension. Six different vertical extension lengths (Lv/D = 0, 6, 12, 18, 21, 24) were selected.
The information of these six cases are listed in Table I, as the “VE series.” To avoid any other
influences aside from the vertical extension, we fixed Re = 200 and used the same mesh for the
curved cylinder part in this series of simulations. The mesh topology in the (x, y) plane for the
vertical extension is also fixed, so that the only difference between the six cases is the length Lv .

Figure 4 shows the overall wake structures from all six VE simulations. The iso-surface of λ2 =
−0.01 [22] is adopted to demonstrate the different wake structures. A direct comparison between
Figs. 4(a) and 4(f) show the strong effect of the vertical extension on the wake behind the total
configuration.

In Figs. 4(a) and 4(b), we could not observe any vortex shedding, The results in Fig. 4(a) is
similar as what was shown in Ref. [4] for the same configuration but at Re = 100 (see Fig. 11 in
their paper). The vortex shedding is heavily suppressed by the axial flow behind the cylinder. The
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(a)  Lv /D = 0 (b)  Lv /D = 6

(c)  Lv /D = 12 (d)  Lv /D = 18

(e)  Lv /D = 21 (f)  Lv /D = 24

x
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Regime 3

Regime 2

Regime 1

z/D = 0
z/D = 0

z/D = 0

z/D = 0

z/D = 0z/D = 0

FIG. 4. The wake structure of different VE-simulations, visualized by the iso-surface of λ2 = −0.01. All
snapshots are viewed in the +y direction. The coordinate system is sketched in (a). Note that O ′ is not the true
origin of the domain. Since each snapshot has a different scale, we indicate z/D = 0, i.e., the interface between
the curved part and the vertical extension, with a short horizontal solid line in each subplot. The dashed lines
in (e) separate the different flow regimes. Re = 200.

free-slip boundary condition at the top end prevents the vertical velocity component to penetrate it.
Therefore, the wake in Fig. 4(a), i.e., without any vertical extension, is deemed unrealistic.

In Fig. 4(b) one still cannot observe vortex shedding although a 6D long vertical extension is
appended. Since Re = 200 is well beyond the limit at which one should expect vortex shedding
(Re � 50) behind an independent straight cylinder, what is shown in Fig. 4(b) strongly implies
that the axial flow plays an important role in the wake behind the vertical extension. It is worth
mentioning that, in Ref. [4], the wake exhibited vortex shedding at Re = 100 when the 6D vertical
extension was appended. The reason for this difference is that the axial flow at Re = 200 is stronger
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FIG. 5. Comparison of the axial velocity uax/U0 distribution along a concentric arc of the curved cylinder,
whose radius is 13.6D, i.e., 0.6D behind the cylinder. Results from case VE-18D, VE-21D, and VE-24D are
plotted. The abscissa is divided into two parts: the curved part is scaled by the angle θ , while the vertical part
is scaled by height z/D. Re = 200.

than that at Re = 100, which will be shown in the next section (Fig. 12). Nevertheless, Fig. 5
gives an impression of the strong axial flow in the wake for Re = 200, though the results are from
simulations with longer vertical extensions. For the three VE cases shown in Fig. 5, we observe
that at z/D = 6 (the top boundary for the VE-6D case), the axial velocity is still at a high level,
approximately 75% of the inflow velocity. It is not until after z/D ≈ 9 (high up in the vertical
extension), that the axial velocity starts to drop rapidly. Notice that Fig. 5 is not plotted over the
same arc curve as in Fig. 3 (0.6D compared to 1D behind the cylinder). Similar conclusions can
also be drawn from Fig. 6, in which the time-averaged vertical velocity 〈w〉/U0 contours in the
symmetry plane from three different VE cases are plotted together for comparison.

Different from VE-0D and VE-6D, the other four VE cases all have clear vortex shedding in
the wake, as shown in Figs. 4(c)–4(f). The wakes in VE-21D and VE-24D have the feature of
different flow regimes, as mentioned in the Introduction. The three distinct regimes are distinguished
in Fig. 4(e) by dashed horizontal lines. It is worth mentioning that regime 3 in Refs. [5,6] was
referred to as “normal shedding regime.” We however prefer to call regime 3 in Fig. 4(e) a slightly
oblique shedding regime, in contrast to the highly oblique shedding regime 2, because the vortex
filaments in regime 3, as shown in Figs. 4(e) and 4(f), do not align exactly in the spanwise direction
of the local straight cylinder. Nevertheless, the different appearances of the two flow regimes are
clear.

The three flow regimes also help to understand the interesting axial velocity trends shown in both
Fig. 3 (at Re = 500) and Fig. 5 (at Re = 200). The velocity plot can be characterized by the three
markers A, B, and C, indicating different axial positions, in Fig. 5. From A to B, the axial velocity
(uax) experiences a dramatic decrease, while it increases from B to C. This is directly associated
with the different wake dynamics in the different flow regimes.

Figure 7 shows the mean axial velocity uax/U0 and the two time-averaged velocity components
〈u〉 and 〈w〉 along the same concentric arc as in Fig. 5. The results are taken from simulation VE-
24D. Notice that the mean crossflow velocity component 〈v〉 is everywhere zero in the symmetry
plane. Marker A indicates the end of the horizontal extension and the start of the curved part. Soon
after A, we enter the wake of the cylinder. The continuously decreasing 〈u〉/U0 in Fig. 7 is an
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FIG. 6. Results of the time-averaged vertical velocity 〈w〉/U0 contours in the symmetry plane for three
cases (VE-24D, VE-12D, VE-6D) are plotted together for comparison. For each case, the contours of 〈w〉/U0 =
0.2, 0.5, 0.8 are plotted. Re = 200.

indication of the shelter effect of the cylinder. When θ is small, 〈u〉 is the main component of uax,
therefore the axial velocity follows closely the 〈u〉 curve until it reaches the location B. From B to
C, although 〈u〉 continues to decrease, the axial velocity increases, mainly due to the increase of
the vertical velocity component 〈w〉. The increase of 〈w〉 is induced by the rolling up of a counter-
rotating vortex pair in regime 1. Due to the curved separation lines, a vorticity component normal to
the separation line is generated during the separation, and the production of this vorticity component
leads to an increased 〈w〉. A detailed description of this process can be found in Ref. [23]. The
velocity component 〈w〉 stops to increase at around θ = 70◦ and decreases slowly afterwards. This
is apparently an influence of the vortex shedding in regime 2, in which the production process of 〈w〉
is suppressed. The axial velocity reaches its peak value at C, somewhat earlier than where 〈w〉 starts
to decrease, simply because of the decreasing velocity component 〈u〉. By observing Figs. 4(e) and
4(f), we have the impression that regime 2 begins at around z/D = 0. This agrees with the results
in Fig. 7, in which we see the 〈u〉 value drops below 0 at around θ = 85◦ (close to z/D = 0), as a
result of the recirculation region associated with the vortex shedding in regime 2.

Here we would like to comment that although we see almost parallel vortex shedding close to
the top boundary in Figs. 4(c) and 4(d), we attribute this to the influence of the free-slip boundary
condition, which fixes w = 0 and ∂u/∂z = ∂v/∂z = 0 at the top boundary. Therefore, the vortex
filaments are forced to be perpendicular to the top boundary. In other words, we cannot trust the
results very close to (roughly within 2D from) the top boundary. This applies to VE-21D and VE-
24D as well. Nevertheless, we can still identify, from Fig. 4, where regime 2 changes to a different
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FIG. 7. The time-averaged streamwise velocity 〈u〉/U0, vertical velocity 〈w〉/U0, and the axial velocity
uax/U0 along the same concentric arc for the curved part of the cylinder, similarly as in Fig. 5. Results taken
from simulation VE-24D, at Re = 200.

regime, and treat it as a boundary of different flow regimes, only to compare with the VE-21D and
VE-24D results. The idea is applied in Fig. 8, where the location of the interfaces between different
flow regimes (both between regimes 1 and 2, and between regimes 2 and 3) are plotted for VE-12D,
VE-18D, VE-21D, and VE-24D, respectively. The boundaries in Fig. 8 is based on observations
only, since there is no precise definition of where the flow regimes change.

As mentioned in the Introduction, oblique shedding is induced by 3D effects. We have already
observed the strong axial flow behind the curved part of the cylinder in Fig. 5, as well as in the
contour plots in Fig. 6. This axial flow clearly serves as a trigger for the strongly oblique shedding
in regime 2. The 3D effect that triggers the slightly oblique shedding in regime 3 is, however,
not obvious. In Fig. 8 we notice that regime 2 begins at about the same location z/D ≈ 0 for all
four cases at Re = 200 (later we will show that the inception of regime 2 is Re-dependent, e.g., in
Fig. 11), which means these simulations give similar flow field results behind the curved part of the
cylinder. However, the location of the boundary between regimes 2 and 3 varies a lot. It locates at
z/D ≈ 10 for case VE-12D, while at z/D ≈ 16 for case VE-18D. In both cases, the flow pattern
experiences abrupt changes at a distance 2D below the top boundary. In other words, it is reasonable
to assume that the direct influence of the top boundary condition spreads down a distance 2D. For
VE-21D and VE-24D, however, we observe that the boundary between regimes 2 and 3 are both at
z/D ≈ 16.5, which delivers two messages:

(1) We can assume that, at Re = 200, the boundary between regimes 2 and 3 (at z/D ≈ 16.5)
will not change even if Lv extends beyond 24D.

(2) The axial flow also affects regime 3, because we see from Fig. 5 that 〈w〉 can still be as
large as 0.2U0 at z/D = 20, which is more than 3D up into regime 3. This axial flow is the
reason why the slightly oblique shedding, instead of normal parallel shedding, is observed in
regime 3.
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FIG. 8. The location of the boundaries between adjacent regimes. Left ordinate for the boundary between
regime 1 and 2, right ordinate for that between regimes 2 and 3.

Figure 9 shows the power spectrum density distribution of the cross-flow velocity component
v along a vertical sampling line in the vertical extension wake for two representative cases, VE-
12D and VE-24D, respectively. The sampling line is in the symmetry plane and 3D behind the
cylinder, as sketched in Fig. 9(c). In Fig. 9(a) we can spot only one dominating frequency component
St1 = f1 D/U0 = 0.126. This frequency is considerably lower than the generally known vortex
shedding frequency behind a straight circular cylinder at Re = 200 (normally 0.18–0.19). But such
a low frequency is not surprising since one easily notices, in Fig. 4, the relatively large shedding
angle in regime 2. The relationships between the frequency and the oblique shedding angle will
be discussed later in Sec. IV B. St1 can be detected for all VE cases in regime 2. Therefore, f1

is directly associated with the strong oblique shedding in this wake. Similar large shedding angles
are also reported in Ref. [5], although its experimental research considered different configurations
(radius of curvature R/D = 19 and 38, compared to R/D = 12.5 in the present study).

In Fig. 9(b) we observe another dominating frequency St2 = f2 D/U0 = 0.172 at higher z/D

locations. f2 first appears at around z/D = 15 but the energy is low, and it gradually becomes
dominating as we move into regime 3. This frequency is much higher compared to f1, but still
slightly lower than a normal shedding frequency at Re = 200, which again indicates that the vortex
shedding in regime 3 is not parallel.

From the above discussions, we found that the vertical extension, which had not been carefully
exploited before, has significant influence on the wake behind a concave curved cylinder. The axial
flow behind the curved cylinder triggers a strongly oblique shedding in a certain region (referred to
as regime 2). This strongly oblique shedding switches to a slightly oblique shedding as the axial flow
gradually fades away. We do not observe an exact parallel shedding in this series of simulations. We
observe that the shift between regime 2 and 3 locates identically at z/D ≈ 16.5 in both VE-21D and
VE-24D cases, which means the vertical extension length influence has “saturated” when Lv = 24D

at this Reynolds number. The wake in the VE-24D case can be divided into three regimes, namely,
a nonshedding regime 1, a strongly oblique shedding regime 2, and a slightly oblique shedding
regime 3. The dominating frequencies for regime 2 and regime 3 are St1 = 0.126 and St2 = 0.172,
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FIG. 9. Power spectrum density distribution of the cross-flow velocity v along a sampling line 3D behind
the vertical extension in the symmetry plan (y/D = 0), as sketched in (c). (a) VE-12D, (b) VE-24D. The main
frequencies are indicated. Re = 200.

respectively. Both are lower than the parallel shedding frequency behind a straight cylinder at
Re = 200. We have attributed the appearance of the oblique shedding in both regimes to the 3D
effect caused by the axial flow. It is possible that truly parallel vortex shedding will appear when
Lv becomes even longer and that the vertical velocity eventually decays to zero, as also will be
commented in Sec. IV B.

IV. THE CONCAVE CURVED CYLINDER WAKE AT DIFFERENT Re

A. Wake transition

In this section, we present the wake flow results obtained from a series of simulations of
the concave curved cylinder at different Reynolds numbers, ranging from Re = 100 to 500. The
detailed information is listed in Table I as the “Re series.” We directly adopt Lv = 24D from the
above discussions for all the Re-effect cases. The minimum grid sizes were chosen based on the
conclusions from the earlier grid study (in Sec. II C).

Figure 10 shows snapshots of λ2 rendering, namely, the instantaneous vortical structures in the
wake, at four different Re: 100, 200, 300, and 500, respectively. Notice that Figs. 10(a) and 10(b) use
the same color map scale, while 10(c) and 10(d) use a different scale. This is to make all the wake
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FIG. 10. The rendering of λ2, showing instantaneous wake snapshots at (a) Re = 100, (b) Re = 200, (c)
Re = 300, and (d) Re = 500, respectively. All snapshots are viewed in the +y direction, and Lv = 24D. Notice
that (a) and (b) use the same color map scale indicated in (b), while (c) and (d) use the different color map scale
indicated in (d).

structures visible in each plot. For Re = 400, the wake topology is similar to that for Re = 500,
therefore it is not shown in Fig. 10.

In Fig. 10(a), i.e., at Re = 100, the vortex filaments shed regularly. This is a Reynolds number
where 3D instabilities do not develop even behind a straight cylinder [8]. In Fig. 10(a) we can
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FIG. 11. Locations of the boundaries between different flow regimes at different Re. To read the boundary
location between regimes 1 and 2, one uses the left vertical axis, while the right vertical axis is used to read the
boundary location between regimes 2 and 3.

roughly outline two different shedding regimes, of which one is slightly more oblique, i.e., the
so-called regime 2. The difference between the two flow regimes is not as clear as in Figs. 10(b)–
10(d), where the strong oblique shedding regime 2 is clearly visible. However, we could still spot
two different shedding regimes by the complex structures at the boundary of the two regimes in
Fig. 10(a). These structures indicate the vortex dislocation phenomenon, which normally happens at
the boundary between two flow regions that have different dominating frequencies [7]. At Re = 200,
i.e., in Fig. 10(b), we observe a more complex vortex dislocation phenomenon at the boundary
between regimes 2 and 3. The primary 3D instabilities, i.e., mode A as proposed in Ref. [8], are
barely visible in regime 3. At Re = 200, the 3D instability should already appear in a straight
cylinder wake, but will be delayed when the shedding is oblique [7].

In Fig. 10(c), at Re = 300, the 3D instabilities become clear in regime 3, represented by the
streamwise vortical structures bridging adjacent axial vortex filaments. However, we still could not
observe similar instabilities in regime 2, although in the more downstream part, the oblique vortex
filaments start to become wavy. When we look at the Re = 500 case in Fig. 10(d), the whole flow
field is apparently more complex with massive fine vortical structures.

Based on the results in Fig. 10, we can again map the location of the boundaries between
different flow regimes for different Re. This is shown in Fig. 11. As Re increases, the wake gets
more unsteady, therefore we can intuitively anticipate that vortex shedding would develop earlier
(at a lower z position in this context) at larger Re. This is seen by the continuous decrease of the
boundary locations between regime 1 and regime 2 in Fig. 11. The oblique shedding occurs at
z/D ≈ 1 at Re = 100, but at z/D ≈ −4 at Re = 500.

It should be noticed that the oblique vortex shedding in Figs. 10 and 11 occurs behind the
straight vertical extension of the concave curved cylinder where sin θ is constant and equal to 1 [see
Fig. 1(b)]. The hypothesized analogy between wakes behind tapered cylinders [11], cylinders in
shear flow [10], and curved cylinders cannot explain the present findings since the oblique shedding
is observed behind the straight vertical extension. However, the results in Fig. 11 indicate that the
emergence of oblique shedding shifts downwards and into the curved part of the concave cylinder
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FIG. 12. The axial velocity distribution uax/U0 following the axial direction of the cylinder, both the curved
part and the vertical extension part, 0.6D behind the leeward side of the cylinder surface. The abscissa is
arranged in the same way as in Fig. 5. Results for all five Re are plotted. The arrows show the tendency when
Re increases. Lv/D = 24.

configuration as Re increases. The validity of the suggested analogy can probably be examined at
even higher Re.

Differently from the clear trend of the inception location of regime 2 as Re increases, the end
location of regime 2 is, however, more complex. We notice that the upper boundary of regime 2
first increases from z/D ≈ 12.5 at Re = 100 to z/D ≈ 16.5 at Re = 200, but then experiences a
decrease all the way to z/D ≈ 5 at Re = 500. To understand this interesting phenomenon, we need
to investigate the axial velocity distribution close to the geometry. Figure 12 plots the time-averaged
axial velocity uax distribution along a line 0.6D behind the cylinder surface, the same as in Fig. 5,
for all five Re values. This line starts from the inception of the curved part and ends at the top
boundary.

We notice that behind most of the curved part of the cylinder, the mean axial velocity is
monotonically increasing as Re increases. This tendency applies up to θ ≈ 67.5◦, at which the
uax/U0 distributions for Re = 400 and 500 experience a relatively sharp decrease and become
more unstable, and soon drops below the Re = 200 and 300 distributions. This corresponds to
the appearance of vortex shedding at these two Reynolds numbers. The velocity distributions for
Re = 200 and 300 continue to be relatively smooth up to the vertical extension part. The mean axial
velocity at Re = 300 is higher than that at Re = 200 all the way up to z/D ≈ 7, where it suddenly
drops below that at Re = 200. Thereafter, we clearly notice that the axial velocity at Re = 200 is
the largest among all five cases. The oblique shedding happens due to the production of streamwise
vorticity, and the higher the streamwise vorticity is compared to the axial vorticity, the larger the
oblique shedding angle will be. In general, higher axial velocity levels induce higher streamwise
vorticity. Therefore, it is the highest axial velocity values at Re = 200 that prevent the strongly
oblique shedding in regime 2 to shift to a slightly oblique shedding, so we see the peak point at
Re = 200 in Fig. 11. We would like to mention here, that the strongly oblique shedding comprises
the largest territory (ranging from z/D = 0 to 16.5) at Re = 200, which was also the main reason
why we considered Re = 200 for the vertical extension length test.

In Fig. 12 we also notice that the axial velocity is dramatically lower at Re = 100 compared to
the other four Re, at which the velocity values are roughly the same when regime 2 begins (between
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FIG. 13. The cross-flow velocity energy spectrum plotted over a vertical line at x/D = 16, y/D = 0, and
over a vertical span from z/D = 0 to 24, i.e., a vertical line 3D behind the vertical extension and in the
symmetry plane. Results at (a) Re = 100, (b) Re = 300, (c) Re = 400, and (d) Re = 500. The frequency
values are marked in each subplot.

θ ≈ 67.5◦ and 90°). This is somewhat important information in order to explain the clearly lower
shedding angle (in regime 2) in Fig. 10(a) compared to Figs. 10(b)–10(d), where the shedding angles
are close to each other but larger than that at Re = 100. Moreover, in Fig. 12, we observe that the
locations B and C, as discussed in Fig. 7, vary with the Re.

B. The frequencies

Figure 13 shows the energy spectrum of the cross-flow velocity v plotted over the same vertical
sampling line defined in Fig. 9(c), but for the four other Re = 100, 300, 400, and 500, respectively.
The results for Re = 200 were plotted in Fig. 9(b), therefore not repeated. By observing the 3D
spectrum at different Re, we can divide them into three types:

Type 1: Re = 100 and Re = 200, characterized by two dominating frequencies, marked as f1

and f2, respectively.
Type 2: Re = 300, characterized by three dominating frequencies, marked as f1, f2, and f3,

respectively.
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TABLE III. The frequency components in the wake at different Re.

Re fR
a f1 f1/fR f2 f2/fR f3 f3/fR

100 0.16–0.17 0.12 0.706–0.75 0.15 0.882–0.938 – –
200 0.18–0.19 0.126 0.663–0.70 0.172 0.905–0.956 – –
300 0.203 0.122 0.601 0.166 0.818 0.192 0.946
400 0.205 0.124 0.605 0.177 0.863 0.202 0.985
500 0.206 0.127 0.617 0.186 0.903 0.207 1.005

afR: reference value [24] of the shedding frequency in a straight cylinder wake.

Type 3: Re = 400 and Re = 500, characterized by one dominating frequency f1, and a frequency
band in which the frequency has a “continuous” variation along the z direction. To discuss type 3
together with the other two types, we mark the lower and upper boundaries of the frequency band
[indicated by two dashed lines in Figs. 13(c) and 13(d)] as f2 and f3, respectively.

All the frequencies are summarized in Table III, in which the reference frequency fR indicates
the shedding frequency in a straight circular cylinder wake at the corresponding Re. fR values are
taken from Fig. 4.5 in Ref. [24].

For all five Re, f1 has the same meaning, i.e., the frequency of the highly oblique shedding
in regime 2. f1/fR at Re = 100 and 200 are approximately 0.7, indicating a mild oblique angle,
especially at Re = 100. This agrees with the observations in Fig. 10. f1/fR at Re = 300–500 are
close to each other (all around 0.6), indicating that the oblique angle in regime 2 at these Reynolds
numbers are close. This is again in agreement with the plots in Fig. 10.

From Table III we observe that f2 at Re = 100 and 200 and f3 at Re = 300–500 are the highest
detected frequencies at the corresponding Re. We notice that f2/fR at Re = 100 and 200, and
f3/fR at Re = 300 are 5%–10% below 1.0, indicating a slightly oblique shedding instead of a
parallel shedding. “Slightly” means that the oblique angle is small, compared to the strongly oblique
shedding in regime 2. However, f3 at Re = 400 and 500 is almost identical with fR , meaning that
at these two Re, the vortex shedding becomes parallel to the cylinder axis as we move towards the
end of the vertical extension.

The f2 component at Re = 300, 400, and 500 is more complex. At Re = 300, f2 stands as a
single dominating frequency, while at Re = 400 and 500, f2 represents the lower boundaries of the
“frequency bands” [depicted in Figs. 13(c) and 13(d)]. Despite of this difference, the existence of
f2 tells us that there exist more than two shedding regimes in the concave curved cylinder wake.
This is most clearly seen at Re = 300, as plotted in Fig. 14. From this figure, we observe that the
wake can be divided into four flow regimes, among which three have vortex shedding. This agrees
with the results in Table III. If we assume that the three shedding regimes (regime 1 has no vortex
shedding, and thus has no frequency) are directly related to the three dominating frequencies in
Table III, we can estimate the oblique angle in each regime based on the frequencies, as indicated in
Fig. 14. Three lines (the red dashed lines in Fig. 14) can therefore be drawn based on the estimated
oblique angles α1, α2, and α3. We notice that the inclination of the vortical structures in each flow
regime agrees well with the three lines, at least in the near wake. In this way, we show that at
Re = 300, three distinct shedding regimes can be detected, different from the two shedding regimes
at Re = 200, while a nonshedding regime exists at both Re.

However, the scenario at Re = 400 and 500 becomes different. In Fig. 10(d), except for the
strongly oblique shedding in the lower wake, we can hardly distinguish other distinct flow regimes
like those in Fig. 14. This is consistent with the results in Fig. 13(d). The frequency band, instead of
an independent dominating frequency, tells us that at Re = 500 (also 400), the frequency changes
along the axial direction in a continuous manner. At Re = 100–300, however, the frequency changes
along the axial direction in a stepwise manner. Similar frequency bands were reported in Ref. [9],
where they studied cellular vortex shedding behind a tapered circular cylinder and compared it with
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FIG. 14. The wake structure at Re = 300 is described by the iso-surface of λ2 = −0.2. The four flow
regimes are separated by the black dashed lines. The red dashed lines are drawn based on the calculated oblique
angles (α1, α2, and α3) indicated.

the wake of a circular cylinder in shear flow. Yet one should keep in mind that the local Reynolds
number along the cylinder span in Ref. [9] changes as either the cylinder diameter (for tapered
cylinder) or the inflow velocity (for shear flow). In the present study, however, the local Reynolds
number along the vertical extension is always identical. It shows again the strong effect from the
axial flow coming from the curved part of the cylinder.

At last, we note that parallel vortex shedding is observed at Re = 400 and 500, but not at lower
Re, because the axial velocity drops faster as we move towards the vertical extension at higher Re (as
discussed in conjunction with Fig. 12). We suspect that the axial velocity eventually will disappear
even at lower Re, provided that the vertical extension is infinitely long, and the vortex shedding will
become parallel (when the extension is sufficiently long). However, this is out of the scope of the
present study and clearly needs more simulations to investigate.

V. CONCLUDING REMARKS

We presented a detailed investigation, by means of a series of direct numerical simulations, of
the wake flow behind an R/D = 12.5 quarter-of-ring concave curved cylinder, with horizontal and
vertical extension appended to its two ends.

The length effect of the vertical extension, i.e., the VE series, was first addressed, and turns
out to be significant to the wake flow. We fixed Re = 200 for the VE study. When the vertical
extension length Lv � 6D, no vortex shedding exists in the wake. The wakes of the VE-12D and
VE-18D configurations have strongly oblique vortex shedding but are still heavily influenced by
the upper free-slip boundary. The oblique shedding in the concave curved cylinder wake is caused
by the strong axial flow in the near wake. It is not until Lv is increased to 21D and 24D that we
start to notice a convergence trend. Three flow regimes, i.e., the nonshedding regime 1, the strongly
oblique shedding regime 2, and the slightly oblique shedding regime 3, can be identified in both the
VE-21D wake and the VE-24D wake. The boundary between regime 2 and 3 no longer varies as Lv
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increased from 21D to 24D. We therefore conclude that one may need at least a 21D long vertical
extension at Re = 200 to get a reliable wake for this configuration. Although a parallel shedding
regime is not observed in the VE studies, as proposed in earlier studies [5], we would expect it to
appear if the vertical extension is further increased (and the axial velocity disappears). In the present
study, we have observed that the axial velocity can be as high as 20% of the free-stream velocity
U0 at z/D = 20, at Re = 200. Therefore even for the longest vertical extension case VE-24D, we
still have an axial flow influence. This is somewhat surprising because earlier curved cylinder wake
studies, although at different Re, used much shorter vertical extension lengths. The effect of the
vertical extension has most likely been underestimated before.

We studied the transition scenario in this concave curved cylinder wake flow, through the Re-
series simulations, and found that the vertical extension length effect is Re-dependent, as shown
in Fig. 11. The most demanding Reynolds number with respect to the vertical extension length is
Re = 200. As Re increases, the wake experiences similar 3D instabilities as in the straight circular
cylinder wake, but the oblique shedding postpones the transition.

The 3D velocity energy spectra in Fig. 9 and Fig. 13 reveal three distinct types of wake within a
narrow Re range from 100 to 500. Together with the snapshots of the wake structures in Fig. 10 and
Fig. 14, we show that more than two shedding regimes may coexist in a concave curved cylinder
wake. While the strongly oblique shedding is a direct result of the nonshedding regime (dominated
by a counter-rotating vortex pair and generation of strong axial flow), it can be observed at all
Re considered in the present study. We have also discussed that a parallel shedding regime must
appear, provided that the vertical extension is sufficiently long. Moreover, slightly shedding regimes
may exist in between these two regimes, as is most clearly seen at Re = 300, where three distinct
dominating frequencies are detected instead of only two.

It is furthermore interesting that we have observed two different manners by which the strongly
oblique shedding switches to a parallel shedding. At Re � 300, this process takes place stepwise,
while at Re = 400 and 500, this process takes place continuously. The latter of which is supported
by the appearance of a frequency band in Figs. 13(c) and 13(d) instead of an isolated dominating
frequency in Fig. 13(b).
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