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Abstract—Eyeglasses change the appearance and visual
perception of facial images. Moreover, under objective met-
rics, glasses generally deteriorate the sample quality of near-
infrared ocular images and as a consequence can worsen the
biometric performance of iris recognition systems. Automatic
detection of glasses is therefore one of the prerequisites for
a sufficient quality, interactive sample acquisition process in
an automatic iris recognition system. In this paper, three
approaches (i.e. a statistical method, a deep learning based
method and an algorithmic method based on detection of
edges and reflections) for automatic detection of glasses in
near-infrared iris images are presented. Those approaches
are evaluated using cross-validation on the CASIA-IrisV4-
Thousand dataset, which contains 20000 images from 1000
subjects. Individually, they are capable of correctly classifying
95-98% of images, while a majority vote based fusion of the
three approaches achieves a correct classification rate (CCR)
of 99.54%.
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I. INTRODUCTION

In recent years, iris recognition has become a popular
modality for biometric systems and is used in many large-
scale deployments (e.g. the Indian National ID project [22]).
The technology is also increasingly being used in automatic
(without human operator supervision) systems, such as smart
border/airport gates and mobile devices [14]. Operational
systems typically capture iris images in the near-infrared
light spectrum, in which the iris patterns are much more pro-
nounced than in the visible light spectrum, even for darkly
pigmented irides [6]. According to recent reports [20], [21],
over 50% of adult population in the developed world wear
eyeglasses. The pervasiveness of short-sightedness (myopia)
has been on an extreme rise in Eastern Asia and around the
world in general; a recent report in Nature News [7] states:

East Asia has been gripped by an unprecedented
rise in myopia, also known as short-sightedness.
Sixty years ago, 10-20% of the Chinese population
was short-sighted. Today, up to 90% of teenagers
and young adults are. In Seoul, a whopping 96.5%
of 19-year-old men are short-sighted. Other parts
of the world have also seen a dramatic increase
in the condition, which now affects around half
of young adults in the United States and Europe

- double the prevalence of half a century ago. By
some estimates, one-third of the world’s popula-
tion - 2.5 billion people - could be affected by
short-sightedness by the end of this decade.

Due to specular reflections, blur, scratches and other
factors, glasses tend to decrease the biometric sample quality
and consequently often the biometric performance of the
systems. While several researchers have investigated the
impact of glasses on face recognition systems, the scientific
literature on iris recognition contains very little related work
on this subject, except for a paper in which a small-scale
quantification of the effects of glasses on iris image pre-
processing is presented [13] and glasses being mentioned as
a significant noise factor (e.g. [3], [1], [9]). ISO/IEC 29794-
6 biometric sample quality standard [10] specifically rec-
ommends to instruct data subjects to remove glasses during
acquisition or to perform the acquisition with additional care.

Therefore, and due to the prevalence of glasses in the
world population, automatic detection of glasses is an impor-
tant matter in iris recognition (as will also be substantiated
by the experiments described in section III). It is of particular
interest for automatic sample acquisition systems, where
such a detection module would enable an interactive sample
acquisition and thus facilitate higher sample quality. While
this is a well-researched topic in systems working with
images of the facial region (e.g. [23], [2]), doing so in images
of ocular region alone has not received enough attention. In
this paper, three methods for accomplishing said task are
presented and benchmarked.

This paper is organised as follows: in section II, the used
dataset and experimental setup are described. Section III
provides an overview of the impact of glasses on iris
recognition. In section IV the three proposed automatic
glasses detection approaches are presented and evaluated.
Concluding remarks are given in section V.

II. EXPERIMENTAL SETUP

The Thousand subset of the CASIA-IrisV4 database [5]
(henceforth referred to as ”CASIA-Thousand dataset”) was
chosen for the experiments performed for this paper. Said
dataset contains near-infrared iris images of size 640× 480
pixels and, due to its size, is suitable for large-scale testing.



Additionally, for subjects who are glass-wearers, it contains
images both with and without glasses, thus enabling a
direct biometric performance benchmark. Figure 1 shows
example images from the dataset, while table I summarises
its properties1. Observe the high fraction of subjects who
are glass-wearers coinciding with the statistics mentioned in
section I. The groundtruth labels (with/without glasses) had
to be assigned to all the images, which was done manually
by a single researcher via visual inspection.

Table I: Overview of the CASIA-Thousand dataset

Samples Subjects Instances
Total 20000 1000 2000

Without glasses 14664 1000 2000
With glasses 5336 617 1193

(a) Without glasses (b) With glasses

Figure 1: Example images from the CASIA-Thousand
dataset. Samples (a) and (b) are captured from the same
eye instance.

The images were processed with commonly used meth-
ods (specifically, Viterbi algorithm for segmentation [19],
Daugman’s rubber sheet model for normalisation, LogGa-
bor wavelet for feature encoding and fractional Hamming
distance for template comparison [6]) implemented by the
open-source OSIRIS [15] and USIT [16] frameworks. Sub-
sequently, two evaluations took place:

1Observe, that since for every subject/instance there is at least one sample
without glasses in the dataset, the numbers for subjects/instances seemingly
do not add up.

• The impact of glasses on sample quality (some metrics
from ISO/IEC 29794-6 standard [10]) and thereby
on iris recognition in terms of biometric performance
measured in equal error rate (EER). (section III)

• The classification accuracy of the proposed detection
approaches using cross-validation over 4 folds (i.e.
15000 training and 5000 test images), measured in
correct classification rate (CCR). (section IV)

III. IMPACT OF GLASSES ON IRIS RECOGNITION

The topic of glasses in iris recognition systems has often
been mentioned in the scientific literature (e.g. [3], [1],
[9]) and presentations [18]. It is commonly agreed that
they can have detrimental effect on sample quality due to
specular reflections, dirt, optical distortions and shadows.
A decrease in sample quality in turn negatively affects
the segmentation accuracy and/or biometric performance.
Furthermore, as shown in figure 2, they introduce potential
for explicit failures, where the reflections or frame can
be misunderstood as pupilliary or limbic boundaries by
the segmentation algorithm (the red blobs in the images
represent areas masked out by the algorithm as eyelids and
noise). Those assertions notwithstanding, with an exception
of a small investigation [13], studies quantifying the effects
glasses have on the biometric performance of iris recognition
systems are lacking in the scientific literature.

Figure 2: Segmentation failures caused by glasses

The results of a biometric verification experiment on the
CASIA-Thousand dataset, shown in table II, demonstrate the
negative impact of glasses on an iris recognition system. In
addition to the data shown in the table, the motion blur in
images with glasses was calculated to be twice as high as in
images without glasses, which in turn can negatively affect
other iris image quality metrics, such as the iris-pupil and
iris-sclera contrast.

Table II: Impact of glasses on iris recognition

Metric Without glasses With glasses
EER, all images 6.86% 12.16%

EER, no segmentation failures 3.79% 10.67%
Images with usable iris area ≥ 70% 59.19% 51.63%

The aforementioned issues are also mentioned in the
ISO/IEC 29794-6 biometric sample quality standard [10],
where it is recommended to perform data acquisition so



that the specular reflections on the iris are minimised or
even to instruct the data subject to remove their glasses.
In some, particularly automatic systems, doing so would
require automatically detecting the glasses. In the next
section, methods of automatic detection of glasses in near-
infrared iris images are described and evaluated.

IV. AUTOMATIC DETECTION APPROACHES

As discussed earlier, automatic detection of glasses ap-
pears to be an overseen or underappreciated issue in the
scientific literature. However, based on the sheer numbers of
glass-wearers in the population (section I) and the significant
impact of glasses on the biometric performance (section III),
it is abundantly clear that methods for automatic glasses
detection are beneficial for iris recognition systems. With
it in place, such systems would be enabled to provide
actionable feedback to the capture subject - meaning to
ask the subject to take off the glasses and to subsequently
initiate a re-capture. In this section, three such approaches
are presented and evaluated on near-infrared iris image data.

A. Texture Descriptor

Binarized statistical image features (BSIF) [12] is a
generic texture descriptor, which uses filters learned from
patches of natural images. Pre-trained filters made available
as part of the above publication are used. The process of
using BSIF to detect glasses in iris images is as follows:

1) An input image (figure 3a), is convolved with 8
stacked linear filters of size 15 × 15 pixels; the sign
of each filter response is used to binarise it (such that
negative responses become 0 and positive responses
become 1), resulting in a binary string of length 8 for
each pixel of the image. The integer representation of
those binary strings lies in range (in range 0 to 28−1),
and can be thus displayed as a 256-bit grayscale
image, as shown in figure 3b.

2) The aforementioned integer values for the whole im-
age are stored in a histogram, as shown in figure 3c.

3) Using the previously (section II) mentioned cross-
validation loop for training and testing, the classifica-
tion decision is obtained by passing the histogram as
an input to a support vector machine (SVM). It uses a
linear kernel, which is suitable for high-dimensional
vectors. A lightweight implementation provided by
the libsvm (version 3.22) [4] library was used; for
training the SVM, 1000000 was used as cost parameter
and 0.001 was used for termination tolerance. The
parameters were estimated empirically on a small,
disjoin training set.

As shown in figure 3d, subtle differences in the BSIF-
histogram values’ frequency distribution are perceivable.
The SVM is capable of using those to distinguish between
and correctly classify images with and without glasses. To

(a) Image (b) BSIF applied

0 25 50 75 100 125 150 175 200 225 250
Value

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Fr
eq

ue
nc

y
(c) BSIF grayscale values histogram for one image
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(d) BSIF histogram value frequencies (mean and one standard devia-
tion as errorbars) for the entire CASIA-Thousand dataset

Figure 3: BSIF-based approach

facilitate reproducible research, the trained SVM is released
publicly at [8].

B. Deep Learning

Deep neural networks convince by successful application
with a huge variety of tasks [17], including classification
specifically [24]. The problem of classifying images with
and without glasses falls well within the areas in which deep
neural networks are commonly applied.

Using the Caffe framework (version 1.0) [11], a deep
convolutional neural network for classification of images has
been created; its topology can be seen in table III. The neural
network is trained and tested using the previously (section II)
mentioned cross-validation loop. The images are resized to



320×240 pixels and the training is run over 20000 iterations,
with batch size of 32 images and 20000 as step size. Using
15000 input images and 5 steps, the network was trained
for about 213 epochs. The learning rate is set to 0.0001 and
gets multiplied by 0.25 after every step.

Multiple other architectures, which differed mostly in the
input dimensions and the size of the convolution layers,
were tested. It turned out that input dimensions larger than
320×240 (e.g. 640×480) are not necessary to achieve good
classification results. Thus, for computational performance
reasons the relatively small network was chosen in order to
attain an acceptable trade-off between classification accuracy
and throughput. The dimensions of the convolution layers
were determined by the size of potential feature blocks,
which are effected by glasses being present in an image.
To facilitate reproducible research, the trained network is
released publicly at [8].

Table III: Topology of the DNN-based approach
Part Layer Iterations Details

Feature Extraction
Convolution

2

1. 17× 17 pixels, 48 filters
2. 7× 7 pixels, 96 filters

ReLu —
Pooling Max, 3× 3 pixels, 1 filter, stride 2

Classification

Fully connected
2

96 neurons
ReLu —

Dropout —
Fully connected 1 2 neurons

Decision linear classifier

C. Edge and Reflection Detection based Algorithm

Two key differences between images with and with-
out glasses are more pronounced specular reflections and
stronger edges due to the frames of glasses. The classi-
fication approach described in this subsection is based on
detection and quantification of those image features.

1) Reflections: The image is divided into blocks of equal
size (chosen empirically to be 30×30 pixels and the bright-
ness of each block is computed relative to the brightness of
the entire image, thus producing a map of relative brightness
deviation. The block size filters out small, natural reflections
(figure 4a), whereas large, artificial reflections are very well
pronounced (figure 4b).

2) Edges: The process of detecting and measuring edges
for glasses detection in an iris image is described below and
shown in figure 5 and described below.

1) The image is convolved with a simple kernel which
detects horizontal edges. This process is independent
of the average brightness of the image, since only the
local brightness gradients are computed. (figure 5b)

2) The grayscale image is transformed into a black and
white image. This is done by applying a brightness
threshold (usually between 128 and 129, estimated
empirically on a small disjoint training set), which
only accepts sharp brightness transitions and ignores
blurred edges. (figure 5c)

(a) Without glasses (b) With glasses

Figure 4: Reflection detection with a relative brightness
measure. The two specular reflections caused by the glasses
are clearly observed by this proposed metric.

3) Due to illumination artefacts or image compression
many edges have small gaps. A dilation filter of size
7×7 pixels (estimated empirically on a small disjoint
training set) is used to fill those gaps. (figure 5d)

4) The edges in the middle of the image are masked out,
since they tend to be natural eye edges. (figure 5e)

5) To distinguish between individual edges, the flood fill
algorithm with 8 directions is applied. This algorithm
finds connected pixels and represents them with dif-
ferent colours. (figure 5f)

6) The width and height of the found edges is calculated
using the leftmost and rightmost, and topmost and
bottommost pixels. Very small edges are discarded
(e.q. the small points on the right top corner in figure
5f) are discarded because they do not contain infor-
mation. Subsequently, then the ratio between widths
and heights of the remaining edges is computed.
(figure 5g)

3) Classification: The reflection and edge detection meth-
ods described in subsections IV-C1 and IV-C2, respectively,
are applied to an iris sample. Using the previously (sec-
tion II) mentioned cross-validation loop, tuples containing
the values of largest relative brightness block and the edge
with the highest width-to-height ratio are passed to a SVM,
which performs the classification decisions. A radial basis
function (RBF) kernel was chosen, since it is well suited
for low-dimensional vectors. For training the SVM, 10000
was used as cost parameter, which was estimated using
a small, disjoint training set. As shown in figure 6, the
two metrics (reflection and edge scores) contain sufficient
discriminative power to distinguish quite accurately between
images with and without glasses, albeit some overlap (and
thereby classification errors) is still present.



(a) Image (b) Detection

(c) Binarisation (d) Dilation

(e) Outmasking (f) Assignment

Edge colour Width Height Ratio
Red 639 111 5.76
Blue 279 66 4.23

Green 142 100 1.42
...

...
...

...

(g) Measurement

Figure 5: Edge detection and measurement

Figure 6: A scatter plot of edge and reflection scores for
all images from the CASIA-Thousand dataset, which shows
significant separation between the two image classes

D. Results

The classification accuracy of the proposed methods is
estimated by performing cross-validation over 4 folds. The
results are shown in table IV. All three proposed approaches
perform well, with overall accuracy ranging between 95-
99%. Notice, however, that the CCR for images with and
without glasses vary - for instance, the neural network
classifies more images without glasses correctly, whereas
the statistical approach does so for images with glasses.
This suggests a possibility of fusing the decisions of the
approaches, so that their individual weaknesses are compen-
sated for. Performing a majority vote of all three approaches
was able to significantly increase the CCR. A conjunction
based fusion of all three or different configurations of
two approaches was also tried, but was found to be less
successful than the majority vote (albeit still improving upon
the accuracy of the individual approaches).

Table IV: Results of the evaluation (with 95% CI)

Approach CCR (in%)
Without Glasses With glasses Overall

Texture Descriptor (IV-A) 97.79 ± 0.95 98.54 ± 0.69 98.08 ± 0.44
Deep Learning (IV-B) 99.28 ± 0.22 97.33 ± 1.60 98.97 ± 0.29

Edges and Reflections (IV-C) 97.18 ± 0.38 92.37 ± 2.23 95.43 ± 0.36
Majority vote 99.72 ± 0.08 98.79 ± 0.66 99.54 ± 0.12

E. Classification Errors

It is of interest to investigate what types of images were
incorrectly classified by the proposed approaches. Figure 7
shows such example images and corresponding error rea-
sons. With a larger dataset and hence more training data,
the classification errors could potentially be further reduced.

V. CONCLUSION

Glasses make iris recognition more challenging, since they
can have a detrimental effect on sample quality and thereby
biometric performance of a system. In section III, it has been
shown that on the CASIA-Thousand dataset, the equal error
rate on the subset of images with glasses is twice that of the
subset of images without glasses. It is therefore of interest
to automatically detect glasses in iris images in order to
handle such images separately or re-acquire once the data
subject has been asked to remove their glasses. In this paper,
three approaches for automatically detecting glasses in near-
infrared ocular images have been presented. They achieve
classification accuracy in range of 95-98%, which can be
further improved on by a decision-level fusion. A majority
vote of all three approaches achieved an overall 99.54%
correct classification rate, whereas slightly lower (but still
above 99%) correct classification rate was achieved with an
conjunction-based fusion of two approaches. In contrast to
other approaches for glasses detection, the proposed methods
require only a single-frame image and work with the ocular
area alone instead of whole face. They could be seamlessly



(a) Strong eye edge (b) Strong make-up

(c) Thin/no frame (d) Frame at upper margin

(e) Frame position (f) Transparent frame

Figure 7: Examples of incorrectly classified images from
all 3 methods. Figures (a)-(b) falsely classified as glasses,
figures (c)-(f) falsely classified as non-glasses.

integrated into operational automatic systems, for instance
to facilitate interactive image acquisition, where the data
subjects would be required to take off glasses if detected.
Furthermore, such systems often capture images of both eyes
simultaneously, thus the accuracy of glasses detection could
be further improved by performing a multi-instance fusion,
i.e. a conjunction of the decisions from both eyes.
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