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Image Quality Evaluation in Clinical Research: A
Case Study on Brain and Cardiac MRI Images in

Multi-Center Clinical Trials
Michael Osadebey, Marius Pedersen*, Douglas Arnold, and Katrina Wendel-Mitoraj

Abstract—MRI system images are important components in the development of drugs because it can reveal the underlying pathology
in diseases. Unfortunately the processes of image acquisition, storage, transmission, processing and analysis can influence image quality
with the risk of compromising the reliability of MRI-based data. Therefore, it is necessary to monitor image quality throughout the
different stages of the imaging workflow. This report describes a new approach to evaluate the quality of an MRI slice in multi-center
clinical trials. The design philosophy assumes that an MRI slice, like all natural images, possess statistical properties that can describe
different levels of contrast degradation. A unique set of pixel configuration is assigned to each possible level of contrast-distorted
MRI slice. Invocation of the central limit theorem results in two separate Gaussian distributions. The central limit theorem says that
the mean and standard deviation of pixel configuration assigned to each possible level of contrast degradation will follow a normal
distribution. The mean of each normal distribution corresponds to the mean and standard deviation of the underlying ideal image.
Quality prediction processes for a test image can be summarized into four steps. The first step extract local contrast feature image
from the test image. The second step computes the mean and standard deviation of the feature image. The third step separately
standardizes each normal distribution using the mean and standard deviation computed from the feature image. This gives two
separate z-scores. The fourth step predicts the lightness contrast quality score and the texture contrast quality score from cumulative
distribution function of the appropriate normal distribution. The proposed method was evaluated objectively on brain and cardiac
MRI volume data using four different types and levels of degradation. The four types of degradation are Rician noise, circular blur,
motion blur and intensity nonuniformity also known as bias fields. Objective evaluation was validated using a proposed variation of
difference of mean opinion scores. Results from performance evaluation show that the proposed method will be suitable to monitor
and standardize image quality throughout the different stages of imaging workflow in large clinical trials. Matlab implementation
of the proposed objective quality evaluation method can be downloaded from (https://github.com/ezimic/Image-Quality-Evaluation).

Keywords—Magnetic Resonance Imaging (MRI), Brain MRI, Cardiac MRI, Image Quality, Labeling Problem, Central Limit Theorem,
Normal Distribution, Lightness Contrast and Texture Contrast.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) system has sev-
eral features which makes it a popular imaging modal-

ity in routine clinical practice and clinical research, [1].
Patient safety is satisfied by its non-invasive and non-ionizing
properties. Images acquired from MRI system can potentially
discriminate the different anatomical structures with high
spatial and contrast resolution [2]. This feature makes MRI
system useful tool for the study of human anatomy and the
diagnosis of diseases. Diagnostic information contained in
MRI images are enriched by MRI three perpendicular planes
display of images. Furthermore, MRI system is highly flexible.
The different imaging sequences generated from a scan can be
deployed for different clinical tasks.

Applications of brain MRI include monitoring disease pro-
gression in multiple sclerosis and Alzheimer’s diseases [3],
[4], clinical trials of drugs for the diagnosis and treatment
of multiple sclerosis and Alzheimer’s diseases [5], [6], perfor-
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mance evaluation of different MRI sequences in brain analysis
[7], [8], comparative performance evaluation of clinical trials
of different drugs for the treatment of multiple sclerosis [9],
[10], study of brain atrophy [11], [12], evaluation of pediatric
multiple sclerosis [13], [14], safety and efficacy of drugs for
the treatment of multiple sclerosis [15], [16].

Cardiac MRI is used for the assessment of cardiac struc-
ture and function such as the characterisation of myocardial
tissue, blood volume and blood flow measurements [17],
[18], [19]. Other applications include the diagnosis of cardiac
amyloidosis [20], identification of regions with left ventricle
hypertrophy [21]. evaluation of pathology in congenital heart
disease, cardiac masses, cardiomyopathies and valvular heart
diseases [19].

A typical setup of large clinical trial consist of multiple
locations across the globe. Each location is referred to as
clinical trial site. Multiple clinical trial sites interact with a
clinical research organization (CRO). The CRO manages the
clinical trial of drugs for the sponsoring pharmaceutical orga-
nization. Three major activities are carried out at the clinical
trial sites. They are enrolment of subjects, administration of
the drug under trial to subjects and the acquisition of images
from MRI system. Daily, several thousands of slices contained
in hundreds of MRI volume data are routed from the clinical
trial sites to a CRO.

The quality of a medical image can be assessed either in
terms of its measurable physical properties or the medical
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goal of the image [22]. Measurable physical properties include
visual attributes such as texture, contrast, sharpness and noise.
The medical goal of the image is the task of the imaging
system from which the image was acquired [23], [24]. The
following characteristics and requirements in a large clinical
trial justify the need for a no-reference objective quality
evaluation of MRI images.

1) Quality Monitoring Through Stages of Imaging Work-
flow
The task of acquisition, storage, transmission, processing
and analysis can have adverse effect on image qual-
ity. The potential of an MRI system to generate high
contrast image can be reduced by improper system
parameter settings. Concern for patient comfort may
require trade-off between signal-to-noise ratio, image
resolution and length of scan time [25]. MRI signal
is sensitive to motion [26]. It is extremely difficult for
a subject to maintain ideal pose during every visit for
image acquisition. Patient motion and the manifestations
of physiological functions such as breathing and heart
beat introduces blur and artifacts during acquisition
[27], [28]. The processes of storage and transmission of
images can introduce blur and blocking which reduces
image details and sharpness [29]. Wavelet and total
variation approaches to the removal of noise, deblurring
and enhancement introduce ringing artifacts and blurred
edges resulting in loss of diagnostic information in the
images [30], [31], [32].

2) Limitations of Subjective Quality Evaluation
Subjective evaluation by human observers is regarded
as the gold standard for quality evaluation. However
several factors limits its application in large clinical
trials. Trained experts cannot cope with the large volume
of data that are processed in clinical trials [33]. Human
emotions, environmental and lighting conditions influ-
ence subjective evaluation by radiologists and trained
MRI readers resulting in intra and inter expert variability
[34], [33], [35]. Efficient processing and the manage-
ment of MRI data demand real-time operation offered by
objective quality evaluation. There is little tolerance for
the cumbersomeness and the variability of the outcomes
of subjective image quality evaluation.

3) Inter-Site Variations in MRI System Parameters
Cost-saving measures by the pharmaceutical companies
requires that only MRI systems available at the clinical
trial sites are utilized for acquisition. The consequences
are variations in the quality of images from the different
scanner manufacturers. It is impractical to construct a
single image model to act as reference image for the
evaluation of images from the different trial sites. In the
real world there is no image having ideal qualities that
can be regarded as a reference image. Thus no-reference
method based on image quality attributes is a more
practical approach to evaluate image quality [36]. Good
clinical practice demands high level of integrity from
clinical data. The reliability of metrics derived from
MRI-based images acquired from the different clinical

trials sites, to a large extent, is dependent on the re-
evaluation and standardization of image quality before
data analysis.

4) Intra-Subject Variations in Acquisition Parameters
Images of a subject acquired at different time points
requires registration before analysis. There is also the
possibility of scanner change at the clinical trial sites
for clinical trials that span over a period of time.
Intensity mismatch is common occurrence between im-
ages acquired at different time points. Processing tasks
such as intensity normalization and image registration
demands quality re-evaluation to assess the integrity of
information contained in the images.

5) Conformity with Acquisition Protocols
Brain measurements derived from MRI systems are sus-
ceptible to differences in imaging sequence parameters
[37]. In clinical trials the sponsoring pharmaceutical
organization outline acquisition protocols which include
requirements on image quality to ensure optimal utility
of the images and avoid inaccurate diagnosis [38], [39].
Post-acquisition image quality evaluation at the CRO is
one of key steps towards conformity with the acquisition
protocols.

Signal-to-noise ratio (SNR), mean square error (MSE)
and peak signal-to-noise ratio (PSNR) are the popular full-
reference quality evaluation methods at the acquisition stage of
MRI images. Several post-acquisition evaluation methods have
been proposed. The report in [40] apply analysis of variance
(ANOVA) algorithm to assess the variation of several quality
measures with different levels of distortions. The authors in
[39] combine the detection of artifacts and estimation of noise
level to measure image quality. Recently the report in [41] pro-
pose a no-reference method which predict brain MRI quality
based on five quality attributes. The attributes are lightness,
contrast, sharpness, texture details and noise. The report in
[42] predict image quality by casting the relationship between
entropy and classical image quality attributes on Bayesian
framework. Another report [43] computes image quality by
using three separate geo-spatial feature vectors extracted from
a test image to standardize corresponding Gaussian distributed
quality models. Other recent reports assess image quality
based on how subject motion during acquisition bias structural
information and metrics derived from the image [44], [45],
[46], [47], [48]. This report provide only a brief review of
image quality evaluation. Detailed review of quality evaluation
methods for medical images are available in [36], [49], [50],
[51], [52].

Current quality evaluation methods for MRI images are
designed using different quality evaluation models for specific
stages of the imaging workflow. There is no specific quality
evaluation method that can effectively evaluate the quality of
an image from acquisition through the different stages of the
imaging workflow. Current methods such as [39], [44], [45]
which assume that background noise voxels contain informa-
tion pertinent to quality of images have several shortcomings.
First, they cannot be applied to parallel imaging technique
which the noise level is variable across the image field of view
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[53]. Second, background-based noise estimation methods are
only suitable for images in which the field of view allows
the MRI system to capture air-tissue boundary and generate
images with background that describe the surrounding air. For
this reason background-based noise estimation methods will
be suitable for brain MRI images but useless for cardiac and
lung MRI images with small field of view because background
voxels are not available. Even for brain MRI images, the
performance of these algorithms can be significantly limited by
underestimation of noise level when the number of background
voxels are limited or corrupted by artifacts [54], [55]. The
need for a large population to extract relevant features for the
construction of quality model can be regarded as a drawback
for the reports in [42], [43]. This drawbacks makes it difficult
to achieve the much desired consistent quality evaluation
required in good clinical practice. Thus, it can be said that
current algorithms are unsuitable for large clinical trials.

This paper describes a new objective, no-reference attribute-
based quality evaluation method for MRI images. It is based
on the application of moments-preserving property of additive
linear degradation model, labeling problem and the central
limit theorem to the pixel configurations that describe each
possible level of contrast degradation in an MRI slice. La-
beling problem is used to classify the different levels of
degradation in an image.

This paper is organized as follows. The next Section de-
scribes the materials and method used for quality assessment.
Section 3 displays results of the objective and subjective
performance evaluation of the proposed quality metric. Results
from the experiment are discussed in Section 4. Section 5
concludes this report.

II. MATERIALS AND METHODS

A. Materials

1) Sources and Description of Test Data: The test data
were retrospectively acquired from different models of Gen-
eral Electric (GE) and Siemens 1.5 and 3T scanners that
use different coils, and were obtained from four different
sources. The sources of data are NeuroRx research Inc.
(https://www.neurorx.com), BrainCare Oy. (http://braincare.fi/
), the Alzheimer’s disease neuroimaging initiative (ADNI)
(www.adni.loni.usc.edu) and the Department of Diagnostic
Imaging of the Hospital for Sick Children in Toronto, Canada
(http://www.sickkids.ca/DiagnosticImaging/index.html).

There are thirty nine brain MRI volume data. They consist
of fifteen T2 weighted, ten T1 Magnetization-Prepared Rapid
Gradient Echo (MPRAGE) pulse sequence and fourteen con-
ventional T1 weighted images.

All the T2 volume data were without perceived degradation.
There are five, seven and three T2 volume data from NeuroRx,
ADNI and BrainCare, respectively. Each T2 volume data
from NeuroRx and ADNI contain 60 slices. Each slice has
dimension 256×256 and 2.4 mm thickness. There are 24 slices
in the T2 volume data from BrainCare, each with dimension
448 × 390 voxels and 2.6 mm thickness. The MPRAGE
pulse sequence images from ADNI were without perceived
degradation. Each data has 150 slice with dimension 190×160

voxels and 1.2 mm thickness. All the conventional T1 MRI
volume data from NeuroRx were originally acquired with
various configurations of bias fields.

2) Cardiac MRI Data: There are 16 cardiac MRI volume
data from the Department of Diagnostic Imaging of the
Hospital for Sick Children in Toronto, Canada. The data were
acquired as short axis MRI data. The images were acquired
using the Fast Imaging Employing Steady State Acquisition
(FIESTA) sequence protocol. The images reveal the endocar-
dial and epicardial structures of the ventricle. The data were
among the experimental data in the report [56] which describe
the framework for the analysis of short axis cardiac MRI using
statistical models of shape and appearance. Each volume data
contain 20 frames. The number of slices in each frame varies
from 8 to 15. The dimension of each slice is 256× 256 along
the long axis.

3) Artificial Degradation: Three different types of degra-
dation; circular blur, motion blur and Rician noise at different
levels were artificially induced on the foreground and back-
ground voxels of the test data. Circular blur was simulated by
convolving a slice in a volume data with circular averaging
filter of radius r, {r : 0 < r < 7} voxels. The range of the
radius of the circular averaging filter was scaled from level 1
to level 15 in unit step. The motion blur was induced on a slice
by convolving it with a special filter which approximates the
linear motion of a camera. The linear motion is described by
two parameters, the linear distance in voxels and the angular
distance in degree. Both parameters were scaled from 1 to 15
in unit step. Two separate and identical Gaussian noise levels
were generated to simulate the real and imaginary components
in the complex plane of MRI acquisition process. Rician noise
was added to the data by computing the magnitude of the
complex data. The noise level was scaled from 1 to 15 in unit
step.

B. Problem Formulation

1) Structural and Acquisition Models of MRI: Following
on the contribution in [57] we model an ideal MRI slice
as statistically simple and structurally piecewise constant. A
slice is regarded as a two-tissue class binary image. The two-
tissue class MRI slice follows the same reasoning in [58] that
regard the observed grayscale image as a blurred version of
an underlying binary image. With reference to a T2 weighted
MRI slice the bright voxels describe the high density of edges
that describe the cortical gray matter, ventricular system and
the boundaries between the different anatomical structures.
The white matter and other anatomical structures are described
by the dark voxels.

MRI image acquisition follows the mathematical model of a
2D linear shift-invariant imaging system [59], [60], expressed
by:

Id = HIf + n (1)

where Id is the observed grayscale image, If , the underlying
ideal image, H can be either space-invariant point spread
function or multiplicative spatially varying factor and n is
random noise. The random noise is independent of the image
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Fig. 1. The flow chart of our proposed no-reference quality evaluation for MRI images. The first step rescale REX the intensity level of the test image TIM
to lie between 0 and 1, followed by the extraction FRX of foreground FRG. The third step computes (mIX, sIX) the first mI0 and second sI0 moments of
the test image. The local contrast feature image LCI is extracted LCX in the fourth step. The fifth step computes (mCX, sCX) the first mCX and second
sCX moments of the local contrast feature image. The lightness contrast quality score q1 and the texture contrast quality score q2 are computed in the sixth
and seventh steps from the cumulative normal distribution function NPD of the random variables evaluated at (X = sCX , Y = mCX). In the last step, the
total quality score is computed from the weighted sum of the lightness and contrast quality scores.

spatial coordinates and modeled as a Gaussian distribution
with mean µn = 0 and variance σ2

n.
An MRI slice is formed on a rectangular lattice. The lattice

consist of sites S corresponding to the location of image voxels
in Euclidean space [61]:

S = {1, · · · ,m} (2)

where {1, · · · ,m} are the indices of the sites. Label L is the
set of pixel intensity levels that can be assigned to a site [61]:

L = {1, · · · ,M} (3)

where {1, · · · ,M} are the indices of the labels. Image labeling
problem is the assignment of a label from the set L to each
of the site in S.

2) Ideal MRI Acquisition: In the absence of any degrada-
tion, there is no random noise, the multiplying spatial varying
factor and the space-invariant point spread function are identity
matrix:

n = 0

H = I
(4)

Under this condition the observed MRI slice possess its full
natural properties and is considered the exact replica of the
underlying ideal image:

Id = If (5)

Let Ic denote the local contrast feature LCF image derived
through the use of appropriate filter to extract local information
from the observed image. Under an ideal acquisition condition,
based on the two-tissue class model, the LCF image is a replica

of the observed image as well as a replica of the underlying
ideal image;

Ic = Id (6)

Ic = If (7)

Therefore, the first and second moments of the LCF image
and the observed image are equal

µc = µd (8)

σ2
c = σ2

d (9)

3) Real MRI Acquisition: The mathematical model of im-
age acquisition expressed in Eq. 1 indicates that all the differ-
ent types of degradation which are present during real MRI
acquisition process are derived from three sources; random
noise, the multiplying spatial varying factor and the space-
invariant point spread function. In this report we generalize
invariant features proposed for blur degradation by [62] to
include all the different types of degradation. Specifically, in
the presence of any degradation, the first and second moments
of the ideal image are preserved in the observed image:

µf = µd (10)

σ2
f = σ2

d (11)

The severity of any type of degradation is denoted by integer
numbers {l : 0, 1, 2, · · · , L} where l = 0 implies absence of
degradation, that is, image acquisition under ideal condition.
At each level of degradation, a unique set of label Ll referred
to as image pixel configuration [61] is assigned to each site
on the grid of the observed image Idl

. With reference to
8-bit grayscale image, each image pixel configuration is a
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Fig. 2. Description of the proposed no-reference quality evaluation for MRI images. (a) The test image has its pixel intensity level rescaled to lie between
0 and 1. (b) Foreground of the test image in (a) is extracted. (c) Local contrast feature image is extracted from the test image. (d) The second moments
(sI0, sCI) is computed from the test image and the local contrast feature image. The variance SQs of the normal distribution is also computed. (e) The first
moments (mI0, mCI) computed from the test image and the local contrast feature image as well as the variance SQm of the normal distribution. (f) Two-tail
cumulative distribution function for the computation of lightness contrast quality score. (g) One-tail cumulative distribution function for the computation of
texture contrast quality score. (h) Bar chart of the lightness contrast quality score, texture contrast quality score and the total quality score.

sample of size 256, obtained at random, with replacement,
from the population of 256 formed by 8-bit grayscale voxels.
The total number of possible degradation levels is all the
possible random samples L = 256256.

The mean µcl of the LCF image extracted from the observed
image Idl

at each level l of degradation is a random variable
X . According to the central limit theorem, if the number of
possible degradation levels L tends to infinity and µcl is finite,
the distribution of X approaches a normal distribution with
mean µX and variance σ2

X ::

lim
L→∞

P (X) =
1

σX
√
2π

exp−

(
(x− µX)

2

2σ2
X

)
(12)

where µX = µf is the mean of the underlying ideal image If .
Using the same hypothesis, the variance σ2

cl
of the LCF

image extracted from the observed image Idl
at each level l

of degradation is also a random variable Y . The central limit
theorem says that the distribution of Y approaches a normal
distribution with mean µY and variance σ2

Y ::

lim
L→∞

P (Y ) =
1

σY
√
2π

exp−

(
(y − µY )

2

2σ2
Y

)
(13)

where µY = σ2
f is the variance of the underlying ideal image

If .

4) Quality Prediction: Quality prediction is based on mak-
ing analogy between the Gaussian distributions expressed in
Eq. 12 and Eq. 13 and the power spectral density of an image.
The pixel configurations assigned to an observed image at
each possible level of degradation is the equivalent of all the
possible frequencies contained in the image. The power of
the observed image at a specific frequency is the variance
of the LCF image extracted from the observed image. The
maximum possible total power in the spectrum is the area
under the curve that describe each probability distribution.
The total power corresponds to the maximum possible image
contrast [63]. Two quality scores, lightness contrast quality
score and the texture contrast quality score of the test image
It can be predicted from the appropriate Gaussian distribution.

Given the combined effect of all the possible distortions,
the lightness contrast quality score q1 is the magnitude of
perceived visual differences of local structures within the
image. It is expressed by the normal cumulative distribution
function of Y

q1 = P (zc ≤ yt) (14)

where yt the standard deviation of the LCF image extracted
from the test image It standardize the normal distribution Y
to obtain zc, the z-score:

zc =
‖yt − µY ‖

σY
(15)
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The texture contrast quality score q2 is the magnitude of
details that describe the local structures and the different
anatomical structures within the image in the presence of either
blurring process or noise degradation process. It is computed
from a one-tailed probability distribution:

q2 =

{
2[P (zs ≤ xt)] if xt ≤ µX

2(1− [P (zs ≤ xt]) otherwise.
(16)

where P (zs ≤ xt) is the normal cumulative distribution func-
tion given that the mean xt of the local contrast feature image
standardize one-half of the normal distribution expressed in
Eq. 12 to obtain the z-score zs:

zs =
‖xt − µX‖

σX
(17)

There are two reasons to justify the computation of the texture
contrast quality score using one-half of the normal distribution.
The mean of the normal distribution can be regarded as a
natural threshold which separate the influence of noise and
blur degradation processes. There is increase dominance of
noise and blur below and above the threshold. Above the
threshold, where noise dominates, the mean of the LCF image
is higher than the mean of the observed image. Below the
threshold, where blur dominates, the mean of the LCF image is
lower than the mean of the observed image. Both degradation
processes results in loss of sharpness but in opposite direction
on either side of the threshold [41]

The variances, σX , σY associated with the lightness con-
trast quality score and the texture contrast quality score are
determined using the principle of three-signal rule [64]:

P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.9973 (18)

The total quality score Q is the weighted sum of the
predicted scores for the two quality attributes

Q = µtq1 + (1− µt)q2 (19)

where {0 ≤ µt ≤ 1} is the first moment of the test image. The
philosophy behind the assignment of weight to each quality
score is based on the lightness of the image. For images with
higher level of lightness µt → 1 higher weight is assigned to
the lightness contrast quality score and lower weight to the
texture contrast quality score. On the other hand, images with
lower level of lightness µt → 0 have lower weight assigned to
the lightness contrast quality score and higher weight assigned
to the texture contrast quality score.

C. Objective Evaluation

In this section we use the flow chart of Fig. 1 and the images
displayed in Fig. 2 to describe the eight steps to implement our
proposed no-reference quality evaluation for MRI images. The
MRI slice is from a MRI volume data provided by BrainCare.

1) Step 1 - Intensity Rescaling: The intensity level of the
test image TIM shown in Fig. 2a is rescaled REX to lie
between 0 and 1 so that the rescaled test image RES in Fig.
2b can be regarded as a blurred version of a binary image
[58].

2) Step 2 - Foreground Extraction: Foreground extraction
FRX extracts the foreground voxels FRG shown in Fig.
2c. Foreground extraction excludes the background voxels so
that quality evaluation is computed from only the foreground
voxels which contains the anatomical structures in the test
image.

3) Step 3 - Compute Image Moments of the Test Image:
Two actions, mIX and sIX refer to the foreground voxels in
step 2 to extract the first moment mI0 and the second moment
sI0 of the test image

4) Step 4 - Contrast Feature Image Extraction: Local
contrast feature image LCI shown in Fig. 2d is extracted LCX
from the test image by convolving the test image with a local
range filter of appropriate size. We hereby emphasize the need
for the use of local range filter of appropriate size because the
algorithm is sensitive to the size of filter. Larger filter size
causes loss of fine details while smaller filter size will result
in loss of spatial coherence in the filtered image [65]. A 7×7
filter is recommended for images with either row r or column
c dimensions {200 ≤ (r, c) ≤ 512}. Standardization of image
quality across different clinical trial sites is attained through
the combination of intensity rescaling in step 1, foreground
extraction in step 2 and the use of fixed size filter for feature
extraction in step 3.

5) Step 5 - Compute Image Moments of the Local Contrast
Feature Image: The first moment mCI and the second moment
sCI of the local contrast feature image are computed mCX,
sCX with reference to the foreground voxels.

6) Step 6 - Lightness Contrast Quality Score: The lightness
contrast quality score q1 is the cumulative normal distribution
function NPD of Y evaluated at Y = sCI according to Eq.
14 and Eq. 15. The variance SQs of the normal distribution
shown in Fig. 2g is computed by the three sigma rule TSs
according to Eq. 18 using inputs from the second moment sI0
(see Fig. 2e) of the test image and the second moment sCX
(see Fig. 2e) of the local contrast feature image.

7) Step 7 - Texture Contrast Quality Score: The texture
contrast quality score q2 is the cumulative normal distribution
function NPD of X evaluated at X = mCI according to Eq.
16 and Eq. 17. The first moment mI0 (see Fig. 2f) of the test
image and the first moment mCX (see Fig. 2f) of the local
contrast feature image are the inputs for the computation of
the variance SQm of the normal distribution shown in Fig.
2h. The variance is computed using the three sigma rule TSm
according to Eq. 18.

8) Step 8 - Total Quality Score: The total quality score is
computed according to Eq. 19.

D. Subjective Evaluation

The objective experiment was validated using QuickEval
[66], a web-based tool for psychometric image evaluation
provided by the Norwegian Colour and Visual Computing
Laboratory (www.colourlab.no/quickeval) at the Norwegian
University of Science and Technology, Gjovik, Norway. The
observers are one radiologist and one MRI reader. MRI reader
is a trained professional with experience working on MRI
images that are affected by pathology [67].
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Fig. 3. Six slices from subject identification numbers (a) 2, (b) 5, (c) 7, (d) 10 , (e) 12 and (f) 15 in a short axis cardiac MRI, (g) lightness contrast, texture
contrast, total quality scores and the mean subjective scores of 15 slices from MRI volume data of different subjects.

Fig. 4. Six slices from subject identification numbers (a) 2, (b) 5, (c) 7, (d) 10 , (e) 12 and (f) 15 in a T2 brain MRI volume data, (g) lightness contrast,
texture contrast, total quality scores and the mean subjective scores of 15 slices from MRI volume data of different subjects.

There are ten categories of the subjective experiment. The
ten categories can be split into two major categories; MRI
volume data without perceived degradation and MRI volume
data degraded by different types of degradation. The cate-
gory of MRI volume data without perceived degradation can
be further classified into three categories. They are cardiac
MRI without perceived degradation, T2 brain MRI without

perceived degradation and T1 MPRAGE brain MRI without
perceived degradation.

There are seven categories under the main category of
degraded MRI volume data. Each different levels of degra-
dation by Rician noise, circular blur and motion blur has two
categories from brain and cardiac MRI volume data to form a
total of six categories. The seventh category is T1 MRI volume
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data originally acquired with bias fields.
Three hundred and sixty slices from different MRI volume

data are utilized for each category of the experiment. The
observer assigns a score between 0 and 100, in unit steps,
to each slice. Each score assigned by the observer is divided
by 100 to ensure that the subjective and objective scales
are in the same range. In the category of MRI volume
data with artificially induced degradation, each observer was
first presented with an undistorted version of an MRI slice,
followed by increasing degradation levels of the original slice.
The distorted levels are 5, 10 and 15.

For a given category i ∈ {1, 2, · · · , 10} of the experiment
let si,j,k denote the score assigned by an observer j ∈ {1, 2}
to a slice k ∈ {1, 2, · · · , 360}. The scores assigned by each
observer to a specific slice are averaged. This gives the mean
opinion score (MOS) for the evaluated slice [68]:

µMOS =

1

2

2∑
j=1

si,j,k

 (20)

Some characteristics of the MOS subjective evaluation exper-
iment limits its efficacy in the subjective evaluation of our
proposed method. The MOS subjective experiment provides
only a global value for a specific category of experiment. It
is recommended not to compare the MOS values produced
from multi-category experiments such as our own experiments
because the values derived from MOS experiment are strongly
dependent on the set up of the experiment [68]. To overcome
these limitations we propose a variation of MOS as alterna-
tive method for the validation of our proposed method. The
proposed method is referred to as percentage difference score
(PDS). In the initial step of formulating the PDS we regard the
MOS of the observers as the reference score. The reference
score µMOS for the evaluated slice is subtracted from the
objective score Qi,k assigned by our proposed system for the
same slice. This gives what we refer to as the difference score
(DS) di,k:

di,k = µMOS −Qi,k =

1

2

2∑
j=1

si,j,k

−Qi,k (21)

The DS directly computes the difference in magnitude between
the subjective and objective quality scores. It does not does
provide quantitative relationship between the two scores. We
express the quantitative relationship between the subjective
and objective scores by the percentage difference score (PDS)
pi,k:

pi,k = 100

(
di,k
µMOS

)
(22)

Correlation coefficient measures to assess each category of
the experiment can be influenced by outliers and is based on
strong linear correlation assumption between variables [69].
As this assumption can lead to misinterpretation we proposed
to assess each category of the experiment by the number of
slices for which the PDS lies within specific range. The range
(0 < pi,k ≤ 10) , (10 < pi,k ≤ 20), (20 < pi,k ≤ 30)
and (pi,k > 30) are denoted Np0, Np10, Np20 and Np20,

respectively. However, the inter-observer variability will be
assessed using spearman correlation coefficient.

III. RESULTS

A. Objective Evaluation

The objective performance evaluation of our proposed
method is explained using six slices in each of Fig. 3 - Fig. 12.
The mean subjective score assigned by the observers to each
slice in a MRI volume data are displayed alongside the light-
ness contrast, texture contrast and total quality scores in Fig.
3g - Fig. 12g. Each figure except for Fig. 12, shows objective
evaluation of a slice from MRI volume data of fifteen different
subjects. In Fig. 12 the objective evaluation is on slices from
14 MRI volume data of different subjects. Cardiac, T2 and
T1 brain MRI volume data without perceived degradation are
displayed in Fig. 3, Fig.4 and Fig. 5, respectively. Different
levels of Rician noise degradation on cardiac and T2 brain
slices are displayed in Fig. 6 and Fig. 7, respectively. Figure
8 and Fig. 9 are images for the different levels of degradation
by circular blur. Corresponding degradation by motion blur are
displayed in Fig. 10 and Fig. 11. Quality assessment of MRI
slices degraded by different configurations of bias fields are
displayed in Fig. 12. Figure 13a is a T2 weighted brain MRI
slice which was originally acquired with noise. The objective
assessment by our proposed method is shown in Fig.13b.
Figure 13c shows the same MRI slice after it was processed
using noise removal algorithm proposed in [70] , [71]. The
objective assessment by our proposed method after the noise
removal is shown in Fig. 13d.

B. Subjective Validation

Validation of the proposed method through subjective evalu-
ation by human observers are shown in Tables I - VII. On each
table there are four columns under percentage difference score.
Each column display the percentage of the 360 slices used for
the subjective evaluation for which the percentage difference
score lies within the range (0 < pi,k ≤ 10) , (10 < pi,k ≤ 20),
(20 < pi,k ≤ 30) and (pi,k > 30).

Table I are the results for cardiac and brain MRI volume
data without perceived degradation and T1 volume data that
were originally acquired with bias fields. Table II - Table
IV are the results for cardiac MRI volume data degraded by
Rician noise, circular blur and motion blur, respectively. Table
V - Table VII are the results for T2 MRI volume data degraded
by Rician noise, circular blur and motion blur, respectively.
Table VIII show the variability in the scores assigned by the
two observers in the subjective validation study.

IV. DISCUSSION

A. Evaluation Across Images without Perceived Degradation

1) Cardiac MRI Images: The variations in the objective
quality scores reflects differences in the perceived visual
quality attributes of the cardiac MRI slices from the different
MRI volume data. In Fig. 3 the endocardial and epicardial
structures in the different slices are clearly visible relative to
the background. The average lightness contrast quality score
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Fig. 5. Six slices from subject identification numbers (a) 2, (b) 5, (c) 7, (d) 10 , (e) 12 and (f) 15 in a T1 MPRAGE brain MRI volume data, (g) lightness
contrast, texture contrast, total quality scores and the mean subjective scores of 15 slices from MRI volume data of different subjects.

Fig. 6. (a) A short axis cardiac MRI slice and its degraded versions at Rician noise levels (b) 3, (c) 7, (d) 9, (e) 12 and (g) 15 percent, (h) variation of the
lightness contrast, texture contrast, total quality scores and the mean subjective scores with noise levels increasing from 1 to 15.

assigned to the slices is ≈ 0.6. This score reflects the high
visibility of the foreground structures.

The constituent structures in the cardiac MRI slices have
different clarity of details. Our proposed method predict tex-
ture contrast quality scores of 0.9 and 0.8 for MRI slices from
subject number 7 (Fig. 3c) and subject number 12 (Fig. 3e),
respectively. Lower texture contrast quality scores of 0.1 and

0.2 was predicted for MRI slices from subject number 2 (Fig.
3a) and subject number 5 (Fig. 3b), respectively. MRI slice
from subject number 7 shown in Fig. 3c has better clarity of
details than MRI slice from subject number 15 shown in Fig.
3f. Expectedly our proposed method predict a higher texture
contrast quality score of 0.9 to the image in Fig. 3c and a
lower texture contrast of 0.7 to the image in Fig. 3f.
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Fig. 7. (a) A T2-weighted brain MRI slice and its degraded versions at Rician noise levels (b) 3, (c) 7, (d) 9, (e) 12 and (g) 15 percent, (h) variation of the
lightness contrast, texture contrast, total quality scores and the mean subjective scores with noise levels increasing from 1 to 15.

Fig. 8. (a) A short axis cardiac MRI slice and its degraded versions at circular blur levels (b) 3 voxels, (c) 7 voxels, (d) 9 voxels, (e) 12 voxels and (g) 15
voxels, (h) variation of the lightness contrast, texture contrast, total quality scores and the mean subjective scores with blur levels increasing from 1 to 15.

2) T2 MRI Images: All the brain MRI images in Fig. 4 are
quite visible relative to the background. The average lightness
quality scores predicted for the 16 images is ≈ 0.7. The MRI
slice from subject number 15 in Fig. 3f is visible relative to
the background. However its clarity of details is much lower
than the clarity of details in the slice from subject number 5
shown in Fig. 3b. Our proposed objective method can be said

to be in agreement with visual perception. It assigns texture
contrast quality score of 0.7 and 0.4 to the images in Fig. 3b
and in Fig. 3f, respectively.

3) T1 MRI Images: The average lightness contrast quality
score for the T1 MPRAGE images shown in Fig. 5 is ≈ 0.6.
The lightness contrast for each slice is generally lower than
the texture contrast quality score. The predicted objective
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Fig. 9. (a) A T2 weighted brain MRI slice and its degraded versions at circular blur levels (b) 3 voxels, (c) 7 voxels, (d) 9 voxels, (e) 12 voxels and (g) 15
voxels, (h) variation of the lightness contrast, texture contrast, total quality scores and the mean subjective scores with blur levels increasing from 1 to 15.

Fig. 10. (a) A short axis cardiac MRI slice and its degraded versions at motion blur levels (b) 3, (c) 7, (d) 9, (e) 12 and (g) 15, (h) variation of the lightness
contrast, texture contrast, total quality scores and the mean subjective scores with blur levels increasing from 1 to 15.

scores can be attributed to the average intensity levels of the
ventricular system and the cortical gray matter. The intensity
levels of these major anatomical structures are similar to
the background voxels. Thus the predicted lightness contrast
quality score can be said to conform with visual perception.

The image in Fig. 5b reveals only the horn of the ventricle
while the image in Fig. 5f reveals the main body of the

ventricle. Our proposed method predict a lightness contrast
quality score of 0.7 for the image in Fig. 5b. Lower lightness
contrast quality score of 0.4 was predicted for the image in Fig.
5f. Visually the image in Fig. 5f has more clarity of details than
the image in Fig. 5a. The predicted texture contrast quality
scores for these images are 0.8 for Fig. 5f and 0.6 for Fig. 5a.
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B. Evaluation Across Different Levels of Degradation

The images in Fig. 6a - Fig. 6f and the objective quality
scores in Fig. 6g show that low level Rician noise can have
severe effect on the contrast between the different anatomic
structures in cardiac images. Beyond Rician noise level of 7
percent, the foreground is clearly visible from the background.
However it becomes visually difficult to distinguish the bound-
aries between the endocardial and epicardial structures. Our
proposed method effectively captures this visual perception.
The lightness contrast quality score successively decrease from
0.9 to 0.5 for noise levels that increase from 0 percent to 15
percent. The texture contrast quality score decrease sharply
from 0.75 to 0.15 for noise level that varies from 0 percent to
6 percent.

The ventricle and the cortical gray matter structures in
the T2 images of Fig. 7 are more visible than the anatomic
structures in the cardiac images in Fig. 6. The slope of the
texture contrast quality score for the T2 images is lower
than the slope of corresponding quality scores for the cardiac
images shown in Fig. 6. This is an indication that Rician
noise severely degrades cardiac images acquired using FIESTA
protocol more than it does for T2 brain MRI images.

The lightness contrast, texture contrast and total quality
scores successively decrease for circular blur (Fig. 8 and Fig.
9) and motion blur (Fig. 10 and Fig. 11) levels which increase
from 0 to 15. The slope of the texture contrast quality score
for the cardiac images in Fig. 10 is lower than corresponding
quality score for the brain MRI images in Fig. 11. Visual
inspection of the images show that the severity of degradation
by motion blur on the cardiac images is less than those of
the brain MRI images. These results are promising for the
evaluation of images with different perceptual quality.

C. T1 MRI Images Degraded by Bias Fields

The different configurations of bias fields which degrade
the images in Fig. 12 is reflected in the objective quality
scores predicted by our proposed method. Images in Fig.
12b and 12c suffer from more severe bias fields than the
other images shown in Fig. 12. Our proposed method predicts
texture contrast quality score of 0.4 and 0.1, respectively
for these images. The images in Fig. 12a and Fig. 12f can
be considered as borderline cases because they suffer from
mild bias fields. Our proposed method predict higher texture
contrast quality scores of 0.57 and 0.5 for the images in Fig.
12a and Fig. 12f, respectively.

D. Practical Application in Clinical Environment

The images in Fig. 13 demonstrate practical application of
our proposed method in a clinical environment for quality
assessment of images. Figure 13a is a T2 weighted MRI image
of a healthy brain acquired from a GE sigma scanner with a 1.5
Tesla magnet using spin echo mode. The image in Fig. 13c is
the same image in Fig. 13a but have undergone processing for
removal of Rician noise. There are several visual differences
between the noisy image in Fig. 13a and the denoised image
in Fig. 13c. The noisy image is darker in comparison to the

denoised image and has low contrast between the cortical
gray matter region and the white matter region. Our proposed
method accurately assessed the difference in contrast by as-
signing lightness contrast quality scores of 0.32 and 0.8 to
the noisy and denoised images, respectively. The image was
denoised without significant blurring but it is very obvious that
the texture features which was visible in the noisy image was
eroded after processing. Thus, the predicted texture contrast
quality score of 0.7 and 0.1 for the noisy and denoised image
can be said to be in agreement with visual perception.The
total quality score for both images appear to remain the same
because the total quality score is heavily weighted towards
texture contrast quality attribute.

E. Correlation with Subjective Evaluation by Human Ob-
servers

The validation results in Table I - Table VII show that there
is good correlation between our proposed objective method
and the subjective score assigned by human observers. More
than 70 percent of the slices used in all categories of the
experiment have PDS less than 30 percent. The validation
results show that for increasing levels of degradation there
is a general decrease in percentage of slices with specific
percentage difference scores. Thus it can be said that human
observers tend to have better agreement at lower levels of
degradation than at higher levels of degradation. Furthermore,
the subjective evaluation by both human observers can be
said to be reliable because the minimum and maximum inter-
observer reliability are 0.61 and 0.81, respectively.

F. Interpretation of Objective Quality Scores

The threshold quality index for making decision on ac-
ceptable or non-acceptable image quality was fixed after due
consultation with the human observers involved with the
subjective evaluation experiments. There was consensus from
both observers that texture contrast quality score should be
the primary score for quality evaluation. Slices with texture
contrast quality scores q2 ≤ 0.4 was recommended for visual
examination. This is to determine if there is need for further
reprocessing before any image analysis task can be carried
out. The observers also recommended visual examination for
slices with lightness contrast quality score of q1 ≤ 0.5.

G. Computational Complexity

Our proposed method is computationally efficient. The nor-
mal distributions were built from central limit theorem unlike
other approaches such as [42], [72] which seek to build quality
model from MRI volume data derived from large population.
Quality evaluation steps such as intensity rescaling, feature
extraction and computation of image moments are computed
in a very simple method. Furthermore there is no need for
additional resources such as image registration.

H. Limitations of Proposed Quality Assessment Method

The perceptual weight assigned for lightness contrast and
texture contrast quality attributes was not optimal, but was
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derived in an ad hoc manner. The consequence is that the
predicted total quality score may not correlate with the light-
ness and contrast quality attributes for different levels of
degradation.

The proposed quality assessment method is designed to
assess image quality based on four of several types of
degradation processes. The degradation processes are circular
blur, gaussian blur, Rician noise and intensity nonuniformity.
Quality prediction does not incorporate variables from artifacts
such as zebra stripes, chemical shift and aliasing as well as
geometric and structural deformation of the MRI image. For
this reason, the proposed quality assessment method will be
suitable as an integral but fundamental part of a larger quality
control system.

Quality prediction from the proposed method is a global
approach which assumes that an MRI slice is homogeneous
whereas MRI image, like most medical images are heteroge-
nous. Thus quality prediction from the proposed method may
not be a reliable assessment in clinical task where the focus
is on specific anatomic structure. Examples are some task in
clinical research such as atrophy measurement which requires
quality assessment on specific anatomic structures of the brain;
white matter, gray matter and ventricular system.

A simple but effective approach was adopted for foreground
extraction. However, we acknowledge that our approach is not
robust. It is more effective for brain MRI images than for
cardiac MRI images. The basis of foreground extraction in the
proposed method is the use of first moment as global thresh-
old. The efficacy of our approach for foreground extraction
decreases at high levels of noise.

Limited clinical data was a major logistic challenge during
the research. At clinical research centers, degraded MRI im-
ages are further processed for quality enhancement as soon
as they are detected. However, we had access to clinical MRI
images with different configurations of intensity nonunifor-
mity, but it was difficult to access real MRI images with
different levels of circular blur, gaussian blur and Rician noise
degradation. Only retrospective MRI data without perceived
degradation were available from the different sources. For this
reason the degradation processes were modeled and artificially
induced on real clinical data. Limited data makes it difficult to
provide satisfactory statistical analysis which proves that our
proposed method cover different processing requirements in
clinical trials.

The limited number of readers and data are also to blame for
the absence of robust statistical analysis of the validation study.
We acknowledge that two statistical information was missing
from the validation study. First there was is no information
on the direction of the disagreement between the predicted
objective quality scores and the subjective quality scores
assigned by human observers. Second, there is no information
on intra-reader variability as well as the predicted quality
scores when the data were acquired.

I. Future Research Direction

In the future work we will address most limitations of our
currently proposed method so that the improved algorithm can

be play a significant role within a larger quality control system.
We hope to develop robust foreground extraction algorithm
and incorporate segmentation algorithm to allow the prediction
of quality scores for specific region-of-interest within an MRI
image. The quality variables will extend beyond classical
quality attributes to include several types of artifacts and
structural image quality attributes. Concerted effort will be
made to recruit more readers for the subjective validation
study. Relatively large clinical data with different levels of
degradation will be acquired so that we can provide robust
statistics analysis of the subjective validation study.

V. CONCLUSION

There is increasing clinical interest in the use of MRI images
for the study of human anatomy, treatment and diagnosis
of diseases. Currently MRI images are been considered the
primary endpoints in large clinical trials of drugs for the
treatment of neurological and cardiovascular diseases. In large
clinical trials large volumes of MRI data are processed. Thus
no-reference objective quality assessment is highly desired.
The reliability of metric derived from quantitative analysis
of MRI images is strongly dependent on rigorous monitoring
throughout the various stages of the imaging workflow. We
hereby propose a new method to evaluate the quality of
brain MRI images from acquisition through processing to the
analysis stages of the imaging workflow. Our proposed quality
evaluation method re-evaluate and standardize the quality of
MRI images acquired from different clinical trial sites across
the globe and through all the stages of the imaging workflow.
Experimental results demonstrates that our proposed method
had good correlation with human visual judgement and gives
fairly accurate quality evaluation within and across good
quality images and different levels of degradation.
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[25] A. Pižurica, W. Philips, I. Lemahieu, and M. Acheroy, “A versatile
wavelet domain noise filtration technique for medical imaging,” Medical
Imaging, IEEE Transactions on, vol. 22, no. 3, pp. 323–331, 2003.

[26] L. Axel and L. Dougherty, “Mr imaging of motion with spatial modula-
tion of magnetization.” Radiology, vol. 171, no. 3, pp. 841–845, 1989.

[27] R. J. Ordidge, J. A. Helpern, Z. Qing, R. A. Knight, and V. Nagesh,
“Correction of motional artifacts in diffusion-weighted mr images using
navigator echoes,” Magnetic resonance imaging, vol. 12, no. 3, pp. 455–
460, 1994.

[28] Z. Caramanos, V. S. Fonov, S. J. Francis, S. Narayanan, G. B. Pike, D. L.
Collins, and D. L. Arnold, “Gradient distortions in mri: characterizing
and correcting for their effects on siena-generated measures of brain
volume change,” NeuroImage, vol. 49, no. 2, pp. 1601–1611, 2010.

[29] Y. Zhu, G. Zhai, K. Gu, and W. Zhu, “No-reference quality assessment
for jpeg compressed images,” in 2017 Ninth International Conference
on Quality of Multimedia Experience (QoMEX), May 2017, pp. 1–6.

[30] C. Knaus and M. Zwicker, “Dual-domain image denoising,” in Image
Processing (ICIP), 2013 20th IEEE International Conference on. IEEE,
2013, pp. 440–444.

[31] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “Perceptual blur
and ringing metrics: application to jpeg2000,” Signal processing: Image
communication, vol. 19, no. 2, pp. 163–172, 2004.

[32] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 2. IEEE, 2005, pp.
60–65.

[33] N. De Stefano, A. Giorgio, M. Battaglini, M. Rovaris, M. Sormani,
F. Barkhof, T. Korteweg, C. Enzinger, F. Fazekas, M. Calabrese et al.,
“Assessing brain atrophy rates in a large population of untreated multiple
sclerosis subtypes,” Neurology, vol. 74, no. 23, pp. 1868–1876, 2010.

[34] E. A. Krupinski, “The importance of perception research in medical
imaging,” Radiation Medicine-Medical Imaging and Radiation Oncol-
ogy, vol. 18, no. 6, pp. 329–334, 2000.

[35] R. Robinson, V. V. Valindria, W. Bai, H. Suzuki, P. M. Matthews,
C. Page, D. Rueckert, and B. Glocker, “Automatic quality control
of cardiac mri segmentation in large-scale population imaging,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2017, pp. 720–727.

[36] L. S. Chow and R. Paramesran, “Review of medical image quality
assessment,” Biomedical Signal Processing and Control, vol. 27, pp.
145–154, 2016.

[37] S. Chalavi, A. Simmons, H. Dijkstra, G. J. Barker, and A. S. Rein-
ders, “Quantitative and qualitative assessment of structural magnetic
resonance imaging data in a two-center study,” BMC medical imaging,
vol. 12, no. 1, p. 1, 2012.

[38] J. D. de Certaines and G. Cathelineau, “Safety aspects and quality
assessment in mri and mrs: a challenge for health care systems in
europe,” Journal of Magnetic Resonance Imaging, vol. 13, no. 4, pp.
632–638, 2001.

[39] B. Mortamet, M. A. Bernstein, C. R. Jack, J. L. Gunter, C. Ward, P. J.
Britson, R. Meuli, J.-P. Thiran, and G. Krueger, “Automatic quality
assessment in structural brain magnetic resonance imaging,” Magnetic
Resonance in Medicine, vol. 62, no. 2, pp. 365–372, 2009.

[40] J. Woodard and M. Carley-Spencer, “No-reference image quality metrics
for structural mri,” Neuroinformatics, vol. 4, no. 3, pp. 243–262, 2006.

[41] M. Osadebey, M. Pedersen, D. Arnold, and K. Wendel-Mitoraj, “No-
reference quality measure in brain mri images using binary operations,
texture and set analysis,” IET Image Processing, vol. 11, no. 9, pp. 672–
684, 2017.

[42] M. Osadebey, M. Pedersen, D. Arnold, and K. Wendel-Mitoraj,
“Bayesian framework inspired no-reference region-of-interest quality
measure for brain mri images,” Journal of Medical Imaging, vol. 4,
no. 2, pp. 025 504–025 504, 2017.

[43] M. Osadebey, M. Pedersen, D. Arnold, and K. Wendel-Mitoraj, “The
spatial statistics of structural magnetic resonance images: application to
post-acquisition quality assessment of brain mri images,” The Imaging
Science Journal, vol. 65, no. 8, pp. 468–483, 2017.

[44] A. F. Rosen, D. R. Roalf, K. Ruparel, J. Blake, K. Seelaus, L. P. Villa,
R. Ciric, P. A. Cook, C. Davatzikos, M. A. Elliott et al., “Data-driven
assessment of structural image quality,” NeuroImage, 2017.

[45] O. Esteban, D. Birman, M. Schaer, O. O. Koyejo, R. A. Poldrack, and
K. J. Gorgolewski, “Mriqc: Advancing the automatic prediction of image
quality in mri from unseen sites,” PloS one, vol. 12, no. 9, p. e0184661,
2017.

[46] M. Reuter, M. D. Tisdall, A. Qureshi, R. L. Buckner, A. J. van der
Kouwe, and B. Fischl, “Head motion during mri acquisition reduces
gray matter volume and thickness estimates,” Neuroimage, vol. 107, pp.
107–115, 2015.

[47] A. Alexander-Bloch, L. Clasen, M. Stockman, L. Ronan, F. Lalonde,
J. Giedd, and A. Raznahan, “Subtle in-scanner motion biases automated
measurement of brain anatomy from in vivo mri,” Human brain map-
ping, vol. 37, no. 7, pp. 2385–2397, 2016.

[48] H. R. Pardoe, R. K. Hiess, and R. Kuzniecky, “Motion and morphometry
in clinical and nonclinical populations,” Neuroimage, vol. 135, pp. 177–
185, 2016.

[49] L. Moraru, S. S. Moldovanu, and C. D. Obreja, “A survey over image
quality analysis techniques for brain mr images,” International Journal
of Radiology, vol. 2, no. 1, pp. 24–28, 2015.

[50] C. Cavaro-Menard, L. Zhang, and P. Le Callet, “Diagnostic quality
assessment of medical images: Challenges and trends,” in 2010 2nd
European Workshop on Visual Information Processing (EUVIP), July
2010, pp. 277–284.

[51] T. Mathews and M. R. Smith, “Objective image quality measures for
evaluating advanced mri reconstruction methods,” in Canadian Confer-
ence on Electrical and Computer Engineering, 1996, vol. 1, 1996, pp.
359–361 vol.1.

[52] C. B. Lauzon, B. C. Caffo, and B. A. Landman, “Towards automatic
quantitative quality control for mri,” in SPIE Medical Imaging. Inter-
national Society for Optics and Photonics, 2012, pp. 83 140K–83 140K.

[53] P. Kellman and E. R. McVeigh, “Image reconstruction in snr units: a
general method for snr measurement,” Magnetic resonance in medicine,
vol. 54, no. 6, pp. 1439–1447, 2005.

[54] J. Rajan, D. Poot, J. Juntu, and J. Sijbers, “Noise measurement from
magnitude mri using local estimates of variance and skewness,” Physics
in medicine & biology, vol. 55, no. 16, p. N441, 2010.

[55] S. Aja-Fernández, A. Tristán-Vega, and C. Alberola-López, “Noise
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TABLE I
ANALYSIS OF PDS FOR CARDIAC AND BRAIN MRI VOLUME DATA

WITHOUT PERCEIVED DEGRADATION AND BRAIN MRI VOLUME DATA
DEGRADED BY BIAS FIELDS

Experiment
Category

Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

Cardiac MRI
(No Degradation) 360 55 15 10 20

T2 Brain MRI
(No Degradation) 360 70 10 5 15

MPRAGE Brain MRI
(No Degradation) 360 73 12 5 10

T1 Brain MRI
(Bias Fields) 360 65 10 8 17

TABLE II
ANALYSIS OF PDS FOR CARDIAC MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF RICIAN NOISE

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 55 15 10 20
5 360 53 12 7 18
10 360 50 20 5 25
15 360 45 15 10 30

TABLE III
ANALYSIS OF PDS FOR CARDIAC MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF CIRCULAR BLUR

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 55 15 10 20
5 360 50 15 10 25
10 360 52 12 9 27
15 360 47 15 12 26

TABLE IV
ANALYSIS OF PDS FOR CARDIAC MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF MOTION BLUR

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 55 15 10 20
5 360 60 8 9 23
10 360 56 11 11 22
15 360 52 12 7 29

TABLE V
ANALYSIS OF PDS FOR T2 BRAIN MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF RICIAN NOISE

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 70 10 5 15
5 360 67 8 7 18
10 360 63 9 8 20
15 360 60 8 8 24

TABLE VI
ANALYSIS OF PDS FOR T2 BRAIN MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF CIRCULAR BLUR

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 70 10 5 15
5 360 65 12 7 16
10 360 62 6 7 25
15 360 62 8 7 23

TABLE VII
ANALYSIS OF PDS FOR T2 BRAIN MRI VOLUME DATA DEGRADED BY

DIFFERENT LEVELS OF MOTION BLUR

Degradation Level Number
Slices

Percentage Difference Score
Np0 Np10 Np20 Np30

0 360 70 10 5 15
5 360 68 11 4 17
10 360 65 6 5 24
15 360 63 9 2 26

TABLE VIII
INTER-RATER RELIABILITY BETWEEN TWO OBSERVERS IN THE TEN

CATEGORIES OF THE SUBJECTIVE VALIDATION STUDY

Experiment Category Inter-Rater
Reliability

Cardiac MRI (No Degradation) 0.68
T2 Brain MRI (No Degradation) 0.73
MPRAGE Brain MRI
(No Degradation) 0.80

T1 Brain MRI
(Bias Fields) 0.75

Cardiac MRI (Rician Noise) 0.71
Cardiac MRI (Circular Blur) 0.65
Cardiac MRI (Motion Blur) 0.73
T2 Brain MRI (Rician Noise) 0.78
T2 Brain MRI (Circular Blur) 0.72
T2 Brain MRI (Motion Blur) 0.81


