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ABSTRACT: As a result of the digitalization of the power business in Norway and Europa, a lot of new 
possibilities and challenges arise. In 2014 an expert committee one outlined a proposal for the future grid 
company structure in Norway (Reiten, 2014). In addition, new technologies are being implemented in the 
system. Wind power, solar power, un-regulated small hydro power production, battery storage domestic 
and industrial and electrification of transport. Transmission System Operators (TSOs) have a responsi-
bility to supply industry and communities with reliable electric power. However, the operators have been 
virtually blind to slowly occurring changes in the load profile that reduce the expected regularity of the 
power supply. This paper will focus on the possibilities and challenges the power business are facing. The 
paper will describe what technologies is needed i.e Real time probabilistic risk calculations, artificial intel-
ligence, machine learning and smart grid technology. The main question is: can the power business and 
the introduction of new system tools manage without probabilistic risk calculation for making use of the 
digitalization and the corresponding big data?

socio-economic efficiency in the energy sector 
Now, the Norwegian main grid is aging and in the 
process of being replaced and upgraded by con-
struction of new 420 kV lines in combination with 
digitalization of the power system. (Statnett, 2017).

1.2 The change in the power system, smart grid, 
solar, wind, battery etc.

The energy system is a critical part of a well-func-
tioning society. Norway is largely electrified and 
power transmission is an important prerequisite 
for value creation.

Although the power grids are largely built as 
before, the power system changes at a rapid pace. 
Hence, the Transmission System Operator (TSO) 
must be an enabler and be prepared for the future. 
The Norwegian aging main grid is in the process 
of being replaced and upgraded. The power grid 
takes a long time to plan and build, and have a long 
lead time, which contrasts strongly with an energy 
sector in a rapid change. The load is increasing 
and more generation is being installed. The Green 
Certificate Scheme provides incentives to expand 
renewable power generation, including small scale 

1 INTRODUCTION

1.1 History of the electric grid

Modern Norway was built and industrialized by the 
fact that we managed to utilize rivers and waterfalls 
for power generation. Hydropower is still the cor-
nerstone of the Norwegian power system, but wind 
power and solar energy is becoming an increas-
ing part of the energy system. The grid has been 
developed over 150 years since the first small hydro 
plants were installed to supply small local indus-
tries. Hydro power plants were constructed over 
time as the industrial development moved forward. 
Initially the generation supplied local and regional 
consumers, but as transmission technology devel-
oped regions were connected via high voltage lines.

Now, the main grid is the most important part 
of the grid system, as failure here could mean 
power outage for very many consumers. The main 
grid was built largely from the 1950s to the 1980s. 
However, regional islands existed until 1994 when 
the main grid was finally established throughout 
Norway. Deregulation and competition was intro-
duced in 1991 with the purpose of improving the 
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hydropower, wind power and solar power. Imple-
mentation of Automatic Meter Reading and Con-
trol Systems at the consumer level will allow for 
activation of consumer flexibility. Consumption 
patterns in the energy sector are changing rapidly 
(NVE, 2016).

Hence, the growing expansion of renewable 
energy and activation of flexible loads increases 
the complexities in balancing generation and 
demand in the power system. The energy-shifting 
and fast-ramping capability of energy storage has 
led to increasing interests in batteries to facilitate 
the integration of renewable resources (Amrouche, 
2016).

The future power system will become even more 
dynamic and the need for real time information for 
monitoring the system status and for taking the 
proper control actions are increasing

1.3 The need for a solution

Global challenges regarding energy and climate 
change, the environment, safety, technology and 
renewable solutions, use and conservation of 
energy, use of batteries and the connection of elec-
trical vehicles requires greater effort. The chang-
ing landscape of the power and utilities industry 
is resulting in new expectations for IT. Transmis-
sion system operators are struggling to fulfil their 
traditional mission of maintaining security of 
supply in a rapidly evolving environment driven 
by digitalization. Digital transformation is some-
thing that has become a common trend, and it is 
one that has reached the Power & Utilities sector 
moving rather quickly (Digitalization & Energy, 
2016). The physical power system cannot func-
tion effectively without a well-functioning power 
market with smart ICT systems. The power system 
must be able to cope with the increasing variability 
in load and generation. Hence, in a complex power 
system, new solutions in the field of ICT and new 
market models are required to ensure the reliability 
and security of supply, to ensure that the transmis-
sion capacity is optimally utilized and that control 
actions are taken when needed.

2 DIGITALIZATION OF THE POWER 
BUSINESS—THE SOLUTION?

2.1 The goal with digitalization

The concept of a Digital Power System (DPS) has 
been discussed for many years. The DPS may be 
defined like the digital power system being the digital, 
figuration and real-time description and reappear-
ance of physical structure, technical characteristic, 
management system as well as personal information 
system of a real power system which is in operation. 
The DPS will be able to make a significant contri-

bution to administrating and decision-making more 
scientifically (Chakrabortty, 2017).

The share unregulated renewable power gen-
eration is rising and the power system is changing 
rapidly. Changes like this must be able to handle 
tomorrow’s energy system. Hence, the reasons and 
goals for implementing the digital power systems 
are multiple:

 Monitoring g and controlling all components by 
equipping them by sensors

 Measure the condition of the power system 
flows, angle differences, stability margins, and 
hence the reliability and security

 improving security and stability online, online 
making and implementing economical opera-
tion strategy and carrying out emergency and 
anti-fault control, etc.

 Better utilization of the facilities
 Precise state information results in increased 

capacity and fewer faults
 More efficient maintenance and increased lifetime

In the end, the primary goal is to increase the 
value creation while maintaining the reliability and 
security of the system.

2.2 Big data

Data has always been an important asset in every 
industry. Since the early days of the information 
age, business intelligence and descriptive statistics 
have been used as the standard tools for extracting 
information and make important decisions from 
all kinds of collected data. However, as the cost of 
collecting, storing, and processing data has been 
dropping exponentially, the amount and the diver-
sity of the data has reached the point where tradi-
tional approaches are no longer feasible. The term 
Big Data is often used to refer to any data that 
requires new techniques and tools in order for it 
to be processed and analyzed. Big Data could also 
be looked from the point of view of the new set 
of technologies that are helping to solve the chal-
lenges in collecting, managing, and analyzing Big 
Data. These technologies include cloud computing 
and cluster computing for data storage and manip-
ulation, Artificial Intelligence (AI) and machine 
learning for data analysis (L’Heureux, 2017).

As in many other sectors big data analytics 
and machine learning are also getting involved in 
the energy sector and tools are being developed. 
They  are for example used to forecast electric-
ity demand at substation level, segment custom-
ers based on their power consumption patterns, 
implement demand response strategies, for power 
system condition monitoring and controls.

The value of big data may come from several use 
cases: as a source of analytics, as a source for control 
actions and as an enabler for new products and serv-
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ices. An energy company could e.g. track, collect, and 
store all available data from their system from custom-
ers, from components, from system data, from GPS 
trails to geographical and meteorological data, then 
combine them together and use big data analytics to 
produce high value actionable insights and controls.

Use of big data technologies may also open up 
completely new business models and introduce 
new products and services in the energy sector.

2.3 Smart grid

The smart grid would be an enhancement of the 
electrical grid, using two-way communications and 
distributed intelligent devices (Smart Grids Euro-
pean Technology Platform, 2011). Two-way flows 
of electricity and information could improve the 
delivery network. A smart grid would allow the 
power industry to observe and control parts of the 
system at higher resolution in time and space. One 
of the purposes of the smart grid is real time infor-
mation exchange to make operation as efficient as 
possible. It would allow management of the grid 
on all time scales from high-frequency switching 
devices on a microsecond scale, to wind and solar 
output variations on a minute scale, to the future 
effects of the carbon emissions generated by power 
production on a decade scale.

The management system in smart grid is the sub-
system that provides advanced management and 
control services. Most of the focus aim to improve 
energy efficiency, demand profile, utility, flex-
ibility, cost, based on the infrastructure by using 
optimization, machine learning and game theory. 
Within the advanced infrastructure framework of 
smart grid, more and more new management serv-
ices and applications are expected to emerge and 
eventually revolutionize consumers’ daily lives.

The protection system of a smart grid provides 
grid reliability analysis, failure protection, and 
security and privacy protection services. While 
the additional communication infrastructure of a 
smart grid provides additional protective and secu-
rity mechanisms, it also presents a risk of external 
attack and internal failures (Pandey, 2017).

3 POWER SYSTEM OPERATION

3.1 Balancing the system

Electricity must be produced at the same time as 
the power is consumed. In addition, the produc-
tion must be equal to the power consumed. This 
is called the instantaneous balance of the power 
system. The power market is the central tool for 
balancing supply and demand for power. The 
results of the daily pricing calculation in the day-
ahead market are the basis for the Norwegian TSO 
Statnett’s planning and maintenance of current 

balance in the following operating day. The con-
tinuous balancing of production and consumption 
is very important for the reliability of the system. 
In case of imbalances, system administrators 
implement measures to restore the balance, such as 
adjusting output or consumption.

Statnett has been given the system responsibility 
in the Norwegian power system. System Require-
ments in the Power System (Regulations on system 
responsibility in the power system, 2002) emphasize 
that the system operator shall provide frequency 
regulation, ensure instantaneous balance in the 
power system, develop market solutions that con-
tribute to the efficient development and utilization 
of the power system, and to the greatest extent pos-
sible use of instruments based on market principles. 
The System Responsible company coordinates the 
operation of the power system, provides for the 
determination of capacity for the market, bottle-
neck handling and trade with other countries.

A well-designed power system has the following 
characteristics:

 Provide all consumption regardless of geograph-
ical location

 Provide consumption at all times
 Must be able to handle variability in consump-

tion and production
 Supply must be of good quality and meet 

defined quality requirements
 Must be based on economic ‘optimal’ principle
 Must meet required and defined security goals

The delivered power must meet certain mini-
mum delivery quality requirements. The following 
determines the quality:

 System frequency must be kept around the spec-
ified 50 Hz with variation within + -0,1 Hz

 The voltages are kept within narrow, prescribed 
limits around the normal value. Generally, the 
voltage variation should be within +  -10% (or 
5% in some systems)

To ensure that voltages and frequencies are kept 
within their limits, voltage and frequency regula-
tion is required for efficient operation of the power 
system (Gjengedal, 2017).

3.2 Traditionally operation and planning N-1

Operating the network according to the N-1 crite-
rion means that failure of a component does not 
result in interruptions in the supply to the end user. 
It is referred to as reduced reliability when the N-1 
criterion is no longer met, in cases where it should 
normally be met. Statnett as a system adminis-
trator has the means through the system liability 
regulation (Regulations on system responsibility 
in the power system, 2002) to be able to change 
the grids configurations, as well as demand up-or 
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down regulation of production. Such means can 
help ensure operation according to the N-1 crite-
rion. However, the authorities are not requiring 
that the main network should meet the N-1 opera-
tion safety at all times.

3.3 Power system operation challenges

In power system operation, traditionally slow-
changing and predictable parameters are now 
changing fast. In addition, new system parameters 
are being introduced in the power system. This will 
influence the inherent properties of the system as 
well as the risk for outages. While the power system 
complexity is increasing, the operational available 
response time is decreasing fast. Example: The 
introduction of solar and wind production repre-
sents a power production which is difficult to man-
age when the wind stops or clouds cover the sun.

Combine this with a high degree of automation 
and smart grid technology, and the existing opera-
tional «know how» may not be sufficient to deal with 
the properties of the current and future power system.

What the neighboring power system is doing, 
will affect the current power system in regards of 
dynamics and risk. Until now power system opera-
tors have evaluated the system risk for loss of load 
qualitative, based on experience. This “gut feeling” 
based on such an experience approach, will not be 
valid in the future without nurturing new skills and 
competencies.

The first step is to be able to assess the system 
risk level equally for each power company. The 
only way to achieve this is by assessing this quanti-
tatively with probabilistic approach.

The power business has lacked tools to evalu-
ate quantitatively the system risk level in near real-
time, and to assess possible risk reducing actions. 
This challenge was addressed by the GARPUR 
project 2017 (GARPUR, 2017).

3.4 How will the future power system 
risk develop?

New production with challenging properties, like 
solar and wind are put into the power system in an 
increasing rate. These alone will increase the risk in 
the system due to the characteristic intermittency 
property. It is expected more severe weather affect-
ing the power system, resulting in higher risk. It 
is expected higher peak load as consequence of 
electrifying transportation and petroleum produc-
tion, and this will increase risk in period of peak 
loads. New smart grid technology like disconnec-
tion of loads when needed, will reduce the risk in 
the system. The IoT (internet of things) technol-
ogy may also increase the challenge of balancing 
the system due to rapid in and out connection of 

load driven by new sets of criteria not known by 
the system operators. This technology alone repre-
sents a threat to the system based on the possibility 
that third parties can hack into the equipment and 
connect/disconnect technology without anybody 
noticing, resulting possible outage of large areas.

Furthermore, battery storage is being intro-
duced. This will most likely reduce the risk of 
outages in the system. In addition, artificial intelli-
gence and machine learning is already on our door 
step. This can both help the system if  done right, 
or increase the risk done wrong.

All these factors combined is a large order for 
the human mind to process in real-time. It is often 
seen that the risk driver is the combination of 
many seemingly unrelated factors and events, and 
not a single cause and effect scenario.

Example: A given power system has a unique 
dynamic characteristic and inherit risk property. 
The power system will typically be in a N-0 situa-
tion in periods with high peak load. Depending on 
the size of the load(s) affected by the reduced power 
delivery reliability, the total system risk is affected 
(see Figure  1). Above the red line the expected 
“not delivered energy” exceeds the acceptable level 
in regards of expected cost due to outage or the 
power companies’ goals. Increase the system load 
for the same power system and the risk for outage 
will increase (see Figure 2). By operating the same 

Figure 1. System risk for a given power system.

Figure 2. Increase only the load and the risk for outage 
increases.
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power system with the increased load more opti-
mally, the total risk can be reduced to being within 
the acceptable risk level (see Figure 3).

With all the changes that are being introduced in 
the power system, our prediction is that the power 
system will experience system risk levels that goes 
from a very high level to the theoretical lowest 
level, and changing continuously by the minute 
(see Figure 4).

4 PROBABILISTIC RISK ASSESSMENT

4.1 The starting point for a consistent risk 
management for the whole value chain

To have a consistent risk management throughout 
to value chain, it is vital to be able to calculate the 
risk level of the current state of the power system. 
The current state will as it is in any power system 
analysis, be the base case for the next step analysis 
and evaluation. Furthermore, everything that is 
being done and planned, is being done for keeping 
the power system in operation. Therefore, the risk 
assessments done in the operation of a power sys-
tem by operators or planning of operation, should 
be the foundation of risk evaluation to be commu-

nicated in the power grid company as input for all 
future evaluations and analysis.

4.2 Identifying the power system inherit risk 
properties

To be able to identify the power system’s inherent 
risk properties, the following objects and param-
eter has to be included in a mathematical represen-
tation of the power system:

 Production – Spinning reserve – Location
 Production type
 Power system configuration

 load flow
 load demand
 system dynamics

 Component reliability
 Maintenance interval and prioritizing
 Weather influence
 Energy storage possibilities and Smart grid 

technology
 System operators action and strategy
 Influence of other grid company’s actions in 

their own power system

These factors have the characteristic of slow 
changing and fast changing properties. Since a 
power system is changing every minute of the 
year’s 8760 hours, the total system risk graph will 
also vary by the minute. It is therefore, important 
to model the power system in great detail so that 
every change that occurs is reflected by the math-
ematical model. Furthermore, since historical data 
of the power system is stored (i.e. configuration, 
production, load flow, load level and failure rate 
for each component in the system) is available, 
validation of the mathematical model is possible to 
test against previous recorded risk levels.

4.3 Calculation of the probabilistic risk level 
in near real time

A short description of the calculation sequence in 
PROMAPS:

1. Calculate reliability of each grid segments. Each 
component in a grid segment can be described 
with multiple possible states, for instance Func-
tioning, Intermediate fault or Lasting fault. 
PROMAPS use Markov models to represent 
each individual component in the grid segments:

�p A pi i i=  (1)

 where Ai is a Markov model containing fault 
rates and repair rates.

2. It is possible to build reliability models of whole 
grid segments by simply combining all the 

Figure 3. Operate the power system optimally, and the 
same increase in load can me managed in terms of risk 
for outage.

Figure 4. Prediction for future system risk development.
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Markov models of each individual component 
as Kronecker sums, as follows:

A A A An= ⊕ ⊕ ⊕1 2 ...  (2)

 is combined into common states, thus reducing 
the number of states in the grid segment model 
to a few unique states.

3. Calculate the probability of each system states. 
A system reliability model is calculated by com-
bining all grid segments models using Kro-
necher sums, as described in the last step.

4. Discard all system states with probability 
below some probability threshold. The prob-
ability threshold is dependent on how many 
states should remain in the set for further 
assessments.

5. Calculate maximum power transmission capac-
ity for each state in set.

6. Calculate expected power shortage at each load 
point

7. Calculate expected power supply reliability, and 
mean time between loss of supply

8. Calculate various auxiliary variables including 
economic data.

The analysis can be performed for various load 
profiles. For online reliability assessments, parts 
of the calculation sequence are repeated whenever 
new online data is available.

Promaps risk assessment principles for online 
calculations has been presented in detail in 
PMAPS2012 (Svendsen, 2012). The concept has 
also been researched in the recently completed 
pan-European project GARPUR (GARPUR, 
2017). Common for these methodologies for real-
time risk assessments is that they consist of two 
main parts:

1. Calculate the probability of all sequences of 
events in the power grid

2. Calculate the consequence of these events.

Since there is a “infinite” number of possi-
ble events in a power grid, there also need to be 
some principle of discarding events with negligible 
risk. The simplest approach is to discard all con-
tingency with probability below some probability 
threshold. The uncertainty of the risk assessments 
is related to the sum of risk of all events that has 
been discarded.

5 AI AND MACHINE LEARNING IN 
OPERATION OF POWER SYSTEM

5.1 What data is needed

There are numerous data available as input for 
AI and machine learning such as e.g.: current 
and historical: load, production, spinning reserve, 

sensor data (current, voltage, frequency) load flow, 
configuration of the power system, component 
data (type, characteristic, age), component health 
indexes, all previous outages and causes, weather 
type at the point of outage, dynamic data of the 
strength of the system form PMUs, protection 
schemes and other functionalities.

In addition, also near real time probabilistic risk 
calculation are available as input (Tollefsen, 2015). 
This represents big calculated data sets that gives 
a new insight in the inherit property of the power 
system.

Essential data for operation of the system: Volt-
age, frequency, production, spinning reserve and 
regulation possibilities.

5.2 AI agents assigned to perform tasks 
in the power system

Artificial Intelligence in general and supervised 
deep learning in particular tends to work well with 
large amounts of data (Schmidhuber, 2015). In 
supervised scenarios, the deep learning algorithms 
learn from known correct examples, and pick up 
trends and patterns that depict specific scenarios. 
In these cases, there is a trade-off  between data 
quality and data size. The lower the quality of the 
data, the more data is needed extract the correct 
patterns. The most common example where this 
works is social media such as Facebook which con-
tains enormous data of varying quality, enabling 
complex artificial intelligence algorithms.

The same basic concept is true for power sys-
tems, and it is therefore crucial that large amounts 
of data from power systems, including smart 
meters, is collected. The Norwegian power system 
manager Statnett has a particularly important role 
here. A concrete example of an application area 
artificial intelligence is expected to play a pivotal 
role is predicting electrical consumption peaks to 
avoid power outages (Goodwin, 2016). Over con-
sumption may have serious consequences such as 
power outage. By predicting future peaks in the 
consumption, techniques such as load balancing 
could be carried out to avoid the problems. This 
clearly has to be carried out before the consump-
tion peak happens, but knowing the consumption 
before occurrence is difficult. For this particular 
case, positive and negative examples should be col-
lected, which in this case is examples of normal 
power flow, and over consumption. The artificial 
intelligence networks are trained with the data, 
and learns to understand which consumption 
trends lead to peak in the data. After the training 
phase, the network is put into practice and predicts 
future peaks which could either be used directly in 
an automated system to initiate load balancing, 
or as input to a decision support system. Other 
examples where artificial intelligence could play 
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a similar role are operation of power system and 
production prediction.

The operation of a power system is based on 
a set of rules and constraints that the power sys-
tem operator must operate the system within. The 
constraints are at set of limits that is related to the 
physical properties for the different power system 
components. This can e.g. be thermal limits for 
power lines/transformers or other components, 
the normal frequency deviation should be within 
± 0,1 Hz, voltage variations within ± 10% and the 
angle difference in three-phase current should be 
within maximum limits when reconnecting differ-
ent part of the power system.

The rules and constraint connected to operation 
of a power system is notably different than the rules 
of board games such as chess. A power system is a 
stochastic system influenced by physical laws and 
human behavior such as consumption. The rules 
in a chess board and the behavior of the game are 
deterministic which means that future states are 
easily predictable, albeit many. However, there are 
similarities as well. The number waste amounts 
of states and complex behavior is identifiable in 
both complex board games and power systems. We 
can imagine that a machine learning also can be 
applied for operation of power systems based on 
the principle applied by Deep Mind with the new 
chees Alpha Zero program (Silver, 2017) and by the 
improved operation strategy obtained for Googles 
data center by use of Machine Learning Applica-
tions for Data Center Optimization (Gao, 2016).

5.3 How can we evaluate the AI actions 
and gain trust?

The artificial intelligence techniques vary from 
being statistically based on probabilistic induc-
tion, to knowledge based, and neuron based deep 
learning. For deep learning, which is undoubtedly, 
the most promising artificial intelligence technique 
in use, a confidence level is available as part of the 
supervised classification output. This confidence is 
very different from a probability, but can in any case 
be used as part of a trust schemes. If a deep learning 
network were to predict future problems, whenever 
it outputs an expected problem it can at the same 
time output how confident it is that is an actual 
problem. If this is part of a decision support sys-
tem, the confidence can be used to inform a human 
decision maker in a decision support control room.

6 HUMANS, DECISION SUPPORT 
SYSTEM AND AI

6.1 Decision support for system operation

The ability to deal with the real-time fluctuations 
of the power system is not only a question of 

creating new technology and algorithms. Humans 
are still in the loop and the energy system is thus 
not only a technical system. It is a socio-technical 
system where the sense making, decisions and 
interventions of control room operators play an 
important part in the reliability of the system as a 
whole. This means that decision-support technol-
ogy can play a key role in upholding the security of 
supply, but also that we need to take into account 
the human part of decision-making in control 
rooms. New decision-support systems will meet 
existing competence and experience, both at the 
individual and team level. In order to make sure 
that decision-support systems have the intended 
effects, the human perspective must be included in 
the development of the systems to ensure a good 
match between humans, technology and the organ-
ization of decision-making.

Advances in modelling and machine learning 
allow for information processing and problem 
solving that surpasses the capacity of an individ-
ual human decision-maker. Nevertheless, there is a 
need to find a balance between man and machine 
in the distribution of decision-making functions. 
Also, any period of technological transition will 
face challenges related to the competence of the 
existing workforce in the use of new technology, 
as well as a warranted level of trust into what new 
technology can and cannot do.

The importance of taking into account the 
relationship between human decision-making and 
algorithms can be illustrated by an example from 
New Scientist Volume 236, describing the domina-
tion of robots in the financial markets resulting in 
the human trader era is fading: “There are still a 
lot of unanswered questions surrounding the last 
bond market ‘flash crash’. On 15 October 2014”, 
“the US Treasury market crashed for about 10 
minutes. Experts hypothesized that “activities of 
electronic trading algorithms” bore part of the 
blame, but reserved judgement for when they had 
more information. Three years later, no one is any 
wiser” (Adee, 2017).

This can also be the case for the future power 
system where smart grid technology, IoT and 
machine learning is put into operation. In order to 
avoid similar algorithm-induced “flash crashes” in 
the power system, it is vital to ensure the under-
standing of the system dynamics, the inherent risk 
properties and applying deep learning approaches 
as decision support.

7 CONCLUSIONS

The power system is rapidly changing towards the 
digital power system by using advanced ICT solu-
tions, big data, smart grid, AI, machine learning 
and other advanced instruments.
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The digitalization of the power business in Nor-
way, Europe and other parts of the world, arise 
numerous new possibilities but also challenges.

To gain trust in the machine learning technol-
ogy being introduced to power system, and to 
avoid similar problems in the power system as the 
financial markets experienced with the ‘flash crash’ 
from 2014, new insight is needed. The need for 
understanding and tracking in near real time the 
power systems inherent system property in regards 
of power system dynamics and risk level, becomes 
evident.
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