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ABSTRACT 

A hierarchical model for the variability of material properties in ready-mixed concrete is 

formulated. The model distinguishes between variation on the batch, recipe, plant, producer, 

durability class, strength class and regional standard level. By considering Bayesian inference 

and maximum likelihood estimators, the contributions from the different hierarchical levels to 

the variability can be estimated. The methodology is demonstrated by considering more than 

14000 compressive strength recordings from Norwegian ready-mixed concrete plants. The 

results suggest that the compressive cube strength of lab-cured specimens can be represented by 

a log-normally distributed variable with mean 1.28𝑓ck,cube and coefficient of variation 𝑉c,cube =
0.13. Prior parameters for Bayesian updating are given for a range of strength and durability 

classes. The application of the results is demonstrated in two examples. Since the durability 

class gives a required maximum water-binder ratio, and the strength of the concrete is governed 

by the water-binder ratio, the durability class introduces a strength potential if the concrete is 

subject to strict durability requirements and low strength requirements. It is suggested that the 

designer should specify a strength class that utilizes this strength potential, and it is expected 

that a closer collaboration between the designer, contractor and producer will result in improved 

concrete specifications. 

 

Keywords: Concrete compressive strength, hierarchical model for variability, Bayesian 

inference, informative prior distribution, maximum likelihood estimators, code calibration, 

structural reliability. 

 

1.  INTRODUCTION 

Selecting the concrete type is an important decision in design of concrete structures. Following 

the Eurocodes [1-3] the concrete type is defined by requirements related to strength and 

durability. In Norway, this is implemented by assigning a strength and durability class, where 

the strength class is denoted by the letter B followed by the characteristic compressive strength 

of a lab-cured cylinder, see Tab. 1, and the durability class is denoted by the letter M or the 

letters MF followed by a number indicating the maximum effective water-binder ratio. The 

characteristic compressive strength is defined as the lower 5%-fractile of the strength. EN 206 

gives the following durability classes for concrete in Norway: M90, M60, M45, MF45, M40 and 

MF40. In addition, The Norwegian Public Roads Administration introduces additional durability 

classes, e.g. SV30 and SV40, for infrastructure projects [4]. 
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[TABLE 1] 

 

Based on the strength and durability class, workability requirements and other requirements 

related to e.g. appearance or carbon footprint, the producer designs a recipe. For a given strength 

and durability class produced at a specific plant, the main differences between different recipes 

are related to the maximum aggregate size, the fractions of the different aggregate sizes, the 

cement type, the amount of supplementary cementitious materials and the amount of entrained 

air. Conformity control is performed based on the strength at 28 days. Cubes with sides 100 mm 

are used for conformity control in Norway due to their easier handling, preparation and testing 

compared to cylinders. 

 

Mirza et al. [5] presents an extensive literature review, and suggest that the main sources for 

variation of the compressive strength are the variation in properties and proportion of the 

constituents of the concrete mix, the variations in mixing, transporting, placing and curing 

methods, the variations in testing procedures and variations due to concrete being in a structure 

rather than in control specimens. Several other sources report similar findings [6-15], also 

addressing topics like size and shape of control specimen, casting direction, workmanship and 

type of structural component and location within the component. 

 

Rackwitz [16] suggests methods for predicting the strength of concrete using Bayesian 

inference, and estimate prior data based on a collection of data from Southern Germany. The 

prior data were later reworked and included in the JCSS Probabilistic Model Code [17]. 

 

The effect of compliance criteria are studied taking into account autocorrelation [18], different 

types of criteria [19] and the concept of concrete families [20,21]. Later, the effect of 

compliance control and strength estimation [22] on structural reliability are addressed [23-25]. 

Foster et al. [26] report from a study on a collection of strength recordings from Australia, and it 

can be shown that the 28-day compressive strength of lab-cured cylinders can be represented by 

a normally distributed variable with mean 𝜇c = 1.21𝑓ck and a coefficient of variation of 𝑉c =
0.12. Correlation with other material parameters for concrete can be found elsewhere [27-29], 

and the relation between cylinder and cube strength is discussed in several contributions [30-

35]. 

 

In Eurocode 2 [2,36], and similarly in fib Model Code for Concrete Structures 2010 [37], the 

concrete strength is assumed represented by a log-normally distributed variable. The variability 

of the concrete strength is reflected in the partial factor 

 

𝛾c = 1.15exp (𝛼R𝛽√𝑉𝜃
2 + 𝑉G

2 + 𝑉M
2 − 1.645𝑉M) ≅ 1.50, (1) 

 

where 𝛼R = 0.8 is the sensitivity factor for resistance, 𝛽 = 3.8 is the target reliability index for 

a 50-year reference period, 𝑉𝜃 = 0.05 is the modelling uncertainty, 𝑉G = 0.05 is the geometrical 

uncertainty, 𝑉M = 0.15 is the material uncertainty [36] including the contributions discussed by 

Mirza et al. [5], and the factor 1.15 reflects the ratio of the lab-strength to the strength obtained 

in a structure. Eurocode 2 also suggests the relation 𝑓cm = 𝑓ck + 8 MPa between the mean and 

characteristic strength, assuming a standard deviation of approximately 5 MPa [38].  

 

In the present work more than 14000 compressive strength recordings from Norwegian ready-

mixed concrete plants were studied using a hierarchical model for the variability of material 
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properties as suggested in the literature [16,17]. It is emphasized that the scope of the present 

work was to estimate the variation resulting from what the designer can control. The effects of 

the choices made by the contractor and the producer were thus not considered. 

 

This work only provides statistical evidence for the lab-strength of cubes of ready-mixed 

concrete in Norway, such that the uncertain relation between the lab-strength of cubes and the 

strength obtained in a structure should be included if the present results are to be applied in e.g. 

a reliability assessment. For completeness, full details of the statistical analysis methods will be 

given along with a detailed summary of the results. This transparency is important for possible 

future extensions with additional data and to facilitate for correct application of the results. 

 

2. HIERARCHICAL MODEL FOR THE VARIABILITY OF MATERIAL 

PROPERTIES IN CONCRETE 

Fig. 1 shows how the hierarchical model for the variability of material properties in concrete 

was formulated in the present work. During concrete production, the producer controls for 

compliance using standardized test specimens. The variation between test specimens from one 

batch of concrete represents the within-batch variation. The variation within and between 

samples of observations on one level contributes to the variation within the next level, see Tab. 

2. Hence, the variation within and between batches produced according to one recipe contribute 

to the within-recipe variation. Each batch is produced according to a given recipe, at a concrete 

plant, by a concrete producer in order to comply with a given durability class and strength 

class. The variation between plants and producers can be due to different availability and use of 

raw materials, but also due to cultural differences and the quality control regime at the 

respective plant. The concrete is produced within a region having a supply controlled by a 

regional standard, which is part of the gross supply. Since the designer specifies a strength and 

durability class, these levels are the entry points of information from the design process. 

 

[FIGURE 1] 

 

[TABLE 2] 

 

3. METHODS FOR STATISTICAL ANALYSIS 

3.1 Sample statistics for the hierarchical model 

Assuming independent and interchangeable observations from a homogeneous population, 

unbiased estimators for the mean and variance of sample i with 𝑛𝑖 observations are 

 

�̅�𝑖 =
1

𝑛𝑖
∑ 𝑦𝑖,𝑗

𝑛𝑖

𝑗=1

 

 

(2) 

 

and 

 

𝑠𝑖
2 =

1

𝑛𝑖 − 1
∑(𝑦𝑖,𝑗 − �̅�𝑖)

2

𝑛𝑖

𝑗=1

 , (3) 

 

where 𝑦𝑖,𝑗  is observation 𝑗  in sample 𝑖 . For example, 𝑖  can refer to recipe 𝑖  for obtaining a 

combination of strength and durability, and 𝑗 can refer to a strength recording from batch 𝑗 

produced with that recipe. From this, one can derive the sample mean 
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�̅�tot =
1

𝑛tot
∑ 𝑛𝑖�̅�𝑖

𝑚

𝑖=1

 
 

(4) 

 

and variance 

 

𝑠tot
2 =

∑ ([𝑛𝑖 − 1]𝑠𝑖
2)𝑚

𝑖=1

𝑛tot − 1
+

∑ (𝑛𝑖�̅�𝑖
2)𝑚

𝑖=1 − 𝑛tot�̅�tot
2

𝑛tot − 1
= 𝑠tot,w

2 + 𝑠tot,b
2  

 
(5) 

 

of a group of 𝑚 samples respectively, where 𝑛tot = ∑ 𝑛𝑖
𝑚
𝑖=1  is the total number of observations. 

Here, �̅�tot , 𝑠tot
2  and 𝑛tot  could include all the strength recordings for all recipes for a 

combination of strength and durability at a specific plant. For example the sample mean and 

variance for a combination of strength and durability class at a specific plant can thus be 

calculated directly by considering the sample mean, sample variance and number of 

observations for all the recipes obtaining the specified combination of strength and durability 

class at that plant, as indicated in Fig 1. Eq. (5) expresses the variance of the group of samples 

as the sum of the variance within and between the samples. 

 

3.2 Bayesian inference 

The derivations in this section are valid for normally distributed random variables, and are 

adapted from the literature [e.g. 16,39,40]. Following recommendations in the literature, the 

compressive cube strength of concrete, 𝑓c,cube , is represented by a log-normally distributed 

variable [16,41], meaning that the natural logarithm of the cube strength is normally distributed. 

In the following, the variable 𝑦 thus represents the natural logarithm of the cube strength, 𝑦 =
ln 𝑓c,cube.  

 

Following Bayes’ theorem, and assuming that 𝑦  is normally distributed with mean 𝜇  and 

variance 𝜎2 , the joint posterior distribution of the parameters 𝜇  and 𝜎2  given a set of 𝑛 

observations collected in the vector 𝒚 is written as 

 

𝑓(𝜇, 𝜎2|𝒚) =
𝑓(𝜇, 𝜎2)𝐿(𝒚|𝜇, 𝜎2)

∬ 𝑓(𝜇, 𝜎2)𝐿(𝒚|𝜇, 𝜎2)d𝜇d𝜎2  
∞

−∞

 , (6) 

 

where 𝑓(𝜇, 𝜎2) is the prior distribution of the parameters and 𝐿(𝒚|𝜇, 𝜎2) is the likelihood of the 

observations. The likelihood is established by considering the distribution of 𝑦: 

 

𝐿(𝒚|𝜇, 𝜎2) = ∏ N(𝑦𝑖|𝜇, 𝜎2) = (
1

2𝜋𝜎2
)

𝑛/2

exp (−
1

2𝜎2
[(𝑛 − 1)𝑠2 + 𝑛(�̅� − 𝜇)2])

𝑛

𝑖=1

 , (7) 

 

where 

 

N(𝑦𝑖|𝜇, 𝜎2) = √
1

2𝜋𝜎2
exp (−

1

2

[𝑦𝑖 − 𝜇]2

𝜎2
)   (8) 

 

is the normal distribution. If there exists no prior information about 𝑦, the proportionality 
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𝑓(𝜇, 𝜎2) ∝
1

𝜎2
 

 
(9) 

 

can be used as a non-informative prior distribution for 𝜇 and 𝜎2. By combining Eqs. (7) and (9) 

with Eq. (6), the joint posterior distribution of 𝜇 and 𝜎2 is 

 

𝑓(𝜇, 𝜎2|𝒚) = N (𝜇|�̅�, 𝜎2

𝑛⁄ ) Inv-𝜒2(𝜎2|𝜈𝑠2, 𝜈) , (10) 

 

where 

 

Inv-𝜒2(𝜎2|𝜈𝑠2, 𝜈) =
1

Γ(𝜈/2)
(

𝜈𝑠2

2
)

𝜈/2

(
1

𝜎2
)

(𝜈/2+1)

exp (−
𝜈𝑠2

2𝜎2
)  (11) 

 

is the scaled inverse-χ2 distribution with scale 𝜈𝑠2  and 𝜈  degrees of freedom. Γ(∙)  is the 

Gamma-function and 𝜈 = 𝑛 − 1, assuming that the sample variance and mean are estimated 

from the same sample. From Eq. (10), the marginal posterior distribution of each parameter is 

found by integrating over the other, e.g. 𝑓(𝜎2|𝒚) = ∫ 𝑓(𝜇, 𝜎2|𝒚)d𝜇
∞

−∞
. The posterior predictive 

distribution of 𝑦 is found from the total probability theorem 

 

𝑓(𝑦|𝒚) = ∬ N(𝑦|𝜇, 𝜎2)𝑓(𝜇, 𝜎2|𝒚)d𝜇d𝜎2
∞

−∞

 , (12) 

 

where the integral is over all possible values of 𝜇 and 𝜎2. The posterior distributions for 𝜇, 𝜎2 

and 𝑦, and the corresponding expected values and variances, are summarized in Tab. 3. The 

posterior distribution of 𝑦 is given in Eq. (13), which is a t-distribution with location �̅�, scale 

𝑠√
𝜈+2

𝜈+1
 and 𝜈  degrees of freedom. Eq. (14) can be used to estimate values of 𝑦 with a non-

exceedance probability 𝛼, where 𝑡𝛼,𝜈 is the upper 𝛼-fractile of the t-distribution with 𝜈 degrees 

of freedom. 

 

[TABLE 3] 

 

𝑓(𝑦|𝒚) = 𝑡 (𝑦|�̅�, 𝑠2 𝜈+2

𝜈+1
, 𝜈) =

Γ(
𝜈+1

2
)

Γ(
𝜈

2
)

√
1

𝜈𝜋
√

𝜈+1

𝑠2(𝜈+2)
(1 +

𝜈+1

𝜈(𝜈+2)
[

𝑦−�̅�

𝑠
]

2

)
−

𝜈+1

2

  

 

(13) 

 

�̃� = �̅� + 𝑡𝛼,𝜈𝑠√
𝜈 + 2

𝜈 + 1
 

 

(14) 

 

If prior information about 𝑦  exist, a conjugate informative prior distribution with prior 

parameters  �̅�′, 𝑛′, 𝑠′2 and 𝜈′ on the same form as Eq. (10) can be written as 

 

𝑓(𝜇, 𝜎2) = N (𝜇|�̅�′, 𝜎2

𝑛′
⁄ ) Inv-𝜒2(𝜎2|𝜈′𝑠′2

, 𝜈′) . (15) 

 

By combining Eqs. (7), (15) and (6) it can be shown that the joint posterior distribution of 𝜇 and 

𝜎2 is given by Eq. (10) with updated parameters 
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𝑛′′ = 𝑛′ + 𝑛 , (16) 

 

�̅�′′ =
1

𝑛′′
(𝑛�̅� + 𝑛′�̅�′) , (17) 

 

𝜈′′ = 𝜈′ + 𝜈 + 1 , (18) 

 

and 

 

𝜈′′𝑠′′2 = 𝜈𝑠2 + 𝜈′𝑠′2 + 𝑛�̅�2 + 𝑛′�̅�′2 − 𝑛′′�̅�′′2 = 𝜈𝑠2 + 𝜈′𝑠′2 +
𝑛𝑛′

𝑛 + 𝑛′
(�̅� − �̅�′)2 , (19) 

 

and the posterior distributions, expected values and variances of 𝜇, 𝜎2 and 𝑦 are given in Tab. 3, 

inserted for the updated parameters. Note that Eqs. (17) and (19) are parallel to Eqs. (4) and (5), 

and that in this case Bayesian updating involves inference on two samples of observations that 

are combined. The prior sample is often taken as a virtual sample where the sample size 

represents the information content in the sample. 

 

If prior information exists only for the variance, the conjugate informative prior distribution 

would take the form 

 

𝑓(𝜇, 𝜎2) = Inv-𝜒2(𝜎2|𝜈′𝑠′2
, 𝜈′) , (20) 

 

and following the same derivation as above gives the updated parameters 

 

𝑛′′ = 𝑛 , (21) 

 

�̅�′′ = �̅� , (22) 

 

𝜈′′ = 𝜈′ + 𝜈 , (23) 

 

and 

 

𝜈′′𝑠′′2 = 𝜈𝑠2 + 𝜈′𝑠′2 . (24) 

 

Since the inference is based on the log-normally distributed random variable 𝑦 = ln 𝑓c,cube, the 

results from the inference should be transformed in order to find the parameters of the 

distribution of 𝑓c,cube. By applying a coordinate transformation such that Eq. (8) is expressed as 

a function of 𝑓c,cube, and calculating the first two moments in a regular manner, it can be shown 

that the mean 𝜇c,cube  and coefficient of variation 𝑉c,cube = 𝜎c,cube/𝜇c,cube  can be calculated 

using 

 

𝜇c,cube = exp (E[𝑦] +
1

2
VAR[𝑦]) ≈ exp(E[𝑦]) 

 
(25) 

 

and 

 

𝑉c,cube = √exp(VAR[𝑦]) − 1 ≈ √VAR[𝑦] , (26) 
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where the errors of approximation in Eqs. (25) and (26) are less than 2% for 𝑉c,cube < 0.2. 

 

3.3 Estimate of parameters for an informative prior distribution 

Rackwitz [16] suggests maximum likelihood estimators (MLE) for estimating parameters for an 

informative prior distribution. By considering Eqs. (11) and (8) the likelihoods 

 

𝐿(𝒚tot|𝑠MLE
2 , 𝜈MLE) = ∏ Inv-𝜒2(𝑠𝑖

2[𝒚𝑖]|𝜈MLE𝑠MLE
2 , 𝜈MLE)

𝑚

𝑖=1

 
 

(27) 

 

and 

 

𝐿(𝒚tot|�̅�MLE, 𝑛MLE) = ∏ N(�̅�𝑖[𝒚𝑖]|�̅�MLE, 𝑠𝑖
2[𝒚𝑖]/𝑛MLE)

𝑚

𝑖=1

 
 

(28) 

 

are established based on 𝑚 samples of observations from a concrete type, where 𝒚tot represents 

the collection of all the 𝑚 samples 𝒚𝑖, and �̅�𝑖[𝒚𝑖] and 𝑠𝑖
2[𝒚𝑖] are the sample mean and variance 

of sample 𝒚𝑖. By maximizing the natural logarithms of the likelihoods, the following MLE are 

found, with parameters in Eq. (33). 

 

𝑠MLE
2 =

1

𝐴
 

 
(29) 

 

𝜈MLE =
1

ln 𝐴 − 𝐵 − 𝜖(𝜈MLE
−2 )

≈
1

ln 𝐴 − 𝐵
𝑓 (

1

ln 𝐴 − 𝐵
) ≈

1

ln 𝐴 − 𝐵
 

 
(30) 

 

�̅�MLE =
𝐶

𝐴
 

 
(31) 

 

𝑛MLE =
1

𝐷 −
𝐶2

𝐴

 
 

(32) 

 

𝐴 =
1

𝑚
∑

1

𝑠𝑖
2

𝑚

𝑖=1

 , 𝐵 =
1

𝑚
∑ ln

1

𝑠𝑖
2

𝑚

𝑖=1

 , 𝐶 =
1

𝑚
∑

�̅�𝑖

𝑠𝑖
2

𝑚

𝑖=1

 , 𝐷 =
1

𝑚
∑

�̅�𝑖
2

𝑠𝑖
2

𝑚

𝑖=1

  (33) 

 

The error term in Eq. (30), 𝜖(𝜈MLE
−2 ), is due to truncation after the second term of 𝜕 ln Γ(𝜈/2)/

𝜕𝜈, and can be compensated for by multiplying with the factor 𝑓 (
1

ln 𝐴−𝐵
) given in Tab. 4. 𝜈MLE 

and 𝑛MLE are measures of the information content in the estimated values of 𝑠MLE
2  and �̅�MLE, 

often denoted the degree of belief. 𝜈MLE and 𝑛MLE attain large values if the sample variances and 

means are similar. 

 

[TABLE 4] 

 

If the concrete type is unknown, generalized prior parameters can be useful. Caspeele & Taerwe 

[42] suggest a method for obtaining approximated generalized prior parameters for the variance 
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based on prior data from samples with unknown sample sizes 𝑚𝑗 . In the present work, the 

sample sizes 𝑚𝑗  are known, and generalized prior parameters 𝑠MLE,gen
2  to 𝑛MLE,gen  can be 

estimated by using the parameters 𝐴tot to  𝐷tot according to 

 

𝑚tot = ∑ 𝑚𝑗

𝑛

𝑗=1

 , 𝐴tot =
1

𝑚tot
∑ 𝑚𝑗𝐴𝑗

𝑚

𝑗=1

 , …, 𝐷tot =
1

𝑚tot
∑ 𝑚𝑗𝐷𝑗

𝑚

𝑗=1

  (34) 

 

where the subscript 𝑗 refers to either strength class, durability class or combination of strength 

and durability class 𝑗. From this it is clear that 𝑠MLE,gen
2  and 𝜈MLE,gen will be meaningful since 

the variances of the different classes are expected to be comparable. In contrast, �̅�MLE,𝑗 are not 

comparable due to the different target strengths. However, if 𝑠MLE,gen
2  is estimated with a 

reasonable degree of belief, 𝛿MLE,𝑗 = �̅�MLE,j − ln 𝑓ck,cube,𝑗  is expected to be comparable for 

different classes. 𝛿 should be interpreted as the natural logarithm of the ratio between the mean 

strength and the target cube strength, 𝑓ck,cube, from Tab. 1. Hence, 𝑠MLE,gen
2 , 𝜈MLE,gen, 𝛿MLE,gen 

and 𝑛MLE,gen are estimated by replacing �̅�MLE,𝑗 with 𝛿MLE,𝑗 in the calculation of 𝐶tot in Eq. (34), 

and inserting Eq. (34) in Eqs. (29) to (32). If 𝛿MLE,gen is estimated with a reasonable degree of 

belief, its value can be used to estimate the location parameter of the prior distribution for a 

concrete with an arbitrary target strength. 

 

3.4 Estimate of within-batch variation 

Since the data acquired in the present work only included one strength measurement per batch, 

no direct inference could be made about the within-batch variation. However, it can be 

estimated. Assume that the natural logarithm of a strength recording from batch 𝑗, 𝑦𝑗, can be 

represented by a normally distributed variable expressed as 𝑦 = 𝑦1 + 𝑦2  with 𝑦1 ∼

N(𝜇y, 𝜎2/𝑛) and 𝑦2 ∼ N(0, 𝜎2). Here, 𝑦1  represents the uncertain mean of the batch and 𝑦2 

represents the random fluctuation due to an assumed known within-batch variance, 𝜎2. This is 

realistic in situations where more information is available about the variance compared to the 

mean. The variance of 𝑦 is given by 

 

VAR[𝑦] =
𝜎2

𝑛
+ 𝜎2 = 𝜎2

𝑛 + 1

𝑛
  , (35) 

 

with 𝑛 being the number of batches that are considered. An estimate of VAR[𝑦] is the sample 

variance 𝑠𝑖
2  of 𝑛𝑖  observations for a given recipe 𝑖 , and an estimator for the within-batch 

variation of recipe 𝑖 thus becomes 

 

swb,𝑖
2 = 𝑠𝑖

2
𝑛𝑖

𝑛𝑖 + 1
 . (36) 

 

This indicates that the between-batch variance dominates the estimate if the number of 

observations is small, and that the within-batch variance dominates if the number increases. 

Based on Eq. (36), the MLE from Eqs. (29) and (30) can be used to estimate the within-batch 

variance. 
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4. RESULTS AND DISCUSSION 

4.1 Compressive strength recordings from the Norwegian market 

Three concrete producers provided more than 14000 compressive strength recordings covering 

most of the Norwegian supply in the period 2013-2017, shown in Tab. 5. The six strength 

classes B20-B55 were represented with 20 combinations of strength and durability classes. Only 

concretes with aggregates consisting of at least 50% coarse aggregates with size larger than 4 

mm and a maximum aggregate size larger than 16 mm were considered.  

 

[TABLE 5] 

 

4.2 Bayesian inference with non-informative prior 

The sample mean and variance for each recipe were calculated using Eqs. (2) and (3). Eqs. (4) 

and (5) were further used to calculate the sample mean and variance on higher levels of the 

hierarchy, and the equations in Tab. 3 were used to calculate the expected value and variance of 

𝑦 = ln 𝑓c,cube on the respective level. 

 

For brevity, detailed results from the plant level are left out of this presentation. At plant level 

for producer A and C the durability class was governing for the strength prediction, e.g. 

B35M40, B35MF40 and B35SV40 were almost equally distributed as B45M40, B45MF40 and 

B45SV40, respectively. The within-recipe variation dominated, but the between-recipe variation 

was significant in most combinations of strength and durability classes. For the plants of 

producer C, a significant over-strength was observed in most instances of B35 concretes. The 

trend where the durability class was governing for the strength prediction was weaker for the 

plants of producer B, and the between-recipe variation was relatively large and dominated in 

eight combinations of strength and durability classes. 

 

Tab. 6 shows the results on the producer level. The predicted characteristic strength should be 

compared to the target cube strength from Tab. 1. Due to statistical uncertainty, i.e. a small 

sample resulting in √VAR[𝑦] ≫ 𝑠, a low value was predicted for the characteristic strength for 

B55M40 for producer A. For producer A, it can be seen that the between-plant variation was 

small and only dominant for B20M90. Due to large standard deviations, five strength 

predictions were lower than the target for producer B. For B25M90 and B30M60 this was due to 

within-plant variation, but for the higher strength classes the between-plant variation also 

influenced. Due to slightly low mean values, the predictions of B45MF40 and B45MF45 were 

lower than the target strengths for producer C. The contribution from between-plant variation 

was small in all cases. Since compliance control is based on samples where observations from 

different recipes are combined using the concrete family concept [20,21], the sometimes low 

predictions of the characteristic strength do not indicate that the producers deviate from the 

criteria in EN 206 [3]. 

 

Tab. 7 shows the results on the level of the combination of strength and durability class. Four 

predictions were lower than the target strength, either due to a large standard deviation due to 

within-producer variation, see e.g. B25M90, slightly low mean values, see B45MF40 and 

B45MF45, or due to statistical uncertainty, see B55M40. The contribution from between-

producer variation was low in most cases, with the largest contribution for B35M40. 

 

Finally, Tab. 8 shows the results from the level of the strength class. Only B25 did not reach the 

target strength. This was due to a slightly low mean strength and a large standard deviation with 

a significant contribution from between-durability class variation, where B25M60 was closer to 
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a B30. B35 also got a significant contribution from between-durability class variation, as 

demonstrated in Fig. 2a, but the higher mean strengths of e.g. B35M40 resulted in a high mean 

strength for B35. The lower contribution from between-durability class variation for B45 is 

demonstrated in Fig. 2b. 

 

[FIGURE 2] 

 

In the bottom row of Tab. 8, the natural logarithm of the target strength is subtracted from the 

values of E[𝑦], to get the variable 𝛿 as introduced in Sec. 3.3. It is interesting to note that E[𝛿] =
0.25  is approximately what could be estimated assuming 𝑉c,cube = 0.15 , i.e. E[𝛿] ≈ 1.645 ⋅
0.15 . The results indicated that the cube strength could be represented by a log-normally 

distributed variable with mean 

 

𝜇c,cube ≈ exp(ln 𝑓ck,cube + E[𝛿]) = 1.28𝑓ck,cube  (37) 

 

and coefficient of variation 

 

𝑉c,cube ≈ √VAR[𝑦] = 0.13 . (38) 

 

The general coefficient of variation gets a dominant contribution from within-durability class 

variation, but also between-durability class variation, indicated by 𝑠w
2 /𝑠2  in Tab. 8, and 

between-strength class variation due to different E[𝛿] for the different classes contribute. 

 

[TABLE 6] 

 

[TABLE 7] 

 

[TABLE 8] 

 

4.3 Parameters for an informative prior distribution 

Informative prior parameters were estimated with the MLE on the strength and durability class 

level, based on groups of samples at the plant level. The results can be used in Eqs. (16) to (19), 

or Eqs. (21) to (24), assuming that the observations in the sample 𝒚 originate from one producer 

and plant, and replacing �̅�′, 𝑠′, 𝑛′ and 𝜈′ with �̅�MLE, 𝑠MLE , 𝑛MLE  and 𝜈MLE , respectively. Note 

that 𝜈MLE was estimated by solving Eq. (30) numerically. 

 

Tab. 9 shows the results of the MLE per combination of strength and durability class. �̅�𝑖 and 𝑠𝑖
2 

input to Eq. (33) were the sample mean and variance of a sample containing all the observations 

from the recipes obtaining a specified combination of strength and durability class at plant 𝑖. 𝑚 

could range from 2 to 17, excluding combinations represented at only one plant. Generally the 

results showed higher degrees of belief, in terms of 𝑛 and 𝜈, and lower standard deviations 

compared to the results by Rackwitz [16] shown in Tab. 10. 

 

[TABLE 9] 

 

[TABLE 10] 

 

For B25M90, the variances at the plants of producer B dominated in Sec. 4.2, but were 

dominated by the lower variances at the plants of producer A in the MLE. This explains the low 
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values for 𝑠MLE  and 𝜈MLE . The contrasting high value of 𝑛MLE  was recognized in the low 

contribution from between-plant and -producer variation shown in Tabs. 6 and 7. 𝜈MLE  of 

B30M60 was associated with the small variation of the variances between the plants and 

producers. The low values for 𝑛MLE  for B35M40 and B35MF40 reflected that the durability 

class was governing for the strength prediction for producers A and C, but less governing for 

producer B. The low variation in the variance between plants and the relatively low contribution 

from between-plant and -producer variance for B45MF40 and B45SV40, resulted in high values 

for 𝜈MLE  and 𝑛MLE  respectively. The low 𝑛MLE  for B45SV30 was reflected in the large 

contribution from between-plant variance for producer B. 

 

Tab. 11 shows the MLE per durability class, where �̅�𝑖 and 𝑠𝑖
2 are the sample mean and variance 

of the group of samples with the same durability class at plant 𝑖, and the estimated variances 

would thus include a contribution from between-strength class variance. Interesting to note from 

the results were the high values for the degree of belief, both with respect to the mean and the 

standard deviation. These results were not surprising, since the durability class gives a required 

maximum water-binder ratio, and the strength of the concrete is governed by the water-binder 

ratio. 

 

[TABLE 11] 

 

Tab. 12 shows the MLE per strength class, where �̅�𝑖 and 𝑠𝑖
2 are the sample mean and variance of 

the group of samples with the same strength class at plant 𝑖 , and the estimated standard 

deviations would thus include a contribution from between-durability class variance. 

 

[TABLE 12] 

 

Taking the values of the general MLE with the highest degree of belief, Tabs. 12 and 11 indicate 

that if the strength and durability class is unknown, and the producer and plant is known, the 

mean and coefficient of variation of the cube strength respectively, can be estimated with a 

reasonable degree of belief according to 

 

𝜇c,cube ≈ exp(ln 𝑓ck,cube + 𝛿MLE) = 1.27𝑓ck,cube  (39) 

 

and 

 

𝑉c,cube ≈ 𝑠MLE = 0.09 . (40) 

 

Since samples with low sample standard deviations tend to dominate, and the between-plant and 

-producer variance is not taken into account, the general MLE of the variance was smaller than 

the general estimate in Sec. 4.2. 

 

4.4 Within-batch variation 

For estimating the within-batch variation, the samples of observations for each recipe were 

treated separately, i.e. without combining samples from different recipes as in Sec. 4.3. The 

sample variance and the sample size of recipe 𝑖 were input to Eq. (36) to obtain the estimator for 

the within-batch variation of recipe 𝑖 , 𝑠wb,𝑖
2 . Furthermore, the value of 𝑠wb,𝑖

2  for each recipe 

obtaining a specified strength class or combination of strength and durability class was input to 

Eqs. (33), (29) and (30). Tabs. 13 and 14 show the results per combination of strength and 

durability class and per strength class respectively. Note that Tab. 13 indicates for example that 
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at the 17 plants considered in the present work, there were 𝑚 = 69 recipes for obtaining a 

B45M40. The estimates of the standard deviation of the within-batch variation ranged from 0.03 

for B45SV30 to 0.07 for B20M90, and from 0.05 for B25-B55 to 0.07 for B20. The general 

estimate of the within-batch variation was comparable to results from the literature [5,11,12]. 

 

[TABLE 13] 

 

[TABLE 14] 

 

4.5 General probability distribution 

Based on the preceding sections, a general probability distribution was established, as 

summarized in Tab. 15. Considering Tabs. 8 and 12, the mean compressive cube strength was 

taken as 

 

𝜇c,cube ≈ exp(ln 𝑓ck,cube + E[𝛿]) = 𝑓ck,cube exp(0.25) ≈ 1.28𝑓ck,cube , (41) 

 

where 𝑓ck,cube is the target cube strength from Tab. 1. 

 

According to Tab. 8, the coefficient of variation of the cube strength at the highest level of the 

hierarchy can be taken as 

 

𝑉c,cube ≈ √VAR[𝑦] = 0.13 , (42) 

 

and assuming that Tabs. 11 and 14 represent the within-plant and within-batch variation 

respectively, the respective coefficients of variation can be taken as 𝑉wp ≈ 𝑠MLE,gen = 0.09 and 

𝑉wb ≈ 𝑠wb,MLE,gen = 0.05. The total coefficient of variation can be given as 

 

𝑉c,cube = √𝑉wb
2 + 𝑉bbr

2 + 𝑉bpp
2 = 0.13 , (43) 

 

where 𝑉bbr = √𝑉wp
2 − 𝑉wb

2 ≈ 0.08  is the between-batch and -recipe variation and 𝑉bpp =

√𝑉c,cube
2 − 𝑉wp

2 ≈ 0.09 is the between-plant and -producer variation. 

 

[TABLE 15] 

 

5. APPLICATION EXAMPLES 

5.1 General remarks 

Two examples are introduced to demonstrate the application of the results: one existing and one 

new structure. Stewart [10] suggests that the compressive strength in a structure can be 

calculated based on the lab-strength of cylinders according to 

 

𝑓c = 𝑘cp𝑘cr𝑓c,lab , (44) 

 

where 𝑘cp and 𝑘cr are factors considering the effects of compaction and curing respectively. It 

was assumed that the concrete was placed with fair performance of the compaction and exposed 

to fair curing conditions for at least seven days, resulting in mean values 𝜇cp = 0.87 and 𝜇cr =
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1.00, and coefficients of variation 𝑉cp = 0.06 and 𝑉cr = 0.05. With a poor level of compaction 

and poor curing conditions, the mean values and the coefficients of variation of the factors 

decrease and increase, respectively. A nominal ratio between the cylinder and cube strength of 

0.85 was used, and the coefficient of variation of the lab-strength of cylinders was assumed to 

be properly described by the one estimated for cubes, justified by evidence in the literature 

reviewed in the introduction. The compressive strength in the structure was thus represented by 

a log-normally distributed variable with mean 

 

𝜇c = 0.85 ⋅ 0.87 ⋅ 1.00 ⋅ 𝜇c,cube ≈ 0.74 exp(E[𝑦])  (45) 

 

and coefficient of variation 

 

𝑉c = √0.062 + 0.052 + 𝑉c,cube
2 ≈ √0.006 + VAR[𝑦] , (46) 

 

assuming that Eqs. (25) and (26) are valid approximations. It should be noted that the ratio 

between the cylinder and cube strength also has a significant coefficient of variation [30-35] 

which should be taken into account in Eq. (46) if a detailed strength prediction is necessary. 

However, for the present application examples, the nominal ratio was assumed sufficient. 

 

5.2 Example 1: Existing structure 

The sample of six cores drilled from an existing structure presented by Steenbergen & Vervuurt 

[43] was considered. The sample mean and standard deviation of the natural logarithm of the 

core strengths were �̅� = 4.40 and 𝑠 = 0.12, and with six observations, 𝜈 = 5. Assuming a non-

informative prior, Eq. (14) can be used to estimate the lower 5%-fractile of the cylinder strength 

as 

 

𝑓c,0.05 = exp (�̅� − 𝑡0.05,5𝑠√
7

6
 ) = 62.7 MPa . (47) 

 

Assuming that the generalized prior data for the variance given in Tab. 12 is valid for the 

population of concrete from which the six cores originate, Eqs. (23) and (24) update the prior 

data for the variance, added the contributions from compaction and curing, according to 

 

𝜈′′ = 𝜈MLE,gen + 𝜈 = 9.1  (48) 

 

and 

 

𝑠′′ = √
νMLE,gen(𝑠MLE,gen

2 + 𝑉cp
2 + 𝑉cr

2) + 𝜈𝑠2

𝜈′′
= 0.12 . (49) 

 

Eq. (49) is derived from Eq. (24), assuming that the prior value of the variance can be given by 

𝑠′2 = 𝑠MLE,gen
2 + 𝑉cp

2 + 𝑉cr
2. The estimated lower 5%-fractile of the cylinder strength becomes 
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𝑓c,0.05 = exp (�̅� − 𝑡0.05,9.1𝑠′′√
11.1

10.1
 ) = 64.8 MPa . (50) 

 

The influence of the prior data on the updated standard deviation was small since the values of 

the sample standard deviation and the prior were similar. However, the prior data increased the 

information content in the posterior prediction, shown in Fig. 3, resulting in a 3% increase of the 

estimated lower 5%-fractile of the cylinder strength. 

 

[FIGURE 3] 

 

5.3 Example 2: New structure 

A structure was assumed to be designed with a concrete B45M40. At an early stage in the 

design process, it is reasonable to consider the whole population of B45 when estimating the 

design compressive strength, i.e. the strength class level in the hierarchical model in Fig. 1. 

Considering Tab. 8 and the assumptions above, the mean compressive strength becomes 

 

𝜇c = 0.74 exp (E[𝑦]) = 49.8 MPa , (51) 

 

the total coefficient of variation becomes 

 

𝑉tot,c = √𝑉𝜃
2 + 𝑉G

2 + 𝑉c
2 = √0.052 + 0.052 + (0.006 + VAR[𝑦]) = 0.15 , (52) 

 

and the design compressive strength becomes 

 

𝑓c,des = 𝜇c exp(−𝛼R𝛽𝑉tot,c) = 31.4 MPa , (53) 

 

assuming that 𝑉𝜃, 𝑉G and 𝛼R𝛽, attain the values from Eq. (1). Comparing the design strength 

with the target cylinder strength from Tab. 1, 𝑓ck, gives an effective partial material factor 

 

𝛾c,eff. =
𝑓ck

𝑓c,des
= 1.44 , (54) 

 

which could be compared with 𝛾c = 1.5  from Eq. (1). By including more information by 

moving downwards in the hierarchical model, and considering Tabs. 7 and 6, the results in Tab. 

16 are obtained. The different estimates of 𝛾c,eff.  are results of considering different 

subpopulations of B45 and B45M40, having different mean values and coefficients of variation. 

If a sufficient amount of information is made available, it could be possible to move further 

downwards in the hierarchy, and possibly exclude both between-plant and between-recipe 

variation. 

 

[TABLE 16] 

 

6. CONCLUSION 

By studying strength recordings from Norwegian ready-mixed concrete plants, the variability of 

the compressive cube strength has been quantified on different hierarchical levels. The highest 

studied level of the hierarchy was the strength class, which represents the entry point of 

information in the design process. During design of a new structure, the designer specifies a 
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certain strength and durability class, and the fact that the producer, plant, recipe and batch is 

unknown is reflected in the coefficient of variation at the highest level of the hierarchy. The 

presented results are easily combined with additional data, e.g. from the European market, or 

from a supply controlled by a different regional standard. 

 

It has been demonstrated how the level of knowledge of the designer influences the uncertainty 

that must be taken into account, and thus the estimated design compressive strength in the 

structure. With today's diversity in assessment methods both with regard to structural behaviour 

and uncertainty differentiation, and the strong focus on reassessments of existing structures, data 

on a form similar to what has been presented herein could be considered included in future 

design codes. This could stimulate to a safe use of advanced assessment methods, with an aim to 

reduce unnecessary conservatism and increase the competitiveness of concrete. 

 

The scope of the present work was to estimate the variation resulting from what the designer can 

control. The results indicate that the designer should specify a strength class that utilizes the 

strength potential of the durability class, and avoid combinations like e.g. B35M40 and 

B25M60, where a resulting over-strength could introduce a safety margin, but also unintended 

variation in the population. A closer collaboration between the designer, contractor and producer 

is expected to result in improved concrete specifications. A natural continuation of this work 

could be to address the influence of the different constituents on the estimated variation, i.e. 

study the variation from a producer's point of view with the possible aim of reducing unintended 

variation, and obtaining a more homogenous population of concrete. 
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Table 1: Relation between target cylinder strength, 𝑓𝑐𝑘 , and cube strength, 𝑓𝑐𝑘,𝑐𝑢𝑏𝑒 , for the 

strength classes given in Eurocode 2, EN 206 and fib Model Code 2010. 

 B10 B20 B25 B30 B35 B45 B55 B65 B75 B85 B95 

𝑓ck [MPa] 10 20 25 30 35 45 55 65 75 85 95 

𝑓ck,cube [MPa] 12 25 30 37 45 55 67 80 90 100 110 

 

Table 2: Description of the levels of the hierarchical model. The right column indicates that if a 

sample of observations at one level in the hierarchy is considered, one can make inference 

about the between-variation on that level and a contribution to the within-variation on the next 

higher level. 

Hierarchical level Inference from a sample of observations at 

the respective level 

Standard test specimens from one batch Within batch 

Batch Within recipe / between batch 

Recipe Within plant / between recipe 

Concrete plant Within producer / between plant 

Concrete producer Within durability class / between producer 

Durability class Within strength class / between durability class 

Strength class Within region / between strength class 

Supply controlled by regional standard Within the gross supply / between region 

The gross supply - 

 

Table 3: Marginal posterior distributions, 𝑓(⋅ |𝒚), expected values, 𝐸[⋅], and variances, 𝑉𝐴𝑅[⋅], 
for 𝜇, 𝜎2 and 𝑦, starting from a non-informative prior distribution. 

Variable 𝑓(∙ |𝒚) E[∙] VAR[∙] 

𝜇 𝑡 (𝜇|�̅�, 𝑠2 1
𝜈 + 1 , 𝜈) �̅� 

𝜈

(𝜈 − 2)(𝜈 + 1)
𝑠2 

𝜎2 Inv-𝜒2(𝜎2|𝜈𝑠2, 𝜈) 
𝜈

𝜈 − 2
𝑠2 

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝑠4 

𝑦 𝑡 (𝑦|�̅�, 𝑠2 𝜈 + 2
𝜈 + 1 , 𝜈) E[𝜇] VAR[𝜇] + E[𝜎2] 

 

Table 4: Correction factor for Eq. (30) found by including higher order terms of 𝜕 𝑙𝑛 𝛤(𝜈/2)/
𝜕𝜈 in the numerical solution of Eq. (30). 

1

ln 𝐴 − 𝐵
 0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0 40.0 

𝑓 (
1

ln 𝐴 − 𝐵
) 2.42 1.44 1.20 1.14 1.10 1.06 1.03 1.02 1.01 
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Table 5: Overview of the producers and plants that have contributed to the study. 

Producer Plant Observations 

A 

1 925 

2 751 

3 679 

4 419 

5 358 

6 258 

B 

1 612 

2 996 

3 543 

4 350 

5 479 

6 564 

C 

1 2065 

2 880 

3 841 

4 1698 

5 1789 

Total  14207 
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Table 6: Posterior inference per producer for different combinations of strength and durability 

classes, where 𝐸[𝑦]  and 𝑉𝐴𝑅[𝑦]  are the expected value and the variance of the posterior 

prediction of 𝑦 = 𝑙𝑛 𝑓𝑐,𝑐𝑢𝑏𝑒 , 𝑠  is the sample standard deviation, 𝑛  is the sample size and 

𝑓𝑐,𝑐𝑢𝑏𝑒,0.5 and 𝑓𝑐,𝑐𝑢𝑏𝑒,0.05 is the median and characteristic value of the posterior prediction in 

MPa. 𝑠𝑤
2 /𝑠2 indicates the contribution from the within-plant variance to the total variance of 

the combination of strength and durability class at the respective producer. 

 E[𝑦]  √VAR[𝑦]  𝑠  𝑛  𝑠w
2 /𝑠2  𝑓c,cube,0.5  𝑓c,cube,0.05  

Producer A        

B20M90 3.52 0.13 0.13 33 0.40 33.7 26.8 

B25M60 3.78 0.10 0.10 20 0.59 43.6 36.3 

B25M90 3.59 0.10 0.09 33 0.90 36.4 30.8 

B30M60 3.86 0.12 0.12 1076 0.81 47.4 39.2 

B35M40 4.22 0.10 0.10 179 0.94 67.9 57.1 

B35M45 4.05 0.12 0.12 409 0.95 57.5 47.5 

B35M60 3.94 0.06 0.05 8 1.00 51.2 45.5 

B35MF40 4.17 0.11 0.11 183 0.79 64.8 54.4 

B35MF45 4.03 0.11 0.11 308 0.98 56.5 47.0 

B35SV40 4.21 0.11 0.11 162 0.86 67.7 56.0 

B45M40 4.21 0.10 0.10 235 0.89 67.3 56.7 

B45MF40 4.20 0.10 0.10 212 0.97 66.7 56.6 

B45SV30 4.19 0.10 0.10 68 1.00 65.9 55.5 

B45SV40 4.24 0.11 0.11 458 0.77 69.4 58.2 

B55M40 4.30 0.09 0.07 6 1.00 74.0 60.5 

Producer B        

B20M90 3.55 0.12 0.11 16 0.69 34.9 28.0 

B25M90 3.61 0.18 0.17 54 0.98 37.1 27.5 

B30M60 3.81 0.12 0.12 956 0.78 45.0 36.8 

B30MF45 3.98 0.11 0.07 5 1.00 53.6 41.8 

B35M40 4.09 0.14 0.13 120 0.36 60.0 47.9 

B35M45 4.03 0.13 0.13 466 0.58 56.3 45.5 

B35MF40 4.09 0.19 0.18 59 0.34 59.5 43.3 

B35MF45 4.01 0.12 0.12 276 0.66 55.2 45.4 

B35SV30 4.10 0.08 0.04 4 1.00 60.2 48.4 

B35SV40 4.14 0.11 0.11 62 0.47 62.7 51.7 

B45M40 4.21 0.13 0.13 161 0.44 67.3 54.3 

B45MF40 4.15 0.12 0.12 332 0.68 63.3 52.0 

B45SV30 4.24 0.10 0.09 49 0.38 69.7 59.1 

B45SV40 4.18 0.10 0.10 824 0.73 65.6 55.8 

B55SV40 4.38 0.10 0.10 160 0.96 80.0 68.2 

Producer C        

B20M90 3.59 0.11 0.11 131 0.72 36.3 30.1 

B30M60 3.83 0.10 0.10 2363 0.91 45.9 38.8 

B35M40 4.27 0.10 0.10 458 0.91 71.4 60.2 

B35M45 4.13 0.10 0.10 1138 0.79 62.5 52.6 

B35MF40 4.16 0.12 0.12 120 0.66 64.0 52.7 

B35MF45 4.02 0.11 0.11 464 0.86 55.6 46.5 

B35SV40 4.25 0.14 0.14 280 0.71 69.9 55.8 

B45M40 4.30 0.10 0.10 343 0.91 73.4 61.7 
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B45M45 4.22 0.11 0.11 52 0.82 68.2 56.4 

B45MF40 4.17 0.11 0.11 161 0.88 64.8 53.9 

B45MF45 4.15 0.09 0.08 34 0.92 63.4 54.4 

B45SV40 4.22 0.10 0.10 1729 0.88 68.4 57.7 

 

Table 7: Posterior inference per combination of strength and durability classes, where the 

variables are defined in Tab. 6. 𝑠𝑤
2 /𝑠2  indicates the contribution from the within-producer 

variance to the total variance of the combination of strength and durability class. 

 E[𝑦]  √VAR[𝑦]  𝑠  𝑛  𝑠w
2 /𝑠2  𝑓c,cube,0.5  𝑓c,cube,0.05  

B20M90 3.57 0.12 0.12 180 0.94 35.7 29.3 

B25M60 3.78 0.10 0.10 20 1.00 43.6 36.3 

B25M90 3.61 0.15 0.15 87 1.00 36.8 28.7 

B30M60 3.83 0.11 0.11 4395 0.97 46.1 38.3 

B30MF45 3.98 0.11 0.07 5 1.00 53.6 41.8 

B35M40 4.23 0.13 0.12 757 0.75 68.6 55.8 

B35M45 4.09 0.12 0.12 2013 0.85 60.0 49.0 

B35M60 3.94 0.06 0.05 8 1.00 51.2 45.5 

B35MF40 4.15 0.13 0.13 362 0.94 63.6 51.5 

B35MF45 4.02 0.11 0.11 1048 0.99 55.8 46.4 

B35SV30 4.10 0.08 0.04 4 1.00 60.2 48.4 

B35SV40 4.22 0.13 0.13 504 0.93 68.3 55.0 

B45M40 4.25 0.12 0.12 739 0.87 70.1 57.7 

B45M45 4.22 0.11 0.11 52 1.00 68.2 56.4 

B45MF40 4.17 0.11 0.11 705 0.96 64.6 53.6 

B45MF45 4.15 0.09 0.08 34 1.00 63.4 54.4 

B45SV30 4.21 0.10 0.10 117 0.96 67.5 56.9 

B45SV40 4.22 0.10 0.10 3011 0.96 67.7 57.1 

B55M40 4.30 0.09 0.07 6 1.00 74.0 60.5 

B55SV40 4.38 0.10 0.10 160 1.00 80.0 68.2 

 

Table 8: Posterior inference per strength class, where the variables are defined in Tab. 6. 

𝑠𝑤
2 /𝑠2 indicates the contribution from the within-durability class variance to the total variance 

of the strength class. The general posterior predictive inference is for the variable 𝛿 = 𝑦 −
𝑙𝑛 𝑓𝑐𝑘,𝑐𝑢𝑏𝑒. 

 E[𝑦]  √VAR[𝑦]  𝑠  𝑛  𝑠w
2 /𝑠2  𝑓c,cube,0.5  𝑓c,cube,0.05  

B20 3.57 0.12 0.12 180 1.00 35.7 29.3 

B25 3.64 0.16 0.15 107 0.81 38.0 29.3 

B30 3.83 0.11 0.11 4400 1.00 46.1 38.3 

B35 4.12 0.14 0.14 4696 0.72 61.4 48.5 

B45 4.21 0.11 0.11 4658 0.96 67.6 56.4 

B55 4.38 0.10 0.10 166 0.98 79.8 68.0 

General 0.25 0.13 - - - - - 

 

  



22 

 

Table 9: MLE for different combinations of strength and durability class. 

 �̅�MLE  𝑛MLE  𝑠MLE  𝜈MLE  𝑚  

B20M90 3.54 1.4 0.09 6.7 12 

B25M60 3.77 1.8 0.07 6.5 2 

B25M90 3.65 5.2 0.05 1.3 5 

B30M60 3.83 3.8 0.10 21.4 17 

B35M40 4.18 0.8 0.08 6.5 14 

B35M45 4.06 1.6 0.09 7.2 17 

B35MF40 4.14 0.8 0.09 7.0 14 

B35MF45 4.01 2.8 0.09 8.7 15 

B35SV40 4.21 1.0 0.08 4.7 12 

B45M40 4.21 1.0 0.08 5.7 17 

B45M45 4.19 5.7 0.07 2.9 4 

B45MF40 4.17 2.5 0.09 11.6 15 

B45MF45 4.14 8.1 0.09 33.8 2 

B45SV30 4.24 0.9 0.06 11.0 5 

B45SV40 4.21 3.4 0.08 9.5 16 

B55SV40 4.36 9.8 0.06 3.8 3 

General 0.26 0.6 0.08 5.0 170 

 

Table 10: Prior data for the cube strength of ready-mixed concrete as suggested by Rackwitz 

[16] assuming a log-normal distribution.  �̅�′ and 𝑠′  represent the prior knowledge about the 

mean and standard deviation, and 𝑛′ and 𝜈′ are the degree of belief in  �̅�′ and 𝑠′ respectively. 

 �̅�′  𝑛′  𝑠′  𝜈′  
C15 3.40 1.5 0.14 6.0 

C25 3.65 1.5 0.12 6.0 

C35 3.85 1.5 0.09 6.0 

C45 3.98 1.5 0.07 6.0 

 

Table 11: MLE for different durability classes. 

 �̅�MLE  𝑛MLE  𝑠MLE  𝜈MLE  𝑚  

M40 4.19 1.1 0.08 10.4 17 

M45 4.06 1.6 0.09 7.4 17 

M60 3.83 4.1 0.10 21.9 17 

M90 3.57 2.4 0.10 6.8 13 

MF40 4.17 2.2 0.09 10.7 16 

MF45 4.01 2.8 0.09 8.3 15 

SV30 4.24 0.8 0.06 11.2 5 

SV40 4.21 3.2 0.09 8.0 16 

General - - 0.09 7.7 116 

 

 

 

 

 

 

 

 



23 

Table 12: MLE for different strength classes. 

 �̅�MLE  𝑛MLE  𝑠MLE  𝜈MLE  𝑚  

B20 3.54 1.4 0.09 6.7 12 

B25 3.67 1.2 0.06 1.4 7 

B30 3.83 3.9 0.10 21.3 17 

B35 4.07 2.2 0.11 22.8 17 

B45 4.19 2.2 0.09 20.4 17 

B55 4.35 4.9 0.06 5.0 4 

General 0.24 1.1 0.09 4.1 74 
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Table 13: MLE of the within-batch variation for different combinations of strength and 

durability class. 

 𝑠wb,MLE  𝜈wb,MLE  𝑚  

B20M90 0.07 3.8 26 

B25M60 0.04 3.2 3 

B25M90 0.05 1.4 16 

B30M60 0.05 1.6 129 

B35M40 0.05 1.9 59 

B35M45 0.04 1.4 105 

B35MF40 0.05 1.6 49 

B35MF45 0.06 2.6 72 

B35SV40 0.05 2.1 40 

B45M40 0.05 2.0 69 

B45M45 0.05 2.1 8 

B45MF40 0.05 1.7 56 

B45MF45 0.06 11.4 5 

B45SV30 0.03 1.4 11 

B45SV40 0.04 1.6 91 

B55SV40 0.05 3.9 6 

General 0.05 1.6 745 

 

Table 14: MLE of the within-batch variation for different strength classes. 

 𝑠wb,MLE  𝜈wb,MLE  𝑚  

B20 0.07 3.8 26 

B25 0.05 1.5 19 

B30 0.05 1.6 130 

B35 0.05 1.6 327 

B45 0.05 1.6 240 

B55 0.05 4.2 7 

General 0.05 1.6 749 

 

Table 15: Parameters for the general probability distribution for the compressive cube strength. 

𝑓𝑐𝑘,𝑐𝑢𝑏𝑒 is the target cube strength. 

Mean 𝜇c,cube = 1.28𝑓ck,cube 

Total variation 
𝑉c,cube = √𝑉wb

2 + 𝑉bbr
2 + 𝑉bpp

2 = 0.13 

Within-batch variation 𝑉wb = 0.05 
Between-batch and -recipe variation 𝑉bbr = 0.08 
Between-plant and -producer variation 𝑉bpp = 0.09 
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Table 16: Results from Example 2, demonstrating the effect of including more information in the 

estimate of the design compressive strength. 𝜇𝑐 is the mean strength in the structure, 𝑉𝑡𝑜𝑡,𝑐 is the 

total coefficient of variation, 𝑓𝑐,𝑑𝑒𝑠 is the design compressive strength and 𝛾𝑐,𝑒𝑓𝑓. is the effective 

partial material factor according to Eqs. (51) to (54). 

Knowledge 𝜇c [MPa] 𝑉tot,c [-] 𝑓c,des [MPa] 𝛾c,eff. [-] 

B45 49.8 0.15 31.4 1.44 

B45M40 51.8 0.16 31.9 1.41 

B45M40, Prod. A 49.8 0.15 32.0 1.40 

B45M40, Prod. B 49.8 0.17 30.0 1.50 

B45M40, Prod. C 54.5 0.15 35.1 1.28 
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Figure 1: Hierarchical model for the variability of material properties in concrete. The 

examples to the right in the figure indicates the application of the estimators in Sec. 3.1. 

 

a) B35, note that B35M60 and B35SV30 were 

left out of the figure due to the low numbers of 

observations. 

b) B45. 

Figure 2: Posterior predictions according to Tabs. 7 and 8 and Eq. (14) for the combinations 

of strength and durability classes. The solid lines indicate the target cube strength and the 

squares and the triangles indicate the median and the lower 5%-fractile of the posterior 

predictive distributions respectively. 

 

Figure 3: Posterior predictive distributions based on non-informative (dashed) and informative 

(solid) prior distributions for the cylinder strength in Example 1. 
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