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Abstract

Hydropower producers with reservoir capacity have a special challenge when it comes to weighing the short-term profit
from selling power in the day-ahead spot market against waiting for better electricity prices. In this paper, we propose a
medium-term scheduling model for a price-taking hydropower producer, using a horizon of two years. We use the price of
forward contracts to forecast future spot prices, and use multiple factors to describe movements in price. Further, we include
a short-term correlation between movements in electricity price and local inflow. Our main contribution is a comparison
of the performance of our scheduling model to a model in which price and local inflow are assumed to be independent
and a model in which price movements are described using only one factor. We quantify the loss in expected revenues of
using the latter two models compared to ours when price movements are in fact driven by multiple factors and correlated
with local inflow. In both cases, we find the loss to be approximately 2-3 %. We have based our study on a Norwegian
hydropower plant.

Keywords: Hydropower reservoir management, Markov decision process, multi-factor price process, price and local inflow
correlation, stochastic dynamic programming

1 Introduction

The decision problem of hydropower producers, which seek
to dispatch the water in their reservoir optimally, has existed
for many years, and multiple approaches for formulating and
modelling such problems have been proposed. Massé (1946)
argues that deterministic models are not good enough, as
they do not incorporate the flexibility a production planner
has when it comes to the timing of production. Instead,
one should use a flexible approach which can provide the
hydropower producer with optimal decision policies for both
the current and future states of the world, incorporating
the uncertainty in future states. The flexible approach
proposed by Massé (1946) is still relevant for how reservoir
management is performed today.

Inspired by Massé (1946) and multiple papers of more
recent date, we aim to create a dynamic scheduling model
for a price-taking hydropower production planner that
participates in a deregulated power market. The planner
operates a plant that is assumed to be sufficiently small so
that the decisions of the production planner do not affect
the market as a whole. We also assume that the production
planner only participates in the spot market. Further, we
consider two stochastic variables (spot price and inflow) and
we use a time horizon of two years and weekly granularity
which is suitable for medium-term planning. This is in
compliance with multiple current models for medium-term
reservoir management, as described in Iladis et al. (2008),
Wolfgang et al. (2009) and Abgottspon and Andersson
(2014).

Our contributions in this work include the use of a
multi-factor price process, as opposed to existing models
for reservoir management which often use single-factor
processes to describe movements in price. We include
a correlation coefficient between changes in price and
local inflow, thereby treating them as dependent variables.
Further, we quantify the loss in expected revenues if they
assume price and local inflow to be independent when
they are in fact correlated, and equivalently, the losses that
occur if they use a single factor price process when price
movements are in fact described by multiple factors.

To obtain optimal decision policies in each discrete state
for the production planner, one can use stochastic dynamic
programming as introduced by Bellman (1957). An
issue with dynamic programming is the so-called curse
of dimensionality, that is, the problem might become too
difficult to solve when the state space and number of
decision variables become too large. In order to avoid
this, Pereira and Pinto (1991) introduce an algorithm
for stochastic dynamic programming, a solution approach
known as stochastic dual dynamic programming (SDDP).
SDDP and similar approaches are widely used in existing
literature on hydropower production scheduling, e.g. in
Mo et al. (2001) and Rebennack (2015). Löhndorf et al.
(2013) introduce a framework that integrates SDDP with
Markov processes, referred to as approximate dual dynamic
programming (ADDP). Given a current state of the world,
the next state value of a variable following a Markov process
is only dependent on its current state value, and not its entire
history. Similarly, in a Markov Decision Process (MDP), all

∗Lead author. Kolbjørn Hejes vei 1E, 7034 Trondheim, Norway. +47 458 23 304. sveinung.nersten@gmail.com

Submitted to the IAEE International Conference 2018 May 8, 2018



decisions are made based on the current state of the world
and its future expected states, irrelevant of all past states.

Multiple authors, e.g., Lamond and Boukhtouta (1996),
show that it is reasonable to treat hydropower reservoir
management problems as MDPs, an approach we adopt in
this paper. We therefore treat inflows and price movements
as Markov processes, and use a scenario lattice to discretize
all future states and transition probabilities. To construct
the lattice, we use the method proposed by Löhndorf and
Wozabal (2017). We also use their method for solving
stochastic dynamic programs, ADDP, to obtain all optimal
decision policies.

We incorporate two stochastic state variables; spot price and
inflow. EOPS (SINTEF, 2017b), which is one of the most
common commercial programs for medium-term reservoir
management for smaller systems in the Nordic countries,
uses spot price scenarios generated using EMPS (SINTEF,
2017a). EMPS is a fundamental model which, among
others, can forecast spot prices in larger power systems by
using historical scenarios of stochastic variables like area
inflow and demand (Wolfgang et al., 2009). Mo et al. (2001)
show that there is a high correlation between the prices of
successive weeks simulated using EMPS. Therefore, until
2000, EOPS used an AR(1) process (a single-factor model)
to describe the price movements found by EMPS, illustrated
in Flatabø et al. (1998). As shown in Mo et al. (2000),
price scenarios in EOPS are still generated using EMPS, but
the prices are now organized in a lattice using the scenarios
directly instead of expressing them with an autoregressive
process.

In contrast to how spot price scenarios are generated in
EOPS, we generate them using movements in the price of
forward contracts traded in the market. These movements
are modelled using a multi-factor model, commonly referred
to as an HJM model (Heath et al., 1992). Clewlow and
Strickland (2000), Koekebakker and Ollmar (2005) and
Bjerksund et al. (2008) argue that one-factor models such
as AR(1) are unrealistic for accurately representing forward
and spot price movements. Instead, they propose using
multi-factor models, which according to them give a much
more realistic representation of the dynamics behind price
movements. Like Koekebakker and Ollmar (2005), we find
the coefficients of the price process empirically by first
constructing forward curves for many consecutive trading
days, and then calculate daily deviations between the curves
and use PCA to obtain multiple factors.

The other stochastic variable we consider is inflow. When
determining the characteristics of the inflow, there are
several questions that must be answered - whether the
system is a local or a regional system consisting of a
number of power plants, if there is a seasonal pattern
to the inflow, if there are rain periods or snow melting
periods, and the choice of temporal resolution of the inflow
measurements. For inflow, there is often, depending on the
time resolution, a significant degree of autocorrelation from
one period to the next. E.g., after a period of precipitation

or snow melting, one is likely to experience consecutive
days and weeks of increased inflow. A significant degree of
autocorrelation favors the use of autoregressive processes.
In EOPS, the inflow for a local system is assumed to follow
an ARIMA(1,1) process. Maceira and Damázio (2006)
propose a periodic autoregressive process (PAR) for inflow
in the Brazilian hydropower system. Since PAR allows
for negative inflows and do not account for the skewness
of the inflow distribution very well, Shapiro et al. (2013)
propose to use geometric PAR models (GPAR). In GPAR,
the deviations of the log inflows from their periodic mean
are represented as an AR(1) process. We will adopt this
approach in this paper.

For hydropower dominated systems, multiple papers show
that there exists a general a negative correlation between
inflow and the electricity price, e.g., Mo et al. (2001).
Naturally, when reservoir levels are low, prices increase as
a result of lower supply. The nature and strength of this
correlation will depend on several factors. Among these
is the choice of time resolution, and whether we look at
local or system-level inflow. All else equal, one will expect
the strength of the relationship to be stronger for a coarse
granularity of time (e.g., quarterly or yearly data), as the
impact on the supply will be more substantial for inflow
aggregated over a longer time.

The inflow-price relationship is in varying degree taken into
account in the literature and commercial software. Kolsrud
and Prokosch (2010) found a relationship between the spot
price, the overall aggregated reservoir level in a given
geographical area and the local reservoir level of a single
plant. Further, EMPS, which is used to find spot price
scenarios to be used in EOPS, finds spot price as a function
of aggregated, regional inflow. On the contrary, Fosso et al.
(1999) show that EOPS treats movements in local inflow and
price as independent variables. Intuitively, we would expect
the correlation between price and inflow to be stronger on
an aggregated national level, than between the local inflow
of a particular power plant and the system price. However,
we do not expect local inflow and price to be independent.
This is because the local inflow can be heavily correlated
with the aggregated national inflow, as found in Boger et
al. (2017). Therefore, we include a correlation between
movements in local inflow and the price of forward contracts
in the stochastic processes.

The paper is organized as follows. In Section 2, we
present the reservoir management decision problem as a
mathematical program. We also give an overview of
the stochastic processes used to describe the correlated
movements of inflow and price and how these can be used to
generate a scenario lattice. The section is concluded with a
short description of ADDP, the framework used to solve the
decision problem. In Section 3, we present a multi-reservoir
hydropower plant in Norway on which we have tested our
model. We also present the obtained process coefficients
and correlation, and show empirical results from running
the model. The section is concluded with a calculation
of the losses associated with using a single factor price
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process and from omitting the price-inflow correlation. Final
conclusions are made in Section 4.

2 Methods

In the following sections, we will first formulate the
decision problem associated with reservoir management as a
mathematical program. Then, we will show how movements
in the two relevant stochastic variables, spot price and
inflow, can be modeled. Further, we present how all future
states of price and inflow can be discretized using a scenario
lattice, and briefly present the solution method used to obtain
optimal decision policies for each state.

2.1 Hydropower decision problem

In this part, we describe the problem faced by a
price-taking hydropower production planner with multiple,
interconnected reservoirs that participates in deregulated
market. Based on a broad set of endogenous and exogenous
variables such as reservoir level, inflow and spot price, they
must decide how much water they should use for power
production in a given period and how much they should store
for future production. The production planner is limited by
multiple constraints, e.g., on reservoir volume and turbine
capacity, and his primary concern is how they can utilize
their water to maximize the expected present value of all
discounted future cash flows.

The problem faced by the production planner is a stochastic
dynamic decision problem, meaning that decisions must be
made at different stages in time and in light of uncertainty
about future states of their environment. For each time step,
there are two stochastic, exogenous variables that affect the
decisions of the production planner; spot price Pt and inflow
Yb,t into all reservoirs b = [1, ...,B]. For convenience, we
denote Ŷt = {Yb,t : b = [1, ...,B]} as a set of all inflows to all
reservoirs at time t. Like Bjerksund et al. (2008), we assume
that the decision maker participates in a complete market
with no riskless arbitrage opportunities. Harrison and Pliska
(1981) define a complete market as a market where the price
of all securities is attainable, and there exists only one single
price for each security. In a complete and arbitrage-free
market, there would exist a unique risk-neutral, martingale
measure Q that represents the risk-neutral probabilities of all
future states for spot price and inflow.

Using the complete market and no-arbitrage assumption and
denoting πt as a decision policy at time t providing a cash
flow of CFt = CFt(Pt ,Ŷt ,πt) and an appropriate discount
factor βt < 1, the expected discounted cash flows over a time
horizon T̂ are given by

max
πt

EQ(
T̂

∑
t=1

βtCFt(Pt ,Ŷt ,πt)) (1)

Like Lamond and Boukhtouta (1996), we treat the reservoir
management problem as a Markov decision process (MDP).

The objective of MDPs is to obtain optimal decision policies
(πt ) for all current and future states of the world. These
policies maximize the value of all current and future cash
flows, meaning that the policies do not only depend on their
respective states, but also the space of potential future states.
We denote by Vt the time t value of the current time cash flow
and all future expected cash flows, and formulate it using the
Bellman equation, first introduced by Bellman (1957)

Vt(Pt ,Ŷt ,πt) = max
πt

CFt(Pt ,πt)

+βtE[Vt+1(Pt+1,Ŷt+1,πt+1|Pt ,Ŷt ,πt)] (2)

Equation (2) is a recursive formula, meaning that the time
t value of all future cash flows Vt is a function of the
immediate cash flows CFt and the expected next step value
Vt+1. The possible values of Vt+1 are, however, dependent
on the current time decisions, indicating the importance of
choosing πt such that it does maximize not only the current
cash flow, but also all expected future cash flows.

In hydropower production, the cash flows earned by the
production planner equal the product of spot price and the
amount of produced energy. When ignoring turbine and
generator start-up costs, which is quite common in other
papers discussing hydropower reservoir management (e.g.,
Wallace and Fleten, 2003), cash flows can be set equal
to revenues. Thus, (2) can be considered as the objective
function of the decision problem. For a hydropwer system
consisting of B interconnected reservoirs, we denote by wbi,t
the amount of water in [m3] nominated for production in a
turbine connecting reservoir b and reservoir i. In case the
nominated water flows into an outlet (e.g., a river, lake or
fjord), we set i = O. Further, ς and ϖ are the number
of seconds and hours, respectively, the plant’s turbines are
running per week. Given that the plant produces at constant
rate, we can define qbi,t = wbi,t/ς as the water discharge in
[m3/s] from reservoir b flowing into reservoir i at time t.
Further, we let Hb,t denote the head elevation in reservoir
b, and ηbi,t the efficiency rate of a turbine connecting
reservoir b and i. In reality, these are typically functions of
multiple decision variables, e.g., reservoir volume and water
discharge. While we do not define these functions now, we
discuss their form further in Section 3.2. Lastly, given a
water density ρ and gravitational acceleration G, the cash
flow CFt at time t can be written as

CFt = Pt ·ρ ·G ·ϖ ·∑
b∈B

[
Hb,t · ∑

i∈B,i6=b
qbi,t ·ηbi,t

]
t = [1, ..., T̂ ] (3)

We denote by lb,t the water level in [m3] in reservoir b at time
t. Further, ubi,t is the amount of water flowing from reservoir
b to reservoir i outside a turbine, that is, either through a
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regulated channel or as spillage. Like above, we set i = O if
the water flows into an outlet. The general volume balance
of all reservoirs will then be given by

lb,t = lb,t−1− ∑
i∈B,i 6=b

[wbi,t +ubi,t ]+Yb,t + ∑
i∈B,i 6=b

uib,t

t = [0, ..., T̂ ], b = [1, ...,B] (4)

Further, the problem faces multiple restrictions. All
reservoirs are subject to a minimum and maximum level
of water, denoted by lb,t and lb,t . These limits can be
based on physical constraints such as reservoir geometry and
dam robustness, but also on government regulations, some
of which may be seasonal. There are also restrictions in
the turbines, stating the maximum allowed water discharge
qbi that they can handle. In case there exists no turbine
at reservoir b whose water flows into reservoir i, qbi will
logically be 0. Finally, due to infrastructural reasons (e.g.,
too small channels or insufficiently robust spillways), there
might be a maximum constraint on the allowed amount of
water flowing from reservoir b to i, ubi,t . If no water can
flow from reservoir b to i, either due to the lack of physical
connections or the effects of gravity (the head elevation
of reservoir i is higher than that of reservoir b), ubi,t will
logically be 0. All these constraints can be summarized in
(5)-(8).

lb,t ≤ lb,t for t = [1, ..., T̂ ], b = [1, ...,B] (5)

lb,t ≥ lb,t for t = [1, ..., T̂ ], b = [1, ...,B] (6)

qbi,t ≤ qbi for t = [1, ..., T̂ ], b = [1, ...,B], i ∈ B, i 6= b
(7)

ubi,t ≤ ubi,t for t = [1, ..., T̂ ], b= [1, ...,B], i∈B, i 6= b
(8)

By combining all expressions and restrictions, our dynamic
program can be summarized as solving the following
mathematical program at time t

max Vt(Pt ,Ŷt ,πt)

subject to (4),(5),(6),(7),(8)

2.2 Electricity price process

We model spot price movements as a Markov process and
use the price of forward contracts to forecast future spot
prices. At time t, Ft,T is the price of a forward contract

traded in a market with maturity (or delivery) at time T .
For a forward contract with immediate delivery (T = t),
the price of that contract is simply the current time spot
price, that is Pt = Ft,t . Thus, a stochastic process for the
price development of forward contracts with different times
to maturity can be used to represent future spot prices. In
a liquid power market, the available future and forward
contracts traded at time t should represent the current time
risk-adjusted market expectations for future spot prices,
meaning that the spot prices projected by the process will
incorporate these expectations. A further advantage is that
the price of all forward contracts traded in the market
include the seasonality of electricity prices, an important
characteristic of electricity spot prices, as described by
Johnson and Barz (1999). This implies that the process
does not need any deterministic function to account for
seasonality.

As stated previously, we want to use a multi-factor process
to describe movements in price. Including multiple factors
should allow the process to better explain the real dynamics
driving forward price movements, and thereby make better
price predictions. Such a process can be formulated as
a multi-factor extension of the HJM model, originally
presented by Heath et al. (1992). An HJM model with I
sources of uncertainty is given by

dFt,T

Ft,T
=

I

∑
i=1

σi,t,T dZi,t (9)

Here, σi,t,T is the ith volatility function of a forward contract
with maturity at time T , and dZi,t is a source of uncertainty
where Zi,t follows a Wiener process. Together, σi,t,T for i =
[1, ..., I] explain the dynamics driving the time t movement of
a forward contract with maturity at time T . The ith volatility
function is associated with the ith source of uncertainty,
dZi,t . Since our decision problem considers discrete time
stages, (9) must be discretized. By using Ito’s lemma and
setting dt = ∆t, the process can be written as

Ft,T = Ft−∆t,T · exp
(

− 1
2

N

∑
i=1

σ
2
i,T−t+∆t∆t +

N

∑
i=1

σi,T−t+∆t
√

∆tεi,t

)
(10)

Here, ∆Zi,t =
√

∆tεi,t where εi,t ∼ N(0,1). Using Pt = Ft,t ,
we can modify (10) into an expression for the spot price Pt
as a function of Ft−∆t,t , given by

Pt = Ft,t = Ft−∆t,t · exp
(
− 1

2

N

∑
i=1

σ
2
i,∆t∆t +

N

∑
i=1

σi,∆t
√

∆tεi,t

)
(11)
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2.3 Estimating the volatility functions of the price process

In the literature, multiple ways are proposed on how the
volatility functions in (9) can be obtained. Koekebakker and
Ollmar (2005) propose that they can be found empirically
as a function of time to maturity, that is, on the form
σi,t,T = Ψi(T − t). In order to do so, we must construct a
sufficiently large dataset of daily returns for multiple types
of forward contracts m = [1, ...,M] with time to maturity
τm = T − t. Using τ as time to maturity, the volatility
functions can be denoted σi,τ . In order to calculate these
returns series, Koekebakker and Ollmar (2005) propose
constructing multiple forward curves for a large set of
historical trading days and then calculate daily returns as the
deviations between two consecutive curves.

In the Nordic power market, tradable forward and future
contracts have delivery periods stretching over longer time
periods. A forward curve is a curve that aims to explain the
expected forward price for delivery in each hour/day/week
in a time interval (tb,te) based on all contracts available in
the market whose delivery periods span the interval. A
forward curve constructed on the date ts is denoted f (ts).
f (ts, t) where t > ts denotes the value of that curve for
time t, and intends to represent the price of a fictional
forward contract with delivery exactly at time t. Multiple
ways of constructing forward curves are presented in the
literature, e.g. by Fleten and Lemming (2003), Benth et al.
(2007), Alexander (2008) and Kiesel et al. (2017). After
constructing a set of curves for multiple consecutive days,
we can use (12) to calculate daily returns at time t j for
contracts with time to maturity τa. This is a modified
version of the method used by Koekebakker and Ollmar
(2005), as we choose to calculate continuously compounded
logarithmic returns rather than discrete compounded returns.
We do this because it allows us to calculate returns over
longer time periods by addition, thereby simplifying many
calculations. This approach is also used by Bjerksund et al.
(2008).

x j,a = ln( f (t j, t j + τa))− ln( f (t j−1, t j + τa)) (12)

Here, j = [2, ...,J] and a = [1, ...,A], where J is the number
of forward curves and A is the number of maturity dates for
which we want to construct a dataset. The returns series
matrix calculated using J + 1 forward curves (meaning we
can find J returns) and A different time to maturities is then
given by

XJ×A =


x1,1 x1,2 . . . x1,A
x2,1 x2,2 . . . x2,A

...
...

. . .
...

xJ,1 xJ,2 . . . xJ,A

 (13)

Having found XJ×A, we use principal component analysis
(PCA) to find the desired I volatility functions. PCA
is an orthogonalization technique used to reduce the

dimensionality of a dataset consisting of highly correlated
variables. Mathematically, the principal components of
XJ×A, whose correlation matrix is denoted V, are given by
P = XJ×AW. Here, W is a matrix whose columns are the
eigenvectors wi of V sorted in descending order based on
their corresponding eigenvalue λi. As shown in Clewlow
and Strickland (2000), the volatility functions will then be
given by σi,τa =

√
λiwai, where i = [1, ...,A].

To reduce the dimensionality, we only include the volatility
functions associated with the first I principal components.
Typically, one would choose I such that the proportion
of variance explained by the first I factors is around
90%-95%. Clewlow and Strickland (2000) show that only
two components are needed to explain 96.8% of total
variation of NYMEX crude oil futures contracts, whereas
Koekebakker and Ollmar (2005) needed more than ten
components to explain the same proportion for Nordic
electricity forwards in the period 1995-2000.

2.4 Inflow process

The inflow process is based on the geometric periodic
autoregressive (GPAR) model presented by Shapiro et al.
(2013). The authors found that a first-order periodic
autoregressive process of the log-inflows provides a
good description of the dataset, which contained inflow
observations from the Brazilian hydropower system. They
found that the distribution of inflow observations Yt is highly
right-skewed. Therefore, they work with ln(Yt) to obtain a
distribution with less skew.

Let µ̂t , t = 1, ...,52 be the weekly averages of ln(Yt) and
Wt = ln(Yt)− µ̂t be the corresponding deviations. Shapiro
et al. (2013) found that Wt could be described by an AR(1)
process. (14) shows how the deviations of the log inflows
from their mean can be described as an 1-lag autoregressive
process.

Wt = φ0 +φ1Wt−1 + εY,t (14)

Here, φ0 and φ1 are parameters of the process, and εY,t
is the error term representing the difference between the
observed and predicted value. To be able to model the
inflow as a stochastic process, we assume that the error terms
are distributed εY,t ∼ N(0,σ2

Y), where σY is the standard
deviation of the error terms. The parameters φ0 and φ1
are estimated by ordinary least squares regression. Because
Wt observations are themselves deviations, φ0 is highly
insignificant. We set φ0 = 0 and use φ1 = φ from this point
on. Next, we find the log inflow, Wt + µ̂t

Wt + µ̂t = φWt−1 + εY,t + µ̂t

= φ(Wt−1 + µ̂t−1)−φ µ̂t−1 + εY,t + µ̂t (15)

The inflow Yt can be expressed as a function of Wt + µ̂t .
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We insert the obtained expression of Wt + µ̂t into Yt =
exp(Wt + µ̂t), and get

Yt = exp(Wt + µ̂t) =

exp(φYt−1)exp(−φ µ̂t−1 + εY,t + µ̂t) (16)

By rewriting, we obtain the inflow process described by (18).

Yt = exp(φ lnYt−1)exp(µ̂t −φ µ̂t−1 + εY,t) (17)

Yt = exp(εY,t)exp(µ̂t −φ µ̂t−1)Y
φ

t−1 (18)

We further allow the error term standard deviation σY and
the coefficient φ to be time-dependent. The final inflow
process can then be expressed as

Yt = exp(εY,t + µ̂t −φt µ̂t−1)Y
φt

t−1 (19)

where t is the week number and εY,t now follows the
distribution εY,t ∼N(0,σ2

Y,t). Since inflow Yt is a function of
its first lag only, future values of inflow are only dependent
on their current value and not the entire history. Thus,
inflow also follows a Markov process, which was one of
the prerequisites for representing our decision problem as
a Markov decision process.

2.5 Scenario lattice for spot price and inflow

To solve the MDP, we must discretize the exogenous Markov
process that describes inflow and price movements. As in
Löhndorf and Wozabal (2017), we do this by reducing the
continuous Markov process to a discrete scenario lattice. In
our case, each lattice node represents a state of both reservoir
inflow and spot price. Generally, we keep the number of
nodes per stage in the lattice constant. In comparison,
the number of nodes per stage in a scenario tree grows
exponentially with the number of time stages. Thus, the
lattice approach allows for a greater number of time stages
while still keeping the problem computationally feasible.

In order to construct a lattice, we use the method proposed
by Löhndorf and Wozabal (2017). We denote Nt as the
number of nodes at time t. Further, Stn = {Ptn,Ytn} denotes
the nth state (or node) at time stage t, where Ptn is the
state spot price and Ytn = {Ib,tn : b = [1, ...,B]} is a set of
inflows into all B reservoirs for the same state. We also let
n ∈ [Nt ], where Nt is the total number of states at time t.
In short, the lattice is constructed by first drawing a set of
K Monte-Carlo simulations (Ŝk) of spot price and inflow,
where Ŝk

t = {Pk
t ,Y

k
t } is the time t state of simulation k where

k ∈ [K]. These simulations are drawn using (11) for the spot
price and (19) for inflow, where the error terms εi,t and εY,t

are correlated with ρi. Afterwards, the location of all states
Stn is found by minimizing the Wasserstein distance between
all Nt nodes and the K simulated draws Ŝk

t for each time
stage t. Having located all nodes, the transition probabilities
between two subsequent nodes Stn and St+1,m can be found
by looking at the number of simulated paths whose time t
and t +1 states lie closest to the nodes Stn and St+1,m.

2.6 Solution method for optimization problem

We adopt the method known as approximate dual dynamic
programming (ADDP) to find the near optimal decision
policies πtn in all nodes of the price and inflow lattice.
ADDP was first introduced by Löhndorf et al. (2013). In
principle, obtaining optimal decision policies for a Markov
decision process should be possible using traditional
dynamic programming (DP) as introduced by Bellman
(1957). Using the notation introduced in Section 2.5, the
Bellman equation given in (2) can then be rewritten into

Vt(Stn,πtn) = max
πtn

CFt(Stn,πtn)+

βtE[Vt+1(St+1,πt+1|Stn,πtn)] (20)

A common problem with dynamic programming is the
curse of dimensionality. It has been addressed by multiple
authors, i.e. by Powell (2011). In this case, the main
issue with a high-dimensional problem is that the decision
space can become too large to find the optimal decisions
for all states within a reasonable amount of time. We must,
therefore, use a method that resolves this issue by obtaining
decision policies that are approximately optimal. Multiple
such methods are proposed in the literature, and they are
often referred to as approximate dynamic programming. A
method that has been widely used to manage hydropower
reservoirs is stochastic dual dynamic programming (SDDP),
first introduced by Pereira and Pinto (1991). Löhndorf et
al. (2013) extend the method of SDDP so that it can also
be used for scenario lattices, calling it ADDP. When using
SDDP and ADDP, one of the main simplifications is that the
value function Vt is approximated to be a piece-wise linear,
concave function of all resource variables (e.g., reservoir
levels). In short, the value function is found by first drawing
a given number of forward passes through the lattice, that
is, a sequences of states. For each forward pass, the optimal
decision policies are found by maximizing the approximate
post-decision value functions. After each forward pass,
a backward pass is performed, where the approximated
value functions are updated relative to the sampled sequence
of states and all state decision policies. In practice, the
approximate value function of each state is constructed by
a set of supporting hyperplanes (linear constraints), where
each pair of forward and backward passes results in the
addition of a new hyperplane to the set. For a more detailed
description of the ADDP algorithm, consult Löhndorf et al.
(2013).
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3 Results

In this section, we summarize the results of a case
study conducted with data from a Norwegian hydropower
producer. The Søa hydropower plant is presented in Section
3.1. In Section 3.2, we discuss the decision problem. Section
3.3 discusses the characteristics of the price process and
its associated volatility functions. Then, we present the
parameters of the inflow process in Section 3.4 and the price
and inflow correlation in Section 3.5. Section 3.6 shows
how we construct the scenario lattice using correlated Monte
Carlo simulations. We present the expected revenues by
applying the scheduling model in Section 3.7. In Section
3.8, we perform a backtest of our model compared to
historical operations. Further, in Section 3.9 we analyze
potential differences and losses in expected revenues with
regards to different values of the price-inflow correlation.
We perform a similar analysis in Section 3.10, considering
the case were the number of factors I used in the forward
price process is altered. All code and calculations are
produced in MATLAB and R, except for the algorithms used
to construct a lattice and the ADDP solver.

3.1 Case: Søa hydropower plant

We have received empirical data from the Søa hydropower
plant, a plant owned and operated by the integrated electric
utility company TrønderEnergi. Apart from sharing the
relevant characteristics of the plant, TrønderEnergi has
also provided us with historical time series for inflow
and production. The plant is mid-sized both in terms of
regulating capacity and power capacity, and it is located
in the NO3 area in Norway. It consists of two reservoirs
- Vasslivatn and Søvatn, and one Francis turbine. The
discharge from the Søvatn reservoir to the Vasslivatn
reservoir is controllable. In Table 2, we have listed the
physical boundaries of both reservoirs. There is also
a special summertime restriction that applies for Søvatn,
which is set by local authorities. This restriction and its
duration are also listed in Table 2. The outlet of the
hydropower plant is in Hemnefjorden, which has an average
head of -1 MASL (meters above sea level).

Figure 1: The Søa hydropower plant and the reservoir capacities. The
elevation of 273.1m is the production-weighted average head difference
between Vasslivatn and Hemnefjorden.

Table 1: Characteristics of the Søa hydropower plant

Value Unit

Maximum power capacity 36 MW
Mean yearly production 191.3 GWh
Avg. yearly inflow, total 311 mill m3

Average inflow to Søvatn 60.5 % of total
Average inflow directly to Vasslivatn 39.5 % of total
Energy coefficient 0.6748 kWh/m3

Turbine capacity 17 m3/s

The energy coefficient listed in Table 1 takes into account
all sources of energy loss in the system, including head
loss, turbine losses, generator losses and transformer losses.
It is calculated using the production-weighted average
head elevation (273.1 m) and production-weighted average
discharge to the turbine.

Table 2: Water level constraints for Søa. All water levels are denoted in
meters above sea level

Reservoir Restriction type Min [MASL] Max [MASL]

Vasslivatn Physical 260.00 279.83
Søvatn Physical 275.00 279.83
Søvatn Regulatory

(May 25 - Oct. 15)
278.33 279.83

3.2 Revised decision problem

In order to construct the lattice mentioned earlier and
perform ADDP on Søa hydropower plant, we use QUASAR,
a general purpose solver for stochastic optimization
(Löhndorf and Wozabal, 2017). To keep computation
complexity at bay, we use a linear reformulation of the
problem.

The number of reservoirs is B = 2, and we let l1,t and l2,t
denote the water levels in Vasslivatn and Søvatn respectively.
Also, Y1,t and Y2,t denote the inflows into each reservoir.
Since the system only contains one turbine which connects
Vasslivatn to the outlet of Hemnefjorden, we denote the
amount of water nominated for production as wt and its
discharge as qt . The amount of water flowing from Søvatn
to Vasslivatn (denoted u12,t using notation from Section 2.1)
is now denoted by ut , and the amount of spilled water
flowing from Vasslivatn to Hemnefjorden is denoted by st
(previously denoted u1O,t ). With these new notations, the
general volume balance constraint from (4) can be written
as (21) and (22) for Vasslivatn and Søvatn, respectively.

l1,t = l1,t−1−wt − st +Y1,t +ut for t = [1, ..., T̂ ] (21)

l2,t = l2,t−1 +Y2,t −ut for t = [1, ..., T̂ ] (22)

Neither ut nor st are restricted by an upper bound ui j,t ,
so this constraint is omitted from the revised problem
formulation. Due to the linearity requirement, the cash flow
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expression CFt defined by (3) can only be a function of
one decision variable. While head elevation, turbine and
generator efficiency are typically functions of one or more
decision variables, we must model them as constants in
order to keep the expression linear. Such simplifications
are made in similar models for reservoir management, e.g.,
EOPS (SINTEF, 2017b). Madani and Lund (2009) also use
a fixed head and argue that this is a reasonable assumption
for high-elevation hydropower systems. There is no formal
definition of high-elevation plants, but they typically have a
head elevation above 250-300 meters. As the head elevation
of Søa is within this interval, it is not highly unreasonable
to argue for using a constant head. Also, if the head
is chosen as the centre of gravity for the reservoir (i.e.,
about 270 MASL, indicating an elevation of 271 meters
between the reservoir and the outlet), the deviations between
realized power and approximated power will be in the range
[−3.7%, 3.7%]. We believe this is acceptable, considering
the granularity of our model.

When we use constant values for head elevation and
efficiency rate, the objective function of the optimization
problem consists of many constants whose product is the
energy coefficient. By definition, the energy coefficient
is the average amount of energy a hydropower plant can
produce by using one cubic meter of water. In the
objective function, we, therefore, make the simplification
ρGHηϖ/ς = κ , where κ denotes the energy coefficient.

Further, we only have available data on the aggregated
inflow into both reservoirs, forcing us to treat inflow as
a single stochastic variable Yt = Y1,t + Y2,t . In order to
obtain Y1,t and Y2,t , we have used the historical inflow split
given in Table 1. We let α = 0.395 denote the historical
fraction of inflow flowing into Vasslivatn, and thereby set
Y1,t = αYt and Y2,t = (1− α)Yt . Also, since the water
level in Søvatn is subject to a minimum restriction during
the summer l2,t > 0, we must include a slack variable lS

2,t
to account for cases in which this constraint cannot be
held. Since we do not know the exact cost of violating the
constraint, we add a sufficiently large cost ϒ associated with
the slack variable to the value function such that its value
is kept at a minimum. By combining all the mentioned
simplifications and adjustments, our optimization problem
at time t is reduced to

max Vt = Pt ·κ ·wt −ϒ · lS
2,t

+βtE[Vt+1|Pt ,Yt ,πt ]

subject to l1,t = l1,t−1−wt − st +αYt +ut

l2,t = l2,t−1 +(1−α)Yt −ut

l1,t ≤ l1,t

l2,t ≤ l2,t
l1,t ≥ l1,t

l2,t + lS
2,t ≥ l2,t

qt ≤ q

where πt = {wt , l1,t , l2,t ,ut ,st , lS
2,t}. All coefficients and

constant parameter values are given in Table 3. We recall
that water discharge is defined as qt = wt/ς where ς is the
number of seconds of production per week. The larger we
choose ς , the larger becomes the maximum limit for wt ,
water nominated for production at time t. In cases of large
inflows, low values for ς will only result in larger amounts
of spilled water, indicating that ς should be set as large
as possible. Also, since efficiency rate is not modeled as
a function of water discharge qt , the choice of ς will be
irrelevant for the value function in all stages where spillage
is of no concern. We, therefore, set ς = 604800s, which
is the total number of seconds in one week. Furthermore,
we find the time-dependent discount factor βt using the
risk-free rate r given by the Norwegian Interbank Offered
Rate (NIBOR). To get comparable results between runs for
different days, we chose to use a constant value of r (NIBOR
for 6-month maturity debt on January 7, 2013). Optimally,
we would have used an estimate of the two-year maturity
risk-free rate, but six months was the longest maturity
available. The discount factor βt is found using continous
compounding, given by βt = exp(−rt).

Table 3: Model coefficients and constants

Coefficient/
Parameter

Value Unit Dates

l1,t 44.5 Mm3 t = [1, ..., T̂ ]
l2,t 22.5 Mm3 t = [1, ..., T̂ ]
l1,t 0 Mm3 t = [1, ..., T̂ ]
l2,t 0 Mm3 t =[October 16,...,May 24]
l2,t 15.05 Mm3 t =[May 25,...,October 15]
κ 0.6747 kWh/m3 t = [1, ..., T̂ ]
ς 604800 s t = [1, ..., T̂ ]
q 17 m3/s t = [1, ..., T̂ ]
r 0.0198 − t = [1, ..., T̂ ]

3.3 Electricity spot price and forward curve dynamics

The first step towards obtaining the volatility functions
describing the forward curve dynamics is to construct
historical forward curves. They are found by interpolating
between forward prices as described by Alexander (2008).
The dataset of this study includes forward prices for all
trading days between April 28, 2011, to December 30, 2016,
resulting in 1450 forward curves. The forward curves are
constructed using closing prices of futures contracts traded
at NASDAQ Commodities. These contracts are listed in
Table 4.

Table 4: Electricity forward contracts traded on NASDAQ Commodities

Code Length of
delivery period

Trading period

ENOW Week 1, 2, 3, 4, 5, 6 weeks ahead
ENOM Month 1, 2, 3, 4, 5 and 6 months ahead
ENOQ Quarter 1, 2, 3, 4, 5, 6, 7 and 8 quarters ahead
ENOYR Year 1, 2 and 3 years ahead

Figure 2 shows the forward curve found for January 7, 2013.
It is clear that the forward curves found using this method
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will be discontinuous in the points where we switch from
one contract type to another, as illustrated in Figure 2. As
can be seen in Figure 2, weekly contracts was used in the
short end of the curve, monthly contracts in the mid-short
part of the curve, quarterly contracts in the mid-long part of
the curve, and yearly contracts in the long end of the curve.
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Forward curves - January 7, 2013

Week contracts

Month contracts

Quarter contracts

Year contracts

Figure 2: Forward curve created using linear interpolation

A time series of daily log returns is calculated for each
relevant time to delivery, resulting in a 1449× 104 matrix.
To obtain a set of volatility functions that describe forward
price movements, PCA is used on the returns time series
as explained in Section 2.2. Remember that each volatility
function is associated with an independent uncertainty
factor. The volatility function determines by how much,
and in which direction the random shock associated with the
uncertainty factor moves each point of the forward curve. As
we use weekly granularity and a time horizon of 105 weeks,
the volatility functions σi,τ = Ψi(τ) must be constructed
for the same granularity and length. That is, we find the
volatility functions σi,τ for all i = [1, ...,N] and time to
maturity given by τ = [1,2, ...,104] weeks.

Using the time series of returns, we can estimate an overall
volatility curve for the term structure of forward prices, as
well as the volatility functions associated with the principal
components. In Figure 3, the overall volatility function
can be understood as the volatility of returns of forward
contracts with time to maturity τ . Since it represents the
actual volatility of forward price returns, it will always
be positive. The volatility functions associated with the
principal components must, however, not be interpreted the
same way as the overall volatility function, as they do not
represent the volatility in terms of price movements of a
single asset. They can also take negative values, as opposed
to the overall volatility function.
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Figure 3: Volatility functions found by using method of linear
interpolation. ’Overall’ denotes the overall volatility curve, and fn i denote
the volatility functions given by principal component i

As can be seen from the dark blue curve in Figure 3,
the overall volatility is monotonically decreasing. One
would expect the overall volatility function to be strictly

decreasing for ascending values of τ , as forward prices tend
to change more the closer they come to maturity. This is
called the Samuelson effect, discussed by Jaeck and Lautier
(2016) and originally proposed by Samuelson (1965). The
reasoning behind this phenomenon is that an information
shock that affects the short-term price has an effect on the
succeeding prices that decreases as the time to maturity
increases. Weather forecasts are an example of information
that one would expect to have short-term effects only on the
electricity price.

The electricity forward return series show a substantial
degree of inter-correlation. This can be seen from the
correlation matrix that is shown in Figure 4. A high degree
if inter-correlation is in accordance with our experience,
which is that forward electricity prices more often than not
move in the same direction. Further, the correlation matrix
shows that there is a clear decreasing trend in the correlation
between contracts with larger maturity spreads.

The high degree of inter-correlation is also demonstrated
by the explanatory power of the first principal component,
which explains 73.3% of the variance in the dataset. Only
six principal components are needed to explain over 95% of
the cumulative variance, as shown in Table 5.
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Figure 4: Correlation matrix associated with returns of forward contracts.
The column and row names are both the number of weeks until the
beginning of the delivery period

Table 5: Proportion of explained variance for different numbers of
explanatory factors

Number of factors n 1 2 3 4 5 6
Explained variance 0.73 0.88 0.92 0.93 0.95 0.96
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3.4 Inflow process parameters

We fit the geometric periodic autoregressive (GPAR) model
suggested by Shapiro et al. (2013) to the inflow data for
the Søa hydropower plant. The dataset consists of daily
inflow observations for each day between January 1, 1958,
and December 31, 2016. According to TrønderEnergi, the
data set has been constructed by combining observations
from two different sources. The observations from the most
accurate source are found by measuring the change in water
level at the reservoirs and finding the inflow by adjusting
for water used in production and spilled water. For days
without available production data, the inflow is calculated
by measuring the water level in the rivers in the catchment
area of the hydropower plant.

Recall that the inflow is given by

Yt = exp(εY,t + µ̂t −φt µ̂t−1)Y
φt

t−1 (19)

Here,

• Yt is the inflow in week t

• µ̂t is the mean log inflow in week t = 1, ...,52

• φt is the coefficient in the autoregressive process in
week t = 1, ...,52

• εY,t ∼ N(0,σ2
Y,t) is the error term representing the

difference between the observed and predicted value
in the autoregressive process

• σY,t is the standard deviation of the error terms in
week t = 1, ...,52

For a right-skewed distribution such as the one that can be
seen in Figure 5, a geometric process is better suited than an
arithmetic process. It better captures the inflow dynamics,
which can be extreme. Further, a geometric process does
not allow for negative inflows. Shapiro et al. (2013) found
the inflow distribution for Brazilian hydropower plants to be
right-skewed as well, favoring a log transformation of the
inflow observations.
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Figure 5: Distribution of inflow and log inflow observations

Wt , the deviation of the log inflows from their mean,
is represented as an AR(1) process. The suitability of
a 1-lag process can be determined by investigating the
partial autocorrelation of the historical data for Wt . Partial
autocorrelation is the correlation for a time series with its
own lagged variables, but removing the correlation effects
of the values of the time series at all shorter lags. Figure

6 shows the partial autocorrelation of the Wt time series.
Similar to the findings of Shapiro et al. (2013), our dataset
showed a high value at lag 1 and insignificant values for
larger lags, indicating that it is sufficient to include one lag
only in the autoregressive model.
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Figure 6: Partial autocorrelation of the Wt time series

The inflow process is periodic in the sense that it accounts
for seasonality - both in terms the expected weekly log
inflow µ̂t , the strength of the autoregressive coefficient (φt )
and the standard deviations of the error terms (σY,t ). Figure
7 shows the seasonal pattern in the inflows. Specifically,
there is an inflow peak during the spring due to snow
melting, and there are higher inflow levels in the fall due
to high precipitation levels in September, October, and
November.
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Figure 7: Average inflow for a certain week of the year

3.5 Price and inflow correlation

As previously mentioned, we consider the correlation
between the electricity spot price and inflow to the
hydropower plant. In Section 2.5, this was introduced
as the correlation ρi between the error terms εi,t and εY,t
from Equation (11) and (19), where i = [1, ..., I] indicates
a principal component. Since the first principal component
explains 73.38% of the total variation, we choose only to
calculate ρi for i = 1, and set ρi = 0 for i 6= 1. Therefore,
ρ1 is hereby denoted ρ . Mathematically, the correlation was
calculated by estimating the historical correlation coefficient
between the normalized error term of the inflow process,
εY,t , and the normalized first principal component (p1).

The error term in the inflow process is the difference
between the predicted and realized log-inflow. To be able
to find a correlation with the weekly inflow data, p1 had to
be transformed into a weekly resolution as well. Similar to
how one would transform daily log returns to weekly log
returns, the historical p1 observations were aggregated from
daily to weekly observations by simple addition.

The resulting Pearson correlation coefficient was found
to be -0.1765, based on a time series of 248 weekly
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observations from April 28, 2011, to December 30, 2016.
The 95% confidence interval was [-0.28, -0.06]. This
suggests that there has been a weak offsetting effect between
weekly inflow deviations and the first principal component,
historically.

3.6 Monte Carlo simulations and lattice construction

In order to create a lattice, we had to run multiple parallel
Monte Carlo simulations of spot price and inflow paths. The
starting values of the price simulations included one current
time spot price and the price of T̂ − 1 forward contracts.
Since we use weekly granularity and a horizon of T̂ = 105
weeks, this requires 104 weekly forward contracts with
time to delivery τ = [1, ...,104]. However, only six weekly
contracts are traded at NASDAQ Commodities, meaning
that we must construct 99 synthetic weekly contracts. This
is done by constructing a forward curve using the method
of Fleten and Lemming (2003) and then discretizing it into
104 weekly prices. Unlike the forward curves used to
construct the volatility functions, which were discontinuous
(see Figure 2), forward curves constructed using the method
of Fleten and Lemming (2003) are both continuous and
smooth. The method did, however, not provide us with
plausible volatility functions, as we experienced issues with
unrealistic oscillations in the near end for some of the
forward curves.

Mathematically, the forward price of a contract with delivery
in a given week W = [2, ...,105] is calculated using the
average value of the forward curve within the time interval of
that particular week. For the weeks W = [2, ...,7], the weekly
average value of the forward curve will be the price of the
six weekly forward contracts sold in the market. Also, if the
model is run on a Monday, the starting week spot price is
set equal to the price of the one week ahead weekly contract
from the last trading day. Typically, this will be the previous
week Friday.

It is important to note that while the spot prices in the Nordic
electricity market are area specific, the price of forward
contracts is the same for the entire Nordic and Baltic region.
Thus, the spot price forecasted by our model is actually the
system spot price and not the NO3 area spot price, the price
Søa hydropower plant receives for their production. In this
paper, have not tried to model the relationship between the
system price and the NO3 price. We do, however, see that
the two prices are quite similar to each other, and believe
that using the system price instead of the area price is an
acceptable approximation considering the granularity and
the scope of this paper.

To construct the price and inflow scenario lattice, we have
used 380.000 Monte Carlo simulations. The lattice consists
of 100 nodes for all time stages except the starting one,
giving a total count of 10401 nodes. Furthermore, each node
has two entries, inflow and spot price. Figure 8(a) displays
the spot price lattice with starting date January 7, 2013,
while Figure 8(b) displays the inflow lattice. Since the lattice
nodes are found by minimizing the Wasserstein distance, we

have scaled the inflow values down with a factor of 105 such
that their magnitudes are closer to those of the spot prices.

(a) 105-weeks spot price lattice

(b) 105-weeks inflow lattice

Figure 8: Spot price and inflow lattices constructed with data for January
7, 2013. The Y-axis for all plots denotes the time stages (weeks), while the
X-axis of the price lattice is denotes the spot price in EUR/MWh. For the
inflow lattice, the Y-axis is denoted in 105m3. The red lines in the figures
represent the mean values. In the case of the spot price lattice, the mean
line is the initial forward curve.

3.7 Expected discounted revenues from hydropower plant

Having constructed the lattice, it is now possible to run
the scheduling model. We run it for five different starting
dates with different underlying forward curves and historical
starting values for the reservoir levels. One of the key figures
we are interested in is the expected discounted revenues
for the planning horizon. This is the value of production
during the next two years, assuming negligible variable
costs. The revenues are discounted using the risk-free rate,
as we are using risk-neutral probabilities. Furthermore, a
key figure is the expected discounted revenues per produced
unit of electricity, which we will call expected discounted
revenues per production. This figure is denominated in
EUR/MWh, and it allows us to compare the performance
of policies without differences in total production affecting
the results. For intuition, this figure can be thought of as the
average price at which the hydropower producer sells their
power. However, this will be inaccurate in this case, since
the average price should be calculated using undiscounted
revenues.

Table 6 shows the expected discounted revenues for the
upcoming 105 weeks, in addition to the expected discounted
revenues per production. These results are based on
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the revenues obtained by 50.000 simulated paths through
the lattice. The number (50.000) is chosen because it
enables the first three digits of all mean values to converge,
while simultaneously keeping the computation time at an
acceptable level.

In Table 6, we also include one of the most important
immediate results for the production planner; the value of
w1. We recall that wt is the amount of water nominated
for production at time stage t. Based on all possible future
states and their corresponding probabilities, w1 tells the
production planner how much water they should nominate
for production in the current week in order to maximize their
expected discounted revenues over the upcoming 105 weeks.
We also include the average water dispatch q1 = w1/ς ,
where ς = 604800s is the number of seconds per week.

Table 6: Expected discounted revenues (EDR), expected discounted
revenues per production (EDR/Prod.), the amount of water nominated for
production w1, and average water discharge q1 in week one for five different
starting dates. The starting values for reservoir levels are set according to
their historical values.

Parameter Unit Jan 7
2013

Apr 8
2013

Jul 8
2013

Oct 7
2013

Jan 6
2014

EDR [M
EUR]

15.93 15.95 14.36 15.26 13.83

EDR/Prod. [EUR/
MWh]

40.12 41.24 35.35 38.36 33.21

w1 [M m3] 0 5.21 10.28 0 0
q1 [m3/s] 0 8.62 17.00 0 0

It is somewhat surprising that the model suggests no
production on multiple starting weeks, especially those of
January 7, 2013, and January 6, 2014. However, this is
because the input forward curve suggests that the spot prices
will be higher in the upcoming weeks, making it optimal to
wait.

An important question that arises is how one should handle
the end level of the reservoir. We have not imposed any end
level restrictions. Thus, there is no incentive to keep water in
the reservoir at the end of the horizon. In some of the above
simulations, e.g., the ones starting and ending in January,
emptying the reservoir would probably be a poor decision in
the reality since one would normally expect high prices in
the upcoming periods. Emptying the reservoirs in the last
time stage will result in expected discounted revenues that
are slightly larger than what one would achieve in reality.
Nevertheless, the end-of-horizon effects should not affect
the optimal immediate decision policy π1, which is the most
interesting one for the production planner, in addition to
most decision policies πtn when t is substantially smaller
than 2 years. Note that for cases in which the time horizon
ends during the spring when inflows are typically at their
maximum, it is reasonable to allow emptying the reservoir
as much as possible.

3.8 Backtesting the production policy with realized price
and inflow data

A crucial analysis for assessing the performance of the
scheduling model is a backtest. When backtesting, we
have collected the realized weekly inflows and average area
spot prices over the entire simulation horizon. Then, we
apply the policy to the realized history of price and inflow
and get all decisions that our model would have made for
the given history of inflow and price. Using this, we can
compare how our model performs compared to the existing
strategies of the hydropower production planner. Using
January 7, 2013, as our starting date, we have found the
realized weekly inflows and spot prices over the next 105
weeks. Next, we have found the total revenues earned using
the model policy, and compare this with the actual income
earned by the power plant in the same time interval. In
reality, the Søa power plant generated discounted revenues
of 10.89 million EUR between January 7, 2013, and January
11, 2015, from trading in the spot market. By applying
the policy obtained by our model, the plant would have
had discounted revenues of 11.69 million EUR, meaning
that using our model could have provided the production
planner with approximately 400.000 EUR in extra yearly
revenues. To explain this difference, we look at the modeled
and realized head elevation curves for both reservoirs in the
corresponding period. These are interesting to compare,
as they show whether the model policy agrees or disagrees
with the realized strategy. In Figure 9 we have plotted the
modeled and realized head curves for both reservoirs over
the simulation period.

By visual inspection, we see that our model empties both
reservoirs in the last time stage, providing it with some
additional revenues compared to the historical operations.
Thus, it might be more accurate to compare the revenues
obtained during the first 52 weeks - that is, between
January 7, 2013, and January 5, 2014, instead. In this
period, the plant earned discounted revenues of 6.22 million
EUR. On the contrary, using the policies from our model,
the discounted revenues provided to the plant would be
6.34 million EUR, meaning that our model performs well
compared to reality also without emptying the reservoir in
the last time stage. Our model did, however, utilize more of
its water for production in these 52 weeks, so we should also
compare the expected discounted revenues per production
as well. In reality, the plant had discounted revenues per
production of 39.00 EUR/MWh between January 7, 2013,
and January 5, 2014, while our model had discounted
revenues per production of 38.92 EUR/MWh.

Further inspection of the head curves shows that our model
is less risk-averse than the real-life production planner. One
example of this can be seen by looking at the figure for
Vasslivatnet around week 36, that is, in the middle of
September 2013. Here, spot prices were quite high, so
both our model and the real-life operation planner chose to
nominate relatively large amounts of water for production.
However, since spot prices tend to be higher during winter,
it is risky to empty the reservoirs in September. Therefore,
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the real-life production planner chooses to nominate only
half of the amount that the model nominates. The model
is, however, expecting high inflows in the upcoming weeks,
and therefore nominates relatively much water before it fills
up the reservoir around week 46. Another good example is
around week 71, that is, one week before the summertime
restriction on the reservoir level in Søvatnet starts to apply.
While the real-life production planner fills up Søvatnet a few
weeks ahead, the model expects sufficient inflows during
the next week and decides to reduce the water level in the
reservoir to approximately 1 meter below the summertime
restriction. It does, however, still manage to fill up the
reservoir and meet the constraint in time.
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Figure 9: Modelled (red curve) and realized (blue curve) reservoir curves
for Vasslivatnet and Søvatnet between January 7, 2013 and January 11,
2015.

The aforementioned points should help our model perform
better than the real-life production planner. Another factor
helping our model is that it does not have to perform
maintenance, which is an event that forces all operation to
be temporarily suspended. However, the real-life production
planner has an advantage that our model does not have.
Since our model uses weekly granularity, it can only make
production decisions on a weekly basis. We assume that our
model sells the electricity at a price equal to the average
price of that week. In real life, the production planner
makes hourly decisions and can utilize the fluctuations of
the electricity spot price both within a single day and within
a week. They do also have access to the intraday market,
allowing them to optimize their production further. The
opportunity to optimize production on an hourly level should

give the real-life production planner an advantage compared
to our model. At last, the real-life production planner has
access to short-term weather forecasts the our model does
not. Despite the circumstances discussed above, our model
still manages to achieve similar results.

3.9 Loss calculations: Misspecified correlation coefficient

As previously stated, we incorporate a correlation between
movements in price and local inflow. It is interesting
to test the effect of introducing this feature, as it can
tell us how models that assume no correlation perform
compared to ours. Therefore, we have first calculated the
expected revenues obtained when using different values of
the correlation coefficient ρ . More importantly, we have also
tested how decision policies obtained using ρ = 0 perform
when inflow and price movements are in fact correlated, and
what losses in expected a plant can experience when this
assumption is falsely made.

In order to test the effect of introducing the correlation,
we have first made three lattices with different correlation
values ρ = [0,−0.1765,−0.353]. We then compare
the simulated expected discounted revenues and average
reservoir level curves for all three lattices and corresponding
decision policies to see how much they deviate. Once again,
we have used 50.000 simulated paths, and for all three runs,
the starting date is January 7, 2013. The expected discounted
revenues of all three runs are displayed in Table 7 and
mean optimal reservoir curves for Vasslivatn are displayed
in Figure 10.

Table 7: Expected discounted revenues (EDR) obtained using three
different correlation coefficients ρ .

Correlation
coefficient

[-] ρ = 0 ρ =−0.18 ρ =−0.35

EDR [M EUR] 16.10 15.93 15.83
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Figure 10: Average reservoir curves for Vasslivatnet found using three
different values of the correlation coefficient ρ . The red curve denotes
ρ = 0, the blue curve ρ =−0.1765 and the green curve ρ =−0.353.

By looking at the expected discounted revenues, we see
that the higher we choose the correlation coefficient ρ , the
larger are the expected discounted revenues. The correlation
coefficient undoubtedly affects the results, implying that it
must be estimated correctly.

Next, we test how a decision policy created using the
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correlation ρ = 0 performs when we use it in a stochastic
process where ρ 6= 0. We test this by first creating a lattice
and obtaining the optimal decision policies for each node
using ρ = 0. Instead of drawing simulated lattice paths
based on the risk-neutral probabilities provided when ρ =
0, we draw paths corresponding to a stochastic price and
inflow process where ρ 6= 0. Then, to compare the policies,
we look at the difference between the expected discounted
revenues obtained using policies with ρ = 0 and policies
with ρ 6= 0. In Table 8, we present the expected discounted
revenues obtained when the stochastic processes in reality
have a correlation ρ = −0.1765 and ρ = −0.353. As the
results indicate, if the real correlation is ρ = −0.1765, the
policies will provide expected discounted revenues that are
2.5% lower than if the policies incorporated this correlation.
For ρ = −0.353, the expected discounted revenues become
3.1% lower. Although these differences might seem small,
they show that the producer at Søa can miss out on
discounted revenues of multiple 100.000 EUR yearly if they
misspecify the correlation coefficient. Therefore, we find
it reasonable to conclude that the choice of the correlation
coefficient does have an effect on the model performance,
and should be considered by the production planner in their
model.

Table 8: Expected discounted revenues (EDR) calculated when using a
policy in which ρ = 0, but where the real stochastic process has ρ =
[−0.1765,−0.353]. The bottom row indicates the difference between the
expected discounted revenues obtained using these policies versus the
expected discounted revenues obtained using a policy with the same ρ as in
the stochastic process, as shown in Table 7.

Correlation
coefficient

[-] ρ =−0.1765 ρ =−0.353

EDR [M EUR] 15.54 15.40
Performance
difference

[-] −2.5% −3.1%

3.10 Loss calculations: Number of factors in the price
process

Further, up until now, we have used a price process with six
factors to describe the movements of a forward contract. The
number was chosen such that the proportion of explained
variance would be larger than 95%, a threshold value used
by Koekebakker and Ollmar (2005). However, Bjerksund
et al. (2008) claim that a proportion of 90% is sufficient,
while Clewlow and Strickland (2000) choose the number of
factors such that the proportion becomes 98.4%. Therefore,
we perform a set of calculations similar to those in Section
3.9, but instead of testing different values of ρ , we use
a different number of factors I in the price process. We
investigate four different numbers of factors: 1 (that is, we
use the overall volatility function), 3 (91.53% explanation),
6 (96.04% explanation) and 10 (98.44% explanation). The
obtained expected discounted revenues are shown in Table
9, and the mean optimal reservoir levels in Figure 11.

Table 9: Expected discounted revenues (EDR) obtained using different
number of factors I to describe the underlying price process.

Number of
factors

[-] I = 1 I = 3 I = 6 I = 10

EDR [M EUR] 15.80 15.86 15.93 16.00
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Figure 11: Average reservoir curves for Vasslivatnet obtained using
different number of factors in the forward price process. The red curve
is from a run with I = 1 factors, the dark blue one for a run with I = 3, the
red curve for I = 6 and the light blue curve for I = 10.

The results in Table 9 show that there is an increasing trend
in expected discounted revenues when we use more factors
to describe the price process. This should make sense, as
more factors can result in larger price fluctuations, thereby
resulting in a lattice with a larger difference between the
highest and lowest possible price at a time stage. The
optimal policies utilize the higher prices in the lattices
with more factors, and the model thereby forecasts larger
expected discounted revenues.

As for the case with different values of ρ , it might be more
interesting to test how the policies obtained using one-factor
price model perform when the price process can, in reality,
be described using I = [3,6,10] factors. We, therefore, redo
the steps explained above for the case of different numbers
of factors I instead of correlation coefficient ρ . The expected
discounted revenues are displayed in Table 10. By looking at
the numbers, we see that a policy created using a one-factor
price model will underperform by approximately 2% when
the price process is in fact driven by multiple factors. Similar
to the case for different values of ρ , this can result in a
decrease in revenues of multiple 100.000 EUR yearly for
a hydropower plant, underlining the importance of using a
price process that is as correct as possible when modeling
reservoir management.

Table 10: Expected discounted revenues (EDR) calculated when using a
policy where the number of factors is I = 1, but where the real stochastic
price process is described by I = [3,6,10]. The bottom row indicates the
difference between the expected discounted revenues using these policies
versus the expected discounted revenues obtained using a policy with the
same number of factors I as in the stochastic process, as shown in Table 9.

Number of
factors N

[-] I = 3 I = 6 I = 10

EDR [M EUR] 15.52 15.61 15.63
Performance
difference

[-] −2.1% −2.0% −2.3%
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4 Conclusions

In this paper, we present a medium-term model for reservoir
management. We model the problem as a Markov decision
process, and use a multi-factor model to describe changes
in forward and spot prices. We incorporate a short-term
correlation between the local inflow model and price model
and solve the resulting stochastic-dynamic decision problem
using ADDP, which descretizes the Markov processes to a
scenario lattice and then solves the problem by learning an
outer approximation of the value function.

We find that there exists a short-term correlation between
the weekly residuals of the inflow model and the increment
associated with the first volatility function of the forward
curve movements. Our analysis indicates that ignoring
correlation can result in sub-optimal reservoir control
decisions. In our case, we observe a decrease in expected
revenues of 2.5% (that is, multiple 100.000 EUR yearly) if
the correlation coefficient is in fact ρ =−0.1765.

Our analyzes also show that it is important to use multiple
factors when describing price movements. The result of
our case study is that solving the problem with a one-factor
model when the true model has multiple factors decrease
profits by about 2%. The number of factors will depend
on the price data. We confirm the finding of Koekebakker
and Ollmar (2005) that we need more factors than is typical
of commodity price models. In our case, we use six factors
which explains 96% variance.

Compared with historical production decisions, our model
produced similar results, despite the fact that decisions
were made in weekly granularity, whereas the planner
makes planning decisions on a daily basis. Hence, using
our model provides reliable production decisions if used
for medium-term planning. These results are especially
interesting since our model receives the average weekly
price, while the real-life production planner can make
decisions on an hourly basis, allowing them to produce
during periods with higher prices within a particular week
that are not available for our model.
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