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Abstract 

Water impact (slamming) is a strongly nonlinear phenomenon including significant fluid structure 

interactions. In the case of slamming with a small impact angle between the structure and water, 

the coupling between hydrodynamic pressure and the elastic responses of structures, known as 

hydroelasticity, matters. This has been studied extensively. However, when structures are subjected 

to violent water slamming in extreme sea states, large stresses may occur that exceed the material 

yield stress, causing large plastic flow and permanent damage. In such cases, the plastic responses 

of a structure will be strongly coupled with the hydrodynamic pressure, termed as hydro-plasticity. 

Hydro-plastic slamming has rarely been studied before. 

This is Part I of a two-part companion paper. The paper advances the state-of-the-art of hydro-

plastic slamming by formulating, for the first time, an analytical model coupling the hydrodynamic 

forces and the plastic response of rectangular beams and one-way stiffened panels. The studied 

scenarios are flat or nearly flat water impacts, which are critical for hydro-plasticity excitation. The 

impact angle between the water free surface and the structure should preferably be no larger than 

5°. Based on the proposed model, the governing non-dimensional parameters for hydro-plastic 

slamming are identified and discussed. Design curves for plate strips and stiffened panels against 

extreme slamming are developed. Part II-Numerical verification and analysis presents numerical 

verification and discussion of the analytical model by comparing with results from the multi-

material Arbitrary Lagrangian Eulerian (ALE) simulations.  

    The proposed analytical model does not require the challenging estimation of pressure history 

that is normally used in the design against slamming. Only the initial impact velocity is needed as 

the main input. The resulting non-dimensional curves may be utilized in rules and standards for the 

design of ships and offshore structures against extreme slamming loads. 

Key words: water slamming; hydro-plasticity; analytical solution; beams and stiffened panels; 

travelling hinge; permanent deflection 

 

 

 

 



 

            Nomenclature  

 

2L 
 

Length of the beam 

h Rectangular beam height/stiffener web height 

b Rectangular beam width/Distance between stiffeners 

x x  coordinate 

X Distance of the travelling hinge relative to the beam end 

At Area of the top flange of a stiffened panel cross section 

Aw Area of the web of a stiffened panel cross section 

As= Aw+ At Area of the stiffener cross section including web and top flange 

Ap Area of the plate flange of a stiffened panel cross section 

Ae Area of the whole cross section 

w(x,t) Lateral deflection of the beam 

wmode Structural deformation mode with unit central deflection  

v(x,t) Velocity field of the beam 

V0 Initial water-entry velocity of the beam 

Vm Nodal deflection velocity at the beam middle span 

t Time 

δ Beam central deflection 

δp Beam permanent central deflection 

σy Yield stress of the material 

ρ Density of water 

m Mass of the beam per unit length 

Ms Generalized structural mass 

Ma Generalized added mass of the beam 

K Generalized structural stiffness of the beam 

M0 Fully plastic bending moment of the beam 

M Bending moment of the beam 

N Membrane force of the beam 

N0 Fully plastic yield resistance in tension 

e Total elongation for half a beam 

θ Total rotation angle at hinges considering half a beam  
  Velocity potential due to the body motion assuming that the velocity equals the mode shape 

  Total velocity potential due to body motion connected with φ 

g Gravitational acceleration 

p Hydrodynamic pressure due to body motion 

pφ Hydrodynamic pressure connected with φ 

   Angular velocity of the beam segment 

dry  Dry natural frequency of the first mode shape 

wet   Wet natural frequency of the first mode shape 

( )    Time derivative 

 



1. Introduction 

Ships and offshore structures operating at sea are exposed to the risk of violent water impacts 

(slamming). Loads connected with blunt impacts, i.e. the angle between the body and the water is 

small, and with large relative body-water velocity, are highly impulsive and transient, characterized 

by high pressure peaks and small durations. Potential consequences of slamming impacts may vary 

from small structural vibrations to large permanent deformations and structural damage. In the 

extreme sea states, slamming loads may cause progressive collapse of structures and threaten 

human lives. An example is the collapse of a Japanese container ship after violent bow flare 

slamming impacts on a heavy sea state in the North Pacific Ocean in 1978 (Yamamoto et al., 1985). 

The inner structures, such as longitudinals, web frames and side stringers, collapsed, and the deck 

and shell plating buckled. More recently in 2015, a tragic slamming incident occurred on the 

offshore drilling rig COSL Innovator in the North Sea, where a steep horizontal wave struck the 

unit on the port side of the front bulkhead of the forward box girder. Water intrusion caused 

extensive damage to cabins. One person was killed and four were injured. After the incident, simple 

guidelines such as DNVGL-OTG-13 (2016) and DNVGL-OTG-14 (2016) were introduced for 

designing offshore structures against violent slamming loads.  

Slamming may be defined as any water impact wherever it occurs if it satisfies the following 

condition: the impact duration is short (Bereznitski, 2001). Various scenarios may lead to slamming. 

For ships, bottom slamming may occur when large heave and pitch motions force a portion of the 

ship bottom to exit and re-enter the water (see plot (a) of Fig. 1). High speed vessels such as 

catamarans are likely to experience severe wetdeck slamming (see plot (b) of Fig. 1) (Faltinsen, 

2005). Another scenario is green water on deck or extreme waves (see plot (c) of Fig. 1). Other 

ship slamming scenarios include sloshing induced slamming inside a partially-filled tank (see plot 

(d) of Fig. 1), free falling lifeboats, dropped objects, etc. Offshore structures often work at a specific 

location for a long time period, which increases their exposure to extreme waves (see plots (e) and 

(f) of Fig. 1). It is important that the design ensures a sufficiently large air gap, i.e. vertical distance 

between the underdeck and the sea surface, to avoid slamming, and sufficient structural strength of 

bottom plating in case slamming occurs. 

Early studies on the slamming phenomenon can be dated back to the 1920s. von Karman (1929) 

and Wagner (1932) presented pioneering works, formulating analytical solutions to the pressure 

distribution and the time history in a rigid body water-entry problem. The von Karman and Wagner 

theories have been developed extensively by many researchers, such as Zhao and Faltinsen (1993) 

and Mei et al. (1999). Most wave-impact studies and design guidelines today have adopted the 

assumption that hydrodynamic loading is the same for rigid and deformable bodies. However, this 

is not always a valid assumption in practice. Bereznitski (2001) and Faltinsen (2005) showed that 

the structures could be considered as rigid if the ratio of the wetting time over structural natural 

period is large. When the ratio becomes small or comparable to the structural natural period, 

significant coupling between hydrodynamic pressure and the elastic structural responses, termed 

as hydroelasticity, will occur, and the rigid body assumption is no more valid. The hydroelastic 

response of structures under slamming were studied extensively by many researchers, such as 

Faltinsen (2000), Kvalsvold and Faltinsen (1995) and Bishop and Price (1979).  



        

    

Fig. 1. Slamming in ships and offshore structures, (a) from Intelligent Engineering (2010), (b) from Amin et al. (2013), 

(c) photo by Per Meidel from Faltinsen (2005), (d) from Lugni et al. (2010), (e) and (f) from Baarholm (2001) 

In practice, the structural response is not always in the elastic range. When violent slamming with 

a strong impulse occurs, the maximum stresses in the structures can exceed the material yield stress, 

causing large plastic flow and permanent deformations. In such cases, the strong interaction 

between hydrodynamic pressure and the elastoplastic response of structures is termed as ‘hydro-

elastoplasticity’. Hydro-elastoplastic slamming is a very complicated multi-disciplinary problem, 

and has not been studied much so far.  

Theoretical studies for coupled hydro-elastoplastic or hydro-plastic slamming have not been 

reported in the literature. Because permanent deformations are of major concern when structural 

response enters the plastic range, the problem is often simplified by neglecting the coupling effect 

and assuming a certain shape of the temporal variation and distribution of the pressure. Taking the 

pressure history as input, theoretical solutions for blast loaded structures may be used for the 

slamming problem. Jones (1973) presented a simplified model for the permanent damage of fully 

clamped rectangular plates subjected to a pre-defined triangular slamming history. Jiang and Olson 

(1995) assumed a pressure history with exponential decay for underwater blast loading on stiffened 

panels. The structural responses of the panels were formulated with a travelling hinge solution 

assuming a rigid perfectly plastic material. Henke (1994) also assumed an exponentially decaying 

slamming pressure acting on the ship hull plating. The finite difference method was used to solve 

a plate strip formulation considering both elastic and elastic-plastic structural responses. More 

analytical solutions for the plastic responses of blast loaded beams, plates and shells can be found 

for instance in Symonds and Mentel (1958), Schubak et al. (1993a), Schubak et al. (1993c), Jones 

(2011), Symonds and Yu (1985). These models however do not include the coupling between fluid 

and structures. 

The literature review shows that no coupled analytical solution exists for the hydro-elastoplastic 

slamming. This Part I of the two-part article aims at bridging the knowledge gap by presenting, in 

sections 2 to 5, a coupled analytical solution for the permanent deflections of beams and one-way 



stiffened panels subjected to slamming. The studied scenarios are flat or nearly flat water impacts, 

where the impact angle between the water free surface and the structure should preferably be no 

larger than 5°. The elastic response of the structure is disregarded on the assumption that, in the 

extreme conditions, the elastic energy is small compared to the plastic strain energy. Based on the 

proposed model, in sections 6 and 7, governing non-dimensional parameters for the hydro-plastic 

slamming response of beams and stiffened panels are identified and discussed, and normalized 

design curves are recommended. Then main conclusions are drawn in section 8.  

2. Modelling of plate strips and one-way stiffened panels subjected to slamming loads 

Fully clamped one-way stiffened panels and beams with rectangular cross sections, i.e. plate strips 

with unit width, are considered. For one-way stiffened panels consisting of several bays (refer Fig. 

2), a stiffener located some distance away from the lateral edges can be modeled as a beam where 

the associated plate constitutes a large flange. 

 

Fig. 2. A one-way stiffened panel 

We follow Faltinsen (2005)’s assumption that, when flat beams (zero deadrise angle) are subjected 

to impulsive slamming loads, they will go through two phases, i.e. an initial structural inertial phase 

(also called the acoustic phase) and a later free-vibration phase. In the first phase, the structure 

experiences a large force impulse within a very short time relative to the highest structural natural 

period, i.e. the natural period of the slammed plates/stiffened panels. At the end of the first phase, 

the structure is imparted a deformation velocity averagely equal to the impact velocity 0V , while its 

deflection is virtually zero. As large plastic deformations occur in our second phase instead of only 

elastic vibrations considered by Faltinsen (2005), we name this phase as the free-deflection phase.  

Given the initial conditions from the acoustic phase, the main focus is then to investigate the hydro-

plastic coupling during the free-deflection phase. The hydrodynamic pressure experienced by the 

beam during this phase is discussed in Section 3. For the structural deformations, the following 

assumptions are introduced: 

(1). The elastic energy is small compared to the plastic strain energy, and can be disregarded. 



(2). The material is rigid-perfectly plastic. This assumption is often adopted for collision analysis 

in accidental limit states, see the review paper by Yu and Amdahl (2018). 

(3). The effects of strain rate and strain hardening can be neglected. 

(4). The shear deformation is small and negligible. This assumption is considered to be reasonable 

when 2 / 10L h   according to Yu et al. (2018), where 2L and h  are the beam length and height, 

respectively.  

(5). The deflections are finite, but still small compared to the beam length. 

During the free-deflection phase, following the theory for blast loaded structures (Schubak et al., 

1993b; Symonds and Mentel, 1958), beams subjected to water slamming are assumed to experience 

three different stages. They are labelled as stages 1 to 3 in Fig. 3 and correspond to the travelling 

hinge stage, the stationary hinge stage and the pure tension stage. Theoretically, the travelling hinge 

concept is introduced in order not to violate the generalized yield surface as explained in Jones 

(2011) when the loading pressure becomes very large. The deflections of the structure will induce 

fluid flow and cause hydrodynamic pressure distributed along the beam that interacts with the body 

deformations. 

The deformation is symmetric about the beam vertical central axis, as observed experimentally e.g. 

by Shin et al. (2017), and we therefore consider only half of the beam. In the free deflection phase, 

the beam responds initially with a hinge travelling towards the middle, while the segment near the 

beam edge rotates as a rigid part about the support as shown in Fig. 3(a). The resulting beam 

deformation velocity, at time t from the start of the free-deflection phase, is: 
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Here X is the distance of the travelling hinge from the support, and  is the angular velocity.  mV t  

is the nodal velocity, uniform in the beam middle span. This yields a linear acceleration field:   
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and a displacement field that is approximated to be linear: 
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Here the super dot represents a time derivative, and   
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is 

the structural deformation mode in stage 1. The velocity field in Eq. (1) can be rewritten as

      mode, , ,mv x X t V t w X t x  . 

 

 

Fig. 3. Deformation stages of a beam during the free-deflection phase induced by slamming 

In reality, a linear velocity field with a propagating hinge yields a curved displacement field. The 

exact shape of the displacement depends on the motion of the travelling hinge. Wierzbicki and Suh 

(1988) derived a solution to the indentation of tubes with freely propagating dent length, and the 

obtained displacement was parabolic. For the present problem, motions of the travelling hinge 

interact with beam deflections and the exact solution for the deflections is very complicated. 

Therefore, the displacement is assumed to be linear for simplicity.  

Considering half of the fully clamped beam, the total elongation e  and the elongation rate e  are 
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where the subscripts X and S denote the variables estimated at the travelling hinge (x=X) and at the 

support, respectively. Moreover, is the deflection at the middle of the beam 

The total rotation   and rotation rate   at the hinges are:  
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The displacement  is a small value compared to X . By neglecting the second order terms in eqs. 

(4) and (5), we obtain,  
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     When the travelling hinges from both beam ends meet in the beam middle span, stage 2 starts 

with a middle stationary hinge as shown in Fig. 3(b). As the deflection increases, the bending 

moment decreases while the membrane force increases. When the beam cross section becomes 

fully occupied by tensile yield stresses, the pure-tension stage 3 initiates. Permanent deflections 

are reached when the beam middle-span velocity mV decreases to zero. Before studying structural 

deformations during these three stages, the hydrodynamic pressure acting on the beam needs to be 

modelled.  

3. Hydrodynamic pressure acting on a beam during the free-deflection phase 

As the impact angle approaches zero, the water-structure impact becomes flat and the pressure 

goes to infinity according to the incompressible-liquid models. This is unrealistic. The reason is 

that water compressibility will matter during an initial acoustic phase. With a flat structure, air 

cushion may be formed between the body and the water. Compressibility influences the flow of 

the air in the cushion and subsequently affects the water flow (Faltinsen, 2005). Kvalsvold and 

Faltinsen (1995) carried out drop tests of aluminum and steel flat plates into a water tank, and found 

that the maximum pressure was very sensitive to small changes of the physical conditions. Drop 

tests were repeated with nearly the same water entry velocity, but the measured maximum pressure 

was very scattered as shown in Fig. 4. It is therefore not rational to focus on the peak pressures as 

structural design parameters. 

On the basis of the model tests, Faltinsen (2005) simplified the water-entry problem of a flat plate 

as a structural-inertia phase and a free-vibration phase, here called the free-deflection phase to 

account for the large plastic deformations. In the structural inertia phase, a large impulse is imparted 

to the structure within a very short time relative to the structure highest natural period. As a 

consequence, the structure does not have enough time to build up deformations. Faltinsen (2005) 

stated that the details of the pressure distribution are not important in the structural inertia phase, 

but it is the impulse due to the impact that matters. As the impulse dies out, the second phase starts 

with the structure having a space-averaged deformation speed equal to the initial impact velocity



0V . In the present hydro-plastic slamming analysis, we assume that the free-deflection phase starts 

with the beam middle portion (between two travelling hinges) deforming with an initial impact 

velocity
0V , and the velocity decreases linearly to zero from the hinge to the beam edge. The initial 

deflection is zero. 

 

Fig. 4. Measured maximum pressure from different drop tests of the horizontal plates as a function of water entry 

velocity, from Faltinsen (2005) 

    In the following, we examine the free-deflection phase to estimate the hydrodynamic pressure 

acting on the beam. In this phase, there are no excitation loads as the slamming impulse loading in 

the acoustic stage has died out. Therefore, the only experienced loads are induced by the body 

deformations. To estimate them, we need to solve a 2D flexible-motion radiation problem using 

the potential-flow theory. The air effects are neglected. The beam is fully wet and is surrounded by 

a flat free surface. It means that we neglect the wetness of other parts of the structure to which the 

beam belongs. This assumption allows an analytical solution of the problem but is an error source 

in the estimation of added-mass effects. Quantifying the importance of such approximation for the 

structural response is left for the future. 

Assume that the body velocity is equal to the structural deformation mode 
modew , i.e. 1mV   . This 

is consistent with what is done in a rigid-motion radiation problem. We consider the 2D semi-

infinite liquid domain in Fig. 5. Within potential-flow theory, the flow caused by the body motion 

can be solved in terms of a velocity potential, . This satisfies the Laplace equation in water: 

 2 0                                                                                                            (7) 

In linear steady-state conditions, φ satisfies the combined free-surface boundary condition: 
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on the mean free surface. Here, b is the forced oscillation frequency of the body. During slamming, 

fluid accelerations are much larger than the gravitational acceleration g in the near field of the body. 

Therefore, the infinite frequency free-surface condition applies, which is: 

 0, on 0z                                                                             (9) 

Along the body, the impermeability condition applies: 
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According to Kvalsvold and Faltinsen (1995), the solution of this boundary-value problem 

becomes much simpler if the body-boundary condition is satisfied in an average manner over the 

beam length, and this yields: 
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In the right-hand-side of eq. (11), the beam symmetry has been used when averaging the beam 

velocity. 

 

Fig. 5. Boundary value problem for the velocity potential  

The resulting problem corresponds to a rigid-plate heave problem. The solution of the velocity potential on 

the body is (see e.g. Faltinsen (2005)):  
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From this we can estimate the pressure acting on the body from the Bernoulli’s equation. The 

pressure relative to the atmospheric pressure is: 
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During slamming, considering the conservation of fluid momentum, the terms associated with fluid 

accelerations are much higher than those associated with spatial gradients. This makes the time 



derivative term dominant over the quadratic term with space derivatives. Moreover, neglecting the 

hydrostatic term connected with gravity action, the pressure is simplified as p
t
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
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

. In our 

original problem, the body velocity was mode( )mV t w . The related velocity potential  is therefore

 mV t   due to the linearity, and the pressure acting on the body is: 
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Eq. (14) can be applied in stages 1-3 to estimate the pressure. The first pressure term is proportional 

to the structure acceleration and represents an added-mass effect of the involved structural 

deformation mode. The second term is connected with added-mass time variation due to changes 

in the structural deformation mode. 

During stage 1 of the free-deflection phase, the structural deformation mode   mode ,w x X t

changes in time due to the moving hinges, and the pressure is expressed as: 

   

       
2 22 22 1

; 0 2 , 0
2 2

m m

m m

p V t V t X
X

L X
V t L L x V t X L L x x L z

L L


  

 


  




          

       (15) 

During stages 2 and 3, the structural deformation mode  modew x  does not change in time (refer 

Fig. 3 and Sections 5.2 and 5.3), and the second pressure term in Eq. (14) vanishes. The pressure 

becomes, 
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No wave making damping forces are induced because the free surface condition 0  implies that 

no radiated waves can be generated on the free surface. 

4. Yield functions based on generalized forces 

In stages 1 and 2 with travelling and stationary hinges, the beam dissipates energy and decelerates 

under the action of the bending moment M and the membrane force N . M and N interact through 

the yield function and the flow rule. 

For beams with rectangular cross sections, the yield function is, 
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where 2

0

1

4
yM bh  is the fully plastic bending moment, 0 yN bh  is the fully plastic axial force 

of the cross section in tension, b is the beam width and h  is the beam height.  

For stiffened panels, Yu et al. (2018) proposed a simplified model for large inelastic deformation 

resistance with finite axial restraints subjected to lateral loading. The predicted resistance curves 

showed excellent agreement with those from experiments and numerical simulations when strain 

hardening was disregarded. Depending on the magnitude of the axial force, the stiffened panel 

response was classified into four different stages (refer Fig. 6): (R1) tension force in the plate flange 

only, (R2) tension force in the plate flange and the web, (R3) tension force in the plate flange, the 

web and the top flange, and (R4) pure tension.  

 

 

Fig. 6. Evolution of bending moment and axial tension force in stiffened panel cross section, from Yu et al. (2018)  
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From initial yielding in bending to the pure tension stage, the plastic neutral axial shifts from within 

the plate flange to the centroid of the cross section. This shift was considered small and negligible. 

This gives a symmetric yield function with respect to both axes as shown in Fig. 7, and the 

expressions for the yield functions are as follows: 
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where, the fully plastic bending moment and tension yielding force of the cross section are
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y tM Ah are the 

membrane force and the bending moment, respectively, when tension forces go into the top flange. 

The sectional areas Ap, At and Aw are defined in Fig. 6.  

According to the analytical model for stiffened panels with fixed ends, stage R1 (axial force in the 

plate flange only) and stage R3 (axial force in the plate flange, web and top flange) occupy only 

one point on the resistance-deflection curve, respectively, as shown in Fig. 8. Therefore, only the 

yield function of stage R2 (axial force in the plate flange and web) needs to be considered for the 

studied problem before the pure tension stage. This greatly simplifies the problem. However, for 

stiffened panels with finite axial restraints at the supports, stages R1 and R3 become extended (refer 

Fig. 8), and should be considered. 



 

Fig. 7. Yield functions based on force resultants for rectangular beams and stiffened panels 

 

Fig. 8. Force displacement curves of stiffened panels, Ap=600 mm 8 mm, Aw=180 mm 10 mm, At=100 mm 6 mm, 

beam length=5 m 

Drucker’s postulate (the normality criterion) for plastic flow states that the instantaneous virtual 

elongation rate and rotation rate in the plastic hinges should satisfy:  
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                                                                                    (19) 

By combining eqs. (6) and (19), the development of bending moment M and membrane force N

depends on the central deflection , as given below: 

For rectangular beams with fixed ends: 

0

2

0

1

N

N h
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                                                                               (20) 

For stiffened panels with fixed ends: 
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                                                                (21) 

For fixed boundary conditions, the pure tension stage will be reached when h  . One should note 

that Eq. (21) does not give full capacity when h  . This is because stage R3 represents only one 

point on the resistance curve (refer to Fig. 8), and the yield status will jump directly from the end 

of stage R2 to the pure tension stage R4 but still preserving the continuity of resistance curves 

between different stages. For simply supported beams, pure tension stage is reached when / 2h  . 

5. Hydro-plastic response of rectangular beams and stiffened panels 

Given the information of structural deformation modes from Section 2, the hydrodynamic pressure 

in the free-deflection phase from Section 3, and the evolution of bending moments and membrane 

forces from Section 4, we are now ready to examine the hydro-plastic response in the three beam 

deformation stages. 

5.1 STAGE 1:  TRAVELLING HINGE STAGE 

In the travelling hinge stage, the flat central segment  X t x L  has zero curvature, which yields 

constant bending moment along the segment and zero shear force at the travelling hinges. It is 

assumed that hydrodynamic forces mainly concentrate on the rotating side beams. The central 

portion therefore moves with a constant velocity 0mV V  in stage 1, which yields, 

 0V t                                                                                                          (22) 

With mV  being constant in stage 1, the first term in the pressure expression in Eq. (15) vanishes.  



The principle of virtual work applies, which yields: 

 
external internal kineticW W W                                                                                     (23) 

where externalW is the work done by external forces, i.e. the hydrodynamic forces, internalW  is the energy 

dissipated by the beam through deformations, and kineticW  is the kinetic energy of the beam.  

Considering half of the clamped beam, the work rate of the external force is, 
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, , /
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W p x b v x X t dx bLV X d x L
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The rate of energy dissipation in the rigid plastic beam is 

  internal
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                                                                        (25) 

where ie  and i  are the elongation and rotation rate, respectively, at the thi  plastic hinge of the beam. 

Considering half of the beam, we have two hinges for beams in clamped conditions; thus 2n  . 

In half beam, the rate of change of the kinetic energy has only contribution from x < X and is: 

    
3

kinetic

0

, , , ,
3

L
mX

W mw x X t w x X t dx
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                                                              (26) 

Substituting eqs. (24-26) in eq. (23), we obtain: 
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According to Fig. 3(a), the following geometric relationship applies, 

0
0 2
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V X

X V X X
X

                                                                              (28) 

By substituting eq. (28) into eq. (27) and rearranging the terms, we obtain the governing motion equation 

for the rate of X2:  
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                                                                     (29) 

In a non-dimensional format, it reads: 
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                                               (30) 

Introducing in eq. (30) the simplified solution for  in eq. (12), the non-dimensional parameter AI  reads, 
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The integrals in eq. (31) are obtained as: 
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It can be proved that the term 2

0

1
2

X

L

u u u du
X

L

 
 
 
 

 in eq. (31) goes to zero when the travelling 

hinge gets close to the support. 

Eq. (30) is the governing equation for the development of the travelling hinges in stage 1. In order 

to solve it, the initial condition of X , i.e.  0X t   must be specified. Schubak et al. (1993b) and 

Jones (2011) found that for beams subjected to a uniform rectangular-shaped impulsive loading 

with intensity q , the initial position of travelling hinges is at
  0

0 3X t q

L q


 , where 2

0 04 /q M L  

is the static collapse load in bending for the beam. In the considered slamming case, the pressure 

in the acoustic phase may be approximated with a triangular impulse, where the peak pressure is 

equal to the acoustic pressure (Hagiwara and Yuhara, 1974) given by, 

 0acoustic ep c V                                                                                          (34) 

where, ec  is the speed of sound in water. The triangular pressure in the acoustic phase can be 

further approximated by a rectangular pressure with the value of half of the acoustic pressure. 

Therefore, the initial position of the travelling hinge can be expressed as, 
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                                                 (35) 

Eq. (35) shows that the initial position of the travelling hinges gets closer to the supports for a 

larger impact velocity or smaller structural resistance in bending.  

According to eqs. (20-21), for the cross section of rectangular beams, we have: 
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For stiffened plates, we have 
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The right-hand side of eq. (30) is then known and the evolution of traveling hinges in stage 1 can 

be determined. 

5.2 STAGE 2:  STATIONARY HINGE STAGE 

At a certain time instant, say 1t , the travelling hinges meet in the middle span while 0 1 1V t h  . 

The stationary hinge stage then initiates. The beam middle span velocity mV is no longer constant 

and starts to decrease from 0V . Combining the work rate balance in eq. (23), and the pressure 

relationship in eq. (16), we obtain: 
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As the relation m m m
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where 1C  is an integration constant that should be determined based on the continuity of the 

displacement at the end of stage 1 with that at the beginning of stage 2: 
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The integrals on the right hand side of eqs (39-40) can be calculated. Thus, for rectangular beams, 

the midspan deflection is solved from eq. (39): 
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In a non-dimensional format, it reads: 
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For stiffened panels, we obtain: 
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which, in non-dimensional format, reads: 
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Based on the simplified solution in eq. (12), when X L , the non-dimensional parameter BI is 
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The right-hand sides of eqs. (42) and (44) are then known and the evolution of  in stage 2 can be 

determined. 

 



5.3 STAGE 3:  PURE TENSION STAGE 

When the central deflection reaches h   for beams with fixed ends, the beam bending moment 

will decrease to zero and the whole cross section will be occupied by the yield membrane forces

0N . The pure tension stage 3 may be reached in two paths, from either stage 2 or directly from 

stage 1 as shown in Fig. 9.  

 Path 1 

In the cases where stage 1 ends with the travelling hinges merged in the beam middle span and 

0 1 1V t h  , stage 2 starts and deflection continues. At time 2t , when the central deflection reaches 

the beam height, i.e. 2 h  while the velocity has not decreased to zero i.e. 0mV   , stage 3 

initiates. This is often the case for thick beams, e.g. stiffened panels. 

 Path 2 

In cases with thin plates, stage 1 ends at time 1t  with the beam central deflection reaching the beam 

height, i.e. 1 0 1V t h    , while the hinges have not travelled to the middle span, i.e. X L . 

At the beginning of stage 3, say at time 3t , there is a sudden change of the deformation mode and 

the deflection velocity, i.e.    3 3m mV t V t  . By holding the central deflection   constant and 

equating the kinetic energy through the transition, we obtain the following relationship between 

the velocity before and after the start of stage 3, respectively,  3mV t  and  3mV t  : 

   3 3
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                                                                                        (46) 

 

Fig. 9. Response of beams during the free-deflection phase initiated by impulsive loading 



In the pure tension stage, the beam behaves as a plastic string with the following equation of motion: 
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                                                                     (47) 

The pressure p  on the right hand side of eq. (47) is a function of the beam deflection w. Here, the 

problem is solved expressing the displacement w in terms of the beam dry normal modes, n , 

within a modal approach: 
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with unknown coefficients nA . The dry normal modes are a good approximation of the wet normal 

modes when the added mass distribution is similar to the mass distribution (see e.g. Faltinsen 

(2005)). The dry modes can be found by substituting eq. (48) in eq. (47) and setting 0p  . 

Assuming steady-state oscillations, each coefficient nA  will be in the form ,n dryi t
e


, with ,n dry  the 

dry natural frequency associated with the thn eigenmode n . This gives: 
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The solution of eq. (49) can be expressed as: 
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The boundary conditions of    0 2 0n n L   implies 0nD  , and we obtain:  
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                                 (51) 

Experiments on water-entry of flat plates from Shin et al. (2017) show that the first mode shape 

dominates the permanent beam deflections. Therefore, only the first mode is considered. This gives: 
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The beam deflection can then be expressed as: 
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Thus,  mode sin
2

x
w x

L


  in stage 3, and using eq. (16) the pressure acting on the beam can be 

expressed as: 
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By substituting eq. (54) into eq. (47), we obtain: 
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Eq. (55) depends on both x  and t . In order to determine  1A t , we follow the standard solution 

technique within a modal approach. We multiply both sides of eq. (55) with the normal mode 

sin
2

x

L


 and integrate between 0 and L . This corresponds to the projection of eq. (55) along this 

mode. The final equation is expressed as: 
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Here, sM is the generalized structural mass: 
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aM  is the generalized added mass, 
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and K is the generalized restoring stiffness, 
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The solution of Eq. (56) is expressed as: 

   1 2 1,sin wetA t C t                                                                        (60) 

where 2C and are constants that denote the amplitude and initial phase of the motion, respectively. 

1,wet is the wet natural frequency of the first eigenmode,  
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Taking the starting time of stage 3 as 0t  . The following initial conditions should be satisfied, 
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This yields: 

 

 

 

 

2

32

2 2

1,

2 2
1 3

32 0
02 3

0 0 00

2

3

2 2

1,

1

4 16
2 sin 1

2 /

1
arcsin

1

m

wet

m

m

wet

V tC

h h

V t Mm L
u u u du V

bL V M h b N h

V t

h



 

  











 

        
                      





            (63) 

6. Theoretical results 

Due to the complexities of the governing equations of the present model, closed-form analytical 

solutions are difficult to obtain. Thus, the fourth order Runge-Kutta method is adopted to solve the 

equations numerically. The resulting response of beams and stiffened panels, and parameters that 

govern the hydro-plastic slamming phenomenon, are discussed in detail.  

6.1 Hydro-plastic slamming response of plate strips 

Plate strips normally have large length-to-thickness ratios such that they often reach their full 

tension capacity before the hinges have travelled to the middle span. Thus they normally follow 

Path 2. For very thick plates, stages 1 and 2 may become important, but then they are, of course, 

also considerably more resistant to slamming loads. According to the analytical model, three non-

dimensional parameters are identified: 

 The non-dimensional velocity 
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 The non-dimensional mass /ndm m bL , hereafter indicated also as the mass ratio 



 The ratio of the initial travelling hinge position relative to half of the beam length
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Fig. 10 shows the plate strip deflections versus time in a non-dimensional format for different 

velocities. The mass ratio is kept constant as 0.153ndm  . The plots show that the non-dimensional 

velocity 0,ndV is dominant in determining the permanent deflection of a plate strip. Permanent 

deflection increases significantly with the non-dimensional velocity.  

As the plate thickness is normally considerably smaller than the stiffener spacing, the permanent 

deflection can be many times larger than the plate thickness, and the deflection is mainly governed 

by stage 3 and follows Path 2.  From the expressions of the non-dimensional parameters, it seems 

difficult to satisfy similarity of the non-dimensional parameters 0,ndV and ndX  simultaneously 

during scaling. However, the ndX ratio is only connected with stage 1, and the influence is minor 

on the permanent deflections. 

 

Fig. 10. Non-dimensional time-deflection curves for plate strips with different non-dimensional velocities. The non-

dimensional mass ratio is / 0.153m bL   

Next, we examine the importance of the mass ratio ndm . Fig. 11 plots the non-dimensional curves 

of panel permanent deflections versus non-dimensional velocity for different mass ratios. Results 



show that /p h increases significantly with the non-dimensional velocity, and the relationship is 

virtually linear for large non-dimensional velocities. It is observed that a larger mass ratio /m bL

will lead to larger permanent deflections with the same non-dimensional velocity. This is because 

the structure is imparted a velocity V0 in the middle portion regardless of the structural mass. This 

means that a structure with a larger mass is imparted more kinetic energy, leading to a larger 

deflection. The variation of the permanent deflection with the mass ratio is however, not significant. 

For typical steel stiffened panels, the mass ratios are small (added mass predominates) and in the 

range of 0.1-0.2.  Curves in Fig. 11 may be used as basis for designing plates subjected to extreme 

slamming. 

 

Fig. 11. Non-dimensional permanent deflection versus non-dimensional velocity curves for plate strips with different 

mass ratios 

6.2 Hydro-plastic slamming response of stiffened panels 

Stiffened panels are characterized by large web heights. The frame spacing/web height ratio is 

considerably smaller than the stiffener spacing/plate thickness ratio, and thus the deformation is 

mainly governed by the travelling hinge and stationary hinge stages, where bending and membrane 

forces interact. Panels with relatively weak stiffeners or panels subjected to extreme slamming 

loads may also be pushed into the pure tensile membrane stage. According to the analytical model, 

five non-dimensional parameters are identified: 

 The non-dimensional velocity 
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 The non-dimensional mass /ndm m bL  



 The ratio of the initial travelling hinge position relative to the beam half length
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Fig. 12 shows the non-dimensional panel deflections versus time for different non-dimensional 

velocities. The area ratios and the mass ratio are kept constant, being , ,2; 2ps nd wt ndA A   and

0.0919ndm  . The results show that the non-dimensional velocity 0,ndV is a crucial parameter in 

determining the permanent deflection. As 0,ndV  increases, the deflection / h and the non-

dimensional time 
0 /tV h  increase significantly. Because of the large web height over length ratios, 

the typical range of the non-dimensional velocity is much smaller compared to that for plates. 

Depending on the magnitude of 0,ndV , stiffened panels may go through Path 1 (including only 

stages 1 and 2 or all the three stages) or Path 2 (including only stages 1and 3). The non-dimensional 

curves coincide generally in stage 1.  

 

Fig. 12. Non-dimensional time-deflection curves for stiffened panels with different non-dimensional velocities. The 

area ratios are Ap/As=2, Aw/At =2, and the non-dimensional mass is / 0.0919m bL  . The length over height ratio is 

/ 12.5L h    

Similar to the situations of plate strips, it is difficult to satisfy the similarity of 0,ndV and ndX  

simultaneously during scaling. By keeping the crucial parameter 0,ndV  constant, it is interesting to 



know how 
ndX varies for typical stiffened panels and how much the variation of 

ndX influences the 

predicted permanent deflection. To shed light on this, it is convenient to introduce a reference value
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For stiffened panels, the length over stiffener height ratio is typically in the range of

10 2 / 20L h  . Suppose that h  equals refh and that
2
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By holding constant the non-dimensional velocity, we obtain the following range for the absolute 

velocity  0 0
3 3

1 1
/

1.6 0.8
ref

V V  . Therefore, the variation of the initial travelling hinge position 

for a given non-dimensional velocity ranges as
 

  4 4

0 /1 1
0.89 1.06

0 /1.6 0.8
ref

X t L

X t L


   


. Fig. 

12 shows the variation of the normalized deflection when
3

0

0

4.11
/

L
V

M h b


 and

 

  
0 /

0 /
ref

X t L

X t L





is conservatively set equal to 0.8 and 1.2, respectively. The curves show that the permanent 

deflection variations are quite small and can be neglected. We therefore adopt a reference value of 
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 for the non-dimensional curves below. 

Fig. 13 shows the normalized permanent deflection versus the non-dimensional velocity for 

different mass ratios. The area ratios are , ,2; 2ps nd wt ndA A  . The permanent deflection increases 

significantly with increasing non-dimensional velocity. The relationship is non-linear when the 

deformation is governed by stage 1 and 2, and becomes virtually linear when entering stage 3. The 

permanent deflections increases with increasing mass ratio ndm , but the increase is generally limited 

for the range of interest. The mass ratio is typically small, and it is reasonable to select a 

representative mass ratio for design purposes.  

Fig. 14 displays the normalized permanent deflection versus the non-dimensional velocity for 

different area ratios of ,ps ndA  and wt,ndA . It shows that the permanent deflection increases with 

decreasing ,ps ndA and wt,ndA ratios, and notably the ,ps ndA ratio is dominant. Fig. 14 is well suited to 

be used as basis for design curves of stiffened panels against extreme water slamming. It is also 

noticed that the large deflection range ( / 1p h  ) is often hypothetical because fracture due to 

excessive straining, local buckling/tripping or shear failure will occur at finite deformations.  



 

Fig. 13. Non-dimensional permanent deflection versus non-dimensional velocity curves for stiffened panels with 

different mass ratios. The area ratios are Ap/As=2, Aw/At =2 

 

Fig. 14. Non-dimensional permanent deflection versus non-dimensional velocity curves for stiffened panels given 

different area ratios. The non-dimensional mass is / 0.0919m bL  , and the length over height ratio is 2 / 12.5L h  . 

The full circle indicates the limit for Path occurrence, i.e. Path 1 is followed on the left of the circle, while Path 2 is 

followed on the right 



7. Discussion 

7.1 The hydrodynamic part of the model 

The analytical model is developed for the fluid-structure interaction in 2D conditions. In practice, 

the length-to-width ratio may not be large enough to enable a true 2D condition, and the 3D effect 

on the hydrodynamic pressure may become important. However, because the added mass in a 3D 

condition is smaller than that in a 2D condition, permanent deflections are smaller in 3D conditions. 

This can be reflected in rules from DNV (2014), where a correction factor 
AC  for the added mass 

of a heaving flat plate is introduced to account for the 3D effect based on analytical solutions as 

shown in Fig. 15. Therefore, it is conservative to use 2D solutions for structural design. 

 
Fig. 15. The AC  factor for the added mass of a heaving plate to account for the 3D effect (DNV, 2014) 

The hydrodynamic pressure is calculated based on the assumption that the impermeability body-

boundary condition is satisfied in an average manner over the length as expressed in eq. (11). In 

order to assess quantitatively the influence of this assumption, the boundary value problem 

sketched in Fig. 5 is solved numerically using a 2D Boundary Element Method (BEM) satisfying 

the exact impermeability condition as expressed in eq. (10). A brief description of the BEM code 

is given in the appendix, and more details can be found in Greco et al. (2004).  

Fig. 16 compares the non-dimensional hydrodynamic parameters AI and BI obtained using the 

simplified theoretical solution and numerical results from the BEM, where AI and BI are the crucial 

parameters from the governing motion eqs. (30), (42) and (44). The results show that for the AI

parameter, the values differ greatly for small /X L ratios but become close when / 0.4X L  . 

Because the initial position of the hinges  0 /X t L is non-zero in practice, the influence of AI  

value differences in small /X L regions is expected to be limited. For the BI parameter, the two 

curves show same behaviors and the values by the numerical code are slightly larger than those by 

the simplified theoretical method. In order to assess how differences in the values of AI and BI

predicted by the two methods influence the permanent deflections, the AI parameter obtained using 

the BEM results is fitted by polynomials as: 
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Fig. 16. Comparison of the non-dimensional parameters AI and BI for hydrodynamics with the BEM and the 

simplified analytical solution 

Fig. 17 compares non-dimensional curves of stiffened-panel deflections versus time with different 

0,ndV  values predicted by both methods.  

 

Fig. 17. Deflections of stiffened panels with the hydrodynamics from the BEM and from the simplified analytical 

solution. The area ratios of the stiffened panels are Ap/As=2.4, Aw/At =1.5, and the non-dimensional mass is

/ 0.11m bL  . The length over height ratio is 2 / 13.3L h   

The area ratios of the considered stiffened panels are Ap/As=2.4, Aw/At =1.5, and the non-

dimensional mass is / 0.11m bL  . The length over height ratio is 2 / 13.3L h  . The results show 

that the curves from the two approaches are generally close, and that the model using the simplified 

solution predicts slightly smaller permanent deflections. It is interesting to find that the largest 



difference occurs for intermediate 0,ndV values. This is because the total deflection difference has 

contributions from both stage 1 and stage 2. The AI value for stage 1 from BEM can be smaller or 

larger depending on the /X L ratios, while the 
BI value for stage 2 from BEM is always larger. The 

difference is however small, and can generally be neglected. 

7.2 Discussion of the analytical model 

Theoretical analysis has shown that the non-dimensional velocity  3

0 0/ /V L M h b is dominant 

in determining the permanent deflections of plates and stiffened panels subjected to extreme water 

slamming, while the influence of the mass ratio /m bL is limited. Faltinsen (2005) investigated 

hydro-elastic slamming of flat beams and found that  3

0 / /V L EI b  was a crucial parameter to 

determine the maximum elastic deflection. It is interesting to find that the non-dimensional velocity 

for hydro-plastic slamming is consistent with that defined by Faltinsen (2005) for hydroelastic 

slamming, and the difference is the expression regarding structural stiffness.  

Deflections of stiffened panels are mainly governed by the travelling hinge stage and the stationary 

hinge stage, where permanent deflections increase nonlinearly with the non-dimensional impact 

velocity according to Fig. 14. For plate strips, the deflections are governed by the pure tensile 

membrane stage, where permanent deflections are virtually linearly dependent on the non-

dimensional velocity. This is similar to the findings by Faltinsen (2005), who showed that the 

maximum elastic deflection of beams subjected to slamming increased linearly with the non-

dimensional velocity  3

0 / /V L EI b . 

The typical range of the non-dimensional velocity is quite different for plate strips and stiffened 

panels because of the large difference in the length over web height ratio. According to Fig. 14, for 

stiffened-panel permanent deflection up to 3 times the web height, the non-dimensional velocity is 

typically up to 7. Plate strips have smaller thicknesses and large length over thickness ratios. When 

subjected to slamming, permanent deflections of plate strips can be many times larger than the 

plate thickness. According to Fig. 11, for permanent deflections up to 35 times the plate thickness, 

the non-dimensional velocity may be up to 80.  

It should be noted that it is assumed that the elastic energy is small compared to the plastic energy 

and all kinetic energy is absorbed by plastic deformations. This is generally reasonable for cases 

with large non-dimensional velocities. When the non-dimensional velocity is small, the elastic 

deformations become important and the hydro-elastic slamming theory by Faltinsen (2005) should 

be adopted. In addition, the analytical model assumes the beam response with a travelling hinge 

mechanism, and the initial position of the travelling hinge is  0 /X t L  according to eq. (35). In 

order to activate a travelling hinge mechanism, the condition of  0 / 1X t L  should be satisfied, 

and this yields: 
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DNV rules stated that ships and offshore structures should be designed to resist loads with an 

annual probability of 10-2 in the Ultimate Limit State (ULS) and an annual probability of 10-4 in 

the Accidental Limit State (ALS) (DNV, 2001). Rules and standards for the design of structures 

against extreme slamming conditions are however, very few. In 2016, DNV introduced the first 

rules i.e. DNVGL-OTG-13 (2016) and DNVGL-OTG-14 (2016), for the design of offshore 

structures against extreme slamming loads in the ULS as a response to the COSL Innovator 

platform accident in the North Sea. The rules suggest a design pressure history where the peak 

value is no less than 0.4 MPa for ULS design. These provisions neglect, however, the coupling 

between the fluid and structure deformations. The proposed analytical model results in curves of 

non-dimensional permanent deflection versus non-dimensional velocity in Figs. 11 and 14 for plate 

strips and stiffened panels, respectively. The model couples hydrodynamic forces and structural 

deformations during abnormal slamming events (ALS) and provides good accuracy by comparison 

with ALE simulations (refer Part II paper (Yu et al., 2019)). A big advantage of the model is that 

it bypasses the traditional approach, which focuses on the slamming pressure. It requires only the 

initial water impact velocity as the main input. The non-dimensional curves in Figs. 11 and 14 are 

well suited to be utilized in rules and standards for designing against extreme (ALS) slamming 

loads. 

8. Conclusions 

This Part I of a two-part companion paper proposes a new analytical model for the large inelastic 

deflection of plates and stiffened panels subjected to extreme water impacts. Flat or nearly flat 

impacts are considered, where the impact angle between water free surface and the structure should 

preferably be no larger than 5°. The following conclusions are drawn: 

1.  The proposed analytical model couples the hydrodynamic pressure and the large plastic 

structural response during extreme slamming events. To the authors’ knowledge, it is the first time 

that the hydro-plastic slamming problem is solved analytically. The model is verified of good 

accuracy by comparison with experiments and numerical simulations in the Part II paper. 

2.  Three deformation stages are assumed for beams and stiffened panels: i.e. the travelling hinge 

stage 1, the stationary hinge stage 2 and the pure tension stage 3. The travelling hinge concept is 

introduced in order to not violate theoretically the generalized yield surface given the large and 

impulsive pressure loading. Stiffened panels are characterized by large web heights and are 

governed by stages 1 and 2 deformations. Plate strips have large ratios of length over thickness, 

and are governed by stage 3.  

3.  In the hydro-plastic regime, the hydrodynamic pressure is found to have two contributions. The 

first represents an added mass effect, where the added mass is significant and is normally several 

times the structural mass. The second term comes from the time variation of added mass due to 

structural modal changes in stage 1. This is different with the pressure in the hydro-elastic regime, 

where the pressure is associated with only an added-mass effect. 

4. The hydro-plastic response of beams and stiffened panels is largely governed by the non-

dimensional impact velocity  3

0 0/ /V L M h b . The permanent deflection increases nonlinearly 



for stiffened panels that are governed by stages 1 and 2 deformations. The relationship becomes 

virtually linear for plate strips governed by stage 3.  

5. The theory is developed for “unlimited” deformations. In practice, the validity of the model will 

be limited by fracture due to excessive strain. For unstiffened plates, it is considered that the critical 

permanent deformation w.r.t. fracture is one order of magnitude larger than the plate thickness 

while for stiffened plates, it is in the order of the web height. 
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 Appendix: BEM for the numerical solution of the hydrodynamic problem in Fig. 5. 

The numerical solution of the 2D boundary value problem for the velocity potential ,  sketched 

in Fig. 5, is briefly described. The problem is governed by the Laplace eq. (7), complemented by 

the high-frequency free-surface boundary condition eq. (9) along 0,  2  and 0,x x L z   and the 

impermeability body-boundary condition eq. (10) along 0 2  and 0.x L z     

The problem for   is solved with a boundary integral formulation using the Green’s second 

identity, so that the Laplace equation is automatically satisfied. Enforcing the Green’s second 

identity along the domain boundary, integral equations are obtained for the unknowns, i.e.  along 

the body and its normal derivative, / ,n  along the free surface. These integral equations are 

solved numerically using a BEM where the domain boundary (body and free surface) are 

discretized in straight elements (panels) and in each of them, linear shape functions are used to 

express   and / n  . This allows to estimate analytically the integrals along the panels involved 

in the discretized version of the integral equations. More details on the BEM method can be found 



e.g. in Greco et al. (2004). Fig. A1 presents the BEM solution for  along the body in the case of 

uniform and unitary vertical velocity of the body, i.e. modew . This compares well against the 

analytical solution given by eq. (12).  

 

Fig. A1. Velocity potential from BEM and from the analytical solution of BVP in Fig. 5 for uniform and unitary
modew  

The numerical results have been obtained using 150 panels uniformly distributed on the body, the 

same discretization size is used on the free-surface within a distance equal to 2L from the 

intersections with the body. Then a panel stretching is introduced to ensure practically zero body 

perturbation at the far-field edges of the numerical free surface. The same discretization is 

employed for the BEM results discussed in section 7.1. There, the BEM solution is used to estimate 

the non-dimensional hydrodynamic parameters AI and BI .  


