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Abstract

The energy preserving discrete gradient methods are generalized to finite-dimensional
Riemannian manifolds by definition of a discrete approximation to the Riemannian gradient,
a retraction, and a coordinate center function. The resulting schemes are intrinsic and
do not depend on a particular choice of coordinates, nor on embedding of the manifold
in a Euclidean space. Generalizations of well-known discrete gradient methods, such as
the average vector field method and the Itoh—Abe method are obtained. It is shown how
methods of higher order can be constructed via a collocation-like approach. Local and global
error bounds are derived in terms of the Riemannian distance function and the Levi-Civita
connection. Some numerical results on spin system problems are presented.
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1 Introduction

A first integral of an ordinary differential equation (ODE) is a scalar-valued function on the phase
space of the ODE that is preserved along solutions. The potential benefit of using numerical
methods that preserve one or more such invariants is well-documented, and several energy-
preserving methods have been developed in recent years. Among these are the discrete gradient
methods, which were introduced for use in Euclidean spaces in [1], see also [2]. These methods
are based on the idea of expressing the ODE using a skew-symmetric operator and the gradient of
the first integral, and then creating a discrete counterpart to this in such a way that the numerical
scheme preserves the energy.

For manifolds in general, one can use the same schemes expressed in local coordinates. A
drawback is that the numerical approximation will typically depend on the particular choice
of coordinates and also on the strategy used for transition between coordinate charts. Another
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alternative is to use a global embedding of the manifold into a larger Euclidean space, but then it
typically happens that the numerical solution deviates from the manifold. Even if the situation
can be amended by using projection, it may not be desirable that the computed approximation
depends on the particular embedding chosen. Crouch and Grossmann [3] and Munthe-Kaas
[4, 5] introduced different ways of extending existing Runge—Kutta methods to a large class of
differentiable manifolds. Both these approaches are generally classified as Lie group integrators,
see [6] or the more recent [7] for a survey of this class of methods. They can also both be
formulated abstractly by means of a post-Lie structure which consists of a Lie algebra with a
flat connection of constant torsion, see e.g. [8]. In the present paper we shall state the methods
in a slightly different context, using the notion of a Riemannian manifold. It is then natural to
make use of the Levi-Civita connection, which in contrast to the post-Lie setting is torsion-free,
and which in general has a non-zero curvature. For our purposes it is also an advantage that the
Riemannian metric provides an intrinsic definition of the gradient. Taking an approach more
in line with this, Leimkuhler and Patrick [9] considered mechanical systems on the cotangent
bundle of a Riemannian manifold and succeeded in generalising the classical leap-frog scheme
to a symplectic integrator on Riemannian manifolds.

Some classical numerical methods in Euclidean spaces preserve certain classes of invariants;
for instance, symplectic Runge—Kutta methods preserve all quadratic invariants. This can be
useful when there is a natural way of embedding a manifold into a linear space by using con-
straints that are expressed by means of such invariants. An example is the 2-sphere which can
be embedded in R3 by adding the constraint that these vectors should have unit length. The
classical midpoint rule will automatically ensure that the numerical approximations remain on
the sphere as it preserves all quadratic invariants. In general, however, the invariants preserved
by these methods are expressed in terms of coordinates. Hence the preservation property of the
method may be lost under coordinate changes if the invariant is no longer quadratic. In [10], a
generalization of the discrete gradient method to differential equations on Lie groups and a broad
class of manifolds was presented. Here we develop this further by introducing a Riemannian
structure that can be used to provide an intrinsic definition of the gradient as well as a means to
measure numerical errors.

The structure of this paper is as follows: In section 2, we formulate the problem to be solved
and introduce discrete Riemannian gradient methods, as well as presenting some particular
examples with special attention to a generalization of the Itoh—Abe discrete gradient. We also
briefly discuss the Euclidean setting as a special choice of manifold and show how the standard
discrete gradient methods are recovered in this case. In the third section, we consider higher
order energy preserving methods based on generalization of a collocation strategy introduced by
Hairer [11] to Riemannian manifolds. We present some error analysis in section 4, and show
numerical results in section 5, where the methods are applied to spin system problems.

2 Energy preservation on Riemannian manifolds
Consider an initial value problem on the finite-dimensional Riemannian manifold (M, g),

iu=Fw), u0) =u’eM. (2.1



We denote by F (M) the space of smooth functions on M. The set of smooth vector fields and
differential one-forms are denoted I'(T M) and I'(T™* M) respectively, and for the duality pairing
between these two spaces we use the angle brackets (-, ).

A first integral associated to a vector field F € T'(TM) is a function H € F (M) such that
(dH, F) vanishes identically on M. First integrals are preserved along solutions of (2.1),

d
aH(u(t)) = (dH(u(1), u(n) = (dHu(1), F(u(1)) =0.

2.1 Preliminaries

The fact that a vector field F has a first integral H is closely related to the existence of a tensor
field QeT(TM& T*M) =: I“(’Tl1 M), skew-symmetric with respect to the metric g, such that

F(u) =Q(u)gradH(u), 2.2)

where gradH € I'(T M) is the Riemannian gradient, the unique vector field satisfying (dH, ) =
g(gradH,-). Any ODE (2.1) where F is of this form preserves H, since

d

aH(u) =(dH(w), ) = (dH(u),Qgrad H(u)) = g(grad H(u), Qgrad H(u)) = 0.

A converse result is detailed in the following proposition.

Proposition 1. Any system (2.1) with a first integral H can be written with an F of the form (2.2).
The skew tensor field Q can be chosen so as to be bounded near every nondegenerate critical
point of H.
Proof. Similar to the proof of Proposition 2.1 in [2], we can write an explicit expression for a
possible choice of Q,
_ glgradH,y) F - g(F y)gradH
B g(grad H, grad H) '

Clearly, g(y,Qy) =0 for all y. Since H is a first integral, g(F,gradH) = (dH,F) = 0, so
QgradH = F. For a proof that Q is bounded near nondegenerate critical points, see [2]. O

(2.3)

In fact, such a tensor field Q often arises naturally from a two-form w through Qy = w(-, y)f. A
well-known example is when w is a symplectic two-form. Note that Q is not necessarily unique.

Retractions, viewed as maps from T M to M, will play an important role in the methods we
discuss here. Their formal definition can be found e.g. in [12]:

Definition 1. Let ¢ be a smooth map ¢: TM — M and let ¢;, denote the restriction of ¢ to T, M,
with 0, being the zero-vector in T, M. Then ¢ is a retraction if it satisfies the conditions

1. ¢p is defined in an open ball By, (0,) < T, M of radius r, about 0,
2. ¢p(x)=p if and only if x =0,

3. Tplo, =1dr,um.

A generic example of a retraction on (M, g) is obtained via the Riemannian exponential,
setting ¢, (x) = exp ,(x), i.e. following along the geodesic emanating from p in the direction x.
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2.2 The discrete Riemannian gradient method

We adapt the discrete gradients in Euclidean space to discrete Riemannian gradients (DRG) on
(M, g) by means of a retraction map ¢ and a center point function c.

Definition 2. A discrete Riemannian gradient is a triple (grad, ¢, ¢)! where
1. ¢: M x M — M is a continuous map such that c(u, u) = u for all ue M,
2. grad: F(M) — T'(c*TM),
3. ¢: TM — M is a retraction,

such that forall He F(M), ue M, ve M, c=c(u,v) e M,

H(v)— H(u) = g(gradH(u, v), () — ;L (w)), (2.4)
gradH (u, u) = grad H(u). (2.5)

The DRG gradH is a continuous section of the pullback bundle ¢* TM, meaning that
mogradH = ¢, where m : TM — M is the natural projection. We also need to define an ap-
proximation to be used for the tensor field Q € I“(Tll M). To this end we let Q € 1“(0*’7'11 M) be a
continuous skew-symmetric tensor field such that

Qu,u)=Q(u) VYueM.
Inspired by [10, 13], we propose the scheme
W = Wk, ukft), ok = ek, kY (2.6)
w W, u*h = o7 W) + RO, W) grad HWE, ut Y, .7
where h is the step size. The scheme (2.6)—(2.7) preserves the invariant H, since
Hw**Y) = Hub) = g(grad H(u¥, uk”),(,b;,}(uk”) _¢;k1(uk))
= g(grad H(u¥, u** 1), hQ(*, uF*1) grad H(uk, uk*1)) = 0.

Here and in the following we adopt the shorthand notation ¢ = c(u, v) as long as it is obvious
what the arguments of c are.

The Average Vector Field (AVF) method has been studied extensively in the literature; some
early references are [14, 2, 15]. This is a discrete gradient method, and we propose a correspond-
ing DRG satisfying (2.4)-(2.5) as follows:

o 1
grad ,yp H (1, V):[o (Ty{(,bc)TgradH((/)C(yf))df, Ye= 1-O¢; (W) + &g (v), (2.8)

where (Ty¢p)T: Ty, (xyM — T, M is the unique operator satisfying

g((Tupo) a,b) = g(a, Txpcb), Yx,beTcM, ae Ty M.

ITo avoid cluttered notation we will just write grad for the triple (grad, ¢, ¢) in the sequel.



Furthermore, we have the generalization of Gonzalez’ midpoint discrete gradient [1],

H(v)- H(u) - g(gradH(c(u, v)),n) n

29
gm,mn) @9

gradyp H(u, v) = grad H(c(u, v)) +
where 7= ¢ (v) - p7 1 (w).

Note that both these DRGs involve the gradient of the first integral. This may be a disad-
vantage if H is non-smooth or if its gradient is expensive to compute. Also, the implicit nature
of the schemes requires the solution of an n-dimensional nonlinear system of equations at each
time step. An alternative is to consider the Itoh—Abe discrete gradient [16], also called the co-
ordinate increment discrete gradient [2], which in certain cases requires only the solution of n
decoupled scalar equations. We now present a generalization of the Itoh—Abe discrete gradient
to finite-dimensional Riemannian manifolds.

2.3 Itoh-Abe discrete Riemannian gradient

Definition 3. For any tangent space T, M one can choose a basis {Ej, ..., E;} composed of tangent
vectors E;, i = 1,..., n, orthonormal with respect to the Riemannian metric g. Then, given u,v €
M, there exists a unique {“i}?:l so that

n
P W) - w =) aiE;.
i=1
The Itoh—Abe DRG of the first integral H is then given by
n
gradjp H(u,v) = )_ ajEj, (2.10)
j=1

where
H(wj)-H(w;j-1)

aj = aj
g(gradH(w;j-1), Tpc(nj-1)Ej) ifa;=0,

ifaj;éO,

J
wj=gcmp), 1nj=¢; @+ aiE;.

i=1

We refer to [13] for proof that this is indeed a DRG satisfying (2.4)-(2.5).

2.4 Euclidean setting

Let M = V be an R-linear space, and let g be the Euclidean inner product, g(x,y) = x'y. The
operator Q2 is a solution dependent skew-symmetric n x n matrix Q(u). For any u € V, we have
T,V = V. The retraction ¢: V — V is defined as ¢, (x) = p + x, the Riemannian exponential on
V, so that ¢ (v) — p71(w) = v — u. The gradient grad H is an n-vector whose ith component is



%, and the definition of the discrete Riemannian gradient coincides with the standard discrete

gradient, since (2.4) now reads
H(v) - H(u) = grad(u, v)* (v — u).

Furthermore, (2.6)-(2.7) simply becomes the discrete gradient method introduced in [1], given
by the scheme

u 1 —uk = nawk, uk“)gradH(uk, uktly, (2.11)

where (0 is a skew-symmetric matrix approximating Q. Typical choices are Q(u*, uf*1) = Q(uk),
or Q(uk, u* 1) = Q((u**! + u*)/2) if one seeks a symmetric method.

The DRGs (2.8) and (2.9) become the standard AVF and midpoint discrete gradients in this
case. For the Itoh—Abe DRG, the practical choice for the orthogonal basis would be the set of
unit vectors, {ey, ..., e,}, so that @; = v; — u;, and we get (2.10) with

H(wj) - H(w;_1)

fu,Z2v;
T JEVp
aj: 5 U] u]

H .

ou; (Wj-1) if uj=vj,
I n o
wj=) i viei +Zi:j+1 uiei,

which is a reformulation of the Itoh—Abe discrete gradient as it is given in [16], [2] and the
literature otherwise.

3 Methods of higher order

In the Euclidean setting, a strategy to obtain energy preserving methods of higher order was
presented in [17] and later in [11], see also [18]. This technique is generalized to a Lie group
setting in [10]. We will here formulate these methods in the context of Riemannian manifolds.

3.1 Energy-preserving collocation-like methods on Riemannian manifolds

Let ¢y, ...,cs be distinct real numbers. Consider the Lagrange basis polynomials,

i

LE =[]

1
, andlet bi:=j(; L;(&)de. 3.1
j=Lj#i

C —Cj

We assume that ¢y, ..., cg are such that b; # 0 for all i. A step of the energy-preserving collocation-
like method, starting at u° € M, is defined via a polynomial o : R — T, M of degree s satisfying

0(0) = ¢, ' (), (3.2)
d -1

ZE0Em|_ =Ty (0jgrad;H),  Uj:=gc(o(c;m) (3.3)
u':=¢c(0h), (3.4



where
1 l](é) 1T T
grade::fO T(Tuj(pc) (Toemde) gradH (¢c(o(€h)) dé, and  Q;:=Q(U)).
j

Notice that with s =1 and independently on the choice of c;, we reproduce the DRG method
(2.6)-(2.7) with the AVF DRG (2.8).
Using Lagrange interpolation and (3.3), the derivative of o (¢h) at every point h is

d
T = Y 1O To,¢7" (@grad; H), (3.5)
j=1

from which by integrating we get
o(h) = ¢ (o) + h Z f () dE Ty, ;" (©;grad  H).
The defined method is energy preserving, which we see by using

4 (petohy) = a@md)c( a(fh))

dé d¢

and (3.5) to get

1 d
Hwh -Hu®) = fo g(gradH((Pc(U(fh))), —¢c(a(£h))) dé

d¢
1
fo (gradH(%(U(fh))) Toenybe (Z 1) Ty, ¢ (ngrad H))) dé

J

1 S
:fo g((Ta(gh)(/)C) gradH (¢ (0 (Eh))), Z () Ty, 7" (ngrade))df

L1;(8)
by [ 25 (0,02) (o) gracH (et} o, g ]
J

(grad H,Qjgrad; H) =

and hence repeated use of (3.2)-(3.4) ensures H(u*) = Hw®) for all ke N.
3.2 Higher order extensions of the Itoh—-Abe DRG method
From the Itoh—Abe DRG one can get a new DRG, also satisfying (2.4), by
gradg;, H(u, v) :%(gmlAH(u, v) +grad;, H(v,u)). (3.6)
We call this the symmetrized Itoh—Abe DRG. Note that we need the base point ¢ to be the same

in the evaluation of grady, H(u, v) and grad;, H(v, u). When c(u, v) = c¢(v, u) and ﬁ(u,,,) = ﬁ(y,u),
we get a symmetric DRG method (2.6)-(2.7), which is therefore of second order.



Alternatively, one can get a symmetric 2-stage method by a composition of the Itoh—Abe
DRG method and its adjoint. Furthermore, one can get energy preserving methods of any order
using a composition strategy. To ensure symmetry of an s-stage composition method, one
needs c;(u, v) = cs1+1-; (v, u) for different center points c¢; belonging to each stage and, similarly,
Qi(u, ) = Qsi1-i (v, 1).

4 Error analysis

4.1 Local error

In this section, ¢ (u) is the -flow of the ODE vector field F. The most standard discrete gradient
methods have a low or moderate order of convergence, and that is also the case for the DRG
methods unless special care is taken in designing Q and grad H. We shall not pursue this approach
here, but refer to the collocation-like methods if high order of accuracy is required. We shall see,
however, that the methods designed here are consistent and can be made symmetric. Analysis
of the local error can be done in local coordinates, assuming that the step size is always chosen
sufficiently small, so that within a fixed step, uk uktl c(uk, u**1) and the exact local solution
u(tx+1) all belong to the same given coordinate chart. From the definition (2.6)-(2.7) it follows
immediately that the representation of u**1(h) satisfies u**1(0) = u* and %uk“(O) = F(uk).
Then by equivalence of local coordinate norms and the Riemannian distance, we may conclude
that the local error in DRG methods satisfies

AW on k) < Ch?.

Similar to what was also observed in [10], the DRG methods (2.6)-(2.7) are symmetric whenever
gradH(u, v) = gradH(v, ), Q(u, v) = Q(v, u), and c(u, v) = c(v, u) for all u, v e M. In that case
we obtain an error bound for the local error of the form d(u**!, (ph(uk)) < ChS.

The collocation-like methods of section 3 have associated nodes {ci}f:1 and weights {bi}f:1
defined by (3.1). The order of the local error depends on the accuracy of the underlying quadrature
formula given by these nodes and weights. The following result is a simple consequence of
Theorem 4.3 in [18].

Theorem 1. Let ), be the method defined by (3.2)-(3.4). The order of the local error is at least
p =min(r,2r —2s+2)

where 1 is the largest integer such that 3} _, b; c?_l = % forall 1 < g <r. This means that there
are positive constants C and hg such that

Ay, W), @nw) < ChP*Y for h< hy, ue M.

Proof. Choose h small enough such that the solution can be represented in the form u(hé) =
¢ (y(€h)), € €10,1], and consider the corresponding differential equation for y in T, M:

d _
5 Y= (02F) (r (1) = (Tynpe) ' QgradH (de(y (1)) “.1)
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Notice that (Tygbc)_1 = Ty, where U = .oy and Ty, : Ty M — T.M for every t. We
obtain

d
YO = Tuwdr @ (Towe:") (Troge) gradH (pey(1). (42)

Considering the Hamiltonian H: T.M — R, H (y) :== ¢-H(y) = Hop(y), we can then rewrite
(4.1) in the form

d ~ ~ _
=y =0mgraddy, 00 = Tuwnd:'Q (Tuwd:') 4.3)

where we have used that gradH = T (o) ¢prgradH (¢.(y(1))), which is now a gradient on the linear
space T.M with respect to the metric inherited from M, gl|.. Locally in a neighborhood of c,
(3.2)-(3.4) applied to (4.3) coincides with the methods of Cohen and Hairer, and therefore the
order result [18, Thm 4.3] can be applied. Since the Riemannian distance d(-,-) and any norm in
local coordinates are equivalent, the result follows. O

4.2 Global error
We prove the following result for the global error in DRG methods.

Theorem 2. Let u(t) be the exact solution to (2.1) where F is a complete vector field on a
connected Riemannian manifold (M, g) with flow u(t) = (pt(uo). Let vy, represent a numerical
method u*+! = wh(uk) whose local error can be bounded for some p €N as

d(wpw),ep(w) < ChP*™Y forall ue M.
Suppose there is a constant L such that
IVFllg=<L,

where V is the Levi-Civita connection and | - || g is the operator norm with respect to the metric
g. Then the global error is bounded as

C
d (u(kh), uk) < Z(ekhL ~1D)RP  forall k>0.
Proof. Denoting the global error as e* := d(u(kh), u¥), the triangle inequality yields

e < d (pn(ukn), @1 ) + d (@), ) b)),

The first term is the error at nh propagated over one step, the second term is the local error. For
the first term, we find via a Gronwall type inequality of [19],

d ((ph(u(kh)),<ph(uk)) <elld (u(kh), uk) = el ek,

Using the local error estimate for the second term, we get the recursion

ek+1 < ehLek+ Chp+1,



which yields
ekhL -1

ek<c Pl < E(ekhL —1)h".

T el
O
Remark: Following Theorem 1.4 in [19], the condition that F is complete can be relaxed if
¢:(u®) and (X} 1en lie in a relatively compact submanifold N of M containing all the geodesics
from 1 to gy, (1°). This is the case if, for instance, H has compact, geodesically convex sublevel

sets, since both ¢;(1°) and {u¥} e are restricted to the level set My ={pe M|H(p) = Hu%}
and hence lie in the sublevel set Ny 00 ={p € M|H(p) < H(u".

S Examples and numerical results

We test our methods on two different variants of the classical spin system, whose solution evolves

on the d-fold product of two-spheres, (52)¢,
ds; 0H ) d
i siest, i=1..d, HeF((s?)"). (5.1)

The Riemannian metric g on (S?)¢ restricts to the so-called round metric on each copy of the
sphere. This metric coincides with the Euclidean inner product on the tangent planes of each of
the spheres.

Geometric integrators for such systems are discussed widely in the literature, see e.g. [20, 21,
22, 23] and references therein. We study one or more bodies whose orientation is represented by
a vector s; of unit length in R3, so that s; lies on the manifold M = $? = {se€ R3: ||s|| = 1}. Here
and in what follows, |- denotes the 2-norm. Starting with d = 1, our choice of retraction ¢ is
given by its restriction to p,

by (x) = ”” X (5.2)

p+x|’
with the inverse

-1 . u
bp (u)—m—l’

defined when pTu > 0. We note that pTx =0 for all xe T, S2. The tangent map of the retraction
and its inverse are given by

(p+x)®(p+x) o 1 ( u®p)
Ty, = - ) Ty =——|I- , 5.3
(PP ||p+x“( ||p+x||2 ) (pp pTu pTu ( )

where ® denotes the outer product? of the vectors. For d > 1, we use the retraction defined by
@y (x) = (Pp, (X7),...,Pp, (x4)), Where each ¢pp, (x;) is given by (5.2).

2If x and y are in R3, x® y is the matrix-matrix product of x taken as a 3 x 1 matrix and y taken as a 1 x 3 matrix.
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5.1 Example 1: Perturbed spinning top

We consider first a nonlinear perturbation of a spinning top, see [22]. This is a spin system with
one spin s. Given the inertia tensor | = diag(l;,l,,03), and denoting by s? the component-wise
square of s, we can define the Hamiltonian as

1 2
H(s) =09 (s +25%.
(s) 2( $)° (s 35 )
The ODE system can be written in the form
d
d—j = Q(s)gradH(s), Q(s)=$,

using the hat operator defined by §y = s x y. We approximate this system numerically, testing
the scheme (2.6)-(2.7) with different discrete Riemannian gradients: the AVF (2.8), the midpoint
(2.9), the Itoh—Abe (2.10) and its symmetrized version (3.6). For the three symmetric methods,
we have chosen c(s,3) = II%%I’ so that ¢>;1(§) = —(pgl(s). Using that grad H(s) = 17 (s + s?) and
considering the transpose of Ty, ¢, from (5.3), the AVF DRG becomes

o Il

I
= fo Tiel (17 (Pere) + e (r)?) = b)) 1 (P lye) + Pe(ye)®) delye)) dé,

- ® ¢
grad \yp H(s,3) = )I]_ (Pelye) + Pelye)®) dé

e

with ye=(1- 6)(/);1(3) + fgb;l(ﬂ =(1- 25)(/);1 (s) and [¢ = ¢ +y¢. Similarly, the midpoint DRG
becomes

2
2 ls+31% -

gradyp H(s,3) = 3 (s*+55+3%) |+ e (H(E) ~H(s)B-9|,

— (1! (s +5+=
s+l

where we have used that g(s,s) = sTs =1 for all s € S2. To obtain the basis of T.M for the
definition of the Itoh—Abe DRG, we have used the singular-value decomposition. For the first
order scheme, noting that (/);1(3) =0, we choose c(s,s) = s, and get a; = ¢s(§)TEj, for j=1,2.
Then the DRG (2.10) can be written as

H(¢s(¢: O EIE)) - H() o HE) — H(¢s (65" O E1 Fy))
¢ ®TE ' ;G

We solve the same problem using the 4th, 6th and 8th order variants of the collocation-like

scheme (3.2)-(3.4). Choosing in the 4th order case the Gaussian nodes c; » = % F ‘%g as collocation

points and setting c(s,S) = s, we get the nonlinear system

1 V3
Slzh(PsO( Ts,¢5,' (Q1 grad, H)+(§_?) Ts, ¢, (Q2grad, H ),

gradjp H(s,s) = E,. 5.4

’

1 V3
Sg:h([)SO(( 3 )TSI(PSO (Q grad, H)+ TSz(PsO (Q2 grad, H)

S1= h¢50 (Tsl(p;o (‘Ql grale) + Tsz(:b;o (QZ gfadz )) ’
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Figure 1: Error norm at ¢ = 10 for the perturbed spinning top problem solved with different
schemes, plotted with black, dashed reference lines of order 1, 2, 4, 6 and 8. Initial condition
s=(-1,-1,1)/v/3 and [ = diag(1,2,4). Left: The AVF, midpoint (MP), Itoh—Abe (IA) and sym-
metrized Itoh—Abe (SIA) DRGs and a 3-stage composition of the IA DRG scheme (Comp-2).
Right: Collocation-type schemes of order 4, 6 and 8, a 3-stage composition of the SIA DRG
scheme (Comp-SIA), and a 6-stage composition of the IA DRG scheme (Comp-4).

where
o&h) = ((3+2v3) 65150+ (3-2v3) b (52)) €+ (3(V3-1) 93! (82 -3 (1+ V3 9 (81)) &2

and we use the transposes of (5.3) and gradH(s) = 171 (s + s2) in the evaluation of grad; H and
grad, H. The 6th and 8th order schemes are derived in a similar manner, using the standard
Gaussian nodes.

A second order scheme is derived by composing the Itoh—Abe DRG method with its adjoint,
and a 4th order scheme is obtained by composing this method again with itself, as well as one
by composition of the symmetrized Itoh—Abe DRG method with itself. In all stages of these
composition methods, a symmetric c(u, v) is used.

Plots confirming the order of all methods can be seen in Figure 1, where solutions using the
different schemes are compared to a reference solution obtained using a very small step size. See
the left hand panel of Figure 2 for numerical confirmation that our methods do indeed preserve
the energy to machine precision, while the implicit midpoint method does not. In the right hand
panel of Figure 2, the solution obtained by the Itoh—Abe DRG scheme with a step size h =1 is
plotted together with a solution obtained using the symmetrized Itoh—Abe DRG method with a
much smaller time step. We observe, as expected for a method that conserves both the energy and
the angular momentum, that the solution stays on the trajectories of the exact solution, although
not necessarily at the right place on the trajectory at any given time.
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Figure 2: Left: Energy error with increasing time for the AVF, midpoint (MP) and Itoh—Abe
(IA) DRG methods, as well as the implicit midpoint (IMP) method, with step size h = 1, initial
condition s = (=1,-1,1)/v/3 and I = diag(1,2,4). Right: Curves of constant energy on the sphere,
found by our method with different starting values. The black solid line is the solution using the
symmetrized Itoh—Abe DRG method with step size h = 0.01, while the red dots are the solutions
obtained by the Itoh—Abe DRG method with step size h = 1.

5.2 Example 2: Heisenberg spin chain

We now consider the Heisenberg spin chain of micromagnetics. This problem is considered in
[20, 23], where different geometric integrators are tested. Here, s € (Sz)d, and the Hamiltonian is

d
H(s)= ) si'sio1, (5.5)
i=1

with sp = s and s4.; = 1. The system (5.1) becomes, for this Hamiltonian,

dSl'

=8 (sic1+si41), i=1,...,d,
dr 1 Wi-1 i+1

and can be written in the block form
ds . A .
E =Q(s)gradH(s), where Q(s)=diag(sy,...,84)- (5.6)
For such a d-particle system, we may write the DRGs as

gradH(s,s) = (grale(s, $,..., graddH(s, 3)) ,

where we note that grale (s,3) is a discrete approximation to g—g. We thus get the AVF DRG
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defined by

gradiVFH (s,9) =

11 lie®l;
(I— = 1’5) (Pers Vi1, + Peryy (Yier,)) dE

o el I12; 112
1 1 T
=f0 el (()bci—l (Yie1,60) + Doy Vie1,8) = L g (Dei (Vim1,8) + ey (Vier,0) li,f) dg,
L

with y; ¢ =(1- 25)(/5;,1 (s;) and l; ¢ = ¢; +v;¢. For the midpoint DRG we get

H(3) - H(s) - (gradH(c(s,9) "
n'n

—i
gradMPH(S,E) =Ci-1 + Cit+1 + ir

where n = (11,...,ng) and n; = —2(p;i1(s,~). In the numerical experiments, however, we have used
a small modification of this,

T T T
S;Si—1—Si” Si-1—(Ci—1+Civ1) N

nitn;

—
gradypH(s,8) = ci—1+Cit1+ ni.

This DRG, which does indeed satisfy (2.4)-(2.5), 1eads to a more computationally efficient

scheme than the original midpoint DRG. Each grm; AH(s,3) in the Itoh—Abe DRG is found as
in the previous example, by (5.4). Higher order schemes are also derived in the same manner as
before.

We test our schemes by comparing the numerical solutions with the exact solution

sj(t) = (acosB; +asinfj)cosp+asing, 6= jp—2(1-cosp)sing,

for a choice of constants ¢, p € R and orthogonal unit vectors a, @, a € R3, see [20]. Order plots
for the methods are provided in Figure 3, using d =5, ¢ = n/3, p =2n/d, a = 1,2,-1)/v6,
d=2,1,4)/v21 and a = a x a. All schemes are shown to have the expected order.

6 Conclusions and further work

We have presented a general framework for constructing energy preserving numerical integrators
on Riemannian manifolds. The main tool is to generalize the notion of discrete gradients as
known from the literature. The new methods make use of an approximation to the Riemannian
gradient coined the discrete Riemannian gradient, as well as a retraction map and a coordinate
center function. An appealing feature of the new methods is that they do not depend on a
particular choice of local coordinates or on an embedding of the manifold into a (larger) Euclidean
space, but are of an intrinsic nature. Particular examples of discrete Riemannian gradient methods
are given as generalizations of well-known schemes, such as the average vector field method,
the midpoint discrete gradient method and the Itoh—Abe method. Extensions to higher order are
proposed via a collocation-like method. We have analysed the local and global error behaviour
of the methods, and they have been implemented and tested for certain spin systems where the

phase space is (Sz)d.
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Figure 3: Error norm at ¢ = 10 for the Heisenberg spin chain problem solved with different
schemes, plotted with black, dashed reference lines of order 1, 2, 4, 6 and 8. Left: The AVF,
modified midpoint (MMP), Itoh—Abe (IA) and symmetrized Itoh—Abe (SIA) DRGs and a 3-stage
composition of the IA DRG scheme (Comp-2). Right: Collocation-type schemes of order 4, 6
and 8, a 3-stage composition of the SIA DRG scheme (Comp-SIA), and a 6-stage composition
of the IA DRG scheme (Comp-4).

Possible directions for future research include a more detailed study of the stability and
propagation of errors, taking into account particular features of the Riemannian manifold; for
instance, it may be expected that the sectional curvature will play an important role. More
examples should also be tried out, and we belive, inspired by [13], that there is a potential for
making our implementations more efficient by tailoring them for the particular manifold, as well
as the ODE problem considered.
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