
Privacy Preserving Protocols
and Security Proof Techniques

Thesis for the degree of Philosophiae Doctor

Trondheim, August 2009

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Mathematical Sciences

Lillian Kråkmo
Title

Subtitle? Subtitle? Subtitle? Subtitle?
Subtitle? Subtitle? Subtitle? Subtitle?

Thesis for the degree of Philosophiae Doctor

Trondheim, February 2009

Norwegian University of Science and Technology
Faculty of XXXXXXXXXXXXXXXXXXXXXXXX
Department of XXXXXXXXXXXXXXXXXXXXX

Author

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Mathematical Sciences

© Lillian Kråkmo

ISBN 978-82-471-1713-2 (printed ver.)
ISBN 978-82-471-1714-9 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2009:160

Printed by NTNU-trykk

PREFACE

This thesis is submitted in partial fulfillment of the requirements for the de-
gree of Philosophiae Doctor (PhD) at the Norwegian University of Science and
Technology (NTNU). The work has been carried out at the Department of Math-
ematical Sciences as part of the project “ICT and Mathematics”, which aims to
strengthen the theoretical research in information and communication technolo-
gies at NTNU. The project is funded by NTNU, the Faculty of Computer Science,
Mathematics and Electronics and the involved departments. My supervisors have
been Dr. Aslak Bakke Buan at the Department of Mathematical Sciences and
Prof. Stig Frode Mjølsnes at the Department of Telematics.

My topic of research has been privacy preserving cryptographic protocols and
mathematical techniques for proving their security. As a particularly powerful
tool in this context, I have studied the framework of universally composable
security. The work has resulted in five papers, comprising the main part of this
thesis. The first four papers are concerned with how security of different tasks can
be expressed and achieved within this model, starting with basic cryptographic
building blocks, and moving on to more complex protocols. The fifth paper
proposes an application of formal methods to proving universally composable
security, as a potential first step towards automatic verification of such proofs.

Looking back at my years as a PhD student, I am truly grateful for this
opportunity to learn so much about cryptography, research and life in general.
I sincerely thank my supervisors Dr. Aslak Bakke Buan and Prof. Stig Frode
Mjølsnes for their valuable guidance and encouragement. A special thanks goes
to my co-author Dr. Kristian Gjøsteen, for willingly sharing his expertise in
cryptography, for always providing me with interesting research problems, and
for pointing me in the right direction whenever I got stuck.

My colleagues at the department all deserve a great thanks, for creating such
a nice work environment. I thank the technical/administrative staff for always
being helpful, and for providing me with excellent computer and coffee facilities.
In particular, I thank my fellow PhD students, for keeping me company and
making these years memorable.

I am also grateful to my family and friends, for trying to understand my PhD
problems and occasionally helping me forget them. My parents deserve a special
thanks, for their love and support, and for countless hours of babysitting.

Finally, I thank Frantz and Sverre, for standing by me, and for constantly
reminding me of the truly important things in life.

Lillian Kr̊akmo
Trondheim, June 2009

1

CONTENTS

Introduction

Paper I:
Universally Composable Signcryption
Kristian Gjøsteen and Lillian Kr̊akmo
Published in Proceedings of EuroPKI 2007, volume 4582 of LNCS

Paper II:
Universally Composable Blind Signatures in the Plain Model
Aslak Bakke Buan, Kristian Gjøsteen and Lillian Kr̊akmo
Preprint

Paper III:
Round-Optimal Blind Signatures from Waters Signatures
Kristian Gjøsteen and Lillian Kr̊akmo
Published in Proceedings of ProvSec 2008, volume 5324 of LNCS

Paper IV:
A Universally Composable Anonymous Online Service
Lillian Kr̊akmo
Preprint

Paper V:
Secure Messaging from Signcryption:
An Application of Formal Methods to Universal Composability
Lillian Kr̊akmo
Preprint

INTRODUCTION

As more and more people have come to rely on the internet for conducting
their everyday activities, an increasing degree of trust is placed with the com-
munication systems providing the numerous services, and in particular with the
underlying cryptographic protocols. According to [21], a cryptographic protocol
is a ’distributed algorithm defined by a sequence of steps precisely specifying the
actions required of two or more entities to achieve some specific security objec-
tive’. Typically, such algorithms involve data transfer across insecure networks,
and should maintain some level of security even if some entities deviate from
their specified behavior. Examples of cryptographic protocols include protocols
for entity authentication, email, electronic voting and online banking. As demon-
strated by these examples, security objectives of such algorithms are diverse in
content and complexity. An entity authentication protocol should merely assure
one entity of another’s identity. On the other hand, a protocol for online banking
may use an entity authentication protocol as a subroutine for providing just one
out of a wide range of required security properties.

Security of Cryptographic Protocols

It is an empirical fact that designing and analyzing cryptographic protocols is
a difficult and error-prone task. While a detailed survey is out of scope, we will
highlight some trends within this area of research. A defining example in this
context is the Needham-Schroeder public key protocol for mutual entity authen-
tication [24], which was broken by Lowe [20] almost 20 years after its publication,
despite the fact that Abadi, Burrows and Needham were able to formally prove its
correctness [6]. Interestingly, rather than benefiting from stronger tools for pro-
tocol analysis, Lowe’s attack resulted from a modified view regarding the power
of an adversary. While the authors of [6] worked under the assumption that users
of a network are honest, and only considered attacks by outsiders, Lowe also con-
sidered attacks by insiders, i.e. by regular users of the network. Undoubtedly,
Lowe’s approach better reflects modern networks like the internet, where users
are numerous and cannot necessarily trust one another [12].

The above example illustrates some of the subtleties involved in designing cryp-
tographic protocols, and pinpoints the importance of a rigorous security model.
Traditionally, we have seen two main approaches for security analysis of protocols.
In computational models, cryptographic primitives are treated as algorithms, and
adversaries are computationally bounded entities with access to the inputs and
outputs of these algorithms. Security is typically defined in a probabilistic sense,
and relies on computational intractability assumptions. A variety of such models
have been proposed [16, 17, 5]. A common feature of these models is that security

1

2 INTRODUCTION

notions tend to get relatively complex, even for simple protocols. Furthermore,
the security proofs require some level of human creativity, since breaking the se-
curity of the protocol in question must be reduced to breaking some underlying
hard problem. Symbolic models, on the other hand, treat cryptographic prim-
itives as symbolic operations, which immediately guarantee a set of idealized
security properties. As a result, protocol analysis becomes considerably simpler.
Examples of such models are the Dolev-Yao model [13], the BAN logic [6] and the
Spi-calculus [1]. However, when it comes to guaranteeing security for protocols
running in realistic settings, the computational approach is the only one that is
obviously sound.

In most of the above works, security definitions aim to capture one particular
task, like entity authentication or public key encryption. It may be argued that,
rather than a problem-specific approach, we need a general analytical frame-
work, allowing different tasks to be handled within the same model. Such a
framework facilitates a methodological specification of security objectives, and
may improve our understanding of the required properties and and their for-
malizations. Consequently, a general framework may lead to simpler and less
error-prone formulation of security definitions. Moreover, while protocols were
formerly analyzed in a stand-alone setting, modern communication systems are
more likely characterized by multiple protocols running in parallel, and protocols
using other protocols as subroutines. Indeed, proving security in such a scenario
is feasible only in the context of a unified framework [8].

The need for such a framework was first pointed out by Yao in [2]. A few years
later, Goldreich, Micali and Wigderson [15] suggested to define security for the
general task of secure function evaluation, by comparing the protocol in question
to an ideal process, involving a trusted party. This idea was further developed
by the works of Goldwasser and Levin [18], Micali and Rogaway [22], Beaver
[4] and numerous others, and resulted in the trusted-party paradigm, which is
now considered to be fundamental in the field of protocol analysis. Within this
paradigm, a protocol is considered secure if it emulates the ideal process for the
task at hand, which may be considered as a formal specification of the required
security properties. The high level idea is that, if a protocol emulates the ideal
process, then any effect caused by an adversary interacting with the protocol can
also be caused by an adversary interacting with the ideal process. We can then
conclude that, since the ideal process is designed to withstand any attack, this
also holds for the protocol.

While the initial works following this paradigm treat protocols as stand-alone
entities, we have lately seen a development of models that guarantee security-
preserving composition of protocols [25, 3, 7]. Notably, these models combine the
computational and the symbolic approach to protocol analysis, in order to obtain
both soundness and simplification of analysis. In such models, primitives are
represented by idealized abstractions. These abstractions are realizable by actual
protocols, and may also be deployed as subroutines by higher-level protocols, thus
allowing for a more mechanical security analysis. At the same time, soundness

INTRODUCTION 3

is guaranteed by a strong composition theorem, which ensures that a protocol
using an abstraction retains its security when the abstraction is replaced by a
realizing protocol. The work presented in this thesis is mainly concerned with
one specific such model, namely the framework of universally composable (UC)
security, developed by Canetti [7].

The UC Framework

The UC framework provides a general method for formulating security defi-
nitions for cryptographic tasks, and for determining whether a given protocol is
secure. As opposed to conventional models, this framework guarantees that a
protocol maintains its security within any context, i.e. even if run concurrently
with arbitrary other protocols in an adversarially controlled manner. Moreover,
the involved composition theorem allows for a modular design and analysis of
protocols. While a brief review of the framework is given herein, we refer to [7]
for a full overview.

The Computational Model. We start by a high-level description of the under-
lying computational model. In the UC framework, a network of communicating
computer programs is represented by a system of interactive Turing machines
(ITMs). Each ITM has certain tapes that are writable by other ITMs: an incom-
ing communication tape, which models communication over an insecure network,
in addition to an input tape and a subroutine output tape, which model local sub-
routine calls. We note that, while an ITM corresponds to a computer program,
an ITM instance (ITI) corresponds to an instance of a program running on some
specific data.

A system of ITMs (I, C) consists of an initial ITM I and a control function C.
An execution of such a system starts when an instance of I, called the initial ITI,
is invoked on some external input, and proceeds by a series of activations of ITIs.
In each activation, only one ITI is active, and this ITI may write to the tapes of at
most one other ITI, in addition to doing local computations. Once the active ITI
enters a special wait state, the ITI whose tapes were written to becomes active.
If no tapes of other ITIs were written to, the initial ITI is activated. The control
function determines whether an ITI can write to a certain tape of another ITI.
An execution ends when the initial ITI halts. The output of an execution is the
output of the initial ITI.

Some comments are in order concerning the above modeling. First, in order
to let an ITI specify which ITI it wishes to address, each ITI is equipped with a
permanent identity. If there is no ITI with the specified identity in the system,
then an ITI with this identity is created. Second, each identity consists of a
session id (SID) and a party id (PID). A set of ITIs in an execution constitute a
protocol instance if they are instances of the same ITM and have the same SID.
The PIDs are used to identify different parties within a protocol instance.

The Model of Protocol Execution. We proceed by describing the model of
protocol execution. This model is parametrized by three ITMs: π represents the

4 INTRODUCTION

protocol to be executed, A is the adversary, and Z is the environment. While A
represents attacks directly aimed at the instance of π in question, Z represents
the other protocol instances running in the system, including those using the
instance in question as a subroutine. Given π, A and Z, the model is defined as
a system of ITMs, where Z is the initial ITM, and the control function is defined
as follows:

• Z first invokes the adversary A. In following activations, Z provides
inputs either to A or some instance of π. These instances are required to
have the same SID, i.e. they are all parties of the same protocol instance.

• The adversary may either write some message to some party’s incoming
communication tape, corrupt some party, or write some message to Z’s
subroutine output tape. We note that no restrictions are made on the
written messages. A corrupts a party if and only if instructed to do so by
Z, and does so by writing some specific message on that party’s incoming
communication tape. The party’s response to this message is determined
by the corruption model, which is specified in the party’s program.

• The parties of π may write a message to A’s incoming communication
tape or Z’s subroutine output tape. Moreover, they may invoke new ITIs
as subroutines, provide these with inputs, and read their outputs. The
subroutine ITIs may invoke new ITIs as subroutines of their own, and so
on.

An execution of the system ends when Z halts. Without loss of generality, we
assume that Z’s output consists of a single bit. The model of protocol execution
is illustrated in Figure 1.

Figure 1. The model of protocol execution. For each ITI, a line
coming from above represents the input tape, a line coming from
below represents the subroutine output tape, and a line coming
from either side represents the incoming communication tape.

Regarding the model of protocol execution, note that Z and A may interact
freely after each activation of some party. This feature reflects the continual flow

INTRODUCTION 5

of information between protocol executions that run concurrently, and turns out
to be essential for the composition theorem to hold. We also emphasize that
parties can only send messages to A, and not directly to each other. This means
that A is in total control of the network. In particular, the messages delivered
by A need not be related to the messages it receives from the parties.

It is stressed that the behavior of parties upon corruption is not defined by
the general model, but specified as part of the protocol description. The most
common corruption model is that of Byzantine corruption, where a corrupted
party sends its entire state to A, and follows A’s instructions in all remaining
activations. Note that, while in general, Z may instruct A to corrupt parties
adaptively throughout the protocol execution, it is sometimes useful to consider
a static corruption model, where the identities of the corrupt parties are fixed by
Z in advance.

Ideal Protocols. Security of a protocol is defined by comparison with an ideal
protocol for the task at hand. This protocol is formulated within the above model,
but is different in the sense that it involves an ideal functionality. The ideal
functionality, denoted by F , is a special ITM behaving as a joint subroutine of
several ITIs. F serves as a trusted party and incorporates the required properties
of a protocol for the task. Given F , the ideal protocol, denoted by IDEALF ,
is defined as follows: When a party receives an input, it simply forwards this
input to the instance of F carrying the local SID. Oppositely, when a party
receives an output from F , this is copied to the local output. The parties in the
ideal protocol are thus often referred to as dummy parties for F . F follows its
instructions for generating outputs to parties from the given inputs. Moreover,
F may be instructed to send messages to the adversary, and may also receive
messages from the adversary. In the ideal protocol, corruption is modeled by
specific messages sent between the adversary and F .

To reflect the special role played by the adversary in this setting, we will refer
to it as the ideal adversary and denote it by S. The communication between
F and S represents the influence/information that an adversary is allowed to
obtain. For instance, S may delay certain outputs to parties, or learn the length
of a message being encrypted. The model of execution for an ideal protocol is
depicted in Figure 2.

Realizing Functionalities. In the UC framework, protocol security is expressed
by the notions of UC-emulation of protocols and UC-realization of ideal func-
tionalities. In order to define these concepts, we need a probability ensemble
describing the output of the environment Z when interacting with a protocol π
and an adversary A. We denote this ensemble by

EXECZ,A,π = {EXECZ,A,π(n, z)}n∈N,z∈{0,1}n ,

where n is the security parameter and z is the external input of Z.

Definition 1. A protocol π UC-emulates a protocol φ if for any probabilistic
polynomial time (PPT) adversary A there exists a PPT adversary S such that

6 INTRODUCTION

Figure 2. The model of execution for an ideal protocol φ.

for any PPT environment Z we have

|Prob[EXECZ,A,π = 1]− Prob[EXECZ,S,φ = 1]| = ν(n),

for some negligible function ν.
π UC-realizes an ideal functionality F if it UC-emulates the ideal protocol

IDEALF .

Informally, we say that π UC-realizes an ideal functionality F if, for any ad-
versary A there exists an ideal adversary S such that no environment Z can
tell whether it is interacting with π and A or with IDEALF and S. In par-
ticular, this means that the input/output behavior of good parties is the same
in both scenarios, and that any information learnt from A in interactions with
π can be imitated by S in interactions with IDEALF . Intuitively, if any influ-
ence/information gained by A can be imitated by S, who only obtains what is
explicitly permitted by F , then we can conclude that A is harmless.

S is often referred to as a simulator, since in typical proofs of UC-realization,
S runs a simulated copy of A.

The Composition Theorem. Let π be a protocol in which parties make sub-
routine calls to some protocol φ, and assume that ρ is a protocol that UC-emulates
φ. The composed protocol πρ/φ is then defined as the protocol π where calls to φ
are replaced by calls to ρ, i.e. inputs to some instance of φ are treated as inputs
to an instance of ρ with the same identity, and outputs from some instance of ρ
are treated as outputs from the corresponding instance of φ.

Theorem 2. Let π, φ and ρ be protocols such that ρ UC-emulates φ. Then πρ/φ

UC-emulates π.

The above result is the composition theorem in its most general form. A corol-
lary of particular interest concerns the notion of hybrid protocols. An F-hybrid
protocol is a protocol where, in addition to communicating via the adversary,
parties can make subroutine calls to instances of IDEALF . For the special case

INTRODUCTION 7

of protocol composition where the replaced protocol φ is an F-hybrid protocol,
we denote the composed protocol by πρ/F .

Corollary 3. Let π be an F-hybrid protocol, and let ρ be a protocol that UC-
realizes F . Then πρ/F UC-emulates π. Moreover, if π UC-realizes an ideal
functionality G, then so does πρ/F .

In order to illustrate the above corollary, the F-hybrid protocol π and the
composed protocol πρ/F are depicted in Figure 3. For graphical clarity, the
dummy parties of F are omitted.

Figure 3. The F-hybrid protocol π and the composed protocol πρ/F .

The composition theorem facilitates a modular approach to design and analysis
of protocols. When designing protocols for complex tasks, one may assume that
parties have secure access to ideal functionalities for different subtasks, which
greatly simplifies protocol analysis. Then, when implementing the protocol, each
functionality can be replaced by a realizing protocol. Security of the obtained
protocol is then guaranteed by the above corollary.

8 INTRODUCTION

Our Work

A main focus of our work is how the security of various cryptographic tasks
may be captured within the UC framework, starting with cryptographic primi-
tives, and moving on to more complex protocols. Seeing that UC security is a
powerful notion, an interesting question is how it relates to conventional security
definitions. An implication from UC security of a given task to a widely accepted
notion would provide some evidence that the proposed functionality incorporates
a sufficient level of security. Oppositely, an implication in the other direction
would indicate that the UC notion is not overly restrictive. Moreover, since such
a result would reduce proving UC security to proving security in the standard
model, it allows for simpler proofs, as the former task tends to be more complex.

In Paper I, we define a functionality for signcryption, which is a primitive
proposed by Zheng [28]. The purpose of signcryption is to obtain both confi-
dentiality and authenticity of message delivery/storage in a logically single step,
thus potentially reducing the cost compared to the standard “sign-then-encrypt”
method. We show that a signcryption protocol realizes the functionality if and
only if the corresponding signcryption scheme is secure with respect to indis-
tinguishability and unforgeability, adapted from the analogous notions for public
key encryption and digital signatures. Furthermore, with applications such as
email and instant messaging in mind, we propose a functionality for secure mes-
saging, and prove that this functionality can be realized using functionalities for
signcryption and a public key infrastructure.

The idea of blind signatures was proposed by Chaum [11] as a key ingredient
for anonymous electronic cash applications. Blind signatures allow a bank to issue
signatures without seeing the content of the signed documents, and at the same
time prevent users from forging signatures. Paper II revisits a functionality for
blind signatures proposed by Fischlin [14], and presents an alternative formula-
tion, which may allow for a larger class of realizing protocols. Also, under the
assumption that honest key generation may be enforced, we show that our func-
tionality is realized by a blind signature protocol if and only if the corresponding
blind signature scheme is secure with respect to blindness and non-forgeability,
as defined by Juels, Luby and Ostrovsky [19].

Along with the problem of defining functionalities for cryptographic tasks
comes the question of how to design efficient protocols realizing them. This
question is addressed in Paper III, where we present a round-optimal blind
signature scheme. Prior to our work, Fischlin proposed a round-optimal blind
signature scheme in the common reference string model [14]. While Fischlin’s
scheme relies on generic non-interactive zero-knowledge (NIZK) proofs, making
it quite impractical, our scheme is a concrete construction based on Waters sig-
natures [27]. In order to obtain provable security, the user is required to compute
a moderate number of NIZK proofs as part of the signature generation protocol.
These are obtained by compiling a dedicated Σ-protocol, using a technique devel-
oped by Damg̊ard et al. [26]. Consequently, in addition to a common reference
string, our scheme requires a registered public key for the signer.

INTRODUCTION 9

Having considered UC security in the context of some basic cryptographic
building blocks, a natural next step is to investigate the behavior of more complex
protocols within this framework. This is the main purpose of Paper IV. As
an example of a protocol of realistic complexity, consider an online newspaper
offering subscriptions on a pay-per-read basis. Such a service raises a number
of security concerns. As a matter of privacy protection, the subscribers may
not wish to reveal their identities to the newspaper. On the other hand, the
newspaper should be ensured that a user pays for the provided service. This
may be obtained by involving a bank, which guarantees the validity of a payment
issued by a user. The bank may also allow for deposits of these payments by
the newspaper. To prevent the bank from learning where a user has spent his
money, it should be infeasible to link specific payments to specific users. From
the bank’s point of view, the involved payments should be unforgeable.

In Paper IV, we propose a functionality for an anonymous online service,
incorporating the above properties. We also construct a hybrid protocol realiz-
ing the functionality, which uses functionalities for several cryptographic tasks.
The security properties concerning payments and deposits are provided by us-
ing a dedicated blind signature functionality. Also, the pairwise communication
between parties in the protocol requires various levels of privacy. In particular,
the communication between the server (i.e. the newspaper) and a user ought to
be anonymous at the user’s end. One might consider using the secure messag-
ing functionality from Paper I for this purpose, along with a functionality for
an anonymous network. However, according to our functionality, which aims to
capture a general anonymous online service, a typical session between the server
and a user involves sending several messages back and forth. It thus seems more
convenient to use an anonymous secure channel, where asymmetric encryption is
used for key distribution, while symmetric encryption is used for data exchange.
Accordingly, Paper IV also defines a functionality for an anonymous secure
channel. Moreover, by using an additional functionality for an anonymous net-
work, we adapt a secure channel proposed by Nagao et al. [23], and obtain a
protocol realizing the functionality.

As can be seen from the security arguments in Paper IV, proving security
within the UC framework is a tedious task. Although protocol analysis is simpli-
fied by assuming secure access to ideal functionalities, it still requires that security
proofs be obtained within a full-fledged cryptographic model. This problem is
addressed by Canetti and Herzog in [10, 9], where they demonstrate how sym-
bolic analysis within a simple model can be used to argue about the UC security
of a concrete protocol. Paper V presents an alternative approach to solve this
problem, by using state machine theory. As an example, we revisit the secure
messaging protocol from Paper I, and use our technique to prove that the proto-
col realizes the secure messaging functionality. Most of the steps involved in the
proof boil down to mechanical manipulations of state machines, which should be
easy to implement on a computer. Our approach can thus be considered as a first
step towards automatic verification of such proofs. We emphasize that this paper

10 INTRODUCTION

presents ongoing work. For instance, our approach currently only applies to pro-
tocols where the Turing machines representing the parties are all deterministic.
Eliminating this restriction is an object of further study.

References

[1] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols: The Spi

Calculus. In CCS ’97: Proceedings of the 4th ACM Conference on Computer and Com-
munications Security, pages 36–47, New York, NY, USA, 1997. ACM.

[2] Andrew C. Yao. Protocols for Secure Computation. In 23rd Annual Symp. on Foundations

of Computer Science (FOCS), pages 160–164, 1982.
[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A General Composition Theorem

for Secure Reactive System. In Proceedings of 1st Theory of Cryptography Conference
(TCC), volume 2951 of Lecture Notes in Computer Science, pages 336–354. Springer,
February 2004.

[4] Donald Beaver. Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerat-
ing a Faulty Minority. J. Cryptology, 4(2):75–122, 1991.

[5] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In
CRYPTO ’93: Proceedings of the 13th Annual International Cryptology Conference on
Advances in Cryptology, pages 232–249, New York, NY, USA, 1994. Springer-Verlag New

York, Inc.

[6] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of Authentication. ACM

Trans. Comput. Syst., 8(1):18–36, 1990.

[7] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.

iacr.org/2000/067.
[8] Ran Canetti. Security and Composition of Cryptographic Protocols: A Tutorial (part i).

SIGACT News, 37(3):67–92, 2006.

[9] Ran Canetti. Composable Formal Security Analysis: Juggling Soundness, Simplicity and
Efficiency. In ICALP ’08: Proceedings of the 35th International Colloquium on Automata,

Languages and Programming, Part II, pages 1–13, Berlin, Heidelberg, 2008. Springer-
Verlag.

[10] Ran Canetti and Jonathan Herzog. Universally Composable Symbolic Analysis of Cryp-
tographic Protocols (the Case of Encryption-Based Mutual Authentication and Key Ex-
change). In 2004/334, International Association for Cryptological Research, 2004.

[11] David Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology-
Crypto’82, pages 199–203, 1982.

[12] C. Cremers. Scyther - Semantics and Verification of Security Protocols. PhD thesis, Eind-
hoven University of Technology, 2006.

[13] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.
[14] Marc Fischlin. Round-Optimal Composable Blind Signatures in the Common Reference

String Model. In Advances in Cryptology-Crypto 2006. Springer-Verlag, 2006.
[15] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game. In STOC

’87: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,

pages 218–229, New York, NY, USA, 1987. ACM.
[16] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and Systems

Sciences, 28(2):270–299, 1984.
[17] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. Comput., 18(1):186–208, 1989.

[18] Shafi Goldwasser and Leonid A. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO, pages 77–93, 1990.

INTRODUCTION 11

[19] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signatures (Ex-
tended Abstract). In CRYPTO ’97: Proceedings of the 17th Annual International Cryptol-

ogy Conference on Advances in Cryptology, pages 150–164, London, UK, 1997. Springer-
Verlag.

[20] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In TACAs ’96: Proceedings of the Second International Workshop on Tools and

Algorithms for Construction and Analysis of Systems, pages 147–166, London, UK, 1996.
Springer-Verlag.

[21] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied

Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.
[22] Silvio Micali and Phillip Rogaway. Secure Computation (Abstract). In CRYPTO ’91: Pro-

ceedings of the 11th Annual International Cryptology Conference on Advances in Cryp-

tology, pages 392–404, London, UK, 1992. Springer-Verlag.
[23] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. A Universally Composable Se-

cure Channel Based on the KEM-DEM Framework. In TCC, pages 426–444, 2005.
[24] Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication in

Large Networks of Computers. Commun. ACM, 21(12):993–999, 1978.

[25] Birgit Pfitzmann and Michael Waidner. Composition and Integrity Preservation of Secure
Reactive Systems. In CCS ’00: Proceedings of the 7th ACM Conference on Computer and

Communications Security, pages 245–254, New York, NY, USA, 2000. ACM.
[26] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-Interactive Zero-Knowledge from

Homomorphic Encryption. In TCC, pages 41–59, 2006.

[27] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In EURO-
CRYPT, pages 114–127, 2005.

[28] Yuliang Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryption) �
Cost(Signature) + Cost(Encryption). In Advances in Cryptology - CRYPTO ’97, pages

165–179, Berlin Heidelberg, 1997. Springer-Verlag.

Paper I

Universally Composable Signcryption

Kristian Gjøsteen and Lillian Kr̊akmo

Published in Proceedings of EuroPKI 2007, volume 4582 of LNCS

UNIVERSALLY COMPOSABLE SIGNCRYPTION

KRISTIAN GJØSTEEN AND LILLIAN KRÅKMO

Abstract. One of the challenges within public-key based cryptosystems

is providing the user with a convenient interface, while retaining security.
In the framework of universally composable security, we propose an ideal

functionality for secure messaging, with a user-friendly interface. We also
show how to realize it using a cryptographic primitive and a public key
infrastructure.

1. Introduction

Signcryption was first proposed by Zheng [7] as a primitive for achieving both
confidentiality and authenticity of message delivery/storage in a logically single
step, with the aim of reducing the cost compared to the standard “sign-then-
encrypt” method. Regarding security definitions for signcryption schemes, several
approaches have been taken. An overview of the different models is provided in
[5].

In general, composing several (possibly identical) protocols into a larger pro-
tocol may not preserve security. Universally composable security is a framework
proposed by Canetti [3] as a way to define security for protocols such that security-
preserving composition is possible. This allows for a modular design and analysis
of protocols.

For each cryptographic task, an ideal functionality can be defined, which incor-
porates the required properties of a protocol for the task and the allowed actions
of an adversary. A protocol is said to securely realize the ideal functionality if,
loosely speaking, any effect caused by an adversary attacking the protocol can be
obtained by an adversary attacking the ideal functionality. When designing com-
plex protocols, one can allow the involved parties to have secure access to ideal
functionalities. Then, when implementing the protocol, each ideal functionality
is replaced by a protocol securely realizing the functionality. The composition
theorem then guarantees security. We refer to [3] for a complete overview of this
framework.

In Section 2 of this paper, we review the properties of a signcryption scheme
and define what it means for a signcryption scheme to be secure. Based on these
security requirements, we construct an ideal functionality for signcryption, which
is defined in Section 3. This section also presents a natural ideal functionality for
secure messaging, which is a suitable model for applications such as secure email

1

2 GJØSTEEN AND KRÅKMO

and secure instant messaging. Given functionalities for a public key infrastruc-
ture and signcryption, we construct a protocol that integrates these services and
securely realizes the secure messaging functionality.

Finally, in Section 4 we show that a signcryption scheme satisfies our security
definitions if and only if the corresponding protocol securely realizes the signcryp-
tion functionality. We note that our results are only valid in the static corruption
case. This is discussed further in Section 5.

2. Signcryption

In this section, we define what a signcryption scheme is, and describe our
security model for such schemes (adapted from the corresponding notions for
public-key encryption and digital signatures).

The following definition of a signcryption scheme is similar to the one given in
[5].

Definition 1. A signcryption scheme SC is a 4-tuple of algorithms (Ks,Kr,S ,U)
with the following properties:

• Ks is a probabilistic algorithm, taking as input a security parameter τ
(encoded as 1τ) and returning a key pair (sks, pks) for the sender. sks is
the secret key, while pks is the public key.

• Kr is a probabilistic algorithm, taking as input a security parameter τ
(encoded as 1τ) and returning a key pair (skr, pkr) for the receiver. skr

is the secret key, while pkr is the public key.
• S, the signcryption algorithm, is probabilistic. Its inputs are a sender’s

private key sks, a receiver’s public key pkr and a plaintext m, and its
output is a ciphertext c.
• U , the unsigncryption algorithm, is deterministic. Its inputs are a sender’s

public key pks, a receiver’s secret key skr and a ciphertext c. Its output is
a plaintext m or the symbol ⊥, indicating that the signcryption is invalid.

It is required that U (pks, skr,S (sks, pkr,m)) = m for all plaintexts m and all
key pairs (sks, pks) and (skr, pkr) output by Ks and Kr.

Our security model for signcryption schemes corresponds to the ADR model
presented in [5]. We note that we do not consider non-repudiation. Therefore we
need only consider unforgeability between honest users. We need two experiments
described in Figure 1.

The first experiment Expind-cca2
SC,A concerns privacy of messages, and adapts the

notion IND-CCA2 from public-key encryption. In the beginning of the exper-
iment, the adversary A is given two public keys pks and pkr belonging to the
target sender and the target receiver, respectively. A is composed of a find -stage
algorithm A1 and a guess-stage algorithm A2. A1 finds two messages m0 and
m1 of the same length, while A2 is given a challenge ciphertext c and guesses
whether c is a signcryption of m0 or m1.

Both A1 and A2 have access to a flexible signcryption oracle OS , which per-
forms signcryption under the fixed key sks and an arbitrary key pkr′ , and a

UNIVERSALLY COMPOSABLE SIGNCRYPTION 3

Expind-cca2
SC,A (τ)
(1) (sks, pks)← Ks(τ).
(2) (skr, pkr)← Kr(τ).
(3) (m0,m1, state)←

AOS ,OU

1 (pks, pkr).
(4) b← {0, 1}.
(5) c← S (sks, pkr,mb).
(6) b′ ←

AOS ,OU

2 (pks, pkr,m0,m1, c, state).
(7) If b′ = b then return 1, otherwise

return 0.

Expext-cma
SC,A (τ)
(1) (sks, pks)← Ks(τ).
(2) (skr, pkr)← Kr(τ).
(3) c← AOS ,OU (pks, pkr).
(4) If U (pks, skr, c) 6=⊥

then return 1, otherwise
return 0.

Expror-cca2
SC,A (τ)
(1) (sks, pks)← Ks(τ)
(2) (skr, pkr)← Kr(τ)
(3) b← {0, 1}
(4) b′ ←

AOS ,OU ,Ob
ror(pks, pkr)

(5) Return b′.

Figure 1. Experiments for security definitions.

flexible unsigncryption oracle OU , which performs unsigncryption under an ar-
bitrary key pks′ and the fixed key skr. A2 is not allowed to query OU with the
ciphertext c and the sender key pks.

A is said to win if the experiment returns 1. We define the advantage of A in
breaking SC with respect to IND-CCA2 as

Advind-cca2
SC,A (τ) =

∣∣∣2 · Pr
[
Expind-cca2

SC,A (τ) = 1
]
− 1

∣∣∣.
The scheme SC is said to be secure with respect to IND-CCA2 if the advantage
Advind-cca2

SC,A (τ) is negligible in τ , whenever A’s runtime and number of oracle
queries are polynomially bounded in τ .

The second experiment Expext-cma
SC,A (τ) concerns unforgeability of messages, and

adapts the notion EXT-CMA from digital signatures. This experiment starts with
the adversary A being given the target sender’s public key pks and the target
receiver’s public key pkr. A’s job is to produce a ciphertext c such that c is a
valid ciphertext with respect to the target sender and the target receiver. A has
access to the oracles OS and OU described above. It is required that c was not
output by OS on input of pkr.

A is said to win if the experiment returns 1. We define the success rate of A
in breaking SC with respect to EXT-CMA as

Succext-cma
SC,A (τ) = Pr

[
Expext-cma

SC,A (τ) = 1
]
.

The scheme SC is said to be secure with respect to EXT-CMA if the advantage
Succext-cma

SC,A (τ) is negligible in τ , whenever A’s runtime and number of oracle
queries are polynomially bounded in τ .

4 GJØSTEEN AND KRÅKMO

We now present a second notion for privacy of messages, adapting the notion
”real-or-random” for symmetric encryption given in [1]. The idea is that no
adversary should be able to distinguish a signcryption of a known message from
a signcryption of a hidden random string. In the experiment Expror-cca2

SC,A (τ), the
adversary A has access to the oracle Ob

ror (initialized with a hidden bit b) which
takes as input a message m. If b = 0, it outputs a signcryption of a randomly
chosen string of length |m| under sks and pkr. A new random string is chosen
for each query. If b = 1, it outputs a signcryption of m under sks and pkr. A’s
challenge is to guess the hidden bit b. As before, the adversary has access to OS

and OU .
In this experiment we require that A does not query OU with any of the

ciphertexts output by Ob
ror together with pks and pkr.

We define the advantage of A in breaking SC with respect to ROR-CCA2 as

Advror-cca2
SC,A (τ) =

∣∣∣Pr
[
Expror-cca2

SC,A (τ) = 1|b = 1
]
− Pr

[
Expror-cca2

SC,A (τ) = 1|b = 0
]∣∣∣.

The scheme SC is said to be secure with respect to ROR-CCA2 if the advantage
Advror-cca2

SC,A (τ) is negligible in τ , whenever A’s runtime and number of oracle
queries are polynomially bounded in τ .

The following theorem is a straight-forward adaption of a theorem in [6].

Theorem 2. A signcryption scheme SC is secure with respect to IND-CCA2 if
and only if it is secure with respect to ROR-CCA2.

3. Secure Messaging in the UC Framework

In this section, we define an ideal functionality FSC for signcryption, based on
the security definitions given in the previous section. With applications such as
email and instant messaging in mind, we also define an ideal functionality FSM

for secure messaging, which arises naturally from the required properties of such
applications. We also show that, given a public key infrastructure and a secure
signcryption protocol, we can construct a protocol πSM that securely realizes FSM

in the (FCA, FSC)-hybrid model, where FCA is an ideal functionality providing
a public key infrastructure.

We point out that in the definitions of the ideal functionalities, we only consider
the case of static corruption. In other words, when executing a protocol, it is
known from the start which parties are corrupt and which are honest.

The ideal certification authority functionality FCA is defined in Figure 2, and is
similar to the one given by Canetti in [2]. Next, in Figure 3, the ideal signcryption
functionality FSC is defined, and then, in Figure 4, the ideal secure messaging
functionality FSM is defined. The protocol πSM is described in Figure 5.

The proof of the following result is given in Appendix A.

Theorem 3. The protocol πSM securely realizes FSM in the (FCA,FSC)-hybrid
model.

UNIVERSALLY COMPOSABLE SIGNCRYPTION 5

Functionality FCA

FCA proceeds as follows, with parties P1, . . . , Pn and an ideal adversary S.

CA.Register
Upon receiving the first message (CA.Register, sid, v) from some party Pi,
send (CA.Register, sid, Pi, v) to S. Upon receiving (Ok, sid, Pi) from S,
record the pair (Pi, v), and output (CA.Registered, sid, v) to Pi.

CA.Retrieve
Upon receiving a message (CA.Retrieve, sid, Pi) from party Pj , send
(CA.Retrieve, sid, Pi, Pj) to S, and wait for an (Ok, sid, Pi, Pj) from S.
Then, if there is a recorded pair (Pi, v) output (CA.Retrieved, sid, Pi, v) to
Pj . Otherwise output (CA.Retrieved, sid, Pi,⊥) to Pj .

Figure 2. The ideal certification authority functionality FCA.

4. Securely Realizing FSC

This section contains our main result. The protocol πSC given in Figure 6 is
constructed in a natural way from the signcryption scheme SC. We show that
SC is secure if and only if πSC securely realizes FSC under static corruption.

The proof of the following theorem is given in Appendix B.

Theorem 4. Let SC be a signcryption scheme. If πSC securely realizes FSC,
then SC is secure with respect to both IND-CCA2 and EXT-CMA.

Finally, we prove the following result:

Theorem 5. Let SC be a signcryption scheme. If SC is secure with respect to
both IND-CCA2 and EXT-CMA, then πSC securely realizes FSC.

Proof. Assume that SC is secure with respect to both IND-CCA2 and EXT-
CMA. By Theorem 2, the former is equivalent to being secure with respect to
ROR-CCA2. We will show that for every adversary A interacting with parties
running πSC , there is an ideal adversary S such that no environment Z can tell
whether it is interacting with A and πSC or with S and the ideal protocol for
FSC, IDEALFSC .

As usual, S runs a simulated copy of A, and forwards all messages from Z to
A and back. Since there is no communication between parties in the protocol
πSC , the only way that S affects the output of Z is by communication with FSC.

Upon receiving a message from a corrupt party, FSC forwards the message to
S. S sends this message to A on the correct input tape, and when A replies to
this message, S forwards the reply to FSC.

Simulating SC.KeyGen: Upon receiving the first message (SC.KeyGen, sid)
from some party Pi, FSC sends (SC.KeyGen, sid, Pi) to S. S runs the algorithms
Ks and Kr. He obtains a sender’s key pair (sks

i , pk
s
i) and a receiver’s key pair

(skr
i , pk

r
i), records (Pi, sks

i , pk
s
i , sk

r
i , pk

r
i), and sends (SC.Key, sid, Pi, (pks

i , pk
r
i))

to FSC.

6 GJØSTEEN AND KRÅKMO

Functionality FSC

FSC proceeds as follows, with parties P1, . . . , Pn and an ideal adversary S.

Upon receiving a message from a corrupt party, FSC forwards the message to
S, and when S replies to this message, FSC forwards the reply to the corrupt
party.

SC.KeyGen
Upon receiving the first message (SC.KeyGen, sid) from some party Pi, send
(SC.KeyGen, sid, Pi) to S. Upon receiving (SC.Key, sid, Pi, (pks

i , pk
r
i)) from

S, output (SC.Key, sid, (pks
i , pk

r
i)) to Pi and record (Pi, (pks

i , pk
r
i)).

SC.Encrypt
Upon receiving (SC.Encrypt, sid, pkr,m) from Pi, do:

(1) If pkr = pkr
j for some j and Pj is honest, then send

(SC.Encrypt, sid, pks
i , pk

r, |m|) to S. Otherwise send
(SC.Encrypt, sid, pks

i , pk
r,m) to S.

(2) Upon receiving (SC.Ciphertext, sid, pks
i , pk

r, c) from S such that
there is no recorded entry (pks

i , pk
r,m′, c) for any m′, output

(SC.Ciphertext, sid, pkr,m, c) to Pi. If pkr = pkr
j for some j and Pj

is honest, then record the entry (pks
i , pk

r,m, c).

SC.Decrypt
Upon receiving (SC.Decrypt, sid, pks, c) from Pj , do:

(1) Send (SC.Decrypt, sid, pks, pkr
j , c) to S. Upon receiving

(SC.Plaintext, sid, pks, pkr
j ,m

′/ ⊥, c) from S, continue.
(2) If an entry (pks, pkr

j ,m, c) is recorded, then output
(SC.Plaintext, sid, pks,m, c) to Pj .

(3) Otherwise, if pks = pks
i for some i and Pi is honest, then output

(SC.Plaintext, sid, pks,⊥, c) to Pj .
(4) Otherwise, output (SC.Plaintext, sid, pks,m′/ ⊥, c) to Pj .

Figure 3. The ideal signcryption functionality FSC.

Simulating SC.Encrypt: Assume that FSC receives (SC.Encrypt, sid, pkr,m)
from some party Pi. If pkr = pkr

j for some j, and Pj is honest, then the procedure
given in 1 takes place, otherwise the procedure given in 2 takes place.

(1) FSC sends (SC.Encrypt, sid, pks
i , pk

r, |m|) to S. S chooses a random
message m′ of length |m|, and encrypts m′ using the signcryption function
S with sks

i and pkr. He obtains c, and checks that there is no recorded en-
try (pks

i , pk
r, c). If there is such an entry, he encrypts m′ again, until the

above condition holds. He then sends (SC.Ciphertext, sid, pks
i , pk

r, c)
to FSC, and records (pks

i , pk
r, c).

(2) FSC sends (SC.Encrypt, sid, pks
i , pk

r,m) to S. S encrypts m using the
signcryption function S with sks

i and pkr. He obtains c, and checks

UNIVERSALLY COMPOSABLE SIGNCRYPTION 7

Functionality FSM

FSM proceeds as follows, with parties P1, . . . , Pn and an ideal adversary S.

Upon receiving a message from a corrupt party, FSM forwards the message to
S, and when S replies to this message, FSM forwards the reply to the corrupt
party.

SM.Register
Upon receiving the first message (SM.Register, sid) from some party Pi, send
(SM.Register, sid, Pi) to S. Upon receiving (Ok, sid, Pi) from S, output
(SM.Registered, sid) to Pi and record Pi.

SM.Encrypt
Upon receiving (SM.Encrypt, sid, Pj ,m) from some party Pi, do:

(1) If there is a recorded entry Pi, then continue. Otherwise, output
(SM.Encrypt.Error, sid, Pi not registered) to Pi.

(2) If Pj is honest, then send (SM.Encrypt, sid, Pi, Pj , |m|) to S.
Otherwise, send (SM.Encrypt, sid, Pi, Pj ,m) to S.

(3) Upon receiving (SM.Ciphertext, sid, Pi, Pj , c) from S such that there
is no recorded entry (Pi, Pj ,m

′, c) for any m′, check if there is a
recorded entry Pj . If there is, then continue. Otherwise, output
(SM.Encrypt.Error, sid, Pj not registered) to Pi.

(4) Output (SM.Ciphertext, sid, Pj ,m, c) to Pi. If Pj is honest, then
record the entry (Pi, Pj ,m, c).

SM.Decrypt
Upon receiving (SM.Decrypt, sid, Pi, c) from some party Pj , do:

(1) If there is a recorded entry Pj , then continue. Otherwise, output
(SM.Decrypt.Error, sid, Pj not registered) to Pj .

(2) Send (SM.Decrypt, sid, Pi, Pj , c) to S.
(3) Upon receiving (SM.Plaintext, sid, Pi, Pj ,m

′/ ⊥, c) from S, check if
there is a recorded entry Pi. If there is, then continue. Otherwise,
output (SM.Decrypt.Error, sid, Pi not registered) to Pj .

(4) If an entry (Pi, Pj ,m, c) is recorded, then output
(SM.Plaintext, sid, Pi,m, c) to Pj .

(5) Otherwise, if Pi is honest, then output (SM.Plaintext, sid, Pi,⊥, c) to
Pj .

(6) Otherwise, output (SM.Plaintext, sid, Pi,m
′/ ⊥, c) to Pj .

Figure 4. The ideal secure messaging functionality FSM.

that there is no recorded entry (pks
i , pk

r, c). If there is such an entry,
he encrypts m again, until the above condition holds. He then sends
(SC.Ciphertext, sid, pks

i , pk
r, c) to FSC.

8 GJØSTEEN AND KRÅKMO

Protocol πSM

πSM proceeds as follows, with parties P1, . . . , Pn and an adversary A.

SM.Register
(1) Upon the first input (SM.Register, sid), Pi sends (SC.KeyGen, sid)

to FSC.
(2) Upon receiving (SC.Key, sid, (pks

i , pk
r
i)) from FSC, Pi sends

(CA.Register, sid, (pks
i , pk

r
i)) to FCA.

(3) Upon receiving (CA.Registered, sid, (pks
i , pk

r
i)) from FCA, Pi

outputs (SM.Registered, sid).
SM.Encrypt

(1) Upon input (SM.Encrypt, sid, Pj ,m), Pi checks if he has received
(CA.Registered, sid, (pks

i , pk
r
i)). If he has, then he sends

(CA.Retrieve, sid, Pj) to FCA. Otherwise, he outputs
(SM.Encrypt.Error, sid, Pi not registered).

(2) If Pi receives (CA.Retrieved, sid, Pj , (pks
j , pk

r
j)) from FCA, then Pi

sends (SC.Encrypt, sid, pkr
j ,m) to FSC. Otherwise, if Pi receives

(CA.Retrieved, sid, Pj ,⊥) from FCA, then Pi outputs
(SM.Encrypt.Error, sid, Pj not registered).

(3) Upon receiving (SC.Ciphertext, sid, pkr
j ,m, c) from FSC, Pi outputs

(SM.Ciphertext, sid, Pj ,m, c).
SM.Decrypt

(1) Upon input (SM.Decrypt, sid, Pi, c), Pj checks if he has received
(CA.Registered, sid, (pks

j , pk
r
j)). If he has, then he sends

(CA.Retrieve, sid, Pi) to FCA. Otherwise, he outputs
(SM.Decrypt.Error, sid, Pj not registered).

(2) If Pj receives (CA.Retrieved, sid, Pi, (pks
i , pk

r
i)) from FCA, then Pj

sends (SC.Decrypt, sid, pks
i , c) to FSC. Otherwise, if Pj receives

(CA.Retrieved, sid, Pi,⊥) from FCA, then Pj outputs
(SM.Decrypt.Error, sid, Pi not registered).

(3) Upon receiving (SC.Plaintext, sid, pks
i , pk

r
j ,m/ ⊥, c) from FSC, Pj

outputs (SM.Plaintext, sid, Pi,m/ ⊥, c).

Figure 5. The secure messaging protocol πSM.

Simulating SC.Decrypt: Upon receiving (SC.Decrypt, sid, pks, c) from
some party Pj , FSC sends (SC.Decrypt, sid, pks, pkr

j , c) to S. If pks = pks
i for

some i, and Pi is honest, then the procedure given in 1 takes place, otherwise the
procedure given in 2 takes place.

(1) S chooses an arbitrary message m′ and sends (SC.Plaintext, sid, pks, pkr
j ,

m′, c) to FSC.
(2) S decrypts c using the unsigncryption function U with pks and skr

j ,
obtains m′/ ⊥ and sends (SC.Plaintext, sid, pks, pkr

j ,m
′/ ⊥, c) to FSC.

UNIVERSALLY COMPOSABLE SIGNCRYPTION 9

Protocol πSC

πSC proceeds as follows, with parties P1, . . . , Pn and an adversary A.

SC.KeyGen
Upon the first input (SC.KeyGen, sid), Pi runs the algorithms Ks and Kr.
He obtains a sender’s key pair (sks

i , pk
s
i) and a receiver’s key pair (skr

i , pk
r
i),

and outputs (SC.Key, sid, (pks
i , pk

r
i)).

SC.Encrypt
Upon input (SC.Encrypt, sid, pkr,m), Pi obtains c = S (sks

i , pk
r,m) and

outputs (SC.Ciphertext, sid, pkr,m, c).

SC.Decrypt
Upon input (SC.Decrypt, sid, pks, c), Pi obtains m/ ⊥= U (pks, skr

i , c) and
outputs (SC.Plaintext, sid, pks,m/ ⊥, c).

Figure 6. The signcryption protocol πSC .

It is clear that S simulates SC.KeyGen perfectly.
As for SC.Encrypt, if Pi and Pj are honest, and pkr = pkr

j for some j, we
observe that in πSC , the real message m is encrypted, while in IDEALFSC , a
random message m′ is encrypted. Moreover, in IDEALFSC , for a fixed key pair
(pks, pkr), a message will never be encrypted into the same ciphertext twice. In
πSC this can be shown to happen with negligible probability.

As for SC.Decrypt, we observe that the simulation is perfect if Pi or Pj is
corrupt, or pks 6= pks

i for all i. Otherwise, the following separates πSC from
IDEALFSC : In πSC , the decryption of a ciphertext c is determined by the un-
signcryption function U , while in IDEALFSC , the decryption of c is determined
according to whether there is a recorded tuple (pks

i , pk
r
j ,m, c). If there is, then

m is returned, otherwise the symbol ⊥ is returned. This implies that if Pi has
encrypted a message to Pj and obtained c at an earlier stage, then the corre-
sponding messages will be output both in IDEALFSC and in πSC . Otherwise,
there are two scenarios to consider: If c is an invalid encryption according to the
unsigncryption function U , then the output will be ⊥ both in IDEALFSC and
πSC . However, if c is valid, the decryption of c according to U will be output in
πSC , while ⊥ will be output in IDEALFSC .

Throughout the proof, we assume without loss of generality that the parties
P1, . . . , Pt are honest, while the remaining parties Pt+1, . . . , Pn are corrupt.

We want to show that if there exists an environment Z able to distinguish
IDEALFSC and πSC with non-negligible probability, then we can construct an
adversary Aror breaking the ROR-CCA2 security or an adversary Aext breaking
the EXT-CMA security of our signcryption scheme. To this end, we will consider
a series of games, where we gradually modify the behavior of the honest parties.
Game 0: In this game, Z interacts with the protocol πSC running with parties
P1, . . . , Pn.

10 GJØSTEEN AND KRÅKMO

Game 1: This game is the same as Game 0, with the following modifications: The
honest parties P1, . . . , Pt are now simulated by P . When receiving messages on
the input tape corresponding to an honest party Pi, P runs the algorithms Ks,
Kr, S and U , and outputs messages to Z, exactly as Pi would do in the protocol
πSC . P records (Pi, sks

i , pk
s
i , sk

r
i , pk

r
i) to keep track of which keys belong to which

party. Moreover, every time a message m from some honest party Pi to another
honest party Pj is encrypted into some ciphertext c, P records (pks

i , pk
r
j ,m, c).

From Z’s point of view, there is no difference between Game 0 and Game 1.
Therefore, if we let Gi denote the output of Z when taking part in Game i, we
have ∣∣∣Pr[G0 = 1]− Pr[G1 = 1]

∣∣∣ = 0.

Game 2: This game is the same as Game 1, with the following modification: When
receiving messages (SC.Decrypt, sid, pks

i , c) on the input tape corresponding to
Pj , where both Pi and Pj are honest parties, P responds as follows: If an entry
(pks

i , pk
r
j ,m, c) is recorded, P outputs (SC.Plaintext, sid, pks

i ,m, c). Otherwise,
P outputs (SC.Plaintext, sid, pks

i ,⊥, c).
The proof of the following lemma is given in Appendix C.

Lemma 6. There is an adversary Aext such that∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ t(t− 1)Succext-cma

SC,Aext (τ).

Game 3: This game is the same as Game 2, with the following modification: When
P receives a message (SC.Encrypt, sid, pkr

2,m) on the input tape corresponding
to P1, P chooses a random message m′ of length |m|, obtains c = S (sks

1, pk
r
2,m

′),
outputs (SC.Ciphertext, sid, pkr

2,m, c) on the output tape corresponding to P1,
and records (pks

1, pk
r
2,m, c).

For each of the games Game 4,. . . ,Game t(t − 1) + 2, P encrypts random
messages for an additional pair of senders and receivers. Consequently, in Game
t(t− 1) + 2, P always encrypts random messages for honest parties.

The proof of the following lemma is given in Appendix D.

Lemma 7. For all i such that 2 ≤ i ≤ t(t − 1) + 1, there is an adversary Aror

such that ∣∣∣Pr[Gi = 1]− Pr[Gi+1 = 1]
∣∣∣ = Advror-cca2

SC,Aror (τ).

Game t(t − 1) + 3: In this game, Z interacts with the ideal protocol IDEALFSC

running with parties P1, . . . , Pn.
From Z’s point of view, there is only one difference between Game t(t− 1)+2

and Game t(t − 1) + 3: In the latter, for a fixed key pair (pks, pkr), the same
ciphertext will never be output twice. In the former, this can be shown to happen
with negligible probability. This follows from the next lemma, whose proof is
given in Appendix E.

UNIVERSALLY COMPOSABLE SIGNCRYPTION 11

Lemma 8. Let (sks, pks) ← Ks, (skr, pkr) ← Kr, and let m be a randomly
chosen message. Then there is an adversary Aror such that

Pr[c = c′|c, c′ ← S (sks, pkr,m)] ≤ 2Advror-cca2
SC,Aror (τ).

Hence we have∣∣∣Pr[Gt(t−1)+2 = 1]− Pr[Gt(t−1)+3 = 1]
∣∣∣ = δ(τ),

for some negligible function δ(τ). Finally, the triangle inequality gives∣∣∣Pr[G0 = 1]− Pr[Gt(t−1)+3 = 1]
∣∣∣ ≤ ∣∣∣Pr[G0 = 1]− Pr[G1 = 1]

∣∣∣+∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ + · · ·+∣∣∣Pr[Gt(t−1)+2 = 1]− Pr[Gt(t−1)+3 = 1]

∣∣∣
= t(t− 1)Succext-cma

SC,Aext(τ) + t(t− 1)Advror-cca2
SC,Aror (τ) + δ(τ).

Since t ≤ n is polynomially bounded in τ , the expression on the right-hand side
is negligible in τ , and we conclude that no environment Z can distinguish inter-
action with IDEALFSC and S from interaction with πSC and A. This completes
the proof. �

5. Concluding Remarks

We have proposed ideal functionalities for signcryption and secure messaging,
and described a protocol πSM that securely realizes FSM in the (FCA, FSC)-hybrid
model. In addition, we have proved that for signcryption schemes, security with
respect to IND-CCA2 and EXT-CMA is necessary and sufficient for securely
realizing FSC. This provides some evidence that IND-CCA2 and EXT-CMA are
the correct security notions for signcryption.

Since non-repudiation is not always required, we have not incorporated it in
FSC due to space limitations.

We have proved our results only with static corruption, since it seems impos-
sible to do better. However, it is conceivable that some kind of non-committing
encryption can be used to get security against adaptive adversaries. Since FSC

can be securely realized using ideal functionalities for public-key encryption and
digital signatures, it may be possible to replace the encryption functionality (pro-
viding security against static corruption) with an ideal functionality for non-
committing encryption (providing security against adaptive corruption) [4], and
realize a functionality F ′SC with adaptive corruption.

References

[1] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Security Treat-
ment of Symmetric Encryption. In FOCS ’97: Proceedings of the 38th Annual Symposium

on Foundations of Computer Science (FOCS ’97), pages 394–403, Washington, DC, USA,
1997. IEEE Computer Society.

[2] Ran Canetti. Universally Composable Signature, Certification, and Authentication. Cryp-

tology ePrint Archive, Report 2003/239, 2004. Available at http://eprint.iacr.org/2003/
239.

12 GJØSTEEN AND KRÅKMO

[3] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.iacr.

org/2000/067.
[4] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-Secure, Non-Interactive Public-

Key Encryption. Cryptology ePrint Archive, Report 2004/317, 2004. http://eprint.iacr.
org/.

[5] John Charles Malone-Lee. On the Security of Signature Schemes and Signcryption Schemes.

PhD thesis, University of Bristol, 2004.
[6] Philip Rogaway. Symmetric Encryption. ECS 227 - Modern Cryptography - Winter 99,

1999. Available at http://www.cs.ucdavis.edu/~rogaway/classes/227/winter99/.

[7] Yuliang Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryption) �
Cost(Signature) + Cost(Encryption). In Advances in Cryptology - CRYPTO ’97, pages

165–179, Berlin Heidelberg, 1997. Springer-Verlag.

Appendix A. Proof of Theorem 3

We show that for every adversaryA interacting with parties running πSM in the
(FCA,FSC)-hybrid model, there is an ideal adversary S such that no environment
Z can tell whether it is interacting with A and πSM or with S and IDEALFSM .
S runs a simulated copy of A, and forwards all messages from Z to A and back.

Due to space limitations, we do not describe the behavior of S upon corruption
of parties.

Simulating SM.Register: Upon the first input (SM.Register, sid) from
some party Pi, FSM sends (SM.Register, sid, Pi) to S. S sends (SC.KeyGen,
sid, Pi) to A in the name of FSC. Upon receiving (SC.Key, sid, Pi, (pks

i , pk
r
i))

from A, S sends (CA.Register, sid, Pi, (pks
i , pk

r
i)) to A in the name of FCA, and

waits for an (Ok, sid, Pi) from A. S records the entry (Pi, (pks
i , pk

r
i)), and sends

(Ok, sid, Pi) to FSM.
Simulating SM.Encrypt: Upon input (SM.Encrypt, sid, Pj ,m) from some

party Pi, FSM checks if there is a recorded entry Pi. If there is no such entry,
FSM outputs (SM.Encrypt.Error, sid, Pi not registered) to Pi. Otherwise, the
following procedure takes place:
FSM sends (SM.Encrypt, sid, Pi, Pj , |m|) to S. S sends (CA.Retrieve, sid, Pj ,

Pi) to A in the name of FCA, and waits for an (Ok, sid, Pj , Pi) from A. S checks
if there is a recorded entry (Pj , (pks

j , pk
r
j)). If there is no such entry, he randomly

chooses a key pkr
j and a message m′ of length |m|, obtains c = S (sks

i , pk
r
j ,m

′),
and sends (SM.Ciphertext, sid, Pi, Pj , c) to FSM. Otherwise, the following pro-
cedure takes place:
S sends (SC.Encrypt, sid, pks

i , pk
r
j , |m|) to A in the name of FSC. Upon re-

ceiving (SC.Ciphertext, sid, pks
i , pk

r
j , c) fromA, S sends (SM.Ciphertext, sid,

Pi, Pj , c) to FSM.
Simulating SM.Decrypt: Upon input (SM.Decrypt, sid, Pi, c) from some

party Pj , FSM checks if there is a recorded entry Pj . If there is no such entry,
FSM outputs (SM.Decrypt.Error, sid, Pj not registered) to Pj . Otherwise, the
following procedure takes place:
FSM sends (SM.Decrypt, sid, Pi, Pj , c) to S. S sends (CA.Retrieve, sid, Pi, Pj)

to A in the name of FCA, and waits for an (Ok, sid, Pi, Pj) from A. S checks

UNIVERSALLY COMPOSABLE SIGNCRYPTION 13

if there is a recorded entry (Pi, (pks
i , pk

r
i)). If there is no such entry, he sends

(SM.Plaintext, sid, Pi, Pj ,⊥) to FSM. Otherwise, the following procedure takes
place:
S sends (SC.Decrypt, sid, pks

i , pk
r
j , c) to A in the name of FSC. Upon receiv-

ing (SC.Plaintext, sid, pks
i , pk

r
j ,m

′/ ⊥, c) from A, S sends (SM.Plaintext, sid,
Pi, Pj ,m

′/ ⊥, c) to FSM.
Now assume that IDEALFSM runs with the same instance of A as πSM. It is

clear from the simulation of SM.Encrypt that an entry (Pi, Pj ,m, c) is recorded
by FSM if and only if an entry (pks

i , pk
r
j ,m, c) is recorded by FSC. Moreover,

the condition ”pks = pks
i for some i” in SC.Decrypt, is automatically satisfied

by πSM. So SM.Decrypt behaves exactly as SC.Decrypt in the protocol, and
consequently the output when running with IDEALFSM will be the same as when
running with πSM. This completes the proof.

Appendix B. Proof of Theorem 4

We first prove that if πSC securely realizes FSC, then SC is secure with respect
to ROR-CCA2. We assume that there exists an adversary Aror breaking the
ROR-CCA2 security of SC, i.e.

Advror-cca2
SC,Aror (τ) =

∣∣∣Pr
[
Expror-cca2

SC,Aror (τ) = 1|b = 1
]
− Pr

[
Expror-cca2

SC,Aror (τ) = 1|b = 0
]∣∣∣ = δ(τ),

for some non-negligible function δ(τ). We construct an environment Z and an
adversary A such that Z can distinguish interaction with πSC from interaction
with IDEALFSC .

No parties are corrupted, and A is never activated by Z. Since there is no
communication between parties, A never gets any input.
Z proceeds as follows:

(1) Z chooses two parties Pi and Pj , sends the message (SC.KeyGen, sid)
to each of them, and obtains key pairs (pks

i , pk
r
i) and (pks

j , pk
r
j).

(2) Z chooses b ∈ {0, 1} at random and runs Aror with input (pks
i , pk

r
j). He

answers Aror’s queries to OS/OU /Ob by sending appropriate messages
to Pi/Pj/Pi. In particular, if b = 0, Z chooses a random message of
appropriate length and asks Pi to encrypt this message. If b = 1, Z asks
Pi to encrypt the message in Aror’s query.

(3) Finally, when Aror outputs b′, Z outputs 1 if b′ = b and 0 otherwise.

We observe that when Z interacts with πSC , Aror’s environment in Expror-cca2
SC,Aror (τ)

is perfectly simulated.
When Z interacts with IDEALFSC , Aror does not run in its expected environ-

ment, but whatever happens, Aror gets no information about b, and Z outputs 1
with probability 1

2 .

14 GJØSTEEN AND KRÅKMO

Let ZπSC and ZIDEALFSC
denote Z’s output when interacting with πSC and

IDEALFSC , respectively. The above argument gives∣∣∣Pr[ZπSC = 1]− Pr[ZIDEALFSC
= 1]

∣∣∣
=

∣∣∣Pr[ZπSC = 1|b = 1] · Pr[b = 1] + Pr[ZπSC = 1|b = 0] · Pr[b = 0]− 1
2

∣∣∣
=

∣∣∣1
2

(Pr[ZπSC = 1|b = 1] + (1− Pr[ZπSC = 0|b = 0])− 1)
∣∣∣

=
1
2

∣∣∣(Pr[ZπSC = 1|b = 1]− Pr[ZπSC = 0|b = 0])
∣∣∣

=
1
2
δ(τ).

Hence we have constructed an environment with non-negligible probability of
distinguishing interaction with πSC from interaction with IDEALFSC .

It remains to show that if πSC securely realizes FSC, then SC is secure with
respect to EXT-CMA. We assume that there exists an adversary Aext breaking
the EXT-CMA security of SC, i.e.

Succext-cma
SC,A (τ) = Pr

[
Expext-cma

SC,A (τ) = 1
]

= δ(τ),

for some non-negligible function δ(τ). We construct an environment Z and an
adversary A such that Z can distinguish interaction with πSC from interaction
with IDEALFSC .

No parties are corrupted, and A is never activated by Z. Since there is no
communication between parties, this means that A never gets any input.
Z proceeds as follows:

(1) Z chooses two parties Pi and Pj , sends the message (SC.KeyGen, sid)
to each of them, and obtains key pairs (pks

i , pk
r
i) and (pks

j , pk
r
j).

(2) Z runs Aext with input (pks
i , pk

r
j). He answers Aext’s queries to OS and

OU by sending appropriate messages to Pi and Pj , respectively.
(3) Finally, when Aext outputs c, Z sends (SC.Decrypt, sid, pks

i , c) to Pj .
If Pj outputs a message m, Z outputs 1. Otherwise, if Pj outputs the
symbol ⊥, Z outputs 0.

We observe that when Z interacts with πSC , Aext’s environment in Expext-cma
SC,Aext(τ)

is perfectly simulated. When Z interacts with IDEALFSC , then Pj , when asked
to decrypt c in the last step, will output ⊥ even if c is a valid ciphertext. Hence
Z always outputs 0 in this case. So we get

∣∣∣Pr[ZπSC = 1]− Pr[ZIDEALFSC
= 1]

∣∣∣ =
∣∣∣Pr

[
Expext-cma

SC,A (τ) = 1
]
− 0

∣∣∣
= δ(τ).

This completes the proof.

UNIVERSALLY COMPOSABLE SIGNCRYPTION 15

Appendix C. Proof of Lemma 6

We define the event F in a game as follows:
F : At some point during the game, some honest party Pj is asked to decrypt

a valid ciphertext c from some honest party Pi, but c was not a result of
some query (SC.Encrypt, sid, pkr

j ,m) sent to Pi.
We observe that unless F occurs, Game 1 and Game 2 proceed identically,

hence we have ∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ Pr[F].

We now construct an adversary Aext trying to break the EXT-CMA security
of our signcryption scheme. Aext has been given a target sender’s public key pks

and a target receiver’s public key pkr, and attempts to produce a ciphertext c
such that U (pks, skr, c) 6=⊥. Aext runs simulated copies of Z, A and the corrupt
parties. Aext also simulates P , and behaves exactly as P , with the following ex-
ceptions: Aext chooses random numbers k, l ∈ {1, . . . , t} such that k 6= l, and lets
Pk and Pl be its target sender and target receiver, respectively. Thus, when Pk is
asked to generate keys, Aext lets pks

k = pks, runs Kr to obtain (skr
k, pkr

k), outputs
(pks

k, pkr
k) and records (Pk, ·, pks

k, skr
k, pkr

k). When Pl is asked to generate keys, a
corresponding procedure takes place, and Aext records (Pl, sks

l , pk
s
l , ·, pk

r
l). When

receiving a message (SC.Encrypt, sid, pkr
j ,m) on the input tape corresponding

to Pk, Aext answers using its flexible signcryption oracle. Similarly, when receiv-
ing a message (SC.Decrypt, sid, pkr

i , c) on the input tape corresponding to Pl,
Aext answers using its flexible unsigncryption oracle.

If F occurs, then Z has produced a forgery, which can be detected by Aext.
In particular, if F involves the sender Pk and the receiver Pl, then Aext has
obtained a forgery against its target sender and target receiver. If this happens,
Aext outputs the forged ciphertext and halts. Since the numbers k, l are chosen
at random, we get

Succext-cma
SC,Aext(τ) =

Pr[F]
t(t− 1)

.

Hence we have∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ t(t− 1)Succext-cma

SC,Aext(τ),

and the proof is complete.

Appendix D. Proof of Lemma 7

Using Game 2 and Game 3, we will construct an adversary Aror trying to break
the ROR-CCA2 security of our signcryption scheme. Aror has been given a target
sender’s public key pks and a target receiver’s public key pkr. Aror runs simulated
copies of Z, A and the corrupt parties. Aror also simulates P , and behaves exactly
as P , with the following exceptions: Aror lets P1 be the target sender and P2 the
target receiver. Thus, when P1 is asked to generate keys, Aror lets pks

1 = pks,

16 GJØSTEEN AND KRÅKMO

runs Kr to obtain (skr
1, pk

r
1), outputs (pks

1, pk
r
1) and records (P1, ·, pks

1, sk
r
1, pk

r
1).

Correspondingly, when P2 is asked to generate keys, Aror lets pkr
2 = pkr, runs Ks

to obtain (sks
2, pk

s
2), outputs (pks

2, pk
r
2) and records (P2, sks

2, pk
s
2, ·, pk

r
2). When

receiving a message (SC.Encrypt, sid, pkr
2,m) on the input tape corresponding

to P1, Aror answers using its real-or-random oracle. Moreover, when receiving
a message (SC.Encrypt, sid, pkr

j ,m) on the same input tape, and j 6= 2, Aror

answers using its flexible signcryption oracle. In addition, when receiving a mes-
sage (SC.Decrypt, sid, pks

i , c) on the input tape corresponding to P2, and Pi is
a corrupt party, Aror answers using its flexible unsigncryption oracle. Finally,
Aror copies Z’s output to its own output tape.

We observe that when the real-or-random oracle encrypts the real message,
Aror simulates P ’s behavior in Game 2 perfectly. On the other hand, when the
oracle encrypts a random message, P ’s behavior in Game 3 is perfectly simulated.
We compute the advantage of Aror as follows:

Advror-cca2
SC,Aror (τ) =

∣∣∣Pr
[
Expror-cca2

SC,Aror (τ) = 1|b = 1
]
− Pr

[
Expror-cca2

SC,Aror (τ) = 1|b = 0
]∣∣∣

=
∣∣∣Pr[G2 = 1]− Pr[G3 = 1]

∣∣∣.
A similar argument can be applied to any pair of games Game i and Game

i+1, where 2 ≤ i ≤ t(t− 1) + 1. Consequently, for all such i we can construct an
adversary Aror such that∣∣∣Pr[Gi = 1]− Pr[Gi+1 = 1]

∣∣∣ = Advror-cca2
SC,Aror (τ),

and the proof is complete.

Appendix E. Proof of Lemma 8

Assume that, for (sks, pks) ← Ks, (skr, pkr) ← Kr, and a randomly chosen
message m,

Pr[c = c′|c, c′ ← S (sks, pkr,m)] = δ(τ).

We will construct an adversary Aror trying to break the ROR-CCA2 security of
our signcryption scheme. Upon input (pks, pkr), Aror chooses a random message
m, queries its real-or-random oracle Ob

ror with this message twice, and receives
two ciphertexts c and c′. If c = c′, Aror outputs 1, otherwise Aror outputs 0.
Assume that m has length l. The advantage of Aror is then given by

Advror-cca2
SC,Aror (τ) =

∣∣∣Pr
[
Expror-cca2

SC,Aror (τ) = 1|b = 1
]
− Pr

[
Expror-cca2

SC,Aror (τ) = 1|b = 0
]∣∣∣

=
∣∣∣δ(τ)− 1

2l
δ(τ)

∣∣∣
=

2l − 1
2l

δ(τ)

≥ 1
2
δ(τ).

UNIVERSALLY COMPOSABLE SIGNCRYPTION 17

So we have

Pr[c = c′|c, c′ ← S (sks, pkr,m)] ≤ 2Advror-cca2
SC,Aror (τ),

which completes the proof.

Paper II

Universally Composable Blind Signatures in the Plain Model

Aslak Bakke Buan, Kristian Gjøsteen and Lillian Kr̊akmo

Preprint

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE
PLAIN MODEL

ASLAK BAKKE BUAN, KRISTIAN GJØSTEEN, LILLIAN KRÅKMO

Abstract. In the framework of universally composable security, we define
an ideal functionality for blind signatures, as an alternative to a function-

ality recently proposed by Fischlin. Fischlin proves that his functionality
cannot be realized in the plain model, but this result does not apply to our
functionality. We show that our functionality is realized in the plain model

by a blind signature protocol if and only if the corresponding blind signature
scheme is secure with respect to blindness and non-forgeability, as defined

by Juels, Luby and Ostrovsky.

1. Introduction

The idea of blind signatures was proposed by Chaum [4] as a key ingredient for
anonymous electronic cash applications. Blind signatures allow a bank to issue
signatures without seeing the content of the signed documents, and at the same
time prevent users from forging signatures. Pointcheval and Stern [7] first defined
non-forgeability for blind signature schemes. Juels, Luby and Ostrovsky (JLO) [6]
further formalized the concept by giving a general definition of a blind signature
scheme and formulating the required security properties: blindness and non-
forgeability. Informally, a scheme has blindness if it is infeasible for a malicious
signer to determine the order of which two messages are signed by interaction
with an honest user. A scheme has non-forgeability if, given l interactions with
an honest signer, it is infeasible for a malicious user to produce more than l valid
signatures.

Universally composable (UC) security is a framework proposed by Canetti [2]
as a way to define security for protocols such that security-preserving composition
is possible. This allows for a modular design and analysis of protocols. For each
cryptographic task, an ideal functionality can be defined, which incorporates
the required properties of a protocol for the task and the allowed actions of
an adversary. A protocol is said to securely realize the ideal functionality if,
loosely speaking, any effect caused by an adversary attacking the protocol can
be obtained by an adversary attacking the ideal functionality. When designing
complex protocols, one can allow the involved parties to have secure access to ideal
functionalities. Then, when implementing the protocol, each ideal functionality
is replaced by a protocol securely realizing the functionality. The composition

1

2 BUAN, GJØSTEEN AND KRÅKMO

theorem then guarantees security. We refer to [2] for a complete overview of this
framework.

Since UC security is a powerful and useful notion, an interesting question is
how it relates to conventional security notions. Fischlin [5] addresses this question
in the context of blind signatures. The author defines an ideal functionality for
blind signatures, FBlSig, and shows that blind signature schemes realizing FBlSig

in the plain model do not exist. He does this by showing that FBlSig can be used
to realize the functionality Fcom for commitment schemes, and then applying a
well-known impossibility result [3]. To realize FBlSig, Fischlin has to work in the
common reference string model.

One somewhat awkward artefact of Fischlin’s functionality is that any realizing
protocol must encode the entire message to be signed into the first protocol
message. This restricts any realizing protocol to a maximal message length,
otherwise blindness would be violated. We could extend this by signing a hash
of the message instead of the message itself. If we use a collision resistant hash
function, this clearly does not degrade the real security of any such scheme.
Unfortunately, the modified protocol no longer realizes the functionality. This can
be considered an artefact of the UC framework, not of the specific functionality.
Nonetheless, it is undesirable and we would like to allow blind signature protocols
that do not encode the entire message to be signed into the first protocol message.

To achieve this, we propose a new blind signature functionality. The main
change is that while Fischlin’s functionality requires, even for corrupt users, that
the message to be signed be included in the signing command given to the ideal
functionality, our functionality does not look at the message specified by a cor-
rupt user, but instead gives him a “free signature”. Only when message/signature
pairs are verified, the functionality can learn what message was signed. As a con-
sequence, it can not be used to realize Fcom, meaning that Fischlin’s impossibility
result does not apply in our case. Even so, our functionality still captures the
essential features of blind signature schemes.

We can prove that a blind signature protocol realizes our functionality in the
plain model if and only if the corresponding blind signature scheme satisfies weak
blindness and non-forgeability, as originally defined by JLO. We note that, in this
paper, we refer to JLO’s version of blindness as weak blindness, reflecting the fact
that the adversary is not allowed to choose his target keys.

On the negative side, our functionality requires the signer to be honest during
key generation. In the UC framework, this corresponds to the property of weak
blindness, since the adversary does not choose his own keys. We believe that in
some cases this correctly models the real world, for instance in a scenario where
the key generation for a bank is performed by a financial supervisory authority.

As an alternative to this corruption model, we may allow corruption of the
signer before the key generation takes place, but demand that the signer reveal
his public and secret keys to a trusted third party for verification. A possible
scenario is one where the bank generates its own keys, but then shows them to a
financial supervisory authority. We express this in the UC framework by adding

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 3

an incorruptible trusted third party to the protocol, to whom the signer sends
his public and secret keys (over a confidential channel) before any user issues
signing requests. With this requirement, it is clear that our result also holds for
a slightly stronger version of blindness, where the adversary chooses his target
keys, but then reveals them to the simulator.

If we are willing to return to the common reference string model, it should
be possible to relax this requirement even further, by including in the public
key a commitment to the secret key along with a proof that this commitment
is correct. (In the CRS model with a carefully chosen commitment scheme, the
simulator can extract the secret key, essentially reducing everything to the case
of blindness.) In this case, the main advantage of our functionality compared to
Fischlin’s functionality is that we allow protocols where the user’s first message
does not contain an extractable copy of the message to be signed. This means
that the functionality could be realized by blind signature protocols accepting
messages of arbitrary length.

Another, minor difference between the functionalities is that our functionality
lets the environment decide whether or not the signer should grant a signature
to a user. This is a vital property if the functionality is to be used in a bigger
protocol, but it could of course be added to Fischlin’s functionality.

Our main contribution in this paper is a more flexible blind signature func-
tionality that allows a larger class of realizing protocols, while still capturing the
essence of blind signatures.

In Section 2 of this paper, we review the properties of a blind signature scheme
and give formal definitions of blindness and non-forgeability. In Section 3 we
present our ideal functionality for blind signatures and prove our main result.

2. Blind Signatures

Our definition of a blind signature scheme corresponds to the one given by
Juels, Luby and Ostrovsky in [6].

Definition 1 (Blind Signature Scheme). A blind signature scheme BS is a four-
tuple (Signer ,User , Gen,Verify) with the following properties:

• Gen is a probabilistic polynomial time algorithm, which takes as input a
security parameter τ (encoded as 1τ) and outputs a pair (sk , pk) of secret
and public keys.

• Signer and User are a pair of probabilistic polynomial time interactive
Turing machines, given as common input a public key pk. In addition,
Signer is given a corresponding secret key sk, and User is given a message
m. The length of all inputs must be polynomial in the security parameter
τ . Signer and User interact according to the protocol. At the end of the
interaction, Signer outputs either completed or not completed and User
outputs either fail or σ(m).

• Verify is a deterministic polynomial time algorithm, which takes as in-
put a public key pk, a message m and a signature σ(m), and outputs

4 BUAN, GJØSTEEN AND KRÅKMO

either accept or reject, indicating whether σ(m) is a valid signature on
the message m.

It is required that for any message m, and for all key pairs (sk , pk) output by
Gen, if both Signer and User follow the protocol, then Signer(sk , pk) outputs
completed, User(pk ,m) outputs σ(m), and Verify(pk ,m, σ(m)) outputs accept.

The security of blind signature schemes is formally defined below. We note
that, throughout this paper, weak blindness corresponds to the original definition
of blindness given by JLO.

Definition 2 (Weak Blindness). Consider the experiment Expwb
BS,A(τ) (steps

1, 2, . . . , 6) in Figure 1, where A is an algorithm which controls Signer but not
User. We define the advantage of A in breaking BS with respect to weak blindness
as

Advwb
BS,A(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

The scheme BS is said to be secure with respect to weak blindness if, for all
probabilistic polynomial time A, Advwb

BS,A(τ) is negligible in τ .

We now introduce a slightly stronger definition, blindness, in which the adver-
sary determines the key pair (sk , pk), and hands it over to us.

Definition 3 (Blindness). Consider the experiment Expb
BS,A(τ) (steps 1′, 2,

. . . , 6) in Figure 1, where A is an algorithm which controls Signer but not User.
We define the advantage of A in breaking BS with respect to blindness as

Advb
BS,A(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

The scheme BS is said to be secure with respect to blindness if, for all probabilistic
polynomial time A, Advb

BS,A(τ) is negligible in τ .

An even stronger notion, strong blindness, is defined in the same manner,
except that the adversary is only required to output a public key pk in the first
step of the experiment.

Definition 4 (Non-Forgeability). Consider the experiment Expnf
BS,A(τ) in Fig-

ure 1, where A is an algorithm which controls User but not Signer. We define
the success rate of A in breaking BS with respect to non-forgeability as

Succnf
BS,A(τ) = Pr [k > l] .

The scheme BS is said to be secure with respect to non-forgeability if, for all
probabilistic polynomial time A, Succnf

BS,A(τ) is negligible in τ .

We now present another notion for blindness, adapting the notion ”real-or-
random” for symmetric encryption given in [1]. The idea is that, when interacting
with an honest user, it should be infeasible for a malicious signer to tell whether
a known message or a hidden random string is being signed. (Note that there
does not seem to be a natural “strong” version of this notion.)

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 5

Expwb/b
BS,A(τ):
1. (sk , pk)← Gen(1τ). Run A

on input (1τ , sk , pk).
1’. Run A on input 1τ .

(sk , pk)← A.
2. (m0,m1)← A.
3. b← {0, 1}.
4. Let A engage in two parallel

interactive protocols, the first
with User(pk ,mb) and the
second with User(pk ,m1−b).

5. If the first User outputs
σ(mb) and the second User
outputs σ(m1−b), then give
(σ(m0), σ(m1)) to A as
additional input.

6. A outputs a bit b′.

Expwror/ror
BS,A (τ):
1. (sk , pk)← Gen(1τ). Run A

on input (1τ , sk , pk).
1’ Run A on input 1τ .

(sk , pk)← A.
2. b← {0, 1}.
3. A polynomial (in τ) number

of times, A is allowed to
output a message m1:

If b = 0, choose a random
message m0 and let A engage
in a protocol with
User(pk ,m0). Run a protocol
between Signer(sk , pk) and
User(pk ,m1) to get σ(m1). If
User(pk ,m0) outputs σ(m0),
give σ(m1) to A as additional
input.

If b = 1, let A engage in a
protocol with User(pk ,m1). If
User(pk ,m1) outputs σ(m1),
give σ(m1) to A as additional
input.

4. A outputs a bit b′.
Expnf

BS,A(τ):
1. (sk , pk)← Gen(1τ).
2. Let A(1τ , pk) engage in polynomially many (in τ) parallel interactive

protocols, with polynomially many (in τ) copies of Signer(sk , pk),
where A decides in an adaptive manner when to stop. Let l be the
number of executions, where the Signer outputs completed .

3. A outputs a collection {(m1, σ(m1)), . . . , (mk, σ(mk))}, subject to the
constraint that (mi, σ(mi)) 6= (mj , σ(mj)) for 1 ≤ i < j ≤ k, and
Verify(pk ,mi, σ(mi)) outputs accept for 1 ≤ i ≤ k.

Figure 1. Experiments for defining blindness and non-forgeability.

Definition 5 ((Weak) Real-or-Random Blindness). Consider the experiment
Expwror/ror

BS,A (τ) in Figure 1, where A is an algorithm which controls Signer but
not User. We define the advantage of A in breaking BS with respect to (weak)
real-or-random blindness as

Adv
wror/ror
BS,A (τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

6 BUAN, GJØSTEEN AND KRÅKMO

The scheme BS is said to be secure with respect to real-or-random blindness if,
for all probabilistic polynomial time A, Adv

wror/ror
BS,A (τ) is negligible in τ .

Adapting of a result from [1], we obtain the following theorem, the proof of
which is given in Appendix A:

Theorem 1. A blind signature scheme BS is secure with respect to (weak) blind-
ness if and only if it is secure with respect to (weak) real-or-random blindness.

3. Universally Composable Blind Signatures

Our ideal functionality for blind signatures, FBS, is defined in Figure 2. The
protocol πBS is defined in Figure 3.

For ease of presentation, the session id (SID), which should be present in all
messages, is not included. The first message sent to the functionality must be
(KeyGen). We consider a static corruption model, but require that corruption
take place immediately after the (KeyGen) message has been processed, which
amounts to the key generation being honest. In addition to generating keys, the
ideal adversary S produces signature generation and verification facilities for the
functionality: Π(m) simulates a conversation between an honest signer and an
honest user, producing a signature σ on m. π(m,σ) outputs 1 if σ is a valid
signature on m, and 0 otherwise.

When the signer receives a signature request from a user, the environment
determines whether or not the user is entitled to a signature. If the functionality
is to be used in a bigger protocol, allowing this decision to depend on outer
circumstances may be useful. For instance, it may depend on the balance of the
user’s bank account.

In the plain model, parties running a protocol have authenticated communica-
tion channels, but messages are potentially delayed by the adversary. To handle
this, we let S delay messages between parties. S also decides when to inform the
respective parties about the outcome of a signature request. This allows S to get
the order of these messages right, that is, according to the real protocol.

Our functionality keeps track of signatures generated by corrupt users by
means of a free signature count. In Fischlin’s functionality, when a corrupt user
produces a signature by interaction with an honest signer, this signature is stored
together with the message m input by the user. However, since the user is cor-
rupt, we do not know if m really is the message being signed. Assume that the
user instead signs m′, a message never seen by FBlSig, and obtains a valid pair
(m′, σ). Upon verification, (m′, σ) will be rejected by FBlSig, while accepted by
the real protocol. Our functionality overcomes this problem, by increasing the
free signature count every time an honest signer completes a protocol with a
corrupt user. If the free signature count is more than zero, a pair (m,σ) may
be accepted upon verification, even if FBS has never seen m before. We argue
that FBS still incorporates the required properties of a blind signature protocol,
as it still prevents a user from obtaining more valid signatures than generated by
interaction with an honest signer.

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 7

FBS proceeds as follows, with signer Q̃, users P̃1, . . . , P̃n and an ideal adversary
S.
On message (KeyGen) from the signer Q̃:

1. Send (KeyGen) to S and wait.
2. Upon receipt of (Key, pk ,Π, π) from S, store (pk ,Π, π), send

(Key, pk) to Q̃ and stop.
On message (Sign, pk ,m) from a user P̃i:

1. Send (Sign, Pi) to S.
2. Upon receipt of (Sign, Pi, ack) from S, send (Sign, Pi?) to Q̃.
3. Upon receipt of (Sign, Pi, denied) from Q̃, send (Sign, Pi, denied) to S.

Wait for (Sign, Pi, denied , ack) from S, and output (Sign, denied) to
P̃i.

4. Upon receipt of (Sign, Pi) from Q̃, send (Sign, Pi) to S.
1. Upon receipt of (Signature, Pi,Q completed) from S, send

(Signature, Pi) to Q̃. If Q̃ is honest and P̃i is corrupt, increase
the free signature count.

2. Upon receipt of (Signature, Pi,Q not completed) from S, send
(Signature, Pi,not completed) to Q̃.

3. Upon receipt of (Signature, Pi,Pi completed) from S, if Pi is
honest, σ

r← Π(m). If (m,σ, 0) is stored, then stop. Otherwise,
store (m,σ, 1) and send (Signature, σ) to P̃i.

4. Upon receipt of (Signature, Pi,Pi fail) from S, send
(Signature, fail) to P̃i.

On message (Verify, pk ,m, σ) from an honest user P̃i:
1. If (m,σ, 1) is stored, send (Verify) to P̃i and stop.
2. If (m,σ, 0) is stored, send (Verify, reject) to P̃i and stop.
3. If π(m,σ) = 1 and Q is corrupt, store (m,σ, 1), send (Verify) to P̃i

and stop.
4. If π(m,σ) = 1 and the free signature count is larger than zero, decrease

the signature count, store (m,σ, 1), send (Verify) to P̃i and stop.
5. Store (m,σ, 0) and send (Verify, reject) to P̃i and stop.

Figure 2. Blind signature functionality FBS

The protocol πBS is described in Figure 3. The user initiates a protocol, and
upon receiving the first message from a user, the signer lets the environment
decide whether he should engage in the protocol, analogously to the formulation
of FBS. We now prove our main result:

Theorem 2. The blind signature scheme BS is secure with respect to weak blind-
ness and non-forgeability if and only if the protocol πBS securely realizes FBS in
the plain model.

8 BUAN, GJØSTEEN AND KRÅKMO

πBS is defined as follows, with signer Q(τ) and users P1, . . . , Pn.

Q(τ):
1. Upon the first input
(KeyGen), run the algorithm
Gen(τ), obtain a key pair
(sk , pk) and output (Key, pk).

2. Upon receiving (x) from Pi,
send (Sign, Pi?) to Z and
wait.

3. Upon input
(Sign, Pi, denied) from Z,
send (Sign, denied) to Pi and
stop.

4. Upon input (Sign, Pi) from
Z, run Signer and give it x as
input on its communication
tape. Forward any output on
Signer ’s communication tape
to Pi, and vice versa. If
Signer(sk , pk) outputs
completed , then output
(Signature, Pi). Otherwise, if
Signer outputs not completed ,
output
(Signature, Pi,not completed).

Pi:
1. Upon input (Sign, pk ,m),
run User(pk ,m). When
User(pk ,m) outputs x on its
communication tape, send (x)
to Q and wait.

2. Upon receiving
(Sign, denied) from Q, output
(Sign, denied).

3. Upon receiving (y) from Q,
forward y to User ’s
communication tape. Forward
any output on User ’s
communication tape to Q, and
vice versa. If User outputs σ,
then output (Signature, σ).
Otherwise, if User outputs
fail , output (Signature, fail).

4. Upon input
(Verify, pk ,m, σ), run the
algorithm Verify , obtain
accept/reject and output
(Verify)/(Verify, reject).

Figure 3. Blind signature protocol πBS

Proof. Only if: Assuming that the blind signature scheme BS is secure with
respect to weak blindness and non-forgeability, we show that for every adversary
A interacting with parties running πBS in the plain model, there is an ideal
adversary S such that no environment Z can tell whether it is interacting with
A and πBS or with S and the ideal protocol IDEALFBS .

As usual, S runs a simulated copy of A, and forwards all messages from Z to
A and back. When A corrupts a party P , S corrupts P̃ . When P̃ is corrupt,
any input from Z meant for P̃ goes directly to S, who forwards it to A on the
input tape corresponding to P , and the other way around. Moreover, S can send
messages to FBS in the name of P̃ , and messages from FBS meant for P̃ go to S.
S runs as described below.

In the following, when a party P controls another party P ′, the notation
“P |P ′” should be read as “P , in the name of P ′”.

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 9

Algorithm S(τ):

• Upon receiving (KeyGen, Q) from FBS, S runs Gen(τ), obtains a key
pair (sk , pk) and stores (sk , pk). S then produces signature generation
and verification facilities Π and π, and sends (Key, Q, pk ,Π, π) to FBS.

• Upon receiving (Sign, Pi) from FBS, when both Q and Pi are honest: S
simulates honest Q and honest Pi, and allows A to delay any communi-
cation between S|Q and S|Pi.

1. S chooses a random message m̃, and runs User(pk , m̃). When
User(pk , m̃) outputs x on its communication tape, S|Pi sends (x)
to S|Q. When S|Q, receives (x), S sends (Sign, Pi, ack) to FBS.

2. Upon receipt of (Sign, Pi, denied) from FBS, S|Q sends (Sign, denied)
to S|Pi. When S|Pi receives (Sign, denied), S sends (Sign, Pi, denied ,
ack) to FBS.

3. Upon receipt of (Sign, Pi) from FBS, S runs Signer(sk , pk) and gives
it x as input on its communication tape. S|Q forwards any output
on Signer ’s communication tape to S|Pi, and vice versa. Similarly,
S|Pi forwards any output on User ’s communication tape to S|Q,
and vice versa.

4. If Signer outputs completed , then S sends (Signature, Pi,Q completed)
to FBS. Otherwise, if Signer outputs not completed , then S sends
(Signature, Pi,Q not completed) to FBS.

5. If User outputs σ, then S sends (Signature, Pi,Pi completed) to
FBS. Otherwise, if User outputs fail , then S sends (Signature, Pi,
Pi fail) to FBS.

• Upon receiving (Sign, Pi) from FBS, when Q is corrupt and Pi is honest:
S simulates honest Pi.

1. S chooses a random message m̃, and runs User(pk , m̃). When
User(pk , m̃) outputs x on its communication tape, S|Pi sends (x)
to A.

2. S sends (Sign, Pi, ack) to FBS, and S|Q̃ receives (Sign, Pi?) from
FBS.

3. If S|Pi receives (Sign, denied) fromA, then S|Q̃ sends (Sign, Pi, denied)
to FBS. Upon receiving (Sign, Pi, denied) from FBS, S sends (Sign, Pi,
denied , ack) to FBS.

4. If S|Pi receives (y) from A, then S|Q̃ sends (Sign, Pi) to FBS, and
S receives (Sign, Pi) from FBS. S|Pi forwards y to User ’s commu-
nication tape. S|Pi forwards any output on User ’s communication
tape to A, and vice versa.

5. If User outputs σ, then S sends (Signature, Pi,Pi completed) to
FBS. Otherwise, if User outputs fail , then S sends (Signature, Pi,
Pi fail) to FBS.

6. S sends (Signature, Pi,Q not completed) to FBS, and S|Q̃ receives
(Signature, Pi, Q not completed) from FBS.

• When Q is honest and Pi is corrupt: S simulates honest Q.

10 BUAN, GJØSTEEN AND KRÅKMO

(1) When S|Q receives (x) from A, S chooses a random message m̃ and
S|P̃i sends (Sign, pk , m̃) to FBS. Upon receipt of (Sign, Pi) from
FBS, S sends (Sign, Pi, ack) to FBS.

(2) Upon receipt of (Sign, Pi, denied) from FBS, S|Q sends (Sign, denied)
to A. S sends (Sign, Pi, denied , ack) to FBS, and S|P̃i receives
(Sign, denied) from FBS.

(3) Upon receipt of (Sign, Pi) from FBS, S runs Signer(sk , pk) and gives
it x as input on its communication tape. S|Q forwards any output
on Signer ’s communication tape to A, and vice versa.

(4) If Signer outputs completed , then S sends (Signature, Pi,Q completed)
to FBS. Otherwise, if Signer outputs not completed , then S sends
(Signature, Pi,Q not completed) to FBS.

(5) S sends (Signature, Pi,Pi fail) to FBS, and S|P̃ receives (Signature,
fail) from FBS.

We want to show that if there exists an environment Z able to distinguish
IDEALFBS and πBS with non-negligible probability, then we can construct an
adversary Aror breaking the real-or-random blindness or an adversary Anf break-
ing the non-forgeability of our scheme. To this end, we will consider a series of
games, where we gradually modify the behavior of the involved parties.
Game 0: In this game, Z interacts with the protocol πBS running with parties
Q,P1, . . . , Pn.
Game 1: This game is the same as Game 0, with the following modifications:
The honest parties are now simulated by P . In addition, P keeps track of the
produced signatures: If an honest Pi generates a signature σ on a message m,
P stores (m,σ, 1). However, if Pi is corrupt and Q is honest, and Q outputs
(Signature, Pi), P increases the free signature count.

From Z’s point of view, there is no difference between Game 0 and Game 1.
Therefore, if we let Gi denote the output of Z when taking part in Game i, we
have ∣∣∣Pr[G0 = 1]− Pr[G1 = 1]

∣∣∣ = 0.

Game 2: This game is the same as Game 1, with the following modifications: If
an honest Pi generates a signature σ on a message m, and (m,σ, 0) is stored, then
P stops. Upon input (Verify, pk ,m, σ) to an honest Pi, P responds as follows:

1. If (m,σ, 1) is stored, P |Pi outputs (Verify) and stops.
2. If (m,σ, 0) is stored, P |Pi outputs (Verify, reject) and stops.
3. If π(m,σ) = 1 and Q is corrupt, P stores (m,σ, 1), then P |Pi outputs
(Verify) and stops.

4. If π(m,σ) = 1 and the free signature count is larger than zero, P
decreases the signature count and stores (m,σ, 1), then P |Pi outputs
(Verify) and stops.

5. P stores (m,σ, 0), then P |Pi outputs (Verify, reject) and stops.
We now prove the following lemma:

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 11

Lemma 1. There is an adversary Anf such that∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ Succnf

BS,Anf(τ).

Proof. We simplify the proof by defining the event F in a game as follows:
F : At some point during the game, while Q is honest, some honest party

Pi is asked to verify a valid pair (m,σ), but there is no recorded entry
(m,σ, 1), and the free signature count is zero.

We note that, unless F occurs, Game 1 and Game 2 proceed identically. In
particular, if it ever happens in Game 2 that an honest Pi generates a signature
σ on a message m, and (m,σ, 0) is stored, then (m,σ, 0) must have been stored
while Q was honest, which implies that F occurred. Hence we have∣∣∣Pr[G1 = 1]− Pr[G2 = 1]

∣∣∣ ≤ Pr[F].

We now construct an adversary Anf trying to break the non-forgeability of our
scheme. Anf(1τ , pk) runs simulated copies of Z, A and the corrupt parties. Anf

also simulates P , and behaves exactly as P , with the following exceptions: When
Q is asked to generate keys, instead of running Gen, Q simply outputs (Key, pk).
When Q engages in a protocol with some Pi, Anf engages in a protocol with
Signer(sk , pk), forwarding inputs from Pi to Signer(sk , pk) and vice versa. If F
occurs, we deduce that for some numbers k, l such that k > l, Z has produced
k valid pairs (m,σ), while Q has output completed l times. Since Anf stores
the valid signatures and controls the free signature count, Anf can detect F and
output the k valid pairs (m,σ). Hence we have

Succnf
BS,Anf(τ) ≥ Pr[F],

which leads to ∣∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣∣ ≤ Succnf

BS,Anf(τ),

by which the proof is complete. �

Game 3: In this game, Z interacts with the ideal protocol IDEALFBS running
with parties Q̃, P̃1, . . . , P̃n.

We observe that Game 2 and Game 3 differ only in the case where Pi is honest:
When signing a message m, in Game 2, Q runs a protocol with User(pk ,m), while
in Game 3, Q runs a protocol with User(pk , m̃), where m̃ is a randomly chosen
message.

We prove the following lemma:

Lemma 2. There is an adversary Aror such that∣∣∣Pr[G2 = 1]− Pr[G3 = 1]
∣∣∣ = Advror

BS,Aror(τ).

Proof. We construct an adversary Aror trying to break the real-or-random blind-
ness of our scheme: Aror(1τ , sk , pk) runs simulated copies of Z, A and the corrupt
parties. Aror also simulates P . We note that, since we require that Q be hon-
est during key generation, Aror controls Q at this stage. When Q is asked to

12 BUAN, GJØSTEEN AND KRÅKMO

generate keys, Aror simply outputs (Key, pk) in the name of Q. Aror behaves
exactly as P , with the following exception: When Q engages in a protocol to
sign some message m1 input by some honest user Pi, Aror outputs m1 and en-
gages in a protocol with User(pk ,mb), where b is Aror’s challenge bit and m0 is a
randomly chosen message. Aror forwards messages from Q to User(pk ,mb) and
the other way around. If Aror obtains σ as additional input, then Aror outputs
(Signature, σ) in the name of Pi. Finally, when Z outputs a bit b′, Aror outputs
b′.

We observe that, if Aror’s challenge bit b = 0, then Z’s environment in Game
3 is perfectly simulated, while if b = 1, Z’s environment in Game 2 is perfectly
simulated. Hence, we compute Aror’s advantage as follows:

Advror
BS,Aror(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[G2 = 1]− Pr[G3 = 1]

∣∣∣,
and the proof is complete. �

By a standard hybrid argument, if there exists an effective distinguisher Z
between Game 0 and Game 3, then, for some i, 0 ≤ i ≤ 2, there exists an
effective distinguisher Zi between Game i and Game i+1. As shown above, such
a Zi would imply the existence of an effective Anf or an effective Aror. Hence this
part of the proof is complete, and we proceed with the opposite direction.

If: We start by assuming that there exists an effective adversary Aror, and
construct an environment Z trying to distinguish interaction with πBS from in-
teraction with IDEALFBS . Z runs as follows:

(1) Z sends (KeyGen) to Q, and obtains pk .
(2) Z instructs A to corrupt Q, so that sk may be obtained from A.
(3) Z runs Aror(τ, sk , pk).
(4) Z chooses b ∈ {0, 1} at random. Each time Aror outputs a message m1, if

b = 0, Z chooses a random message m0 of appropriate length and sends
(Sign, pk ,m0) to P1. Otherwise, if b = 1, Z sends (Sign, pk ,m1) to P1.
Z now instructs A to let Aror run a protocol with P1 on Q’s behalf. If
P1 outputs (Signature, σ), Z gives σ to Aror as additional input.

(5) When Aror outputs a bit b′, Z outputs 1 if b′ = b and 0 otherwise.

We note that, if Z interacts with πBS , Aror’s environment in Expror
BS,Aror(τ) is

perfectly simulated. If Z interacts with IDEALFBS , then Aror does not run in
its expected environment, but whatever happens, Aror gets no information about

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 13

the bit b, so b′ = b with probability 1
2 . Hence we get∣∣∣Pr[ZπBS = 1]− Pr[ZIDEALFBS
= 1]

∣∣∣
=

∣∣∣Pr[ZπBS = 1|b = 1] · Pr[b = 1] + Pr[ZπBS = 1|b = 0] · Pr[b = 0]− 1
2

∣∣∣
=

∣∣∣1
2

(Pr[ZπBS = 1|b = 1] + (1− Pr[ZπBS = 0|b = 0])− 1)
∣∣∣

=
1
2

∣∣∣(Pr[ZπBS = 1|b = 1]− Pr[ZπBS = 0|b = 0])
∣∣∣

=
1
2
Advror

BS,Aror(τ),

which completes this part of the proof.
Finally, assuming that there exists an effective adversary Anf, we construct an

environment Z trying to distinguish interaction with πBS from interaction with
IDEALFBS . Z runs as follows:

(1) Z sends (KeyGen) to Q, and obtains pk .
(2) Z runs Anf(τ, pk).
(3) Each time Anf engages in a protocol, Z instructs A to corrupt a party

Pi and let Anf run a protocol with Q on Pi’s behalf. (When Q outputs
(Sign, Pi?), Z replies with (Sign, Pi)).

(4) Assume that Q outputs l messages on the form (Signature, Pi) for
some i, and that Anf outputs k valid pairs (mi, σi). If k > l, Z sends
(Verify, pk ,mi, σi) to an honest party Pj for each i = 1, . . . , k. For
i = k, if Pj replies with (Verify, reject), then Z outputs 0. Otherwise, if
P2 replies with (Verify), then Z outputs 1.

We note that, if Z interacts with πBS , then Anf’s environment in Expnf
BS,A(τ)

is perfectly simulated, and if Anf outputs k > l valid pairs then Z’s output will
be 1. If Z interacts with IDEALFBS , then Anf does not run in its expected
environment, but whatever happens, we know that Z’s output will be 0 in this
case.

If Anf outputs k > l valid pairs (mi, σi), then if Z interacts with πBS , Z’s
output will be 1, while if Z interacts with IDEALFBS , Z’s output will be 0. So
we get ∣∣∣Pr[ZπBS = 1]− Pr[ZIDEALFBS

= 1]
∣∣∣ =

∣∣∣Pr[k > l]− 0
∣∣∣

= Succnf
BS,Anf(τ),

by which the proof is complete. �

References

[1] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Security Treat-

ment of Symmetric Encryption. In FOCS ’97: Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (FOCS ’97), pages 394–403, Washington, DC, USA,
1997. IEEE Computer Society.

14 BUAN, GJØSTEEN AND KRÅKMO

[2] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.iacr.

org/2000/067.
[3] Ran Canetti and Marc Fischlin. Universally Composable Commitments. In CRYPTO ’01:

Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryp-
tology, pages 19–40, London, UK, 2001. Springer-Verlag.

[4] David Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology-

Crypto’82, pages 199–203, 1982.
[5] Marc Fischlin. Round-Optimal Composable Blind Signatures in the Common Reference

String Model. In Advances in Cryptology-Crypto 2006. Springer-Verlag, 2006.

[6] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signatures (Ex-
tended Abstract). In CRYPTO ’97: Proceedings of the 17th Annual International Cryptol-

ogy Conference on Advances in Cryptology, pages 150–164, London, UK, 1997. Springer-
Verlag.

[7] David Pointcheval and Jacques Stern. Provably Secure Blind Signature Schemes. In ASI-
ACRYPT ’96: Proceedings of the International Conference on the Theory and Applications
of Cryptology and Information Security, pages 252–265, London, UK, 1996. Springer-Verlag.

Appendix A. Proof of Theorem 1

In order to simplify the proof, we introduce the notion left-or-right blindness,
which is similar to weak blindness, except that the step where A outputs two
messages (m0,m1) and interacts with User(pk ,mb) and User(pk ,m1−b) can be
repeated polynomially many times.

Definition 6 (Left-or-Right Blindness). Consider the following experiment, where
A is an algorithm which controls Signer but not User:

Explor
BS,A(τ):

(1) (sk , pk)← Gen(τ).
(2) b← {0, 1}.
(3) Run A(1τ , sk , pk).
(4) When A outputs two messages (m0,m1): Let A engage in two paral-

lel interactive protocols, the first with User(pk ,mb) and the second with
User(pk ,m1−b). If the first User outputs σ(mb) and the second User out-
puts σ(m1−b), then give (σ(m0), σ(m1)) to A as additional input. This
step can be repeated polynomially many (in τ) times.

(5) A outputs a bit b′.
We define the advantage of A in breaking BS with respect to left-or-right blind-

ness as

Advlor
BS,A(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

The scheme BS is said to be secure with respect to left-or-right blindness if, for
all probabilistic polynomial time A, Advlor

BS,A(τ) is negligible in τ .

The proof consists of showing the following relations among the security no-
tions for blind signature schemes:

(1) Weak blindness ⇒ left-or-right blindness
(2) Left-or-right blindness ⇒ real-or-random blindness

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 15

(3) Real-or-random blindness ⇒ left-or-right-blindness
(4) Left-or-right blindness ⇒ weak blindness

Weak Blindness ⇒ Left-or-Right Blindness: Assume that there exists
an effective adversary Alor with respect to left-or-right blindness. We will con-
struct an effective adversary Awb with respect to weak blindness, using Alor as
a subroutine. In more detail, we consider the experiment Expwb

BS,Awb(τ), where
Awb proceeds as given below.

Algorithm Awb(1τ , sk , pk):

(1) j ← {0, . . . , n}, where n is the number of times that Alor repeats step 4
in Explor

BS,Alor(τ).
(2) Run Alor on input (1τ , sk , pk).
(3) Denote by (m00,m10), . . . , (m0(n−1),m1(n−1)) the message pairs output

by Alor during the run. When Alor outputs (m0i,m1i):
• If 0 ≤ i < j, let Alor engage in two parallel interactive protocols,

the first with User(pk ,m0i) and the second with User(pk ,m1i). If
User(pk ,m0i) outputs σ(m0i) and User(pk ,m1i) outputs σ(m1i),
then Alor is given (σ(m0i), σ(m1i)) as additional input.
• If i = j, then output (m0i,m1i). Forward inputs from User(pk ,mbi)

and User(pk ,m(1−b)i) to the respective communication tapes of Alor,
and the other way around. If (σ(m0i), σ(m1i)) is obtained as addi-
tional input, forward this to Alor.

• If j < i < n, let Alor engage in two parallel interactive protocols,
the first with User(pk ,m1i) and the second with User(pk ,m0i). If
User(pk ,m0i) outputs σ(m0i) and User(pk ,m1i) outputs σ(m1i),
then Alor is given (σ(m0i), σ(m1i)) as additional input.

(4) When Alor outputs a bit b′, output b′.

For 0 ≤ i ≤ n, define Pi as the probability that Alor outputs 1 given that, for
the first i message pairs (m0,m1) output during a run, Awb lets Alor interact with
User(pk ,m0) and User(pk ,m1), respectively. Then, for the last n − i message
pairs, Awb lets Alor interact with User(pk ,m1) and User(pk ,m0), respectively.

We note that if i = 0, Awb simulates Alor’s environment in Explor
BS,Alor(τ) in

the case where b = 1, and if i = n, Awb simulates Alor’s environment in the case
where b = 0. So by assumption we have∣∣∣P0 − Pn

∣∣∣ = δ(τ)

for some δ(τ) non-negligible in τ . We can write∣∣∣(P0 − P1) + (P1 − P2) + · · ·+ (Pn−1 − Pn)
∣∣∣ = δ(τ).

16 BUAN, GJØSTEEN AND KRÅKMO

We note that if Awb’s challenge bit b = 0, the probability that Alor outputs 1
is Pj+1, and if b = 1, the probability that Aror outputs 1 is Pj . Hence we get

Advwb
BS,Awb(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr [b′ = 1|b = 1 ∧ j = 0] · Pr [j = 0] + · · ·+

Pr [b′ = 1|b = 1 ∧ j = n− 1] · Pr [j = n− 1]

−Pr [b′ = 1|b = 0 ∧ j = 0] · Pr [j = 0]− · · ·−

Pr [b′ = 1|b = 0 ∧ j = n− 1] · Pr [j = n− 1]
∣∣∣

=
∣∣∣ 1
n

(P0 + · · ·+ Pn−1 − (P1 + · · ·+ Pn))
∣∣∣

=
1
n

∣∣∣(P0 − P1) + · · ·+ (Pn−1 − Pn)
∣∣∣

=
δ(τ)
n

.

Since δ(τ) is non-negligible in τ , and n is polynomial in τ , 1
nδ(τ) is also non-

negligible in τ .

Left-or-Right Blindness ⇒ Real-or-Random Blindness: In this part,
assuming that there exists an effective adversary Aror with respect to real-or-
random blindness, we consider Explor

BS,Alor(τ), where Alor runs the following pro-
cedure.

Algorithm Alor(1τ , sk , pk):
(1) Run Aror on input (1τ , sk , pk).
(2) Each time Aror outputs a message m1:

• Choose a random message m0 and output (m0,m1).
• Forward inputs from User(pk ,mb) to Aror’s communication tape,

and the other way around. Run the protocol with User(pk ,m1−b)
honestly (to ensure that a signature is produced). If (σ(m0), σ(m1))
is obtained as additional input, forward σ(m1) to Aror.

(3) When Aror outputs a bit b′, output b′.
We observe that when Alor’s challenge bit b = 0, Alor simulates Aror’s en-

vironment in Expror
BS,Aror(τ) in the case where Aror’s challenge bit b = 0, and

correspondingly for the case b = 1. Hence we get

Advlor
BS,Alor(τ) = Advror

BS,Aror(τ),

which, by assumption, is non-negligible in τ .

Real-or-Random Blindness⇒ Left-or-Right Blindness: Assuming that
there exists an effective adversary Alor with respect to left-or-right blindness, our
goal is to construct an adversary Aror breaking the real-or-random blindness of
our scheme. To simplify this part of the proof, we define the following games:

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 17

Game 1: This game is the same as Explor
BS,A(τ), except that we always have b = 0.

Game 2: This game is the same as Game 1, with the following modifications:
Each time A outputs a message pair, say (m0,m

′
1), we choose a ran-

dom message m1, and let A engage in protocols with User(pk ,m0) and
User(pk ,m1), respectively. Moreover, we run internally a protocol be-
tween honest Signer(sk , pk) and honest User(pk ,m′

1), and obtain σ(m′
1).

If User(pk ,m0) outputs σ(m0) and User(pk ,m1) outputs σ(m1), then we
give (σ(m0), σ(m′

1)) to A as additional input.
Game 3: This game is the same as Game 1, with the following modifications: Each

time A outputs a message pair, say (m′
0,m

′
1), we choose two random mes-

sages m0 and m1, and let A engage in protocols with User(pk ,m0) and
User(pk ,m1), respectively. Moreover, we run two protocols internally,
one between honest Signer(sk , pk) and honest User(pk ,m′

0), the other
between honest Signer(sk , pk) and honest User(pk ,m′

1). We thus ob-
tain σ(m′

0) and σ(m′
1). If User(pk ,m0) outputs σ(m0) and User(pk ,m1)

outputs σ(m1), then we give (σ(m′
0), σ(m′

1)) to A as additional input.

We start by constructing a distinguisher between Game 1 and Game 3, A13,
using Alor as a subroutine. That is, A13 participates in either Game 1 or Game
3 and outputs a bit b.

Algorithm A13(1τ , sk , pk):

(1) Run Alor on input (1τ , sk , pk).
(2) b̃← {0, 1}
(3) Each time Alor outputs a message pair, say (m̃0, m̃1):

• Output (m̃b̃, m̃1−b̃).
• Engage in two protocols, say with User0 and User1, respectively.

Forward outputs from User0 and User1 to the respective commu-
nication tapes of Alor, and the other way around. If some pair
(σ(m̃0), σ(m̃1)) is obtained as additional input, forward this to Alor.

(4) When Alor outputs a bit b′, if b′ = b̃, then output 1, otherwise output 0.

We observe that, if A13 participates in Game 1, A13 simulates Alor’s environ-
ment in Explor

BS,Alor(τ), with b̃ acting as the challenge bit. On the other hand, if
A13 participates in Game 3, Alor gets no information about b̃, so in this case A13

outputs 1 with probability 1
2 . In line with the former definitions, we compute the

advantage of A13 as follows, where b′′ denotes the output of A13:

Adv13
BS,A(τ) =

∣∣∣Pr[b′′ = 1|Game 1]− Pr[b′′ = 1|Game 3]
∣∣∣,

18 BUAN, GJØSTEEN AND KRÅKMO

where

Pr[b′′ = 1|Game 1] = Pr[b′ = 1|Game 1 ∧ b̃ = 1] · Pr[b̃ = 1]

+Pr[b′ = 0|Game 1 ∧ b̃ = 0] · Pr[b̃ = 0]

= Pr[b′ = 1|Game 1 ∧ b̃ = 1] · 1
2

+
(
1− Pr[b′ = 1|Game 1 ∧ b̃ = 0]

)
· 1
2
.

So we get

Adv13
BS,A(τ) =

∣∣∣1
2

(
Pr[b′ = 1|Game 1 ∧ b̃ = 1]− Pr[b′ = 1|Game 1 ∧ b̃ = 0]

)
+

1
2
− 1

2

∣∣∣
=

1
2
·Advlor

BS,A(τ),

which, by assumption, is non-negligible in τ . This means that A13 is an effective
distinguisher between Game 1 and Game 3.

By a standard hybrid argument, if there exists an effective A13, then there
exists an effective distinguisher A12 between Game 1 and Game 2 or an effective
distinguisher A23 between Game 2 and Game 3. We complete this part of the
proof by showing that, using either A12 or A23, we can construct an effective
adversary Aror with respect to real-or-random blindness.

First, we assume that there exists an effective A12 and consider the experiment
Expror

BS,Aror(τ), where Aror proceeds as described below.

Algorithm Aror(1τ , sk , pk):
(1) Run A12 on input (1τ , sk , pk).
(2) When A12 outputs a message pair, say (m̃0, m̃1), output m̃1.
(3) Simulate honest User(pk , m̃0) internally, and engage in a protocol, say

with User1. Forward inputs from User(pk , m̃0) and User1 to the re-
spective communication tapes of A12, and the other way around. If
User(pk , m̃0) outputs σ(m̃0) and σ(m̃1) is obtained as additional input,
forward (σ(m̃0), σ(m̃1)) to A12.

(4) When A12 outputs a bit b′, output b′.
We note that if Aror’s challenge bit b = 0, then Aror simulates A12’s environ-

ment in Game 2, while if b = 1, Aror simulates A12’s environment in Game 1. We
compute the advantage of Aror as follows:

Advror
BS,A(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[b′ = 1|Game 1]− Pr[b′ = 1|Game 2]

∣∣∣
= Adv12

BS,A(τ),

which, by assumption, is non-negligible in τ .
Now, in a similar manner, we assume that there exists an effective A23 and

consider the experiment Expror
BS,Aror(τ), where Aror proceeds as follows:

UNIVERSALLY COMPOSABLE BLIND SIGNATURES IN THE PLAIN MODEL 19

Algorithm Aror(1τ , sk , pk):
(1) Run A23 on input (1τ , sk , pk).
(2) When A23 outputs a message pair, say (m̃0, m̃1), output m̃0.
(3) Randomly choose a message m̃. Simulate internally User(pk , m̃) in an

honest manner, and engage in a protocol, say with User0. Forward in-
puts from User0 and User(pk , m̃) to the respective communication tapes
of A23, and the other way around. Moreover, simulate internally a pro-
tocol between honest Signer(sk , pk) and honest User(pk , m̃0), so that a
signature σ(m̃0) is obtained. If User(pk , m̃) outputs σ(m̃) and σ(m̃0) is
obtained as additional input, forward (σ(m̃0), σ(m̃1)) to A23.

(4) When A23 outputs a bit b′, output b′.
We note that if Aror’s challenge bit b = 0, then Aror simulates A23’s environ-

ment in Game 3, while if b = 1, Aror simulates A23’s environment in Game 2. We
compute the advantage of Aror as follows:

Advror
BS,A(τ) =

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣

=
∣∣∣Pr[b′ = 1|Game 2]− Pr[b′ = 1|Game 3]

∣∣∣
= Adv23

BS,A(τ),

which, by assumption, is non-negligible in τ .

Left-or-Right Blindness ⇒ Weak Blindness: Assume that there exists
an effective adversary Awb with respect to weak blindness, and consider the
experiment Explor

BS,Alor(τ), where Alor proceeds as described below.

Algorithm Alor(1τ , sk , pk):
(1) Run Awb on input (1τ , sk , pk).
(2) When Awb outputs a message pair (m0,m1), output (m0,m1).
(3) Forward inputs from User(pk ,mb) and User(pk ,m1−b) to the respective

communication tapes of Awb, and the other way around. If (σ(m0), σ(m1))
is obtained as additional input, forward this to Awb.

(4) When Awb outputs a bit b′, output b′.
It is clear that when Alor’s challenge bit b = 0, Alor simulates Awb’s envi-

ronment in Expwb
BS,Awb(τ) in the case where Awb’s challenge bit b = 0, and

correspondingly for the case where b = 1. Hence we get

Advlor
BS,Alor(τ) = Advwb

BS,Awb(τ),

which, by assumption, is non-negligible in τ .

Paper III

Round-Optimal Blind Signatures from Waters Signatures

Kristian Gjøsteen and Lillian Kr̊akmo

Published in Proceedings of ProvSec 2008, volume 5324 of LNCS

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS
SIGNATURES

KRISTIAN GJØSTEEN AND LILLIAN KRÅKMO

Abstract. We present a round-optimal blind signature scheme based on

Waters’ signature scheme. Our construction resembles that of Fischlin [9],
but does not rely on generic non-interactive zero-knowledge proofs. In ad-

dition to a common reference string, our scheme requires a registered public
key for the signer.

1. Introduction

The idea of blind signatures was proposed by Chaum [8] as a key ingredient
for anonymous electronic cash applications. Blind signatures allow a bank to
issue signatures without seeing the content of the signed documents, and at the
same time prevent users from forging signatures. The security of blind signatures
was first formalized by Pointcheval and Stern [16] and later by Juels, Luby and
Ostrovsky [12], resulting in the notions blindness and non-forgeability. Since then,
a number of blind signature schemes have been proposed, some in the random
oracle model [16, 1, 4, 5], and some without random oracles [7, 13, 14, 9, 11]. Most
of the above mentioned schemes use three or more moves, and proving security
under concurrent executions of the signature generation protocol has often been
difficult. Notably, this problem is avoided in schemes requiring only two moves,
i.e. round-optimal schemes.

Recently, Fischlin [9] proposed a round-optimal blind signature scheme in the
common reference string model. This scheme uses generic non-interactive zero-
knowledge (NIZK) proofs, which makes it quite impractical. Our contribution is
a concrete round-optimal scheme based on Waters’ signature scheme [18]. Wa-
ters’ scheme is weakly unforgeable, in the sense that signatures may easily be
randomized. This property makes Waters’ scheme a natural starting point for
constructing a blind signature scheme. In our scheme, to obtain a blind signature
on a message, the user computes a commitment to the message, based on Waters’
hash function. The signer’s response is essentially a signature on the commit-
ment. Finally, the user obtains a blind signature from the signer’s response, by
simultaneously unblinding the commitment and randomizing the resulting Waters
signature.

In order to obtain provable security, the user is also required to compute a
NIZK proof that the commitment was honestly generated. The proof is obtained
by applying linear encryption [6] as an extractable commitment scheme, and by

1

2 GJØSTEEN AND KRÅKMO

compiling a suitable Σ-protocol using a technique developed by Damg̊ard et al.
[17]. Consequently, we need a common reference string and a registered public
key for the signer.

The main drawback with our scheme is that a moderate number of NIZK proofs
must be generated and verified as part of the signature generation protocol. A
major advantage, however, is that verifying signatures is no more expensive than
for Waters signatures.

2. Preliminaries

2.1. Bilinear Groups. Let G be a multiplicative cyclic group of prime order p,
and let g be a generator of G. We say that G is a bilinear group if the group
operation in G is efficiently computable, and if there exists a multiplicative cyclic
group G1 of order p and an efficiently computable non-degenerate bilinear map
e : G × G → G1, i.e. for all u, v ∈ G and a, b ∈ {0, . . . , p − 1}, we have
e(ua, vb) = e(u, v)ab, and e(g, g) 6= 1.

2.2. Signature Schemes and Their Security. We refer to [12] for a formal
definition of a signature scheme S, and note that we use the following notation:
S = (Gen,Sign,Verify), where Gen(1τ) outputs (sk , pk), Sign(sk ,m) outputs σ,
and Verify(pk ,m, σ) outputs accept/reject .

We need the notion existential unforgeability under an adaptive chosen message
attack (UF-CMA) as defined by Goldwasser, Micali and Rivest in [10], which is
defined by the experiment Expuf-cma

S,A (τ), given in Figure 1. The experiment
Expuf-cma

S,A (τ) starts with the adversary A being given the target sender’s public
key pk . A’s job is to produce a message/signature pair (m,σ) such that σ is a
valid signature on m with respect to pk . A has access to the signing oracle OS ,
which takes a message as input and outputs a signature on the message under
sk . It is required that OS was never queried with the message m.

A is said to win if the experiment returns 1. We define the success rate of A
in breaking S with respect to UF-CMA as

Succuf-cma
S,A = Pr

[
Expuf-cma

S,A = 1
]
.

Definition 1. The scheme S is said to be (t, q, ε)-secure with respect to UF-CMA
if no A running in time t and making at most q oracle queries has success rate
at least ε.

Waters’ Signature Scheme: The security of Waters’ signature scheme is based
on the Computational Diffie Hellmann assumption and does not rely on random
oracles [18]. We review the scheme below.

Key Generation: Let G be a bilinear group of order p, where p has length τ ,
and let e : G×G→ G1 be the corresponding efficiently computable bilinear map.
To generate the public key, the algorithm GenW chooses a random generator
g ∈ G and a random α ∈ {0, . . . , p− 1} and lets g1 = gα. Additionally, for some
appropriate n, it chooses random g2, u

′, u1, . . . , un ∈ G and lets U = (u1, . . . , un).
The public key is (g, g1, g2, u

′, U) and the secret key is gα
2 .

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 3

Signature Generation: Upon input of a message m of length n, the algo-
rithm SignW chooses a random r ∈ {0, . . . , p− 1} and computes the signature σ
as σ = (σ1, σ2) = (gα

2 (u′
∏n

i=1 umi
i)r

, gr), where mi denotes the i’th bit of m.
Signature Verification: To verify a signature σ = (σ1, σ2) on a message m,

the algorithm VerifyW checks that e(σ1, g) = e(σ2, u
′∏n

i=1 umi
i) ·e(g1, g2). If this

holds, it outputs accept , otherwise it outputs reject .
Assume that a signature (σ1, σ2) on a message m is generated according to

the above scheme. Note that, if we randomly choose r∗ ∈ {0, . . . , p − 1} and
let (σ∗1 , σ∗2) = (σ1(u′

∏n
i=1 umi

i)r∗ , σ2g
r∗), (σ∗1 , σ∗2) is a new, uniformly distributed

signature on m. This property is exploited in our blind signature scheme.
The computational Diffie-Hellman (CDH) problem is reviewed in Appendix

A. Waters’ scheme is known to be (t, q, ε)-secure with respect to UF-CMA if the
(t, ε

16(n+1)q)-CDH assumption holds in G.

2.3. Public Key Encryption Schemes and Their Security. We refer to [3]
for a formal definition of a public key encryption scheme PKE , and note that
we use the following notation: PKE = (Gen,Enc,Dec), where Gen(1τ) outputs
(sk , pk), Enc(pk ,m) outputs c, and Dec(sk , c) outputs m/ ⊥.

In our work we need the security notion real-or-random indistinguishability
under a chosen plaintext attack (ROR-CPA), which is defined by the experiment
Expror-cpa

PKE,A(τ) given in Figure 1. In the experiment Expror-cpa
PKE,A(τ), the adversary

A has access to the oracle Ob
ror (initialized with a hidden bit b) which takes as

input a message m. If b = 0, it outputs an encryption of a randomly chosen string
of length |m| under pk . A new random string is chosen for each query. If b = 1,
it outputs an encryption of m under pk . A’s challenge is to guess the hidden bit
b.

We define the advantage of A in breaking PKE with respect to ROR-CPA as

Advror-cpa
PKE,A(τ) =

∣∣∣Pr
[
Expror-cpa

PKE,A(τ) = 1|b = 1
]
− Pr

[
Expror-cpa

PKE,A(τ) = 1|b = 0
]∣∣∣.

Definition 2. The scheme PKE is said to be (t, q, ε)-secure with respect to ROR-
CPA if no A running in time t and making at most q oracle queries has advantage
at least ε.

Linear Encryption: Linear encryption was proposed by Boneh, Boyen and
Shacham in [6] as a natural extension of ElGamal encryption. While ElGamal en-
cryption relies on the Decision Diffie Hellman (DDH) problem, Linear encryption
relies on the Decision Linear Diffie Hellman (DLDH) problem, which is believed
to be hard even in bilinear groups where the DDH problem is easy. The DLDH
problem is reviewed in Appendix A.

In the Linear encryption (LE) scheme, GenL outputs (skL, pkL), where pkL

is a triple of randomly chosen generators α1, α2, β ∈ G, where G is a group of
prime order p, and p has length τ . skL is the exponents a1, a2 ∈ {0, . . . , p − 1}
such that αa1

1 = αa2
2 = β. EncL takes as input a message m ∈ G, chooses random

values r, s ∈ {0, . . . , p− 1}, and outputs the triple (y1, y2, y3) = (αr
1, α

s
2, β

r+sm).
DecL takes a ciphertext (y1, y2, y3) as input and outputs y3y

−a1
1 y−a2

2 .

4 GJØSTEEN AND KRÅKMO

Expuf-cma
S,A (τ):
1. (sk , pk)← Gen(1τ).
2. (m,σ)← AOS (pk).
3. If Verify(pk ,m, σ) = accept

then return 1, otherwise
return 0.

Expror-cpa
PKE,A(τ)
1. (sk , pk)← Gen(1τ)
2. b← {0, 1}
3. b′ ← AOb

ror(pk)
4. Return b′.

Expnf
BS,A(τ):
1. crs ← D(1τ).
2. (pkKS , skKS)← KS (1τ).
3. (pk , sk)← Gen(1τ).
4. Let A(1τ , crs, pkKS , pk)

engage in polynomially many
(in τ) parallel interactive
protocols, with polynomially
many (in τ) copies of
Signer(pk , sk), where A
decides in an adaptive manner
when to stop. Let l be the
number of executions, where
Signer outputs completed .

5. A outputs a collection
{(m1, σ(m1)), . . . , (mk, σ(mk))},
subject to the constraint that
mi 6= mj for 1 ≤ i < j ≤ k,
and Verify(pk ,mi, σ(mi))
outputs accept for 1 ≤ i ≤ k.

Expb
BS,A(τ):
1. crs ← D(1τ).
2. Run A on input (1τ , crs).
3. (pk , r, (m0,m1))← A.
4. (skKS , pkKS)← KS (1τ , r).
5. b← {0, 1}.
6. Let A engage in two parallel

interactive protocols, the first
with User(pk ,mb) and the
second with User(pk ,m1−b).

7. If the first User outputs
σ(mb) and the second User
outputs σ(m1−b), then give
(σ(m0), σ(m1)) to A as
additional input.

8. A outputs a bit b′.

Figure 1. Experiments for security definitions.

It can be shown that, for all t, q polynomial in τ , the LE scheme is (t, q, ε)-
secure with respect to ROR-CPA, for some ε negligible in τ , if the corresponding
holds for the DLDH problem in G.

2.4. Setup Assumptions.
The Common Reference String Model: Let D be a probabilistic polynomial-
time algorithm which takes a security parameter 1τ as input and outputs a value
crs, chosen according to some publicly known distribution. In the common refer-
ence string (CRS) model, we may assume that all parties have access to a trusted
functionality FD

crs, which initially runs D(1τ) and obtains crs, and later gives crs
to any party asking for it.
The Registered Public Key Model: We also review the registered public-key
model, according to [17], and note that its relation to the common reference string
model is discussed in [2].

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 5

Let KS be a probabilistic polynomial-time algorithm which takes a security
parameter 1τ as input and outputs a pair (sk , pk) of private and public keys.

In the registered public-key model, we may assume that all parties have access
to a trusted functionality FKS

reg , which can be invoked to register own key pairs and
to retrieve the public keys of others. In order to register a key pair, the registrant
privately sends FKS

reg the random coins r used to create his key pair. FKS
reg then

runs KS (1τ , r), stores the resulting public key together with the identity of the
registrant, and later gives the public key to any party asking for it.

2.5. Compilation of Σ-Protocols in the Registered Public Key Model.
According to [17], a Σ-protocol for a relation R is an interactive proof-system
for the language LR = {x|∃w : (x,w) ∈ R}. The conversations are on the form
(a, e, z), where a and z are messages sent by the prover P , while e is a random
challenge sent by the verifier V . Additionally, a Σ-protocol has the properties
relaxed special soundness and special honest-verifier zero-knowledge. We refer
to [17] for a formal definition of these properties, and note that perfect honest-
verifier zero-knowledge is a stronger variant of honest-verifier zero-knowledge,
where the conversations output by the simulator are identically distributed as
conversations between P and V .

We now briefly review the technique developed by Damg̊ard et al. [17] for com-
piling Σ-protocols into non-interactive zero-knowledge arguments. Their tech-
nique works in the registered public-key model, and we refer to [17] for a formal
definition of a non-interactive system for the relation R with key setup KS , along
with the desired properties of such a system: correctness, zero-knowledge and
soundness.

We note that the compilation technique only applies to Σ-protocols with the
additional property of linear answer, i.e. it requires that P ’s final message z be
a sequence of integers which are linearly obtained from the challenge e.

The high-level idea of the technique is the following: It is assumed that V has
initially registered a public key pkKS with the functionality FKS

reg described above.
pkKS is on the form (pk , c), where pk is a public key of a homomorphic encryption
scheme, and c is an encryption under pk of a randomly chosen challenge e. The
corresponding private key is (sk , e), where sk is the private key corresponding
to pk . To compute a proof, P first obtains pkKS from FKS

reg , and computes the
first message a according to the Σ-protocol. Then, P exploits the homomorphic
property of the encryption scheme, and the fact that the Σ-protocol has linear
answer, to obtain an encrypted response to the challenge e encrypted in c. The
encrypted response may in turn be decrypted and checked as usual by V . This
technique is illustrated in Chapter 4.2, where we give a detailed description of
the compiled Σ-protocol used in our blind signature scheme.

As for showing that the compiled protocol has the desired properties, we note
that correctness of the above system follows directly from completeness of the
involved Σ-protocol. Furthermore, since a simulator running V obtains the ran-
dom coins intended for FKS

reg , he obtains V ’s private key, and in particular the

6 GJØSTEEN AND KRÅKMO

challenge e. Hence, to simulate a proof for a statement x, he may run an honest-
verifier simulator for the Σ-protocol on input (x, e) to obtain a conversation
(a, e, z) from which a correctly distributed proof is directly obtained. This means
that zero-knowledge (for arbitrary verifiers) of the compiled protocol follows from
honest-verifier zero-knowledge of the original Σ-protocol. Proving soundness is
more involved, but it basically boils down to the assumed security of the involved
encryption scheme. We refer to [17] for detailed proofs of the above properties
for the general construction. As for the particular construction used in our blind
signature scheme, proofs are given in the appendices.

3. Blind Signature Schemes and Their Security

Our definition of a blind signature scheme corresponds to the one given by
JLO in [12], modified to fit our model, where all parties are assumed to have
access to the trusted functionalities FD

crs and FKS
reg defined earlier, and where the

signer is initially required to register a public key pkKS with FKS
reg .

Definition 3 (Blind Signature Scheme). A blind signature scheme BS is a tuple
(Gen,Signer ,User ,Verify ,KS ,D) with the following properties:

• Gen is a probabilistic polynomial time algorithm, which takes as input
a security parameter τ (encoded as 1τ), and outputs a pair (sk , pk) of
secret and public keys.

• Signer and User are a pair of polynomially-bounded probabilistic inter-
active Turing machines, given as common input a public key pk. In ad-
dition, Signer is given a corresponding secret key sk, and User is given
a message m. The length of all inputs must be polynomial in the security
parameter τ . Signer and User interact according to the protocol. At the
end of the interaction, Signer outputs either completed or not completed
and User outputs either fail or σ(m).

• Verify is a deterministic polynomial time algorithm, which takes as in-
put a public key pk, a message m and a signature σ(m), and outputs
either accept or reject, indicating whether σ(m) is a valid signature on
the message m.

• D and KS are the algorithms parameterizing FD
crs and FKS

reg .

It is required that for any message m, and for all key pairs (sk , pk) output by
Gen, if both Signer and User follow the protocol, then Signer(sk , pk) outputs
completed, User(pk ,m) outputs σ(m), and Verify(pk ,m, σ(m)) outputs accept.

JLO defined security of a blind signature scheme using the notions blindness
and non-forgeability. Informally, a scheme has blindness if it is infeasible for a
malicious signer to determine the order of which two messages are signed by inter-
action with an honest user. A scheme has non-forgeability if, given l interactions
with an honest signer, it is infeasible for a malicious user to produce more than
l valid signatures.

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 7

Non-forgeability for blind signature schemes in our model is formally defined
using the experiment Expnf

BS,A(τ) given in Figure 1. A is said to win the experi-
ment if k > l. We define the success rate of the adversary A in breaking BS with
respect to non-forgeability as

Succnf
BS,A = Pr [k > l] .

Definition 4 (Non-Forgeability). The scheme BS is said to be (t, q, ε)-secure
with respect to non-forgeability if no A running in time t, engaging in at most q
protocols where Signer outputs completed, has success rate at least ε.

As for blindness in our model, we need the experiment Expb
BS,A(τ) given in

Figure 1. We define the advantage of A in breaking BS with respect to blindness
as

Advb
BS,A(τ) =

∣∣∣Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0]
∣∣∣.

Definition 5 (Blindness). The scheme BS is said to be (t, ε)-secure with respect
to blindness if no A running in time t has advantage at least ε.

4. Our Blind Signature Scheme

In this section we present our blind signature scheme, which is based on Waters’
signature scheme. We note that a similar scheme is proposed by Okamoto [14].

4.1. A Sketch of Our Scheme. We start by briefly outlining the idea of our
scheme. To obtain a blind signature on a message m, the user commits to m and
sends the resulting commitment c to the user, along with a proof π that c was
honestly generated. The signer responds with σ′, which is essentially a signature
on the commitment. In the final step, the user obtains a blind signature σ on
m, by simultaneously unblinding the commitment and randomizing the resulting
signature. The signature generation protocol is sketched in Figure 2, where we
note that the key pair (skBS , pkBS) is generated exactly as (skW , pkW) in Waters’
signature scheme.

We proceed by explaining the high-level idea of the proof π. Let Anf be an
adversary trying to break the non-forgeability of our scheme. In order to achieve
provable security, π is constructed such that a simulator running a copy of Anf

can extract the message m and the exponent t. This extractability is obtained
by having the user commit to m and t by encrypting them, using a public key
obtained from the common reference string. Given m and t, the simulator can
use a signing oracle for Waters’ signature scheme to obtain a correctly distributed
response (σ′1, σ

′
2), hence the non-forgeability of our scheme reduces to the UF-

CMA security of Waters’ scheme.
The proof π should convince the verifier (in this case the signer) that c was

honestly generated. If we let tτ−1 . . . to be the bit representation of t, that is,
t =

∑τ−1
i=0 ti2i, this amounts to proving that c = g

Pτ−1
i=0 ti2

i ∏n
i=1 umi

i for known
bits ti, 0 ≤ i ≤ τ − 1, and mi, 1 ≤ i ≤ n. This is obtained by having the prover
(in this case User) commit to each of the values gti , 0 ≤ i ≤ τ − 1, and umi

i ,

8 GJØSTEEN AND KRÅKMO

Signer User

pkBS = (g, g1, g2, u
′, U) pkBS = (g, g1, g2, u

′, U)

skBS = gα
2 m = m1m2 . . . mn ∈ {0, 1}n

Choose t← {0, . . . , p− 1}

Let c = gt
nY

i=1

umi
i

Check that u′c 6= 1

Compute a proof π of correctness of c

(c,π)←−−−−
Verify π

Choose r ← {0, . . . , p− 1}
Let σ′1 = gα

2 (u′c)r

Let σ′2 = gr

Output

completed/not completed
(σ′1,σ′2)
−−−−−−→

Choose r′ ← {0, . . . , p− 1}

Let σ1 = σ′1σ
′−t
2 (u′

nY
i=1

umi
i)r′

Let σ2 = σ′2g
r′

Check that

e(σ1, g) = e(σ2, u
′

nY
i=1

umi
i) · e(g1, g2)

Output (σ1, σ2)/fail

Figure 2. The signature generation protocol.

1 ≤ i ≤ n, prove correctness of each of the involved commitments, and then prove
that c in fact contains the committed values.

Let EncL(m, r, s) denote the Linear encryption of the message m ∈ G with
randomness (r, s) under the public key (α1, α2, β). Recall that, with this nota-
tion, EncL(m, r, s) = (αr

1, α
s
2, β

r+sm), and note that this encryption scheme is
homomorphic, i.e.

EncL(m, r, s) · EncL(m′, r′, s′) = EncL(mm′, r + r′, s + s).

Let tl−1 . . . to be the bit representation of t, that is, t =
∑l−1

i=0 ti2i. The prover
commits to gti , 0 ≤ i ≤ τ − 1, by choosing random values ri, si ∈ {0, . . . , p− 1}

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 9

and computing

Ti = EncL(gti , ri, si) = (αri
1 , αsi

2 , βri+sigti).

Similarly, the prover commits to umi
i , 1 ≤ i ≤ n, by choosing random values

r′i, s
′
i ∈ {0, . . . , p− 1} and computing

Mi = EncL(umi
i , r′i, s

′
i) = (αr′i

1 , α
s′i
2 , βr′i+s′iumi

i).

Correctness of each of the above commitments can be proved using a suitable
Σ-protocol. Moreover, since we want our proof π to be non-interactive, we apply
the technique developed by Damg̊ard et al. for compiling Σ-protocols into NIZK
proofs.

As for proving that c in fact contains the committed values, note that, by
letting r∗ =

∑l−1
i=0 ri2i +

∑n
i=1 r′i and s∗ =

∑l−1
i=0 si2i +

∑n
i=1 s′i, we have

l−1∏
i=0

T 2i

i

n∏
i=1

Mi = (αr∗

1 , αs∗

2 , βr∗+s∗gt
n∏

i=1

umi
i),

i.e.
∏l−1

i=0 T 2i

i

∏n
i=1 Mi is a commitment to gt

∏n
i=1 umi

i . This means that the
prover can prove the correctness of c by opening this commitment, that is, by
including r∗ and s∗ in π. In this way, assuming that the verifier has accepted all
of the above NIZK proofs, he can conclude that c was honestly generated if and
only if

EncL(c, r∗, s∗) =
l−i∏
i=0

T 2i

i

n∏
i=1

Mi.

4.2. The Protocol compile(ΣOR). The proof π in our blind signature scheme in-
cludes proofs of correctness of several commitments, all on the form (y1, y2, y3) =
(αr

1, α
s
2, β

r+sub), where α1, α2, β and u are publicly known elements of a bilinear
group G of known prime order p, r, s ∈ {0, . . . , p−1} are secret exponents, and b
is a secret bit. We proceed by constructing a Σ-protocol for proving correctness
of a commitment on the above form. To this end, we apply the so-called OR-
construction, briefly reviewed here according to [17]. Given Σ-protocols Σl and
Σr for relations Rl and Rr, the OR-construction yields a Σ-protocol ΣOR for the
relation ROR defined by

((xl, xr), (wl, wr)) ∈ ROR ⇔ (xl, wl) ∈ Rl ∨ (xr, wr) ∈ Rr.

Let RL be the relation defined by

(x,w) = ((x1, x2, x3), (r, s)) ∈ RL ⇔ x1 = αr
1, x2 = αs

2, x3 = βr+s.

We note that, for a commitment (y1, y2, y3), we have

(y1, y2, y3) = (αr
1, α

s
2, β

r+s)⇔ ((y1, y2, y3), (r, s)) ∈ RL

and

(y1, y2, y3) = (αr
1, α

s
2, β

r+su)⇔ ((y1, y2,
y3

u
), (r, s)) ∈ RL.

10 GJØSTEEN AND KRÅKMO

This means that a suitable protocol ΣOR for our purpose is obtained by compos-
ing Σ-protocols for RL, where we let x3 = y3 in one protocol and x3 = y3

u in the
other.

A Σ-protocol ΣL for RL is presented in Appendix B, where we also show
that ΣL has completeness, relaxed special soundness and perfect honest-verifier
zero-knowledge.

The protocol ΣOR is constructed in a standard way from the two suitable
instances of ΣL, and it is not hard to show that completeness, relaxed special
soundness and perfect honest-verifier zero-knowledge of ΣOR follow from the
corresponding properties of ΣL. For completeness, a description of ΣOR and
proofs of the respective properties are given in Appendix C. We simply note that
ΣOR has conversations on the form (a, e, (z1, z2, . . . , z6)), where zi is linearly
obtained from e for all i, 1 ≤ i ≤ 6. This means that ΣOR has linear answer,
hence we may apply the compilation technique of Damg̊ard et al.

We now describe the compilation of the protocol ΣOR. The homomorphic
encryption scheme used in the compilation is Paillier’s encryption scheme [15].
We refer to [15] for a description of this scheme. It is assumed that the verifier
has initially registered a public key with FKS

reg , where the key setup algorithm KS
is defined as follows:

KS (1τ): Generate a keypair (skP , pkP) for Paillier encryption, by running
the key generation algorithm with 2τ as input. Choose a random challenge e ∈
{0, . . . , p − 1}. Also, let c be a Paillier encryption of e under pkP . The public
key is (pkP , c) and the private key is (skP , e).

Due to the homomorphic property of Paillier encryption, and the fact that
ΣOR has linear answer, it is possible to execute the prover’s side of the protocol
given only the encryption c of the challenge e. First, the prover computes his
first message a. Then, denoting by EncP (pkP ,m) a random Paillier encryption
of m under pkP , and assuming that the component zi of his response z is given
by zi = ui + vie, he can compute an encryption of zi as EncP (pkP , ui) · cvi .

The compiled protocol is defined below. We remind the reader that ΣOR has
conversations on the form (a, e, (z1, z2, . . . , z6)), where, for each i, 1 ≤ i ≤ 6,
zi = ui + vie for some ui, vi ∈ {0, . . . , p− 1}.

Protocol Compile(ΣOR):

(1) Given (x,w), P gets V ’s public key (pkP , c) from FKS
reg and computes

the first message a according to ΣOR. Then, for i such that 1 ≤ i ≤ 6,
P computes EncP (pkP , ui) · cvi , and lets ci be a randomization of the
resulting encryption. P sends (x, π) to V , where π = (a, (c1, . . . , c6)).

(2) On input x and a proof π = (a, (c1, . . . , c6)), for i such that 1 ≤ i ≤ 6, V
lets z′i be the Paillier decryption of ci under skP . Then V verifies that
the conversation (a, e, (z′1, . . . , z

′
6)) would be accepted by the verifier of

ΣOR upon input x, and accepts or rejects accordingly.

We need a result from [17] based on the following assumption: ’HPaillier is 2-
harder than Gdlog’. Due to space limitations, we refer to [17] for formal definitions
of the involved terms. Loosely speaking, it is assumed that, given an algorithm

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 11

A that solves the discrete logarithm (DLOG) problem for moduli of length τ ,
there is no algorithm that breaks Paillier encryption for moduli of length 2τ ,
with runtime comparable to that of A. We note that, as defined in [17], Gdlog

addresses the DLOG problem in the subgroup of Zp of order p′, where p and
p′ are primes, and p = 2p′ + 1. Since our Σ-protocol involves a bilinear group,
we need a modified version of Gdlog, addressing the DLOG problem in a general
bilinear group of prime order. We call this modified version G∗dlog. By arguing as
in [17], the following assumption seems reasonable.

Assumption 6. HPaillier is 2-harder than G∗dlog.

We obtain the following result, analogous to Theorem 1, Theorem 2 and Corol-
lary 1 in [17]. We note that, when it comes to proving soundness, we slightly
modify the definition used on [17] so it better suits our application. This modified
definition, along with a proof of Theorem 7 is given in Appendix D.

Theorem 7. compile(ΣOR) has correctness and perfect zero-knowledge (in the
registered public-key model). Furthermore, under Assumption 6, compile(ΣOR)
is sound for O(log τ) executions.

4.3. Our Scheme. A detailed description of our blind signature scheme is given
below. Recall that, in our model, it is assumed that Signer and User have access
to the trusted functionalities FD

crs and FKS
reg defined earlier. Furthermore, Signer

is initially required to register a public key pkKS with the functionality FKS
reg .

Common Reference String: The algorithm D takes 1τ as input, randomly
chooses α1, α2, β ∈ G and lets crs = α1||α2||β.

Key Setup: The algorithm KS works exactly as in compile(ΣOR), i.e. the
public and secret keys are pkKS = (pkP , c) and skKS = (skP , e).

Key Generation: The algorithm Gen works exactly as in Waters’ signature
scheme, i.e. the public and secret keys are pkBS = (g, g1, g2, u

′, U) and skBS = gα
2 .

Signature Generation: User takes (pkBS ,m) as input and lets m1m2 . . .mn

be the bit representation of m. He randomly chooses t ∈ {0, . . . , p− 1}, and lets
c = gt

∏n
i=1 umi

i . He checks that u′c 6= 1. If this holds, he continues. Otherwise,
he starts over, choosing a new t. Then he generates a proof π of correctness of
c as follows: Let tτ−1 . . . to be the bit representation of t, that is, t =

∑τ−1
i=0 ti2i.

User gets crs = α1||α2||β from FD
crs and lets pkL = (α1, α2, β). Then, for i,

0 ≤ i ≤ τ − 1, he chooses random values ri, si ∈ {0, . . . , p− 1} and computes

Ti = EncL(pkL, gti , ri, si) = (αri
1 , αsi

2 , βri+sigti).

Similarly, for i, 1 ≤ i ≤ n, he chooses random values r′i, s
′
i ∈ {0, . . . , p − 1} and

computes

Mi = EncL(pkL, umi
i , r′i, s

′
i) = (αr′i

1 , α
s′i
2 , βr′i+s′iumi

i).

He also computes

r∗ =
τ−1∑
i=0

ri2i +
n∑

i=1

r′i, s∗ =
τ−1∑
i=0

si2i +
n∑

i=1

s′i.

12 GJØSTEEN AND KRÅKMO

User then computes, for all i, 0 ≤ i ≤ τ−1, a proof πTi according to Compile(ΣOR)
on input (Ti, (ri, si)). Moreover, for all i, 1 ≤ i ≤ n, he computes a proof
πMi according to Compile(ΣOR) on input (Mi, (r′i, s

′
i)). Finally, he lets π =

((T0, πT0), . . . , (Tl−1, πTl−1), (M1, πM1), . . . , (Mn, πMn), r∗, s∗), sends (c, π) to Signer
and waits.

Signer gets (pkBS , skBS) as input. Upon receiving (c, π) from User , he verifies
π by the following procedure: First, he verifies each of the pairs (Ti, πTi), 0 ≤
i ≤ τ − 1, and (Mi, πMi), 1 ≤ i ≤ n, according to Compile(ΣOR). If all pairs are
accepted, he continues. Otherwise, he outputs not completed and stops. He gets
crs = α1||α2||β from FD

crs and lets pkL = (α1, α2, β). He then checks if

EncL(pkL, c, r∗, s∗) =
l−i∏
i=0

T 2i

i

n∏
i=1

Mi.

If this holds, he concludes that c was honestly generated and continues. Other-
wise, he outputs not completed and stops. He randomly chooses r ∈ {0, . . . , p−1}.
He then lets σ′1 = gα

2 (u′c)r and σ′2 = gr, outputs completed , sends (σ′1, σ
′
2) to User

and stops.
Upon receiving (σ′1, σ

′
2) from Signer , User randomly chooses r′ ∈ {0, . . . , p−1}.

He lets σ1 = σ′1σ
′−t
2 (u′

∏n
i=1 umi

i)r′ and σ2 = σ′2g
r′ . He then checks if

e(σ1, g) = e(σ2, u
′

n∏
i=1

umi
i) · e(g1, g2).

If this holds, he outputs (σ1, σ2) and stops. Otherwise, he outputs fail and stops.
Signature Verification: The algorithm Verify works exactly as in Waters’

scheme, i.e. to verify a signature σ = (σ1, σ2) on a message m, it checks that

e(σ1, g) = e(σ2, u
′

n∏
i=1

umi
i) · e(g1, g2).

If this holds, it outputs accept , otherwise it outputs reject .
We note that the restriction on l in the below theorem is due to the restriction

to O(log τ) executions in Theorem 7. However, the authors of [17] show that,
under a stronger non-standard assumption, their compiled protocol for prov-
ing equality of discrete logarithms is sound for an arbitrary polynomial num-
ber of executions. Intuitively, a similar strategy should apply to the protocol
compile(ΣOR). Hence, under this assumption, we may achieve non-forgeability
for an arbitrary polynomial l. We refer to [17] for more details.

The proofs of the following results are given in Appendix E and Appendix F,
respectively.

Theorem 8. Under Assumption 6, and if Waters’ scheme is (t′, q′, ε′)-secure
with respect to UF-CMA, then our blind signature scheme is (t, l, ε)-secure with
respect to non-forgeability, where q′ = l = O(log τ), t′ = t + poly(τ) and ε′ =
(1− ρ)ε, where ρ is a negligible function in τ .

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 13

Theorem 9. If the LE scheme is (t′, 1, ε′)-secure with respect to ROR-CPA,
then our blind signature scheme is (t, ε)-secure with respect to blindness, where
t′ = t + poly(τ), and ε′ = ε

2n+2τ .

References

[1] Masayuki Abe. A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures. In EUROCRYPT ’01: Proceedings of the International Conference on the

Theory and Application of Cryptographic Techniques, pages 136–151, London, UK, 2001.
Springer-Verlag.

[2] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally Composable
Protocols with Relaxed Set-Up Assumptions. In FOCS ’04: Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’04), pages 186–195,

Washington, DC, USA, 2004. IEEE Computer Society.
[3] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations Among

Notions of Security for Public-Key Encryption Schemes. In CRYPTO ’98: Proceedings of
the 18th Annual International Cryptology Conference on Advances in Cryptology, pages
26–45, London, UK, 1998. Springer-Verlag.

[4] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
Power of RSA Inversion Oracles and the Security of Chaum’s RSA-Based Blind Signa-

ture Scheme. In FC ’01: Proceedings of the 5th International Conference on Financial
Cryptography, pages 319–338, London, UK, 2002. Springer-Verlag.

[5] A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the

Gap-Diffie-Hellman-Group Signature Scheme. In Public-Key Cryptography (PKC) 2003,
volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer-Verlag, 2003.

[6] D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. pages 41–55, 2004.
[7] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient Blind Signatures

Without Random Oracles. In SCN, pages 134–148, 2004.

[8] David Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology-
Crypto’82, pages 199–203, 1982.

[9] Marc Fischlin. Round-Optimal Composable Blind Signatures in the Common Reference
String Model. In Advances in Cryptology-Crypto 2006. Springer-Verlag, 2006.

[10] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure

Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, 1988.
[11] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-Secure

Blind Signatures Without Random Oracles or Setup Assumptions. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 323–341. Springer,
2007.

[12] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signatures (Ex-
tended Abstract). In CRYPTO ’97: Proceedings of the 17th Annual International Cryptol-

ogy Conference on Advances in Cryptology, pages 150–164, London, UK, 1997. Springer-
Verlag.

[13] Aggelos Kiayias and Hong-Sheng Zhou. Concurrent Blind Signatures Without Random

Oracles. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture
Notes in Computer Science, pages 49–62. Springer, 2006.

[14] Tatsuaki Okamoto. Efficient Blind and Partially Blind Signatures Without Random Ora-
cles. In TCC, pages 80–99, 2006.

[15] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In Advances in Cryptology - EUROCRYPT ’99.
[16] David Pointcheval and Jacques Stern. Provably Secure Blind Signature Schemes. In ASI-

ACRYPT ’96: Proceedings of the International Conference on the Theory and Applica-

tions of Cryptology and Information Security, pages 252–265, London, UK, 1996. Springer-
Verlag.

14 GJØSTEEN AND KRÅKMO

[17] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-Interactive Zero-Knowledge from
Homomorphic Encryption. In TCC, pages 41–59, 2006.

[18] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In EURO-
CRYPT, pages 114–127, 2005.

Appendix A. Complexity Assumptions

A.1. The Computational Diffie-Hellman Assumption. The Computational
Diffie-Hellman (CDH) problem is defined as follows: Given a cyclic group G of
order p and a generator g ∈ G, the challenger chooses random a, b ∈ {0, . . . , p−1}
and outputs (g, ga, gb). The adversary’s job is to find gab ∈ G.

We define the success rate of an adversary A in solving the CDH problem in
G as

SuccCDH
A = Pr

[
A(g, ga, gb) = gab

]
.

Definition 10. The (t, ε)-CDH assumption holds in G if no adversary running
in time t has success rate at least ε in solving the CDH problem in G.

A.2. The Decision Linear Diffie-Hellman Assumption. The Decision Lin-
ear Diffie-Hellman (DLDH) problem is defined as follows: Given a cyclic group
G of order p and generators g1, g2, g3 ∈ G, the challenger chooses random
a, b, c ∈ {0, . . . , p − 1} and a random bit β. If β = 0, the challenger outputs
(g1, g2, g3, g

a
1 , gb

2, g
c
3). Otherwise, if β = 1, he outputs (g1, g2, g3, g

a
1 , gb

2, g
a+b
3).

The adversary outputs a guess β′ of β.
We say that an adversary A has an advantage at least ε in solving the DLDH

problem in G if

AdvDLDH
A =

∣∣Pr
[
A(g1, g2, g3, g

a
1 , gb

2, g
a+b
3) = 1

]
− Pr

[
A(g1, g2, g3, g

a
1 , gb

2, g
c
3) = 1

]∣∣ ≥ 2ε.

Definition 11. The (t, ε)-DLDH assumption holds in G if no adversary running
in time t has advantage at least ε in solving the DLDH problem in G.

Appendix B. The Protocol ΣL

The Σ-protocol ΣL for the relation RL is presented in Figure 3.
ΣL obviously has completeness, since an honest P is guaranteed to convince

V . We prove that it also has special soundness. Assume that, for some x =
(x1, x2, x3), there are accepting conversations ((a1, a2, a3), e, (z1, z2)), ((a1, a2, a3),
e′, (z′1, z

′
2)), where e 6= e′. We show that we can efficiently compute w = (r, s)

such that (x,w) ∈ R. From the above assumption we have

αz1
1 = xe

1a1, α
z′1
1 = xe′

1 a1,

which implies that

α
z1−z′1
1 = xe−e′

1 .

Assuming that

x1 = αr
1,

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 15

P V

(x1, x2, x3) (x1, x2, x3)

(r, s)

Choose r′, s′ ← {0, . . . , p− 1}
Let

a1 = αr′

1

a2 = αs′

2

a3 = βr′+s′

(a1,a2,a3)−−−−−−−→
Choose e← {0, . . . , p− 1}

e←−−
Let

z1 = r′ + rc

z2 = s′ + sc

(z1,z2)−−−−−→
Check if

αz1
1 = xe

1a1

αz2
2 = xe

2a2

βz1+z2 = xe
3a3

and accept or reject accordingly

Figure 3. The protocol ΣL.

r can be computed as

r =
z1 − z′1
e− e′

mod p.

We also have

αz2
2 = xe

2a2, α
z′2
2 = xe′

2 a2,

which implies that

α
z2−z′2
2 = xe−e′

2 .

16 GJØSTEEN AND KRÅKMO

Assuming that

x2 = αs
2,

s can be computed as

s =
z2 − z′2
e− e′

mod p.

Finally we have

βz1+z2 = xe
3a3, βz′1+z′2 = xe′

3 a3,

which implies that

β(z1−z′1)+(z2−z′2) = xe−e′

3 .

Raising both sides to the power 1
e−e′ mod p we obtain

x3 = βr+s,

so w = (r, s) can be computed such that (x,w) ∈ RL.
Next we prove that ΣL has perfect honest-verifier zero-knowledge, by con-

structing a simulator which on input (x, e), where x = (x1, x2, x3) ∈ LRL , outputs
a conversation ((a∗1, a

∗
2, a

∗
3), e, (z

∗
1 , z∗2)), which is identically distributed as conver-

sations between honest P and V on input x and with challenge e. The simulator
SL runs as follows on input (x, e):

(1) Choose z∗1 , z∗2 ← {0, . . . , p− 1}.
(2) Let a∗1 = α

z∗1
1 x−e

1 , a∗2 = α
z∗2
2 x−e

2 , a∗3 = βz∗1+z∗2 x−e
3 .

(3) Output ((a∗1, a
∗
2, a

∗
3), e, (z

∗
1 , z∗2)).

Assuming that (x1, x2, x3) = (αr
1, α

s
2, β

r+s), we have

a∗1 = α
z∗1−re
1 , a∗2 = α

z∗2−se
2 , a∗3 = β(z∗1−re)+(z∗2−se)

Letting r′ = z∗1 − re and s′ = z∗2 − se we observe that the only difference between
a conversation between P and V and a conversation produced by the simulator
is the following: In the real conversation, the exponents r′ and s′ are randomly
chosen, and determine z1 and z2 by z1 = r′+re and z2 = s′+se, while in the fake
conversation, z∗1 and z∗2 are randomly chosen, and determine r′ by r′ = z∗1 − re
and s′ by s′ = z∗2 − se. This means that the two conversations are identically
distributed, and we conclude that ΣL has perfect honest-verifier zero-knowledge.

Appendix C. The Protocol ΣOR

In this section we describe the protocol ΣOR constructed from two instances
of the protocol ΣL. For a commitment (y1, y2, y3), the goal is to prove knowledge
of (r, s) such that either ((y1, y2, y3), (r, s)) ∈ RL or ((y1, y2,

y3
u), (r, s)) ∈ RL,

without revealing which is the case. That is, a suitable relation ROR can be
defined by

(x,w) = ((y1, y2, y3), (r, s)) ∈ ROR ⇔ ((y1, y2, y3), (r, s)) ∈ RL ∨ ((y1, y2,
y3

u
), (r, s)) ∈ RL.

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 17

We note that, if (y1, y2, y3) ∈ LRL , then we have (y1, y2,
y3
u) /∈ LRL with

overwhelming probability, and vice versa. In any case, the simulator SL defined
above is applicable to both (y1, y2, y3) and (y1, y2,

y3
u) and produces accepting

conversations for both statements.
The protocol ΣOR is defined as follows for the case where ((y1, y2, y3), (r, s)) ∈

RL. In this case, the prover P and the verifier V get x = (y1, y2, y3) as common
input, and P gets w = (r, s) as private input.

(1) P computes the first message (a1, a2, a3) in ΣL, using (y1, y2, y3) as
input. He also chooses a random challenge e1 ∈ {0, . . . , p − 1} and
runs the simulator SL on input ((y1, y2,

y3
g), e1) to obtain a conversa-

tion ((a∗1, a
∗
2, a

∗
3), e1, (z∗1 , z∗2)). He sends a = ((a1, a2, a3), (a∗1, a

∗
2, a

∗
3)) to

V .
(2) V chooses a random challenge e ∈ {0, . . . , p− 1} and sends e to P .
(3) P lets e0 = (e − e1) mod p and computes the response (z1, z2) to the

challenge e0 according to ΣL, using (r, s) and the pair of random el-
ements (r′, s′) used in the construction of (a1, a2, a3). He sends z =
(e0, z1, z2, e1, z

∗
1 , z∗2) to V .

(4) V checks that e0 + e1 ≡ e mod p and that ((a1, a2, a3), e0, (z1, z2))
and ((a∗1, a

∗
2, a

∗
3), e1, (z∗1 , z∗2)) are accepting conversations in ΣL on inputs

(y1, y2, y3) and (y1, y2,
y3
u), respectively, and accepts or rejects accord-

ingly.

For the case where ((y1, y2,
y3
u), (r, s)) ∈ RL, P computes (a1, a2, a3) according

to ΣL, using x = (y1, y2,
y3
u) as input, picks e0 at random and runs SL on input

((y1, y2, y3), e0) to obtain a conversation ((a∗1, a
∗
2, a

∗
3), e0, (z∗1 , z∗2)). He sends a =

((a∗1, a
∗
2, a

∗
3), (a1, a2, a3)) to V . Correspondingly, upon receiving e from V , he

lets e1 = (e − e0) mod p, computes the response (z1, z2) to the challenge e1

according to ΣL, using (r, s) and the pair of random elements (r′, s′) used in the
construction of (a1, a2, a3), and sends z = (e0, z

∗
1 , z∗2 , e1, z1, z2) to V .

It is straightforward to verify that ΣOR is complete. As for special soundness,
assume that, for some (y1, y2, y3), there are accepting conversations (a, e, z) and
(a, e′, z′) for challenges e and e′ such that e 6= e′. Assume that z contains chal-
lenges e0 and e1 such that e0 + e1 = e and that z′ contains challenges e′0 and e′1
such that e′0 + e′1 = e′. Since e 6= e′, we must have e0 6= e′0 or e1 6= e′1. Assume
that e0 6= e′0. Then, for (y1, y2, y3), there are two accepting conversations in ΣL

with the same first message but with distinct challenges. Since ΣL has special
soundness, we can then compute (r, s) such that ((y1, y2, y3), (r, s)) ∈ RL, which
means that ((y1, y2, y3), (r, s)) ∈ ROR. A similar argument holds if e1 6= e′1.

Next we show that ΣOR has special honest-verifier zero-knowledge. To this
end, we consider the simulator SOR, which on input (x, e) such that x = (y1, y2, y3)
runs as follows:

(1) Choose a random challenge e0 ∈ {0, . . . , p − 1}, and let e1 = (e − e0)
mod p.

18 GJØSTEEN AND KRÅKMO

(2) Run the simulator SL on input ((y1, y2, y3), e0) and obtain ((a1, a2, a3), e0,
(z1, z2)).

(3) Run the simulator SL on input ((y1, y2,
y3
u), e1) and obtain ((a′1, a

′
2, a

′
3), e1,

(z′1, z
′
2)).

(4) Output (((a1, a2, a3), (a′1, a
′
2, a

′
3)), e, (e0, (z1, z2), e1, (z′1, z

′
2)).

Assume that (y1, y2, y3) ∈ LROR , and in particular that (y1, y2, y3) ∈ LRL . In this
case, it follows from perfect honest-verifier zero-knowledge of ΣL that the conver-
sation produced in step 2 is identically distributed as the corresponding conver-
sation produced by P and V in ΣOR. As for the conversation in step 3, the corre-
sponding conversation in ΣOR is also produced by SL on input ((y1, y2,

y3
u), e1),

so it is clear that these conversations are identically distributed. A similar argu-
ment holds if (y1, y2,

y3
u) ∈ LRL . It follows that conversations output by SOR are

identically distributed as conversations between honest P and V in ΣOR, and we
conclude that ΣOR has perfect honest-verifier zero-knowledge.

Appendix D. Proof of Theorem 7

Correctness of compile(ΣOR) is straightforward to verify given that ΣOR is
complete. As for zero-knowledge, consider the algorithm M running as follows:
First, recall that M receives V ’s secret key, and in particular the challenge e,
as input. Accordingly, to simulate a proof for x = (y1, y2, y3), M runs the
special honest-verifier simulator for ΣOR on input (x, e) to obtain (a, e, z) =
(a, e, (z1, . . . , z6)). Then, for i such that 1 ≤ i ≤ 6, M chooses a random ri ∈ Z∗n,
computes ci ← EncP (zi, ri) and outputs π = (a, (c1, . . . , c6)). It now follows
from perfect honest-verifier zero-knowledge of ΣOR that compile(ΣOR) has per-
fect zero-knowledge.

As for soundness, we slightly modify the definition in [17] so it better suits our
application. We consider the following experiment, where P̃ is a probabilistic,
polynomial-time adversary:

(1) (skKS , pkKS)← KS (1τ)
(2) Run P̃ on input (1τ , pkKS).
(3) Repeat until P̃ stops: P̃ outputs (xi, πi), 1 ≤ i ≤ m(k), for some polyno-

mial m. Run V (1τ , x, πi, skKS), 1 ≤ i ≤ m(k). If V (1τ , xi, πi, skKS) = 1
for all i, then give 1 to P̃ , otherwise give 0 to P̃ .

P̃ is said to win if he produces at least one pair (xj , πj), where xj /∈ LR, but the
corresponding collection of statement/proof pairs is still accepted in the above
experiment. The system is sound if no P̃ wins with probability non-negligible in
τ . We say that the system is sound for n(τ) executions if P̃ always stops after
at most n(τ) repetitions in step 3 of the above experiment.

In the original definition, P̃ is only allowed to output one statement/proof pair
at a time. The reason why we allow for a polynomial number of pairs is that the
prover in our blind signature scheme does not learn whether each pair is accepted
or not.

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 19

It remains to prove that, under Assumption 1, compile(ΣOR) is sound for
O(log τ) executions, according to the above definition. We refer to [17] for defi-
nitions of the involved terms. First we note that, under Assumption 1, HPaillier

is 2-harder than any fake-proof generator for ΣOR. Assume that there is a dis-
honest prover P̃ breaking the soundness of compile(ΣOR). We start by outlin-
ing the strategy of the proof: We will use P̃ to obtain a fake-proof generator
G̃ΣOR = 〈G̃ΣOR , g̃ΣOR〉 for ΣOR. Then, using P̃ and an algorithm A that com-
pletely breaks G̃ on instances of size τ , we will construct an algorithm A′ that
breaks HPaillier on instances of size 2τ , with runtime comparable to that of A.
This contradicts the assumption that HPaillier is 2-harder than any fake-proof
generator for ΣOR.

The algorithm G̃ΣOR takes 1τ as input and generates a public key (pk , c) ac-
cording to the protocol. G̃ΣOR then runs P̃ on input (1τ , (pk , c)). Whenever P̃
outputs a collection of statement/proof pairs (xi, πi), where 1 ≤ i ≤ m(τ), for
some polynomial m, G̃ΣOR replies with a random bit. When P̃ stops, G̃ΣOR uni-
formly chooses one of the statement/proof pairs, say (x, π), which will be on the
form (x, (a, (c1, . . . , c6))), and outputs (x, a).

Note that, if P̃ outputs O(log τ) collections of statement/proof pairs, there is
a non-negligible probability that all of the bits sent to P̃ by G̃ΣOR are identical to
the bits sent to P̃ by the verifier in the real protocol. Moreover, since P̃ breaks
soundness, there is a non-negligible probability that P̃ produces at least one pair
(xi, πi) such that V (1τ , x, πi, skKS) = 1, where xi /∈ LR. If there is such a pair,
there is a non-negligible probability that G̃ΣOR chooses this particular pair to
produce his output. Hence, with overall non-negligible probability, G̃ΣOR outputs
(x, a), such that x /∈ LR, and for which there exists exactly one challenge e such
that, for some z, the conversation (a, e, z) would be an accepting conversation
for ΣOR. This e must be identical to the plaintext encrypted inside c, since the
corresponding proof would be accepted by the verifier in the compiled protocol.

Now, letting g̃ΣOR(x, a) be this unique e if such an e exists and x /∈ LR, and
0τ otherwise, we see that G̃ΣOR = 〈G̃ΣOR , g̃ΣOR〉 defines a fake-proof generator for
ΣOR. Accordingly, Assumption 6 implies in particular that HPaillier is 2-harder
than G̃ΣOR .

Finally, given A that completely breaks G̃ΣOR on instances of size τ in time
T (τ), we construct A′ breaking HPaillier on instances of size 2τ as follows: On
input a 2τ -instance (pk , c) for HPaillier, A′ runs P̃ on input (pk , c), and obtains a
pair (x, a) exactly as described above for G̃ΣOR . A′ then runs A on input (x, a),
and outputs the value e returned by A.

Since A is assumed to break HPaillier completely, there is a non-negligible
probability that A′ returns the plaintext encrypted inside c, and since A′ runs in
time T (τ) + poly(τ), we have a contradiction to the assumption that HPaillier is
2-harder than any fake-proof generator for ΣOR.

20 GJØSTEEN AND KRÅKMO

Appendix E. Proof of Theorem 8

Proof. We assume that there is an adversary Anf
BS against the non-forgeability

of our blind signature scheme, that engages in l protocols where Signer outputs
completed , runs in time t and has advantage ε, and construct an adversary Anf

W

against the UF-CMA security of Waters’ scheme, that queries its real-or-random
oracle l times, runs in time t+poly(τ), and has advantage at least (1−ρ)ε, where
q′ = l = O(log τ) and ρ is a negligible function in τ .

Anf
W receives (1τ , pkW) as input. Instead of honestly choosing crs by running

D(1τ), he generates a keypair for the LE scheme, and uses the obtained public key
to construct crs, i.e. if pkL = (α1, α2, β), he lets crs = α1||α2||β. He runs KS (1τ)
and obtains (pkKS , skKS), and then he runs Anf

BS on input (1τ , crs, pkKS , pkW).
When Anf

BS outputs a pair (c, π), Anf
W verifies π exactly as Signer would do in

the protocol. In addition, using his secret key for the LE scheme, he decrypts each
of the commitments Ti and Mi and obtains t and m. He sends m to the signing
oracle OS , and receives (σ∗1 , σ∗2). He lets σ′1 = σ∗1σ∗t2 , σ′2 = σ∗2 , and sends (σ′1, σ

′
2)

to Anf
BS . Note that, since (σ∗1 , σ∗2) = (gα

2 (u′
∏n

i=1 umi
i)r

, gr), for some randomly
chosen r ∈ {0, . . . , p − 1}, we have (σ′1, σ

′
2) = (gα

2 (u′gt
∏n

i=1 umi
i)r

, gr). More-
over, since the verification procedure involves checking that EncL(c, r∗, s∗) =∏l−i

i=0 T 2i

i

∏n
i=1 Mi, it is guaranteed that c = gt

∏n
i=1 umi

i , so (σ′1, σ
′
2) has the

right form.
In order to simplify the proof, we define the event E as follows: Some pair

(c∗, π∗) output by Anf
BS is accepted according to the protocol, but some commit-

ment included in π∗ does not decrypt to a bit.
We observe that Anf

BS ’s environment in Expnf
BS,A(τ) is perfectly simulated un-

less E occurs. Assuming that E occurs, we show how to construct a prover P̃
breaking the soundness of Compile(ΣOR). P̃ receives (1τ , pkKS) as input. He
runs D(1τ) and obtains crs, generates a keypair (pkBS , skBS) for the blind signa-
ture scheme according to the protocol, and runs Anf

BS on input (1τ , crs, pkKS , pkBS).
When Anf

BS outputs a pair (c, π), P̃ checks that EncL(c, r∗, s∗) =
∏l−i

i=0 T 2i

i

∏n
i=1 Mi

exactly as Signer would do in the protocol, and outputs the statement/proof pairs
(Ti, πTi

), 0 ≤ i ≤ τ − 1, and (Mi, πMi
), 1 ≤ i ≤ n. He accepts the proof only

if he receives 1. He constructs (σ′1, σ
′
2) exactly as Signer would do in the pro-

tocol. We observe that, until the point where E occurs, Anf
BS ’s environment in

Expnf
BS,A(τ) is perfectly simulated. Moreover, when E occurs, P̃ outputs some

statement/proof pair, say (x∗, π∗), such that x∗ /∈ LROR
, but still the correspond-

ing collection of statement/proof pairs is accepted by the verifier. This means
that P̃ wins, which according to Theorem 7 happens with negligible probability.
Hence, denoting by Pr[E] the probability that E occurs, we get

Pr[E] ≤ ρ,

where ρ is a negligible function in τ .
Assume that Anf

BS outputs message/signature pairs (mi, σ(mi)), 1 ≤ i ≤ k,
after Anf

W , acting as Signer , has output completed l times, and assume that Anf
BS

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 21

wins, that is, all the signatures are valid, no two messages are equal, and k > l.
This means that Anf

W has sent l queries to its signing oracle. Consequently, there
is a pair, say (m∗, σ∗), where m∗ has not been queried to the signing oracle. Anf

W

outputs (m∗, σ∗), and we conclude that, unless E occurs, and if Anf
BS wins, then

Anf
W wins. Hence we get

Succnf
BS,A ≥ (1− ρ)ε,

and the proof is complete. �

Appendix F. Proof of Theorem 9

Proof. We assume that there is an adversary Ab
BS against the blindness of our

blind signature scheme, that runs in time t and has advantage ε, and construct
an adversary Aror

L against the ROR-CPA security of the LE scheme, that queries
its real-or-random oracle once, runs in time t + poly(τ), and has advantage at
least ε

2n+2τ . To this end, we define a series of games as follows:
Game 0: Ab

BS runs in the experiment Expb
BS,A(τ), where b = 0.

Game 1: This game is the same as Game 0, but Ab
BS ’s environment is now sim-

ulated by P . That is, P runs D(1τ) and obtains crs, and runs Ab
BS on input

(1τ , crs). When Ab
BS outputs (pk , r, (m0,m1)), P runs KS (1τ , r) and obtains

(skKS , pkKS). He simulates User(pk ,m0) and User(pk ,m1), and if User(pk ,m0)
outputs σ(m0) and User(pk ,m1) outputs σ(m1), then P gives (σ(m0), σ(m1)) to
Ab

BS .
From Ab

BS ’s point of view, there is no difference between Game 0 and Game
1. Therefore, if we let Gi denote the output of Ab

BS when taking part in Game
i, we have ∣∣∣Pr[G1 = 1]− Pr[G0 = 1]

∣∣∣ = 0.

Game 2: This game is the same as Game 1, with the following modification:
When acting as User(pk ,m0) and User(pk ,m1), instead of honestly generating
the proofs πTi and πMi , P uses the simulator M described in the proof of Theorem
7. Note that the input skKS of M is obtained by P , since P receives the random
coins r used in the key generation.

Since compile(ΣOR) has perfect zero-knowledge, proofs generated by M has
exactly the same distribution as honestly generated proofs, so we have∣∣∣Pr[G2 = 1]− Pr[G1 = 1]

∣∣∣ = 0.

Game 3: This game is the same as Game 2, with the following modification:
When acting as User(pk ,m0) and User(pk ,m1), instead of honestly generating
all the commitments Ti and Mi and the opening (r∗, s∗), P randomly selects
r∗, s∗ ∈ {0, . . . , p−1}, and lets C = EncL(gt

∏n
i=1 umi

i , r∗, s∗). The commitments
To, . . . , Tτ−1 and M1, . . . ,Mn−1 are generated exactly as before, while

Mn =
C∏τ−1

i=0 T 2i

i

∏n−1
i=1 Mi

.

22 GJØSTEEN AND KRÅKMO

Observe that in Game 3 we have

Mn =(αr∗−
Pτ−1

i=0 ri2
i−

Pn−1
i=1 r′i

1 , α
s∗−

Pτ−1
i=0 si2

i−
Pn−1

i=1 s′i
2 ,

β(r∗−
Pτ−1

i=0 ri2
i−

Pn−1
i=1 r′i)+(s∗−

Pτ−1
i=0 si2

i−
Pn−1

i=1 s′i)umn
n).

The only difference between Game 2 and Game 3 is the following: In Game 2,
r0, . . . , rτ−1 and r′1, . . . , r

′
n are randomly chosen, and r∗ =

∑τ−1
i=0 ri2i +

∑n
i=1 r′i,

while in Game 3, r∗, r0, . . . , rτ−1 and r′1, . . . , r
′
n−1 are randomly chosen, and

r′n = r∗−
∑τ−1

i=0 ri2i−
∑n

i=1 r′i. The corresponding holds for s∗, s0, . . . , sτ−1 and
s′1, . . . , sn. This means that, even if they are generated in a different manner, the
distribution of these values is exactly the same in both games, so we have∣∣∣Pr[G3 = 1]− Pr[G2 = 1]

∣∣∣ = 0.

Game 4: This game is the same as Game 3, with the following modification:
When acting as User(pk ,m0) and User(pk ,m1), instead of letting T0 = EncL(gt0 ,
r0, s0), P chooses a random element ρ0 ∈ G and lets T0 = EncL(ρ0, r0, s0).

In each of the games Game 5, . . . , Game τ +3, one more of the gti is replaced
by a random element in G. Correspondingly, in each of the games Game τ + 4,
. . . , Game n+τ +2, one more of the umi

i is replaced by a random element. Thus,
in Game n + τ + 2, gt0 , . . . , gtτ−1 and um1

1 , . . . , u
mn−1
n−1 are all replaced by random

elements.
Game n + τ + 3: This game is the same as Game n + τ + 2, with the following
modification: When acting as User , P swaps m0 and m1.

Let (c1, π1) and (c2, π2) denote the messages sent by User in the first and the
second protocol, respectively. The view of Ab

BS in a game is then described by
((c1, c2), (π1, π2), (σ(m0), σ(m1))) if User outputs completed in both protocols,
and ((c1, c2), (π1, π2)) otherwise. We argue that the distribution of Ab

BS ’s view
in Game n + l + 3 is negligibly close to the distribution of Ab

BS ’s view in Game
n + l + 2. First, we note that the proofs π1 and π2 are now independent of the
message input to User , i.e. (π1, π2) has exactly the same distribution in both
games. Also, in both games, c1 and c2 are both on the form gt

∏n
i=1 u

mb,i

i for
some bit b and some randomly chosen t ∈ {0, . . . , p−1}. Since the blinding factor
gt perfectly hides b, (c1, c2) has exactly the same distribution in Game n + τ + 3
as in Game n + τ + 2. (c1, c2) is also independent of (π1, π2), so the distribution
of ((c1, c2), (π1, π2)) is exactly the same in both games.

Assume that Ab
BS ’s response (σ′1, σ

′
2) has the correct form in both protocols, i.e.

in the first protocol σ′1 = gα
2 (u′c1)r and σ′2 = gr, for some r ∈ {0, . . . , p− 1}, and

correspondingly for the second protocol. This means that, in both games, the sig-
natures σ(m0) and σ(m1) have the respective forms (gα

2 (u′
∏n

i=1 u
m0,i

i)r1+r′1 , gr1+r′1)
and (gα

2 (u′
∏n

i=1 u
m1,i

i)r2+r′2 , gr2+r′2), for some r1, r2 ∈ {0, . . . , p − 1} randomly
chosen by User in the respective protocols. Since r1 and r2 perfectly hides r′1
and r′2, (σ(m0), σ(m1)) has exactly the same distribution in both games. Also,
the distribution of (σ(m0), σ(m1)) is independent of both (π1, π2) and (c1, c2).

ROUND-OPTIMAL BLIND SIGNATURES FROM WATERS SIGNATURES 23

Consequently, in this case, ((c1, c2), (π1, π2), (σ(m0), , σ(m1))) has exactly the
same distribution in both games.

Now assume that, in at least one of the protocols, Ab
BS ’s response (σ′1, σ

′
2)

does not have the correct form. For instance, assume that in the first protocol
σ′1 = gα

2 (u′c1)r and σ′2 = gr∗ , such that r 6= r∗ mod p. It is easy to show
that, for the resulting signature to be accepted, we must have u′c1 = 1, which is
impossible, since User is required to choose t such that u′c 6= 1. Thus, Ab

BS ’s view
is described by ((c1, c2), (π1, π2)), which, by the above argument, has exactly the
same distribution in both games.

Hence we have ∣∣∣Pr[Gn+τ+4 = 1]− Pr[Gn+τ+3 = 1]
∣∣∣ = 0.

Game n + τ + 4: This game is the same as Game n + τ + 3, with the follow-
ing modification: When acting as User(pk ,m0) and User(pk ,m1), instead of
choosing a random element ρ0 ∈ G and letting T0 = EncL(ρ0, r0, s0), P lets
T0 = EncL(gt0 , r0, s0).

In each of the games Game n + τ + 5, . . . , Game n + 2τ + 3, one more of
the Ti is generated by encrypting gti instead of a randomly chosen element.
Correspondingly, in each of the games Game n + 2τ + 4, . . . , Game 2n + 2τ + 2,
one more of the Mi is generated by encrypting umi

i instead of a randomly chosen
element. Thus, in Game 2n + 2τ + 2, T0, . . . , Tl−1 and M1, . . . ,Ml−1 are all
generated according to the protocol.
Game 2n + 2τ + 3: This game is the same as Game 2n + 2τ + 2, with the fol-
lowing modification: When acting as User(pk ,m0) and User(pk ,m1), instead of
generating the opening (r∗, s∗) and the commitment Mn as described in Game
3, P generates (r∗, s∗) and Mn according to the protocol.

By arguing as for Game 2 and Game 3, we have∣∣∣Pr[G2n+2τ+3 = 1]− Pr[G2n+2τ+2 = 1]
∣∣∣ = 0.

Game 2n+2τ +4: This game is the same as Game 2n+2τ +3, with the following
modification: When acting as User(pk ,m0) and User(pk ,m1), instead of using
the simulator M when generating the proofs πTi and πMi , as described in Game
2, P generates these proofs according to the protocol.

Again, since compile(ΣOR) has perfect zero-knowledge, we have∣∣∣Pr[G2n+2τ+4 = 1]− Pr[G2n+2τ+3 = 1]
∣∣∣ = 0.

Game 2n + 2τ + 5: In this game Ab
BS runs in the experiment Expb

BS,A(τ), where
b = 1.

In Game 2n+2τ +4, P perfectly simulates Ab
BS ’s environment in Expb

BS,A(τ),
where b = 1, so we have∣∣∣Pr[G2n+2τ+5 = 1]− Pr[G2n+2τ+4 = 1]

∣∣∣ = 0.

We now construct an adversary Aror
L trying to break the real-or-random blind-

ness of linear encryption. Aror
L receives pkL = (α1, α2, β) as input, and randomly

24 GJØSTEEN AND KRÅKMO

chooses an index i ∈ {3, . . . , n + τ + 1, n + τ + 3, . . . , 2n + 2τ + 1}. First, assume
that i = 3. Aror

L then behaves exactly as P in Game 3, with the following ex-
ceptions: Aror

L lets crs = α1||α2||β, and instead of generating T0 as in Game 3,
Aror

L sends gt0 to its real-or-random oracle, receives T ′
0, and lets T0 = T ′

0. Finally,
when Ab

BS outputs a bit b′, Aror
L outputs b′.

We observe that, if Aror
L ’s challenge bit b = 0, then Ab

BS ’s environment in
Game 4 is perfectly simulated, while if b = 1, Ab

BS ’s environment in Game 3 is
perfectly simulated. Hence we get∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣∣ = ∣∣∣Pr[G3 = 1]− Pr[G4 = 1]
∣∣∣.

Defining the behavior of Aror
L for each index i in an analogous manner, and

taking into account that i is randomly chosen among less than 2n + 2τ possible
values, we get

Advror
LE,Aror(τ) ≥ 1

2n + 2τ

(
n+τ+1∑

i=3

∣∣∣Pr[Gi = 1]− Pr[Gi+1 = 1]
∣∣∣+ 2n+2τ+1∑

i=n+τ+3

∣∣∣Pr[Gi+1 = 1]− Pr[Gi = 1]
∣∣∣) .

We have shown that, for i ∈ {0, 1, 2, n+τ+2, 2n+2τ+2, 2n+2τ+3, 2n+2τ+4},
we have ∣∣∣Pr[Gi+1 = 1]− Pr[Gi = 1]

∣∣∣ = 0.

Hence we may write

Advror
LE,Aror(τ) ≥ 1

2n + 2τ

2n+2τ+5∑
i=0

∣∣∣Pr[Gi+1 = 1]− Pr[Gi = 1]
∣∣∣

≥ 1
2n + 2τ

∣∣∣2n+2τ+5∑
i=0

Pr[Gi+1 = 1]− Pr[Gi = 1]
∣∣∣

=
1

2n + 2τ

∣∣∣Pr[G2n+2τ+5 = 1]− Pr[G0 = 1]
∣∣∣

=
1

2n + 2τ
Advb

BS,Ab(τ),

which completes the proof. �

Paper IV

A Universally Composable Anonymous Online Service

Lillian Kr̊akmo

Preprint

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE
SERVICE

LILLIAN KRÅKMO

Abstract. In the framework of universally composable security, we de-

fine an ideal functionality for an anonymous online service. Moreover, we
propose a dedicated hybrid protocol, and prove that it realizes the function-
ality. The protocol uses functionalities for several cryptographic primitives,

including a functionality for an anonymous secure channel. We show how
such a functionality can be realized, by adapting a secure channel based on

the KEM-DEM framework. Our constructions may be viewed as case study
protocols, exemplifying protocols of realistic complexity within this security
model.

1. Introduction

Universally composable (UC) security is a framework proposed by Canetti [2]
as a way to define security for protocols such that security-preserving composition
is possible. This allows for a modular design and analysis of protocols. For
each cryptographic task, security is defined in terms of an ideal functionality,
which incorporates the required properties of a protocol for the task and the
allowed actions of an adversary. A protocol is said to securely realize the ideal
functionality if, loosely speaking, any effect caused by an adversary attacking the
protocol can be obtained by an adversary attacking the ideal functionality. When
designing complex protocols, one can allow the involved parties to have secure
access to ideal functionalities. Then, when implementing the protocol, each ideal
functionality can be replaced by a protocol securely realizing the functionality.
The composition theorem then guarantees security. We refer to [2] for a complete
overview of this framework.

In Section 2 of this paper, we define a functionality for an anonymous online
service. In order to realize this functionality, we need a functionality for a secure
channel, which is anonymous in one end. Such a functionality is presented in
Section 3. In this section, we also propose a protocol realizing an anonymous
secure channel, based on the KEM-DEM framework. Our protocol adapts the
construction of Nagao et al. [6] to a setting where one of the involved parties
wishes to remain anonymous, by using an additional functionality for an anony-
mous network. Finally, in Section 4, we present our protocol for an anonymous
online service, and prove that it realizes our functionality.

1

2 KRÅKMO

2. The Anonymous Online Service Functionality

The functionality for an anonymous online service, FAOS, is presented in Fig-
ure 1. It involves a bank B, a server Q and users P1, . . . , Pn. The purpose of
the functionality is to allow for anonymous purchase of services, by means of
establishing a secure channel between the server and a user, which is anonymous
at the user’s end. Payments are handled as follows: Each time the user initiates
a session with the server, a payment request is issued to the bank, which an-
swers by either yes or no. If the answer is yes, then a session is established, and
the server’s balance is increased. Furthermore, the server may make deposits,
whereupon his balance is decreased, and the bank is duly notified.

3. A Universally Composable Anonymous Secure Channel

In order to realize our functionality for an anonymous online service, we need
a functionality for an anonymous secure channel. This functionality, which is
denoted by FASC, is defined in Figure 2. It resembles the functionality for a
secure channel suggested by Canetti and Krawczyk [3], except that the session
initiator is anonymized. Also, while the functionality in [3] is designed to handle
a single communication session, and the security in the case of multiple sessions
is argued by the UC with joint state theorem [4], our functionality immediately
handles multiple sessions for a single pair of users. Although the former approach
allows for a more modular analysis and may be preferable in the general case,
the latter turns out to be more convenient for our application. In particular, the
anonymous online service functionality is designed to handle multiple sessions
between the server and a user, while requiring only one registration by the server.

Another modification from the formulation in [3], is that data exchange in the
case where either the sender or the receiver is corrupt, is explicitly handled by
the functionality. In detail, if one of the involved parties is corrupt, the message
to be sent is revealed to the ideal adversary. Keeping in mind that the ideal
adversary receives all inputs meant for corrupt parties anyway, this property is
not needed for the simulation of the protocol to work. However, it may be argued
that this formulation more intuitively represents the security requirements for
an anonymous secure channel protocol. Furthermore, every time a session is
established, our functionality notifies the involved parties. This feature allows
for a clearer presentation of protocols using FASC as a subroutine, as parties may
be instructed to wait until a session is established before they start sending data
across the channel.

Note that, in FASC, it may happen that the ideal adversary receives two
messages on the form (ASC.Send, sid , ssid , Pi, partner , |m|) before a message
(ASC.Send, sid , ssid , Pi, partner , ack) is sent in the opposite direction. In this
case, upon the first (ASC.Send, sid , ssid , Pi, partner , ack) from the ideal adver-
sary, the functionality delivers the message m that was first received from Pi.
That is, the ideal adversary is not allowed to change the order of messages sent
across the channel.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 3

In [6], Nagao et al. propose a universally composable secure channel based on
the KEM-DEM framework. In this section, we show how their hybrid protocol
can be adapted to fit our purpose, by using an additional functionality for an
anonymous network. This functionality is given in Figure 3. It essentially re-
names the registrating party, by choosing a random identity ID . In subsequent
activations, the functionality redirects messages meant for ID to the registrating
party, and messages sent from this party appear to come from ID . Furthermore,
the functionality FCA used by Nagao et al. is replaced by an anonymized variant,
FACA, which is defined in Figure 4. For completeness, the KEM-DEM function-
ality proposed by Nagao et al. is presented in Figure 5. Finally, our hybrid
protocol πASC for an anonymous secure channel is described in Figure 6.

We highlight the fact that, since the anonymous network functionality is de-
signed to handle only one registration, a new copy of the functionality is invoked
for each session. When implementing the protocol, these copies can be replaced
by a single protocol handling multiple registrations. Security is then guaranteed
by the UC with joint state theorem [4].

Since the functionality FASC ensures that messages sent across the channel
arrive at the recipient in the correct order, the protocol πASC must also provide
this guarantee. This is obtained by having each party maintain two variables,
ssid − sn and ssid − psn, to be interpreted as “sequence number” and “partner’s
sequence number”, respectively, for the session with identifier ssid . By having the
sender include the current value of ssid−sn in the encrypted message, the receiver
can check if the decrypted message includes the current value of ssid − psn, and
accept the message only if this is the case.

The remaining part of this section is dedicated to proving the following result.

Theorem 1. πASC securely realizes FASC in the (FACA, FKEM-DEM, FAN)-
hybrid model under static corruption.

Proof. We show that for every adversary A interacting with parties running πASC

in the (FACA, FKEM-DEM, FAN)-hybrid model, there is an ideal adversary S such
that no environment Z can tell whether it is interacting with A and πASC or with
S and IDEALFASC .

As usual, S runs a simulated copy of A and forwards all messages from Z to
A and back. When A corrupts a party P , S corrupts P̃ . When P̃ is corrupt,
any input from Z meant for P̃ goes directly to S, who forwards it to A on the
input tape corresponding to P , and the other way around. Moreover, S can send
messages to F in the name of P̃ , and messages from F meant for P̃ go to S. In
the following, when an entity E controls another entity E′, the notation “E|E′”
should be read as “E, in the name of E′”.
When both Pi and Pj are honest: S simulates honest Pi, honest Pj and
functionalities FACA, FKEM-DEM and FAN.

4 KRÅKMO

Simulating the set-up: Upon receiving (ASC.Register, sid1, Pi) from FASC,
S|FKEM-DEM sends (KEM.KeyGen, sid2) to A, and waits to receive
(KEM.Key, sid2, pk i) from A. Then S|FACA sends (ACA.Register,
sid3, Pi, pk i) to A. Upon receiving (ACA.Register, sid3, ack) from A,
S|FACA stores (Pi, pk i) and sends (ASC.Registered, sid1, Pi, ack) to FASC.

Simulating the session set-up: Upon receiving (ASC.EstablishSession,
sid1, ssid , Pi) from FASC, S chooses a random identity ID and stores
(ID , ssid). Then S|FACA sends (ACA.Retrieve, sid3, Pi) to A. Upon
receiving (ACA.Retrieve, sid3, ack) from A, S|FACA checks that there
is a stored entry (Pi, pk i). S|FKEM-DEM then sends (KEM.Encrypt,
sid2, ssid , pk i) to A, waits to receive (EncryptedSharedKey, sid2, ssid , pk i,
C0) from A, and stores (ID , ssid , C0, active). S|FAN then sends (AN.Send,
(sid4, ssid), (ASC.EstablishSession, sid1, ssid , C0, ID), ID , Pi) to A, and S
sends (ASC.EstablishSession, sid1, ssid , partner , ack) to FASC.
If S|FAN receives (AN.Send, (sid4, ssid),m′, ID ′) from A, where ID ′ rep-
resents a corrupt party, then S|FAN sends (AN.Receive, (sid4, ssid),m′)
to A on the input tape corresponding to ID ′. Otherwise, if ID ′ = Pi,
and m′ is on the form (ASC.EstablishSession, sid1, ssid , C∗

0 , ID∗), then
S|FKEM-DEM sends (KEM.Decrypt, sid2, ssid , C∗

0) to A. Upon receiv-
ing (KEM.Decrypt, sid2, ssid , ack) from A, S|FKEM-DEM stores (Pi, ssid ,
C∗

0 , active), and S sends (ASC.EstablishSession, sid1, ssid , Pi, ack) to
FASC.

Simulating the data exchange: Upon receiving (ASC.Send, sid1, ssid , Pi,
partner , |M |) from FASC, S checks that there is a stored entry (Pi, ssid ,
C∗

0 , active) for some C∗
0 , and sets |m| = |M | + l, where l is the num-

ber of bits used to represent a party identity and a sequence number.
S|FKEM-DEM then sends (DEM.Encrypt, sid2, ssid , |m|) to A, and waits
to receive (DEM.Ciphertext, sid2, ssid , c) from A. S|FAN then sends
(AN.Send, (sid4, ssid), c, Pi, ID) to FAN. The next time S|FAN receives a
message (AN.Send, (sid4, ssid), c′, ID ′) from A, if ID ′ represents a corrupt
party, then S|FAN sends (AN.Receive, (sid4, ssid), c′) to A on the input tape
corresponding to ID ′. Otherwise, if ID ′ = ID , and there is a stored entry
(ID , ssid , C0, active) for some C0, then S|FKEM-DEM sends (DEM.Decrypt,
sid2, ssid , c′) to A, and waits to receive (DEM.Plaintext, sid2, ssid ,m′)
from A. If C∗

0 = C0 and c′ = c, then S sends (ASC.Send, sid1, ssid , Pi,
partner , ack) to FASC.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 5

Upon receiving (ASC.Send, sid1, ssid , partner , Pi, |M |) from FASC, S checks
that there is a stored entry (ID , ssid , C0, active) for some C0, and sets |m| =
|M | + l, where l is the number of bits used to represent an identity and a
sequence number. S|FKEM-DEM then sends (DEM.Encrypt, sid2, ssid , |m|)
to A, and waits to receive (DEM.Ciphertext, sid2, ssid , c) from A. S|FAN

then sends (AN.Send, (sid4, ssid), c, ID , Pi) to FAN. The next time S|FAN

receives a message (AN.Send, (sid4, ssid), c′, ID ′) from A, if ID ′ represents
a corrupt party, then S|FAN sends (AN.Receive, (sid4, ssid), c′) to A on
the input tape corresponding to ID ′. Otherwise, if ID ′ = Pi, and there
is a stored entry (Pi, ssid , C∗

0 , active) for some C∗
0 , then S|FKEM-DEM sends

(DEM.Decrypt, sid2, ssid , c′) to A, and waits to receive (DEM.Plaintext,
sid2, ssid ,m′) from A. If C0 = C∗

0 and c′ = c, then S sends (ASC.Send,
sid1, ssid , partner , Pi, ack) to FASC.

Simulating the session ending: Upon receiving (ASC.ExpireSession,
sid1, ssid , Pi/partner) from FASC, S removes (Pi, ssid , C∗

0 , active)/(ID , ssid ,
C0, active).

When Pi is corrupt, while Pj is honest: As explained earlier, inputs to S|P̃i

are forwarded to A|Pi, and outputs from A|Pi are output by S|P̃i. S simulates
honest Pj and functionalities FACA, FKEM-DEM and FAN. S can perfectly sim-
ulate FACA, since all the information obtained by FACA in the real protocol is
obtained by S in the simulated protocol. Regarding FAN, S does not obtain Pj ’s
identity, but this is also perfectly hidden from A, so S can still perfectly simulate
A’s view in the real protocol. As for FKEM-DEM, when Pi is corrupt, S obtains
every message m being sent between Pi and Pj . By storing sequence numbers
and increasing them as Pi and Pj do in the real protocol, S can perfectly sim-
ulate the messages expected by A from FKEM-DEM. In the following, when we
say that A|Pi or S|ID∗ sends a message to S|F , where F is one of the above
functionalities, this implies that S proceeds according to the description of this
functionality, and allows A to delay messages, determine keys, redirect messages
etc. whenever appropriate.

Simulating the set-up: The first time S|P̃i receives some input, S|P̃i sends
(ASC.Register, sid1) to FASC, and upon receiving (ASC.Register, sid1, Pi)
from FASC, S sends (ASC.Register, sid1, ack) to FASC.

Simulating the session set-up: Upon receiving (ASC.EstablishSession,
sid1, ssid , Pi) from FASC, S sets a variable Pi−ssid−sn equal to 1, and sends
(ASC.EstablishSession, sid1, ssid , Pi, ack) to FASC. S chooses a random
identity ID∗, stores (ID∗, ssid), and S|ID∗ sends (AN.Register, (sid4, ssid))
to S|FAN. Upon receiving (AN.Registered, (sid4, ssid), ID) from S|FAN,
S|ID∗ sends (ACA.Retrieve, sid3, Pi) to S|FACA.

6 KRÅKMO

Upon receiving (ACA.Retrieved, sid3, Pi, pk i) from S|FACA, S|ID∗

sends (KEM.Encrypt, sid2, ssid , pk i) to S|FKEM-DEM. Upon receiving
(EncryptedSharedKey, sid2, ssid , pk i, C0) from S|FKEM-DEM, S|ID∗ stores
(ID∗, ssid , active), and sets a variable ID∗− ssid − sn equal to 1. S|ID∗ then
sends (AN.Send, (sid4, ssid), (ASC.EstablishSession, sid1, C0, ID), Pi) to
S|FAN, and sends (ASC.EstablishSession, sid1, ssid , partner , ack) to FASC.

Simulating the data exchange: When A|Pi successfully sends a message to
S|ID∗ (i.e. when S|ID∗ receives (AN.Receive, (sid4, ssid), c) from S|FAN,
(ID∗, ssid , active) is stored, S|ID∗ sends (DEM.Decrypt, sid2, ssid , c) to
S|FKEM-DEM, receives (DEM.Plaintext, sid2, ssid ,m) from S|FKEM-DEM,
and m = M ||Pi||Pi − ssid − sn), then S increases Pi − ssid − sn, S|P̃i

sends (ASC.Send, sid1, ssid ,M) to FASC, and upon receiving (ASC.Send,
sid1, ssid , Pi, partner ,M) from FASC, S sends (ASC.Send, sid1, ssid , Pi,
partner , ack) to FASC.
Upon receiving (ASC.Send, sid1, ssid , partner , Pi,M) from FASC, S sends
(ASC.Send, sid1, ssid , partner , Pi, ack) to FASC. S|ID∗ sets m =
M ||ID ||ID∗−ssid−sn, increases ID∗−ssid−sn, and sends (DEM.Encrypt,
sid2, ssid ,m) to S|FKEM-DEM. Upon receiving (DEM.Ciphertext,
sid2, ssid , c) from S|FKEM-DEM, S|ID∗ sends (AN.Send, (sid4, ssid), c, Pi) to
S|FAN.

Simulating the session ending: Upon receiving (ASC.ExpireSession,
sid , ssid , partner) from FASC, S removes (ID∗, ssid , active), and S|ID∗ sends
(KEM.ExpireSession, sid2, ssid) to S|FKEM-DEM.

When Pi is honest, while Pj is corrupt: As explained earlier, inputs to S|P̃j

are forwarded to A|Pj , and outputs from A|Pj are output by S|P̃j . S simulates
honest Pi and functionalities FACA, FKEM-DEM and FAN. S obtains Pj ’s identity
and all the messages sent between Pi and Pj , so all functionalities can be perfectly
simulated. In the following, when we say that A|Pj or S|Pi sends a message to
S|F , where F is one of the above functionalities, this implies that S proceeds
according to the description of this functionality.

Simulating the set-up: Upon receiving (ASC.Register, sid1) from FASC, S|Pi

sends (KEM.KeyGen, sid2) to S|FKEM-DEM. Upon receiving (KEM.Key,
sid2, pk i) from S|FKEM-DEM, S|Pi sends (ACA.Register, sid3, pk i) to
S|FACA. Upon receiving (ACA.Registered, sid3) from S|FACA, S sends
(ASC.Register, sid1, ack) to FASC.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 7

Simulating the session set-up: When A|Pj successfully estab-
lishes a session with Pi (i.e. when S|Pi receives (AN.Receive,
(sid4, ssid), (ASC.EstablishSession, sid1, ssid , C ′

0, ID
′)) from FAN,

S|Pi sends (KEM.Decrypt, sid2, ssid , C ′
0) to S|FKEM-DEM, and

(KEM.Decrypt, sid2, ssid , ok) is returned from S|FKEM-DEM), S stores
(Pi, ssid , active) and sets variables Pi − ssid − sn and ID ′ − ssid − sn equal
to 1. S|P̃j then sends (ASC.EstablishSession, sid1, ssid , Pi) to FASC.
Upon receiving (ASC.EstablishSession, sid1, ssid , Pi) from FASC, S sends
(ASC.EstablishSession, sid1, ssid , partner , ack) to FASC, and then S sends
(ASC.EstablishSession, sid1, ssid , Pi, ack) to FASC.

Simulating the data exchange: Upon receiving (ASC.Send, sid1, ssid , Pi,
partner ,M) from FASC, S sends (ASC.Send, sid1, ssid , Pi, partner , ack) to
FASC. S|Pi sets m = M ||Pi||Pi − ssid − sn, increases Pi − ssid − sn,
and sends (DEM.Encrypt, sid2, ssid ,m) to S|FKEM-DEM. Upon receiving
(DEM.Ciphertext, sid2, ssid , c) from S|FKEM-DEM, S|Pi sends (AN.Send,
(sid4, ssid), c, ID ′) to S|FAN.
When A|Pj successfully sends a message to S|Pi (i.e. when S|Pi

receives (AN.Receive, (sid4, ssid), c) from S|FAN, (Pi, ssid , active) is
stored, S|Pi sends (DEM.Decrypt, sid2, ssid , c) to S|FKEM-DEM, receives
(DEM.Plaintext, sid2, ssid ,m) from S|FKEM-DEM, and m = M ||ID ′||ID ′ −
ssid−sn), S increases ID ′−ssid−sn, S|P̃j sends (ASC.Send, sid1, ssid ,m) to
FASC, and upon receiving (ASC.Send, sid1, ssid , partner , Pi,m) from FASC,
S sends (ASC.Send, sid1, ssid , partner , Pi, ack) to FASC.

Simulating the session ending: Upon receiving (ASC.ExpireSession,
sid , ssid , Pi) from FASC, S removes (Pi, ssid , active), and S|Pi sends
(KEM.ExpireSession, sid2, ssid) to S|FKEM-DEM.

When both Pi and Pj are corrupt: In this case, S obtains the inputs to both
P̃i and P̃j , and also controls their outputs. S simulates functionalities FACA,
FKEM-DEM and FAN. The functionality FASC is never activated.

It can be verified that the simulation done by S is perfect, i.e. no environment
Z can tell whether it is interacting with A and FASC or with S and IDEALFASC .

We conclude that πASC securely realizes FASC in the (FKEM-DEM, FACA, FAN)-
hybrid model under static corruption. �

4. A Universally Composable Anonymous Online Service

In this section, we present a protocol for an anonymous online service, and
prove that it realizes the functionality FAOS. In addition to the functionalities
FASC and FACA given in Section 3, our protocol makes use of a functionality for
anonymous blind signatures and a functionality for a standard (non-anonymous)
secure channel.

The functionality for anonymous blind signatures, FABS, is defined in Figure 7.
It is based on the functionality proposed by Fischlin [5], but has been subject

8 KRÅKMO

to some modifications in order to suit our application. For instance, our func-
tionality lets the environment decide whether a signature should be granted to a
user, upon learning the user’s identity. This property is essential for our purpose,
where the functionality is used by a protocol realizing the anonymous online ser-
vice functionality. Recall that, in the latter, the environment determines whether
the bank should establish a session with a specified user.

Furthermore, we highlight the fact that the user is anonymized, in the sense
that his identity is not revealed to the ideal adversary. As a consequence, re-
alizing this functionality requires a network where the user is identified to the
communicating party, i.e. the bank, but anonymized with respect to outsiders.
Let F∗

ASC denote a functionality for a secure channel incorporating these prop-
erties. Intuitively, F∗

ASC can be realized using FASC in combination with FACA

and a dedicated functionality for digital signatures, which does not reveal the
identity of an honest signer. In such a setting, the bank may establish a session
with the user using F∗

ASC, and then have the user identify himself by signing a
randomly chosen challenge.

Obviously, in order to realize FABS, we also need a blind signature scheme.
This scheme should be secure with respect to blindness and non-forgeability, as
defined by Buan et al. in [1]. Note that, in the definition of blindness, the
adversary is required to output the secret key. Accordingly, we need some set-up
assumption allowing the secret key to be extracted by a simulator. One option
is to apply the scheme proposed by Gjøsteen and Kr̊akmo in [7], along with an
additional key registration functionality, to which the signer sends the random
coins used for generating his key pair. Alternatively, if this scheme is used in
combination with an extra common reference string functionality, one may have
the signer commit to the secret key, and include the commitment in the public
key, together with a proof of correctness. With a carefully chosen commitment
scheme, a simulator can construct the common reference string in such way that
the secret key may be extracted. We note that, since the scheme in [7] is only
weakly non-forgeable, the non-forgeability condition in FABS must be modified
in order to obtain a realizing protocol. Anyway, the resulting functionality can
still be used to realize FAOS.

The anonymous online service functionality also incorporates a communica-
tion session between the bank B and the server Q, allowing the server to make
deposits. For this purpose, we equip B and Q with a functionality for a secure
channel, which is presented in Figure 8. This functionality corresponds to the
one proposed by Canetti and Krawczyk in [3], except that it handles multiple
sessions. As demonstrated by Nagao et al. in [6], it can be realized by using the
KEM-DEM framework.

The functionalities FABS, FACA, FSC and FASC constitute the building blocks
necessary to construct our hybrid protocol πAOS for an anonymous online service.
A detailed description of the protocol is given in Figures 9 and 10.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 9

Concerning the description of πAOS, we point out that the challenge c picked by
the server Q is chosen from a sufficiently large set. That is, we assume throughout
the paper that an honest server never chooses the same challenge twice.

We note that, instead of modifying Fischlin’s functionality to fit our purpose,
we may have considered using the functionality for blind signatures proposed in
[1] as a starting point. As explained in [1], the main difference between these func-
tionalities concerns the signature generation for corrupt users. While Fischlin’s
functionality requires that even corrupt users specify the message to be signed,
the latter disregards this message, and instead gives the user a “free signature”.
This feature makes the functionality unsuitable as a building block for an anony-
mous online service. To illustrate our point, assume throughout this paragraph
that π∗

AOS is the protocol πAOS where FABS has been replaced by a functionality
similar to the one in [1], granting free signatures to corrupt users. Consider the
scenario where the user Pi is corrupt, while the bank B and the server Q are
honest. In the ideal protocol, if B responds negatively to Pi’s payment request,
no session will be established between Pi and Q. In the hybrid protocol, the blind
signature functionality should ensure that this cannot happen, i.e. if B refused to
sign some challenge c, it should be impossible for Pi to come up with a signature
σ such that (c, σ) is accepted upon verification.

While the non-forgeability condition in Fischlin’s functionality implicitly pre-
vents such an event (under the assumption that the functionality has never seen c
before), the functionality in [1] fails to do so. First, note that the ideal adversary
determines the verification function, so in principle, this function may accept all
message/signature pairs. Now assume that, during some session, Pi obtains a
signature σ on some challenge c′, but does not send σ to Q. Instead, he starts a
new session, and receives a new challenge c from Q, such that (c, σ) is accepted
by the verification algorithm. Assume that B refuses to sign this time, and that
Pi sends σ to Q. Since Pi’s free signature count is positive at this point, the pair
(c, σ) will be accepted by the functionality. This means that Pi may establish a
session with Q, even if B refused to sign the challenge. Since this is impossible
in the ideal protocol, π∗

AOS does not realize FAOS.
The remaining part of the paper is dedicated to proving the following result.

Theorem 2. πAOS realizes FAOS in the (FABS, FACA, FSC, FASC)-hybrid
model under static corruption.

Proof. We show that for every adversary A interacting with parties running πAOS

in the (FABS, FACA, FSC, FASC)-hybrid model, there is an ideal adversary S
such that no environment Z can tell whether it is interacting with A and πAOS

or with S and IDEALFAOS .
As usual, S runs a simulated copy of A and forwards all messages from Z to

A and back. When A corrupts a party P , S corrupts P̃ . When P̃ is corrupt,
any input from Z meant for P̃ goes directly to S, who forwards it to A on the
input tape corresponding to P , and the other way around. Moreover, S can send
messages to F in the name of P̃ , and messages from F meant for P̃ go to S. In

10 KRÅKMO

the following, when an entity E controls another entity E′, the notation “E|E′”
should be read as “E, in the name of E′”.
When both Pi, Q and B are honest: S simulates honest Pi, Q and B and
functionalities FABS, FACA, FSC and FASC. We observe that S obtains all the
information needed to perfectly simulate the above functionalities. Note that, it
does not matter that S does not obtain Pi’s identity or the content of messages
sent between Q and Pi, since this information is also perfectly hidden from A
in the real protocol. In the following, when we say that S|P sends a message to
S|F , where F is one of the above functionalities and P is either Pi, Q or B, this
implies that S proceeds according to the description of this functionality, and
allows A to delay messages, determine keys etc. whenever appropriate.

Simulating the set-up: Upon receiving (AOS.Register, sid1) from FAOS, S|B
sends (ABS.KeyGen, sid2) to S|FABS. Upon receiving (ABS.Key, sid2, pk)
from S|FABS, S|B sends (ACA.Register, sid3, pk) to S|FACA. Upon re-
ceiving (ACA.Registered, sid3) from S|FACA, S|B sends (SC.Register,
sid4) to S|FSC. Upon receiving (SC.Registered, sid4) from S|FSC, S sends
(AOS.Register, sid1, ack) to FAOS.
Upon receiving (AOS.Register, sid1, Q) from FAOS, S|Q sends
(ACA.Retrieve, sid3, B) to S|FACA. Upon receiving (ACA.Retrieved,
sid3, B, pk) from S|FACA, S|Q sends (ASC.Register, sid5) to S|FASC. Upon
receiving (ASC.Registered, sid5) from S|FASC, S sends (AOS.Register,
sid1, Q, ack) to FAOS.

Simulating the session set-up: Upon receiving (AOS.EstablishSession,
sid1, ssid , Q) from FAOS, S chooses a random identity ID and stores
(ID , ssid). S|ID sends (ASC.EstablishSession, sid5, ssid , Q) to S|FASC.
Upon receiving (ASC.SessionEstablished, sid5, ssid , Q) from S|FASC,
S|ID sends (ACA.Retrieve, sid3, B) to S|FACA. Upon receiving
(ACA.Retrieved, sid3, B, pk) from S|FACA, S|ID sends (ASC.Send,
sid5, ssid ,AOS.Pay) to S|FASC. Upon receiving (ASC.Receive,
sid5, ssid ,AOS.Pay) from S|FASC, S picks a random challenge c, and
S|Q sends (ASC.Send, sid5, ssid , (AOS.Challenge, c)) to S|FASC.
Upon receiving (ASC.Receive, sid5, ssid , (AOS.Challenge, c)) from
S|FASC, S|ID sends (ABS.Sign, sid2, ssid , pk , c) to S|FABS. When
S|B receives (ABS.Sign, sid2, ssid , ID , request) from S|FABS, S sends
(AOS.EstablishSession, sid1, ssid , ack) to FAOS.
If S receives (AOS.Pay, sid1, ssid ,no) from FAOS, then S|B sends
(ABS.Sign, sid2, ssid ,no) to S|FABS. Then, if S|ID receives (ABS.Sign,
sid2, ssid ,no) from S|FABS, S sends (AOS.Pay, sid1, ssid ,no, ack) to FAOS.
Otherwise, if S receives (AOS.Pay, sid1, ssid , yes) from FAOS, then S|B
sends (ABS.Sign, sid2, ssid , yes) to S|FABS. Then, if S|ID receives
(ABS.Signature, sid2, ssid , σ) from S|FABS, then S|ID sends (ASC.Send,
sid5, ssid , (AOS.Response, σ)) to S|FASC. S stores (ID , ssid , active) and
sends (AOS.Pay, sid2, ssid , partner , ack) to FAOS.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 11

When S|Q receives (ASC.Receive, sid5, ssid , (AOS.Response, σ)) from
S|FASC, S|Q sends (ABS.Verify, sid2, pk , c, σ) to S|FABS. If S|Q receives
(ABS.Verify, sid2, accept) from S|FABS, then S stores (c, σ) and (Q, ssid ,
active), and sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS.

Simulating the data exchange: Upon receiving (AOS.Send,
sid1, ssid , partner , Q, |m|) from FAOS, if (ID , ssid , active) is stored, then S
picks a random message m′ of length |m|, and S|ID sends (ASC.Send,
sid5, ssid ,m′) to S|FASC. When S|Q receives (ASC.Receive, sid5, ssid ,m′)
from S|FASC, if (Q, ssid , active) is stored, then S sends (AOS.Send,
sid1, ssid , partner , Q, ack) to FAOS.
Upon receiving (AOS.Send, sid1, ssid , Q, partner , |m|) from FAOS, if (Q, ssid ,
active) is stored, then S picks a random message m′ of length |m|, and
S|Q sends (ASC.Send, sid5, ssid ,m′) to S|FASC. When S|ID receives
(ASC.Receive, sid5, ssid ,m′) from S|FASC, if (ID , ssid , active) is stored,
then S sends (AOS.Send, sid1, ssid , Q, partner , ack) to FAOS.

Simulating the session ending: Upon receiving (AOS.ExpireSession,
sid1, ssid , partner) from FAOS, S removes (ID , ssid , active), and S|ID sends
(ASC.ExpireSession, sid5, ssid) to S|FASC.
Upon receiving (AOS.ExpireSession, sid1, ssid , Q) from FAOS, S removes
(Q, ssid , active), and S|Q sends (ASC.ExpireSession, sid5, ssid) to S|FASC.

Simulating the collecting: Upon receiving (AOS.Collect, sid1, ssid ′, Q,
n) from FAOS, if S has at least n stored pairs (c, σ), then S|Q
sends (SC.EstablishSession, sid4, ssid ′, B) to S|FSC. When S|Q receives
(SC.SessionEstablished, sid4, ssid ′, B) from S|FSC, S lets s be a set of
n stored pairs (c, σ), and sends (SC.Send, sid4, ssid ′, (AOS.Collect, s)) to
S|FSC. When S|B receives (SC.Receive, sid4, ssid ′, (AOS.Collect, s)) from
S|FSC, for every pair (c, σ) in s, S checks that there is no stored pair (c, σ′) for
any σ′, and S|B sends (ABS.Verify, sid2, pk , c, σ) to S|FABS. If, for every
pair, S|B receives (ABS.Verify, sid2, accept) from S|FABS, then S stores s
and S|B sends (SC.Send, sid4, ssid ′,AOS.Collected) to S|FSC. S|B then
sends (SC.ExpireSession, sid4, ssid ′) to S|FSC, and S sends (AOS.Collect,
sid1, ssid ′, ack) to FAOS.
When S|Q receives (SC.Receive, sid4, ssid ′,AOS.Collected) from S|FSC,
S removes the pairs (c, σ) contained in s. S|Q then sends
(SC.ExpireSession, sid4, ssid ′) to S|FSC, and S sends (AOS.Collect,
sid1, ssid ′, Q, ack) to FAOS.

It can be verified that the simulation is perfect. In particular, every time Q
stores a pair (c, σ) in πAOS, so does S in IDEALFAOS . Also, every time such a
pair is stored, FAOS increases balance. Moreover, every time n pairs are removed
by Q, n pairs are removed by S, and balance is decreased by n. This means
that the number of pairs (c, σ) stored by Q in the hybrid protocol equals the

12 KRÅKMO

number of such pairs stored by S in the ideal protocol, which again is equal to
balance. Accordingly, if S has n′ pairs (c, σ) to collect, the condition n′ ≤ balance
is guaranteed to hold.

When Pi is corrupt, while Q and B are honest: S simulates honest Q and
B and functionalities FABS, FACA, FSC and FASC. We observe that S obtains
all the information needed to perfectly simulate the above functionalities. In
the following, when we say that an entity sends a message to S|F , where F is
one of the above functionalities, this implies that S proceeds according to the
description of this functionality, and allows A to delay messages, determine keys
etc. whenever appropriate.

Simulating the set-up: Since both Q and B are honest, this is done exactly as
when all parties are honest, as described above.

Simulating the session set-up: Upon receiving (ASC.Receive,
sid5, ssid ,AOS.Pay) from S|FASC, S picks a random challenge c, and
S|Q sends (ASC.Send, sid5, ssid , (AOS.Challenge, c)) to S|FASC.
When S|B receives (ABS.Sign, sid2, ssid , Pi, request) from S|FABS, S|P̃i

sends (AOS.EstablishSession, sid , ssid , Q) to FAOS. Then, upon
receiving (AOS.EstablishSession, sid , ssid , Q) from FAOS, S sends
(AOS.EstablishSession, sid1, ssid , ack) to FAOS.
Then, if S receives (AOS.Pay, sid1, ssid ,no) from FAOS, S sends (AOS.Pay,
sid1, ssid ,no, ack) to FAOS. S|B then sends (ABS.Sign, sid2, ssid ,no) to
S|FABS. Otherwise, if S receives (AOS.Pay, sid1, ssid , yes) from FAOS,
S sends (AOS.Pay, sid2, ssid , partner , ack) to FAOS. S|B then sends
(ABS.Sign, sid2, ssid , yes) to S|FABS.
If S|Q receives (ASC.Receive, sid5, ssid , (AOS.Response, σ)) from
S|FASC, and S|Q earlier sent (ASC.Send, sid5, ssid , (AOS.Challenge, c))
to S|FASC, then S|Q sends (ABS.Verify, sid2, pk , c, σ) to S|FABS. Then, if
S|Q receives (ABS.Verify, sid2, accept) from S|FABS, and S earlier received
(AOS.Pay, sid1, ssid , yes) from FAOS, then S stores (c, σ) and (Q, ssid ,
active), and sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS.

Simulating the data exchange: When S|Q receives (ASC.Receive,

sid5, ssid ,m) from S|FASC, if (Q, ssid , active) is stored, then S|P̃i sends
(AOS.Send, sid1, ssid ,m) to FAOS, and upon receiving (AOS.Send,
sid1, ssid , partner , Q,m) from FAOS, S sends (AOS.Send, sid1, ssid ,
partner , Q, ack) to FAOS.
When S receives (AOS.Send, sid1, ssid , Q, partner ,m) from FAOS, S sends
(AOS.Send, sid1, ssid , Q, partner , ack) to FAOS. If (Q, ssid , active) is stored,
S|Q sends (ASC.Send, sid5, ssid ,m) to S|FASC.

Simulating the session ending: If S receives (AOS.ExpireSession,
Q, sid1, ssid) from FAOS, then S|Q sends (ASC.ExpireSession, sid5, ssid)
to S|FASC.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 13

Simulating the collecting: Since both Q and B are honest, this is done exactly
as when all parties are honest, as described above.

It can be verified that the simulation is perfect also in this case. We note that,
since Pi is corrupt, A obtains the challenge c. In πAOS, c is randomly chosen
by an honest Q, while in IDEALFAOS , it is randomly chosen by S, hence the
distribution of c is the same in both cases.

We also observe the following difference between πAOS and IDEALFAOS : In
the hybrid protocol, in principle, a session can be established between Pi and Q
even if B has not agreed to issue a blind signature to Pi. By the construction
of FAOS, this is impossible in the ideal protocol. However, we can show that,
by the construction of FABS, this behavior is prevented also by the hybrid pro-
tocol. Recall that B and Q are honest, so we can assume that the verification
request (ABS.Verify, sid2, pk ′, c, σ) sent from Q to FABS has the correct key,
i.e. pk ′ = pk , and that the challenge c is honestly chosen by Q. Accordingly,
we can assume that FABS has never seen c before, so that FABS has no recorded
entry (c, σ, pk , accept). Hence, by the non-forgeability condition, the signature
will be rejected by FABS.

As for the collecting, the simulation guarantees that the number of pairs (c,
σ) stored by Q in the hybrid protocol equals the number of such pairs stored by
S in the ideal protocol. Moreover, balance is increased by FAOS every time S
stores a pair (c, σ), and decreased by n every time S removes n pairs. So, if S
has n pairs (c, σ) to collect, the condition n ≤ balance holds.

When Q is corrupt, while Pi and B are honest: S simulates honest Pi and
B and functionalities FABS, FACA, FSC and FASC. We observe that S obtains
all the information needed to perfectly simulate the above functionalities.

Simulating the set-up: Upon receiving (AOS.Register, sid1) from FAOS, S|B
sends (ABS.KeyGen, sid2) to S|FABS. Upon receiving (ABS.Key, sid2, pk)
from S|FABS, S|B sends (ACA.Register, sid3, pk) to S|FACA. Upon re-
ceiving (ACA.Registered, sid3) from S|FACA, S|B sends (SC.Register,
sid4) to S|FSC. Upon receiving (SC.Registered, sid4) from S|FSC, S sends
(AOS.Register, sid1, ack) to FAOS.
The first time S|Q̃ receives some input, S|Q̃ sends (AOS.Register, sid1)
to FASC, and upon receiving (AOS.Register, sid1, Q) from FAOS, S sends
(AOS.Register, sid1, Q, ack) to FAOS.

Simulating the session set-up: Upon receiving (AOS.EstablishSession,
sid1, ssid , Q) from FAOS, S chooses a random identity ID and stores
(ID , ssid). S|ID sends (ASC.EstablishSession, sid5, ssid , Q) to S|FASC.
Upon receiving (ASC.SessionEstablished, sid5, ssid , Q) from S|FASC,
S|ID sends (ACA.Retrieve, sid3, B) to S|FACA. Upon receiving
(ACA.Retrieved, sid3, B, pk) from S|FACA, S|ID sends (ASC.Send,
sid5, ssid ,AOS.Pay) to S|FASC.

14 KRÅKMO

If S|ID receives (ASC.Receive, sid5, ssid , (AOS.Challenge, c)) from
S|FASC, S|ID sends (ABS.Sign, sid2, ssid , pk , c) to S|FABS. When
S|B receives (ABS.Sign, sid2, ssid , ID , request) from S|FABS, S sends
(AOS.EstablishSession, sid1, ssid , ack) to FAOS.
If S receives (AOS.Pay, sid1, ssid ,no) from FAOS, then S|B sends
(ABS.Sign, sid2, ssid ,no) to S|FABS. Then, if S|ID receives (ABS.Sign,
sid2, ssid ,no) from S|FABS, S sends (AOS.Pay, sid1, ssid ,no, ack) to FAOS.
Otherwise, if S receives (AOS.Pay, sid1, ssid , yes) from FAOS, then S
sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS. S|B then sends (ABS.Sign,
sid2, ssid , yes) to S|FABS.
If S|ID receives (ABS.Signature, sid2, ssid , σ) from S|FABS, then S|ID
sends (ASC.Send, sid5, ssid , (AOS.Response, σ)) to S|FASC. S stores
(ID , ssid , active) and sends (AOS.Pay, sid2, ssid , partner , ack) to FAOS.

Simulating the data exchange: When S|ID receives (ASC.Receive,

sid5, ssid ,m) from S|FASC, if (ID , ssid , active) is stored, then S|P̃i sends
(AOS.Send, sid1, ssid ,m) to FAOS, and upon receiving (AOS.Send,
sid1, ssid , Q, partner ,m) from FAOS, S sends (AOS.Send, sid1, ssid , Q,
partner , ack) to FAOS.
When S receives (AOS.Send, sid1, ssid , partner , Q,m) from FAOS, S sends
(AOS.Send, sid1, ssid , , partner , Q, ack) to FAOS. If (ID , ssid , active) is
stored, S|ID sends (ASC.Send, sid5, ssid ,m) to S|FASC.

Simulating the session ending: If S receives (AOS.ExpireSession,
partner , sid1, ssid) from FAOS, then S|ID sends (ASC.ExpireSession,
sid5, ssid) to S|FASC.

Simulating the collecting: If S|B receives (SC.Receive,
sid4, ssid ′, (AOS.Collect, s)) from S|FSC, for every pair (c, σ) in s, S
checks that there is no stored pair (c, σ′) for any σ′, and S|B sends
(ABS.Verify, sid2, pk , c, σ) to S|FABS. If, for every pair, S|B receives
(ABS.Verify, sid2, accept) from S|FABS, then S stores s, and S|B
sends (SC.Send, sid4, ssid ′,AOS.Collected) to S|FSC. S|B then sends
(SC.ExpireSession, sid4, ssid ′) to S|FSC. S|Q̃ sends (AOS.Collect,
sid1, ssid ′, n) to FAOS, where n is the number of pairs in s, and upon re-
ceiving (AOS.Collect, sid1, ssid ′, Q, n) from FAOS, S sends (AOS.Collect,
sid1, ssid ′, ack) to FAOS. S then sends (AOS.Collect, sid1, ssid ′, Q, ack) to
FAOS.

It can be verified that the simulation is perfect also in this case. The simu-
lation guarantees that the number of pairs (c, σ) output by S|FABS in the ideal
protocol equals the number of such pairs output by FABS in the hybrid protocol.
Assume that, at some point in the execution, this number is n′, and no pairs
were yet collected by Q. We observe that, in the ideal protocol, we then have
balance ≥ n′. In the hybrid protocol, in principle, Q can collect a larger num-
ber of challenge/signature pairs than in the ideal protocol, where this number is

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 15

limited by balance. However, we can show that, in both protocols, the number
of pairs that can be collected is limited by n′, due to the construction of FABS.
Assume that Q tries to collect n pairs (c, σ), where n ≥ n′. Recall that B is
honest, so we can assume that every verification request (ABS.Verify, sid2, pk ′,
c, σ) sent from B to FABS has the correct key, i.e. pk ′ = pk . In this case, the
signature will be accepted only if (c, σ, pk ′, accept) is stored, which is the case
only if (c, σ) was earlier output by S|FABS/FABS. Since by assumption only n′

pairs were output, at least one of the pairs will be rejected by S|FABS/FABS

upon verification.
Next, assume that Q collects n′′ challenge/signature pairs. The simulation

then ensures that balance is decreased by n′′. Recall that an honest B ignores a
collect request if S contains a pair (c, σ), such that there is a recorded entry (c,
σ′) for some σ′. By a similar argument as above, we can show that the number
of pairs that can be collected is now limited by n′ − n′′ in both protocols.

When B is corrupt, while Pi and Q are honest: S simulates honest Pi and
Q and functionalities FABS, FACA, FSC and FASC. We observe that S obtains
all the information needed to perfectly simulate the above functionalities.

Simulating the set-up: Upon receiving (AOS.Register, sid1, Q) from
FAOS, S|Q sends (ACA.Retrieve, sid3, B) to S|FACA. Upon receiving
(ACA.Retrieved, sid3, B, pk) from S|FACA, S|Q sends (ASC.Register,
sid5) to S|FASC. Upon receiving (ASC.Registered, sid5) from S|FASC, S
sends (AOS.Register, sid1, Q, ack) to FAOS.

Simulating the session set-up: Upon receiving (AOS.EstablishSession,
sid1, ssid , Pi, Q) from FAOS, S sends (AOS.EstablishSession,
sid1, ssid , ack) to FAOS. S|Pi sends (ASC.EstablishSession, sid5, ssid , Q)
to S|FASC. Upon receiving (ASC.SessionEstablished, sid5, ssid , Q) from
S|FASC, S|Pi sends (ACA.Retrieve, sid3, B) to S|FACA. Upon receiving
(ACA.Retrieved, sid3, B, pk) from S|FACA, S|Pi sends (ASC.Send,
sid5, ssid ,AOS.Pay) to S|FASC. Upon receiving (ASC.Receive,
sid5, ssid ,AOS.Pay) from S|FASC, S picks a random challenge c, and
S|Q sends (ASC.Send, sid5, ssid , (AOS.Challenge, c)) to S|FASC. Upon
receiving (ASC.Receive, sid5, ssid , (AOS.Challenge, c)) from S|FASC,
S|Pi sends (ABS.Sign, sid2, ssid , pk , c) to S|FABS.
If S|FABS then receives (ABS.Sign, sid2, ssid ,no) from A|B, then S|B̃
sends (AOS.Pay, sid1, ssid ,no) to FAOS. When S|Pi receives (ABS.Sign,
sid2, ssid ,no) from S|FABS, S sends (AOS.Pay, sid1, ssid ,no, ack) to FAOS.
Otherwise, if S|FABS receives (ABS.Sign, sid2, ssid , yes) from A|B, then S|B̃
sends (AOS.Pay, sid1, ssid , yes) to FAOS.
If S|Pi then receives (ABS.Signature, sid2, ssid , σ) from S|FABS, then S|Pi

sends (ASC.Send, sid5, ssid , (AOS.Response, σ)) to S|FASC. S stores
(Pi, ssid , active) and sends (AOS.Pay, sid2, ssid , partner , ack) to FAOS.

16 KRÅKMO

When S|Q receives (ASC.Receive, sid5, ssid , (AOS.Response, σ)) from
S|FASC, S|Q sends (ABS.Verify, sid2, pk , c, σ) to S|FABS. If S|Q receives
(ABS.Verify, sid2, accept) from S|FABS, then S stores (c, σ) and (Q, ssid ,
active), and sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS.

Simulating the data exchange: Since both Pi and Q are honest, this is done
exactly as when all parties are honest, as described earlier. We note that we
now have ID = Pi.

Simulating the session ending: Since both Pi and Q are honest, this is done
exactly as when all parties are honest, as described earlier. We note that we
now have ID = Pi.

Simulating the collecting: Upon receiving (AOS.Collect, sid1, ssid ′, Q, n)
from FAOS, if S has at least n stored pairs (c, σ), then S|Q sends
(SC.EstablishSession, sid4, ssid ′, B) to S|FSC. When S|Q receives
(SC.SessionEstablished, sid4, ssid ′, B) from S|FSC, S lets s be a set of
n stored pairs (c, σ), and sends (SC.Send, sid4, ssid ′, (AOS.Collect, s)) to
S|FSC.
If S|Q receives (SC.Receive, sid4, ssid ′,AOS.Collected) from
S|FSC, S removes the pairs (c, σ) contained in s, and S|Q sends
(SC.ExpireSession, sid4, ssid ′) to S|FSC. S sends (AOS.Collect,
sid1, ssid ′, ack) to FAOS, and then sends (AOS.Collect, sid1, ssid ′, Q, ack)
to FAOS.

It can be verified that the simulation is perfect. We note that, since B is
corrupt, the key pk retrieved from FACA by Pi and Q is not necessarily honestly
generated. In that case, A gets the challenge c from FABS. In πAOS, c is randomly
chosen by an honest Q, while in IDEALFAOS , it is randomly chosen by S, hence
the distribution of c is the same in both situations. Also, in the hybrid protocol,
the corrupt B learns Pi’s identity upon signature requests. In order to simulate
this behavior in the ideal protocol, FAOS is constructed such that, when B is
corrupt, Pi’s identity is given to S upon signature requests.

As for the collecting, the simulation guarantees that the number of pairs (c,
σ) stored by Q in the hybrid protocol equals the number of such pairs stored by
S in the ideal protocol. Also, balance is increased by FAOS every time S stores a
pair (c, σ), and decreased by n every time S removes n pairs. Accordingly, if S
has n pairs (c, σ) to collect, the condition n ≤ balance holds.

When Pi and Q are corrupt, while B is honest: S simulates honest B and
functionalities FABS, FACA, FSC and FASC. We observe that S obtains all the
information needed to perfectly simulate the above functionalities.

Simulating the set-up: This is done exactly as when Q is corrupt, while Pi

and B are honest, as described earlier.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 17

Simulating the session set-up: If S|FABS sends (ABS.Sign, sid2, ssid , Pi,

request) to S|B, then S|P̃i sends (AOS.EstablishSession, sid1, ssid , Q) to
FAOS, and upon receiving (AOS.EstablishSession, sid1, ssid , Q) from FAOS,
S sends (AOS.EstablishSession, sid1, ssid , Q, ack) to FAOS.
If S receives (AOS.Pay, sid1, ssid ,no) from FAOS, then S|B sends
(ABS.Sign, sid2, ssid ,no) to S|FABS. S then sends (AOS.Pay,
sid1, ssid ,no, ack) to FAOS. Otherwise, if S receives (AOS.Pay,
sid1, ssid , yes) from FAOS, then S|B sends (ABS.Sign, sid2, ssid , yes) to
S|FABS. S then sends (AOS.Pay, sid1, ssid , partner , ack) to FAOS, and fi-
nally, S sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS.

Simulating the data exchange and the session ending: Since both Pi and Q
are corrupt, S obtains the inputs of both P̃i and Q̃, and also controls their
outputs. S simulates honest B and the functionalities FABS, FACA, FSC and
FASC, and FAOS is never activated.

Simulating the collecting: This is done exactly as when Q is corrupt, while Pi

and B are honest, as described earlier.

It can be verified that the simulation is perfect. As for the collecting, the same
argument holds as for the case where Q is corrupt, while Pi and B are honest.

When Pi and B are corrupt, while Q is honest: S simulates honest Q and
functionalities FABS, FACA, FSC and FASC. We observe that S obtains all the
information needed to perfectly simulate the above functionalities.

Simulating the set-up: This is done exactly as when B is corrupt, while Pi

and Q are honest, as described earlier.

Simulating the session set-up: Upon receiving (ASC.Receive,
sid5, ssid ,AOS.Pay) from S|FASC, S picks a random challenge c, and
S|Q sends (ASC.Send, sid5, ssid , (AOS.Challenge, c)) to S|FASC.
If S|Q receives (ASC.Receive, sid5, ssid , (AOS.Response, σ)) from
S|FASC, and S|Q earlier sent (ASC.Send, sid5, ssid , (AOS.Challenge, c))
to S|FASC, then S|Q sends (ABS.Verify, sid2, pk , c, σ) to S|FABS. Then, if
S|Q receives (ABS.Verify, sid2, accept) from S|FABS, S proceeds as follows:
S|P̃i sends (AOS.EstablishSession, sid1, ssid , Pi, Q) to FAOS, and then S
sends (AOS.EstablishSession, sid1, ssid , Q, ack) to FAOS. S|B̃ then sends
(AOS.Pay, sid1, ssid , yes) to FAOS. S sends (AOS.Pay, sid2, ssid , partner ,
ack) to FAOS, and then S stores (c, σ) and (Q, ssid , active), and sends
(AOS.Pay, sid1, ssid , Q, ack) to FAOS.

Simulating the data exchange: This is done exactly as when Pi is corrupt,
while B and Q are honest, as described earlier.

Simulating the session ending: This is done exactly as when Pi is corrupt,
while B and Q are honest, as described earlier.

18 KRÅKMO

Simulating the collecting: This is done exactly as when B is corrupt, while Pi

and Q are honest, as described earlier.

It can be verified that the simulation is perfect. As for the collecting, the same
argument holds as for the case where B is corrupt, while Pi and Q are honest.

When Q and B are corrupt, while Pi is honest: S simulates honest Pi and
functionalities FABS, FACA, FSC and FASC. We observe that S obtains all the
information needed to perfectly simulate the above functionalities.

Simulating the set-up: The first time S|Q̃ receives some input, S|Q̃ sends
(AOS.Register, sid1) to FAOS, and upon receiving (AOS.Register, sid1, Q)
from FAOS, S sends (AOS.Register, sid1, Q, ack) to FAOS.

Simulating the session set-up: Upon receiving (AOS.EstablishSession,
sid1, ssid , Pi, Q) from FAOS, S sends (AOS.EstablishSession,
sid1, ssid , Q, ack) to FAOS. S|Pi then sends (ASC.EstablishSession,
sid5, ssid , Q) to S|FASC. Upon receiving (ASC.SessionEstablished,
sid5, ssid , Q) from S|FASC, S|Pi sends (ACA.Retrieve, sid3, B) to S|FACA.
Upon receiving (ACA.Retrieved, sid3, B, pk) from S|FACA, S|Pi sends
(ASC.Send, sid5, ssid ,AOS.Pay) to S|FASC.
If S|Pi receives (ASC.Receive, sid5, ssid , (AOS.Challenge, c)) from
S|FASC, S|Pi sends (ABS.Sign, sid2, ssid , pk , c) to S|FABS.
If S|FABS then receives (ABS.Sign, sid2, ssid ,no) from A|B, then S|B̃
sends (AOS.Pay, sid1, ssid ,no) to FAOS. When S|Pi receives (ABS.Sign,
sid2, ssid ,no) from S|FABS, S sends (AOS.Pay, sid1, ssid ,no, ack) to FAOS.
Otherwise, if S|FABS receives (ABS.Sign, sid2, ssid , yes) from A|B, then S
sends (AOS.Pay, sid1, ssid , Q, ack) to FAOS. S|B̃ then sends (AOS.Pay,
sid1, ssid , yes) to FAOS.
If S|Pi then receives (ABS.Signature, sid2, ssid , σ) from S|FABS, then S|Pi

sends (ASC.Send, sid5, ssid , (AOS.Response, σ)) to S|FASC. S stores
(Pi, ssid , active) and sends (AOS.Pay, sid2, ssid , partner , ack) to FAOS.

Simulating the data exchange: This is done exactly as when Q is corrupt,
while Pi and B are honest, as described earlier.

Simulating the session ending: This is done exactly as when Q is corrupt,
while Pi and B are honest, as described earlier.

Simulating the collecting: Since both Q and B are corrupt, S obtains the
inputs of both Q̃ and B̃, and also controls their outputs. S simulates honest
Pi and the functionalities FABS, FACA, FSC and FASC, and FAOS is never
activated.

It can be verified that the simulation is perfect.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 19

When both Pi, Q and B are corrupt: In this case, S obtains the inputs of
both P̃i, Q̃ and B̃, and also controls their outputs. S simulates the functionalities
FABS, FACA, FSC and FASC, and FAOS is never activated. In this case, it is
obvious that the simulation is perfect.

We conclude that πAOS realizes FAOS in the (FABS, FACA, FSC, FASC)-hybrid
model under static corruption. �

References

[1] Aslak Bakke Buan, Kristian Gjøsteen, and Lillian Kr̊akmo. Universally Composable Blind
Signatures in the Plain Model. Cryptology ePrint Archive, Report 2006/405, 2006. Available
at http://eprint.iacr.org/2006/405.

[2] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.iacr.

org/2000/067.
[3] Ran Canetti and Hugo Krawczyk. Universally Composable Notions of Key Exchange and

Secure Channels. In EUROCRYPT ’02: Proceedings of the International Conference on the

Theory and Applications of Cryptographic Techniques, pages 337–351, London, UK, 2002.
Springer-Verlag.

[4] Ran Canetti and Tal Rabin. Universal Composition with Joint State. In CRYPTO, pages
265–281, 2003.

[5] Marc Fischlin. Round-Optimal Composable Blind Signatures in the Common Reference

String Model. In Advances in Cryptology-Crypto 2006. Springer-Verlag, 2006.
[6] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. A Universally Composable Secure

Channel Based on the KEM-DEM Framework. In TCC, pages 426–444, 2005.
[7] Kristian Gjøsteen and Lillian Kr̊akmo. Round-Optimal Blind Signatures from Waters Sig-

natures. In ProvSec ’08: Proceedings of the 2nd International Conference on Provable

Security, pages 112–126, Berlin, Heidelberg, 2008. Springer-Verlag.

20 KRÅKMO

FAOS proceeds as follows, with a bank B̃, a server Q̃, users P̃1, . . . , P̃n and an ideal adversary
S.

• Set-up
– On the first message (AOS.Register, sid) from B̃, where sid = (B, sid′), send

(AOS.Register, sid) to S. Wait to receive (AOS.Register, sid , ack) from S,

send (AOS.Registered, sid) to B̃.

– On the first message (AOS.Register, sid) from Q̃, where sid = (B, sid′), send
(AOS.Register, sid , Q) to S. Wait to receive (AOS.Register, sid , Q, ack)

from S, and store Q.
• Session Set-up

On message (AOS.EstablishSession, sid , ssid , Q) from P̃i, where sid = (B, sid′)
and ssid has not been used before:

(1) Send (AOS.EstablishSession, sid , ssid , Q) to S if B̃ is honest, and
(AOS.EstablishSession, sid , ssid , Pi, Q) otherwise.

(2) Upon receipt of (AOS.EstablishSession, sid , ssid , Q, ack) from S, if Q is

stored, then send (AOS.Pay, sid , ssid , Pi, request) to B̃.

(3) Upon receipt of (AOS.Pay, sid , ssid , Pi,no) from B̃, send (AOS.Pay,
sid , ssid ,no) to S. Wait for (AOS.Pay, sid , ssid ,no, ack) from S, send

(AOS.Pay, sid , ssid ,no) to P̃i and stop. Otherwise, upon receipt of

(AOS.Pay, sid , ssid , Pi, yes) from B̃, send (AOS.Pay, sid , ssid , yes) to S.

(4) Upon receipt of (AOS.Pay, sid , ssid , partner , ack) from S, store (Pi, ssid ,

active) and send (AOS.SessionEstablished, sid , ssid , Q) to P̃i.

(5) Upon receipt of (AOS.Pay, sid , ssid , Q, ack) from S, increase balance and store

(Q, ssid , active). Send (AOS.SessionEstablished, sid , ssid) to Q̃.

• Data Exchange
– On message (AOS.Send, sid , ssid , m) from P̃i: If (Pi, ssid , active) is stored,

then send (AOS.Send, sid , ssid , partner , Q, |m|) to S if both P̃i and Q̃ are hon-
est, and (AOS.Send, sid , ssid , partner , Q, m) otherwise. Wait for (AOS.Send,

sid , ssid , partner , Q, ack) from S. If (Q, ssid , active) is stored, then send

(AOS.Receive, sid , ssid , m) to Q̃.

– On message (AOS.Send, sid , ssid , m) from Q̃: If (Q, ssid , active) is stored,

then send (AOS.Send, sid , ssid , Q, partner , |m|) to S if both P̃i and Q̃ are hon-
est, and (AOS.Send, sid , ssid , Q, partner , m) otherwise. Wait for (AOS.Send,

sid , ssid , Q, partner , ack) from S. If (Pi, ssid , active) is stored, then send

(AOS.Receive, sid , ssid , m) to P̃i.
• Session Ending

On message (AOS.ExpireSession, sid , ssid) from P̃i/Q̃: Remove (Pi, ssid ,

active)/(Q, ssid , active), and send (AOS.ExpireSession, sid , ssid , partner/Q) to S.
• Collect

On message (AOS.Collect, sid , ssid ′, n) from Q̃: Send (AOS.Collect,

sid , ssid ′, Q, n) to S. Upon receiving (AOS.Collect, sid , ssid ′, ack) from S, check

that n ≤ balance, let balance ← balance − n, and send (AOS.Deposit,

sid , ssid ′, Q, n) to B̃. Upon receiving (AOS.Collect, sid , ssid ′, Q, ack) from S, send

(AOS.Deposit, sid , ssid ′, n) to Q̃.

Figure 1. The anonymous online service functionality FAOS.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 21

FASC proceeds as follows, with users P̃1, . . . , P̃n and an ideal adversary S.

• Set-up

In the first activation, expect to receive (ASC.Register, sid) from some party

P̃i. Send (ASC.Register, sid , Pi) to S. Wait to receive (ASC.Register, sid , ack)

from S, store Pi, and send (ASC.Registered, sid) to P̃i.
• Session Set-up

Upon receiving (ASC.EstablishSession, sid , ssid , Pi) from some party P̃j , where

ssid has not been used before, send (ASC.EstablishSession, sid , ssid , Pi) to S,
and check that Pi is stored. Upon receiving (ASC.EstablishSession, sid , ssid ,
partner , ack) from S, store (Pj , ssid , active), and send (ASC.SessionEstablished,

sid , ssid , Pi) to P̃j . Upon receiving (ASC.EstablishSession, sid , ssid , Pi, ack) from

S, store (Pi, ssid , active), and send (ASC.SessionEstablished, sid , ssid) to P̃i.

• Data Exchange

– Upon receiving (ASC.Send, sid , ssid , m) from P̃i, if (Pi, ssid , active) is stored,
then send (ASC.Send, sid , ssid , Pi, partner , |m|) to S if both Pi and Pj are
honest, and (ASC.Send, sid , ssid , Pi, partner , m) otherwise. Wait to receive

(ASC.Send, sid , ssid , Pi, partner , ack) from S. If (Pj , ssid , active) is stored,

then send (ASC.Receive, sid , ssid , m) to P̃j .

– Upon receiving (ASC.Send, sid , ssid , m′) from P̃j , if (Pj , ssid , active) is stored,
then send (ASC.Send, sid , ssid , partner , Pi, |m′|) to S if both Pi and Pj are
honest, and (ASC.Send, sid , ssid , partner , Pi, m

′) otherwise. Wait to receive
(ASC.Send, sid , ssid , partner , Pi, ack) from S. If (Pi, ssid , active) is stored,

then send (ASC.Receive, sid , ssid , m′) to P̃i.

• Session Ending

Upon receiving (ASC.ExpireSession, sid , ssid) from P̃i/P̃j , remove (Pi, ssid ,
active)/(Pj , ssid , active), and send (ASC.ExpireSession, sid , ssid , Pi/partner) to

S.

Figure 2. The anonymous secure channel functionality FASC.

FAN proceeds as follows, with users P̃1, . . . , P̃n and an ideal adversary S.

• In the first activation, expect to receive (AN.Register, sid) from some party P̃j .

Choose a random identity ID . Send (AN.Registered, sid , ID) to P̃j and store (Pj ,
ID).

• Upon receiving (AN.Send, sid , m, ID ′) from some party P̃i, if i = j, then send
(AN.Send, sid , m, ID , ID ′) to S, otherwise send (AN.Send, sid , m, Pi, ID

′) to
S. Upon receiving (AN.Send, sid , m′, ID ′′) from S, if ID ′′ = ID , then send

(AN.Receive, sid , m′) to P̃j , otherwise send (AN.Receive, sid , m′) to ˜ID
′′
.

Figure 3. The anonymous network functionality FAN.

22 KRÅKMO

FACA, proceeds as follows, with parties P̃1, . . . , P̃n and an ideal adversary S.

• In the first activation, expect to receive (ACA.Register, sid , pk) from some party P̃i.

Send (ACA.Register, sid , Pi, pk) to S. Wait to receive (ACA.Register, sid , ack)

from S, record the pair (Pi, pk), and send (ACA.Registered, sid) to P̃i.

• Upon receiving a message (ACA.Retrieve, sid , Pi) from some party P̃j , send
(ACA.Retrieve, sid , Pi) to S, and wait to receive (ACA.Retrieve, sid , ack) from

S. If there is a recorded pair (Pi, pk), then send (ACA.Retrieved, sid , Pi, pk) to

P̃j . Otherwise, send (ACA.Retrieved, sid , Pi,⊥) to P̃j .

Figure 4. The ideal anonymous certificate authority function-
ality FACA.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 23

FKEM-DEM proceeds as follows, with parties P̃1, . . . , P̃n and an ideal adversary S.

• Set-up

In the first activation, expect to receive (KEM.KeyGen, sid) from some party

P̃i. Send (KEM.KeyGen, sid) to S. Upon receiving (KEM.Key, sid , pk) from S,

send (KEM.Key, sid , pk) to P̃i.
• Session Set-up

Upon receiving (KEM.Encrypt, sid , ssid , pk ′) from some party P̃j :

– If there is no recorded entry (Pj , ssid , C, active) for any C,
then send (KEM.Encrypt, sid , ssid , pk ′) to S. Upon receiv-

ing (EncryptedSharedKey, sid , ssid , pk ′, C0) from S, send

(EncryptedSharedKey, sid , ssid , pk ′, C0) to P̃j , and store (pk′, ssid ,
C0) and (Pj , ssid , C0, active).

– Otherwise, do nothing.

Upon receiving (KEM.Decrypt, sid , ssid , C′
0) from P̃i (and P̃i only), send

(KEM.Decrypt, sid , ssid , C′
0) to S. Upon receiving (KEM.Decrypt, sid , ssid ,

ack) from S:
– If there is no stored entry (Pi, ssid , C, active) for any C, send (KEM.Decrypt,

sid , ssid , ok) to P̃i and store (Pi, ssid , C′
0, active).

• Data Exchange

Upon receiving (DEM.Encrypt, sid , ssid , m) from P̃i/P̃j :

– If (Pi/Pj , ssid , C0, active) is stored:

∗ If both Pi and Pj are honest, then send (DEM.Encrypt, sid , ssid , |m|)
to S. Upon receiving (DEM.Ciphertext, sid , ssid , c) from S, send

(DEM.Ciphertext, sid , ssid , c) to P̃i/P̃j , and store (ssid , m, c, C0).

∗ Otherwise, send (DEM.Encrypt, sid , ssid , m) to S. Upon receiv-

ing (DEM.Ciphertext, sid , ssid , c) from S, send (DEM.Ciphertext,

sid , ssid , c) to P̃i/P̃j , and store (ssid , m, c, C0).

Upon receiving (DEM.Decrypt, sid , ssid , c′) from P̃i/P̃j , send (DEM.Decrypt,
sid , ssid , c′) to S. Upon receiving (DEM.Plaintext, sid , ssid , m′) from S:

– If there is a recorded entry (Pi/Pj , ssid , C, active) for some C:

(1) If there is a recorded entry (ssid , m, c′, C), then send (DEM.Plaintext,

sid , ssid , m) to P̃i/P̃j .

(2) Otherwise, if both Pi and Pj are honest, then store (ssid ,⊥, c′, C) and

send (DEM.Plaintext, sid , ssid ,⊥) to P̃i/P̃j .

(3) Otherwise, if there is a recorded entry (ssid ,⊥, c′, C), then send

(DEM.Plaintext, sid , ssid ,⊥) to P̃i/P̃j .

(4) Otherwise, send (DEM.Plaintext, sid , ssid , m′) to P̃i/P̃j , and store
(ssid , m′, c′, C).

• Session Ending
Upon receiving (KEM.ExpireSession, sid , ssid) from P̃i/P̃j , remove (Pi, ssid ,

C0, active)/ (Pj , ssid , C′
0, active).

Figure 5. The KEM-DEM functionality FKEM-DEM.

24 KRÅKMO

πASC runs as follows, with users P1, . . . , Pn and an adversary A.

• Set-up
Upon the first input (ASC.Register, sid1), Pi sends (KEM.KeyGen, sid2) to

FKEM-DEM. Upon receiving (KEM.Key, sid2,PK i) from FKEM-DEM, Pi sends
(ACA.Register, sid3,PK i) to FACA. Upon receiving (ACA.Registered, sid3)
from FACA, Pi outputs (ASC.Registered, sid1).

• Session Set-up
(1) Upon the first input (ASC.EstablishSession, sid1, ssid , Pi), Pj sends

(AN.Register, (sid4, ssid)) to FAN, and waits to receive (AN.Registered,

(sid4, ssid), ID) from FAN. Then Pj sends (ACA.Retrieve, sid3, Pi) to
FACA.

(2) Upon receiving (ACA.Retrieved, sid3, Pi,PK i) from FACA, Pj

sends (KEM.Encrypt, sid2, ssid ,PK i) to FKEM-DEM, and receives
(EncryptedSharedKey, sid2, ssid ,PK i, C0) from FKEM-DEM.

(3) Pj stores (ssid , active), sets variables ssid − sn and ssid − psn equal
to 1, sends (AN.Send, (sid4, ssid), (ASC.EstablishSession, sid1, ssid , C0,

ID), Pi) to FAN, and outputs (ASC.SessionEstablished, sid1, ssid , Pi).
(4) Upon receiving (AN.Receive, (sid4, ssid), (ASC.EstablishSession,

sid1, ssid , C′
0, ID ′)) from FAN, Pi sends (KEM.Decrypt, sid2, ssid , C′

0) to
FKEM-DEM. If (KEM.Decrypt, sid2, ssid , ok) is returned from FKEM-DEM,
Pi stores (ssid , active), sets variables ssid − sn and ssid − psn equal to 1 and

outputs (ASC.SessionEstablished, sid1, ssid).

• Data Exchange
(1) Upon input (ASC.Send, sid1, ssid , M), Pi/Pj checks that (ssid , active) is

stored, lets m = M ||Pi/ID ||ssid − sn, increases ssid − sn and sends
(DEM.Encrypt, sid2, ssid , m) to FKEM-DEM.

(2) Upon receiving (DEM.Ciphertext, sid2, ssid , c) from FKEM-DEM, Pi/Pj

sends (AN.Send, (sid4, ssid), c, ID/Pi) to FAN.
(3) Upon receiving (AN.Receive, (sid4, ssid), c) from FAN, Pj/Pi checks that

(ssid , active) is stored, and sends (DEM.Decrypt, sid2, ssid , c) to FKEM-DEM.
(4) Upon receiving (DEM.Plaintext, sid2, ssid , m) from FKEM-DEM, Pj/Pi

checks that m = M ||Pi/ID ||ssid − psn, increases ssid − psn and outputs

(ASC.Receive, sid1, ssid , M).

• Session Ending

Upon input (ASC.ExpireSession, sid1, ssid), Pi/Pj removes (ssid , active) and
sends (KEM.ExpireSession, sid2, ssid) to FKEM-DEM.

Figure 6. The anonymous secure channel protocol πASC.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 25

FABS proceeds as follows, with signer B̃, users P̃1, . . . , P̃n and an ideal adversary S.

• Upon receiving the first (ABS.KeyGen, sid) from the signer B̃, where sid = (B,

sid ′), send (ABS.KeyGen, sid) to S. Upon receiving (ABS.Key, sid , pk , Π) from

S, store (pk , Π), send (ABS.Key, sid , pk) to B̃ and stop.

• Upon receiving (ABS.Sign, sid , ssid , pk ′, m) from a user P̃i, where sid = (B, sid ′),
proceed as follows:

(1) If pk ′ = pk and P̃i is honest, then send (ABS.Sign, sid , ssid , pk ′) to S, other-

wise send (ABS.Sign, sid , ssid , pk ′, m) to S.

(2) Upon receiving (ABS.Sign, sid , ssid , pk ′, ack) from S, send (ABS.Sign,

sid , ssid , Pi, request) to B̃.

(3) Upon receiving (ABS.Sign, sid , ssid , Pi,no) from B̃, send (ABS.Sign,

sid , ssid ,no) to S. Wait for (ABS.Sign, sid , ssid ,no, ack) from S, and send

(ABS.Sign, sid , ssid ,no) to P̃i.

(4) Upon receiving (ABS.Sign, sid , ssid , Pi, yes) from B̃, send (ABS.Sign,

sid , ssid , yes) to S.
(a) Upon receiving (ABS.Signature, sid , ssid , signer completed) from S,

send (ABS.Signature, sid , ssid , Pi) to B̃.

(b) Upon receiving (ABS.Signature, sid , ssid , signer not completed) from

S, send (ABS.Signature, sid , ssid , Pi, signer not completed) to B̃.

(c) Upon receiving (ABS.Signature, sid , ssid , user completed , σ′) from S,

proceed as follows: If P̃i is honest and pk ′ = pk , then generate σ
r←

Π(m). If (m, σ, pk ′, reject) is stored, then stop, otherwise store (m, σ,

pk ′, accept) and send (ABS.Signature, sid , ssid , σ) to P̃i. Otherwise,

if P̃i is corrupt or pk ′ 6= pk , and if there is no stored entry (m, σ′,
pk ′, reject), then store (m, σ′, pk ′, accept) and send (ABS.Signature,

sid , ssid , σ′) to P̃i.

(d) Upon receiving (ABS.Signature, sid , ssid , user failed) from S, send

(ABS.Signature, sid , ssid , user failed) to P̃i.

• Upon receiving (ABS.Verify, sid , pk ′, m, σ) from an honest user P̃j , send
(ABS.Verify, sid , pk ′, m, σ) to S. Upon receiving (ABS.Verify, sid , pk ′, m, σ, φ)
from S, proceed as follows:

(1) If pk ′ = pk and (m, σ, pk , accept) is stored, then let f = accept (completeness
condition).

(2) Otherwise, if pk ′ = pk , B is honest and there is no recorded entry (m, σ,
pk , accept), then let f = reject and store (m, σ, pk , reject) (non-forgeability
condition).

(3) Otherwise, if there is a recorded entry (m, σ, pk ′, f ′), then let f = f ′ (consis-
tency condition).

(4) Otherwise, let f = φ and store (m, σ, pk ′, f).

Send (ABS.Verify, sid , f) to P̃j .

Figure 7. The anonymous blind signature functionality FABS.

26 KRÅKMO

FSC proceeds as follows, with users P̃1, . . . , P̃n and an ideal adversary S.

• Set-up

In the first activation, expect to receive (SC.Register, sid) from some party P̃i.
Send (SC.Register, sid , Pi) to S. Wait to receive (SC.Register, sid , ack) from S,

store Pi, and send (SC.Registered, sid) to P̃i.

• Session Set-up
Upon receiving (SC.EstablishSession, sid , ssid , Pi) from some party P̃j , send

(SC.EstablishSession, sid , ssid , Pi, Pj) to S, and check that Pi is stored.

Upon receiving (SC.EstablishSession, sid , ssid , Pj , ack) from S, store (Pj , ssid ,

active), and send (SC.SessionEstablished, sid , ssid , Pi) to P̃j . Upon receiving

(SC.EstablishSession, sid , ssid , Pi, ack) from S, store (Pi, ssid , active), and send

(SC.SessionEstablished, sid , ssid , Pj) to P̃i.

• Data Exchange
– Upon receiving (SC.Send, sid , ssid , m) from P̃i, if (Pi, ssid , active) is stored,

then send (SC.Send, sid , ssid , Pi, Pj , |m|) to S if both Pi and Pj are hon-
est, and (SC.Send, sid , ssid , Pi, Pj , m) otherwise. Wait to receive (SC.Send,
sid , ssid , Pi, Pj , ack) from S. If (Pj , ssid , active) is stored, then send

(SC.Receive, sid , ssid , m) to P̃j .

– Upon receiving (SC.Send, sid , ssid , m) from P̃j , if (Pj , ssid , active) is stored,
then send (SC.Send, sid , ssid , Pj , Pi, |m|) to S if both Pi and Pj are hon-

est, and (SC.Send, sid , ssid , Pj , Pi, m) otherwise. Wait to receive (SC.Send,
sid , ssid , Pj , Pi, ack) from S. If (Pi, ssid , active) is stored, then send

(SC.Receive, sid , ssid , m) to P̃i.
• Session Ending

Upon receiving (SC.ExpireSession, sid , ssid) from P̃i/P̃j , remove (Pi, ssid ,

active)/(Pj , ssid , active), and send (SC.ExpireSession, sid , ssid , Pi/Pj) to S.

Figure 8. The secure channel functionality FSC.

A UNIVERSALLY COMPOSABLE ANONYMOUS ONLINE SERVICE 27

πAOS runs as follows, with a bank B, a server Q, users P1, . . . , Pn and an adversary A.

• Set-up
– Upon the first input (AOS.Register, sid1), where sid1 = (B, sid′), B

sends (ABS.KeyGen, sid2) to FABS. Upon receiving (ABS.Key, sid2, pk)

from FABS, B sends (ACA.Register, sid3, pk) to FACA. Upon receiv-
ing (ACA.Registered, sid3) from FACA, B sends (SC.Register, sid4)
to FSC. Upon receiving (SC.Registered, sid4) from FSC, B outputs

(AOS.Registered, sid1).

– Upon the first input (AOS.Register, sid1), where sid1 = (B, sid′), Q

sends (ACA.Retrieve, sid3, B) to FACA. Upon receiving (ACA.Retrieved,
sid3, B, pk) from FACA, Q sends (ASC.Register, sid5) to FASC, and waits to
receive (ASC.Registered, sid5) from FASC.

• Session Set-up
(1) Upon input (AOS.EstablishSession, sid1, ssid , Q), where sid1 = (B, sid ′),

Pi sends (ASC.EstablishSession, sid5, ssid , Q) to FASC. Upon re-
ceiving (ASC.SessionEstablished, sid5, ssid , Q) from FASC, Pi sends

(ACA.Retrieve, sid3, B) to FACA. Upon receiving (ACA.Retrieved,
sid3, B, pk) from FACA, Pi sends (ASC.Send, sid5, ssid ,AOS.Pay) to FASC.

(2) Upon receiving (ASC.Receive, sid5, ssid ,AOS.Pay) from FASC, Q picks a

random challenge c, and sends (ASC.Send, sid5, ssid , (AOS.Challenge, c))
to FASC.

(3) Upon receiving (ASC.Receive, sid5, ssid , (AOS.Challenge, c)) from FASC,
Pi sends (ABS.Sign, sid2, ssid , pk , c) to FABS.

(4) Upon receiving (ABS.Sign, sid2, ssid , Pi, request) from FABS, B outputs
(AOS.Pay, sid1, ssid , Pi, request). B proceeds as follows:

– Upon input (AOS.Pay, sid1, ssid ,no), B sends (ABS.Sign,
sid2, ssid ,no) to FABS.

– Upon input (AOS.Pay, sid1, ssid , yes), B sends (ABS.Sign,
sid2, ssid , yes) to FABS.

(5) Pi proceeds as follows:
– Upon receiving (ABS.Sign, sid2, ssid ,no) from FABS, Pi outputs

(AOS.Pay, sid1, ssid ,no).

– Upon receiving (ABS.Signature, sid2, ssid , σ) from FABS, Pi sends
(ASC.Send, sid5, ssid , (AOS.Response, σ)) to FASC, sets a boolean

variable active and outputs (AOS.SessionEstablished, sid1, ssid , Q).

(6) Upon receiving (ASC.Receive, sid5, ssid , (AOS.Response, σ)) from FASC,
Q sends (ABS.Verify, sid2, pk , c, σ) to FABS. Upon receiving (ABS.Verify,

sid2, accept) from FABS, Q stores (c, σ), sets a boolean variable active and
outputs (AOS.SessionEstablished, sid1, ssid).

Figure 9. The anonymous online service protocol πAOS, part 1.

28 KRÅKMO

πAOS runs as follows, with a bank B, a server Q, users P1, . . . , Pn and an adversary A.

• Data Exchange
(1) On input (AOS.Send, sid1, ssid , m), if Pi/Q is active, then he sends

(ASC.Send, sid5, ssid , m) to FASC.

(2) Upon receiving (ASC.Receive, sid5, ssid , m) from FASC, if Q/Pi is active,
then he outputs (AOS.Receive, sid1, ssid , m).

• Session Ending
Upon input (AOS.ExpireSession, sid1, ssid), Pi/Q unsets the active variable

and sends (ASC.ExpireSession, sid5, ssid) to FASC.

• Collect
(1) On input (AOS.Collect, sid1, ssid ′, n), if Q has at least n stored pairs (c, σ),

Q sends (SC.EstablishSession, sid4, ssid ′, B) to FSC.

(2) Upon receiving (SC.SessionEstablished, sid4, ssid ′, B) from FSC, Q lets s be
a set of n pairs (c, σ), and sends (SC.Send, sid4, ssid ′, (AOS.Collect, s)) to

FSC.
(3) Upon receiving (SC.Receive, sid4, ssid ′, (AOS.Collect, s)) from FSC, for

every pair (c, σ) in s, B checks that there is no stored pair (c, σ′)
for any σ′, and sends (ABS.Verify, sid2, pk , c, σ) to FABS. If, for
every pair, B receives (ABS.Verify, sid2, accept) from FABS, B stores
s and sends (SC.Send, sid4, ssid ′,AOS.Collected) to FSC. B then

sends (SC.ExpireSession, sid4, ssid ′) to FSC and outputs (AOS.Deposit,
sid1, ssid ′, Q, n).

(4) Upon receiving (SC.Receive, sid4, ssid ′,AOS.Collected) from
FSC, Q removes the pairs (c, σ) corresponding to s, Q then sends

(SC.ExpireSession, sid4, ssid ′) to FSC and outputs (AOS.Collected,
sid1, ssid ′, n).

Figure 10. The anonymous online service protocol πAOS, part 2.

Paper V

Secure Messaging from Signcryption:
An Application of Formal Methods to Universal Composability

Lillian Kr̊akmo

Preprint

SECURE MESSAGING FROM SIGNCRYPTION: AN
APPLICATION OF FORMAL METHODS TO UNIVERSAL

COMPOSABILITY

LILLIAN KRÅKMO

Abstract. The framework of universally composable security has received
a lot of attention due to its strong security guarantees for cryptographic pro-

tocols running in arbitrary environments. A concern is that security proofs
within this framework are typically long and prone to errors. This paper

presents an application of state machine theory, which may be considered
as a first step towards allowing for automatic verification of such proofs. As
an example, we consider a hybrid protocol using functionalities for a public

key infrastructure and signcryption, and prove that the protocol realizes a
functionality for secure messaging.

1. Introduction

Traditionally, we have seen two main approaches for security analysis of crypto-
graphic protocols. In computational models, cryptographic primitives are treated
as algorithms, and adversaries are computationally bounded entities with access
to the inputs and outputs of these algorithms. Security is typically defined in
a probabilistic sense, and relies on computational intractability assumptions. A
variety of such models have been proposed [9, 10, 3]. A common feature of these
models is that security notions tend to get relatively complex, even for simple
protocols. Furthermore, the security proofs require some level of human cre-
ativity, since breaking the security of the protocol in question must be reduced
to breaking some underlying hard problem. Accordingly, such proofs are not
likely to be amenable to automation. Symbolic models, on the other hand, treat
cryptographic primitives as symbolic operations, which immediately guarantee a
set of idealized security properties. As a result, protocol analysis becomes con-
siderably simpler, and easier to mechanize. Examples of such models are the
Dolev-Yao model [8], the BAN logic [4] and the Spi-calculus [1]. However, when
it comes to guaranteeing security for protocols running in realistic settings, the
computational approach is the only one that is obviously sound.

In recent years, many attempts have been made at combining the above ap-
proaches, in order to obtain both soundness and automation of analysis. One
such approach is represented by models that guarantee security-preserving com-
position [11, 2, 5]. In such models, primitives are represented by idealized ab-
stractions. These abstractions are realizable by actual protocols, and may also

1

2 KRÅKMO

be deployed as subroutines by higher-level protocols, thus allowing for a more
mechanical security analysis. At the same time, soundness is guaranteed by a
strong composition theorem, which ensures that a protocol using an abstraction
retains its security when the abstraction is replaced by a realizing protocol. Our
work focuses on one specific such model, namely the framework of universally
composable (UC) security, developed by Canetti [5]. In the UC framework, the
idealized abstractions appear as ideal functionalities, and protocols that use ideal
functionalities as subroutines are referred to as hybrid protocols. We refer to [5]
for a full overview of this framework.

Although the UC framework simplifies analysis of complex protocols, it still re-
quires that security proofs be obtained within a full-fledged cryptographic model,
hence proofs tend to get tedious and error-prone. This problem is addressed by
Canetti and Herzog in [7, 6], where they demonstrate how symbolic analysis
within a simple model can be used to argue about the UC security of a concrete
protocol. More specifically, they show how a concrete protocol in the UC frame-
work can be translated into a simpler, symbolic protocol in the Dolev-Yao model,
and prove that, if the translated protocol satisfies a certain symbolic criterion,
then the original protocol is UC secure.

This paper, which is an extension of an unpublished manuscript by Gjøsteen
[12], presents an alternative approach to solve this problem, by using state ma-
chine theory. In the UC framework, the parties running a protocol, as well as
the adversarial entities, are represented as interactive Turing machines (ITMs).
Security of a protocol is defined by a game, where the environment machine Z
tries to decide whether it is interacting with the real protocol or with the ideal
protocol for the task at hand. The basic idea behind our approach is simple: The
above scenarios give rise to two systems of ITMs. The set of possible messages
in such a system can be viewed as an alphabet, and the string of messages sent in
a run of the system can be considered a word. Then, the language consisting of
all such words completely describes the possible communication patterns of the
system. When trying to distinguish between the two systems, the only informa-
tion Z can benefit from is the messages it exchanges with the rest of the system.
We argue that, if the languages of the systems are identical when restricted to
these messages, and the machines representing the protocols are all deterministic,
then the two systems look identical from Z’s point of view. This means that the
protocol securely realizes the functionality for the task in question.

As an example, we consider a hybrid protocol using functionalities for a public
key infrastructure and signcryption, and prove that the protocol realizes a func-
tionality for secure messaging. Most of the steps involved in the proof boil down
to mechanical manipulations of state machines, which should be easy to imple-
ment on a computer. Our approach can thus be considered as a first step towards
automatic verification of such proofs. We emphasize that this paper presents on-
going work. For instance, our approach currently only applies to protocols where
the Turing machines representing the parties are all deterministic. Eliminating
this restriction is an object of further study.

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 3

In Section 2, we introduce some basic notions concerning state machines and
languages. Several lemmas are derived, which will be useful when proving our
main result. Moreover, we obtain a theorem, which allows us to use state ma-
chine theory to prove security of certain protocols within the UC framework. In
Section 3, we present our hybrid protocol along with the relevant functionali-
ties, and construct state machines that recognize the languages arising from Z
interacting with either the hybrid protocol or the ideal protocol for secure mes-
saging. Finally, in Section 4, we prove that the hybrid protocol realizes the secure
messaging functionality.

2. Languages and State Machines

2.1. State Machines. A deterministic state machine M is a tuple (S, I, f,W, s0)
where S and I are sets, f : S × I → S is a partial function, W is a non-empty
subset of S, and s0 ∈ S. S is the set of states, I is the machine’s input alphabet,
f is the state transition function, W is the set of wait states or accepting states,
and s0 is the initial state.

Note that we will sometimes consider the partial function f to be a subset of
S× I×S. Also, dom(f)2 denotes the subset of elements w in I for which at least
one state s exists such that f(s, w) is defined.

Let M1 = (S1, f1, I1,W1, s1) and M2 = (S2, f2, I2,W2, s2) be state machines.
A map µ : M1 → M2 is a pair (σ : S1 → S2, τ : I1 → I2), where σ is a function
and τ is a partial function, such that σ(s1) = s2, σ(W1) ⊆ W2 and for all s ∈ S1,
w ∈ I1, if f1(s, w) is defined, then

σ(f1(s, w)) = f2(σ(s), τ(w))

if τ(w) is defined, and σ(f1(s, w)) = σ(s) if τ(w) is undefined. Furthermore, if σ
is a bijection, τ restricted to dom(f1)2 is a bijection on dom(f2)2, σ(W1) = W2

and f1(s, w) is defined if and only if f2(σ(s), τ(w)) is defined, then the map µ is
an isomorphism.

2.2. Languages. An alphabet I is a set of letters. Given an alphabet I, I∗

denotes the set of strings of elements from I. Furthermore, a language L over I
is a subset of I∗.

A state machine (S, I, f,W, s0) can process a string w1w2 . . . wn ∈ I∗ using the
following procedure: The machine is in state si−1 when processing input letter
wi. If f(si−1, wi) is not defined, the machine stops and the input string is not
recognized. Otherwise, the machine moves to state si = f(si−1, wi) and processes
the next input letter. If the machine reaches a state sn without stopping, the
machine recognizes the input string if sn ∈ W , otherwise it does not recognize
the input string.

The language recognized by a machine M is the subset of strings in I∗ that
are recognized by the machine, denoted L(M).

Let I1 and I2 be two alphabets. From a partial function τ : I1 → I2 we get a
function τ : I∗1 → I∗2 by applying τ to each letter, removing letters for which τ is
undefined.

4 KRÅKMO

Lemma 1. Let M1 and M2 be state machines. If (σ, τ) is a map from M1 to
M2, then

τ(L(M1)) ⊆ L(M2).
If (σ, τ) is an isomorphism, then the map τ : L(M1) → L(M2) is a bijection.

Proof. Let M1 = (S1, f1, I1,W1, s1) and M2 = (S2, f2, I2,W2, s2). Consider a
word w1w2 . . . wn ∈ I∗1 . Suppose M1 recognizes this word. Then we have states
s1,0, s1,1, . . . , s1,n ∈ S1 where s1,0 = s1, s1,i = f1(s1,i−1, wi) for 1 ≤ i ≤ n and
s1,n ∈ W1.

By the map properties, we have that σ(s1,0) = s2,0, f2(σ(s1,i−1), τ(wi)) =
σ(s1,i) if τ(wi) is defined, otherwise σ(s1,i−1) = σ(s1,i), for 1 ≤ i ≤ n, and
σ(s1,n) ∈ W2. Therefore M2 recognizes τ(w1w2 . . . wn), and τ(L(M1)) ⊆ L(M2).

Assume that (σ, τ) is an isomorphism, and consider a word v1v2 . . . vm ∈
L(M2). We will show that there is a unique word w1w2 . . . wm′ ∈ L(M1) such
that τ(w1w2 . . . wm′) = v1v2 . . . vm. Since v1v2 . . . vm ∈ L(M2), we have states
s2,0, s2,1, . . . , s2,m ∈ S2, where s2,0 = s2, s2,i = f2(s2,i−1, vi) for 1 ≤ i ≤ m and
s2,m ∈ W2. Recall that σ(s1,0) = s2,0. Since (σ, τ) is an isomorphism, σ is a bi-
jection, so for 1 ≤ i ≤ m, we have a unique state s1,i ∈ S1 such that σ(s1,i) = s2,i.
Moreover, τ restricted to dom(f1)2 is a bijection on dom(f2)2, so for 1 ≤ i ≤ m,
we have a unique letter wi ∈ dom(f1)2 such that τ(wi) = vi. This means that,
for 1 ≤ i ≤ m, f2(σ(s1,i−1), τ(wi)) is defined, which implies that f1(s1,i−1, wi)
is defined. Then, by the map properties, σ(f1(s1,i−1, wi)) = f2(s2,i−1, vi) = s2,i,
so f1(s1,i−1, wi) = s1,i. Consequently, after processing w1w2 . . . w3, M1 will be
in state s1,m. Since σ(s1,m) = s2,m and s2,m ∈ W2, we have s1,m ∈ W1, hence
w1w2 . . . w3 ∈ L(M1), and τ(w1w2 . . . wm) = v1v2 . . . vm.

Now assume that there is another word w′
1w

′
2 . . . w′

m′ ∈ L(M1) such that
τ(w′

1w
′
2 . . . w′

m′) = v1v2 . . . vm. Then we have states s′1,0, s
′
1,1, . . . , s

′
1,m′ ∈ S1

where s′1,0 = s1, s′1,i = f1(s′1,i−1, w
′
i) for 1 ≤ i ≤ m′ and s′1,m′ ∈ W1. When

f1(s′1,i−1, w
′
i) is defined, so is f2(σ(s′1,i−1), τ(w′

i)), which in particular means that
τ(w′

i) is defined. Hence m′ = m, and for 1 ≤ i ≤ m′, we must have τ(w′
i) = vi.

Since restricted to dom(f1)2 is a bijection on dom(f2)2, this implies that w′
i = wi,

so w′
1w

′
2 . . . w′

m′ = w1w2 . . . wm. �

We want to make changes to a machine without essentially changing the lan-
guage recognized by the machine. Some transitions are not essential, in the sense
that the letter recognized by the transition does not contain any new informa-
tion; the transition and the next state are completely determined by the previous
state. The following lemma allows us to modify a machine by adding or removing
certain states and transitions, while obtaining a bijection between the languages
recognized by the original and the resulting machine.

Lemma 2. Let M = (S, f, I,W, s0) be a machine, and let S0 ⊆ S be a subset
such that S0 ∩ (W ∪ {s0}) = ∅. Suppose there exist a partial function g : S0 → I
and a function h : S0 → S \ S0 such that:

(1) for all s ∈ S, w ∈ I and s′ ∈ S0, if (s, w, s′) ∈ f , then the only transition
out of s′ in f is (s′, g(s′), h(s′)),

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 5

(2) for all w ∈ g(S0), if (s, w, s′) ∈ f then s ∈ S0.
Let M ′ = (S \ S0, f

′, I \ I0,W, s0), where I0 ⊆ g(S0) and

f ′ = {(s, w, s′) ∈ f | s, s′ 6∈ S0}∪
{(s, w, s′′) | ∃s′ ∈ S0 : (s, w, s′) ∈ f ∧ h(s′) = s′′}.

Then the map τ : L(M) → L(M ′) induced by

τ(w) =

{
w w 6∈ g(S0),
undefined otherwise,

is a bijection.

Proof. Let w = w1w2 . . . wn ∈ L(M ′). We shall prove that there is a unique word
v = v1v2 . . . vm ∈ L(M) such that τ(v) = w, hence τ will be a bijection.

We construct the string v(i) from v(i−1). Suppose τ(v(i−1)) = w1w2 . . . wi−1,
and that both M and M ′ are in state s after processing v(i−1) and w1 . . . wi−1,
respectively. Now consider wi, and let (s, wi, s

′) ∈ f ′. If (s, wi, s
′) ∈ f , we set

v(i) = v(i−1)wi. Then

τ(v(i)) = τ(v(i−1))τ(wi) = w1 . . . wi,

and after processing wi, both M and M ′ will be in state s′.
If (s, wi, s

′) 6∈ f , then there is an s′′ ∈ S0 such that h(s′′) = s′ and (s, wi, s
′′) ∈

f . Let w′
i = g(s′′), and set v(i) = v(i−1)wiw

′
i. Then

τ(v(i)) = τ(v(i−1))τ(wi)τ(w′
i) = w1 . . . wi,

and after processing wi, both M and M ′ will be in state s′.
Let v(0) be the empty word. With the above rule, we construct the sequence

v(0), v(1), . . . , v(n) and set v = v(n). Since M ′ is in a wait state after processing
w, so must M be after processing v, so v ∈ L(M) and by construction, τ(v) = w.
This shows that τ is onto. Also, v is because of the functions g and h the only
possible preimage of w, hence τ is also injective.

It remains to prove that τ(L(M)) ⊆ L(M ′). Assume that v1v2 . . . vm ∈ L(M).
Suppose τ(v1v2 . . . vi−1) = w(i−1), and that both M and M ′ are in state s /∈ S0

after processing v1v2 . . . vi−1 and w(i−1), respectively. Consider vi, and assume
that (s, vi, s

′) ∈ f . Then, since s /∈ S0, we have τ(vi) = vi. If s′ /∈ S0, then
(s, vi, s

′) ∈ f ′, so after processing v1v2 . . . vi and τ(v1v2 . . . vi) = w(i−1)vi, respec-
tively, both M and M ′ are in state s′ /∈ S0. If s′ ∈ S0, then the only valid transi-
tion out of s′ in f is given by (s′, g(s′), h(s′)). This means that (s, vi, h(s′)) ∈ f ′.
Furthermore, g(s′) = vi+1 and τ(vi+1) is undefined. Accordingly, after processing
v1v2 . . . vi+1 and τ(v1v2 . . . vi+1) = w(i−1)vi, respectively, both M and M ′ are in
state h(s′) /∈ S0.

Initially, both M and M ′ are in state s0 /∈ S0. Assume that M is in state
sm after processing v1v2 . . . vm. Since v1v2 . . . vm ∈ L(M), sm is a wait state, so
sm /∈ S0. This means that, according to the above rule, both M and M ′ will be
in state sm after processing v1v2 . . . vm and τ(v1v2 . . . vm), respectively. Since M

6 KRÅKMO

is in a wait state at this point, so is M ′, and we conclude that τ(v1v2 . . . vm) ∈
L(M ′). �

Suppose we have a language L1 over an alphabet I1, and let I be a subset
of I1. The language L1 restricted to the alphabet I, denoted L1|I , is formed by
removing from the strings in L1 any letter that is not in I. Thus L1|I ⊆ I∗. Any
string consisting entirely of letters not in I would result in the empty string. If
L2 is a second language over an alphabet I2, I ⊆ I2, then we say that L1 and L2

are equivalent with respect to I if L1|I = L2|I .
We say that two machines with input alphabets I1 and I2 are equivalent with

respect to an alphabet I ⊆ I1 ∩ I2 if the languages recognized by the machines
are equivalent with respect to I. Note that this relation is transitive, symmetric
and reflexive. If τ : I1 → I2 is a partial function such that the induced language
map is bijective and τ keeps I fixed, then the two machines are equivalent with
respect to I. We state this result in a lemma for further reference.

Lemma 3. Let M1 and M2 be state machines with input alphabets I1 and I2,
respectively, and let I ⊆ I1 ∩ I2. If τ : I1 → I2 is a partial function such that the
induced language map is bijective and τ restricted to I is the identity map, then
the two machines are equivalent with respect to I.

2.3. Composition of State Machines. We shall define a composition of two
state machines, to model the intuitive notion of two processors cooperating in
recognizing a language. For every letter in the input string, one or both machines
may recognize the input letter. If only one machine recognizes the input letter,
the input letter must not be part of the other machine’s input alphabet, and the
other machine must be in a wait state for the composite machine to recognize
the input letter.

Let M1 = (S1, I1, f1,W1, s1,0) and M2 = (S2, I2, f2,W2, s2,0) be two state
machines. Consider the set f12 given by

f12 = {((s1i, s2k), w, (s1j , s2l)) |
((s1i, w, s1j) ∈ f1 ∨ (w 6∈ I1 ∧ s1i = s1j ∧ s1i ∈ W1))∧
((s2k, w, s2l) ∈ f2 ∨ (w 6∈ I2 ∧ s2k = s2l ∧ s2k ∈ W2))}.

It is easy to verify that f12 is a partial function from S1×S2×(I1∪I2) to S1×S2.

Definition 4. The composite machine M1 +M2 is the tuple (S1 × S2, I1 ∪
I2, f12,W1 ×W2, (s1,0, s2,0)).

It is straightforward to show the following lemma, which says that the com-
position operation is essentially commutative and associative.

Lemma 5. For state machines M1, M2 and M3, M1 + M2 is isomorphic to
M2 + M1, and (M1 + M2) + M3 is isomorphic to M1 + (M2 + M3).

Recall that, in our definition of an isomorphism, we require that σ be a bijec-
tion between the sets of states of the respective machines. In the following, we
will call a state s of a machine reachable if there exists an input string that can

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 7

take the machine from the initial state to state s. In the composition M1 +M2,
the machines M1 and M2 do not run independently, but are subject to the re-
strictions implied by the above definition. This means that the set of reachable
states for M1 +M2 is typically small compared to the product S1 × S2. A sim-
ilar argument applies when considering the input alphabet of a composition of
machines. We will call a letter w in a machine’s input alphabet significant if
there exists a reachable state s such that the transition function is defined on
input (s, w). It is intuitive that, when arguing about the language recognized by
a machine, it should be sufficient to consider the reachable states and the signif-
icant letters. On the other hand, identifying these states and letters is generally
a non-trivial task. In many cases, it will be more convenient to identify certain
subsets of states/letters, containing all reachable states/significant letters, and
base arguments on these subsets.

Regarding the sufficiency of considering reachable states, it is straightforward
to verify the following result.

Corollary 6. Lemma 2 still holds when restricting the first condition to the
reachable s ∈ S.

In order to formalize the above ideas, we introduce the notion of a minimal
machine as follows: If M = (S, I, f,W, s0), then minimal(M) = (Ŝ, Î, f̂ , Ŵ , s0),
where Ŝ consists of the reachable states in S, and Î consists of the significant
letters in I. Furthermore, f̂ contains exactly those triples (s, w, s′) in f where s

is a reachable state, and Ŵ consists of the wait states contained in Ŝ. Moreover,
a machine M̃ = (S̃, Ĩ, f̃ , W̃ , s0) is said to include minimal(M) if Ŝ ⊆ S̃ ⊆ S,
Î ⊆ Ĩ ⊆ I, f̃ contains exactly those triples (s, w, s′) in f such that s ∈ S̃ and
w ∈ Ĩ, and W̃ consists of the wait states contained in S̃. For ease of presentation,
we will sometimes speak of the machine M restricted to some subset S̃ of S,
implying that the necessary changes are made to f and W in order to satisfy the
above conditions.

Clearly, any machine including minimal(M) recognizes the same language.
This means in particular that, if I is a subset of Î, then any pair of machines
including minimal(M) are equivalent with respect to I. The following lemma is
included for further reference.

Lemma 7. Let M be a state machine, let M1 and M2 be machines including
minimal(M), and let I be a subset of the input alphabet of minimal(M). Then
M1 and M2 are equivalent with respect to I.

Corollary 8. Let M1 and M2 be state machines, let M ′
1 and M ′

2 be machines
including minimal(M1) and minimal(M2), respectively, and let I be a common
subset of the input alphabets of minimal(M1) and minimal(M2). If M ′

1 and M ′
2

are equivalent with respect to I, then M1 and M2 are equivalent with respect to
I.

2.4. Realizing Functionalities. In the UC framework, an environment inter-
acting with a protocol is modeled as a system of communicating Turing machines.

8 KRÅKMO

A message sent from TM A to TM B in such a system can be represented as a
tuple (A,B,Msg.Name, content). We can consider the set of possible messages
in the system to be an alphabet. The string of all the messages actually sent in
a run of the system can be considered a word, and the language L containing
all such words completely describes all possible communication patterns for the
system.

The environment Z’s job is to determine something about the rest of the
system. The only information it can benefit from is the messages it exchanges
with the rest of the system. In this paper, we assume security within the UC
framework to be defined with respect to the dummy adversary, thus messages to
and from the adversary may be considered as messages to and from Z. Under
this assumption, if we let I be the set of messages where Z is either the sender or
recipient, then the restricted language L|I completely describes Z’s information.

Suppose we have two protocols π1 and π2, and Z is trying to determine which
protocol it is talking to. This gives rise to two systems, one with Z and the
Turing machines of π1, and one with Z and the Turing machines of π2, defining
two languages of possible communication patterns L1 and L2. Let I1 and I2 be
the sets of possible messages to and from Z in these systems.

Note that if a protocol’s Turing machines are all deterministic, the protocol’s
responses to Z’s input will be completely determined by the input. If in this case
I1 = I = I2 and L1|I = L2|I , then for a given sequence of previous messages from
Z, the next response by the protocols must be the same. This means that no
matter what input Z gives to the protocols, the responses will always be identical.
In other words, it will be impossible for Z to decide which protocol it is talking
to. We have therefore proved the following theorem:

Theorem 9. Let π1 and π2 be protocols consisting entirely of deterministic Tur-
ing machines. Let L1 and L2 be the languages determined by the system where
an environment Z interacts with π1 and π2, respectively. Let I1 and I2 be the
sets of possible messages to and from Z in these systems. If I1 = I2 = I and
L1|I = L2|I , then π1 securely realizes π2.

This theorem allows us to apply the state machine theory. If we can find two
machines M1 and M2 recognizing the languages L1 and L2, respectively, such
that M1 and M2 are equivalent with respect to the alphabet I, then we have
proved that π1 realizes π2.

3. Functionalities and State Machines

In general, while a functionality is processing a message from a party, no
further messages from that party will be accepted by the functionality until the
current processing is done. Messages from other parties will be accepted and
processed, however.

We want to prove that a hybrid protocol πSM using PKI and signcryption func-
tionalities FPKI and FSC realizes a secure messaging functionality FSM . We now
proceed to describe the functionalities informally, together with state machines

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 9

s conditions/w s′

(s0, L) (B,A,B.Add,m) (s1, L ∪ {m})

(s0, L) m∈L,m∼p
(B,A,B.Lookup,p,m) (s0, L)

(s0, L) ∀m∈L:m6∼p
(B,A,B.Lookup,p,⊥) (s0, L)

Figure 1. Buffer machine with identifier A.

that recognize the possible communication patterns arising from an environment
Z interacting either with the hybrid protocol πSM or the ideal functionality FSM .

The descriptions of the functionalities include some behavior that is not rel-
evant in this context. To simplify the descriptions of the state machines, this
behavior is not modeled. Also, in order to save space, we do not consider corrup-
tion of parties.

The state machine descriptions specify the possible states, the wait states and
the initial states. The state transition function is described through triples of the
form

(s, w, s′) and (s, conditions/w, s′),
meaning that f(s, w) = s′ if the optionally specified conditions hold for s, w
and s′. The state s will be given in an abbreviated form whenever the complete
description can be inferred from the rest of the table. The input alphabet (the
set of possible messages recognized by the machine) is implicitly determined by
the description of the state transition function.

Let Σ be the set of bit strings, and let T be the set of tuples of bit strings. We
shall also consider sets of tuples where each entry is either a bit string or blank
(denoted by the special symbol −). Note that a blank entry is distinct from
an entry with an empty string. These tuples are called patterns, and a pattern
x = (x1, x2, . . . , xn) matches a tuple of bit strings y = (y1, y2, . . . , ym) if and only
if m = n and for 1 ≤ i ≤ n, either xi is a blank entry or xi = yi. We denote this
by y ∼ x.
Buffer Machine. Modeling the communication patterns is simplified by intro-
ducing a “buffer machine”. A buffer machine essentially manages a list of tuples
of bit strings. It accepts messages that either add tuples to the list, or ask if
tuples matching a certain pattern are in the list. The buffer machine MA is
({s0} × 2T , I, f, {s0} × 2T , (s0, ∅)), where the state transition function f is de-
scribed in Figure 1. The input alphabet I is implicit in the description of f . (The
buffer machines will always be “internal” to the Turing machines. Therefore we
do not need to code messages as query-response pairs, we can encode the query
and the response in the same message.)
PKI Functionality. The PKI functionality is given in Figure 2. The machine
modeling the PKI functionality is composed of one machine for each player to-
gether with a buffer machine, BPKI . The per-player machine MPKI (i) is

({s0, s1, . . . , s10} × (Σ ∪ {−}), I, f, {s0, s2, s7} × (Σ ∪ {−}), (s0,−)),

10 KRÅKMO

where the state transition function f is described in Figure 3. The input alphabet
I is implicit in the description of f .

The PKI machine is

MPKI = BPKI +
∑

i

MPKI (i).

When (PKI.Register, v) is received from P̃i:
(1) If FPKI has already processed a PKI.Register message from P̃i, send

PKI.Error to P̃i and stop.
(2) Send (PKI.Register, Pi, v) to A and wait for

(PKI.Register.OK, Pi) from A.
(3) Store (Pi, v) in the registration buffer and send (PKI.Registered) to

P̃i.
When (PKI.Retrieve, Pi) is received from P̃j :

(1) Send (PKI.Retrieve, Pj , Pi) to A and wait for
(PKI.Retrieve.OK, Pj , Pi) from A.

(2) If there is an entry (Pi, v) in the registration buffer, send
(PKI.Retrieved, v) to P̃j , otherwise send (PKI.Retrieved,⊥) to P̃j .

Figure 2. The PKI functionality FPKI .

Signcryption Functionality. The signcryption functionality is given in Fig-
ure 4. The machine modeling the signcryption functionality is composed of one
machine for each player together with a buffer machine BSC . The per-player

s w s′

s0 (Pi,FPKI ,PKI.Register, v) (s1, v)
s1 (FPKI ,APKI ,PKI.Register, Pi, v) (s2, v)
s2 (APKI ,FPKI ,PKI.Register.Ok, Pi) (s3, v)
s3 (FPKI , BPKI ,B.Add, (Pi, v)) (s4,−)
s4 (FPKI , Pi,PKI.Register.Ok) (s5,−)

s5 (Pi,FPKI ,PKI.Retrieve, Pj) (s6, Pj)
s6 (FPKI ,APKI ,PKI.Retrieve, Pi, Pj) (s7, Pj)
s7 (APKI ,FPKI ,PKI.Retrieve.Ok, Pi, Pj) (s8, Pj)
s8 (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj , v)) (s9, v)
s9 (FPKI , Pi,PKI.Retrieve.Ok, v) (s5,−)
s8 (FPKI , BPKI ,B.Lookup, (Pj ,−),⊥) (s10,−)
s10 (FPKI , Pi,PKI.Retrieve.Fail) (s5,−)

Figure 3. PKI per-player machine for player i.

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 11

machine MSC (i) is

({s0, s1, . . . , s19} × (T ∪ {−}), I, f, {s0, s2, s5, s8, s10, s14} × (T ∪ {−}), (s0,−)),

where the state transition function f is described in Figure 5. The input alphabet
I is implicit in the description of f .

The signcryption machine is

MSC = BSC +
∑

i

MSC (i).

Protocol Machines. The protocol machines for the protocol πSM are given in
Figure 6. The machine Mπ(i) modeling the protocol machine used by the i’th
player is

({s0, s1, . . . , s20}×(T∪{−}), I, f, {s0, s2, s4, s6, s8, s10, s15, s18}×(T∪{−}), (s0,−)),

where the state transition function f is described in Figure 5. The input alphabet
I is implicit in the description of f .
Dummy Parties. When the environment interacts with the ideal protocol, it
sends messages to the secure messaging functionality via dummy parties that
simply forward messages. The machine MP̃ (i) is

({s0, s1, s2} × (2T ∪ {−}), I, f, {(s0,−)}, (s0,−)),

where the state transition function f is described in Figure 8. The input alphabet
I is implicit in the description of f .
Secure Messaging Functionality. The secure messaging functionality is given
in Figure 9. The machine modeling the secure messaging functionality is com-
posed of one machine for each player together with a buffer machine BSM . The
per-player machine MSM (i) is

({s0, s1, . . . , s19} × (T ∪ {−}), I, f, {s0, s2, s5, s7, s13} × (T ∪ {−}), (s0,−)),

where the state transition function f is described in Figure 10. The input alpha-
bet I is implicit in the description of f .

The secure messaging machine is

MSM = BSM +
∑

i

MSM (i).

Note that we ignore the dummy per-player protocol machines.
Ideal Adversary. The ideal adversary used in the proof is given in Figure 11.
The machine modeling the ideal adversary is composed of one machine for each
player together with a buffer machine BS . The per-player machine MS(i) is

({s0, s1, . . . , s19} × (T ∪ {−}), I, f, {s0, s2, } × (T ∪ {−}), (s0,−)),

where the state transition function f is described in Figure 10. The input alpha-
bet I is implicit in the description of f .

The ideal adversary machine is

MS = BS +
∑

i

MS(i).

12 KRÅKMO

When SC.KeyGen is received from P̃i:
(1) If FSC has already processed an SC.KeyGen message from P̃i, send

SC.Error to P̃i and stop.
(2) Send (SC.KeyGen, Pi) to the adversary A and wait for

(SC.Key, Pi, pks
i , pk

r
i) from A. (We note that A is free to choose

(pks
i , pk

r
i), subject to the restriction that pks

i or pkr
i should not have

appeared before in messages between A and FSC .)
(3) Store (Pi, pks

i , pk
r
i) in the public key buffer and send

(SC.Key, pks
i , pk

r
i) to P̃i.

When (SC.Encrypt, pkr,m) is received from P̃i:
(1) If an entry (Pi, pks

i , ·) is not stored in the public key buffer, send
SC.Error to P̃i and stop.

(2) If an entry (Pj , ·, pkr) is stored in the public key buffer:
(a) Send (SC.Encrypt, pks

i , pk
r, |m|) to A and wait for

(SC.Ciphertext, pks
i , pk

r, c) from A. (We note that A is free to
choose c, subject to the restriction that c should not have
appeared before in an SC.Ciphertext message from A to FSC ,
nor in an SC.Decrypt message to A from FSC .)

(b) Store (pks
i , pk

r, c, m) in the ciphertext buffer, send
(SC.Ciphertext, c) to P̃i and stop.

(3) Send (SC.Encrypt, pks
i , pk

r,m) to A and wait for
(SC.Ciphertext, pks

i , pk
r, c) from A. (We note that the above

restrictions on c also apply here.)
(4) Send (SC.Ciphertext, c) to P̃i.

When (SC.Decrypt, pks, c) is received from P̃j :
(1) If an entry (Pj , ·, pkr

j) is not stored in the public key buffer, send
SC.Error to P̃j and stop.

(2) Send (SC.Decrypt, pks, pkr
j , c) to A and wait for

(SC.Plaintext, pks, pkr
j ,m

′) from A.
(3) If there is an entry (pks, pkr

j , c, m) in the ciphertext buffer, send
(SC.Plaintext,m) to P̃j and stop.

(4) If there is an entry (Pi, pks, ·) in the public key buffer, send
(SC.Plaintext,⊥) to P̃j and stop.

(5) Send (SC.Plaintext,m′) to P̃j .

Figure 4. The signcryption functionality FSC .

Composite Machines. We can now compose these building blocks into two
machines,

M ′
1 = MSC + MPKI +

∑
i

Mπ(i) and M ′
2 = MSM + MS .

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 13

s w s′

s0 (Pi,FSC ,SC.KeyGen) (s1,−)
s1 (FSC ,ASC ,SC.KeyGen, Pi) (s2,−)
s2 (ASC ,FSC ,SC.Key, Pi, pks

i , pk
r
i) (s3, pks

i , pk
r
i)

s3 (FSC , BSC ,B.Add, (Pi, pks
i , pk

r
i)) (s4, pks

i , pk
r
i)

s4 (FSC , Pi,SC.Key, pks
i , pk

r
i) (s5, pks

i , pk
r
i)

s5 (Pi,FSC ,SC.Encrypt, pkr,m) (s6, pks
i , pk

r
i , pk

r,m)
s6 (FSC , BSC ,B.Lookup, (−,−, pkr),⊥) (s7, pks

i , pk
r
i , pk

r,m)
s6 (FSC , BSC ,B.Lookup, (−,−, pkr), (Pj , pks

j , pk
r)) (s9, pks

i , pk
r
i , pk

r,m)
s7 (FSC ,ASC ,SC.Encrypt, pks

i , pk
r,m) (s8, pks

i , pk
r
i , pk

r)
s8 (ASC ,FSC ,SC.Ciphertext, pks

i , pk
r, c) (s12, pks

i , pk
r
i , c)

s9 (FSC ,ASC ,SC.Encrypt, pks
i , pk

r, |m|) (s10, pks
i , pk

r
i , pk

r,m)
s10 (ASC ,FSC ,SC.Ciphertext, pks

i , pk
r, c) (s11, pks

i , pk
r
i , pk

r,m, c)
s11 (FSC , BSC ,B.Add, (pks

i , pk
r, c, m)) (s12, pks

i , pk
r
i , c)

s12 (FSC , Pi,SC.Ciphertext, c) (s5, pks
i , pk

r
i)

s5 (Pi,FSC ,SC.Decrypt, pks, c) (s13, pks
i , pk

r
i , pk

s, c)
s13 (FSC ,ASC ,SC.Decrypt, pks, pkr

i , c) (s14, pks
i , pk

r
i , pk

s, c)
s14 (ASC ,FSC ,SC.Plaintext, pks, pkr

i ,m
′) (s15, pks

i , pk
r
i , pk

s, c, m′)
s15 (FSC , BSC ,B.Lookup, (−, pks,−),⊥) (s16, pks

i , pk
r
i ,m

′)
s15 (FSC , BSC ,B.Lookup, (−, pks,−), (Pj , pks, pkr

j)) (s17, pks
i , pk

r
i , pk

s
j , c)

s16 (FSC , Pi,SC.Plaintext,m′) (s5, pks
i , pk

r
i)

s17 (FSC , BSC ,B.Lookup, (pks, pkr
i , c,−),⊥) (s18, pks

i , pk
r
i .⊥)

s17 (FSC , BSC ,B.Lookup, (pks, pkr
i , c,−), (pks, pkr

i , c, m)) (s19, pks
i , pk

r
i ,m)

s18 (FSC , Pi,SC.Plaintext,⊥) (s5, pks
i , pk

r
i)

s19 (FSC , Pi,SC.Plaintext,m) (s5, pks
i , pk

r
i)

Figure 5. Signcryption per-player machine for player i.

4. Equivalence Proof

This section is dedicated to proving our main result.

Theorem 10. The protocol πSM securely realizes FSM in the (FPKI ,FSC)-
hybrid model.

Proof. The machines M ′
1 and M ′

2 with input alphabets I1 and I2 described in
the previous sections recognize the languages L1 and L2, respectively. Note that,
when assuming that the adversaries are dummy machines, the set of possible
messages going to or from the environment Z is the same for both machines, so
we call this set I. We are going to prove that the two machines are equivalent
with respect to I, allowing us to apply Theorem 9.

In order to simplify further analysis, we replace M ′
1 and M ′

2 by the machines
M1 and M2 given by

M1 = BSC + BPKI +
∑

i

(MSC (i) + Mπ(i) + MPKI (i)),

and
M2 = BSM + BS +

∑
i

(MSM (i) + MS(i)).

14 KRÅKMO

When Pi receives SM.Register from the environment:
(1) If Pi has already processed SM.Register, send SM.Error to the

environment and stop.
(2) Send SC.KeyGen to FSC and wait for (SC.Key, pks

i , pk
r
i) from FSC .

(3) Send (PKI.Register, (pks
i , pk

r
i)) to FPKI and wait for

PKI.Registered from FPKI .
(4) Send SM.Register.Ok to the environment.

When Pi receives (SM.Encrypt,m) from the environment:
(1) If Pi has not processed SM.Register, send SM.Error to the

environment and stop.
(2) Send (PKI.Retrieve, Pj) to FPKI and wait.
(3) If FPKI replies with (PKI.Retrieved,⊥), send SM.Not.Registered

to the environment and stop.
(4) Otherwise FPKI replies with (PKI.Retrieved, (·, pkr

j)).
(5) Send (SC.Encrypt, pkr

j ,m) to FSC and wait for (SC.Ciphertext, c)
from FSC .

(6) Send (SM.Ciphertext, c) to the environment.
When Pj receives (SM.Decrypt, c) from the environment:

(1) If Pj has not processed SM.Register, send SM.Error to the
environment and stop.

(2) Send (PKI.Retrieve, Pi) to FPKI .
(3) If FPKI replies with (PKI.Retrieved,⊥), send SM.Not.Registered

to the environment and stop.
(4) Otherwise FPKI replies with (PKI.Retrieved, (pks

i , ·)).
(5) Send (SC.Decrypt, pks

i , c) to FSC and wait for (SC.Plaintext,m)
from FSC .

(6) Send (SM.Plaintext,m) to the environment.

Figure 6. The secure messaging protocol πSM .

By Lemma 5, M ′
1 and M1 are isomorphic. In particular, it is easy to define an

isomorphism (σ, τ) : M ′
1 → M1, where τ is the identity map. Lemmas 1 and 3

then imply that M ′
1 and M1 are equivalent with respect to I. The same argument

applies to M ′
2 and M2.

Let M1 = (S1, I1, f1,W1, s1,0) and M2 = (S2, I2, f2,W2, s2,0). The overall
strategy of the proof is to let M1 and M2 undergo a series of modifications,
making them more and more similar, until we can easily define an isomorphism
between them. In the following, a modified version of a machine M will be
referred to as M (i) for some integer i, and if M = (S, I, f,W, s1), then M (i) =
(S(i), I(i), f (i),W (i), s

(i)
1).

By inspection of the machines constituting M1, we claim that the reachable
states and the significant messages of MSC (i) + Mπ(i) + MPKI (i) when running

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 15

s w s′

s0 (Z, Pi,SM.Register) (s1,−)
s1 (Pi,FSC ,SC.KeyGen) (s2,−)
s2 (FSC , Pi,SC.Key, pks, pkr) (s3, pks, pkr)
s3 (Pi,FPKI ,PKI.Register, (pks, pkr)) (s4,−)
s4 (FPKI , Pi,PKI.Register.Ok) (s5,−)
s5 (Pi,Z,SM.Register.Ok) (s6,−)

s6 (Z, Pi,SM.Encrypt, Pj ,m) (s7, Pj ,m)
s7 (Pi,FPKI ,PKI.Retrieve, Pj) (s8,m)
s8 (FPKI , Pi,PKI.Retrieve.Fail) (s9,−)
s8 (FPKI , Pi,PKI.Retrieve.Ok, (pks

j , pk
r
j)) (s10, pkr

j ,m)
s9 (Pi,Z,SM.Not.Registered) (s6,−)
s10 (Pi,FSC ,SC.Encrypt, pkr

j ,m) (s11,−)
s11 (FSC , Pi,SC.Ciphertext, c) (s12, c)
s12 (Pi,Z,SM.Ciphertext, c) (s6,−)

s6 (Z, Pi,SM.Decrypt, Pj , c) (s13, Pj , c)
s13 (Pi,FPKI ,PKI.Retrieve, Pj) (s14, c)
s14 (FPKI , Pi,PKI.Retrieve.Fail) (s15,−)
s14 (FPKI , Pi,PKI.Retrieve.Ok, (pks

j , pk
r
j)) (s16, pks

j , c)
s15 (Pi,Z,SM.Not.Registered) (s6,−)
s16 (Pi,FSC ,SC.Decrypt, pks

j , c) (s17,−)
s17 (FSC , Pi,SC.Plaintext,m) (s18,m)
s18 (Pi,Z,SM.Plaintext,m) (s6,−)

s0 (Z, Pi,SM.Encrypt, Pj ,m) (s19,−)
s0 (Z, Pi,SM.Decrypt, Pj , c) (s19,−)
s6 (Z, Pi,SM.Register) (s20,−)
s19 (Pi,Z,SM.Error) (s0,−)
s20 (Pi,Z,SM.Error) (s6,−)

Figure 7. Protocol machine for player i.

s w s′

s0 (Z, Pi, x) (s1, x)
s1 (Pi,FSM , x) (s0,−)

s0 (FSM , Pi, x) (s2, x)
s2 (Pi,Z, x) (s0,−)

Figure 8. Dummy machine for player i.

16 KRÅKMO

When SM.Register is received from P̃i:
(1) If FSM has already processed an SM.Register message from P̃i, send

SM.Error to P̃i and stop.
(2) Send (SM.Register, Pi) to the adversary A and wait for

(SM.Register.OK, Pi) from A.
(3) Store Pi in the registration buffer and send SM.Register.Ok to P̃i.

When (SM.Encrypt, Pj ,m) is received from P̃i:
(1) If Pi is not stored in the registration buffer, send SM.Error to P̃i and

stop.
(2) Send (SM.Encrypt, Pi, Pj , |m|) to the adversary A and wait for

(SM.Ciphertext, Pi, Pj , c) from A. (We note that A is free to choose
c, subject to the restriction that c should not have appeared before in
an SM.Ciphertext message from A to FSM , nor in an SM.Decrypt
message to A from FSM that resulted in an SM.Plaintext being sent
from FSM .)

(3) If Pj is not stored in the registration buffer, send SM.Not.Registered
to P̃i and stop.

(4) Store (Pi, Pj , c, m) in the ciphertext buffer and send
(SM.Ciphertext, c) to P̃i.

When (SM.Decrypt, Pi, c) is received from P̃j :
(1) If Pj is not stored in the registration buffer, send SM.Error to P̃j and

stop.
(2) Send (SM.Decrypt, Pj , Pi, c) to the adversary A and wait for

(SM.Plaintext, Pj , Pi,m
′) from A.

(3) If Pi is not stored in the registration buffer, send SM.Not.Registered
to P̃j and stop.

(4) If an entry (Pi, Pj , c, m) is stored in the ciphertext buffer, send
(SM.P laintext,m) to P̃j , otherwise send (SM.P laintext,⊥) to P̃j .

Figure 9. The secure messaging functionality FSM .

in M1 is given by Figures 13, 14, 15 and 16. These figures also describe the
reachable states and the significant messages of MSM (i) + MS(i) when running
in M2. Concerning the interpretation of the figures, note that each transition
takes the machines from the states in the above row to the states in the same
row. If no state is given for a particular machine, the state of this machine is
unchanged by the transition in question. For the present, the parameters shown
in red should be ignored.

For the most part, the reachable states and the significant messages of MSC (i)+
Mπ(i) + MPKI (i) and MSM (i) + MS(i) given in the figures are evident from the
descriptions of the individual machines. However, we briefly comment on the

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 17

s w s′

s0 (Z, Pi,SM.Register) (s1,−)
s1 (FSM ,S,SM.Register, Pi) (s2,−)
s2 (S,FSM ,SM.Register.Ok, Pi) (s3,−)
s3 (FSM , BSM ,B.Add, Pi) (s4,−)
s4 (Pi,Z,SM.Register.Ok) (s5,−)

s5 (Z, Pi,SM.Encrypt, Pj ,m) (s6, Pj ,m)
s6 (FSM ,S,SM.Encrypt, Pi, Pj , |m|) (s7, Pj ,m)
s7 (S,FSM ,SM.Ciphertext, Pi, Pj , c) (s8, Pj ,m, c)
s8 (FSM , BSM ,B.Lookup, Pj ,⊥) (s9,−)
s8 (FSM , BSM ,B.Lookup, Pj , Pj) (s10, Pj ,m, c)
s9 (Pi,Z,SM.Not.Registered) (s5,−)
s10 (FSM , BSM ,B.Add, (Pi, Pj , c, m)) (s11, c)
s11 (Pi,Z,SM.Ciphertext, c) (s5,−)

s5 (Z, Pi,SM.Decrypt, Pj , c) (s12, Pj , c)
s12 (FSM ,S,SM.Decrypt, Pi, Pj , c) (s13, Pj , c)
s13 (S,FSM ,SM.Plaintext, Pi, Pj ,m

′) (s14, Pj , c, m
′)

s14 (FSM , BSM ,B.Lookup, Pj ,⊥) (s15,−,m′)
s14 (FSM , BSM ,B.Lookup, Pj , Pj) (s16, Pj , c)
s15 (Pi,Z,SM.Not.Registered) (s5,−)
s16 (FSM , BSM ,B.Lookup, (Pi, Pj , c,−),⊥) (s17,⊥)
s16 (FSM , BSM ,B.Lookup, (Pi, Pj , c,−), (Pi, Pj , c, m)) (s18,m)
s17 (Pi,Z,SM.Plaintext,⊥) (s5,−)
s18 (Pi,Z,SM.Plaintext,m) (s5,−)

s0 (Z, Pi,SM.Encrypt, Pj ,m) (s19,−)
s0 (Z, Pi,SM.Decrypt, Pj , c) (s19,−)
s5 (Z, Pi,SM.Register) (s20,−)
s19 (Pi,Z,SM.Error) (s0,−)
s20 (Pi,Z,SM.Error) (s5,−)

Figure 10. Secure messaging per-player machine for player i.

messages containing B.Lookup, since transitions involving such messages de-
pend on the state of some buffer machine. We start by considering the message
(FPKI , BPKI ,B.Lookup, (Pj ,−),⊥/(Pj , (pks

j , pk
r
j))), which can be recognized

by MPKI (i) in state (s8, Pj). By tracing backwards, we see that for MPKI (i)
to reach this state, either Pj has registered, in which case there is a unique pair
(Pj , (pks

j , pk
r
j)) in the state of BPKI , or Pj has not registered, in which case there

is no pair containing Pj in the state of BPKI . This means that (FPKI , BPKI ,
B.Lookup, (Pj ,−), (Pj , v)) is recognized only if v = (pks

j , pk
r
j), hence we need

only include (FPKI , BPKI ,B.Lookup, (Pj ,−),⊥/(Pj , (pks
j , pk

r
j))) in the figures.

For ease of presentation, Figures 14 and 15 only include the case where Pj

18 KRÅKMO

When S receives (SM.Register, Pi) from FSM :
(1) Send (SC.KeyGen, Pi) to ASC and wait for (SC.Key, Pi, pks

i , pk
r
i).

(We note that ASC is free to choose (pks
i , pk

r
i), subject to the

restriction that pks
i or pkr

i should not have appeared before in
messages between ASC and S.)

(2) Send (PKI.Register, (Pi, pks
i , pk

r
i)) to APKI and wait for

(PKI.Register.Ok, Pi) from APKI .
(3) Store (Pi, pks

i , pk
r
i) in the public key buffer.

(4) Send (SM.Register.Ok, Pi) to FSM .
When S receives (SM.Encrypt, Pi, Pj , |m|) from FSM :

(1) Send (PKI.Retrieve, Pi, Pj) to APKI and wait for
(PKI.Retrieve.Ok, Pi, Pj) from APKI .

(2) If there is no entry (Pj , ·, ·) in public key buffer, send
(SM.Ciphertext, Pi, Pj ,⊥) to FSM and stop.

(3) Find entries (Pi, pks
i , ·) and (Pj , ·, pkr

j) in public key buffer, send
(SC.Encrypt, pks

i , pk
r
j , |m|) to ASC , and wait for

(SC.Ciphertext, pks
i , pk

r
j , c) from ASC .

(4) Send (SM.Ciphertext, Pi, Pj , c) to FSM .
When S receives (SM.Decrypt, Pj , Pi, c) from FSM :

(1) Send (PKI.Retrieve, Pj , Pi) to APKI and wait for
(PKI.Retrieve.Ok, Pj , Pi) from APKI .

(2) If there is no entry (Pi, ·, ·) in public key buffer, send
(SM.Plaintext, Pj , Pi,⊥) to FSM and stop.

(3) Find entries (Pi, pks
i , ·) and (Pj , ·, pkr

j) in public key buffer, send
(SC.Decrypt, pks

i , pk
r
j , c) to ASC , and wait for

(SC.Plaintext, pks
i , pk

r
j ,m

′) from ASC .
(4) Send (SM.Plaintext, Pj , Pi,m

′) to FSM .

Figure 11. The ideal adversary S.

has registered, while the case where Pj has not registered is handled in Fig-
ure 16. The same reasoning applies to the message (S, BS ,B.Lookup, (Pj ,−),
⊥/(Pj , (pks

j , pk
r
j))), which is treated in the same way.

We proceed by considering the message (FSC , BSC ,B.Lookup, (−,−, pkr
j),

(Pj , pks
j , pk

r
j)), which can be recognized by MSC (i) in state (s6, pks

i , pk
r
i , pk

r
j ,m).

By tracing backwards, we see that for MSC (i) to reach this state, there must
be a pair (Pj , (pks

j , pk
r
j)) contained in the state of BPKI , which is the case only

if the state of BSC contains the triple (Pj , pks
j , pk

r
j). Since public keys are as-

sumed to be unique, this is the only triple containing pkr
j in the state of BSC .

This means that (FSC , BSC ,B.Lookup, (−,−, pkr
j),⊥) is not recognized, and

that (FSC , BSC ,B.Lookup, (−,−, pkr
j), (Pk, pks

k, pkr
j)) is recognized if and only

if Pk = Pj and pks
k = pks

j , hence we need only include (FSC , BSC ,B.Lookup,

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 19

s w s′

s0 (FSM ,S,SM.Register, Pi) (s1,−)
s1 (S,ASC ,SC.KeyGen, Pi) (s2,−)
s2 (ASC ,S,SC.Key, Pi, pks

i , pk
r
i) (s3, pks

i , pk
r
i)

s3 (S,APKI ,PKI.Register, Pi, pks
i , pk

r
i) (s4, pks

i , pk
r
i)

s4 (APKI ,S,PKI.Register.Ok, Pi) (s5, pks
i , pk

r
i)

s5 (S, BS ,B.Add, (Pi, (pks
i , pk

r
i))) (s6, pks

i , pk
r
i)

s6 (S,FSM ,SM.Register.Ok, Pi) (s7, pks
i , pk

r
i)

s7 (FSM ,S,SM.Encrypt, Pi, Pj , |m|) (s8, pks
i , pk

r
i , Pj , |m|)

s8 (S,APKI ,PKI.Retrieve, Pi, Pj) (s9, pks
i , pk

r
i , Pj , |m|)

s9 (APKI ,S,PKI.Retrieve.Ok, Pi, Pj) (s10, pks
i , pk

r
i , Pj , |m|)

s10 (S, BS ,B.Lookup, (Pj ,−),⊥) (s11, pks
i , pk

r
i , Pj)

s10 (S, BS ,B.Lookup, (Pj ,−), (Pj , (pks
j , pk

r
j))) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|)
s11 (S,FSM ,SM.Ciphertext, Pi, Pj ,⊥) (s7, pks

i , pk
r
i)

s12 (S,ASC ,SC.Encrypt, pks
i , pk

r
j , |m|) (s13, pks

i , pk
r
i , Pj , pkr

j)
s13 (ASC ,S,SC.Ciphertext, pks

i , pk
r
j , c) (s14, pks

i , pk
r
i , Pj , c)

s14 (S,FSM ,SM.Ciphertext, Pi, Pj , c) (s7, pks
i , pk

r
i)

s7 (FSM ,S,SM.Decrypt, Pi, Pj , c) (s15, pks
i , pk

r
i , Pj , c)

s15 (S,APKI ,PKI.Retrieve, Pi, Pj) (s16, pks
i , pk

r
i , Pj , c)

s16 (APKI ,S,PKI.Retrieve.Ok, Pi, Pj) (s17, pks
i , pk

r
i , Pj , c)

s17 (S, BS ,B.Lookup, (Pj ,−),⊥) (s18, pks
i , pk

r
i , Pj)

s17 (S, BS ,B.Lookup, (Pj ,−), (Pj , (pks
j , pk

r
j))) (s19, pks

i , pk
r
i , Pj , pks

j , c)
s18 (S,FSM ,SM.Plaintext, Pi, Pj ,⊥) (s7, pks

i , pk
r
i)

s19 (S,ASC ,SC.Decrypt, pks
j , pk

r
i , c) (s20, pks

i , pk
r
i , Pj , pks

j)
s20 (ASC ,S,SC.Plaintext, pks

j , pk
r
i ,m

′) (s21, pks
i , pk

r
i , Pj ,m

′)
s21 (S,SM.Plaintext, Pi, Pj ,m

′) (s7, pks
i , pk

r
i)

Figure 12. Ideal adversary per-player machine for player i.

(−,−, pkr
j), (Pj , pks

j , pk
r
j)) in Figure 14. Similar arguments apply to the messages

(FSC , BSC ,B.Lookup, (−, pks
j ,−),⊥/(Pl, pks

j , pk
r
l)) and (FSM , BSM ,B.Lookup,

Pj ,⊥/Pj).
Alternatively, we may view the description of MSC (i)+MPKI (i)+Mπ(i) when

running in M1 as the description of a single machine. Let this machine be denoted
by C1(i). The set of states of C1(i) consists of triples (sMSC (i), sMπ(i), sMPKI (i)),
where sM is the state of machine M , and is equal to the set of reachable states
of MSC (i) + Mπ(i) + MPKI (i) in M1. Moreover, the input alphabet of C1(i) is
exactly the set of significant messages of MSC (i) + Mπ(i) + MPKI (i) in M1.

We now modify M1 into a new machine M
(1)
1 by replacing MSC (i) + Mπ(i) +

MPKI (i) in the above expression by C1(i), that is,

M
(1)
1 = BSC + BPKI +

∑
i

C1(i).

20 KRÅKMO

Lemma 11. The machines M1 and M
(1)
1 are equivalent with respect to I.

Proof. If we let SM denote the set of states of machine M , the sets S1 and S
(1)
1

of states of M1 and M
(1)
1 , respectively, are given by

S1 = SBSC × SBPKI ×
n∏

i=1

(SMSC (i) × SMπ(i) × SMPKI (i)),

S
(1)
1 = SBSC

× SBPKI
×

n∏
i=1

SC1(i).

Since SC1(i) contains all reachable states of MSC (i) + Mπ(i) + MPKI (i) in M1,
we observe that S

(1)
1 is a subset of S1 containing all reachable states in S1.

Moreover, since the input alphabet of C1(i) contains all significant messages of
MSC (i)+Mπ(i)+MPKI (i) in M1, we observe that I

(1)
1 is a subset of I1 containing

all significant messages in I1. This means that M
(1)
1 includes minimal(M1).

Lemma 7 then implies that M1 and M
(1)
1 are equivalent with respect to I. �

By essentially repeating the above procedure, M2 is modified into a new ma-
chine M

(1)
2 by replacing MSM (i)+MS(i) by a machine C2(i), whose set of states

and input alphabet contain the reachable states and the significant messages of
MSM (i) + MS(i) when running in M2. That is,

M
(2)
2 = BSM + BS +

∑
i

C2(i).

The proof of the following lemma corresponds to the previous proof.

Lemma 12. The machines M2 and M
(1)
2 are equivalent with respect to I.

The next step in the modification procedure concerns the red colored parame-
ters in Figures 14 and 15. In detail, M

(1)
1 is modified into a new machine M

(2)
1 by

adding the identity Pk from the pair (Pk, (pks
k, pkr

j)) in the state of BPKI to the
following states: s9 of MPKI (i), s10 of Mπ(i) and s6, s9, s10 and s11 of MSC (i).
Furthermore, we add the identity Pl from the pair (Pl, (pks

j , pk
r
l)) in the state of

BPKI to the following states: s16 of Mπ(i) and s13, s14, s15 and s17 of MSC (i).
If the identity Pk or Pl is not well-defined, then the state is left unchanged.

Lemma 13. The machines M
(1)
1 and M

(2)
1 are equivalent with respect to I.

Furthermore, when considering only reachable states of M
(1)
1 , Pk and Pl in the

above description are well-defined, and we have Pk = Pl = Pj.

Proof. Let S and S′ be the sets of reachable states of S
(2)
1 and S

(1)
1 , respectively.

Note that, since the above modification does not affect the transition function,
S and S′ are equal, except from the added identity contained in certain states of
S. Assume that s is a reachable state in S1, such that some machine is in one of
the above listed states. By tracing backwards, we see that for s to be reached,

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 21

there must be a pair (Pj , (pks
j , pk

r
j) in the state of BPKI . Since public keys are

assumed to be unique, we must have Pk = Pl = Pj .
Let M and M ′ be the machines M

(2)
1 and M

(1)
1 restricted to S and S′, re-

spectively, and let σ : S → S′ be defined as follows: Let s be a state in S. If s
corresponds to some machine being in one of the above listed states, σ removes
the added identity Pj from this state, and applies the identity map to the states
of all other machines. Since the states from which Pj is removed also contains the
key pks

j or pkr
j , Pj can be reconstructed from the pair (Pj , (pks

j , pk
r
j) in the state

of BPKI , hence no information is lost when applying σ. It can be verified that
(σ, τ) : M → M ′, where τ : I

(2)
1 → I

(1)
1 is the identity map, is an isomorphism.

It follows from Lemma 1 that the induced language map τ : L(M) → L(M ′)
is a bijection. τ leaves I fixed, so by Lemma 3, M and M ′ are equivalent with
respect to I. Since M includes minimal(M (2)

1) and M ′ includes minimal(M (1)
1),

Corollary 8 implies that M
(1)
1 and M

(2)
1 are equivalent with respect to I. �

As for M
(1)
2 , this machine is modified into a new machine M

(2)
2 by adding the

key pkr
j from the pair (Pj , (pks

j , pk
r
j)) in the state of BS to the following states:

s14 of MS(i) and s8 and s10 of MSM (i). Furthermore, we add the key pks
j from

the pair (Pj , (pks
j , pk

r
j)) in the state of BS to the following states: s21 of MS(i)

and s14 and s16 of MSM (i). If the key pkr
j or pks

j is not well-defined, then the
state is left unchanged.

Lemma 14. The machines M
(1)
2 and M

(2)
2 are equivalent with respect to I. In

particular, when considering only reachable states of M
(1)
2 , pkr

j and pks
j in the

above description are well-defined.

Proof. Let S and S′ be the sets of reachable states of S
(2)
2 and S

(1)
2 , respectively.

Note that, since the above modification does not affect the transition function,
S and S′ are equal, except from the added key contained in certain states of S.
Assume that s is a reachable state in S1, such that some machine is in one of
the above listed states. By tracing backwards, we see that for s to be reached,
there must be a pair (Pj , (pks

j , pk
r
j) in the state of BS . Since key generation only

happens once per player, there can be at most one such pair, so pkr
j and pks

j are
well-defined.

Let M and M ′ be the machines M
(2)
2 and M

(1)
2 restricted to S and S′, re-

spectively, and let σ : S → S′ be defined as follows: Let s be a state in S. If s
corresponds to some machine being in one of the above listed states, σ removes
the added key pkr

j or pks
j from this state, and applies the identity map to the

states of all other machines. Since the states from which pkr
j or pks

j is removed
also contains the identity Pj , pks

j or pkr
j can be reconstructed from the pair

(Pj , (pks
j , pk

r
j) in the state of BS , hence no information is lost when applying σ.

It can be verified that (σ, τ) : M → M ′, where τ : I
(2)
2 → I

(1)
2 is the identity

map, is an isomorphism. It follows from Lemma 1 that the induced language
map τ : L(M) → L(M ′) is a bijection. τ leaves I fixed, so by Lemma 3, M and

22 KRÅKMO

M ′ are equivalent with respect to I. Since M includes minimal(M (2)
2) and M ′

includes minimal(M (1)
2), Corollary 8 implies that M

(1)
2 and M

(2)
2 are equivalent

with respect to I. �

Considering the implications of Lemma 13 and Lemma 14 concerning reachable
states, we modify M

(2)
1 and M

(2)
2 into new machines M

(3)
1 and M

(3)
2 , where the

states of C1(i) and C2(i) also include the parameters shown in red in Figures 14
and 15. By essentially repeating the strategy used for proving Lemma 11, it can be
shown that M

(2)
1 and M

(3)
1 are equivalent with respect to I, and correspondingly

for M
(2)
2 and M

(3)
2 .

We would like to add a buffer machine B∗
SM to M

(2)
1 , as an equivalent to

BSM in M
(2)
2 . Before doing this, we must modify the input alphabet I

(3)
1 :

We create M
(4)
1 from M

(3)
1 by adding messages recognized by B∗

SM to I
(3)
1 ,

that is, I
(4)
1 = I

(3)
1 ∪ {(P,B∗

SM ,B.Add,m)} ∪ {(P,B∗
SM ,B.Lookup, p,m)} ∪

{(P,B∗
SM ,B.Lookup, p,⊥)}.

Lemma 15. The machines M
(3)
1 and M

(4)
1 are equivalent with respect to I.

Proof. Note that dom(f (3)
1)2 = dom(f (4)

1)2, since the additional messages in I(4)

have no transitions related to them. Let (σ, τ) : M
(4)
1 → M

(3)
1 be defined as

follows: σ : S
(4)
1 → S

(3)
1 is the identity map, while τ : I

(4)
2 → I

(3)
2 applies the

identity map to all messages except the messages meant for B∗
SM , for which it

is undefined. It is clear that (σ, τ) is an isomorphism. Then, by Lemma 1, the
induced language map τ : L(M (4)

1) → L(M (3)
1) is a bijection. τ leaves I fixed,

and it follows from Lemma 3 that M
(3)
1 and M

(4)
1 are equivalent with respect to

I. �

Next we create M
(5)
1 from M

(4)
1 by adding a buffer machine B∗

SM to M
(4)
1 , i.e.

M
(5)
1 = M

(4)
1 +B∗

SM .

Lemma 16. The machines M
(4)
1 and M

(5)
1 are equivalent with respect to I.

Proof. We start by showing that, in the composed machine M
(5)
1 = M

(4)
1 +B∗

SM ,
the only reachable state of B∗

SM is (s0, ∅). Note that the messages potentially
capable of changing the state of B∗

SM are all on the form (P,B∗
SM ,B.Add,m).

Throughout this paragraph, let M1 = M
(4)
1 , M2 = B∗

SM , and consider the def-
inition of the transition function f12 of the composed machine M1 + M2. For
B∗

SM to change its state, there must be an entry ((s1,i, s2,k), w, (s1,j , s2,l)) in f12,
where w is a message on the above form, and s2,k 6= s2,l. We have w ∈ I1 and
w ∈ I2, so then we must have (s1,i, w, s1,j) ∈ f1 and (s2,k, w, s2,l) ∈ f2. But f1

has no transitions involving w, i.e. w /∈ (domf1)2, so there can be no such entries
in f12. This means that (s0, ∅) is the only reachable state of B∗

SM .

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 23

Recall that the set S
(4)
1 of states of M

(4)
1 is given by

S
(4)
1 = SBSC

× SBPKI
×

n∏
i=1

C1(i),

so the set S(5) of states of M
(5)
1 = M

(4)
1 +B∗

SM is given by

S
(5)
1 = SB∗

SM
× SBSC

× SBPKI
×

n∏
i=1

C1(i).

From the above argument, we deduce that a subset S′ containing all reachable
states of M

(5)
1 is obtained as

S′ = (s0, ∅)× SBSC × SBPKI ×
n∏

i=1

C1(i).

Let M ′ be the machine M
(5)
1 restricted to S′, and let (σ, τ) : M ′ → M

(4)
1

be defined as follows: σ : S′ → S
(4)
1 applies the identity map to each state

except that of B∗
SM , and τ : I

(5)
1 → I

(4)
1 is the identity map. Note that, since

f
(5)
1 has no transitions involving B∗

SM , it has essentially the same transitions as
f

(4)
1 . It can be verified that (σ, τ) is an isomorphism. By Lemma 1, the induced

language map τ : L(M ′) → L(M (4)
1) is a bijection. τ leaves I fixed, and it follows

from Lemma 3 that M
(4)
1 and M ′ are equivalent with respect to I. Since M ′

includes minimal(M (5)
1), Corollary 8 implies that M

(4)
1 and M

(5)
1 are equivalent

with respect to I. �

We would also like to add a buffer machine B∗
SC to M

(3)
2 , as an equiva-

lent to BSC in M
(3)
1 . Before doing this, we must modify the input alphabet

I
(3)
2 : We create M

(4)
2 from M

(3)
2 by adding messages recognized by B∗

SC to
I
(3)
2 , that is, I

(4)
2 = I

(3)
2 ∪{(P,B∗

SC ,B.Add,m)}∪{(P,B∗
SC ,B.Lookup, p,m)}∪

{(P,B∗
SC ,B.Lookup, p,⊥)}. The proof of the following lemma is similar to the

proof of Lemma 15.

Lemma 17. The machines M
(3)
2 and M

(4)
2 are equivalent with respect to I.

Next we create M
(5)
2 from M

(4)
2 by adding a buffer machine B∗

SC to M
(4)
2 , i.e.

M
(5)
2 = M

(4)
2 +B∗

SC . The proof of the following lemma corresponds to the proof
of Lemma 16.

Lemma 18. The machines M
(4)
2 and M

(5)
2 are equivalent with respect to I.

As we would like the behavior of C1(i) to resemble that of C2(i), we now add
certain transitions to C1(i), such that for every transition in C2(i), there is an
equivalent transition in C1(i). Each time a transition is added, we use Lemma 2
to obtain a bijection between the languages recognized by the modified and the
original machine. Since the bijection keeps I fixed, Lemma 3 implies that the

24 KRÅKMO

machines are equivalent with respect to I. The final result of these modifications
can be seen from Figures 17, 18, 19 and 20.

We start by modifying M
(5)
1 into a new machine M

(6)
1 by replacing the line

(s5,−) (s5,−) (FPKI , Pi,PKI.Register.Ok)

in the description of C1(i) by the following two lines:

(s(1)
4 ,−) (s5,−) (FPKI , Pi,PKI.Register.Ok)

(s5,−) (Pi, B
∗
SM ,B.Add, Pi).

We note that ((s5, pks
i , pk

r
i), (s

(1)
4 ,−), (s5,−)) is not a wait state of C1(i).

Lemma 19. The machines M
(5)
1 and M

(6)
1 are equivalent with respect to I.

Proof. Using the construction in Lemma 2, we modify M
(6)
1 by removing the state

((s5, pks
i , pk

r
i), (s

(1)
4 ,−), (s5,−)) and the transition out of it from C1(i), such that

the resulting machine is M
(5)
1 . Let S0 be the set of states of M

(6)
1 where at least

one C1(i) is in this state. In particular, assume s to be a state in S0 such that,
for each i in some index set I, C1(i) is in state ((s5, pks

i , pk
r
i), (s

(1)
4 ,−), (s5,−)).

Let the function h : S0 → S
(6)
1 \ S0 be defined as follows: h maps s to the same

state, except that for each i ∈ I, C1(i) is in state ((s5, pks
i , pk

r
i), (s5,−), (s5,−)).

It is clear that h is well-defined.
Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f

(6)
1 for

some w in I
(6)
1 , some s′′ in S

(6)
1 . Note that s′ corresponds to exactly one C1(i)

being in state ((s5, pks
i , pk

r
i), (s

(1)
4 ,−), (s5,−)), since this is not a wait state. Let

the partial function g : S0 → I
(6)
1 be defined as follows: g maps each such s′ to

the message (Pi, B
∗
SM ,B.Add, Pi), and is undefined for other states in S0. g is

clearly well-defined.
We observe that (s′, g(s′), h(s′)) is the only valid transition out of s′, and that

g(s′) cannot be recognized by a state not in S0. This means that M
(6)
1 can be

modified using Lemma 2. Since messages containing B.Add meant for B∗
SM

are included in I(5), M
(5)
1 and M

(6)
1 have the same input alphabet, so we let

I0 = ∅ to ensure that the resulting machine is M
(5)
1 . We thus obtain a bijection

τ : L(M (6)
1) → L(M (5)

1). Since τ leaves I fixed, Lemma 3 implies that M
(5)
1 and

M
(6)
1 are equivalent with respect to I. �

The next step is to modify M
(6)
1 into a new machine M

(7)
1 by replacing the

line

(s7, Pj ,m) (Z, Pi,SM.Encrypt, Pj ,m)

in the description of C1(i) by the following two lines:

(s(1)
6 , Pj ,m) (Z, Pi,SM.Encrypt, Pj ,m)

(s7, Pj ,m) (Pi, Pi,SM.Encrypt, Pj , |m|).

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 25

We note that ((s5, pks
i , pk

r
i), (s

(1)
6 , Pj ,m), (s5,−)) is not a wait state of C1(i).

Using the same strategy as in the previous proof, we can show that the ma-
chines M

(6)
1 and M

(7)
1 are equivalent with respect to I.

We proceed by modifying M
(7)
1 into a new machine M

(8)
1 by replacing the line

(s11, pks
i , pk

r
i , pk

r
j ,m, c, Pj) (ASC ,FSC ,SC.Ciphertext, pks

i , pk
r
j , c)

in the description of C1(i) by the following two lines:

(s(1)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c) (ASC ,FSC ,SC.Ciphertext, pks
i , pk

r
j , c)

(s11, pks
i , pk

r
i , pk

r
j ,m, c, Pj) (FSC ,FSC ,SM.Ciphertext, Pi, Pj , c).

We note that ((s(1)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) is not a wait state of
C1(i).

Again, we can show that the machines M
(7)
1 and M

(8)
1 are equivalent with

respect to I, using the strategy in the proof of Lemma 19.
Next we modify M

(8)
1 into a new machine M

(9)
1 by replacing the line

(s15, pks
i , pk

r
i , pk

s
j , c, m

′, Pj) (ASC ,FSC ,SC.Plaintext, pks
j , pk

r
i ,m

′)

in the description of C1(i) by the following two lines:

(s(1)
14 , pks

i , pk
r
i , Pj , pks

j , c, m
′) (ASC ,FSC ,SC.Plaintext, pks

j , pk
r
i ,m

′)
(s15, pks

i , pk
r
i , pk

s
j , c, m

′, Pj) (FSC ,FSC ,SM.Plaintext, Pi, Pj ,m
′).

We note that ((s(1)
14 , pks

i , pk
r
i , Pj , pks

j , c, m
′), (s17,−), (s5,−)) is not a wait state

of C1(i).
By essentially repeating the argument in the proof of Lemma 19, we can show

that the machines M
(8)
1 and M

(9)
1 are equivalent with respect to I.

The next step is to modify M
(9)
1 into a new machine M

(10)
1 by replacing the

line

(s11, pks
i , pk

r
i , pk

r
j ,m, c, Pj) (FSC ,FSC ,SM.Ciphertext, Pi, Pj , c)

in the description of C1(i) by the following two lines:

(s(2)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c) (FSC ,FSC ,SM.Ciphertext, Pi, Pj , c)
(s11, pks

i , pk
r
i , pk

r
j ,m, c, Pj) (FSC , B∗

SM ,B.Lookup, Pj , Pj/⊥).

Furthermore, we replace the line

(s15, pks
i , pk

r
i , pk

s
j , c, m

′, Pj) (FSC ,FSC ,SM.Plaintext, Pi, Pj ,m
′)

by the following two lines:

(s(2)
14 , pks

i , pk
r
i , Pj , pks

j , c, m
′) (FSC ,FSC ,SM.Plaintext, Pi, Pj ,m

′)
(s15, pks

i , pk
r
i , pk

s
j , c, m

′, Pj) (FSC , B∗
SM ,B.Lookup, Pj , Pj/⊥).

We note that ((s(2)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) and ((s(2)
14 , pks

i , pk
r
i ,

Pj , pks
j , c, m

′), (s17,−), (s5,−)) are not wait states of C1(i).

26 KRÅKMO

Lemma 20. The machines M
(9)
1 and M

(10)
1 are equivalent with respect to I.

Moreover, in M
(10)
1 , the message (FSC , B∗

SM ,B.Lookup, Pj ,⊥) is not signifi-
cant.

Proof. Using the construction in Lemma 2, we modify M
(10)
1 by removing the

states ((s(2)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) and ((s(2)
14 , pks

i , pk
r
i , Pj , pks

j ,
c,m′), (s17,−), (s5,−)) and the transitions out of them from C1(i), such that the
resulting machine is M

(9)
1 . Let S0 be the set of states of M

(10)
1 where at least one

C1(i) is in such a state. In particular, assume s to be a state in S0 such that, for
each i in some index set I, C1(i) is in state ((s(2)

10 , pks
i , pk

r
i , Pj , pkr

j ,mi, ci), (s11,−),

(s5,−)), and for each i′ in some index set I ′, C1(i′) is in state ((s(2)
14 , pks

i′ , pk
r
i′ ,

Pj′ , pks
j′ , ci′ ,m

′
i′), (s17,−), (s5,−)). Let the function h : S0 → S

(10)
1 \S0 be defined

as follows: h maps s to the same state, except that for each i ∈ I, C1(i) is in
state ((s11, pks

i , pk
r
i , pk

r
j ,mi, ci, Pj), (s11,−), (s5,−)), and for each i′ ∈ I ′, C1(i′)

is in state ((s15, pks
i′ , pk

r
i′ , pk

s
j′ , ci′ ,m

′
i′ , Pj′), (s17,−), (s5,−)). It is clear that h is

well-defined.
Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f

(10)
1 for

some w in I
(10)
1 , some s′′ in S

(10)
1 . Note that s′ corresponds to exactly one C1(i)

being in state ((s(2)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) or ((s(2)
14 , pks

i , pk
r
i ,

Pj , pks
j , c, m

′), (s17,−), (s5,−)), since these are not wait states. Let the partial

function g : S0 → I
(10)
1 be defined as follows: g maps each such s′ to the mes-

sage (FSC , B∗
SM ,B.Lookup, Pj , Pj) if Pj is contained in the state of B∗

SM , and
(FSC , B∗

SM ,B.Lookup, Pj ,⊥) otherwise. g is undefined for other states in S0. g
is clearly well-defined.

We observe that (s′, g(s′), h(s′)) is the only valid transition out of s′, and that
g(s′) cannot be recognized by a state not in S0. This means that M

(10)
1 can be

modified using Lemma 2. Since messages containing B.Lookup meant for B∗
SM

are included in I(9), M
(9)
1 and M

(10)
1 have the same input alphabet, so we let

I0 = ∅ to ensure that the resulting machine is M
(9)
1 . We thus obtain a bijection

τ : L(M (10)
1) → L(M (9)

1). Since τ leaves I fixed, Lemma 3 implies that M
(9)
1 and

M
(10)
1 are equivalent with respect to I.
It remains to prove that, in M

(10)
1 , the message (FSC , B∗

SM ,B.Lookup, Pj ,⊥)
is not significant. By tracing backwards, we see that for M

(10)
1 to reach a state

s such that C1(i) is in state ((s(2)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) or

((s(2)
14 , pks

i , pk
r
i , Pj , pks

j , c, m
′), (s17,−), (s5,−)), there must be a tuple (Pj , (pks

j , pk
r
j))

in the state of BPKI , which implies that Pj must have been added to B∗
SM .

This means that, when M
(10)
1 is in state s, (FSC , B∗

SM ,B.Lookup, Pj ,⊥) is not
recognized by B∗

SM , hence it is not recognized by M
(10)
1 . We conclude that

no reachable state s exists such that f
(10)
1 is defined on input (s, (FSC , B∗

SM ,
B.Lookup, Pj ,⊥)). �

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 27

We proceed by modifying M
(10)
1 into a new machine M

(11)
1 by replacing the

line

(s11, pks
i , pk

r
i , pk

r
j ,m, c, Pj) (FSC , B∗

SM ,B.Lookup, Pj , Pj/⊥)

in the description of C1(i) by the following two lines:

(s(3)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c) (FSC , B∗
SM ,B.Lookup, Pj , Pj/⊥)

(s11, pks
i , pk

r
i , pk

r
j ,m, c, Pj) (FSC , B∗

SM ,B.Add, (Pi, Pj , c, m)).

We note that ((s(3)
10 , pks

i , pk
r
i , Pj , pkr

j ,m, c), (s11,−), (s5,−)) is not a wait state

of C1(i). The machines M
(10)
1 and M

(11)
1 can be shown to be equivalent with

respect to I, using a similar argument as in the proof of Lemma 19.
Since the functionality FSC ensures that public keys and ciphertexts are

unique, we can restrict the set of states of the buffers BSC and B∗
SM by only

considering states where no ciphertext or public key occurs twice. Let M
(12)
1 be

the machine M
(11)
1 subject to this restriction. It is straightforward to show that

M
(11)
1 and M

(12)
1 are equivalent with respect to I.

Next we modify M
(12)
1 into a new machine M

(13)
1 by replacing the line

(s13, Pj , c) (Z, Pi,SM.Decrypt, Pj , c)

in the description of C1(i) by the following two lines:

(s(2)
6 , Pj , c) (Z, Pi,SM.Decrypt, Pj , c)

(s13, Pj , c) (Pi, Pi,SM.Decrypt, Pj , c).

We note that (s5, pks
i , pk

r
i), (s

(2)
6 , Pj , c), (s5,−) is not a wait state of C1(i). Again,

by repeating the strategy used for proving Lemma 19, we can show that M
(12)
1

and M
(13)
1 are equivalent with respect to I.

Next we modify M
(13)
1 into a new machine M

(14)
1 by replacing the line

(s17, pks
i , pk

r
i , pk

s
j , c, Pj) (FSC , BSC ,B.Lookup, (−, pks

j ,−), (Pj , pks
j , pk

r
j))

in the description of C1(i) by the following two lines:

(s(1)
15 , pks

i , pk
r
i , Pj , pks

j , c) (FSC , BSC ,B.Lookup, (−, pks
j ,−), (Pj , pks

j , pk
r
j))

(s17, pks
i , pk

r
i , pk

s
j , c, Pj) (FSC , B∗

SM ,B.Lookup, (Pj , Pi, c,−), (Pj , Pi, c, m)/⊥).

We note that ((s(1)
15 , pks

i , pk
r
i , Pj , pks

j , c), (s17,−), (s5,−)) is not a wait state of
C1(i).

Lemma 21. The machines M
(13)
1 and M

(14)
1 are equivalent with respect to I.

Proof. Using the construction in Lemma 2, we modify M
(14)
1 by removing the

state ((s(1)
15 , pks

i , pk
r
i , Pj , pks

j , c), (s17,−), (s5,−)) and the transition out of it from

C1(i), such that the resulting machine is M
(13)
1 . Let S0 be the set of states of

M
(14)
1 where at least one C1(i) is in this state. In particular, assume s to be a state

in S0 such that, for each i in some index set I, C1(i) is in state ((s(1)
15 , pks

i , pk
r
i ,

28 KRÅKMO

Pji , pk
s
ji

, ci), (s17,−), (s5,−)). Let the function h : S0 → S
(14)
1 \ S0 be defined as

follows: h maps s to the same state, except that for each i ∈ I, C1(i) is in state
((s17, pks

i , pk
r
i , Pji , pk

s
ji

, ci), (s17,−), (s5,−)). It is clear that h is well-defined.

Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f
(14)
1 for

some w in I
(14)
1 , some s′′ in S

(14)
1 . Note that s′ corresponds to exactly one C1(i)

being in state ((s(1)
15 , pks

i , pk
r
i , Pj , pks

j , ci), (s17,−), (s5,−)), since this is not a wait

state. Let the partial function g : S0 → I
(14)
1 be defined as follows: g maps each

such s′ to the message (FSC , B∗
SM ,B.Lookup, (Pj , Pi, c,−), (Pj , Pi, c, m)) if an

entry (Pj , Pi, c, m) is contained in the state of B∗
SM , and (FSC , B∗

SM ,B.Lookup,
(Pj , Pi, c,−),⊥) otherwise. g is undefined for other states in S0. Since ciphertexts
are unique, there can be at most one entry (Pj , Pi, c, m) in the state of B∗

SM , hence
g is well-defined.

We observe that (s′, g(s′), h(s′)) is the only valid transition out of s′, and that
g(s′) cannot be recognized by a state not in S0. This means that M

(14)
1 can be

modified using Lemma 2. Since messages containing B.Lookup meant for B∗
SM

are included in I(13), M
(13)
1 and M

(14)
1 have the same input alphabet, so we let

I0 = ∅ to ensure that the resulting machine is M
(13)
1 . We thus obtain a bijection

τ : L(M (14)
1) → L(M (13)

1). Since τ leaves I fixed, Lemma 3 implies that M
(13)
1

and M
(14)
1 are equivalent with respect to I. �

Next M
(14)
1 is modified into a new machine M

(15)
1 by replacing the two lines

(s5, pks
i , pk

r
i) (s8,m) (s8, Pj)

(s10,−) (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj ,⊥))

in the description of C1(i) by the following three lines:

(s5, pks
i , pk

r
i) (s8,m) (s8, Pj)

(s(1)
8 , Pj) (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj ,⊥))

(s10,−) (FPKI ,FPKI ,SM.Ciphertext, Pi, Pj ,⊥).

We note that ((s5, pks
i , pk

r
i), (s8,m), (s(1)

8 , Pj)) is not a wait state of C1(i). By
using the same strategy as for proving Lemma 19, we can prove that the machines
M

(14)
1 and M

(15)
1 are equivalent with respect to I.

Next M
(15)
1 is modified into a new machine M

(16)
1 by replacing the two lines

(s5, pks
i , pk

r
i) (s14, c) (s8, Pj)

(s10,−) (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj ,⊥))

in the description of C1(i) by the following three lines:

(s5, pks
i , pk

r
i) (s14, c) (s8, Pj)

(s(1)
8 , Pj) (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj ,⊥))

(s10,−) (FPKI ,FPKI ,SM.Plaintext, Pi, Pj ,⊥).

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 29

We note that ((s5, pks
i , pk

r
i), (s14, c), (s

(1)
8 , Pj)) is not a wait state of C1(i). By

essentially repeating the argument in the proof of Lemma 19, we can show that
the machines M

(15)
1 and M

(16)
1 are equivalent with respect to I.

Next M
(16)
1 is modified into a new machine M

(17)
1 by replacing the line

(s10,−) (FPKI ,FPKI ,SM.Ciphertext, Pi, Pj ,⊥)

in the description of C1(i) by the following two lines:

(s(2)
8 , Pj) (FPKI ,FPKI ,SM.Ciphertext, Pi, Pj ,⊥)

(s10,−) (FSM , B∗
SM ,B.Lookup, Pj , Pj/⊥).

Furthermore, we replace the line

(s10,−) (FPKI ,FPKI ,SM.Plaintext, Pi, Pj ,⊥)

by the following two lines:

(s(2)
8 , Pj) (FPKI ,FPKI ,SM.Plaintext, Pi, Pj ,⊥)

(s10,−) (FSM , B∗
SM ,B.Lookup, Pj , Pj/⊥).

We note that ((s5, pks
i , pk

r
i), (s8,m), (s(2)

8 , Pj)) and ((s5, pks
i , pk

r
i), (s14, c), (s

(2)
8 , Pj))

are not wait states of C1(i). The proof of the following lemma is similar to the
proof of Lemma 20.

Lemma 22. The machines M
(16)
1 and M

(17)
1 are equivalent with respect to I.

Moreover, in M
(17)
1 , the message (FSM , B∗

SM ,B.Lookup, Pj , Pj) is not signifi-
cant.

We proceed by adding certain transitions to C2(i), such that for every transi-
tion in C1(i), there is an equivalent transition in C2(i). The final result of these
modifications can be seen from Figures 17, 18, 19 and 20.

We start by modifying M
(5)
2 into a new machine M

(6)
2 by replacing the line

(ASC ,FSC ,SC.Key, Pi, pks
i , pk

r
i) (s3, pks

i , pk
r
i)

in the description of C2(i) by the following two lines:

(ASC ,FSC ,SC.Key, Pi, pks
i , pk

r
i) (s(1)

2 , pks
i , pk

r
i)

(S, B∗
SC ,B.Add, (Pi, pks

i , pk
r
i)) (s3, pks

i , pk
r
i).

We note that ((s2,−), (s(1)
2 , pks

i , pk
r
i)) is not a wait state of C2(i). By copying

the strategy used for proving Lemma 19, we can show that the machines M
(5)
2

and M
(6)
2 are equivalent with respect to I.

Since the ideal adversary S ensures that public keys are unique, we can restrict
the set of states of the buffers B∗

SC and BS by only considering states where no
public key occurs twice. Let M

(7)
2 be the machine M

(6)
2 subject to this restriction.

It is straightforward to show that M
(6)
2 and M

(7)
2 are equivalent with respect to

I.

30 KRÅKMO

The next step is to modify M
(7)
2 into a new machine M

(8)
2 by replacing the

line

(S, B∗
SC ,B.Add, (Pi, pks

i , pk
r
i)) (s3, pks

i , pk
r
i)

in the description of C2(i) by the following two lines:

(S, B∗
SC ,B.Add, (Pi, pks

i , pk
r
i)) (s(2)

2 , pks
i , pk

r
i)

(S,S,SC.Key, Pi, pks
i , pk

r
i) (s3, pks

i , pk
r
i).

We note that ((s2,−), (s(2)
2 , pks

i , pk
r
i)) is not a wait state of C2(i). It can be shown

that the machines M
(7)
2 and M

(8)
2 are equivalent with respect to I, by essentially

repeating the argument in the proof of Lemma 19.
We now modify M

(8)
2 into a new machine M

(9)
2 by replacing the line

(S,S,SC.Key, pks
i , pk

r
i) (s3, pks

i , pk
r
i)

in the description of C2(i) by the following two lines:

(S,S,SC.Key, pks
i , pk

r
i) (s(3)

2 , pks
i , pk

r
i)

(S,S,PKI.Register, Pi, (pks
i , pk

r
i)) (s3, pks

i , pk
r
i).

We note that ((s2,−), (s(3)
2 , pks

i , pk
r
i)) is not a wait state of C2(i). Again, the

strategy used for proving Lemma 19 can be applied to show that the machines
M

(8)
2 and M

(9)
2 are equivalent with respect to I.

Now we modify M
(9)
2 into a new machine M

(10)
2 by replacing the line

(FSM ,S,SM.Encrypt, Pi, Pj , |m|) (s7, Pj ,m) (s8, pks
i , pk

r
i , Pj , |m|)

in the description of C2(i) by the following two lines:

(FSM ,S,SM.Encrypt, Pi, Pj , |m|) (s7, Pj ,m) (s(1)
7 , pks

i , pk
r
i , Pj , |m|)

(S,S,PKI.Retrieve, Pj) (s8, pks
i , pk

r
i , Pj , |m|).

Furthermore, we replace the line

(FSM ,S,SM.Decrypt, Pi, Pj , c) (s13, Pj , c) (s15, pks
i , pk

r
i , Pj , c)

by the following two lines:

(FSM ,S,SM.Decrypt, Pi, Pj , c) (s13, Pj , c) (s(2)
7 , pks

i , pk
r
i , Pj , c)

(S,S,PKI.Retrieve, Pj) (s15, pks
i , pk

r
i , Pj , c).

We note that ((s7, Pj ,m), (s(1)
7 , pks

i , pk
r
i , Pj , |m|)) and ((s13, Pj , c), (s

(2)
7 , pks

i , pk
r
i ,

Pj , c)) are not wait states of C2(i). The machines M
(9)
2 and M

(10)
2 can be shown

to be equivalent with respect to I, using an argument similar to that used for
proving Lemma 20

Next M
(10)
2 is modified into a new machine M

(11)
2 by replacing the line

(S, BS ,B.Lookup, (Pj ,−), (Pj , (pks
j , pk

r
j))) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|)

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 31

in the description of C2(i) by the following two lines:

(S, BS ,B.Lookup, (Pj ,−), (Pj , (pks
j , pk

r
j))) (s(1)

10 , pks
i , pk

r
i , Pj , pks

j , pk
r
j , |m|)

(S,S,PKI.Retrieve.Ok, (pks
j , pk

r
j)) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|).
Furthermore, we replace the line

(S, BS ,B.Lookup, (Pj ,−,−), (Pj , pks
j , pk

r
j)) (s19, pks

i , pk
r
i , Pj , pks

j , c)

by the following two lines:

(S, BS ,B.Lookup, (Pj ,−,−), (Pj , pks
j , pk

r
j)) (s(1)

17 , pks
i , pk

r
i , Pj , pks

j , pk
r
j , c)

(S,S,PKI.Retrieve.Ok, (pks
j , pk

r
j)) (s19, pks

i , pk
r
i , Pj , pks

j , c).

We note that ((s7, Pj ,m), (s(1)
10 , pks

i , pk
r
i , Pj , pks

j , pk
r
j , |m|)) and ((s13, Pj , c), (s

(1)
17 ,

pks
i , pk

r
i , Pj , pks

j , pk
r
j , c)) are not wait states of C2(i). By arguing similarly as

in the proof of Lemma 20, the machines M
(10)
2 and M

(11)
2 can be shown to be

equivalent with respect to I.
We now modify M

(11)
2 into a new machine M

(12)
2 by replacing the line

(S,S,PKI.Retrieve.Ok, Pi, (pks
j , pk

r
j)) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|)
in the description of C2(i) by the following two lines:

(S,S,PKI.Retrieve.Ok, Pi, (pks
j , pk

r
j)) (s(2)

10 , pks
i , pk

r
i , Pj , pkr

j , |m|)
(S,S,SC.Encrypt, Pi, pkr

j , m̂) (s12, pks
i , pk

r
i , Pj , pkr

j , |m|).

We note that ((s7, Pj ,m), (s(2)
10 , pks

i , pk
r
i , Pj , pkr

j , |m|)) is not a wait state of C2(i).
Again, by arguing as in the proof of Lemma 19, we can show that the machines
M

(11)
2 and M

(12)
2 are equivalent with respect to I.

Next M
(12)
2 is modified into a new machine M

(13)
2 by replacing the line

(S,S,SC.Encrypt, Pi, pkr
j ,m) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|)
in the description of C2(i) by the following two lines:

(S,S,SC.Encrypt, Pi, pkr
j ,m) (s(3)

10 , pks
i , pk

r
i , Pj , pkr

j , |m|)
(S, B∗

SC ,B.Lookup, (−,−, pkr
j), (Pk, pks

k, pkr
j)/⊥) (s12, pks

i , pk
r
i , Pj , pkr

j , |m|).

We note that ((s7, Pj ,m), (s(3)
10 , pks

i , pk
r
i , Pj , pkr

j , |m|)) is not a wait state of C2(i).

Lemma 23. The machines M
(12)
2 and M

(13)
2 are equivalent with respect to I.

Moreover, in M
(13)
2 the message (S, B∗

SC ,B.Lookup, (−,−, pkr
j),⊥) is not sig-

nificant, and (S, B∗
SC ,B.Lookup, (−,−, pkr

j), (Pk, pks
k, pkr

j)) is significant only
if Pk = Pj and pks

k = pks
j .

Proof. Using the construction in Lemma 2, we modify M
(13)
2 by removing the

state ((s7, Pj ,m), (s(3)
10 , pks

i , pk
r
i , Pj , pkr

j , |m|)) and the transition out of it from

C2(i), such that the resulting machine is M
(12)
2 . Let S0 be the set of states of

M
(13)
2 where at least one C2(i) is in this state. In particular, assume s to be a

state in S0 such that, for each i in some index set I, C2(i) is in state ((s7, Pji ,mi),

32 KRÅKMO

(s(3)
10 , pks

i , pk
r
i , Pji , pk

r
ji

, |mi|)). Let the function h : S0 → S
(13)
2 \ S0 be defined as

follows: h maps s to the same state, except that for each i ∈ I, C2(i) is in state
((s7, Pji ,mi), (s12, pks

i , pk
r
i , Pji , pk

r
ji

, |mi|)). It is clear that h is well-defined.

Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f
(13)
2 for

some w in I
(13)
2 , some s′′ in S

(13)
2 . Note that s′ corresponds to exactly one C2(i)

being in state ((s7, Pj ,m), (s(3)
10 , pks

i , pk
r
i , Pj , pkr

j , |m|)), since this is not a wait

state. Let the partial function g : S0 → I
(13)
2 be defined as follows: g maps

each such s′ to the message (S, B∗
SC ,B.Lookup, (−,−, pkr

j), (Pk, pks
k, pkr

j)) if
there is a triple (Pk, pks

k, pkr
j) in the state of B∗

SC , and (S, B∗
SC ,B.Lookup,

(−,−, pkr
j),⊥) otherwise. g is undefined for other states in S0. Since public keys

are assumed to be unique, there is at most one triple containing pkr
j in the state

of B∗
SC , hence g is well-defined.

We observe that (s′, g(s′), h(s′)) is the only valid transition out of s′, and that
g(s′) cannot be recognized by a state not in S0. This means that M

(13)
2 can be

modified using Lemma 2. Since messages containing B.Lookup meant for B∗
SC

are included in I(12), M
(12)
2 and M

(13)
2 have the same input alphabet, so we let

I0 = ∅ to ensure that the resulting machine is M
(12)
2 . We thus obtain a bijection

τ : L(M (13)
2) → L(M (12)

2). Since τ leaves I fixed, Lemma 3 implies that M
(12)
2

and M
(13)
2 are equivalent with respect to I.

It remains to prove that, in M
(13)
2 , the message (S, B∗

SC ,B.Lookup, (−,−, pkr
j),⊥)

is not significant, and that (S, B∗
SC ,B.Lookup, (−,−, pkr

j), (Pk, pks
k, pkr

j)) is sig-
nificant only if Pk = Pj and pks

k = pks
j . By tracing backwards, we see that for

M
(13)
2 to reach a state s such that C2(i) is in state ((s7, Pj ,m), (s(3)

10 , pks
i , pk

r
i ,

Pj , pkr
j , |m|)), there must be a pair (Pj , (pks

j , pk
r
j)) in the state of BS , which is

true only if B∗
SC contains the triple (Pj , pks

j , pk
r
j). Since keys are assumed to be

unique, this is the only triple containing pkr
j in the state of B∗

SC . This means

that, when M
(13)
2 is in state s, the message (S, B∗

SC ,B.Lookup, (−,−, pkr
j),⊥)

is not recognized by B∗
SM , and (S, B∗

SC ,B.Lookup, (−,−, pkr
j), (Pk, pks

k, pkr
j))

can be recognized only if Pk = Pj and pks
k = pks

j . �

Next we modify M
(13)
2 into a new machine M

(14)
2 by replacing the line

(FSM , BSM ,B.Add, (Pi, Pj , c, m)) (s11, c)

in the description of C2(i) by the following two lines:

(FSM , BSM ,B.Add, (Pi, Pj , c, m)) (s(1)
10 , Pj , pkr

j ,m, c)
(FSM , B∗

SC ,B.Add, (pks
i , pk

r
j , c, m)) (s11, c).

We note that ((s(1)
10 , Pj , pkr

j ,m, c), (s7, pks
i , pk

r
i)) is not a wait state of C2(i). By

arguing as in the proof of Lemma 19, we can show that the machines M
(13)
2 and

M
(14)
2 are equivalent with respect to I. Since the functionality FSM ensures that

ciphertexts are unique, we can restrict the set of states of the buffers B∗
SC and

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 33

BSM by only considering states where no ciphertext occurs twice. Let M
(15)
2 be

the machine M
(14)
2 subject to this restriction. It is straightforward to show that

M
(14)
2 and M

(15)
2 are equivalent with respect to I.

We proceed by modifying M
(15)
2 into a new machine M

(16)
2 by replacing the

line

(FSM , B∗
SC ,B.Add, (pks

i , pk
r
j , c, m)) (s11, c)

in the description of C2(i) by the following two lines:

(FSM , B∗
SC ,B.Add, (pks

i , pk
r
j , c, m)) (s(2)

10 , c)
(FSM ,FSM ,SC.Ciphertext, Pi, c) (s11, c).

We note that ((s(2)
10 , c), (s7, pks

i , pk
r
i)) is not a wait state of C2(i). Again, we can

prove that the machines M
(15)
2 and M

(16)
2 are equivalent with respect to I, by

arguing as in the proof of Lemma 19.
We now modify M

(16)
2 into a new machine M

(17)
2 by replacing the line

(S,S,PKI.Retrieve.Ok, Pi, (pks
j , pk

r
j)) (s19, pks

i , pk
r
i , Pj , pks

j , c)

in the description of C2(i) by the following two lines:

(S,S,PKI.Retrieve.Ok, Pi, (pks
j , pk

r
j)) (s(2)

17 , pks
i , pk

r
i , Pj , pks

j , c)
(S,S,SC.Decrypt, Pi, pks

j , c) (s19, pks
i , pk

r
i , Pj , pks

j , c).

We note that ((s13, Pj , c), (s
(2)
17 , pks

i , pk
r
i , Pj , pks

j , c)) is not a wait state of C2(i).

The machines M
(16)
2 and M

(17)
2 can be shown to be equivalent with respect to I,

by applying the strategy in the proof of Lemma 19.
We continue by modifying M

(17)
2 into a new machine M

(18)
2 by replacing the

line

(FSM , BSM ,B.Lookup, Pj , Pj) (s16, Pj , c, pks
j)

in the description of C2(i) by the following two lines:

(FSM , BSM ,B.Lookup, Pj , Pj) (s(1)
14 , Pj , pks

j , c, m
′)

(FSM , B∗
SC ,B.Lookup, (−, pks

j ,−), (Pk, pks
j , pk

r
k)/⊥) (s16, Pj , c, pks

j).

We note that ((s(1)
14 , Pj , c, m

′), (s7, pks
i , pk

r
i)) is not a wait state of C2(i). The

below lemma is obtained by essentially repeating the argument in the proof of
Lemma 23.

Lemma 24. The machines M
(17)
2 and M

(18)
2 are equivalent with respect to I.

Moreover, in M
(18)
2 the message (FSM , B∗

SC ,B.Lookup, (−, pks
j ,−),⊥) is not

significant, and (FSM , B∗
SC ,B.Lookup, (−, pks

j ,−), (Pk, pks
j , pk

r
k)) is significant

only if Pk = Pj and pkr
k = pkr

j .

34 KRÅKMO

We proceed by modifying M
(18)
2 into a new machine M

(19)
2 by replacing the

line

(FSM , BSM ,B.Lookup, (Pj , Pi, c,−),⊥/(Pj , Pi, c, m)) (s17,⊥)/(s18,m)

in the description of C2(i) by the following two lines:

(FSM , BSM ,B.Lookup, (Pi, Pj , c,−),⊥/(Pj , Pi, c, m)) (s(1)
16 , Pj , pks

j , c)
(FSM , B∗

SC ,B.Lookup, (pks
j , pk

r
i , c,−),⊥/(pks

j , pk
r
i , c, m)) (s17,⊥)/(s18,m).

We note that ((s(1)
16 , Pj , pks

j , c), (s7, pks
i , pk

r
i)) is not a wait state of C2(i).

Lemma 25. The machines M
(18)
2 and M

(19)
2 are equivalent with respect to I.

Proof. In this proof, we will apply Corollary 6, which allows us to replace the
first condition in Lemma 2 by the following: for all reachable s ∈ S, and for all
w ∈ I and s′ ∈ S0, if (s, w, s′) ∈ f , then there is unique w′ ∈ I, s′′ ∈ S such that
(s′, w′, s′′) ∈ f , and g(s′) = w′, h(s′) = s′′. Using the construction in this lemma,
we modify M

(19)
2 by removing the state ((s(1)

16 , Pj , pks
j , c), (s7, pks

i , pk
r
i)) and the

transition out of it from C2(i), such that the resulting machine is M
(18)
2 . Let S0

be the set of states of M
(19)
2 where at least one C2(i) is in this state. In particular,

assume s to be a state in S0 such that, for each i in some index set I, C2(i) is in
state ((s(1)

16 , Pji
, pks

ji
, ci), (s7, pks

i , pk
r
i)). Let the function h : S0 → S

(19)
2 \ S0 be

defined as follows: h maps s to the same state, except that for each i ∈ I, C2(i)
is in state ((s18,mi), (s7, pks

i , pk
r
i)) if there is a tuple (Pji , Pi, ci,mi) in the state

of BSM , and ((s17,⊥), (s7, pks
i , pk

r
i)) otherwise. Since ciphertexts are unique,

there is at most one tuple containing ci in the state of BSM , so h is well-defined.
Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f

(19)
2 for

some w in I
(19)
2 , some reachable s′′ in S

(19)
2 . Note that s′ corresponds to exactly

one C2(i) being in state ((s(1)
16 , Pj , pks

j , c), (s7, pks
i , pk

r
i)), since this is not a wait

state. Let the partial function g : S0 → I
(19)
2 be defined as follows: g maps each

such s′ to the message (FSM , B∗
SC ,B.Lookup, (pks

j , pk
r
i , c,−), (pks

j , pk
r
i , c, m)) if

there is a tuple (pks
j , pk

r
i , c, m) in the state of B∗

SC , and (FSM , B∗
SC ,B.Lookup,

(pks
j , pk

r
i , c,−),⊥) otherwise. g is undefined for other states in S0. Again, since

ciphertexts are unique, we can conclude that g is well-defined.
In order to verify that (s′, g(s′), h(s′)) is the only valid transition out of s′,

we note the following: When M
(19)
2 is in state s′, there is a tuple (Pj , Pi, c, m)

in the state of BSM if and only if there is a tuple (pks
j , pk

r
i , c, m) in the state

of B∗
SC . This follows from the fact that s′ is a reachable state, that key gener-

ation only happens once per player, and the uniqueness of public keys. Con-
sequently, g(s′) = (FSM , B∗

SC ,B.Lookup, (pks
j , pk

r
i , c,−), (pks

j , pk
r
i , c, m)) im-

plies that h(s′) = ((s18,m), (s7, pks
i , pk

r
i)), while g(s′) = (FSM , B∗

SC ,B.Lookup,
(pks

j , pk
r
i , c,−),⊥) implies that h(s′) = ((s17,⊥), (s7, pks

i , pk
r
i)). We infer that

(s′, g(s′), h(s′)) is the only valid transition out of s′. Furthermore, we observe
that g(s′) cannot be recognized by a state not in S0. This means that M

(19)
2

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 35

can be modified using Lemma 2. Since messages containing B.Lookup meant
for B∗

SC are included in I
(18)
2 , M

(18)
2 and M

(19)
2 have the same input alphabet, so

we let I0 = ∅ to ensure that the resulting machine is M
(18)
2 . We thus obtain a

bijection τ : L(M (19)
2) → L(M (18)

2). Since τ leaves I fixed, Lemma 3 implies that
M

(18)
2 and M

(19)
2 are equivalent with respect to I. �

Next we modify M
(19)
2 into a new machine M

(20)
2 by replacing the line

(FSM , B∗
SC ,B.Lookup, (pks

j , pk
r
i , c,−),⊥/(pks

j , pk
r
i , c, m)) (s17,⊥)/(s18,m).

in the description of C2(i) by the following two lines:

(FSM , B∗
SC ,B.Lookup, (pks

j , pk
r
i , c,−),⊥/(pks

j , pk
r
i , c, m)) (s(2)

16 ,⊥)/(s(3)
16 ,m)

(FSM ,FSM ,SC.Plaintext, Pi,⊥/m) (s17,⊥)/(s18,m).

We note that ((s(2)
16 ,⊥), (s7, pks

i , pk
r
i)) and ((s(3)

16 ,m), (s7, pks
i , pk

r
i)) are not wait

states of C2(i).

Lemma 26. The machines M
(19)
2 and M

(20)
2 are equivalent with respect to I.

Proof. Using the construction in Lemma 2, we modify M
(20)
2 by removing the

states ((s(2)
16 ,⊥), (s7, pks

i , pk
r
i)) and ((s(3)

16 ,m), (s7, pks
i , pk

r
i)) and the transitions

out of them from C2(i), such that the resulting machine is M
(19)
2 . Let S0 be the

set of states of M
(20)
2 where at least one C2(i) is in such a state. In particular,

assume s to be a state in S0 such that, for each i in some index set I, C2(i) is
in state ((s(2)

16 ,⊥), (s7, pks
i , pk

r
i)), and for each i′ in some index set I ′, C2(i′) is in

state ((s(3)
16 ,mi′), (s7, pks

i′ , pk
r
i′)) Let the function h : S0 → S

(20)
2 \ S0 be defined

as follows: h maps s to the same state, except that for each i ∈ I, C2(i) is in
state ((s17,⊥), (s7, pks

i , pk
r
i)), and for each i′ ∈ I ′, C2(i′) is in state ((s18,mi′),

(s7, pks
i′ , pk

r
i′)). It is clear that h is well-defined.

Furthermore, assume that s′ is a state in S0 such that (s′′, w, s′) ∈ f
(20)
2 for

some w in I
(20)
2 , some s′′ in S

(20)
2 . Note that s′ corresponds to exactly one C2(i)

being in state ((s(2)
16 ,⊥), (s7, pks

i , pk
r
i)) or ((s(3)

16 ,m), (s7, pks
i , pk

r
i)), since these are

not wait states. Let the partial function g : S0 → I
(20)
2 be defined as follows: g

maps each such s′ to the message (FSM ,FSM ,SC.Plaintext,⊥) if C2(i) is in
state ((s(2)

16 ,⊥), (s7, pks
i , pk

r
i)) and (FSM ,FSM ,SC.Plaintext,m) if C2(i) is in

state ((s(3)
16 ,m), (s7, pks

i , pk
r
i)). g is undefined for other states in S0. g is clearly

well-defined.
We observe that (s′, g(s′), h(s′)) is the only valid transition out of s′, and

that g(s′) cannot be recognized by a state not in S0. This means that M
(20)
2

can be modified using Lemma 2. Since I(19) contains no message on the form
(FSM ,FSM ,SC.Plaintext,⊥/m), we let I0 = g(S0) to ensure that the resulting
machine is M

(19)
2 . We thus obtain a bijection τ : L(M (20)

2) → L(M (19)
2). Since τ

leaves I fixed, Lemma 3 implies that M
(19)
2 and M

(20)
2 are equivalent with respect

to I. �

36 KRÅKMO

Next M
(20)
2 is modified into a new machine M

(21)
2 by replacing the line

(FSM , BSM ,B.Lookup, Pj ,⊥) (s9,⊥)

in the description of C2(i) by the following two lines:

(FSM , BSM ,B.Lookup, Pj ,⊥) (s(1)
8 ,m,⊥)

(FSM ,FSM ,PKI.Retrieve.Fail, Pi) (s9,⊥).

Furthermore, the line

(FSM , BSM ,B.Lookup, Pj ,⊥) (s15,⊥)

is replaced by the following two lines:

(FSM , BSM ,B.Lookup, Pj ,⊥) (s(2)
14 , c,⊥)

(FSM ,FSM ,PKI.Retrieve.Fail, Pi) (s15,⊥).

We note that ((s(1)
8 ,m,⊥), (s7, pks

i , pk
r
i)) and ((s(2)

14 , c,⊥), (s7, pks
i , pk

r
i)) are not

wait states of C2(i). The machines M
(20)
2 and M

(21)
2 can be shown to be equivalent

with respect to I, by arguing as in the proof of Lemma 20.
Finally, we modify the machines M

(17)
1 and M

(21)
2 into new machines M

(18)
1

and M
(22)
2 , where the messages proven not significant by the previous lemmas are

disregarded. It is straightforward to show that M
(17)
1 and M

(18)
1 are equivalent

with respect to I, and correspondingly for M
(21)
2 and M

(22)
2 . The machines C1(i)

and C2(i) are now completely described by Figures 17, 18, 19 and 20.
It remains to prove the following lemma:

Lemma 27. The machines M
(18)
1 and M

(22)
2 are equivalent with respect to I.

Proof. The strategy of the proof is to construct an isomorphism (σ, τ) between
the two machines, such that τ leaves I fixed. For ease of notation, we refer
to M

(18)
1 as M1 and to M

(22)
2 as M2 throughout the proof, and assume that

M1 = (S1, f1, I1,W1, s1) and M2 = (S2, f2, I2,W2, s2).
We start by defining the function τ , which is fully described by Figures 17,

18, 19 and 20: τ : I1 → I2 simply maps each message in the left column to the
adjacent message in the right column. Simply by inspection of these messages,
it can be verified that τ is a bijection.

We proceed by describing the map σ. Recall that S1 and S2 are given by

S1 = SBSC
× SBPKI

× SB∗
SM
×

n∏
i=1

SC1(i),

S2 = SB∗
SC
× SBS × SBSM ×

n∏
i=1

SC2(i).

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 37

It will be convenient to describe σ using the maps

σB∗
SC

: SBSC
→ SB∗

SC
,

σBS : SBPKI → SBS ,

σBSM : SB∗
SM

→ SBSM ,

σi : SC1(i) → SC2(i).

That is, for a state s in S1, σ(s) is given by

σ(s) = (σB∗
SC

(sBSC), σBS (sBPKI), σBSM (sB∗
SM

), σ1(sC1(1)), . . . , σn(sC1(n))).

We now describe the map σi. Since this map only depends on the state of
C1(i), it is fully described by Figures 17, 18, 19 and 20: For each element of
SC1(i), the parameters in the leftmost column are simply mapped to the equivalent
parameters in the rightmost column, thus giving an element of SC2(i). By pairwise
inspection of the elements, we observe that each element of SC1(i) contains exactly
the same information as the corresponding element of SC2(i). This implies that
σi is a bijection. Another important property of σi is preservation of wait states.
More precisely, σi gives a one-to-one correspondence between wait states of SC1(i)

and wait states of SC2(i).
We proceed by describing the maps σB∗

SC
, σBS and σBSM , which simply copy

the states of the respective buffers, that is, for a state s of S∗1 , σB∗
SC

(sBSC
) = sBSC

,
σBS (sBPKI) = sBPKI and σBSM (sB∗

SM
) = sB∗

SM
. It is clear that σB∗

SC
, σBS and σBSM

are all bijective. In particular, since every state of σB∗
SC

, σBS and σBSM is a wait
state, each map gives a one-to-one correspondence between wait states.

Given that σi, σB∗
SC

, σBS and σBSM are all bijective, we conclude that σ :
S1 → S2 is a bijection. We clearly have σ(s1) = s2. Furthermore, the fact that
σi, σB∗

SC
, σBS and σBSM all give one-to-one correspondences between wait states

implies that σ(W1) = W2.
The further strategy of the proof is to consider each message w in I1, and verify

that, for all s ∈ S1, f1(s, w) is defined if and only if f2(σ(s), τ(w)) is defined, and
if they are defined, then σ(f1(s, w)) = f2(σ(s), τ(w)).

We start by considering the message w = (Z, Pi,SM.Register). Note that
τ(w) = w. Let S be the subset of states in S1 where C1(i) is in state ((s0,−),
(s0,−), (s0,−)) or ((s5, pks

i , pk
r
i), (s6,−), (s5,−)), while every other machine is

in a wait state. w is recognized by M1 exactly when its state belongs to S.
On the other hand, let S′ be the subset of states in S2 where C2(i) is in state
((s0,−), (s0,−)) or ((s5,−), (s7, pks

i , pk
r
i)), while every other machine is in a wait

state. τ(w) is recognized by M2 exactly when its state belongs to S′. Note
that σi((s0,−), (s0,−), (s0,−)) = ((s0,−), (s0,−)), and σi((s5, pks

i , pk
r
i), (s6,−),

(s5,−)) = ((s5,−), (s7, pks
i , pk

s
i)). The one-to-one correspondences between wait

states provided by σ then implies that σ gives a one-to-one correspondence be-
tween elements of S and elements of S′, hence f1(s, w) is defined if and only if
f2(σ(s), τ(w)) is defined. Furthermore, note that transitions involving w only

38 KRÅKMO

affect the state of C1(i) when recognized by M1, and the state of C2(i) when rec-
ognized by M2. It can thus be verified that σ(f1(s, w)) = f2(σ(s), τ(w)), simply
by inspection of Figure 13.

Next we consider the message w = (Pi,FSC ,SC.KeyGen). Note that τ(w) =
(FSM ,S,SM.Register, Pi). Let S be the subset of states in S1 where C1(i) is
in state ((s0,−), (s1,−), (s0,−)), while every other machine is in a wait state.
w is recognized by M1 exactly when its state belongs to S. On the other hand,
let S′ be the subset of states in S2 where C2(i) is in state ((s1,−), (s0,−)),
while every other machine is in a wait state. τ(w) is recognized by M2 exactly
when its state belongs to S′. Note that σi((s0,−), (s1,−), (s0,−)) = ((s1,−),
(s0,−)). The one-to-one correspondences between wait states provided by σ
then implies that σ gives a one-to-one correspondence between elements of S and
elements of S′, hence f1(s, w) is defined if and only if f2(σ(s), τ(w)) is defined.
Furthermore, note that transitions involving w only affect the state of C1(i),
while transitions involving τ(w) only affect the state of C2(i). It can thus be
verified that σ(f1(s, w)) = f2(σ(s), τ(w)), simply by inspection of Figure 13.

Generally, when the transitions involving a message w only concern the ma-
chine C1(i) of M1, and the transitions involving τ(w) only concern C2(i) of M2,
the properties in question can be verified by inspection of Figures 17, 18, 19 and
20, and repeating the above argument. In the following, we only comment on
messages where the transitions involve other machines as well.

We thus proceed by considering the message w = (FSC , BSC ,B.Add, (Pi, pks
i ,

pkr
i)). Note that τ(w) = (S, B∗

SC ,B.Add, (Pi, pks
i , pk

r
i)). As for verifying that

f1(s, w) is defined if and only if f2(σ(s), τ(w)) is defined, note that w and τ(w)
will always be recognized by BSC and B∗

SC , respectively. The transitions in-
volving w and τ(w) are thus independent of the states of these machines, and
the above strategy still applies: We identify subsets S and S′ by inspection of
Figures 17, 18, 19 and 20, and use the definition of σi and the one-to-one corre-
spondences between wait states provided by σ to argue that σ gives a one-to-one
correspondence between elements of S and elements of S′. As for showing that
σ(f1(s, w)) = f2(σ(s), τ(w)), we make the following observation: σ(f1(s, w)) cor-
responds to first adding the triple (Pi, pks

i , pk
r
i) to BSC , and then copying this

triple to B∗
SC . f2(σ(s), τ(w)) corresponds to adding the triple (Pi, pks

i , pk
r
i) di-

rectly to B∗
SC . It is clear that, in either case, the resulting state of B∗

SC is the
same. Regarding C2(i), inspection of Figure 13 confirms that σ(f1(s, w)) and
f2(σ(s), τ(w)) correspond to the same states of this machine. Regarding the
other messages containing B.Add, the properties in question can be proved by
the above procedure, using that σ copies elements from BSC to B∗

SC , elements
from BPKI to BS , and elements from B∗

SM to BSM .
We now consider the message w = (FPKI , BPKI ,B.Lookup, (Pj ,−), (Pj , (pks

j ,
pkr

j))). For w to be recognized by M1, it must be recognized both by MPKI (i) and
the buffer machine BPKI . The latter is the case if BPKI has a pair (Pj , (pks

j , pk
r
j))

in its state. Similarly, for τ(w) = (S, BS ,B.Lookup, (Pj ,−), (Pj , (pks
j , pk

r
j))) to

be recognized by M2, it must be recognized both by MS(i) and the buffer machine

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 39

BS . The latter is the case if BS has a pair (Pj , (pks
j , pk

r
j)) in its state. Since σ

copies elements from BPKI to BS , we deduce that w is recognized by BPKI when
M1 is in state s if and only if τ(w) is recognized by BS when M2 is in state σ(s).
Again, we may identify subsets S and S′ by inspection of Figures 17, 18, 19 and
20, and use the definition of σi and the one-to-one correspondences between wait
states provided by σ to argue that σ gives a one-to-one correspondence between
elements of S and elements of S′. This means that f1(s, w) is defined if and only
if f2(σ(s), τ(w)) is defined. Finally, since the transitions only affect C1(i) and
C2(i), we may conclude that σ(f1(s, w)) = f2(σ(s), τ(w)), simply by inspection
of Figures 18 and 19.

Concerning the other messages containing B.Lookup, the properties in ques-
tion can be proved by the above procedure, using that σ copies elements from
BSC to B∗

SC , elements from BPKI to BS , and elements from B∗
SM to BSM .

This means that (σ, τ) : M
(18)
1 → M

(22)
2 is an isomorphism. By Lemma 1, the

induced language map is a bijection, and since τ leaves I fixed, it follows from
Lemma 3 that M

(18)
1 and M

(22)
2 are equivalent with respect to I. �

This completes our proof, and we conclude that the machines M1 and M2 are
equivalent with respect to I. By Theorem 9, the protocol πSM securely realizes
the functionality FSM in the (FPKI ,FSC)-hybrid model. �

References

[1] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. In CCS ’97: Proceedings of the 4th ACM Conference on Computer and Com-
munications Security, pages 36–47, New York, NY, USA, 1997. ACM.

[2] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A General Composition Theorem
for Secure Reactive System. In Proceedings of 1st Theory of Cryptography Conference

(TCC), volume 2951 of Lecture Notes in Computer Science, pages 336–354. Springer,
February 2004.

[3] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In

CRYPTO ’93: Proceedings of the 13th Annual International Cryptology Conference on
Advances in Cryptology, pages 232–249, New York, NY, USA, 1994. Springer-Verlag New

York, Inc.
[4] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of Authentication. ACM

Trans. Comput. Syst., 8(1):18–36, 1990.

[5] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2005. Available at http://eprint.

iacr.org/2000/067.
[6] Ran Canetti. Composable Formal Security Analysis: Juggling Soundness, Simplicity and

Efficiency. In ICALP ’08: Proceedings of the 35th International Colloquium on Automata,

Languages and Programming, Part II, pages 1–13, Berlin, Heidelberg, 2008. Springer-
Verlag.

[7] Ran Canetti and Jonathan Herzog. Universally Composable Symbolic Analysis of Cryp-
tographic Protocols (the Case of Encryption-Based Mutual Authentication and Key Ex-
change). In 2004/334, International Association for Cryptological Research, 2004.

[8] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

40 KRÅKMO

M
S
C

(i)
M

π (i)
M

P
K

I (i)
M

S
M

(i)
M
S (i)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

1 ,−
)

(Z
,P

i ,S
M

.R
e
g
iste

r)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(s

1 ,−
)

(s
1 ,−

)
(s

2 ,−
)

(P
i ,F

S
C

,S
C

.K
e
y
G

e
n
)

(F
S

M
,S

,S
M

.R
e
g
iste

r,P
i)

(s
2 ,−

)
(s

1 ,−
)

(s
2 ,−

)
(F

S
C

,A
S

C
,S

C
.K

e
y
G

e
n
,P

i)
(F

S
C

,A
S

C
,S

C
.K

e
y
G

e
n
,P

i)
(s

2 ,−
)

(s
3 ,pk

si ,pk
ri)

(A
S

C
,F

S
C

,S
C

.K
e
y
,P

i ,p
k

si ,p
k

ri)
(A

S
C

,F
S

C
,S

C
.K

e
y
,P

i ,p
k

si ,p
k

ri)
(s

3 ,pk
si ,pk

ri)
(s

4 ,pk
si ,pk

ri)
(F

S
C

,B
S
C

,B
.A

d
d
,(P

i ,p
k

si ,p
k

ri))

(s
5 ,pk

si ,pk
ri)

(s
3 ,pk

si ,pk
ri)

(F
S

C
,P

i ,S
C

.K
e
y
,p

k
si ,p

k
ri)

(s
4 ,−

)
(s

1 ,(pk
si ,pk

ri))
(P

i ,F
P
K

I ,P
K

I.R
e
g
iste

r,(p
k

si ,p
k

ri))

(s
2 ,(pk

si ,pk
ri))

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
g
iste

r,P
i ,(p

k
si ,p

k
ri))

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
g
iste

r,P
i ,(p

k
si ,p

k
ri))

(s
4 ,pk

si ,pk
ri)

(s
3 ,(pk

si ,pk
ri))

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
g
iste

r.O
k
,P

i)
(A

P
K

I ,F
P
K

I ,P
K

I.R
e
g
iste

r.O
k
,P

i)
(s

5 ,pk
si ,pk

ri)
(s

4 ,−
)

(F
P
K

I ,B
P
K

I ,B
.A

d
d
,(P

i ,(p
k

si ,p
k

ri)))
(S

,B
S
,B

.A
d
d
,(P

i ,(p
k

si ,p
k

ri)))
(s

6 ,pk
si ,pk

ri)
(s

5 ,−
)

(s
5 ,−

)
(F

P
K

I ,P
i ,P

K
I.R

e
g
iste

r.O
k
)

(S
,F

S
M

,S
M

.R
e
g
iste

r.O
k
,P

i)
(s

3 ,−
)

(s
7 ,pk

si ,pk
ri)

(F
S

M
,B

S
M

,B
.A

d
d
,P

i)
(s

4 ,−
)

(s
6 ,−

)
(P

i ,Z
,S

M
.R

e
g
iste

r.O
k
)

(P
i ,Z

,S
M

.R
e
g
iste

r.O
k
)

(s
5 ,−

)

(s
5 ,pk

si ,pk
ri)

(s
6 ,−

)
(s

5 ,−
)

(s
5 ,−

)
(s

7 ,pk
si ,pk

ri)
(s

2
0 ,−

)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(s

2
0 ,−

)
(s

6 ,−
)

(P
i ,Z

,S
M

.E
rro

r)
(P

i ,Z
,S

M
.E

rro
r)

(s
5 ,−

)

F
ig

u
r
e

1
3
.

R
egistration

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 41

M
S
C

(i
)

M
π
(i

)
M

P
K

I
(i

)
M

S
M

(i
)

M
S
(i

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

1
9
,−

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(s

1
9
,−

)
(s

0
,−

)
(P

i
,Z

,S
M

.E
rr

o
r)

(P
i
,Z

,S
M

.E
rr

o
r)

(s
0
,−

)

(s
5
,p

ks i
,p

kr i
)

(s
6
,−

)
(s

5
,−

)
(s

5
,−

)
(s

7
,p

ks i
,p

kr i
)

(s
7
,P

j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(s

6
,P

j
,m

)
(F

S
M

,S
,S

M
.E

n
c
ry

p
t,

P
i
,P

j
,|

m
|)

(s
7
,P

j
,m

)
(s

8
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
8
,m

)
(s

6
,P

j
)

(P
i
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

j
)

(s
7
,P

j
)

(F
P
K

I
,A

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

i
,P

j
)

(F
P
K

I
,A

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

i
,P

j
)

(s
9
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
8
,P

j
)

(A
P
K

I
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
.O

k
,P

i
,P

j
)

(A
P
K

I
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
.O

k
,P

i
,P

j
)

(s
1
0
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
9
,(

pk
s j
,p

kr j
),

P
j
)

(F
P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,(

p
k

s j
,p

k
r j
))

)
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,(

p
k

s j
,p

k
r j
))

)
(s

1
2
,p

ks i
,p

kr i
,P

j
,p

kr j
,|

m
|)

(s
1
0
,p

kr j
,m

,P
j
)

(s
5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.O

k
,(

p
k

s j
,p

k
r j
))

(s
6
,p

ks i
,p

kr i
,p

kr j
,m

,P
j
)

(s
1
1
,−

)
(P

i
,F

S
C

,S
C

.E
n
c
ry

p
t,

p
k

r j
,m

)

(s
9
,p

ks i
,p

kr i
,p

kr j
,m

,P
j
)

(F
S

C
,B

S
C

,B
.L

o
o
k
u
p
,(
−

,−
,p

k
r j
),

(P
j
,p

k
s j
,p

k
r j
))

(s
1
0
,p

ks i
,p

kr i
,p

kr j
,m

,P
j
)

(F
S

C
,A

S
C

,S
C

.E
n
c
ry

p
t,

p
k

s i
,p

k
r j
,|

m
|)

(F
S

C
,A

S
C

,S
C

.E
n
c
ry

p
t,

p
k

s i
,p

k
r j
,|

m
|)

(s
1
3
,p

ks i
,p

kr i
,P

j
,p

kr j
)

(s
1
1
,p

ks i
,p

kr i
,p

kr j
,m

,c
,P

j
)

(A
S

C
,F

S
C

,S
C

.C
ip

h
e
rt

e
x
t,

p
k

s i
,p

k
r j
,c

)
(A

S
C

,F
S

C
,S

C
.C

ip
h
e
rt

e
x
t,

p
k

s i
,p

k
r j
,c

)
(s

1
4
,p

ks i
,p

kr i
,P

j
,c

,p
kr j

)
(S

,F
S

M
,S

M
.C

ip
h
e
rt

e
x
t,

P
i
,P

j
,c

)
(s

8
,P

j
,m

,c
,p

kr j
)

(s
7
,p

ks i
,p

kr i
)

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,P

j
,P

j
)

(s
1
0
,P

j
,m

,c
,p

kr j
)

(F
S

M
,B

S
M

,B
.A

d
d
,(

P
i
,P

j
,c

,m
))

(s
1
1
,c

)
(s

1
2
,p

ks i
,p

kr i
,c

)
(F

S
C

,B
S
C

,B
.A

d
d
,(

p
k

s i
,p

k
r j
,c

,m
))

(s
5
,p

ks i
,p

kr i
)

(s
1
2
,c

)
(F

S
C

,P
i
,S

C
.C

ip
h
e
rt

e
x
t,

c)

(s
6
,−

)
(P

i
,Z

,S
M

.C
ip

h
e
rt

e
x
t,

c)
(P

i
,Z

,S
M

.C
ip

h
e
rt

e
x
t,

c)
(s

5
,−

)

F
ig

u
r
e

1
4
.

E
nc

ry
pt

io
n

42 KRÅKMO

M
S
C

(i)
M

π (i)
M

P
K

I (i)
M

S
M

(i)
M
S (i)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

1
9 ,−

)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(s

1
9 ,−

)
(s

0 ,−
)

(P
i ,Z

,S
M

.E
rro

r)
(P

i ,Z
,S

M
.E

rro
r)

(s
0 ,−

)

(s
5 ,pk

si ,pk
ri)

(s
6 ,−

)
(s

5 ,−
)

(s
5 ,−

)
(s

7 ,pk
si ,pk

ri)
(s

1
3 ,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(s

1
2 ,P

j ,c)
(F

S
M

,S
,S

M
.D

e
c
ry

p
t,P

i ,P
j ,c)

(s
1
3 ,P

j ,c)
(s

1
5 ,pk

si ,pk
ri ,P

j ,c)
(s

1
4 ,c)

(s
6 ,P

j)
(P

i ,F
P
K

I ,P
K

I.R
e
trie

v
e
,P

j)

(s
7 ,P

j)
(F

P
K

I ,A
P
K

I ,P
K

I.R
e
trie

v
e
,P

i ,P
j)

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
trie

v
e
,P

i ,P
j)

(s
1
6 ,pk

si ,pk
ri ,P

j ,c)
(s

8 ,P
j)

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
trie

v
e
.O

k
,P

i ,P
j)

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
trie

v
e
.O

k
,P

i ,P
j)

(s
1
7 ,pk

si ,pk
ri ,P

j ,c)
(s

9 ,(pk
sj ,pk

rj), P
j)

(F
P
K

I ,B
P
K

I ,B
.L

o
o
k
u
p
,(P

j ,−
),(P

j ,(p
k

sj ,p
k

rj)))
(S

,B
S
,B

.L
o
o
k
u
p
,(P

j ,−
),(P

j ,(p
k

sj ,p
k

rj)))
(s

1
9 ,pk

si ,pk
ri ,P

j ,pk
sj ,c)

(s
1
6 ,pk

sj ,c,P
j)

(s
5 ,−

)
(F

P
K

I ,P
i ,P

K
I.R

e
trie

v
e
.O

k
,(p

k
sj ,p

k
rj))

(s
1
3 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(s
1
7 ,−

)
(P

i ,F
S

C
,S

C
.D

e
c
ry

p
t,p

k
sj ,c)

(s
1
4 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(F
S

C
,A

S
C

,S
C

.D
e
c
ry

p
t,p

k
sj ,p

k
ri ,c)

(F
S

C
,A

S
C

,S
C

.D
e
c
ry

p
t,p

k
sj ,p

k
ri ,c)

(s
2
0 ,pk

si ,pk
ri ,P

j ,pk
sj)

(s
1
5 ,pk

si ,pk
ri ,pk

sj ,c,m
′,P

j)
(A

S
C

,F
S

C
,S

C
.P

la
in

te
x
t,p

k
sj ,p

k
ri ,m

′)
(A

S
C

,F
S

C
,S

C
.P

la
in

te
x
t,p

k
sj ,p

k
ri ,m

′)
(s

2
1 ,pk

si ,pk
ri ,P

j ,m
′,pk

sj)
(S

,F
S

M
,S

M
.P

la
in

te
x
t,P

i ,P
j ,m

′)
(s

1
4 ,P

j ,c,m
′,pk

sj)
(s

7 ,pk
si ,pk

ri)
(F

S
M

,B
S
M

,B
.L

o
o
k
u
p
,P

j ,P
j)

(s
1
6 ,P

j ,c,pk
sj)

(s
1
7 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(F
S

C
,B

S
C

,B
.L

o
o
k
u
p
,(−

,p
k

sj ,−
),(P

j ,p
k

sj ,p
k

rj))

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,(P

j ,P
i ,c,−

),⊥
/
(P

j ,P
i ,c,m

))
(s

1
7 ,⊥

)/(s
1
8 ,m

)
(s

1
8 ,pk

si ,pk
ri ,m

)/(s
1
8 ,pk

si ,pk
ri ,⊥

)
(F

S
C

,B
S
C

,B
.L

o
o
k
u
p
,(p

k
sj ,p

k
ri ,c,−

),⊥
/
(p

k
sj ,p

k
ri ,c,m

))

(s
5 ,pk

si ,pk
ri)

(s
1
8 ,⊥

/m
)

(F
S

C
,P

i ,S
C

.P
lain

tex
t,⊥

/
m

)
(s

6 ,−
)

(P
i ,Z

,S
M

.P
la

in
te

x
t,⊥

/
m

)
(P

i ,Z
,S

M
.P

la
in

te
x
t,⊥

/
m

)
(s

5 ,−
)

F
ig

u
r
e

1
5
.

D
ecryption

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 43

M
S
C

(i
)

M
π
(i

)
M

P
K

I
(i

)
M

S
M

(i
)

M
S
(i

)
(s

5
,p

ks i
,p

kr i
)

(s
8
,m

)
(s

8
,P

j
)

(s
7
,P

j
,m

)
(s

1
0
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
1
0
,−

)
(F

P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(s

1
1
,p

ks i
,p

kr i
,P

j
)

(S
,F

S
M

,S
M

.C
ip

h
e
rt

e
x
t,

P
i
,P

j
,⊥

)
(s

8
,P

j
,m

,⊥
)

(s
7
,p

ks i
,p

kr i
)

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(s

9
,⊥

)
(s

9
,−

)
(s

5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.F

a
il
)

(s
6
,−

)
(P

i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(P
i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(s
5
,−

)
(s

5
,p

ks i
,p

kr i
)

(s
1
4
,c

)
(s

8
,P

j
)

(s
1
3
,P

j
,c

)
(s

1
7
,p

ks i
,p

kr i
,P

j
,c

)
(s

1
0
,−

)
(F

P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(s

1
6
,p

ks i
,p

kr i
,P

j
)

(S
,F

S
M

,S
M

.P
la

in
te

x
t,

P
i
,P

j
,⊥

)
(s

1
4
,P

j
,c

,⊥
)

(s
7
,p

ks i
,p

kr i
)

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(s

1
5
,⊥

)
(s

1
5
,−

)
(s

5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.F

a
il
)

(s
6
,−

)
(P

i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(P
i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(s
5
,−

)

F
ig

u
r
e

1
6
.

Sp
ec

ia
l
ca

se
s

du
ri

ng
en

cr
yp

ti
on

an
d

de
cr

yp
ti

on

44 KRÅKMO

M
S
C

(i)
M

π (i)
M

P
K

I (i)
M

S
M

(i)
M
S (i)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

1 ,−
)

(Z
,P

i ,S
M

.R
e
g
iste

r)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(s

1 ,−
)

(s
1 ,−

)
(s

2 ,−
)

(P
i ,F

S
C

,S
C

.K
e
y
G

e
n
)

(F
S

M
,S

,S
M

.R
e
g
iste

r,P
i)

(s
2 ,−

)
(s

1 ,−
)

(s
2 ,−

)
(F

S
C

,A
S

C
,S

C
.K

e
y
G

e
n
,P

i)
(F

S
C

,A
S

C
,S

C
.K

e
y
G

e
n
,P

i)
(s

2 ,−
)

(s
3 ,pk

si ,pk
ri)

(A
S

C
,F

S
C

,S
C

.K
e
y
,P

i ,p
k

si ,p
k

ri)
(A

S
C

,F
S

C
,S

C
.K

e
y
,P

i ,p
k

si ,p
k

ri)
(s

(1
)

2
,pk

si ,pk
ri)

(s
4 ,pk

si ,pk
ri)

(F
S

C
,B

S
C

,B
.A

d
d
,(P

i ,p
k

si ,p
k

ri))
(S

,B
∗S
C

,B
.A

d
d
,(P

i ,p
k

si ,p
k

ri))
(s

(2
)

2
,pk

si ,pk
ri)

(s
5 ,pk

si ,pk
ri)

(s
3 ,pk

si ,pk
ri)

(F
S

C
,P

i ,S
C

.K
e
y
,p

k
si ,p

k
ri)

(S
,S

,S
C

.K
e
y
,P

i ,p
k

si ,p
k

ri)
(s

(3
)

2
,pk

si ,pk
ri)

(s
4 ,−

)
(s

1 ,(pk
si ,pk

ri))
(P

i ,F
P
K

I ,P
K

I.R
e
g
iste

r,(p
k

si ,p
k

ri))
(S

,S
,P

K
I.R

e
g
iste

r,P
i ,(p

k
si ,p

k
ri))

(s
3 ,pk

si ,pk
ri)

(s
2 ,(pk

si ,pk
ri))

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
g
iste

r,P
i ,(p

k
si ,p

k
ri))

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
g
iste

r,P
i ,(p

k
si ,p

k
ri))

(s
4 ,pk

si ,pk
ri)

(s
3 ,(pk

si ,pk
ri))

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
g
iste

r.O
k
,P

i)
(A

P
K

I ,F
P
K

I ,P
K

I.R
e
g
iste

r.O
k
,P

i)
(s

5 ,pk
si ,pk

ri)
(s

4 ,−
)

(F
P
K

I ,B
P
K

I ,B
.A

d
d
,(P

i ,(p
k

si ,p
k

ri)))
(S

,B
S
,B

.A
d
d
,(P

i ,(p
k

si ,p
k

ri)))
(s

6 ,pk
si ,pk

ri)
(s

(1
)

4
,−

)
(s

5 ,−
)

(F
P
K

I ,P
i ,P

K
I.R

e
g
iste

r.O
k
)

(S
,F

S
M

,S
M

.R
e
g
iste

r.O
k
,P

i)
(s

3 ,−
)

(s
7 ,pk

si ,pk
ri)

(s
5 ,−

)
(P

i ,B
∗S
M

,B
.A

d
d
,P

i)
(F

S
M

,B
S
M

,B
.A

d
d
,P

i)
(s

4 ,−
)

(s
6 ,−

)
(P

i ,Z
,S

M
.R

e
g
iste

r.O
k
)

(P
i ,Z

,S
M

.R
e
g
iste

r.O
k
)

(s
5 ,−

)

(s
5 ,pk

si ,pk
ri)

(s
6 ,−

)
(s

5 ,−
)

(s
5 ,−

)
(s

7 ,pk
si ,pk

ri)
(s

2
0 ,−

)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(Z

,P
i ,S

M
.R

e
g
iste

r)
(s

2
0 ,−

)
(s

6 ,−
)

(P
i ,Z

,S
M

.E
rro

r)
(P

i ,Z
,S

M
.E

rro
r)

(s
5 ,−

)

F
ig

u
r
e

1
7
.

M
odified

registration

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 45

M
S
C

(i
)

M
π
(i

)
M

P
K

I
(i

)
M

S
M

(i
)

M
S
(i

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

0
,−

)
(s

1
9
,−

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(s

1
9
,−

)
(s

0
,−

)
(P

i
,Z

,S
M

.E
rr

o
r)

(P
i
,Z

,S
M

.E
rr

o
r)

(s
0
,−

)

(s
5
,p

ks i
,p

kr i
)

(s
6
,−

)
(s

5
,−

)
(s

5
,−

)
(s

7
,p

ks i
,p

kr i
)

(s
(1

)
6

,P
j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(Z

,P
i
,S

M
.E

n
c
ry

p
t,

P
j
,m

)
(s

6
,P

j
,m

)
(s

7
,P

j
,m

)
(P

i
,P

i
,S

M
.E

n
c
ry

p
t,

P
j
,|

m
|)

(F
S

M
,S

,S
M

.E
n
c
ry

p
t,

P
i
,P

j
,|

m
|)

(s
7
,P

j
,m

)
(s

(1
)

7
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
8
,m

)
(s

6
,P

j
)

(P
i
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

j
)

(S
,S

,P
K

I.
R

e
tr

ie
v
e
,P

i
,P

j
)

(s
8
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
7
,P

j
)

(F
P
K

I
,A

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

i
,P

j
)

(F
P
K

I
,A

P
K

I
,P

K
I.
R

e
tr

ie
v
e
,P

i
,P

j
)

(s
9
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
8
,P

j
)

(A
P
K

I
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
.O

k
,P

i
,P

j
)

(A
P
K

I
,F

P
K

I
,P

K
I.
R

e
tr

ie
v
e
.O

k
,P

i
,P

j
)

(s
1
0
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
9
,(

pk
s j
,p

kr j
),

P
j
)

(F
P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,(

p
k

s j
,p

k
r j
))

)
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,(

p
k

s j
,p

k
r j
))

)
(s

(1
)

1
0

,p
ks i

,p
kr i

,P
j
,p

ks j
,p

kr j
,|

m
|)

(s
1
0
,p

kr j
,m

,P
j
)

(s
5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.O

k
,(

p
k

s j
,p

k
r j
))

(S
,S

,P
K

I.
R

e
tr

ie
v
e
.O

k
,P

i
,(

p
k

s j
,p

k
r j
))

(s
(2

)
1
0

,p
ks i

,p
kr i

,P
j
,p

kr j
,|

m
|)

(s
6
,p

ks i
,p

kr i
,p

kr j
,m

,P
j
)

(s
1
1
,−

)
(P

i
,F

S
C

,S
C

.E
n
c
ry

p
t,

p
k

r j
,m

)
(S

,S
,S

C
.E

n
c
ry

p
t,

P
i
,p

k
r j
,m

)
(s

(3
)

1
0

,p
ks i

,p
kr i

,P
j
,p

kr j
,|

m
|)

(s
9
,p

ks i
,p

kr i
,p

kr j
,m

, P
j
)

(F
S

C
,B

S
C

,B
.L

o
o
k
u
p
,(
−

,−
,p

k
r j
),

(P
j
,p

k
s j
,p

k
r j
))

(S
,B

∗ S
C

,B
.L

o
o
k
u
p
,(
−

,−
,p

k
r j
),

(P
j
,p

k
s j
,p

k
r j
))

(s
1
2
,p

ks i
,p

kr i
,P

j
,p

kr j
,|

m
|)

(s
1
0
,p

ks i
,p

kr i
,p

kr j
,m

,P
j
)

(F
S

C
,A

S
C

,S
C

.E
n
c
ry

p
t,

p
k

s i
,p

k
r j
,|

m
|)

(F
S

C
,A

S
C

,S
C

.E
n
c
ry

p
t,

p
k

s i
,p

k
r j
,|

m
|)

(s
1
3
,p

ks i
,p

kr i
,P

j
,p

kr j
)

(s
(1

)
1
0

,p
ks i

,p
kr i

,P
j
,p

kr j
,m

,c
)

(A
S

C
,F

S
C

,S
C

.C
ip

h
e
rt

e
x
t,

p
k

s i
,p

k
r j
,c

)
(A

S
C

,F
S

C
,S

C
.C

ip
h
e
rt

e
x
t,

p
k

s i
,p

k
r j
,c

)
(s

1
4
,p

ks i
,p

kr i
,P

j
,c

,p
kr j

)
(s

(2
)

1
0

,p
ks i

,p
kr i

,P
j
,p

kr j
,m

,c
)

(F
S

C
,F

S
C

,S
M

.C
ip

h
e
rt

e
x
t,

P
i
,P

j
,c

)
(S

,F
S

M
,S

M
.C

ip
h
e
rt

e
x
t,

P
i
,P

j
,c

)
(s

8
,P

j
,m

,c
, p

kr j
)

(s
7
,p

ks i
,p

kr i
)

(s
(3

)
1
0

,p
ks i

,p
kr i

,P
j
,p

kr j
,m

,c
)

(F
S

C
,B

∗ S
M

,B
.L

o
o
k
u
p
,P

j
,P

j
)

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,P

j
,P

j
)

(s
1
0
,P

j
,m

,c
,p

kr j
)

(s
1
1
,p

ks i
,p

kr i
,p

kr j
,m

,c
, P

j
)

(F
S

C
,B

∗ S
M

,B
.A

d
d
,(

P
i
,P

j
,c

,m
))

(F
S

M
,B

S
M

,B
.A

d
d
,(

P
i
,P

j
,c

,m
))

(s
(1

)
1
0

,P
j
,p

kr j
,m

,c
)

(s
1
2
,p

ks i
,p

kr i
,c

)
(F

S
C

,B
S
C

,B
.A

d
d
,(

p
k

s i
,p

k
r j
,c

,m
))

(F
S

M
,B

∗ S
C

,B
.A

d
d
,(

p
k

s i
,p

k
r j
,c

,m
))

(s
(2

)
1
0

,c
)

(s
5
,p

ks i
,p

kr i
)

(s
1
2
,c

)
(F

S
C

,P
i
,S

C
.C

ip
h
e
rt

e
x
t,

c)
(F

S
M

,F
S

M
,S

C
.C

ip
h
e
rt

e
x
t,

P
i
,c

)
(s

1
1
,c

)
(s

6
,−

)
(P

i
,Z

,S
M

.C
ip

h
e
rt

e
x
t,

c)
(P

i
,Z

,S
M

.C
ip

h
e
rt

e
x
t,

c)
(s

5
,−

)

F
ig

u
r
e

1
8
.

M
od

ifi
ed

en
cr

yp
ti

on

46 KRÅKMO

M
S
C

(i)
M

π (i)
M

P
K

I (i)
M

S
M

(i)
M
S (i)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

0 ,−
)

(s
0 ,−

)
(s

1
9 ,−

)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(s

1
9 ,−

)
(s

0 ,−
)

(P
i ,Z

,S
M

.E
rro

r)
(P

i ,Z
,S

M
.E

rro
r)

(s
0 ,−

)

(s
5 ,pk

si ,pk
ri)

(s
6 ,−

)
(s

5 ,−
)

(s
5 ,−

)
(s

7 ,pk
si ,pk

ri)
(s

(2
)

6
,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(Z

,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(s

1
2 ,P

j ,c)
(s

1
3 ,P

j ,c)
(P

i ,P
i ,S

M
.D

e
c
ry

p
t,P

j ,c)
(F

S
M

,S
,S

M
.D

e
c
ry

p
t,P

i ,P
j ,c)

(s
1
3 ,P

j ,c)
(s

(2
)

7
,pk

si ,pk
ri ,P

j ,c)
(s

1
4 ,c)

(s
6 ,P

j)
(P

i ,F
P
K

I ,P
K

I.R
e
trie

v
e
,P

j)
(S

,S
,P

K
I.R

e
trie

v
e
,P

i ,P
j)

(s
1
5 ,pk

si ,pk
ri ,P

j ,c)
(s

7 ,P
j)

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
trie

v
e
,P

i ,P
j)

(F
P
K

I ,A
P
K

I ,P
K

I.R
e
trie

v
e
,P

i ,P
j)

(s
1
6 ,pk

si ,pk
ri ,P

j ,c)
(s

8 ,P
j)

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
trie

v
e
.O

k
,P

i ,P
j)

(A
P
K

I ,F
P
K

I ,P
K

I.R
e
trie

v
e
.O

k
,P

i ,P
j)

(s
1
7 ,pk

si ,pk
ri ,P

j ,c)
(s

9 ,(pk
sj ,pk

rj),P
j)

(F
P
K

I ,B
P
K

I ,B
.L

o
o
k
u
p
,(P

j ,−
),(P

j ,(p
k

sj ,p
k

rj)))
(S

,B
S
,B

.L
o
o
k
u
p
,(P

j ,−
),(P

j ,(p
k

sj ,p
k

rj)))
(s

(1
)

1
7

,pk
si ,pk

ri ,P
j ,pk

sj ,pk
rj ,c)

(s
1
6 ,pk

sj ,c,P
j)

(s
5 ,−

)
(F

P
K

I ,P
i ,P

K
I.R

e
trie

v
e
.O

k
,(p

k
sj ,p

k
rj))

(S
,S

,P
K

I.R
e
trie

v
e
.O

k
,P

i ,(p
k

sj ,p
k

rj))
(s

(2
)

1
7

,pk
si ,pk

ri ,P
j ,pk

sj ,c)
(s

1
3 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(s
1
7 ,−

)
(P

i ,F
S

C
,S

C
.D

e
c
ry

p
t,p

k
sj ,c)

(S
,S

,S
C

.D
e
c
ry

p
t,P

i ,p
k

sj ,c)
(s

1
9 ,pk

si ,pk
ri ,P

j ,pk
sj ,c)

(s
1
4 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(F
S

C
,A

S
C

,S
C

.D
e
c
ry

p
t,p

k
sj ,p

k
ri ,c)

(F
S

C
,A

S
C

,S
C

.D
e
c
ry

p
t,p

k
sj ,p

k
ri ,c)

(s
2
0 ,pk

si ,pk
ri ,P

j ,pk
sj)

(s
(1

)
1
4

,pk
si ,pk

ri ,P
j ,pk

sj ,c,m
′)

(A
S

C
,F

S
C

,S
C

.P
la

in
te

x
t,p

k
sj ,p

k
ri ,m

′)
(A

S
C

,F
S

C
,S

C
.P

la
in

te
x
t,p

k
sj ,p

k
ri ,m

′)
(s

2
1 ,pk

si ,pk
ri ,P

j ,m
′,pk

sj)
(s

(2
)

1
4

,pk
si ,pk

ri ,P
j ,pk

sj ,c,m
′)

(F
S

C
,F

S
C

,S
M

.P
la

in
te

x
t,P

i ,P
j ,m

′)
(S

,F
S

M
,S

M
.P

la
in

te
x
t,P

i ,P
j ,m

′)
(s

1
4 ,P

j ,c,m
′,pk

sj)
(s

7 ,pk
si ,pk

ri)
(s

1
5 ,pk

si ,pk
ri ,pk

sj ,c,m
′,P

j)
(F

S
C

,B
∗S
M

,B
.L

o
o
k
u
p
,P

j ,P
j)

(F
S

M
,B

S
M

,B
.L

o
o
k
u
p
,P

j ,P
j)

(s
(1

)
1
4

,P
j ,pk

sj ,c,m
′)

(s
(1

)
1
5

,pk
si ,pk

ri ,P
j ,pk

sj ,c)
(F

S
C

,B
S
C

,B
.L

o
o
k
u
p
,(−

,p
k

sj ,−
),(P

j ,p
k

sj ,p
k

rj))
(F

S
M

,B
∗S
C

,B
.L

o
o
k
u
p
,(−

,p
k

sj ,−
),(P

j ,p
k

sj ,p
k

rj))
(s

1
6 ,P

j ,c,pk
sj)

(s
1
7 ,pk

si ,pk
ri ,pk

sj ,c,P
j)

(F
S

C
,B

∗S
M

,B
.L

o
o
k
u
p
,(P

j ,P
i ,c,−

),⊥
/
(P

j ,P
i ,c,m

))
(F

S
M

,B
S
M

,B
.L

o
o
k
u
p
,(P

j ,P
i ,c,−

),⊥
/
(P

j ,P
i ,c,m

))
(s

(1
)

1
6

,P
j ,pk

sj ,c)
(s

1
9 ,pk

si ,pk
ri ,m

)/(s
1
8 ,pk

si ,pk
ri ,⊥

)
(F

S
C

,B
S
C

,B
.L

o
o
k
u
p
,(p

k
sj ,p

k
ri ,c,−

),⊥
/
(p

k
sj ,p

k
ri ,c,m

))
(F

S
M

,B
∗S
C

,B
.L

o
o
k
u
p
,(p

k
sj ,p

k
ri ,c,−

),⊥
/
(p

k
sj ,p

k
ri ,c,m

))
(s

(2
)

1
6

,⊥
)/(s

(3
)

1
6

,m
)

(s
5 ,pk

si ,pk
ri)

(s
1
8 ,⊥

/
m

)
(F

S
C

,P
i ,S

C
.P

la
in

te
x
t,⊥

/
m

)
(F

S
M

,F
S

M
,S

C
.P

la
in

te
x
t,P

i ,⊥
/
m

)
(s

1
7 ,⊥

)/(s
1
8 ,m

)
(s

6 ,−
)

(P
i ,Z

,S
M

.P
la

in
te

x
t,⊥

/
m

)
(P

i ,Z
,S

M
.P

la
in

te
x
t,⊥

/
m

)
(s

5 ,−
)

F
ig

u
r
e

1
9
.

M
odified

decryption

AN APPLICATION OF FORMAL METHODS TO UNIVERSAL COMPOSABILITY 47

M
S
C

(i
)

M
π
(i

)
M

P
K

I
(i

)
M

S
M

(i
)

M
S
(i

)
(s

5
,p

ks i
,p

kr i
)

(s
8
,m

)
(s

8
,P

j
)

(s
7
,P

j
,m

)
(s

1
0
,p

ks i
,p

kr i
,P

j
,|

m
|)

(s
(1

)
8

,P
j
)

(F
P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(s

1
1
,p

ks i
,p

kr i
,P

j
)

(s
(2

)
8

,P
j
)

(F
P
K

I
,F

P
K

I
,S

M
.C

ip
h
e
rt

e
x
t,

P
i
,P

j
,⊥

)
(S

,F
S

M
,S

M
.C

ip
h
e
rt

e
x
t,

P
i
,P

j
,⊥

)
(s

8
,P

j
,m

,⊥
)

(s
7
,p

ks i
,p

kr i
)

(s
1
0
,−

)
(F

P
K

I
,B

∗ S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(F

S
M

,B
S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(s

(1
)

8
,m

,⊥
)

(s
9
,−

)
(s

5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.F

a
il
)

(F
S

M
,F

S
M

,P
K

I.
R

e
tr

ie
v
e
.F

a
il
,P

i
)

(s
9
,⊥

)
(s

6
,−

)
(P

i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(P
i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
,c

)
(s

5
,−

)
(s

5
,p

ks i
,p

kr i
)

(s
1
4
,c

)
(s

8
,P

j
)

(s
1
3
,P

j
,c

)
(s

1
7
,p

ks i
,p

kr i
,P

j
,c

)
(s

(1
)

8
,P

j
)

(F
P
K

I
,B

P
K

I
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(S

,B
S
,B

.L
o
o
k
u
p
,(

P
j
,−

),
(P

j
,⊥

))
(s

1
6
,p

ks i
,p

kr i
,P

j
)

(s
(2

)
8

,P
j
)

(F
P
K

I
,F

P
K

I
,S

M
.P

la
in

te
x
t,

P
i
,P

j
,⊥

)
(S

,F
S

M
,S

M
.P

la
in

te
x
t,

P
i
,P

j
,⊥

)
(s

1
4
,P

j
,c

,⊥
)

(s
7
,p

ks i
,p

kr i
)

(s
1
0
,−

)
(F

P
K

I
,B

∗ S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(F

S
M

,B
S
M

,B
.L

o
o
k
u
p
,P

j
,⊥

)
(s

(2
)

1
4

,c
,⊥

)
(s

1
5
,−

)
(s

5
,−

)
(F

P
K

I
,P

i
,P

K
I.
R

e
tr

ie
v
e
.F

a
il
)

(F
S

M
,F

S
M

,P
K

I.
R

e
tr

ie
v
e
.F

a
il
,P

i
)

(s
1
5
,⊥

)
(s

6
,−

)
(P

i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
)

(P
i
,Z

,S
M

.N
o
t.
R

e
g
is

te
re

d
,c

)
(s

5
,−

)

F
ig

u
r
e

2
0
.

Sp
ec

ia
l
ca

se
s

du
ri

ng
m

od
ifi

ed
en

cr
yp

ti
on

an
d

de
cr

yp
ti

on

48 KRÅKMO

[9] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and Systems
Sciences, 28(2):270–299, 1984.

[10] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM J. Comput., 18(1):186–208, 1989.

[11] Birgit Pfitzmann and Michael Waidner. Composition and Integrity Preservation of Secure
Reactive Systems. In CCS ’00: Proceedings of the 7th ACM Conference on Computer and

Communications Security, pages 245–254, New York, NY, USA, 2000. ACM.
[12] Kristian Gjøsteen. Secure Messaging from Signcryption: An Application of Formal Meth-

ods to Universal Composability, 2006.

