Jan Stovicek

Compactly Generated Triangulated Categories and the Telescope Conjecture

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2009

Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Mathematical Sciences

o NTNU

Norwegian University of Science and Technology

NTNU

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor
Faculty of Information Technology, Mathematics and Electrical Engineering Department of Mathematical Sciences
© Jan Stovicek

ISBN 978-82-471-1774-3 (printed ver.)
ISBN 978-82-471-1775-0 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2009:188

Printed by NTNU-trykk

CONTENTS

Acknowledgements

Compactly generated triangulated categories 5 and the telescope conjecture Survey.
I. The countable telescope conjecture for mod- 25 ule categories Adv. Math. 219 (2008), 1002-1036.
II. Telescope conjecture, idempotent ideals, and 67 the transfinite radical
To appear in Trans. Amer. Math. Soc.
III. The telescope conjecture for hereditary rings 87 via Ext-orthogonal pairs
Preprint, arXiv:0810.1401.
IV. Locally well generated homotopy categories 117 of complexes
Preprint, arXiv:0810.5684.

ACKNOWLEDGEMENTS

I would like to thank to my advisor Øyvind Solberg for many helpful discussions and suggestions. I am also grateful to the Research Council of Norway for supporting my research through the Storforsk-project "Homological and geometric methods in algebra", which was lead by Idun Reiten. It has been a great pleasure to work in the creative environment in Trondheim, as well as in Paderborn and Murcia, where I spent a few months in 2009. Parts of this work were written as joint papers with Jan Šaroch and Henning Krause, who deserve my thanks for their co-operative approach.

Last but not least, my personal thanks belong to Renata for her support during the whole period of working on the thesis.

Jan Štovíček
Trondheim, September 2009

COMPACTLY GENERATED TRIANGULATED CATEGORIES AND THE TELESCOPE CONJECTURE (SURVEY)

Introduction

The thesis consists of this survey and four papers in various stages of the publication process:
(1) J. Šaroch and J. Štoviček, The countable telescope conjecture for module categories, Adv. Math. 219 (2008) 1002-1036.
(2) J. Štoviček, Telescope conjecture, idempotent ideals, and the transfinite radical, to appear in Trans. Amer. Math. Soc.
(3) H. Krause and J. Štovíček, The telescope conjecture for hereditary rings via Ext-orthogonal pairs, preprint, arXiv:0810.1401.
(4) J. Stoviček, Locally well generated homotopy categories of complexes, preprint, arXiv:0810.5684.
In the papers with a coauthor, the contributions of myself and the coauthor should be considered as equal.

There are two main reasons for introducing the thesis with this survey. First, the necessary concepts and results on which this thesis relies are scattered among several papers as one can see from the reference list. It seemed, therefore, convenient to collect all the necessary terms and facts and put them into the corresponding context, together with motivation for the research. Second, there are some results which have been proved here, in particular Theorem 3.6(3) which seems to be a new result.

1. Preliminaries

1.1. Triangulated categories. Triangulated categories are ubiquitous in modern homological algebra and homotopy theory. They were independently introduced by Verdier [51] and Puppe [42] in 1960's. An additive category \mathcal{T} is called triangulated if:
(1) It has a distinguished autoequivalence. The image of an object X or a morphism f under this equivalence is often denoted by $X[1]$ or $f[1]$, respectively. By $X[n]$ or $f[n]$, we denote the n fold application of the equivalence (or $|n|$-fold application of its quasi-inverse if $n<0$) on X or f.
(2) It has a distinguished class of diagrams of the form

$$
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1],
$$

called triangles, satisfying certain axioms.

The axioms are:
TR0: A diagram isomorphic to a triangle is again a triangle.
Moreover, the diagram $X \xrightarrow{1_{X}} X \longrightarrow 0 \longrightarrow X[1]$ is a triangle for each $X \in \mathcal{T}$.
TR1: For any morphism $f: X \rightarrow Y$ in \mathcal{T}, there is a triangle of the form

$$
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1] .
$$

TR2: $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a triangle if and only if $Y \xrightarrow{-g}$
$Z \xrightarrow{-h} X[1] \xrightarrow{-f[1]} Y[1]$ is a triangle.
TR3: For any commutative diagram of the form

where the rows are triangles, there is a (not necessarily unique) morphism $w: Z \rightarrow Z^{\prime}$, which makes the diagram

commutative.
TR4: Given two composable morphisms $f_{1}: X \rightarrow Y$ and g_{2} : $Y \rightarrow Z$ and the composition $f_{3}=g_{2} \circ f_{1}$, it is possible to form a commutative diagram

such that the two middle rows and the two middle columns are triangles.
Axiom [TR4] is usually called the octahedral axiom, because it can be depicted in the form of an octahedron; see [22, pg. 74]. An alternative
but equivalent form of the axiom, which is used in [38], was introduced by Neeman in [34].

As the concept of a triangulated category is rather well known and have been already studied for half a century, we refer for basic properties of such categories for example to [38, §1], [11, §1] or [29]. The common intuition is that triangles share certain formal properties with short exact sequences in abelian categories. There are important differences from the abelian setting, though. First, as mentioned in [38] or [22], the class of triangles in a given triangulated category \mathcal{T} is not intrinsic to the category \mathcal{T}, but it is rather an additional datum. Second, the morphism w in [TR3] is required to exist, but neither to be unique nor to be functorial. This may cause considerable problems in certain situations.

In connection with triangulated categories, it is natural to consider functors compatible with the triangulated structure. If \mathcal{S} and \mathcal{T} are triangulated categories, an additive functor $F: \mathcal{S} \rightarrow \mathcal{T}$ is called triangulated (or sometimes also exact) if it comes along with a natural isomorphism

$$
\phi_{X}: F(X[1]) \longrightarrow(F X)[1]
$$

for each object $X \in \mathcal{T}$ such that for each triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h}$ $X[1]$ in \mathcal{S}, we get a triangle

$$
F X \xrightarrow{F f} F Y \xrightarrow{F g} F Z \xrightarrow{\phi_{X} \circ F h}(F X)[1]
$$

in \mathcal{T}. The natural isomorphisms ϕ_{X} are usually not explicitly mentioned because they are often obvious from the context.
1.2. Compactly generated triangulated categories. For many practical purposes, a triangulated category is a too abstract and general notion to deduce a strong enough theory. Thus, one seeks after more axioms which are widely satisfied to build up a richer theory. One successful direction of this effort has lead to compactly and well generated triangulated categories. In this section we introduce the essential part of the theory and we refer for further details to [38] and [29]. Later in Section 2 we will present several examples. A part of the material in this section is also briefly reviewed in the article [49] in this volume.

Let us start with compactly generated triangulated categories. The concept has been implicitly known in algebraic topology since the stable homotopy category of spectra is compactly generated. The abstract axioms were given by Neeman in 1990's and used to considerably generalize and simplify proofs of some classical results; see [36, 37]. Since then, the concept has found many applications in algebra.

From now on, a triangulated category \mathcal{T} is usually assumed to satisfy:
TR5: \mathcal{T} has arbitrary infinite coproducts.
In such a case, a coproduct of triangles is automatically a triangle again; see [38, Proposition 1.2.1 and Remark 1.2.2]. Moreover, \mathcal{T} necessarily
has splitting idempotents by [38, Proposition 1.6.8]. Now we can give a formal definition.

Definition 1.1. Let \mathcal{T} be a triangulated category satisfying [TR5]. An object $C \in \mathcal{T}$ is called compact if for any family ($Y_{i} \mid i \in I$) of objects of \mathcal{T} the natural morphism

$$
\coprod_{i} \operatorname{Hom}_{\mathcal{T}}\left(C, Y_{i}\right) \longrightarrow \operatorname{Hom}_{\mathcal{T}}\left(C, \coprod_{i} Y_{i}\right)
$$

is an isomorphism. Equivalently, any morphism $C \rightarrow \amalg Y_{i}$ factorizes through a finite subcoproduct.

The category \mathcal{T} is said to be compactly generated if there is a set \mathcal{C} of compact objects with the following property: If $X \in \mathcal{T}$ such that $\operatorname{Hom}_{\mathcal{T}}(C, X)=0$ for each $C \in \mathcal{C}$, then $X=0$.

To state some basic properties of compactly generated triangulated categories, we need one more definition:

Definition 1.2. Let \mathcal{T} be a triangulated category. A full subcategory \mathcal{L} of \mathcal{T} is called a triangulated subcategory if it is closed under applying the distinguished autoequivalence of \mathcal{T} and taking triangle completions in the sense of [TR1]. A triangulated subcategory \mathcal{L} is called thick if it is in addition closed under taking those direct summands which exist in \mathcal{T}.

Assume, moreover, \mathcal{T} satisfies [TR5]. Then the subcategory \mathcal{L} is called localizing if it is a triangulated subcategory which is closed under taking arbitrary coproducts.

Note that by [38, Proposition 1.6.8], any localizing subcategory of a [TR5] triangulated category \mathcal{T} is thick. Now, we have the following useful properties:

Proposition 1.3. Let \mathcal{T} be a compactly generated triangulated category and \mathcal{C} a set of compact objects which generates \mathcal{T} in the sense of Definition 1.1. Then the following assertions hold:
(1) The smallest localizing subcategory of \mathcal{T} containing \mathcal{C} is the whole of \mathcal{T}.
(2) The full subcategory \mathcal{T}^{c} of all compact objects of \mathcal{T} coincides with the smallest thick subcategory containing \mathcal{C}.

Before stating another crucial property, the so called Brown representability theorem, we first define the more general concept of well generated triangulated categories.
1.3. Well generated triangulated categories. It has turned out both in algebra and topology that many naturally occurring triangulated categories are not compactly generated triangulated categories, yet sharing many important properties with them. In an effort to get
a better grasp of this phenomenon, Neeman defined well generated triangulated categories and motivated them in the introduction of [38] as well as by the results from [39].

Before giving the definition, we have to recall some very basic set theoretic concepts; we use [16] as the universal reference. An infinite cardinal number κ is called regular if κ cannot be obtained as a sum of a collection of less than κ cardinal numbers all of which are strictly smaller than κ. For example, the first infinite cardinal \aleph_{0} is regular. It is also well known that the immediate successor of any infinite cardinal is regular. An infinite cardinal κ which is not regular is called singular. Here, the first limit cardinal $\aleph_{\omega}=\sup _{n \in \mathbb{N}} \aleph_{n}$ may serve as an example. Now we turn back to triangulated categories:

Definition 1.4. Let \mathcal{T} be a triangulated category satisfying [TR5] and κ a regular cardinal number. An object $C \in \mathcal{T}$ is called κ-small provided that every morphism of the form

$$
C \longrightarrow \coprod_{i \in I} Y_{i}
$$

factorizes through a subcoproduct $\coprod_{i \in J} Y_{i}$ with $|J|<\kappa$.
The category \mathcal{T} is called κ-well generated provided there is a set \mathcal{C} of objects of \mathcal{T} such that
(1) If $X \in \mathcal{T}$ such that $\operatorname{Hom}_{\mathcal{T}}(C, X)=0$ for each $C \in \mathcal{C}$, then $X=0$;
(2) Each $C \in \mathcal{C}$ is κ-small;
(3) For any morphism in \mathcal{T} of the form $f: C \rightarrow \coprod_{i \in I} Y_{i}$ with $C \in \mathcal{C}$, there exists a family of morphisms $f_{i}: C_{i} \rightarrow Y_{i}$ such that $C_{i} \in \mathcal{C}$ for each $i \in I$ and f factorizes as

$$
C \longrightarrow \coprod_{i \in I} C_{i} \xrightarrow{\amalg f_{i}} \coprod_{i \in I} Y_{i} .
$$

Finally, \mathcal{T} is called well generated if it is κ-well generated for some regular cardinal κ.

As mentioned in [49] in this volume, this definition differs from Neeman's original definition in [38, 8.1.7], but it is equivalent by [25, Lemmas 4 and 5]. Note also that \aleph_{0}-well generated triangulated categories are precisely compactly generated triangulated categories.

Now, we are in a position to state a crucial result, which has origin in the work of Brown [5]. For a different proof of the below statement and more references we also refer to [28, $\S \S 4.5$ and 4.6]. Recall that a contravariant additive functor $F: \mathcal{T} \rightarrow \mathrm{Ab}$ is called cohomological if it sends each triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ to an exact sequence $F(X[1]) \xrightarrow{F h} F Z \xrightarrow{F g} F Y \xrightarrow{F f} F X$ of abelian groups.

Proposition 1.5 (Brown representability). [38, 8.3.3] Let \mathcal{T} be a well generated triangulated category. Then any contravariant cohomological functor $F: \mathcal{T} \rightarrow A b$ which takes coproducts to products is, up to isomorphism, of the form $\operatorname{Hom}_{\mathcal{T}}(-, X)$ for some $X \in \mathcal{T}$.

As noticed by Neeman in [36, 37], this statement allows to give formally rather simple proofs for some classical results. One particular consequence of Brown representability is the existence of certain adjoint functors. Using a suitable set theoretic axiomatics (see the last two paragraphs at the end of [49, §1] in this volume), it is rather easy to prove the following:
Corollary 1.6. Let \mathcal{S} and \mathcal{T} be triangulated categories such that \mathcal{S} is well generated. Then a triangulated functor $F: \mathcal{S} \rightarrow \mathcal{T}$ has a right adjoint if and only if F preserves coproducts.

As an application, one has a nice theory for localization of well generated triangulated categories, part of which we will mention in Section 3. It comes from the work of Bousfield [4] in homotopy theory, and an algebraic presentation can be found in [38] and [29].

Finally, we will give two more consequences of Proposition 1.5. First, there is an analogue of Proposition 1.3(1):
Corollary 1.7. Assume that \mathcal{T} is a κ-well generated triangulated category for some regular cardinal κ, and that \mathcal{C} is a set of objects of \mathcal{T} as in Definition 1.4. The the smallest localizing subcategory of \mathcal{T} containing \mathcal{C} is the whole of \mathcal{T}.

Now, consider the following condition on a triangulated category, which is dual to [TR5]:

TR5*: \mathcal{T} has arbitrary infinite products.
Then we have by [38, Propositions 8.4.6 and 1.2.1]:
Corollary 1.8. Any well generated triangulated category \mathcal{T} satisfies [TR5*]. Moreover, a product of a family of triangles is always a triangle.

2. Examples of triangulated categories

Now we are going to give examples of the concepts from the previous section. Our list is, however, meant to be more illustrative than exhaustive. We will focus on algebraic triangulated categories, that is, the stable categories of Frobenius exact categories; see [10] or [11, §1]. There are also other important classes of triangulated categories. One can consider the homotopy categories of closed model structures [14, §7] and their full triangulated subcategories. Such categories are called topological triangulated categories. Although all triangulated categories used in practice usually belong to one of these two families, there are as well some "exotic" examples which are neither algebraic nor topological [32].
2.1. Derived categories. Probably the most well known algebraic representative of a compactly generated triangulated category is the unbounded derived category of a ring. Here we just sketch the construction and refer to [51], [10] or [11, §1] for more details.

We fix a ring R and denote by Mod- R the category of all right R modules. Let $\mathbf{C}(\operatorname{Mod}-R)$ be the (abelian) category of chain complexes over Mod- R and $\mathbf{K}(\operatorname{Mod}-R)$ the homotopy category of complexes. That is, $\mathbf{K}(\operatorname{Mod}-R)$ is the factor of $\mathbf{C}(\operatorname{Mod}-R)$ modulo the ideal of all nullhomotopic morphisms. It is well known that if we consider $\mathbf{C}(\operatorname{Mod}-R)$ as an exact category in the sense of [19, Appendix A] such that the conflations are the componentwise split exact sequences of complexes, then $\mathbf{C}(\operatorname{Mod}-R)$ is a Frobenius exact category and $\mathbf{K}(\operatorname{Mod}-R)$ is its stable category, hence a triangulated category. However, $\mathbf{K}(\operatorname{Mod}-R)$ is usually not well generated-see Section 4 or [49] in this volume. In order to get a compactly generated triangulated category, we will take a so-called Verdier quotient of $\mathbf{K}(\operatorname{Mod}-R)$.

Definition 2.1. Let \mathcal{T} be a triangulated category and \mathcal{S} a full triangulated subcategory. Then the Verdier quotient of \mathcal{T} by \mathcal{S} is a triangulated category $\mathcal{T} / \mathcal{S}$ together with a triangulated functor

$$
Q: \mathcal{T} \longrightarrow \mathcal{T} / \mathcal{S}
$$

with the following universal property. Whenever \mathcal{U} is a triangulated category and $F: \mathcal{T} \rightarrow \mathcal{U}$ is a triangulated functor such that $F X=0$ for each $X \in \mathcal{S}$, then there is a unique triangulated functor $G: \mathcal{T} / \mathcal{S} \rightarrow \mathcal{U}$ making the following diagram commutative:

If \mathcal{T} satisfies [TR5], we sometimes require that \mathcal{S} not only be a triangulated subcategory but rather a localizing subcategory of \mathcal{T}, since in this case $\mathcal{T} / \mathcal{S}$ also satisfies [TR5] and the functor Q preserves coproducts.

Note that Verdier quotients do always exist, see [38, Theorem 2.1.8], and the universal property guarantees their uniqueness. It may, however, happen in some cases that $\mathcal{T} / \mathcal{S}$ is strictly speaking not a category since some morphism spaces $\operatorname{Hom}_{\mathcal{T} / \mathcal{S}}(X, Y)$ may be proper classes rather than sets. We refer to [6] for an example.

Looking back at our case, we define the unbounded derived category of R, denoted by $\mathbf{D}(\operatorname{Mod}-R)$, as the Verdier quotient

$$
\mathbf{K}(\operatorname{Mod}-R) / \mathbf{K}_{\mathrm{ac}}(\operatorname{Mod}-R) .
$$

Here, $\mathbf{K}_{\mathrm{ac}}(\operatorname{Mod}-R)$ is the full triangulated subcategory of $\mathbf{K}(\operatorname{Mod}-R)$ whose objects are acyclic complexes, that is, those with all homologies
vanishing. It follows from the work of Spaltenstein [48] (see also [3, Proposition 2.12]) that all morphism spaces in $\mathbf{D}(\operatorname{Mod}-R)$ are sets, so no set-theoretic problems occur. Moreover, it is easy to see that R is a compact object in $\mathbf{D}(\operatorname{Mod}-R)$ and the set

$$
\mathcal{C}=\{R[i] \mid i \in \mathbb{Z}\}
$$

generates $\mathbf{D}(\operatorname{Mod}-R)$ in the sense of Definition 1.1. This follows using the natural isomorphisms $\operatorname{Hom}_{\mathbf{D}(\operatorname{Mod}-R)}(R[i], X) \cong H^{-i}(X)$. Proposition 1.3 together with [44, Proposition 6.3] and the standard way to compute direct summands via homotopy colimits as in [38, Proposition 1.6.8] yield the following well-known fact:

Proposition 2.2. For any ring R, the derived category $\mathbf{D}(\operatorname{Mod}-R)$ is compactly generated. Moreover, $X \in \mathbf{D}(\operatorname{Mod}-R)$ is compact if and only if it is isomorphic to a bounded complex of finitely generated projective modules.

One may also be interested in derived categories of more general abelian categories. In connection with geometric examples and categories of quasi-coherent sheaves, it is natural to consider Grothendieck categories. Recall that an abelian category is called Grothendieck if it has exact filtered colimits (i.e. it is an [AB5] abelian category) and a set of generators.

Given a Grothendieck category \mathcal{G}, we again define the derived category as $\mathbf{D}(\mathcal{G})=\mathbf{K}(\mathcal{G}) / \mathbf{K}_{\mathrm{ac}}(\mathcal{G})$. In this case, $\mathbf{D}(\mathcal{G})$ is in general not compactly generated, but all morphism spaces in $\mathbf{D}(\mathcal{G})$ are still sets by [1, Corollary 5.6$]$ and we have:

Proposition 2.3. [29, §7.7] For any Grothendieck category \mathcal{G}, the unbounded derived category $\mathbf{D}(\mathcal{G})$ is well generated.

In several interesting cases though, $\mathbf{D}(\mathcal{G})$ is in fact compactly generated. Neeman proved this in [37, Proposition 2.5] for $\mathcal{G}=\mathrm{Q} \operatorname{coh}(\mathbb{X})$, where \mathbb{X} is a quasi-compact separated scheme. We will also point out another result which will be useful in Section 3. Recall that following [7], we can define a special class of Grothendieck categories:

Definition 2.4. A Grothendieck category \mathcal{G} is called locally noetherian if it has a set \mathcal{C} of generators such that each $X \in \mathcal{C}$ is noetherian. That is, each $X \in \mathcal{C}$ satisfies the ascending chain condition on subobjects.

Then we obtain the following statement as a consequence of results from [27]:

Proposition 2.5. Let \mathcal{G} be a locally noetherian Grothendieck category of finite global dimension. Then $\mathbf{D}(\mathcal{G})$ is compactly generated. Moreover, an object is compact if and only if it is isomorphic to a bounded complex of noetherian objects of \mathcal{G}.

Proof. Let \mathcal{I} denote the class of all injective objects in \mathcal{G}. Then the natural functor $F: \mathbf{K}(\mathcal{I}) \rightarrow \mathbf{D}(\mathcal{G})$ obtained as the composition

$$
\mathbf{K}(\mathcal{I}) \xrightarrow{\mathrm{inc}} \mathbf{K}(\mathcal{G}) \xrightarrow{Q} \mathbf{D}(\mathcal{G})
$$

is an equivalence of triangulated categories. Indeed, [27, Proposition 3.6] states (using a somewhat different terminology) that the induced functor

$$
\bar{F}: \mathbf{K}(\mathcal{I}) /\left(\mathbf{K}(\mathcal{I}) \cap \mathbf{K}_{\mathrm{ac}}(\mathcal{G})\right) \longrightarrow \mathbf{D}(\mathcal{G})
$$

is an equivalence triangulated categories. Invoking the assumption of \mathcal{G} having finite global dimension, one immediately sees that $\mathbf{K}(\mathcal{I}) \cap$ $\mathbf{K}_{\mathrm{ac}}(\mathcal{G})=0$ and $\bar{F}=F$. Having established that F is an equivalence, the statement of Proposition 2.5 follows directly from [27, Proposition 2.3].

We remark here that the derived category of a ring is rather close to being a universal example of an algebraic compactly generated triangulated category. More precisely, [28, Theorem 7.5(3)], which is a slightly refined version of the important theorem [20, 4.3] due to Keller, says that any algebraic compactly generated triangulated category is equivalent to the derived category of a small dg-category. Porta recently showed in [41, Theorem 5.2] that algebraic well generated triangulated categories are precisely Verdier quotients of such derived categories by localizing classes generated by a set of objects. We refer to the just mentioned papers for more details. It is also worth to mention that analogous statements for topological triangulated categories have been proved by Schwede and Shipley [47] and Heider [13].
2.2. Other algebraic triangulated categories. Although we know a general form of an algebraic well generated triangulated category now, the description as a Verdier quotient of the derived category of a small dg-category may be far too complicated to do any practical computations. It may be, therefore, much more convenient to study the categories of interest directly.

We will give a few examples. For a ring R, let Proj- R be the category of all projective right R-modules and $\operatorname{Inj}-R$ the category of all injective right R-modules. Recall also that a ring R is called left coherent if each finitely generated left ideal is finitely presented. Equivalently, R is left coherent if the category mod- $R^{\text {op }}$ of all finitely presented left R-modules is abelian. Then we have the following statement:

Proposition 2.6. Let R be a ring. Then:
(1) The homotopy category $\mathbf{K}(\operatorname{Proj}-R)$ is \aleph_{1}-well generated. If R is left coherent, then $\mathbf{K}(\operatorname{Proj}-R)$ is even compactly generated and, moreover, the full triangulated subcategory of compact objects is equivalent to $\mathbf{D}^{b}\left(\bmod -R^{\mathrm{op}}\right)^{\mathrm{op}}$.
(2) If R is right noetherian, then the homotopy category $\mathbf{K}(\operatorname{Inj}-R)$ is compactly generated. Moreover, the full triangulated subcategory of compact objects is equivalent to $\mathbf{D}^{b}(\bmod -R)$.

Proof. (1) follows from [39, Theorem 1.1 and Proposition 7.14], which extend previous results from [17], while (2) is a special case of [27, Theorem 1.1].

This statement gives several interesting insights, for example in connection with the Grothendieck duality theorem, totally reflexive modules or relative homological algebra. We refer to $[15,18,39]$ for more information.

Another natural example is the stable module category of a quasiFrobenius ring. Recall that R is quasi-Frobenius if $\operatorname{Proj}-R=\operatorname{Inj}-R$. For instance, any self-injective artin algebra or, as a particular case, any group algebra of a finite group is quasi-Frobenius. In this case, the module category Mod- R together with the natural abelian exact structure is Frobenius, and the stable module category Mod- R is triangulated. Moreover, the following is an easy consequence of Proposition 1.3 (cf. also $[24, \S 1.5])$:

Proposition 2.7. Let R be a quasi-Frobenius ring. Then $\operatorname{Mod}-R$ is a compactly generated triangulated category, and $X \in \operatorname{Mod}-R$ is compact if and only if $X \cong Y$ in Mod- R for some finitely generated R-module Y.

This particular example is quite important for this thesis since it connects the telescope conjecture as introduced in Section 3 to homological algebra in module categories; see [30, Theorem 7.6 and Corollary 7.7]. This motivated the papers [46,50], which are a part of this volume.

3. The telescope conjecture

When we speak of the telescope conjecture in the context of triangulated categories, we mean the following statement:

Telescope Conjecture. Let \mathcal{T} be a compactly generated triangulated category. Given a smashing localization functor L on \mathcal{T}, the kernel of L is generated by compact objects. That is, there is a set \mathcal{C} of compact objects such that $\operatorname{Ker} L$ is the smallest localizing subcategory of \mathcal{T} containing \mathcal{C}.

Remark. Before explaining the terminology, we point out a few facts. First, the conjecture as well as a substantial part of the terminology comes from algebraic topology. The conjecture itself was introduced in the work of Bousfield [4] and Ravenel [43]. In this context, the category \mathcal{T} was the stable homotopy category of spectra. In this thesis, however, the main focus is put on algebraic triangulated categories.

Second, the telescope conjecture is known to fail in general, see [21] and also $[31, \S 7]$ in this volume. One is, therefore, left to prove or disprove the conjecture for certain classes of compactly generated triangulated categories. As suggested to me by Claus Ringel, it may then be more precise to say that a given category \mathcal{T} has or does not have the "telescope property".

Finally, although the conjecture itself is a rather abstract problem, its analysis for particular cases gives many insights. This is actually the major topic for this thesis and the included papers [46, 50, 31]. Some other applications, for example to lifting of complexes of modules over a morphism of rings, are mentioned in [26].

Now we can give the necessary definitions. The key point here is the concept of a localization functor.
Definition 3.1. Let \mathcal{T} be a triangulated category. A triangulated endofunctor $L: \mathcal{T} \rightarrow \mathcal{T}$ is called a localization functor if there is a natural transformation $\eta: \mathrm{Id}_{\mathcal{T}} \rightarrow L$ such that
(1) $L \eta_{X}=\eta_{L X}$ for each $X \in \mathcal{T}$. That is, if we apply L on the morphism $\eta_{X}: X \rightarrow L X$, we get precisely the morphism $\eta_{L X}$: $L X \rightarrow L^{2} X$.
(2) $\eta_{L X}: L X \rightarrow L^{2} X$ is an isomorphism for each $X \in \mathcal{T}$.

Localization functors formalize a certain way to localize triangulated categories, which is often referred to as Bousfield localization nowadays. We refer to $[29, \S 4.9]$ for more facts and examples. What we are going to make precise here is the connection to Verdier quotients. Let us adopt the following notation. By the kernel of L, we mean the full subcategory of \mathcal{T} defined by

$$
\operatorname{Ker} L=\{X \mid L X=0\},
$$

and by $\operatorname{Im} L$, we mean the essential image of L. That is, the closure of the actual image of L under taking isomorphic objects. Then we have the following statement.

Proposition 3.2. Let \mathcal{T} be a triangulated category.
(1) If $L: \mathcal{T} \rightarrow \mathcal{T}$ is a localization functor, then $\operatorname{Ker} L$ is a thick subcategory of \mathcal{T}, and there is a unique equivalence of triangulated categories $G: \mathcal{T} / \operatorname{Ker} L \longrightarrow \operatorname{Im} L$ making the following diagram commutative:

Moreover, the inclusion inc: $\operatorname{Im} L \longrightarrow \mathcal{T}$ is a (fully faithful) right adjoint to $L: \mathcal{T} \longrightarrow \operatorname{Im} L$.
(2) Assume that \mathcal{S} is a thick subcategory of \mathcal{T} such that the Verdier quotient $Q: \mathcal{T} \rightarrow \mathcal{T} / \mathcal{S}$ admits a right adjoint $R: \mathcal{T} / \mathcal{S} \rightarrow \mathcal{T}$. Then R is a fully faithful triangulated functor and $L=R \circ Q$: $\mathcal{T} \rightarrow \mathcal{T}$ together with the unit of adjunction $\eta: \operatorname{Id}_{\mathcal{T}} \rightarrow L$ is a localization functor such that $\operatorname{Ker} L=\mathcal{S}$.
Proof. (1) follows from [29, Proposition 4.11.1], while (2) is an immediate consequence of [29, Corollary 2.4.2]. Here, one has to take into account that Verdier quotients are in fact localizations and that adjoints of triangulated functors are triangulated; see the proof of [38, Theorem 2.1.8] and [38, Lemma 5.3.6], respectively.

Rephrasing Proposition 3.2, we can say that up to equivalence, localization functors parametrize those Verdier quotients which have right adjoints. This not only has many formal advantages, for example all the morphism spaces in the Verdier quotient are always sets, but such adjoints indeed do very often exist. One general way to obtain them is Proposition 1.5 together with the well-known fact that the quotient functor $\mathcal{T} \rightarrow \mathcal{T} / \mathcal{S}$ has a right adjoint if and only if the inclusion $\mathcal{S} \rightarrow \mathcal{T}$ has a right adjoint. Using the existence of an adjoint, we also get the following easy corollary:
Corollary 3.3. Let \mathcal{T} be a triangulated category satisfying [TR5] and $L: \mathcal{T} \rightarrow \mathcal{T}$ a localization functor. Then $\operatorname{Ker} L$ is a localizing subcategory of \mathcal{T}, that is, it is closed under coproducts.

The tricky part now is that even though the kernel of L is always closed under coproducts provided \mathcal{T} satisfies [TR5], this does not mean yet that L preserves coproducts. In fact, we make this to a definition:
Definition 3.4. Let \mathcal{T} be a triangulated category satisfying [TR5]. Then a localization functor $L: \mathcal{T} \rightarrow \mathcal{T}$ is called smashing if L preserves coproducts.

The reason for the word smashing is explained in Section 3.2. For compactly generated triangulated categories, we always have the following general way of constructing smashing localization functors:

Proposition 3.5. [4, 43] Let \mathcal{T} be a compactly generated triangulated category and \mathcal{C} be a set of compact objects. If \mathcal{S} is the smallest localizing subcategory of \mathcal{T} containing \mathcal{C}, then the Verdier quotient $Q: \mathcal{T} \rightarrow \mathcal{T} / \mathcal{S}$ has a right adjoint $R: \mathcal{T} \rightarrow \mathcal{T} / \mathcal{S}$ and $L=R \circ Q$ is a smashing localization functor.
Proof. The category \mathcal{S} is easily seen to be compactly generated, so the inclusion $\mathcal{S} \rightarrow \mathcal{T}$ has a right adjoint by Corollary 1.6. Hence Q has a right adjoint R and $L=R \circ Q$ is a localization functor by Proposition 3.2. Finally, the fact that L is smashing follows from the fact that taking the functorial triangle in the sense of [29, §4.11] commutes with taking coproducts.

Now, the telescope conjecture can be restated as follows: For a given compactly generated triangulated category \mathcal{T}, all smashing localization functors on \mathcal{T} can be obtained, up to natural equivalence, as in Proposition 3.5.
It is very desirable to have this property for the following reason. If \mathcal{T} is compactly generated and L is smashing, then the quotient $\mathcal{T} / \operatorname{Ker} L$ is again compactly generated by [29, Remark 5.5.2], so it is natural to ask how the category of compact objects looks like. If L comes up as in Proposition 3.5, the answer is rather straightforward. Denoting by \mathcal{T}^{c} the category of all compact objects in \mathcal{T}, the category of compact objects in $\mathcal{T} / \operatorname{Ker} L$ is equivalent to the idempotent completion of the Verdier quotient

$$
\mathcal{T}^{c} /\left(\mathcal{T}^{c} \cap \operatorname{Ker} L\right) ;
$$

see [36, Theorem 2.1]. If the conjecture fails, one needs more involved theory as developed in [26].
3.1. Known cases when the telescope conjecture holds. As mentioned before, the telescope conjecture is not true in general. There are, however, many natural triangulated categories \mathcal{T} for which the conjecture holds. We summarize the positive results known so far, some of which are original in this thesis, in a theorem:

Theorem 3.6. The telescope conjecture holds for the following algebraic compactly generated triangulated categories:
(1) $\mathbf{D}(\operatorname{Mod}-R)$ where R is commutative noetherian;
(2) $\mathbf{D}(\operatorname{Mod}-R)$ where R is right hereditary;
(3) $\mathbf{D}(\mathcal{G})$ where \mathcal{G} is a locally noetherian hereditary Grothendieck category;
(4) Mod- $k G$ where k is a field and G a finite group;
(5) Mod- R where R is a domestic standard self-injective algebra in the sense of [23].

Proof. (1) is a result due to Neeman, [35, Theorem 3.3 and Corollary 4.4]. (2) is proved in this thesis in [31, Theorem A]. (4) is a result of Benson, Iyengar and Krause, [2, Theorem 11.12]. (5) is again proved in this thesis. It follows from [50, Theorem 19], using the fact that the infinite radical of the category of finitely generated modules over a domestic standard self-injective algebra is nilpotent, [23]. The proof relies on techniques developed in [46], also contained in this volume.

Finally, we prove (3) right here. Note that $\mathbf{D}(\mathcal{G})$ is compactly generated by Proposition 2.5. Suppose further that $L: \mathbf{D}(\mathcal{G}) \rightarrow \mathbf{D}(\mathcal{G})$ is a smashing localizing functor and let us set $\mathcal{X}=H^{0}(\operatorname{Ker} L)$ and $\mathcal{Y}=H^{0}(\operatorname{Im} L)$. It follows from [31, Proposition 2.6] that $(\mathcal{X}, \mathcal{Y})$ is a so called complete Ext-orthogonal pair for \mathcal{G}. That is, the following hold:

- $\mathcal{X}=\left\{X \in \mathcal{G} \mid(\forall Y \in \mathcal{Y})\left(\operatorname{Hom}_{\mathcal{G}}(X, Y)=0=\operatorname{Ext}_{\mathcal{G}}^{1}(X, Y)\right)\right\}$,
- $\mathcal{Y}=\left\{Y \in \mathcal{G} \mid(\forall X \in \mathcal{X})\left(\operatorname{Hom}_{\mathcal{G}}(X, Y)=0=\operatorname{Ext}_{\mathcal{G}}^{1}(X, Y)\right)\right\}$,
- for each $M \in \mathcal{G}$, there is an exact sequence

$$
\varepsilon_{M}: \quad 0 \rightarrow Y_{M} \longrightarrow X_{M} \longrightarrow M \longrightarrow Y^{M} \longrightarrow X^{M} \rightarrow 0
$$

with $X_{M}, X^{M} \in \mathcal{X}$ and $Y_{M}, Y^{M} \in \mathcal{Y}$.
Note that by [31, Lemma 2.9] the sequences ε_{M} are unique and naturally functorial. Moreover, \mathcal{Y} is by [31, Proposition 2.4] an abelian subcategory of \mathcal{G} closed under taking coproducts. Hence, \mathcal{Y} is closed under taking arbitrary filtered colimits and we have $\varepsilon_{M}=\underline{\longrightarrow} \varepsilon_{M_{i}}$ whenever $M=\underset{\longrightarrow}{\lim } M_{i}$.

Now we proceed in a very similar way as in the proof of [31, Theorem 5.1] and claim that

$$
\mathcal{Y}=\left\{Y \in \mathcal{G} \mid \operatorname{Hom}_{\mathcal{G}}(X, Y)=0=\operatorname{Ext}_{\mathcal{G}}^{1}(X, Y) \text { for each } X \in \mathcal{C}\right\}
$$

where \mathcal{C} stands for the class of all noetherian objects of \mathcal{G} contained in \mathcal{X}. Since \mathcal{X} is closed under taking filtered colimits, it is sufficient to show that $\mathcal{X} \subseteq \underset{\longrightarrow}{\lim } \mathcal{C}$. To this end, fix $M \in \mathcal{X}$. Recall that since \mathcal{G} is locally noetherian, M is a directed union of its noetherian subobjects. More precisely, there is a direct system $\left(M_{i} \mid i \in I\right)$ such that $M=$ $\underset{\longrightarrow}{\lim } M_{i}$, each M_{i} is noetherian, and each morphism $M_{i} \rightarrow M_{j}$ for $i<j$ is a monomorphism. In particular, all the colimit morphisms $M_{i} \rightarrow M$ are monomorphisms. Since $\operatorname{Ext}_{\mathcal{G}}^{1}(-, Y)$ is right exact for each $Y \in \mathcal{Y}$, we easily deduce that $\operatorname{Ext}_{\mathcal{G}}^{1}\left(M_{i}, \mathcal{Y}\right)=0$ for each $i \in I$. By the preceding paragraph, we know that $\varepsilon_{M}=\underset{\longrightarrow}{\lim } \varepsilon_{M_{i}}$, so

$$
\xrightarrow{\lim } X_{M_{i}} \xrightarrow{\sim} X_{M} \xrightarrow{\sim} M .
$$

Using the same argument as in [31, Lemma 5.3], we can show that $Y_{M_{i}}=0$ for each $i \in I$. Hence, the morphisms $X_{M_{i}} \rightarrow M_{i}$ are all monomorphisms and $X_{M_{i}}$ are all noetherian. In particular, $X_{M_{i}} \in \mathcal{C}$ for each $i \in I$ and $\mathcal{X} \subseteq \underline{\lim } \mathcal{C}$. This proves the claim.

Finally, using the bijective correspondence between the localizing subcategories of $\mathbf{D}(\mathcal{G})$ and the extension closed abelian subcategories of \mathcal{G} that are closed under coproducts, which is given in [31, Proposition 2.6], we deduce that $\operatorname{Ker} L$ is the smallest localizing class containing \mathcal{C}. We remind the reader that all objects of \mathcal{C} are compact in $\mathbf{D}(\mathcal{G})$ by Proposition 2.5. Thus, the telescope conjecture holds for $\mathbf{D}(\mathcal{G})$.

We add a few remarks regarding the theorem:
(1) As particular examples of \mathcal{G} in Theorem 3.6(3), we can take $\mathcal{C}=\operatorname{Qcoh}(\mathbb{X})$ where \mathbb{X} is either a smooth projective curve or a weighted projective line in the sense of [8]. In particular, the telescope conjecture holds also for $\mathbf{D}(\operatorname{Mod}-R)$, where R is a quasi-tilted artin algebra; we refer to [12] for details.
(2) Examples for Theorem 3.6(2) can be found in [31, §4] and examples for Theorem 3.6(5) in [50, $\S 6]$, both in this thesis.
(3) The proofs of Theorem 3.6(2) and (5) use strong connections between the triangulated category in question and Mod- R. In the first case this connection is formulated in [31, Theorem B] and in the second case in [46, Theorem 6.1]. In both cases, the study of the telescope conjecture revealed other results which may be of interest by itself.
(4) In [31, Example 7.7], we refine Keller's ideas from [21] to construct a commutative domain such that the telescope conjecture fails for $\mathbf{D}(\operatorname{Mod}-R)$. The domain R is of global dimension 2 and each ideal of R is countably generated. This shows that the conditions in Theorem 3.6(1) and (2) cannot be easily relaxed. We do not know, however, whether there is a quasi-Frobenius ring R such that the telescope conjecture fails for Mod- R.
3.2. Other interpretations of the telescope conjecture. To conclude the section, we will very briefly introduce other points of view which has helped or may help in the future to tackle the conjecture.

First, we point out a result by Krause [26], which says that the telescope conjecture is a problem about small categories. This is not at all obvious from the definition. Namely, let \mathcal{T} be a triangulated compactly generated category and \mathcal{T}^{c} the full subcategory of all compact objects. We recall that \mathcal{T}^{c} is necessarily skeletally small as a consequence of Proposition 1.3(2).

We further recall that an ideal \mathfrak{I} of \mathcal{T}^{c} is a collection of morphisms of \mathcal{T}^{c} which contains all zero morphisms, and it is closed under addition and under composition with arbitrary morphisms from left and right, whenever the operations are defined. Following [26], we can further define:

Definition 3.7. An ideal \mathfrak{I} of \mathcal{T}^{c} is called exact if
(1) $\mathfrak{I}=\mathfrak{I}^{2}$ (that is, for each $f \in \mathfrak{I}$, there are $g, h \in \mathfrak{I}$ such that $f=g h$),
(2) \mathfrak{I} is saturated, that is, for any triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ and any morphism $u: Y \rightarrow V$ in \mathcal{T}^{c}, the implication

$$
u \circ f, g \in \mathfrak{I} \Longrightarrow f \in \mathfrak{I}
$$

holds, and
(3) $\mathfrak{I}=\mathfrak{I}[1]$.

Then, we have the following criterion, [26, Corollary to Theorem 1]:
Proposition 3.8. The telescope conjecture holds for \mathcal{T} if and only if each exact ideal \mathfrak{I} of \mathcal{T}^{c} is generated by idempotent morphisms. That is, for each such \mathfrak{I} there must exist a set \mathcal{C} of objects of \mathcal{T}^{c} such that $f \in \mathfrak{I}$ if and only if f factors through some $C \in \mathcal{C}$.

Another point of view is connected to the term "smashing" from Definition 3.4. It comes from homotopy theory, since there every smashing
localization $L: \mathcal{T} \rightarrow \mathcal{T}$ of the stable homotopy category of spectra is of the form $L=-\wedge E$, where " \wedge " is the smash product and E is a suitable spectrum (cf. [29, Example 5.5.3]).

In the case of $\mathcal{T}=\mathbf{D}(\operatorname{Mod}-R)$, the analogue of the smash product is usually the tensor product. Indeed, if $f: R \rightarrow S$ is a homological epimorphism of rings (see [9, §4] and also [31, §3] in this volume), then $L=-\otimes_{R}^{\mathbf{L}} S_{R}: \mathbf{D}(\operatorname{Mod}-R) \longrightarrow \mathbf{D}(\operatorname{Mod}-R)$ is a smashing localization functor. Here, we point out two facts:
(1) If R is right hereditary, all smashing localization functors are obtained in this way up to natural equivalence, [31, Theorem B].
(2) The counterexample to the telescope conjecture constructed by Keller [21] is of this form.

If we want to study smashing localizations in terms of derived tensor products more generally, however, we need to pass to homological epimorphisms of small dg-categories. This has been recently studied by Nicolás and Saorín in [40].

4. More on homotopy Categories of complexes

Finally, we shortly introduce the results from [49] in this volume. Inspired by results like Proposition 2.6, one may ask which other homotopy categories of complexes are compactly generated or, more generally, well generated. Motivation for this, except for the telescope conjecture, can be the possibility to construct adjoint functors, see Corollary 1.6.

It turns out, however, that there is a crucial obstruction. Namely, if \mathcal{G} is an additive category with coproducts, then $\mathbf{K}(\mathcal{G})$ being wellgenerated implies by [49, Theorem 2.5] that \mathcal{G} has an additive generator. That is, there is $X \in \mathcal{G}$ such that $\mathcal{G}=\operatorname{Add} X$. Although this condition may look rather innocent at the first glance, it has rather strong consequences using model theoretic techniques. To point out a few examples:

- [49, Proposition 2.6] $\mathbf{K}(\operatorname{Mod}-R)$ is well generated if and only if $\mathbf{K}(\operatorname{Mod}-R)$ is compactly generated if and only if R is right pure semisimple. If R is an artin algebra, this is further equivalent to R being of finite representation type.
- [49, Theorem 5.2] $\mathbf{K}($ Flat- R) is well generated if and only if R is right perfect. In this case Flat- $R=$ Proj- R and $\mathbf{K}($ Flat $-R)$ is \aleph_{1}-well generated by Proposition 2.6.
If we further analyze why $\mathbf{K}(\mathcal{G})$ fails to be well-generated, we learn that the main reason is often that $\mathbf{K}(\mathcal{G})$ is not generated by any set as a localizing subcategory of itself. Note that this is a necessary condition by Corollary 1.7. However, if \mathcal{G} is "nice enough", for example $\mathcal{G}=$ $\operatorname{Mod}-R$ or $\mathcal{G}=\operatorname{Qcoh}(\mathbb{X})$ for a quasi-compact quasi-separated scheme \mathbb{X},
then $\mathbf{K}(\mathcal{G})$ is locally well generated in the following sense (we refer to [49, Theorems 3.5 and 4.3] for precise statements):

Definition 4.1. A triangulated category \mathcal{T} satisfying [TR5] is called locally well generated if, whenever \mathcal{C} is a set of objects of \mathcal{T} and \mathcal{S} is the smallest localizing subcategory of \mathcal{T} containing \mathcal{C}, then \mathcal{S} is well generated.

This fact, together with [49, Proposition 3.9], gives rather convenient criteria to produce examples of algebraic well generated and locally well generated triangulated categories.

However, if we look back at the motivation of constructing adjoint functors, there is a serious glitch. An adaptation of an example by Casacuberta and Neeman in [49, Example 3.7] shows that the Brown representability property may fail and some adjoints one would like to have may not exist for general locally well generated triangulated categories.

At the very least, this shows that the concept itself is not strong enough and one has to look for other means to construct adjoints. An important step in this direction has been recently made by Neeman [33] and an attempt for a more systematic approach is being developed in a joint project of myself and Saorín [45]. These results are, however, beyond the scope of this thesis.

References

[1] Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio. Localization in categories of complexes and unbounded resolutions. Canad. J. Math., 52(2):225-247, 2000.
[2] Dave Benson, Srikanth B. Iyengar, and Henning Krause. Stratifying modular representations of finite groups. Preprint, arXiv:0810.1339v1, 2008.
[3] Marcel Bökstedt and Amnon Neeman. Homotopy limits in triangulated categories. Compositio Math., 86(2):209-234, 1993.
[4] A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257-281, 1979.
[5] Edgar H. Brown, Jr. Cohomology theories. Ann. of Math. (2), 75:467-484, 1962.
[6] Carles Casacuberta and Amnon Neeman. Brown representability does not come for free. Preprint, arXiv:0807.1872v1, 2008.
[7] Pierre Gabriel. Des catégories abéliennes. Bull. Soc. Math. France, 90:323-448, 1962.
[8] Werner Geigle and Helmut Lenzing. A class of weighted projective curves arising in representation theory of finite-dimensional algebras. In Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), volume 1273 of Lecture Notes in Math., pages 265-297. Springer, Berlin, 1987.
[9] Werner Geigle and Helmut Lenzing. Perpendicular categories with applications to representations and sheaves. J. Algebra, 144(2):273-343, 1991.
[10] Dieter Happel. On the derived category of a finite-dimensional algebra. Comment. Math. Helv., 62(3):339-389, 1987.
[11] Dieter Happel. Triangulated categories in the representation theory of finitedimensional algebras, volume 119 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1988.
[12] Dieter Happel, Idun Reiten, and Sverre O. Smalø. Tilting in abelian categories and quasitilted algebras. Mem. Amer. Math. Soc., 120(575):viii+ 88, 1996.
[13] Andreas Heider. Two results from morita theory of stable model categories. Preprint, arXiv:0707.0707v1, 2007.
[14] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
[15] Srikanth Iyengar and Henning Krause. Acyclicity versus total acyclicity for complexes over Noetherian rings. Doc. Math., 11:207-240 (electronic), 2006.
[16] Thomas Jech. Set theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1997.
[17] Peter Jørgensen. The homotopy category of complexes of projective modules. Adv. Math., 193(1):223-232, 2005.
[18] Peter Jørgensen. Existence of Gorenstein projective resolutions and Tate cohomology. J. Eur. Math. Soc. (JEMS), 9(1):59-76, 2007.
[19] Bernhard Keller. Chain complexes and stable categories. Manuscripta Math., 67(4):379-417, 1990.
[20] Bernhard Keller. Deriving DG categories. Ann. Sci. École Norm. Sup. (4), 27(1):63-102, 1994.
[21] Bernhard Keller. A remark on the generalized smashing conjecture. Manuscripta Math., 84(2):193-198, 1994.
[22] Bernhard Keller. Derived categories and tilting. In Handbook of tilting theory, volume 332 of London Math. Soc. Lecture Note Ser., pages 49-104. Cambridge Univ. Press, Cambridge, 2007.
[23] Otto Kerner and Andrzej Skowroński. On module categories with nilpotent infinite radical. Compositio Math., 77(3):313-333, 1991.
[24] Henning Krause. Smashing subcategories and the telescope conjecture-an algebraic approach. Invent. Math., 139(1):99-133, 2000.
[25] Henning Krause. On Neeman's well generated triangulated categories. Doc. Math., 6:121-126 (electronic), 2001.
[26] Henning Krause. Cohomological quotients and smashing localizations. Amer. J. Math., 127(6):1191-1246, 2005.
[27] Henning Krause. The stable derived category of a Noetherian scheme. Compos. Math., 141(5):1128-1162, 2005.
[28] Henning Krause. Derived categories, resolutions, and Brown representability. In Interactions between homotopy theory and algebra, volume 436 of Contemp. Math., pages 101-139. Amer. Math. Soc., Providence, RI, 2007.
[29] Henning Krause. Localization theory for triangulated categories. To appear in the proceedings of the "Workshop on Triangulated Categories" in Leeds 2006, arXiv:0806.1324v2, 2008.
[30] Henning Krause and Øyvind Solberg. Applications of cotorsion pairs. J. London Math. Soc. (2), 68(3):631-650, 2003.
[31] Henning Krause and Jan Šfovíček. The telescope conjecture for hereditary rings via Ext-orthogonal pairs. Preprint, arXiv:0810.1401, 2008.
[32] Fernando Muro, Stefan Schwede, and Neil Strickland. Triangulated categories without models. Invent. Math., 170(2):231-241, 2007.
[33] Amnon Neeman. Some adjoints in homotopy categories. Preprint.
[34] Amnon Neeman. Some new axioms for triangulated categories. J. Algebra, 139(1):221-255, 1991.
[35] Amnon Neeman. The chromatic tower for $D(R)$. Topology, 31(3):519-532, 1992. With an appendix by Marcel Bökstedt.
[36] Amnon Neeman. The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4), 25(5):547-566, 1992.
[37] Amnon Neeman. The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Amer. Math. Soc., 9(1):205-236, 1996.
[38] Amnon Neeman. Triangulated categories, volume 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001.
[39] Amnon Neeman. The homotopy category of flat modules, and Grothendieck duality. Invent. Math., 174(2):255-308, 2008.
[40] Pedro Nicolás and Manuel Saorín. Parametrizing recollement data. Preprint, arXiv:0801.0500v1, 2008.
[41] Marco Porta. The Popescu-Gabriel theorem for triangulated categories. arXiv:0706.4458v2, Preprint, 2007.
[42] D. Puppe. On the structure of stable homotopy theory. In Colloquium on algebraic topology, page 65-71. Aarhus Universitet Matematisk Institut, 1962.
[43] Douglas C. Ravenel. Localization with respect to certain periodic homology theories. Amer. J. Math., 106(2):351-414, 1984.
[44] Jeremy Rickard. Derived categories and stable equivalence. J. Pure Appl. Algebra, 61(3):303-317, 1989.
[45] Manuel Saorín and Jan Štovíček. On exact categories and applications to triangulated adjoints and model structures. Work in progress.
[46] Jan Šaroch and Jan Šṫovíček. The countable telescope conjecture for module categories. Adv. Math., 219(3):1002-1036, 2008.
[47] Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules. Topology, 42(1):103-153, 2003.
[48] N. Spaltenstein. Resolutions of unbounded complexes. Compositio Math., 65(2):121-154, 1988.
[49] Jan Štovíček. Locally well generated homotopy categories of complexes. Preprint, arXiv:0810.5684v1, 2008.
[50] Jan Štovíček. Telescope conjecture, idempotent ideals, and the transfinite radical. To appear in Trans. Amer. Math. Soc., arXiv:0802.2189v2, 2008.
[51] Jean-Louis Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, (239):xii +253 pp . (1997), 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.

THE COUNTABLE TELESCOPE CONJECTURE FOR MODULE CATEGORIES

(JOINT WITH JAN ŠAROCH)

Abstract

By the Telescope Conjecture for Module Categories, we mean the following claim: "Let R be any ring and $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in Mod- R with \mathcal{A} and \mathcal{B} closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type."

We prove a modification of this conjecture with the word 'finite' replaced by 'countable'. We show that a hereditary cotorsion pair $(\mathcal{A}, \mathcal{B})$ of modules over an arbitrary ring R is generated by a set of strongly countably presented modules provided that \mathcal{B} is closed under unions of well-ordered chains. We also characterize the modules in \mathcal{B} and the countably presented modules in \mathcal{A} in terms of morphisms between finitely presented modules, and show that $(\mathcal{A}, \mathcal{B})$ is cogenerated by a single pure-injective module provided that \mathcal{A} is closed under direct limits. Then we move our attention to strong analogies between cotorsion pairs in module categories and localizing pairs in compactly generated triangulated categories.

This paper has been published in Adv. Math. 219 (2008), 1002-1036.

THE COUNTABLE TELESCOPE CONJECTURE FOR MODULE CATEGORIES

JAN ŠAROCH AND JAN ŠŤOVÍČEK

Abstract

By the Telescope Conjecture for Module Categories, we mean the following claim: "Let R be any ring and $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod}-R$ with \mathcal{A} and \mathcal{B} closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type."

We prove a modification of this conjecture with the word 'finite' replaced by 'countable'. We show that a hereditary cotorsion pair $(\mathcal{A}, \mathcal{B})$ of modules over an arbitrary ring R is generated by a set of strongly countably presented modules provided that \mathcal{B} is closed under unions of well-ordered chains. We also characterize the modules in \mathcal{B} and the countably presented modules in \mathcal{A} in terms of morphisms between finitely presented modules, and show that $(\mathcal{A}, \mathcal{B})$ is cogenerated by a single pure-injective module provided that \mathcal{A} is closed under direct limits. Then we move our attention to strong analogies between cotorsion pairs in module categories and localizing pairs in compactly generated triangulated categories.

Motivated by the paper [30] of Krause and Solberg, the first author with Lidia Angeleri Hügel and Jan Trlifaj started in [4] an investigation of the Telescope Conjecture for Module Categories (TCMC) stated as follows (see Section 1 for unexplained terminology):

Telescope Conjecture for Module Categories. Let R be a ring and $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod}-R$ with \mathcal{A} and \mathcal{B} closed under direct limits. Then $\mathcal{A}=\underset{\longrightarrow}{\lim }(\mathcal{A} \cap \bmod -R)$.

The term 'Telescope Conjecture' is used here because the particular case of TCMC when R is a self-injective artin algebra and $(\mathcal{A}, \mathcal{B})$ is a projective cotorsion pair was shown in [30] to be equivalent to the following telescope conjecture for compactly generated triangulated categories (in this case - for the stable module category over R) which

Date: May 11, 2008.
2000 Mathematics Subject Classification. 16E30, 18E30 (primary), 03C60, 16D90, 18G25, 20K40 (secondary).

Key words and phrases. cotorsion pair, deconstruction, coherent functor, triangulated category, Telescope conjecture.

Both authors supported by the grants GAUK 301-10/252216, GAČR 201/05/H005, and the research project MSM 0021620839.

Second author supported also by the Research Council of Norway through Storforsk-project Homological and geometric methods in algebra.
originates in works of Bousfield [12] and Ravenel [38] and has been extensively studied by Krause in [29, 27]:

Telescope Conjecture for Triangulated Categories. Every smashing localizing subcategory of a compactly generated triangulated category is generated by compact objects.

Under some restrictions on homological dimensions of modules in the cotorsion pair $(\mathcal{A}, \mathcal{B})$, TCMC is known to hold. The first author and co-authors showed in [4] that the conclusion of TCMC amounts to saying that the given cotorsion pair is of finite type. If all modules in \mathcal{A} have finite projective dimension, then the cotorsion pair is tilting [42], hence of finite type [9]. If R is a right noetherian ring and \mathcal{B} consists of modules of finite injective dimension, then $(\mathcal{A}, \mathcal{B})$ is of finite type, too [4]. Therefore, TCMC holds true for example for any cotorsion pair over a ring with finite global dimension. Unfortunately, the interesting connection with triangulated categories introduced in [30] works for self-injective artin algebras, where the only cotorsion pairs satisfying the former conditions are the trivial ones.

The aim of this paper is twofold. First, we prove the Countable Telescope Conjecture in Theorem 3.5: any cotorsion pair satisfying the hypotheses of TCMC is of countable type - that is, the class \mathcal{B} is the Ext ${ }^{1}$-orthogonal class to the class of all (strongly) countably presented modules from \mathcal{A}. This is a weaker version of TCMC. We will also show that this result easily implies a more direct argument for a large part of the proof that all tilting classes are of finite type [7, 8, 42, 9].

The second goal is to systematically analyze analogies between approximation theory for cotorsion pairs and results about localizations in compactly generated triangulated categories. Considerable efforts have been made on both sides. Cotorsion pairs were introduced by Salce in [40] where he noticed a homological connection between special preenvelopes and precovers - or left and right approximation in the terminology of [6]. In [16], Eklof and Trlifaj proved that any cotorsion pair generated by a set of modules provides for these approximations. This turns out to be quite a usual case and the related theory with many applications is explained in the recently issued monograph [19]. Localizations of triangulated categories have, on the other hand, motivation in algebraic topology. The telescope conjecture above was introduced by Bousfield [12, 3.4] and Ravenel [38, 1.33]. Compactly generated triangulated categories and their localizations were studied by Neeman $[34,35]$ and Krause $[29,27]$. Even though the telescope conjecture is known to be false for general triangulated categories [26], it is still open for the important and topologically motivated stable homotopy category as well as for stable module categories over self-injective artin algebras.

Although it should not be completely unexpected that there are some analogies between the two settings, as the derived unbounded category is triangulated compactly generated and provides a suitable language for homological algebra, the extent to which the analogies work is rather surprising. Roughly speaking, it is sufficient to replace an Ext ${ }^{1}$-group in a module category by a Hom-group in a triangulated category, and we obtain a valid result. However, there are also substantial differences here-for instance special precovers and preenvelopes provided by cotorsion pairs are, unlike adjoint functors coming from localizations, not functorial.

In Section 4, we prove in Theorem 4.9 that if $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair meeting the assumptions of TCMC, then \mathcal{B} is defined by finite data in the sense that it is the Ext ${ }^{1}$-orthogonal class to a certain ideal of maps between finitely presented modules. Moreover, we characterize the countably generated modules in \mathcal{A} as direct limits of systems of maps from this ideal (Theorem 4.8). In Section 5, we prove in Theorem 5.13 that $\mathcal{A}=\operatorname{Ker~}_{\operatorname{Ext}}{ }^{1}(-, E)$ for a single pure-injective module E.
Finally, in Section 6, we give the triangulated category analogues of all of the main results for module categories. Some of them come from our analysis, while the others were originally proved by Krause in [29] and served as a source of inspiration for this paper.

Acknowledgements. The authors would like to thank Jan Trlifaj for reading parts of this text and giving several valuable comments, and also to Øyvind Solberg for stimulating discussions and helpful suggestions.

1. Preliminaries

Throughout this paper, R will always stand for an associative ring with unit, and all modules will be (unital) right R-modules. We call a module strongly countably presented if it has a projective resolution consisting of countably generated projective modules. Strongly finitely presented modules are defined in the same manner with the word 'countably' replaced by 'finitely'. We denote the class of all modules by Mod- R and the class of all strongly finitely presented modules by $\bmod -R$.

We note that the notation mod $-R$ is often used in the literature for the class of finitely presented modules; that is, the modules M possessing a presentation $P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ where P_{0} and P_{1} are finitely generated and projective. We have digressed a little from this de-facto standard for the sake of keeping our notation simple, and we believe that this should not cause much confusion. We remind that if R is a right coherent ring, then the class of strongly finitely presented
modules coincides with the class of finitely presented ones. Moreover, one typically restricts oneself to coherent rings in various applications.
1.1. Continuous directed sets and associated filters. Let (I, \leq) be a partially ordered set and λ be an infinite regular cardinal. We say that I is λ-complete if every well-ordered ascending chain ($i_{\alpha} \mid \alpha<\tau$) of elements from I of length $<\lambda$ has a supremum in I. If this is the case, we call a subset $J \subseteq I \lambda$-closed if, whenever such a chain is contained in J, its supremum is in J as well. For instance for any set X, the power set $\mathfrak{P}(X)$ ordered by inclusion is λ-complete and the set $\mathfrak{P}^{<\lambda}(X)$ of all subsets of X of cardinality $<\lambda$ is λ-closed in $\mathfrak{P}(X)$.

Recall that a subset $J \subseteq I$ is called cofinal if for every $i \in I$ there is $j \in J$ such that $i \leq j$. Note that if I is a totally ordered set, then the cofinal subsets of I are precisely the unbounded ones.
¿From now on, we assume that (I, \leq) is a directed set. If ($M_{i}, f_{j i}$: $M_{i} \rightarrow M_{j} \mid i, j \in I \& i \leq j$) is a direct system of modules, we call it λ-continuous if the index set I is λ-complete and for each well-ordered ascending chain $\left(i_{\alpha} \mid \alpha<\tau\right)$ in I of length $<\lambda$ we have

$$
M_{\sup i_{\alpha}}=\underset{\alpha<\tau}{\lim } M_{i_{\alpha}} .
$$

It is well-known that every module is the direct limit of a direct system of finitely presented modules. But if we want the direct system to be λ-continuous, we have to pass to $<\lambda$-presented modules in general. The following lemma is a slight modification of [24, Proposition 7.15].

Lemma 1.1. Let M be any module and λ an infinite regular cardinal. Then M is the direct limit of a λ-continuous direct system of $<\lambda$ presented modules.

Proof. Fix a free presentation

$$
R^{(X)} \xrightarrow{f} R^{(Y)} \rightarrow M \rightarrow 0
$$

of M and let I be the following set:

$$
\left\{\left(X^{\prime}, Y^{\prime}\right) \in \mathfrak{P}(X) \times \mathfrak{P}(Y)| | X^{\prime}\left|+\left|Y^{\prime}\right|<\lambda \& f\left[R^{\left(X^{\prime}\right)}\right] \subseteq R^{\left(Y^{\prime}\right)}\right\} .\right.
$$

It is straightforward to check that I with the partial ordering by inclusion in both components is directed and λ-complete. If we now define M_{i} as the cokernel of the map

$$
f \upharpoonright R^{\left(X^{\prime}\right)}: R^{\left(X^{\prime}\right)} \rightarrow R^{\left(Y^{\prime}\right)}
$$

for every $i=\left(X^{\prime}, Y^{\prime}\right) \in I$, it is easy to check that $\left(M_{i} \mid i \in I\right)$ together with the natural maps forms a λ-continuous direct system with M as its direct limit.

For every directed set I, there is an associated filter \mathfrak{F}_{I} on $(\mathfrak{P}(I), \subseteq)$; namely the one with a basis consisting of the upper sets $\uparrow i=\{j \in I \mid$
$j \geq i\}$ for all $i \in I$. That is

$$
\mathfrak{F}_{I}=\{X \subseteq I \mid(\exists i \in I)(\uparrow i \subseteq X)\} .
$$

Recall that a filter \mathfrak{F} on a power set is called λ-complete if any intersection of less than λ elements from \mathfrak{F} is again in \mathfrak{F}.
Lemma 1.2. Let (I, \leq) be a λ-complete directed set. Then any subset $J \subseteq I$ such that $|J|<\lambda$ has an upper bound in I. In particular, the associated filter \mathfrak{F}_{I} is λ-complete, and it is a principal filter if and only if (I, \leq) has a (unique) maximal element.
Proof. We can well-order J; that is $J=\left\{j_{\alpha} \mid \alpha<\tau\right\}$ for some $\tau<\lambda$. Then we construct by induction a chain $\left(k_{\alpha} \mid \alpha<\tau\right)$ in I such that $k_{0}=j_{0}$ and k_{α} is a common upper bound for j_{α} and $\sup _{\beta<\alpha} k_{\beta}$. Then $\sup _{\beta<\tau} k_{\beta}$ is clearly an upper bound for J. The rest is also easy.
1.2. Filtrations and cotorsion pairs. Given a module M and an ordinal number σ, an ascending chain $\mathcal{F}=\left(M_{\alpha} \mid \alpha \leq \sigma\right)$ of submodules of M is called a filtration of M if $M_{0}=0, M_{\sigma}=M$ and \mathcal{F} is continuous-that is, $\bigcup_{\alpha<\beta} M_{\alpha}=M_{\beta}$ for each limit ordinal $\beta \leq \sigma$.

Furthermore, let a class $\mathcal{C} \subseteq \operatorname{Mod}-R$ be given. Then \mathcal{F} is said to be a \mathcal{C}-filtration if it has the extra property that each its consecutive factor $M_{\alpha+1} / M_{\alpha}, \alpha<\sigma$, is isomorphic to a module from \mathcal{C}. A module M is called \mathcal{C}-filtered if it admits (at least one) \mathcal{C}-filtration.

Let us turn our attention to cotorsion pairs now. By a cotorsion pair in $\operatorname{Mod}-R$, we mean a pair $(\mathcal{A}, \mathcal{B})$ of classes of right R-modules such that $\mathcal{A}=\operatorname{Ker} \operatorname{Ext}_{R}^{1}(-, \mathcal{B})$ and $\mathcal{B}=\operatorname{Ker~}_{\operatorname{Ext}}^{R}{ }^{1}(\mathcal{A},-)$. We say that a cotorsion pair $(\mathcal{A}, \mathcal{B})$ is hereditary provided that \mathcal{A} is closed under kernels of epimorphisms or, equivalently, \mathcal{B} is closed under cokernels of monomorphisms.

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair, then the class \mathcal{A} is always closed under arbitrary direct sums and contains all projective modules. Dually, the class \mathcal{B} is closed under direct products and it contains all injective modules. Also, every class of modules \mathcal{C} determines two distinguished cotorsion pairs - the cotorsion pair generated by \mathcal{C}, that is the one with the right-hand class \mathcal{B} equal to $\operatorname{Ker~}_{\operatorname{Ext}}^{R}{ }_{R}^{1}(\mathcal{C},-)$, and dually the cotorsion pair cogenerated ${ }^{1}$ by \mathcal{C}-the one with the left-hand class \mathcal{A} equal to $\operatorname{Ker~}_{\operatorname{Ext}}{ }_{R}^{1}(-, \mathcal{C})$. We say that $(\mathcal{A}, \mathcal{B})$ is of finite or countable type if it is generated by a set of strongly finitely or strongly countably presented modules, respectively.

We say that a cotorsion pair $(\mathcal{A}, \mathcal{B})$ is complete if for every module $M \in \operatorname{Mod}-R$, there is a short exact sequence $0 \rightarrow B \rightarrow A \rightarrow M \rightarrow 0$ such that $A \in \mathcal{A}$ and $B \in \mathcal{B}$. The map $A \rightarrow M$ is then called a special \mathcal{A}-precover of M. It is well-known that this condition is equivalent to

[^0]the dual one saying that \mathcal{B} provides for special \mathcal{B}-preenvelopes; thus, for every $M \in \operatorname{Mod}-R$ there is in this case also a short exact sequence $0 \rightarrow M \rightarrow B^{\prime} \rightarrow A^{\prime} \rightarrow 0$ with $A^{\prime} \in \mathcal{A}$ and $B^{\prime} \in \mathcal{B}$.

Finally, a cotorsion pair is said to be projective in the sense of [10] if it is hereditary, complete, and $\mathcal{A} \cap \mathcal{B}$ is precisely the class of all projective modules. It is an easy exercise to prove that $(\mathcal{A}, \mathcal{B})$ is projective if and only if it is complete and \mathcal{B} contains all projective modules and has the "two out of three" property - that is: all three modules in a short exact sequence are in \mathcal{B} provided that two of them are in \mathcal{B}. To conclude the discussion of terminology concerning cotorsion pairs, we recall that projective cotorsion pairs over self-injective artin algebras are (with a slightly different but equivalent definition) called thick in [30].
1.3. Definable classes and coherent functors. We will also need the notion of a definable class of modules. First recall that a covariant additive functor from Mod- R to the category of abelian groups is called coherent if it commutes with arbitrary products and direct limits. The following important characterization was obtained by Crawley-Boevey:

Lemma 1.3. [13, §2.1, Lemma 1] A functor $F: \operatorname{Mod}-R \rightarrow \mathrm{Ab}$ is coherent if and only if it is isomorphic to $\operatorname{Coker}_{\operatorname{Hom}_{R}}(f,-)$ for some homomorphism $f: X \rightarrow Y$ between finitely presented modules X and Y.

A class $\mathcal{C} \subseteq$ Mod- R is called definable if it satisfies one of the following three equivalent conditions:
(1) \mathcal{C} is closed under taking arbitrary products, direct limits, and pure submodules;
(2) \mathcal{C} is defined by vanishing of some set of coherent functors;
(3) \mathcal{C} is defined in the first order language of R-modules by satisfying some implications $\varphi(\bar{x}) \rightarrow \psi(\bar{x})$ where $\varphi(\bar{x})$ and $\psi(\bar{x})$ are primitive positive formulas.
Primitive positive formulas (pp-formulas for short) are first-order language formulas of the form $(\exists \bar{y})(\bar{x} A=\bar{y} B)$ for some matrices A, B over R. For this paper, the most important consequence of (3) is that definable classes are closed under taking elementarily equivalent modules since they are definable in the first-order language. This in particular implies the well-known fact that a definable class is determined by the pure-injective modules it contains since any module is elementarily equivalent to its pure-injective hull. For equivalence between the three definitions and more details, we refer to [37], [13, §2.3], and [45, Section $1]$.
1.4. Inverse limits and the Mittag-Leffler condition. The computation of Ext groups can sometimes be reduced to the computation of the derived functors of inverse limit. We will recall this here only for
countable inverse systems. For more details on the topic see [44, §3.5]. Let

$$
\cdots \rightarrow H_{n+1} \xrightarrow{h_{n}} H_{n} \rightarrow \cdots \rightarrow H_{2} \xrightarrow{h_{1}} H_{1} \xrightarrow{h_{0}} H_{0}
$$

be a countable inverse system of abelian groups - a tower in the terminology of [44]. Then its inverse limit $\lim _{\leftrightarrows} H_{n}$ and the first derived functor of the inverse limit, ${\underset{\mathrm{lm}}{ }}^{1} H_{n}$, can be computed using the exact sequence

$$
0 \rightarrow \underset{\rightleftarrows}{\lim } H_{n} \rightarrow \prod H_{n} \stackrel{\Delta}{\rightarrow} \prod H_{n} \rightarrow \lim _{\leftrightarrows}^{1} H_{n} \rightarrow 0
$$

where $\Delta\left(\left(x_{n}\right)_{n<\omega}\right)=\left(x_{n}-h_{n}\left(x_{n+1}\right)\right)_{n<\omega}$. The first derived functor is closely related to the fact that inverse limit is not exact - it is only left exact. Using the exact sequence above and the snake lemma, one easily observes that, given a countable inverse system of short exact sequences $0 \rightarrow H_{n} \rightarrow K_{n} \rightarrow L_{n} \rightarrow 0$, there is a canonical long exact sequence

In particular, $\lim ^{1}$ is right exact on countable inverse systems.
In practice, one is often interested whether or not $\lim ^{1} H_{n}=0$. To decide this can sometimes be tedious, but there is a useful tool-the notion of Mittag-Leffler inverse systems. Given a countable inverse system of abelian groups ($H_{n}, h_{n} \mid n<\omega$) as above, we say that it is Mittag-Leffler if for each n the descending chain

$$
H_{n} \supseteq h_{n}\left(H_{n+1}\right) \supseteq \cdots \supseteq h_{n} h_{n+1} \cdots h_{k-1}\left(H_{k}\right) \supseteq \cdots
$$

is stationary. This occurs, for example, if all the maps h_{n} are onto. The following important result gives a connection to $\varliminf_{\rightleftarrows}{ }^{1}$:

Proposition 1.4. Let $\left(H_{n}, h_{n} \mid n<\omega\right)$ be a countable inverse system of abelian groups. Then the following hold:
(1) [44, Proposition 3.5.7] If $\left(H_{n}, h_{n}\right)$ is Mittag-Leffler, then $\lim ^{1} H_{n}=0$.
(2) [2, Theorem 1.3] $\left(H_{n}, h_{n}\right)$ is Mittag-Leffler if and only if $\lim ^{1} H_{n}^{(\omega)}=0$.
We will also use a related notion of T-nilpotency. We say that $\left(H_{n}, h_{n}\right)_{n<\omega}$ is T-nilpotent if for each n there exists $k>n$ such that the composition $H_{k} \rightarrow H_{n}$ is zero.

2. Filter-closed classes and factorization systems

We start with analyzing properties of modules lying in $\operatorname{Ker} \operatorname{Ext}_{R}^{1}(-, \mathcal{G})$ for a class \mathcal{G} closed under arbitrary direct products and unions of wellordered chains. We will always assume in this case that \mathcal{G} is closed under isomorphic images and that $0 \in \mathcal{G}$, since the trivial module could be viewed as a product of an empty system. As an application
to keep in mind, such classes occur as right-hand classes of cotorsion pairs satisfying the hypotheses of TCMC.
Definition 2.1. Let \mathfrak{F} be a filter on the power set $\mathfrak{P}(X)$ for some set X, and let $\left\{M_{x} \mid x \in X\right\}$ be a set of modules. Set $M=\prod_{x \in X} M_{x}$. Then the \mathfrak{F}-product $\Sigma_{\mathfrak{F}} M$ is the submodule of M such that

$$
\Sigma_{\mathfrak{F}} M=\{m \in M \mid z(m) \in \mathfrak{F}\}
$$

where for an element $m=\left(m_{x} \mid x \in X\right) \in M$, we denote by $z(m)$ its zero set $\left\{x \in X \mid m_{x}=0\right\}$.

The module $M / \Sigma_{\mathfrak{F}} M$ is then called an \mathfrak{F}-reduced product. Note that for $a, b \in M$, we have an equality $\bar{a}=\bar{b}$ in the \mathfrak{F}-reduced product if and only if a and b agree on a set of indices that is in the filter \mathfrak{F}.

In the case that $M_{x}=M_{y}$ for every pair of elements $x, y \in X$, we speak of an \mathfrak{F}-power and an \mathfrak{F}-reduced power (of the module M_{x}) instead of an \mathfrak{F}-product and an \mathfrak{F}-reduced product, respectively.

Finally, a nonempty class of modules \mathcal{G} is called filter-closed, if it is closed under arbitrary \mathfrak{F}-products (for any set X and an arbitrary filter \mathfrak{F} on $\mathfrak{P}(X)$).

Lemma 2.2. Let \mathcal{G} be a class of modules closed under arbitrary direct products and unions of well-ordered chains. Then \mathcal{G} is filter-closed.
Proof. It is just a matter of straightforward induction to prove that the closure under unions of well-ordered chains implies closure under arbitrary directed unions - see for instance [1, Corollary 1.7] which is easily adapted for unions. Moreover, any \mathfrak{F}-product is just the directed union of products of the modules with indices from the complementary sets to those belonging to \mathfrak{F}.

In the next few paragraphs, we will show that filter-closedness of \mathcal{G} forces existence of certain factoring systems inside modules from $\operatorname{Ker} \operatorname{Ext}_{R}^{1}(-, \mathcal{G})$. Let us note that the following lemma presents the crucial technical step in proving the Countable Telescope Conjecture.
Lemma 2.3. Let \mathcal{G} be a filter-closed class of modules. Let λ be an uncountable regular cardinal and $\left(M, f_{i} \mid i \in I\right)$ be a direct limit of a λ-continuous direct system $\left(M_{i}, f_{j i} \mid i \leq j\right)$ indexed by a set I and consisting of $<\lambda$-generated modules.

Assume that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$. Then there is a λ-closed cofinal subset $J \subseteq I$ such that every homomorphism from M_{j} to B factors through f_{j} whenever $j \in J$ and $B \in \mathcal{G}$.

Proof. Suppose that the claim of the lemma is not true. Then the set

$$
S=\left\{i \in I \mid\left(\exists B_{i} \in \mathcal{G}\right)\left(\exists g_{i} \in \operatorname{Hom}_{R}\left(M_{i}, B_{i}\right)\right)\right.
$$

$$
\begin{equation*}
\left.\left(g_{i} \text { does not factor through } f_{i}\right)\right\} \tag{*}
\end{equation*}
$$

must intersect every λ-closed cofinal subset of I (so S is a generalized stationary set, in an obvious sense). For each $i \in S$, choose some
$B_{i} \in \mathcal{G}$ and $g_{i}: M_{i} \rightarrow B_{i}$ whose existence is claimed in (*). For the indices $i \in I \backslash S$, let B_{i} be an arbitrary module from \mathcal{G} and $g_{i}: M_{i} \rightarrow B_{i}$ be the zero map. Put $B=\prod_{i \in I} B_{i}$.

Now, define a homomorphism $h_{j i}: M_{i} \rightarrow B_{j}$ for each pair $i, j \in I$ in the following way: $h_{j i}=g_{j} \circ f_{j i}$ if $i \leq j$ and $h_{j i}=0$ otherwise. This family of maps gives rise to a canonical homomorphism $h: \bigoplus_{k \in I} M_{k} \rightarrow$ B. More precisely, if we denote by $\pi_{j}: B \rightarrow B_{j}$ the projection to the j th component and by $\nu_{i}: M_{i} \rightarrow \bigoplus_{k \in I} M_{k}$ the canonical inclusion of the i-th component, h is (unique) such that $\pi_{j} \circ h \circ \nu_{i}=h_{j i}$. Note that for every $i, j \in I$ such that $i \leq j$, the set $\left\{k \in I \mid h_{k i}=h_{k j} \circ f_{j i}\right\}$ is in the associated filter \mathfrak{F}_{I} since it contains $\uparrow j$. Hence, if we denote by φ the canonical pure epimorphism $\bigoplus_{i \in I} M_{i} \rightarrow M=\underset{\rightarrow i \in I}{\lim } M_{i}$ (that is such that $\varphi \circ \nu_{i}=f_{i}$ for all $i \in I$), there is a well-defined homomorphism u from M to the \mathfrak{F}_{I}-reduced product $B / \Sigma_{\mathfrak{F}_{I}} B$ making the following diagram commutative (ρ denotes the canonical projection):

We have $\Sigma_{\mathfrak{F}_{I}} B \in \mathcal{G}$ since \mathcal{G} is filter-closed. Hence, using the assumption that $\operatorname{Ext}_{R}^{1}\left(M, \Sigma_{\mathfrak{F}_{I}} B\right)=0$, we can factorize u through ρ to get some $g \in \operatorname{Hom}_{R}(M, B)$ such that $u=\rho \circ g$. Since the M_{i} are all $<\lambda$-generated and \mathfrak{F}_{I} is λ-complete by Lemma 1.2, we obtain (for every $i \in I$) that " $h \circ \nu_{i}$ coincides with $g \circ \varphi \circ \nu_{i}=g \circ f_{i}$ on a set from the filter", that is:

$$
\begin{equation*}
\left\{k \in I \mid \pi_{k} \circ g \circ f_{i}=\pi_{k} \circ h \circ \nu_{i}\right\} \in \mathfrak{F}_{I} \tag{**}
\end{equation*}
$$

Let us define J as follows:

$$
J=\left\{i \in I \mid(\forall k \geq i)\left(\pi_{k} \circ g \circ f_{i}=g_{k} \circ f_{k i}\right)\right\}
$$

Then clearly, g_{i} factors through f_{i} for every $i \in J$ (just by applying the definition of J for $k=i$). Hence certainly $J \cap S=\varnothing$.

To obtain a contradiction and finish the proof of the lemma, it is now enough to show that J is λ-closed cofinal. The fact that J is λ-closed follows easily by λ-continuity of the direct system ($M_{i}, f_{j i} \mid i \leq j$). So we are left to prove that J is cofinal in I. But by $(* *)$ and the definition of \mathfrak{F}_{I}, we can find for every $i \in I$ an element $s(i) \in I$ such that $s(i) \geq i$ and

$$
(\forall k \geq s(i))\left(\pi_{k} \circ g \circ f_{i}=\pi_{k} \circ h \circ \nu_{i}\right) .
$$

Recall that $\pi_{k} \circ h \circ \nu_{i}=h_{k i}=g_{k} \circ f_{k i}$. Now, if we fix any $i^{\prime} \in I$, we can define $j_{0}=i^{\prime}, j_{n+1}=s\left(j_{n}\right)$ for all $n \geq 0$, and $j=\sup _{n<\omega} j_{n}$. Then clearly $j \geq i^{\prime}$, and it is easy to check that $j \in J$ using the \aleph_{1}-continuity of the direct system $\left(M_{i}, f_{j i} \mid i \leq j\right)$.

An important consequence follows by applying Lemma 2.3 to the case when the class \mathcal{G} cogenerates every module. This is for instance always the case when \mathcal{G} is a right-hand class of a cotorsion pair, since then all injective modules are inside \mathcal{G}.

Proposition 2.4. Let \mathcal{G} be a cogenerating filter-closed class of modules. Then for any uncountable regular cardinal λ and any module M such that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$, there is a family \mathcal{C}_{λ} of $<\lambda$-presented submodules of M such that
(1) \mathcal{C}_{λ} is closed under unions of well-ordered ascending chains of length $<\lambda$,
(2) every subset $X \subseteq M$ such that $|X|<\lambda$ is contained in some $N \in \mathcal{C}_{\lambda}$, and
(3) $\operatorname{Ext}_{R}^{1}(M / N, \mathcal{G})=0$ for every $N \in \mathcal{C}_{\lambda}$.

Proof. By Lemma 1.1, there is a λ-continuous direct system $\left(M_{i}, f_{j i} \mid\right.$ $i \leq j)$ of $<\lambda$-presented modules indexed by a set I such that M together with some maps $f_{i}: M_{i} \rightarrow M$ forms its direct limit. Now, the data $\mathcal{G}, \lambda,\left(M, f_{i} \mid i \in I\right),\left(M_{i}, f_{j i} \mid i \leq j\right)$ and I fits exactly to Lemma 2.3. Hence, there is a λ-closed cofinal subset $J \subseteq I$ such that for every $j \in J$, every homomorphism from M_{j} to a module in \mathcal{G} factors through f_{j}. But the fact that \mathcal{G} is a cogenerating class implies that f_{j} is injective. Thus, we can view the modules M_{j} for $j \in J$ as submodules of M, and the maps f_{j} and $f_{j i}$ as inclusions. Let us define

$$
\mathcal{D}=\left\{M_{j} \mid j \in J\right\}
$$

and let $\overline{\mathcal{D}}$ be the closure of \mathcal{D} under unions of well-ordered chains of length $<\lambda$. Observe, that (\mathcal{D}, \subseteq) is a directed poset since J is a cofinal subset of the directed set I. Using Lemma 1.2 , we easily deduce that $\overline{\mathcal{D}}$ is directed, too. Now, we can view the modules in $\overline{\mathcal{D}}$ together with inclusions between them as a λ-continuous direct system indexed by $\overline{\mathcal{D}}$ itself. Hence, we can apply Lemma 2.3 for the second time to get a λ-closed cofinal subset \mathcal{C}_{λ} of $\overline{\mathcal{D}}$ such that every homomorphism from a module $N \in \mathcal{C}_{\lambda}$ to a module in \mathcal{G} extends to M.

The latter property together with the fact that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$ immediately implies (3). The property (1) is just another way to say that \mathcal{C}_{λ} is λ-closed in $\overline{\mathcal{D}}$. For (2), first notice that $\bigcup \mathcal{C}_{\lambda}=M$ since \mathcal{C}_{λ} is cofinal in $\overline{\mathcal{D}}$. Hence, if $X \subseteq M$ is a subset of cardinality $<\lambda$, there is a subset $\mathcal{M} \subseteq \mathcal{C}_{\lambda}$ of cardinality $<\lambda$ such that every $x \in X$ is contained in some $N^{\prime} \in \mathcal{M}$. Finally, Lemma 1.2 provides us with an upper bound $N \in \mathcal{C}_{\lambda}$ for \mathcal{M}, and clearly $X \subseteq N$.

In Lemma 2.3, the assumption of λ being uncountable is essential. We can, nevertheless, obtain a weaker but important result using the same technique for $\lambda=\omega$ and $(I, \leq)=(\omega, \leq)$. Lemma 2.5 actually says that, for $B \in \mathcal{G}$, the inverse system of groups $\left(\operatorname{Hom}_{R}\left(M_{i}, B\right)\right.$, $\left.\operatorname{Hom}_{R}\left(f_{j i}, B\right) \mid i \leq j<\omega\right)$ is Mittag-Leffler, and the stationary indices
determined by s are common over all $B \in \mathcal{G}$. In this terminology, a proof of the lemma is mostly contained in the proof of [8, Theorems 2.5 and 3.7].

We give a different proof here and we do this for two main reasons: First, the statement about common stationary indices has an important interpretation in the first-order theory of modules and is missing in [8]. Second, we show that the Mittag-Leffler property is a part of a common framework which works for both countable and uncountable systems.
Lemma 2.5. Let \mathcal{G} be a class of modules closed under countable direct sums. Let $\left(M, f_{i} \mid i<\omega\right)$ be a direct limit of a countable direct system $\left(M_{i}, f_{j i} \mid i \leq j<\omega\right)$ consisting of finitely generated modules.

Assume that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$. Then there is a strictly increasing function $s: \omega \rightarrow \omega$ such that for each $B \in \mathcal{G}, i<\omega$ and $c: M_{i} \rightarrow B$ the following holds: If c factors through $f_{s(i) i}$, then it factors through $f_{n i}$ for all $n \geq s(i)$.

Proof. We will show that it is possible to construct the values $s(i)$ by induction on i. Suppose by way of contradiction that there is some $i<\omega$ for which we cannot define $s(i)$. This can only happen if for each $j \geq i$, there is a homomorphism $g_{j}: M_{j} \rightarrow B_{j}$ such that $B_{j} \in \mathcal{G}$, and $g_{j} \circ f_{j i}$ does not factor through $f_{n i}$ for some $n>j$. For $j<i$ let g_{j} be zero maps and $B_{j} \in \mathcal{G}$ be arbitrary. Put $B=\prod_{j<\omega} B_{j}$.

Now, we follow the proof of Lemma 2.3 (with ω in place of I and λ) starting with the second paragraph and ending just after the definition of $(* *)$. Note that the corresponding notion of \aleph_{0}-completeness is void, \mathfrak{F}_{ω} is the Fréchet filter on ω, and the \mathfrak{F}_{ω}-product $\Sigma_{\mathfrak{F}_{\omega}} B$ is just the direct $\operatorname{sum} \bigoplus_{j<\omega} B_{j}$.

By the same argument as for (Δ) in the proof of Lemma 2.3 and with the same notation as there, there is some $s^{\prime} \geq i$ such that

$$
\left(\forall k \geq s^{\prime}\right)\left(\pi_{k} \circ g \circ f_{i}=\pi_{k} \circ h \circ \nu_{i}\right)
$$

holds and $\pi_{k} \circ h \circ \nu_{i}=h_{k i}=g_{k} \circ f_{k i}$ for each $k \geq s^{\prime}$. But this contradicts the fact implied by the choice of g_{k} that $g_{k} \circ f_{k i}$ does not factor through f_{i}.

Let us remark that we have actually proved a little more than we stated in Lemma 2.5-we have constructed $s: \omega \rightarrow \omega$ such that if $c: M_{i} \rightarrow B$ factors through $f_{s(i) i}$, then it factors through $f_{i}: M_{i} \rightarrow M$. The motivation for the seemingly more complicated statement of the lemma should become clear in the following paragraphs.

If the modules M_{i} in the direct system from the lemma above are finitely presented instead of finitely generated, we have a statement about factorization through maps between finitely presented modules. Which in other words means that some coherent functors vanish and the Mittag-Leffler property is preserved within the smallest definable class containing \mathcal{G}. This is made precise by the following lemma.

Lemma 2.6. Let \mathcal{G} be a class of modules closed under countable direct sums and \mathcal{D} be the smallest definable class containing \mathcal{G}. Let $\left(M, f_{i} \mid\right.$ $i<\omega$) be a direct limit of a direct system $\left(M_{i}, f_{j i} \mid i \leq j<\omega\right)$ consisting of finitely presented modules.

Assume that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$. Then there is a strictly increasing function $s: \omega \rightarrow \omega$ such that for each $D \in \mathcal{D}, i<\omega$ and $c: M_{i} \rightarrow D$ the following holds: If c factors through $f_{s(i)}$, then it factors through $f_{n i}$ for all $n \geq s(i)$.
Proof. By restating the conclusion of Lemma 2.5, we get that $\operatorname{Im} \operatorname{Hom}_{R}\left(f_{s(i) i}, D\right)=\operatorname{Im}_{\operatorname{Hom}_{R}}\left(f_{n i}, D\right)$ for each $D \in \mathcal{G}$ and $i \leq$ $s(i) \leq n<\omega$. It is also straightforward to check that $F=$ $\operatorname{Im} \operatorname{Hom}_{R}\left(f_{s(i) i},-\right) / \operatorname{Im} \operatorname{Hom}_{R}\left(f_{n i},-\right)$ is a coherent functor. Hence we have $\operatorname{Im} \operatorname{Hom}_{R}\left(f_{s(i) i}, D\right)=\operatorname{Im}_{\operatorname{Hom}_{R}}\left(f_{n i}, D\right)$ also for each $D \in \mathcal{D}$ and the claim follows.

Note also that instead of vanishing of the coherent functors in the proof above, we can equivalently consider that certain implications between pp-formulas are satisfied [13, $\S 2.1]$, thus reformulating the proof in a more model theoretic way.

Now, we can prove a crucial statement similar to [8, Theorem 2.5]:
Proposition 2.7. Let \mathcal{G} be a class of modules closed under countable direct sums, and let M be a countably presented module such that $\operatorname{Ext}_{R}^{1}(M, \mathcal{G})=0$. Then $\operatorname{Ext}_{R}^{1}(M, D)=0$ for every D isomorphic to a pure submodule of a product of modules from \mathcal{G}.
Proof. Let D be a pure submodule of $\prod_{k} B_{k}$ for some $B_{k} \in \mathcal{G}$. Since M is countably presented, it can be considered as a direct limit of a countable chain of finitely presented modules $M_{i}, i<\omega$, as in the assumptions of Lemma 2.6. Hence $\left(\operatorname{Hom}_{R}\left(M_{i}, D\right), \operatorname{Hom}_{R}\left(f_{j i}, D\right) \mid i \leq\right.$ $j<\omega$) is Mittag-Leffler since any definable class is closed under taking products and pure submodules.

Then we continue as in the proof of [8, Theorem 2.5]. Since $\operatorname{Ext}_{R}^{1}\left(M, \prod_{k} B_{k}\right)=0$ by assumption, we have the exact sequence

$$
\operatorname{Hom}_{R}\left(M, \prod_{k} B_{k}\right) \xrightarrow{h} \operatorname{Hom}_{R}\left(M,\left(\prod_{k} B_{k}\right) / D\right) \rightarrow \operatorname{Ext}_{R}^{1}(M, D) \rightarrow 0
$$

and so it suffices to show that h is an epimorphism. This easily follows from Proposition 1.4 applied on the inverse system $\left(\operatorname{Hom}_{R}\left(M_{i}, D\right)\right.$, $\left.\operatorname{Hom}_{R}\left(f_{j i}, D\right) \mid i \leq j<\omega\right)$. Indeed, we see that $\lim _{\geqq}^{1} \operatorname{Hom}_{R}\left(M_{i}, D\right)=0$ and obtain the exact sequence

$$
\underset{i}{\lim _{i}} \operatorname{Hom}_{R}\left(M_{i}, \prod_{k} B_{k}\right) \rightarrow \underset{i}{\lim _{i}} \operatorname{Hom}_{R}\left(M_{i},\left(\prod_{k} B_{k}\right) / D\right) \rightarrow 0 .
$$

It remains to use the basic fact that contravariant Hom-functors take colimits to limits.

3. Countable type

In this section, we prove the main result of our paper - the Countable Telescope Conjecture for Module Categories. But before doing this, we introduce a fairly simplified version of Shelah's Singular Compactness Theorem. It is based on [15, Theorem IV.3.7]. In the terminology there, systems witnessing strong λ-"freeness" correspond to the λ-dense systems defined below.

A reader acquainted with the full-fledged compactness theorem for filtrations of modules proved in [15, XII.1.14 and IV.3.7] or [14] may well skip Lemma 3.2. We state and prove the lemma for the sake of completeness, and also because we are using only a fragment of the full compactness theorem, and it makes the proof of the Countable Telescope Conjecture more transparent.

Definition 3.1. Let M be a module and λ be a regular uncountable cardinal. Then a set \mathcal{C}_{λ} of $<\lambda$-generated submodules of M is called a λ-dense system in M if
(1) $0 \in \mathcal{C}_{\lambda}$,
(2) \mathcal{C}_{λ} is closed under unions of well-ordered ascending chains of length $<\lambda$, and
(3) every subset $X \subseteq M$ such that $|X|<\lambda$ is contained in some $N \in \mathcal{C}_{\lambda}$.

Lemma 3.2 (Simplified Shelah's Singular Compactness Theorem). Let κ be a singular cardinal, M a κ-generated module, and let μ be a cardinal such that $\mathrm{cf} \kappa \leq \mu<\kappa$. Suppose we are given a λ-dense system, \mathcal{C}_{λ}, in M for each regular λ such that $\mu<\lambda<\kappa$. Then there is a filtration ($M_{\alpha} \mid \alpha \leq \operatorname{cf} \kappa$) of M and a continuous strictly increasing chain of cardinals $\left(\kappa_{\alpha} \mid \alpha<\operatorname{cf} \kappa\right)$ cofinal in κ such that $M_{\alpha} \in \mathcal{C}_{\kappa_{\alpha}^{+}}$for each $\alpha<\operatorname{cf} \kappa$.

Proof. We will start with choosing the chain $\left(\kappa_{\alpha} \mid \alpha<\operatorname{cf} \kappa\right)$. In fact, we can choose any such chain provided that $\mu \leq \kappa_{0}$, just to make sure that $\mathcal{C}_{\kappa_{\alpha}^{+}}$is always available. Let us fix one such chain ($\left.\kappa_{\alpha} \mid \alpha<\operatorname{cf} \kappa\right)$.

Next, let ($X_{\alpha} \mid \alpha<\operatorname{cf} \kappa$) be an ascending chain of subsets of M such that $\bigcup_{\alpha<\operatorname{cf\kappa } \kappa} X_{\alpha}$ generates M and $\left|X_{\alpha}\right|=\kappa_{\alpha}$ for each $\alpha<\operatorname{cf} \kappa$. Then, we can by induction construct a (not necessarily continuous) chain $\left(N_{\alpha}^{0} \mid \alpha<\operatorname{cf} \kappa\right)$ of submodules of M such that $N_{\alpha}^{0} \in \mathcal{C}_{\kappa_{\alpha}^{+}}$and $X_{\alpha} \cup \bigcup_{\beta<\alpha} N_{\beta}^{0} \subseteq N_{\alpha}^{0}$ for every $\alpha<\operatorname{cf} \kappa$. Since N_{α} is κ_{α}-generated, we can fix for each α a generating set Y_{α}^{0} of N_{α}^{0} together with some enumeration $Y_{\alpha}^{0}=\left\{y_{\alpha, \gamma}^{0} \mid \gamma<\kappa_{\alpha}\right\}$. Next, we proceed by induction on $n<\omega$ and construct for each $n>0$ chain of modules ($N_{\alpha}^{n} \mid \alpha<\operatorname{cf} \kappa$) and sets $Y_{\alpha}^{n}=\left\{y_{\alpha, \gamma}^{n} \mid \gamma<\kappa_{\alpha}\right\}$ such that
(1) ($\left.N_{\alpha}^{n} \mid \alpha<\operatorname{cf} \kappa\right)$ is a (not necessarily continuous) chain of submodules of M,
(2) $N_{\alpha}^{n} \in \mathcal{C}_{\kappa_{\alpha}^{+}}$and $N_{\alpha}^{n} \supseteq\left\{y_{\zeta, \gamma}^{n-1} \mid \alpha \leq \zeta<\operatorname{cf} \kappa \& \gamma<\kappa_{\alpha}\right\} \cup$ $\bigcup_{\beta<\alpha} N_{\beta}^{n}$, and
(3) $Y_{\alpha}^{n}=\left\{y_{\alpha, \gamma}^{n} \mid \gamma<\kappa_{\alpha}\right\}$ is a fixed enumeration of some set of generators of N_{α}^{n}, for each $\alpha<\operatorname{cf} \kappa$.
For each $n<\omega$, we clearly can construct such a chain and sets by induction on α. Note in particular that we have always $N_{\alpha}^{n-1} \subseteq N_{\alpha}^{n}$ since $Y_{\alpha}^{n-1}=\left\{y_{\alpha, \gamma}^{n-1} \mid \gamma<\kappa_{\alpha}\right\} \subseteq N_{\alpha}^{n}$ by (2). Hence, if we define $M_{\alpha}=\bigcup_{n<\omega} N_{\alpha}^{n}$, we clearly have $M_{\alpha} \in \mathcal{C}_{\kappa_{\alpha}^{+}}$for each $\alpha<\operatorname{cf} \kappa$. Also, $\bigcup_{\alpha<\text { cf } \kappa} M_{\alpha}=M$ since $X_{\alpha} \subseteq N_{\alpha}^{0} \subseteq M_{\alpha}$ for each α. We claim that the chain ($M_{\alpha} \mid \alpha<\operatorname{cf} \kappa$) is continuous. To see this, fix for this moment a limit ordinal $\alpha<\operatorname{cf} \kappa$. Then clearly $M_{\alpha} \supseteq \bigcup_{\beta<\alpha} M_{\beta}$. On the other hand, for a given $n>0$ and $\beta<\alpha$, we have $\left\{y_{\alpha, \gamma}^{n-1} \mid \gamma<\kappa_{\beta}\right\} \subseteq N_{\beta}^{n}$ by (2). Therefore, $Y_{\alpha}^{n-1} \subseteq \bigcup_{\beta<\alpha} N_{\beta}^{n}$ and also $N_{\alpha}^{n-1} \subseteq \bigcup_{\beta<\alpha} N_{\beta}^{n}$ by (3). Hence $M_{\alpha} \subseteq \bigcup_{\beta<\alpha} M_{\beta}$ and the claim is proved. Now, if we change M_{0} for the zero module and put $M_{\mathrm{cf} \kappa}=M,\left(M_{\alpha} \mid \alpha \leq \mathrm{cf} \kappa\right)$ becomes a filtration with the desired properties.

While Lemma 3.2 or Shelah's Singular Compactness Theorem give us some information about the structure of a module with enough dense systems for a singular number of generators, we can prove a rather straightforward lemma which takes care of regular cardinals.

Lemma 3.3. Let κ be a regular uncountable cardinal, M be a κ generated module and \mathcal{C}_{κ} be a κ-dense system in M. Then there is a filtration $\left(M_{\alpha} \mid \alpha \leq \kappa\right)$ of M such that $M_{\alpha} \in \mathcal{C}_{\kappa}$ for each $\alpha<\kappa$.

Proof. Let us fix an enumeration $\left\{m_{\gamma} \mid \gamma<\kappa\right\}$ of generators of M. We will construct the filtration by induction. Put $M_{0}=0$ and $M_{\alpha}=$ $\bigcup_{\beta<\alpha} M_{\beta}$ for all limit ordinals $\alpha \leq \kappa$. For $\alpha=\beta+1$, we can find $M_{\alpha} \in \mathcal{C}_{\kappa}$ such that $M_{\beta} \cup\left\{m_{\beta}\right\} \subseteq M_{\alpha}$, using (3) from Definition 3.1.

Before stating and proving the main result, we need a technical lemma about filtrations which has been studied in [17, 41, 43], and whose origins can be traced back to an ingenious idea of P. Hill [22].

Lemma 3.4. [43, Theorem 6]. Let \mathcal{S} be a set of countably presented modules and M be a module possessing an \mathcal{S}-filtration $\left(M_{\alpha} \mid \alpha \leq \sigma\right)$. Then there is a family \mathcal{F} of submodules of M such that:
(1) $M_{\alpha} \in \mathcal{F}$ for all $\alpha \leq \sigma$.
(2) \mathcal{F} is closed under arbitrary sums and intersections.
(3) For each $N, P \in \mathcal{F}$ such that $N \subseteq P$, the module P / N is \mathcal{S} filtered.
(4) For each $N \in \mathcal{F}$ and a countable subset $X \subseteq M$, there is $P \in \mathcal{F}$ such that $N \cup X \subseteq P$ and P / N is countably presented.

Now, we are in a position to prove the Countable Telescope Conjecture.

Theorem 3.5 (Countable Telescope Conjecture). Let R be a ring and $\mathfrak{C}=(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair of R-modules such that \mathcal{B} is closed under unions of well-ordered chains. Then
(1) \mathfrak{C} is generated by a set of strongly countably presented modules,
(2) \mathfrak{C} is complete, and
(3) \mathcal{B} is a definable class.

Proof. (1). First, we claim that \mathfrak{C} is generated by a representative set \mathcal{S} of the class of all countably presented modules from \mathcal{A}. To do this, in view of Eklof's Lemma ([19, Lemma 3.1.2] or [16, Lemma 1]), it is enough to prove that every module $M \in \mathcal{A}$ has an \mathcal{S}-filtration $\left(M_{\alpha} \mid \alpha \leq \sigma\right)$.

We will prove this by induction on the minimal cardinal κ such that M is κ-presented. If κ is finite or countable, then we are done since M itself is isomorphic to a module from \mathcal{S}. Assume that κ is uncountable. By our assumption and Lemma 2.2, the class \mathcal{B} is filter-closed and cogenerating. Hence, we can fix for each regular uncountable $\lambda \leq \kappa$ a family \mathcal{C}_{λ} of $<\lambda$-presented modules given by Proposition 2.4 used with $\mathcal{G}=\mathcal{B}$. Note that we can without loss of generality assume that \mathcal{C}_{λ} is a λ-dense system, since we always can add the zero module to \mathcal{C}_{λ} without changing its properties. Then, we can use Lemma 3.3 if κ is regular, and Lemma 3.2 if κ is singular to obtain a filtration $\left(L_{\beta} \mid \beta \leq \tau\right)$ of M such that for each $\beta<\tau$
(i) L_{β} is $<\kappa$-presented, and
(ii) $M / L_{\beta} \in \mathcal{A}$.

We also have $L_{\beta+1} / L_{\beta} \in \mathcal{A}$ since it is a kernel of the projection $M / L_{\beta} \rightarrow M / L_{\beta+1}$ and \mathfrak{C} is hereditary. Thus, each of the modules $L_{\beta+1} / L_{\beta}$ has an \mathcal{S}-filtration by the inductive hypothesis, so we can refine the filtration $\left(L_{\beta} \mid \beta \leq \tau\right)$ to an \mathcal{S}-filtration $\left(M_{\alpha} \mid \alpha \leq \sigma\right)$ of M and the claim is proved.

Let us note that for the induction step at singular cardinals κ, we can alternatively use the full version of Shelah's Singular Compactness Theorem, considering \mathcal{S}-filtered modules as "free" (cf. [15, XII.1.14 and IV.3.7] or [14]).

It is still left to show that all modules in \mathcal{S} are actually strongly countably presented. Note that it is enough to prove that every countably generated module $M \in \mathcal{A}$ is countably presented. If we prove this, we can take for every module $N \in \mathcal{S}$ a presentation $0 \rightarrow K \rightarrow R^{(\omega)} \rightarrow$ $N \rightarrow 0$ with K a countably generated module. Since \mathfrak{C} is hereditary, we have $K \in \mathcal{A}$. Now, if K is countably presented, it must be isomorphic to a module from \mathcal{S} again, and we can proceed by induction to construct a free resolution of N consisting of countably generated free modules.

So fix $M \in \mathcal{A}$ countably generated. Then M is \mathcal{S}-filtered by the arguments above. Hence, we can consider the family \mathcal{F} given by Lemma 3.4
for M. To finish our proof, we use (4) from this lemma with $N=0$ and X a countable set of generators of M as parameters.
(2). This follows from (1) by [19, Theorem 3.2.1].
(3). Note that \mathcal{B} is always closed under arbitrary direct products. It is closed under infinite direct sums too since these are precisely \mathfrak{F} products corresponding to Fréchet filters \mathfrak{F}. Then \mathcal{B} is closed under pure submodules by (1) and Proposition 2.7. Further, \mathcal{B} is closed under pure epimorphic images and, therefore, also under arbitrary direct limits since \mathfrak{C} is hereditary. Hence \mathcal{B} is definable.
Remark. We can actually prove a little more than we state in Theorem 3.5. Notice that the proof of (1) and (2) works also for any hereditary cotorsion pair cogenerated (as a cotorsion pair) by some cogenerating (in the module category) filter-closed class \mathcal{G}.

To conclude this section, we will discuss the relation of Theorem 3.5 to tilting theory. In fact, it turns out that the countable type and definability of tilting classes is a rather easy consequence of Theorem 3.5. This allows us to give a more direct argumentation for most of the proof of the fact that all tilting classes are of finite type $[8,9]$.

Recall that $\mathfrak{T}=(\mathcal{A}, \mathcal{B})$ is called a tilting cotorsion pair if \mathfrak{T} is hereditary, \mathcal{A} consists of modules of finite projective dimension, and \mathcal{B} is closed under direct sums. In this case, \mathcal{B} is said to be a tilting class.

Theorem 3.6. Let R be a ring and $\mathfrak{T}=(\mathcal{A}, \mathcal{B})$ be a tilting cotorsion pair. Then \mathfrak{T} is generated by a set of strongly countably presented modules and \mathcal{B} is definable.
Proof. Notice that since \mathcal{A} is closed under direct sums, there is $n<\omega$ such that projective dimension of any module from \mathcal{A} is at most n. We will prove the theorem by induction on this n.

If the $n=0$, then $\mathcal{B}=\operatorname{Mod}-R$ and the statement follows trivially. Let $n>0$. Then it is easy to see that the class $\mathcal{D}=\operatorname{Ker} \operatorname{Ext}_{R}^{2}(\mathcal{A},-)$ is tilting and in the corresponding tilting cotorsion pair $(\mathcal{C}, \mathcal{D})$, all modules in \mathcal{C} have projective dimension $<n$ (cf. [4, Lemma 4.8]). Thus \mathcal{D} is definable by the inductive hypothesis. In particular, it is closed under pure submodules. By a simple dimension shifting argument, one observes that \mathcal{B} is closed under pure-epimorphic images. Since, by our assumption, \mathcal{B} is closed under direct sums, it follows that \mathcal{B} is closed under arbitrary direct limits. Thus we may apply Theorem 3.5 to \mathfrak{T} to finish the proof.

4. Definability

In this section, we will give a description of which coherent functors define the class \mathcal{B} of a cotorsion pair $(\mathcal{A}, \mathcal{B})$ satisfying the hypotheses of TCMC. Our aim is twofold: First, vanishing of a coherent functor on a module M translates to the fact that a certain implication between
pp-formulas is satisfied in $M,[13, \S 2.1]$. So there is a clear modeltheoretic motivation. Second, proving that the cotorsion pair is of finite type amounts to showing that \mathcal{B} is defined by a family of coherent functors of the form $\operatorname{Coker} \operatorname{Hom}_{R}(f,-)$ where $f: X \rightarrow Y$ is an inclusion of $X \in \bmod -R$ into a finitely generated projective module Y. The projectivity of Y is essential here: it implies that $Y \in \mathcal{A}$ which in turn means that the functor $\operatorname{Coker}^{\operatorname{Hom}_{R}}(f,-)$ vanishes on all modules from \mathcal{B} if and only if $Y / X \in \mathcal{A}$. Compare this with Remark (ii) at the end of the section.

Even though the finite type question still remains open, we will describe a family of coherent functors defining \mathcal{B} in Theorem 4.9-this can be viewed as a counterpart of [29, Theorem A (3)] for module categories. We will also characterize the countably presented modules from the class \mathcal{A} in Theorem 4.8. In both tasks, the key role is played by the ideal \mathfrak{I} of the category mod- R consisting of the morphisms which, when considered in Mod- R, factor through some module from \mathcal{A}.

For the whole section, let R be a right coherent ring; that is, finitely (and also countably) presented modules are precisely the strongly finitely (countably) presented ones, respectively. We will deal with countable direct systems of finitely generated modules of the form:

$$
C_{0} \xrightarrow{f_{0}} C_{1} \xrightarrow{f_{1}} C_{2} \rightarrow \cdots \rightarrow C_{n} \xrightarrow{f_{n}} C_{n+1} \rightarrow \cdots .
$$

Here, we write for simplicity f_{n} instead of $f_{n+1, n}$. We start with recalling some important preliminary results whose proofs are essentially in [8] and [2]:

Lemma 4.1. Let $\left(C_{n}, f_{n}\right)_{n<\omega}$ be a countable direct system of R modules. Let M be a module such that $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\left(\lim _{n}\right.}, M\right)=0$. Then $\lim ^{1} \operatorname{Hom}_{R}\left(C_{n}, M\right)=0$.
Proof. The proof here is in fact a part of the proof of [8, Theorem 5.1]. If we apply the functor $\operatorname{Hom}_{R}(-, M)$ to the canonical presentation

$$
0 \rightarrow \bigoplus C_{n} \xrightarrow{\phi} \bigoplus C_{n} \rightarrow \underline{\lim } C_{n} \rightarrow 0
$$

of the countable direct $\operatorname{limit} \underset{\longrightarrow}{\lim } C_{n}$, we get exactly the first three terms of the exact sequence defining the first derived functor of inverse limit of the system $\left(H_{n} \mid n<\omega\right)$, where $H_{n}=\operatorname{Hom}_{R}\left(C_{n}, M\right)$:

$$
0 \rightarrow \lim _{\leftrightarrows} H_{n} \rightarrow \prod H_{n} \stackrel{\Delta}{\rightarrow} \prod H_{n} \rightarrow{\underset{\lim }{ }}^{1} H_{n} \rightarrow 0
$$

Since $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M\right)=0$, the map $\Delta=\operatorname{Hom}_{R}(\phi, M)$ is surjective. Hence $\lim ^{1} H_{n}=0$.
Corollary 4.2. Let $\left(C_{n}, f_{n}\right)_{n<\omega}$ be a countable direct system of finitely generated modules. Let M be a module such that $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M^{(\omega)}\right)=$ 0 . Then the inverse system $\left(\operatorname{Hom}_{R}\left(C_{n}, M\right), \operatorname{Hom}_{R}\left(f_{n}, M\right)\right)_{n<\omega}$ is MittagLeffler.

Proof. This follows either immediately from Lemma 2.5 for $\mathcal{G}=\{N \mid$ $\left.N \cong M^{(\omega)}\right\}$, or from Proposition 1.4. Note that in both cases we use the fact that all modules C_{n} are finitely generated.

The following lemma gives us information about a syzygy of a countable direct limit of finitely presented modules and it will be useful for computation.

Lemma 4.3. Let $\left(C_{n}, f_{n}\right)_{n<\omega}$ be a countable direct system of finitely presented modules. Then there exists a countable direct system

of short exact sequences of finitely presented modules such that P_{n} is projective and s_{n} is split mono for each $n<\omega$. In particular, $\lim _{\longrightarrow} P_{n}$ is projective.

Proof. We will construct the short exact sequences by induction on n. For $n=0$, let $0 \rightarrow D_{0} \xrightarrow{i_{0}} P_{0} \xrightarrow{p_{0}} C_{0} \rightarrow 0$ be a short exact sequence with P_{0} projective finitely generated. Then D_{0} is finitely generated, hence finitely presented since we are working over a right coherent ring. If $0 \rightarrow D_{n} \xrightarrow{i_{n}} P_{n} \xrightarrow{p_{n}} C_{n} \rightarrow 0$ has already been constructed, let $q: Q \rightarrow C_{n+1}$ be an epimorphism such that Q is a finitely generated projective module. Now define $P_{n+1}=P_{n} \oplus Q, s_{n}: P_{n} \rightarrow P_{n+1}$ as the canonical inclusion, and $p_{n+1}=\left(f_{n} p_{n}, q\right)$. Then $D_{n+1}=\operatorname{Ker} p_{n+1}$ is finitely presented and g_{n} is determined by the commutative diagram above. The last assertion is clear.

Next, we will need a generalized version of Auslander's well-known lemma. It says that $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{i}, M\right) \cong \lim _{\operatorname{Ext}}{ }_{R}^{1}\left(C_{i}, M\right)$ whenever M is a pure-injective module. Note that for a countable direct system $\left(C_{n}, f_{n}\right)_{n<\omega}$, the fact that M is pure-injective implies that $\lim ^{1} \operatorname{Hom}_{R}\left(C_{n}, M\right)=0$. To see this, we will again use the fact that $\overleftarrow{a f t e r}^{1}$ applying $\operatorname{Hom}_{R}(-, M)$ on the canonical pure-exact sequence

$$
0 \rightarrow \bigoplus C_{i} \xrightarrow{\phi} \bigoplus C_{i} \rightarrow \xrightarrow{\lim } C_{i} \rightarrow 0
$$

we get first three terms of the exact sequence

$$
0 \rightarrow \lim _{\rightleftarrows} H_{n} \rightarrow \prod H_{n} \stackrel{\Delta}{\rightarrow} \prod H_{n} \rightarrow \lim ^{1} H_{n} \rightarrow 0
$$

where $H_{n}=\operatorname{Hom}_{R}\left(C_{n}, M\right)$. But if M is pure-injective, then applying $\operatorname{Hom}_{R}(-, M)$ on (\dagger) yields an exact sequence and consequently $\lim ^{1} \operatorname{Hom}_{R}\left(C_{i}, M\right)=0$. It turns out that the latter condition is sufficient for $\operatorname{Ext}_{R}^{1}(-, M)$ to turn a direct limit into an inverse limit over a right coherent ring:
Lemma 4.4. Let $\left(C_{n}, f_{n}\right)_{n<\omega}$ be a countable direct system and let M be a module such that $\lim ^{1} \operatorname{Hom}_{R}\left(C_{i}, M\right)=0$. Then $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{i}, M\right) \cong$ $\xlongequal[\rightleftarrows]{l i m} \operatorname{Ext}_{R}^{1}\left(C_{i}, M\right)$.

Proof. Consider the direct system of short exact sequences $0 \rightarrow D_{n} \xrightarrow{i_{n}}$ $P_{n} \xrightarrow{p_{n}} C_{n} \rightarrow 0$ given by Lemma 4.3. After applying $\operatorname{Hom}_{R}(-, M)$, we get an inverse system of exact sequences

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}_{R}\left(C_{n}, M\right) \xrightarrow{p_{n}^{*}} & \operatorname{Hom}_{R}\left(P_{n}, M\right) \xrightarrow{i_{n}^{*}} \\
& \xrightarrow{i_{n}^{*}} \operatorname{Hom}_{R}\left(D_{n}, M\right) \xrightarrow{\delta_{n}} \operatorname{Ext}_{R}^{1}\left(C_{n}, M\right) \rightarrow 0 .
\end{aligned}
$$

By assumption, the following short sequence is exact:

$$
0 \rightarrow \underset{\leftrightarrows}{\lim } \operatorname{Hom}_{R}\left(C_{n}, M\right) \rightarrow \lim _{\leftrightarrows}^{\operatorname{Hom}_{R}\left(P_{n}, M\right) \rightarrow \underset{\leftrightarrows}{\leftrightarrows} \operatorname{Im} i_{n}^{*} \rightarrow 0 . . .0 .}
$$

On the other hand, it follows from Proposition 1.4 that ${\underset{\longleftarrow}{c}}^{1} \operatorname{Hom}_{R}\left(P_{n}, M\right)=0$ since $\left(\operatorname{Hom}_{R}\left(P_{n}, M\right), \operatorname{Hom}_{R}\left(s_{n}, M\right)\right)_{n<\omega}$ is a countable inverse system with all the maps (split) epic. Moreover, $\lim ^{1} \operatorname{Im} i_{n}^{*}=0$ since $\lim ^{1}$ is right exact on countable inverse systems. Hence, the following sequence is also exact:

$$
0 \rightarrow \underset{\leftrightarrows}{\lim } \operatorname{Im} i_{n}^{*} \rightarrow \underset{\rightleftarrows}{\lim } \operatorname{Hom}_{R}\left(D_{n}, M\right) \rightarrow \lim _{\leftrightarrows} \operatorname{Ext}_{R}^{1}\left(C_{n}, M\right) \rightarrow 0 .
$$

Putting everything together, we have obtained the following diagram with canonical maps and exact rows:

$$
\begin{aligned}
& \underset{\rightleftarrows}{\lim } \operatorname{Hom}_{R}\left(P_{n}, M\right) \longrightarrow \underset{\lim _{R}\left(D_{n}, M\right) \longrightarrow \operatorname{Hxt}_{R}^{1}\left(C_{n}, M\right) \longrightarrow 0}{ } \\
& \cong \uparrow \quad \cong \uparrow \\
& \operatorname{Hom}\left(\lim _{\longrightarrow} P_{n}, M\right) \longrightarrow \operatorname{Hom}\left(\lim _{\longrightarrow} D_{n}, M\right) \longrightarrow \operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\left.\lim C_{n}, M\right) \longrightarrow 0}\right.
\end{aligned}
$$

It follows that $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M\right) \cong \lim _{\rightleftarrows} \operatorname{Ext}_{R}^{1}\left(C_{n}, M\right)$.
Now, we will focus on T-nilpotent inverse systems. It is clear that every T-nilpotent countable inverse system is Mittag-Leffler. It turns out that the converse is true precisely when the inverse limit of the system vanishes. This is made precise by the following lemma:
Lemma 4.5. Let $\left(H_{n}, h_{n}\right)_{n<\omega}$ be a countable inverse system of abelian groups. Then the following are equivalent:
(1) $\left(H_{n}, h_{n}\right)_{n<\omega}$ is T-nilpotent,
(2) $\left(H_{n}, h_{n}\right)_{n<\omega}$ is Mittag-Leffler and $\lim H_{n}=0$.

Proof. (1) $\Longrightarrow(2)$ follows easily from the definitions. Let us prove $(2) \Longrightarrow(1)$. For each $m<\omega$, let $s(m)>m$ be minimal such that the chain

$$
H_{m} \supseteq h_{m}\left(H_{m+1}\right) \supseteq \cdots \supseteq h_{m} h_{m+1} \cdots h_{n-1}\left(H_{n}\right) \supseteq \cdots
$$

is constant for $n \geq s(m)$ and let $\rho_{m}: \lim H_{n} \rightarrow H_{m}$ be the limit map for each m. It follows easily that $s\left(\overleftarrow{m)} \leq s\left(m^{\prime}\right)\right.$ for $m<m^{\prime}$. We will prove by induction that $\operatorname{Im} \rho_{m}=\operatorname{Im} h_{m} h_{m+1} \cdots h_{s(m)-1}$. Together with the assumption that $\lim _{n}=0$, this will imply the T-nilpotency. Let us fix $x_{m} \in \operatorname{Im} h_{m} h_{m+1} \cdots h_{s(m)-1}$. All we need to do is to construct by induction a sequence of elements $\left(x_{n}\right)_{m<n<\omega}$ such that $x_{n} \in$ $\operatorname{Im} h_{n} h_{n+1} \cdots h_{s(n)-1} \subseteq H_{n}$ and $x_{n-1}=h_{n-1}\left(x_{n}\right)$ for each $n>m$. Suppose we have already constructed x_{n-1} for some n. Then, by the chain condition, there is $y \in H_{s(n)}$ such that $h_{n-1} h_{n} \cdots h_{s(n)-1}(y)=x_{n-1}$. We can put $x_{n}=h_{n} \cdots h_{s(n)-1}(y)$.

We are in a position now to give a connection between vanishing of $\operatorname{Ext}_{R}^{i}$ and the chain conditions mentioned above (the Mittag-Leffler condition and T-nilpotency). We state the connection in the following key lemma:

Lemma 4.6. Let $\left(C_{n}, f_{n}\right)_{n<\omega}$ be a countable direct system of finitely presented modules and let M be an arbitrary module. Consider the following conditions:
(1) $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M^{(\omega)}\right)=\operatorname{Ext}_{R}^{2}\left(\lim _{\longrightarrow}, M^{(\omega)}\right)=0$.
(2) The inverse system $\left(\operatorname{Hom}_{R}\left(\overrightarrow{C_{n}}, M\right), \operatorname{Hom}_{R}\left(f_{n}, M\right)\right)_{n<\omega}$ is MittagLeffler and $\left(\operatorname{Ext}_{R}^{1}\left(C_{n}, M\right), \operatorname{Ext}_{R}^{1}\left(f_{n}, M\right)\right)_{n<\omega}$ is T-nilpotent.
(3) $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M^{(\omega)}\right)=0$.

Then (1) implies (2) and (2) implies (3).
Proof. (1) $\Longrightarrow(2)$. Assume $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M^{(\omega)}\right)=\operatorname{Ext}_{R}^{2}\left(\underset{\longrightarrow}{\lim C_{n}}, M^{(\omega)}\right)=$ 0 . Then the inverse system $\left(\operatorname{Hom}_{R}\left(C_{n}, M\right), \operatorname{Hom}_{R}\left(f_{n}, M\right)\right)_{n<\omega}$ is MittagLeffler by Corollary 4.2. By Proposition 1.4 we have $\lim ^{1} \operatorname{Hom}_{R}\left(C_{n}, M\right)=$ 0 , and subsequently it follows by Lemma 4.4 that

$$
\lim _{\leftrightarrows} \operatorname{Ext}_{R}^{1}\left(C_{n}, M\right) \cong \operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{(\lim } C_{n}, M\right)=0
$$

Next, let $0 \rightarrow D_{n} \rightarrow P_{n} \rightarrow C_{n} \rightarrow 0$ be the countable direct system given by Lemma 4.3. Since

$$
\operatorname{Ext}_{R}^{1}\left(\lim _{\longrightarrow} D_{n}, M^{(\omega)}\right)=\operatorname{Ext}_{R}^{2}\left(\underset{\longrightarrow}{ } \lim _{n}, M^{(\omega)}\right)=0
$$

by dimension shifting, the inverse system $\left(\operatorname{Hom}_{R}\left(D_{n}, M\right)\right)_{n<\omega}$ is also Mittag-Leffler by Corollary 4.2. Then $\left(\operatorname{Ext}_{R}^{1}\left(C_{n}, M\right)\right)_{n<\omega}$ is MittagLeffler as well, since an epimorfic image of a Mittag-Leffler inverse system is Mittag-Leffler again, [20, Proposition 13.2.1]. Thus, $\left(\operatorname{Ext}_{R}^{1}\left(C_{n}, M\right)\right)_{n<\omega}$ is T-nilpotent by Lemma 4.5.
$(2) \Longrightarrow$ (3). Clearly, condition (2) implies that $\left(\operatorname{Hom}_{R}\left(C_{n}, M^{(\omega)}\right)\right)_{n<\omega}$ is Mittag-Leffler and $\left(\operatorname{Ext}_{R}^{1}\left(C_{n}, M^{(\omega)}\right)\right)_{n<\omega}$ is T-nilpotent. Hence

$$
\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M^{(\omega)}\right)=\varliminf_{\longleftrightarrow}^{\lim } \operatorname{Ext}_{R}^{1}\left(C_{n}, M^{(\omega)}\right)=0
$$

by Lemmas 4.4 and 4.5.
With the previous lemma in mind, a natural question arises when $\operatorname{Ext}_{R}^{1}(f, M)$ is a zero map for a homomorphism $f: X \rightarrow Y$ between finitely presented modules. It is possible to characterize such maps f when $\operatorname{Ext}_{R}^{1}(f, M)=0$ as M runs over all modules in the righthand class of a complete cotorsion pair. We state this precisely in Lemma 4.7. In view of [30], the lemma can be viewed as a moduletheoretic counterpart of [29, Lemmas 3.4 (3) and 3.8].

Lemma 4.7. Let $(\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair in $\operatorname{Mod}-R$ and let $f: X \rightarrow Y$ be a homomorphism between R-modules. Then the following are equivalent:
(1) $\operatorname{Ext}_{R}^{1}(f, B)=0$ for every $B \in \mathcal{B}$,
(2) f factors through some module in \mathcal{A}.

Proof. (1) $\Longrightarrow(2)$. Let $0 \rightarrow B \rightarrow A \rightarrow Y \rightarrow 0$ be a special \mathcal{A}-precover of Y and consider the following pull-back diagram:

Then the upper row splits by assumption and f factors through A.
$(2) \Longrightarrow(1)$. This is easy, since the assumption that f factors through some $A \in \mathcal{A}$ implies that $\operatorname{Ext}_{R}^{1}(f, B)$ factors through $\operatorname{Ext}_{R}^{1}(A, B)=0$ for each $B \in \mathcal{B}$.

Now, we can characterize countably presented modules in the lefthand class of a cotorsion pair satisfying the hypotheses of TCMC. Actually, we state the theorem more generally, for cotorsion pairs satisfying somewhat weaker conditions. Recall that by Theorem 3.5, every cotorsion pair satisfying the hypotheses of TCMC is complete.
Theorem 4.8. Let R be a right coherent ring and $(\mathcal{A}, \mathcal{B})$ be a complete hereditary cotorsion pair with \mathcal{B} closed under (countable) direct sums. Denote by \mathfrak{I} the ideal of all morphisms in $\bmod -R$ which factor through some module from \mathcal{A}. Then the following are equivalent for a countably presented module M :
(1) $M \in \mathcal{A}$,
(2) M is a direct limit of a countable system $\left(C_{n}, f_{n}\right)_{n<\omega}$ of finitely presented modules such that $f_{n} \in \mathfrak{I}$ for every n and $\left(\operatorname{Hom}_{R}\left(C_{n}, B\right), \operatorname{Hom}_{R}\left(f_{n}, B\right)\right)_{n<\omega}$ is Mittag-Leffler for each $B \in$ \mathcal{B}.

If, in addition, \mathcal{A} is closed under (countable) direct limits, then these conditions are further equivalent to:
(3) M is a direct limit of a countable system $\left(C_{n}, f_{n}\right)_{n<\omega}$ of finitely presented modules such that $f_{n} \in \mathfrak{I}$ for every n.

Proof. (1) \Longrightarrow (2). Let us fix (any) countable system $\left(D_{n}, g_{n}\right)_{n<\omega}$ of finitely presented modules such that $M=\underline{\lim } D_{n}$. Assume $M \in \mathcal{A}$ and $B \in \mathcal{B}$. Then $B^{(\omega)} \in \mathcal{B}$ and $\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{(\lim } D_{n}, \overrightarrow{B^{(\omega)}}\right)=\operatorname{Ext}_{R}^{2}\left(\lim _{\longrightarrow} D_{n}, B^{(\omega)}\right)=$ 0 by assumption. So the inverse system $\left(\operatorname{Hom}_{R}\left(D_{n}, B\right), \operatorname{Hom}_{R}\left(g_{n}, B\right)\right)_{n<\omega}$ is Mittag-Leffler and the system $\left(\operatorname{Ext}_{R}^{1}\left(D_{n}, B\right), \operatorname{Ext}_{R}^{1}\left(g_{n}, B\right)\right)_{n<\omega}$ is Tnilpotent for each $B \in \mathcal{B}$ by Lemma 4.6.

Now, we will by induction construct a strictly increasing sequence $n_{0}<n_{1}<\cdots$ of natural numbers such that the compositions

$$
f_{i}=g_{n_{i+1}-1} \ldots g_{n_{i}+1} g_{n_{i}}: D_{n_{i}} \rightarrow D_{n_{i+1}}
$$

satisfy $\operatorname{Ext}_{R}^{1}\left(f_{i}, B\right)=0$ for each $i<\omega$ and $B \in \mathcal{B}$. Let us start with $n_{0}=0$. For the inductive step, assume that n_{i} has already been constructed. If there is some $l>n_{i}$ such that $\operatorname{Ext}_{R}^{1}\left(g_{l-1} \ldots g_{n_{i}+1} g_{n_{i}}, B\right)=0$ for each $B \in \mathcal{B}$, we are done since we can put $n_{i+1}=l$. If this was not the case, there would be some $B_{l} \in \mathcal{B}$ for each $l>n_{i}$ such that $\operatorname{Ext}_{R}^{1}\left(g_{l-1} \ldots g_{n_{i}+1} g_{n_{i}}, B_{l}\right) \neq 0$. But this would imply that $\left(\operatorname{Ext}_{R}^{1}\left(D_{n}, \bigoplus_{l>n_{i}} B_{l}\right)\right)_{n<\omega}$ is not T-nilpotent, a contradiction.

Finally, we can just put $C_{i}=D_{n_{i}}$ and observe using Lemma 4.7 that $f_{i} \in \mathfrak{I}$ for each $i<\omega$.
$(2) \Longrightarrow(1)$. This follows directly from Lemma 4.6, since the inverse system $\left(\operatorname{Ext}_{R}^{1}\left(C_{n}, B\right), \operatorname{Ext}_{R}^{1}\left(f_{n}, B\right)\right)_{n<\omega}$ is clearly T-nilpotent for each $B \in \mathcal{B}$ (see Lemma 4.7).
$(2) \Longrightarrow(3)$ is obvious.
(3) \Longrightarrow (1). For each n, write f_{n} as a composition of the form $C_{n} \xrightarrow{u_{n}} A_{n} \xrightarrow{v_{n}} C_{n+1}$ with $A_{n} \in \mathcal{A}$. In this way, we get a direct system

$$
C_{0} \xrightarrow{u_{0}} A_{0} \xrightarrow{v_{0}} C_{1} \xrightarrow{u_{1}} A_{1} \xrightarrow{v_{1}} C_{2} \xrightarrow{u_{2}} \cdots .
$$

Now, $\lim _{\longrightarrow n<\omega} C_{n}=\lim _{\vec{\rightarrow}<\omega} A_{n}$. Hence $M \in \mathcal{A}$ since \mathcal{A} is closed under countable direct limits.

The preceding theorem allows us to characterize modules in the righthand class of a cotorsion pair satisfying the assumptions of TCMC. Again, we state the following theorem for more general cotorsion pairs than those in question for TCMC. Note that for projective cotorsion pairs over self-injective artin algebras, the following statement is a consequence of [30, Corollary 7.7] and [29, Theorem A].

Theorem 4.9. Let R be a right coherent ring and $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in Mod- R with \mathcal{B} closed under unions of well-ordered chains. Denote by \mathfrak{I} the ideal of all morphisms in $\bmod -R$ which factor through some module from \mathcal{A}. Then the following are equivalent:
(1) $B \in \mathcal{B}$,
(2) $\operatorname{Ext}_{R}^{1}(f, B)=0$ for each $f \in \mathfrak{I}$.

Proof. (1) $\Longrightarrow(2)$. This is clear, since in this case, for each $f \in \mathfrak{I}$, the map $\operatorname{Ext}_{R}^{1}(f, B)$ factors through $\operatorname{Ext}_{R}^{1}(A, B)=0$ for some $A \in \mathcal{A}$.
$(2) \Longrightarrow(1)$. Recall that the cotorsion pair is of countable type and complete by Theorem 3.5. Moreover, every countably presented module in \mathcal{A} can be expressed as a direct limit of a direct system $\left(C_{n}, f_{n}\right)_{n<\omega}$ with all the morphisms f_{n} in \mathfrak{I} by Theorem 4.8.
Let us define a class of modules \mathcal{C} as

$$
\mathcal{C}=\left\{M \in \operatorname{Mod}-R \mid \operatorname{Ext}_{R}^{1}(f, M)=0 \text { for each } f \in \mathfrak{I}\right\}
$$

By definition $\mathcal{B} \subseteq \mathcal{C}$.
Note that since every $f \in \mathfrak{I}$ is a morphism between strongly finitely presented modules, say $f: X \rightarrow Y$, and it is not difficult to see that the functors $\operatorname{Ext}_{R}^{1}(X,-)$ and $\operatorname{Ext}_{R}^{1}(Y,-)$ are coherent in this case, so is the functor $F_{f}=\operatorname{Im} \operatorname{Ext}_{R}^{1}(f,-)$. Hence \mathcal{C} is a definable class as it is defined by vanishing of the functors F_{f} where f runs through a representative set of morphisms from \mathfrak{I}. In particular, this means that showing $\mathcal{C} \subseteq \mathcal{B}$ reduces just to showing that every pure-injective module $M \in \mathcal{C}$ is already in \mathcal{B}, since definable classes are determined by the pure-injective modules they contain.

To this end, assume that $M \in \mathcal{C}$ is pure-injective and $A \in \mathcal{A}$ is countably presented. Then $A=\underline{\longrightarrow} C_{n}$ where $\left(C_{n}, f_{n}\right)_{n<\omega}$ is a direct system such that $f_{n} \in \mathfrak{I}$ for each n. In particular, $\operatorname{Ext}_{R}^{1}\left(f_{n}, M\right)=0$ by assumption and

$$
\operatorname{Ext}_{R}^{1}(A, M)=\operatorname{Ext}_{R}^{1}\left(\underset{\longrightarrow}{\lim } C_{n}, M\right) \cong \lim _{\leftrightarrows} \operatorname{Ext}_{R}^{1}\left(C_{n}, M\right)=0
$$

by Auslander's lemma. Finally, since $(\mathcal{A}, \mathcal{B})$ is of countable type and A was arbitrary, it follows that $M \in \mathcal{B}$.

Remark. (i) Countable type of the cotorsion pair considered in Theorem 4.9 together with Lemma 3.4 imply that when defining \mathfrak{I}, we may assume that the modules from \mathcal{A} through which the maps $f \in \mathfrak{I}$ are required to factorize are all countably presented.
(ii) To determine which implication of pp-formulas corresponds to the coherent functor F_{f} from the proof of Theorem 4.9, we build the following commutative diagram

with F_{X}, F_{Y} finitely generated free, K, L finitely presented, s a split embedding and i, i_{X}, i_{Y} inclusions. Now, an equivalent statement to $F_{f}(M)=0$ is that every homomorphism from K into M which extends
to L must extend to F_{X} as well, and this can be routinely translated to an implication between two pp-formulas to be satisfied in M. If we denote by H the pushout of i and i_{X}, and by h the pushout map $L \rightarrow$ H, then the latter actually means that $\operatorname{Coker}^{\operatorname{Hom}} \mathrm{H}_{R}(h, M)=0$. Thus, Coker $\operatorname{Hom}_{R}(h,-)$ is a coherent functor which may be equivalently used instead of F_{f} when defining \mathcal{B}.

5. Direct limits and pure-epimorphic images

In the cases when TCMC holds true, the class \mathcal{A} of any cotorsion pair $(\mathcal{A}, \mathcal{B})$ meeting its assumptions must be closed under pure-epimorphic images. Indeed, in this setting, we have $\mathcal{A}=\underset{\longrightarrow}{\lim }(\mathcal{A} \cap \bmod -R)$ and the latter class is closed under pure-epimorphic images by the well-known result of Lenzing (cf. [32] or [19, Lemma 1.2.9]). In this section, we prove that the hypotheses of TCMC do always imply that \mathcal{A} is closed under pure-epimorphic images. As a consequence, we prove that every complete cotorsion pair with both classes closed under arbitrary direct limits is cogenerated by a single pure-injective module - this can be viewed as a module-theoretic counterpart of [29, Theorem C].

Note that the first part - to make sure that \mathcal{A} is closed under pureepimorphic images - is the crucial one. For projective cotorsion pairs over self-injective algebras which satisfy the hypotheses of TCMC, this property follows by analysis of the proofs in [29] and [30]. But when proving this in a more general setting, one obstacle appears. Namely, complete cotorsion pairs provide us with approximations (special precovers and preenvelopes) which are not functorial in general. Therefore, implementing the rather simple underlying idea-expressing each module in \mathcal{A} in terms of direct limits of \mathcal{A}-precovers of finitely presented modules and proving that this transfers to pure-epimorphic images requires several technical steps. In particular, we need special indexing sets for our direct systems which we call inverse trees.

We start with a preparatory lemma. Recall that for an ordinal number α, we denote by $|\alpha|$ the cardinality of α when viewed as the set of all smaller ordinals.

Definition 5.1. A direct system $\left(M_{i}, f_{j i} \mid i, j \in I \& i \leq j\right)$ of R modules is said to be continuous if ($M_{k}, f_{k j} \mid j \in J$) is the direct limit of the system $\left(M_{i}, f_{j i} \mid i, j \in J \& i \leq j\right)$ whenever J is a directed subposet of I and k is a supremum of J in I.

Lemma 5.2. Let κ be an infinite cardinal and M be a κ-presented module. Then M is a direct limit of a continuous well-ordered system $\left(M_{\alpha}, f_{\beta \alpha} \mid \alpha \leq \beta<\kappa\right)$ such that for all $\alpha<\kappa, M_{\alpha}$ is $|\alpha|$-presented.
Proof. We can start as in Lemma 1.1. Let

$$
\bigoplus_{\beta<\kappa} x_{\beta} R \xrightarrow{g} \bigoplus_{\gamma<\kappa} y_{\gamma} R \rightarrow M \rightarrow 0
$$

be a free presentation of M. For each $\alpha<\kappa$, let X_{α} be the subset of all ordinals $\beta<\alpha$ such that $f\left(x_{\beta}\right) \in \bigoplus_{\gamma<\alpha} y_{\gamma} R$. If we define M_{α} as the cokernel of the restriction $\bigoplus_{\beta \in X_{\alpha}} x_{\beta} R \rightarrow \bigoplus_{\gamma<\alpha} y_{\gamma} R$ of g, it is easy to see that the direct system $\left(M_{\alpha} \mid \alpha<\kappa\right)$ together with the natural maps has the properties we require.

For a set X, we will denote by X^{*} the set of all finite strings over X, that is, all functions $u: n \rightarrow X$ for $n<\omega$. We will denote strings by letters u, v, w, \ldots and write them as sequences of elements of X, which we will denote by Greek letters for a reason which will be clear soon. For example, we write $u=\alpha_{0} \alpha_{1} \ldots \alpha_{n-1}$. When u, v are strings, we denote by $u v$ their concatenation, we define the length of a string u in the usual way and denote it by $\ell(u)$, and we identify strings of length 1 with elements in X. The empty string is denoted by \varnothing. Note that the set X^{*} together with the concatenation operation is nothing else than the free monoid over X.

Definition 5.3. Let κ be an infinite cardinal and κ^{*} be the free monoid over κ. Let us equip $\kappa^{*} \backslash\{\varnothing\}$ with a partial order in the following way: If $u=\alpha_{0} \alpha_{1} \ldots \alpha_{n-1}$ and $v=\beta_{0} \beta_{1} \ldots \beta_{m-1}$, we put $u \leq v$ if
(1) $n \geq m$,
(2) $\alpha_{0} \alpha_{1} \ldots \alpha_{m-2}=\beta_{0} \beta_{1} \ldots \beta_{m-2}$, and
(3) $\alpha_{m-1} \leq \beta_{m-1}$ as ordinal numbers.

Then an inverse tree over κ is the subposet of $\left(\kappa^{*} \backslash\{\varnothing\}, \leq\right)$ defined as

$$
\begin{aligned}
& I_{\kappa}=\left\{\alpha_{0} \alpha_{1} \ldots \alpha_{n-1} \mid\right. \\
&\left.(\forall i \leq n-2)\left(\alpha_{i} \text { is infinite, non-limit \& } \alpha_{i+1}<\left|\alpha_{i}\right|\right)\right\}
\end{aligned}
$$

For convenience, given a non-empty string $u=\alpha_{0} \alpha_{1} \ldots \alpha_{n-1} \in \kappa^{*}$, we define the tail of u, denoted by $t(u)$, to be the last symbol α_{n-1} of u, and the rank of $u, \operatorname{rk}(u)$, to be the cardinal number $\left|\alpha_{n-1}\right|$. Notice that in this terminology, the tail of a string $u \in I_{\kappa}$ is allowed to be a limit or finite ordinal.

Having defined inverse trees, we can start collecting basic properties of the partial ordering:

Lemma 5.4. Let $\left(I_{\kappa}, \leq\right)$ be an inverse tree, and let v and $u=$ $\beta_{0} \ldots \beta_{m-2} \beta_{m-1}$ be two elements of I_{κ} such that $v<u$. Then there is $w \in I_{\kappa}$ such that $v \leq w<u$ and one of the following cases holds true:
(1) There is an ordinal $\gamma<\beta_{m-1}$ such that $w=\beta_{0} \beta_{1} \ldots \beta_{m-2} \gamma$.
(2) There is an ordinal $\gamma<\left|\beta_{m-1}\right|$ such that $w=\beta_{0} \beta_{1} \ldots \beta_{m-2} \beta_{m-1} \gamma$.

Proof. This follows easily from the definition. Notice that (2) can only hold if $\beta_{m-1}=t(u)$ is infinite and non-limit.

As an immediate corollary, we will see that the properties of $u \in I_{\kappa}$ with respect to the ordering depend very much on the tail (and rank) of u :

Corollary 5.5. Let $u=\alpha_{0} \ldots \alpha_{n-2} \alpha_{n-1} \in I_{\kappa}$. Then the following hold in (I_{κ}, \leq):
(1) If $t(u)=0$, then u is a minimal element.
(2) If $t(u)$ is non-zero finite, then u has a unique immediate predecessor.
(3) If $t(u)$ is an infinite non-limit ordinal, then $u=\sup \{u \gamma \mid \gamma<$ $\operatorname{rk}(u)\}$.
(4) If $t(u)$ is a limit ordinal, then $u=\sup \left\{\alpha_{0} \ldots \alpha_{n-2} \gamma \mid \gamma<t(u)\right\}$.

We have seen that an element $u \in I_{\kappa}$ can be expressed as a supremum of a chain of strictly smaller elements if and only if $\operatorname{rk}(u)$ is infinite. If so, this chain depends on whether $t(u)$ is a limit ordinal or not. We will prove in the next lemma that as far as we are concerned with continuous direct systems indexed with I_{κ}, this expression of u as a supremum is essentially unique.

Lemma 5.6. Let $u \in I_{\kappa}$ be of infinite rank and C be the chain as in Corollary 5.5 (3) or (4) such that $u=\sup C$ in I_{κ}. Let $J \subseteq I_{\kappa}$ be a directed subposet of I_{κ} such that $u=\sup J$ in I_{κ} and $u \notin J$. Then $C \cap J$ is cofinal in J.
Proof. Choose some $j \in J$ of the least possible length. Since J is directed, u is the supremum of the upper set $\uparrow j=\{i \in J \mid i \geq j\}$, too. By the definition of the ordering and the fact that j has been taken of the least possible length, we see that each $i \in(\uparrow j)$ is of the form $\beta_{0} \beta_{1} \ldots \beta_{m-2} \gamma_{i}$ where $\beta_{0}, \beta_{1}, \ldots, \beta_{m-2}$ are fixed and $\gamma_{i}<\left|\beta_{m-2}\right|$. Thus $u=\beta_{0} \beta_{1} \ldots \beta_{m-2}$ provided that $\sup \left\{\gamma_{i} \mid i \in(\uparrow j)\right\}=\left|\beta_{m-2}\right|$ (case (3)), and $u=\beta_{0} \beta_{1} \ldots \beta_{m-2} \beta_{m-1}$ if $\beta_{m-1}=\sup \left\{\gamma_{i} \mid i \in(\uparrow j)\right\}<\left|\beta_{m-2}\right|$ (case (4)). Hence, $\uparrow j \subseteq C \cap J$ by assumption, and $C \cap J$ is cofinal in J since $\uparrow j$ is.

So far, we have studied elements strictly smaller than a given $u \in I_{\kappa}$. But, we will also need to look "upwards":

Lemma 5.7. Let $\left(I_{\kappa}, \leq\right)$ be an inverse tree. Then
(1) For each $u \in I_{\kappa}$, the upper set $\uparrow u=\left\{w \in I_{\kappa} \mid w \geq u\right\}$ is well-ordered.
(2) $\left(I_{\kappa}, \leq\right)$ is directed.
(3) Every non-empty bounded subset $X \subseteq I_{\kappa}$ has a supremum in I_{κ}.
Proof. (1). It follows from the definition that $\uparrow u$ is a totally ordered subset of I_{κ}. If $X \subseteq(\uparrow u)$ is nonempty, then the longest string $u \in X$ with the minimum tail $t(u)$ is the least element in X. Hence, $\uparrow u$ is well-ordered.
(2). Let $u=\alpha_{1} \ldots \alpha_{n-1}, v=\beta_{1} \ldots \beta_{m-1}$ be elements in I_{κ}. Then $\max \left\{\alpha_{1}, \beta_{1}\right\}$, viewed as a string of length 1 , is greater than both u and v.
(3). Suppose $X \subseteq I_{\kappa}$ is non-empty and has an upper bound $u \in I_{\kappa}$. In other words, $u \in Y$ for $Y=\bigcap_{w \in X}(\uparrow w)$. But since for any $v \in X$ clearly $Y \subseteq(\uparrow v)$, there must be the least element in Y, which is by definition the supremum of X.

In view of the preceding lemma, we can introduce the following definition:

Definition 5.8. Let ($\left.I_{\kappa}, \leq\right)$ be an inverse tree and $u=\alpha_{0} \ldots \alpha_{n-2} \alpha_{n-1} \in$ I_{κ}. Then the successor of u in I_{κ} is defined as $\mathrm{s}(u)=\alpha_{0} \ldots \alpha_{n-2} \beta$ where $\beta=\alpha+1$ is the ordinal successor of α. Similarly, if $t(u)=\alpha_{n-1}$ is nonlimit and non-zero, we define the predecessor of u as $\mathrm{p}(u)=\alpha_{0} \ldots \alpha_{n-2} \gamma$ where $\gamma=\alpha-1$ is the ordinal predecessor of α.

Note that by Lemma 5.7, $\mathrm{s}(u)$ is the unique immediate successor of u in $\left(I_{\kappa}, \leq\right)$. On the other hand, even if $\mathrm{p}(u)$ is defined, there still may be other elements in I_{κ} less than u that are incomparable with $\mathrm{p}(u)$-see Lemma 5.4. We can summarize our observations in a figure showing "neighbourhoods" of elements $u \in I_{\kappa}$ depending on $t(u)$, where $w \in \kappa^{*}$ is the string obtained from u by removing its last symbol:

$t(u)$ infinite and non-limit	$t(u)$ limit
$\mathrm{p}(u) \longrightarrow u \longrightarrow \mathrm{~s}(u)$	$w \gamma \longrightarrow w(\gamma+1) \cdots u \rightarrow \mathrm{~s}(u)$
$u \gamma \longrightarrow u(\gamma+1)$	

This picture also shows the motivation for calling $\left(I_{\kappa}, \leq\right)$ an inverse tree. From each $u \in I_{\kappa}$, there is exactly one possible way towards greater elements, while when traveling in I_{κ} down the ordering, there are many branches. The rank zero elements of I_{κ} can be viewed as leaves. Just the root is missing-it is easy to see that I_{κ} has no maximal element.

Next, we will turn our attention back to modules. We shall see that each infinitely presented module is the direct limit of a special direct system indexed by an inverse tree.

Lemma 5.9. Let κ be an infinite cardinal and M be a κ-presented module. Then M is the direct limit of a continuous direct system $\left(M_{u}, f_{v u} \mid u, v \in I_{\kappa} \& u \leq v\right)$ indexed by the inverse tree I_{κ} and such that M_{u} is $\mathrm{rk}(u)$-presented for each $u \in I_{\kappa}$.

Proof. We will construct the direct system by induction on $\ell(u)$ using Lemma 5.2. If $\ell(u)=1$, then u can be viewed as an ordinal number $<\kappa$ and we just use the modules M_{u} and morphisms $f_{v u}$ obtained for M by Lemma 5.2.

Suppose we have defined M_{u} and $f_{v u}$ for all $u, v \in I_{\kappa}$ with $\ell(u), \ell(v) \leq$ n. Let $v \in I_{\kappa}$ be arbitrary with $\ell(v)=n$ and such that $t(v)$ is infinite and non-limit. Then by using Lemma 5.2 for M_{v}, we obtain a wellordered continuous system ($M_{\alpha}^{v}, f_{\beta \alpha}^{v} \mid \alpha \leq \beta<\operatorname{rk}(v)$), and we set $M_{v \alpha}=M_{\alpha}^{v}$ and $f_{v \beta, v \alpha}=f_{\beta \alpha}^{v}$ for all $\alpha \leq \beta<\operatorname{rk}(v)$. Finally, the morphisms $f_{v, v \alpha}, \alpha<\operatorname{rk}(v)$, will be defined as the colimit maps $M_{\alpha}^{v} \rightarrow$ M_{v}, and the rest of the morphisms $f_{u, v \alpha}$ just by taking the appropriate compositions.

The correctness of this construction is ensured by the properties of I_{κ} proved above, and the fact that $\left(M_{u} \mid u \in I_{\kappa}\right)$ is continuous is taken care of by Lemma 5.6.

The crucial fact about inverse trees is that, under the assumptions of TCMC, they allow us to construct for each module a continuous direct system of special precovers:

Lemma 5.10. Let $(\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair with both classes closed under direct limits, κ be an infinite cardinal, and M be a κ presented module. Then there is a continuous direct system of short exact sequences $0 \rightarrow B_{u} \xrightarrow{\iota_{u}} A_{u} \xrightarrow{\pi_{u}} M_{u} \rightarrow 0$ indexed by I_{κ} such that $B_{u} \in \mathcal{B}, A_{u} \in \mathcal{A}, M_{u}$ is $\operatorname{rk}(u)$-presented for each $u \in I_{\kappa}$, and M is the direct limit of the modules M_{u}.

Proof. We start with the continuous direct system ($M_{u}, f_{v u} \mid u, v \in$ $I_{\kappa} \& u \leq v$) given by Lemma 5.9 and construct the exact sequences for each $u \in I_{\kappa}$ by transfinite induction on $t(u)$.

For each $u \in I_{\kappa}$ of finite rank, we choose a special \mathcal{A}-precover,

$$
0 \rightarrow B_{u} \xrightarrow{\iota_{u}} A_{u} \xrightarrow{\pi_{u}} M_{u} \rightarrow 0
$$

of M_{u}, and if $t(u)>0$, we find appropriate morphisms $g_{u \mathrm{p}(u)}: A_{\mathrm{p}(u)} \rightarrow$ A_{u} and $h_{u \mathrm{p}(u)}: B_{\mathrm{p}(u)} \rightarrow B_{u}$ using the precover property for the map $f_{u \mathrm{p}(u)} \circ \pi_{\mathrm{p}(u)}$.

Suppose that α is a limit ordinal and the sequences $0 \rightarrow B_{u} \xrightarrow{\stackrel{\iota}{\longrightarrow}}$ $A_{u} \xrightarrow{\pi_{u}} M_{u} \rightarrow 0$ and the maps between them have been constructed for all $u \in I_{\kappa}$ with $t(u)<\alpha$. Then for each $v \in I_{\kappa}$ with $t(v)=\alpha$, we define the exact sequence $0 \rightarrow B_{v} \xrightarrow{\iota_{v}} A_{v} \xrightarrow{\pi_{v}} M_{v} \rightarrow 0$ as the direct limit of the direct system of already constructed short exact sequences $0 \rightarrow B_{w} \xrightarrow{\iota_{w}} A_{w} \xrightarrow{\pi_{w}} M_{w} \rightarrow 0$ where w runs over the chain given by Corollary 5.5 (4) used for v. By assumption, we get $A_{v} \in \mathcal{A}$ and $B_{v} \in \mathcal{B}$.

Finally, suppose that $\alpha=\delta+1$ for some infinite δ and we have constructed the exact sequences for all $u \in I_{\kappa}$ such that $t(u) \leq \delta$. Similarly as above, we define for each $v \in I_{\kappa}$ with $t(v)=\alpha$ the exact sequence $0 \rightarrow B_{v} \xrightarrow{\iota_{v}} A_{v} \xrightarrow{\pi_{v}} M_{v} \rightarrow 0$ as the direct limit of the direct system of short exact sequences $0 \rightarrow B_{v \beta} \xrightarrow{\iota_{v \beta}} A_{v \beta} \xrightarrow{\pi_{v \beta}} M_{v \beta} \rightarrow 0$ where β runs over all ordinal numbers $<\operatorname{rk}(v)$. The morphisms $g_{v \mathrm{p}(v)}: A_{\mathrm{p}(v)} \rightarrow A_{v}$ and
$h_{v \mathrm{p}(v)}: B_{\mathrm{p}(v)} \rightarrow B_{v}$ can be defined again by the precover property and the rest of the morphisms by obvious compositions. This concludes the construction.

The fact that the direct system of the exact sequences just constructed is well-defined and continuous follows from the lemmas above, in particular from Lemmas 5.4 and 5.6.

Before stating one of the main results in this section, let us recall that a cotorsion pair satisfying the assumptions of TCMC is complete by Theorem 3.5 (2), thus it fits the setting of the following theorem.
Theorem 5.11. Let $(\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair with both classes closed under direct limits. Then \mathcal{A} is closed under pure epimorphic images.
Proof. Let M be a pure epimorphic image of a module from \mathcal{A}. We can assume that M is not finitely presented since otherwise M is trivially in \mathcal{A}. Hence, Lemma 5.10 gives us a continuous direct system $0 \rightarrow$ $B_{u} \xrightarrow{\iota_{u}} A_{u} \xrightarrow{\pi_{u}} M_{u} \rightarrow 0$ indexed by I_{κ} for some κ, and the direct limit $0 \rightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} M \rightarrow 0$ of this system is a special \mathcal{A}-precover of M. It follows from our assumption on M that π is a pure epimorphism.

Now, M is also the direct limit of some direct system ($\left.K_{i}, k_{j i} \mid i \preceq j\right)$ consisting of finitely presented modules and indexed by some poset (J, \preceq). We claim that although there is no obvious relation between the direct systems ($M_{u} \mid u \in I_{\kappa}$) and ($K_{i} \mid i \in J$), the following holds: For each $i \in J$, there is $s(i) \in J$ such that $i \prec s(i)$ and $k_{s(i) i}$ factors through A_{u} for some $u \in I_{\kappa}$ of finite rank.

To this end, denote for all $i \in J$ by $k_{i}: K_{i} \rightarrow M$ the colimit maps and fix an arbitrary $i \in J$. Then k_{i} can be factorized through π since K_{i} is finitely presented and π is pure. Moreover, since $A=\underset{I_{I_{\kappa}}}{\lim } A_{u}$, there is $u_{1} \in I_{\kappa}$ such that k_{i} factors through $A_{u_{1}}$. If $\operatorname{rk}\left(u_{1}\right)$ is finite, we put $u=u_{1}$. If not, $A_{u_{1}}$ is by Corollary 5.5 the direct limit of a direct system consisting of some modules A_{v} with $t(v)<t\left(u_{1}\right)$. Hence, k_{i} further factors through $A_{u_{2}}$ for some $u_{2} \in I_{\kappa}$ such that $t\left(u_{2}\right)<t\left(u_{1}\right)$. If the rank of u_{2} is finite, we put $u=u_{2}$. Otherwise, we construct in a similar way u_{3} such that $t\left(u_{3}\right)<t\left(u_{2}\right)$, and so forth. Since there are no infinite descending sequences of ordinals, we must arrive at some $u=u_{n}$ of finite rank after finitely many steps.

Hence, there must be $u_{i} \in I_{\kappa}$ of finite rank such that k_{i} factors through $\pi \circ g_{u_{i}}=f_{u_{i}} \circ \pi_{u_{i}}$ where $g_{u_{i}}: A_{u_{i}} \rightarrow A$ and $f_{u_{i}}: M_{u_{i}} \rightarrow M$ are the colimit maps. That is, $k_{i}=f_{u_{i}} \circ \pi_{u_{i}} \circ e_{i}$ for some $e_{i}: K_{i} \rightarrow A_{u_{i}}$ and, since $M_{u_{i}}$ is finitely presented by Lemma 5.10, $f_{u_{i}}$ further factors as $k_{j_{i}} \circ d_{u_{i}}$ for some $d_{u_{i}}: M_{u_{i}} \rightarrow K_{j_{i}}$ and $j_{i} \in J$ such that $j_{i} \succ i$. Together, we have $k_{i}=k_{j_{i}} \circ d_{u_{i}} \circ \pi_{u_{i}} \circ e_{i}$. Thus, using the fact that K_{i} is finitely presented and well-known properties of direct limits, there must exist some $s(i) \succeq j_{i}$ such that $k_{s(i) i}=k_{s(i) j_{i}} \circ d_{u_{i}} \circ \pi_{u_{i}} \circ e_{i}$, and the claim is proved.

Now set $\tilde{J}=J \times\{0,1\}$ and define (\tilde{J}, \preceq) as the poset generated by the relations $(i, 0) \preceq(j, 0)$ and $(i, 0) \preceq(i, 1) \preceq(s(i), 0)$ where $i, j \in J, i \preceq j$. Further, for such i, j, put $K_{(i, 0)}=K_{i}, K_{(i, 1)}=A_{u_{i}}$, $k_{(j, 0),(i, 0)}=k_{j i}, k_{(i, 1),(i, 0)}=e_{i}$, and $k_{(s(i), 0),(i, 1)}=k_{s(i) j_{i}} \circ d_{u_{i}} \circ \pi_{u_{i}}$, using the same notation as above. In this way, defining the remaining morphisms as the appropriate compositions, we obtain the system $\left(K_{x}, k_{y x} \mid x, y \in\right.$ $\tilde{J} \& x \preceq y$) which is easily seen to be direct, it has M as its direct limit, and ($\left.K_{(i, 1)} \mid i \in J\right)$ forms a cofinal subsystem. Therefore, M is a direct limit of this cofinal subsystem, which clearly consists of modules from \mathcal{A}.

Now, we can prove the crucial statement regarding cogeneration of cotorsion pairs by a single pure-injective module. To this end, we need the following notion from [37, Section 9.4]: A pure-injective module N is said to be an elementary cogenerator if every pure-injective direct summand of a module elementarily equivalent to $N^{\aleph_{0}}$ is a direct summand of some power of N. Further recall that the dual module M^{d} of a module M is defined as $M^{d}=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$. It is a well-known fact that any module M is an elementary submodel in its double dual $M^{d d}$ as well as in any reduced \mathfrak{F}-power $M^{I} / \Sigma_{\mathfrak{F}} M^{I}$ provided that \mathfrak{F} is an ultrafilter on $\mathfrak{P}(I)$ (cf. Definition 2.1, these reduced powers are called ultrapowers).
Proposition 5.12. Let $(\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair with \mathcal{B} closed under direct limits. Then there exists a pure-injective module E such that the class $\operatorname{Ker} \operatorname{Ext}_{R}^{1}(-, E)$ coincides with the class of all pureepimorphic images of modules from \mathcal{A}. Moreover, E can be taken of the form $\prod_{k \in K} E_{k}$, with E_{k} indecomposable for each $k \in K$.
Proof. First of all, since \mathcal{B} is closed under direct products and direct limits, it is closed under ultrapowers as well. Thence $M \in \mathcal{B}$ implies by Frayne's Theorem that $N \in \mathcal{B}$ provided that N is a pure-injective direct summand of a module elementarily equivalent to M. In particular, \mathcal{B} is closed under taking double dual modules.

If we denote by $(\mathcal{D}, \mathcal{E})$ the cotorsion pair cogenenerated by the class of all pure-injective modules from \mathcal{B}, then \mathcal{D} is exactly the class of all pure-epimorphic images of modules from \mathcal{A} (cf. [5, Lemmas 2.1 and 2.2]; here, the completeness of $(\mathcal{A}, \mathcal{B})$ and \mathcal{B} being closed under double duals are actually needed).

By [37, Corollary 9.36], for every module M there exists an elementary cogenerator elementarily equivalent to M. Thus, by the first paragraph, we may consider a representative set \mathcal{S} consisting of elementary cogenerators in \mathcal{B} such that any module in \mathcal{B} is elementarily equivalent to a module from \mathcal{S}. Now define E to be the direct product of all modules from \mathcal{S}. To finish the main part of our proof, it is enough to show that any pure-injective module from \mathcal{B} is in $\operatorname{Prod}(E)$, the class
of all direct summands of powers of E. This is sufficient since then the left-hand class of the cotorsion pair cogenerated by $\{E\}$ will coincide with \mathcal{D}.

Let, therefore, $M \in \mathcal{B}$ be a pure-injective module and $N \in \mathcal{S}$ be a module elementarily equivalent to M. By [37, Proposition 2.30], M is a pure submodule (hence a direct summand) in a module elementarily equivalent to $N^{\aleph_{0}}$. Thus M is a direct summand of some power of N by the definition of elementary cogenerator.

To prove the moreover statement, first recall that, by a well-known result of Fischer, $E=P E\left(\bigoplus_{j \in J} E_{j}\right) \oplus F$ where $P E$ stands for pureinjective hull, E_{j} is indecomposable pure-injective for each $j \in J$, and F has no indecomposable direct summands; it may happen that J is empty or $F=0$. By [37, Corollary 4.38], F is a direct summand of a direct product, say $\prod_{l \in L} E_{l}$, of indecomposable pure-injective direct summands of modules elementarily equivalent to E. According to the first paragraph, $E_{l} \in \mathcal{B}$ for every $l \in L$. It follows that $P E\left(\bigoplus_{j \in J} E_{j}\right) \oplus \prod_{l \in L} E_{l}$ cogenerates the same cotorsion pair as E does. Further, $P E\left(\bigoplus_{j \in J} E_{j}\right)$ is a direct summand in $\prod_{j \in J} E_{j}$ and the latter module is in \mathcal{B} since it is elementarily equivalent to $P E\left(\bigoplus_{j \in J} E_{j}\right) \in \mathcal{B}$. (Here, we use the fact that the direct sum is an elementary submodel in its pure-injective hull as well as in the direct product.) Thus, again, $\prod_{k \in J \cup L} E_{k}$ cogenerates the same cotorsion pair as E did.

We are in a position to state the main result of this section. It is in fact an immediate consequence of the previous statements.
Theorem 5.13. Let $\mathfrak{C}=(\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair with both classes closed under direct limits. Then \mathfrak{C} is cogenerated by a direct product of indecomposable pure-injective modules.

Proof. This follows easily by Theorem 5.11 and Proposition 5.12.
Remark. (1). Note that if R is an artin algebra or, more generally, a semi-primary ring and $(\mathcal{A}, \mathcal{B})$ is a projective cotorsion pair satisfying the hypotheses of TCMC, it follows from [31, Corollary 4.5] that the class \mathcal{B} is also of the form $\operatorname{Ker}_{\operatorname{Ext}}^{R}(-, N)$ for a pure-injective module N.
(2). The distinction between closure under direct limits and closure under pure-epimorphic images is rather subtle. The two notions often coincide, but no example of a (hereditary) cotorsion pair $(\mathcal{A}, \mathcal{B})$ with \mathcal{A} closed under direct limits and not closed under pure-epimorphic images is known to the authors as yet.

6. Compactly generated triangulated categories

In this section, we compare the results we have obtained above with the work of Krause on smashing localizations of triangulated categories in [29, 27]. As mentioned before, there is a bijective correspondence
between smashing localizing pairs in the stable module category and certain cotorsion pairs in the usual module category which works for self-injective artin algebras [30]. However, as we want to indicate now, there are strong analogues of both settings well beyond where the correspondence from [30] works. First, we will recall some necessary terminology.

Let \mathcal{T} be a triangulated category which admits arbitrary (set indexed) coproducts. We will not define this concept here since it is well-known and the definition is rather complicated, but we refer for example to [18, IV], [21] or [25, §3]. We say that an object $C \in \mathcal{T}$ is compact if the canonical map $\bigoplus_{i} \operatorname{Hom}_{\mathcal{T}}\left(C, X_{i}\right) \rightarrow \operatorname{Hom}_{\mathcal{T}}\left(C, \coprod_{i} X_{i}\right)$ is an isomorphism for any family $\left(X_{i}\right)_{i \in I}$ of objects of \mathcal{T}. Here, we will denote coproducts in \mathcal{T} by the symbol \amalg to distinguish them from direct sums of abelian groups. Let us denote by \mathcal{T}_{0} the full subcategory of \mathcal{T} formed by the compact objects. The category \mathcal{T} is then called compactly generated if
(1) \mathcal{T}_{0} is equivalent to a small category.
(2) Whenever $X \in \mathcal{T}$ such that $\operatorname{Hom}_{\mathcal{T}}(C, X)=0$ for all $C \in \mathcal{T}_{0}$, then $X=0$.

As an important example here, let R be a quasi-Frobenius ring, that is a ring for which projective and injective modules coincide, and let Mod $-R$ be the stable category, that is the quotient of Mod- R modulo the projective modules. Then Mod- R is triangulated [21] and compactly generated [29, §1.5]. Moreover, compact objects are precisely those isomorphic in Mod- R to finitely generated R-modules. Other examples of compactly generated triangulated categories are unbounded derived categories of module categories and the stable homotopy category.

Let \mathcal{X} be a full triangulated subcategory of \mathcal{T}. Then \mathcal{X} is called localizing if \mathcal{X} is closed under forming coproducts with respect to \mathcal{T}. We call \mathcal{X} strictly localizing if the inclusion $\mathcal{X} \rightarrow \mathcal{T}$ has a right adjoint. Finally, \mathcal{X} is said to be smashing if the right adjoint preserves coproducts. Note that being a smashing subcategory is stronger than being strictly localizing, which in turn is stronger than being a localizing subcategory.

A localizing subcategory $\mathcal{X} \subseteq \mathcal{T}$ is generated by a class \mathcal{C} of objects in \mathcal{T} if it is the smallest localizing subcategory of \mathcal{T} containing \mathcal{C}. Notice that \mathcal{T} itself is generated by \mathcal{T}_{0} as a localizing subcategory (cf. [39, §5] or [35, Theorem 2.1]).
As in [30], we define $(\mathcal{X}, \mathcal{Y})$ to be a localizing pair if \mathcal{X} is a strictly localizing subcategory of \mathcal{T} and $\mathcal{Y}=\operatorname{Ker} \operatorname{Hom}_{\mathcal{T}}(\mathcal{X},-)$. The objects in \mathcal{Y} are then called \mathcal{X}-local. Note that this definition makes sense also for non-compactly generated triangulated categories and with this in mind, $(\mathcal{X}, \mathcal{Y})$ is a localizing pair in \mathcal{T} if and only if $(\mathcal{Y}, \mathcal{X})$ is a localizing pair in $\mathcal{T}^{\text {op }}$. Moreover, the class \mathcal{X} is smashing if and only if the class \mathcal{Y} of all \mathcal{X}-local objects is closed under coproducts.

There is a useful analogue of countable direct limits in a triangulated category, called a homotopy colimit. Let

$$
X_{0} \xrightarrow{\varphi_{0}} X_{1} \xrightarrow{\varphi_{1}} X_{2} \xrightarrow{\varphi_{2}} \cdots
$$

be a sequence of maps in \mathcal{T}. A homotopy colimit of the sequence, denoted by hocolim X_{i}, is by definition an object X which occurs in the triangle

$$
\coprod_{i<\omega} X_{i} \xrightarrow{\Phi} \coprod_{i<\omega} X_{i} \rightarrow X \rightarrow \coprod_{i<\omega} X_{i}[1]
$$

where the i-th component of the map Φ is the composite

$$
X_{i} \xrightarrow{\binom{\mathrm{id}}{-\varphi_{i}}} X_{i} \amalg X_{i+1} \xrightarrow{j} \coprod_{i<\omega} X_{i}
$$

and j is the split monomorphism to the coproduct. Note that a homotopy colimit is unique up to a (non-unique) isomorphism. As an easy but important fact, we point up that when applying the functor $\operatorname{Hom}_{\mathcal{T}}(-, Z)$ on (\ddagger) for any $Z \in \mathcal{T}$, we get an exact sequence

$$
\left.\begin{array}{rl}
0 \leftarrow \lim ^{1} \operatorname{Hom}_{\mathcal{T}}\left(X_{i}, Z\right) \leftarrow \\
& \leftarrow \prod \operatorname{Hom}_{\mathcal{T}}\left(X_{i}, Z\right) \stackrel{\Phi^{*}}{\leftarrow} \prod \operatorname{Hom}_{\mathcal{T}}\left(X_{i}, Z\right) \leftarrow \\
& \leftarrow \lim _{\rightleftarrows}^{\operatorname{Hom}}\left(X_{i}, Z\right)
\end{array}\right) \leftarrow 0
$$

where $\Phi^{*}=\operatorname{Hom}_{\mathcal{T}}(\Phi, Z)$ and $\lim ^{1}$ is the first derived functor of inverse limit.

Having recalled the terminology, we also recall the crucial correspondence between cotorsion pairs and localizing pairs shown in [30]:

Theorem 6.1. Let R be a self-injective artin algebra, $\operatorname{Mod}-R$ the category of all right R-modules and Mod- R the stable category. Then the assignment

$$
(\mathcal{A}, \mathcal{B}) \rightarrow(\underline{\mathcal{A}}, \underline{\mathcal{B}})
$$

gives a bijective correspondence between projective cotorsion pairs in Mod- R and localizing pairs in Mod- R. Moreover, the following hold:
(1) $\underline{\mathcal{A}}$ is smashing in Mod- R if and only if both \mathcal{A} and \mathcal{B} are closed under direct limits in Mod- R.
(2) $\underline{\mathcal{A}}$ is generated, as a localizing subcategory in Mod- R, by a set of compact objects if and only if $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair of finite type in Mod- R.

Proof. This is an immediate consequence of [30, Theorem 7.6 and Corollary 7.7] and [4, Corollary 4.6].

We have proved in Theorem 3.5 that any cotorsion pair $(\mathcal{A}, \mathcal{B})$ coming from a smashing localizing pair is of countable type. We show that it is possible to state a similar countable type result for Mod- R purely in the language of triangulated categories.

Definition 6.2. Let \mathcal{T} be a compactly generated triangulated category. We call an object $X \in \mathcal{T}$ countable if it is isomorphic to the homotopy colimit of a sequence of maps $X_{0} \xrightarrow{\varphi_{0}} X_{1} \xrightarrow{\varphi_{1}} X_{2} \xrightarrow{\varphi_{2}} \cdots$ between compact objects. Furthermore, let \mathcal{T}_{ω} stand for the full subcategory of \mathcal{T} formed by all countable objects.

Note that \mathcal{T}_{ω} is skeletally small. Now we can state the following theorem:
Theorem 6.3. Let R be a self-injective artin algebra and $\mathcal{T}=\underline{\operatorname{Mod}-} R$ the stable category of right R-modules. Then every smashing subcategory of \mathcal{T} is generated, as a localizing subcategory of \mathcal{T}, by a set of countable objects.

We postpone the proof until after a few preparatory observations and lemmas. First note that countable objects in Mod- R for a self-injective algebra R are precisely those isomorphic in Mod- R to countably generated modules from Mod- R, see [39, Lemma 4.3].

Next, we recall a technical statement concerning vanishing of derived functors of inverse limits. We recall that lim ${ }^{k}$ stands for the k-th derived functor of inverse limit and, for convenience, we let $\aleph_{-1}=1$.

Lemma 6.4. [33] Let R be a ring and I be a directed set whose smallest cofinal subset has cardinality \aleph_{α}, where α is an ordinal number or -1 . Put

$$
d=\sup \left\{k<\omega \mid \lim _{\rightleftarrows}^{k} N_{i} \neq 0 \text { for some }\left(N_{i}\right)_{i \in I^{\text {op }}}\right\}
$$

where $\left(N_{i}\right)_{i \in I^{\text {op }}}$ stands for an inverse system of right R-modules indexed by $I^{o p}$. Then $d=\alpha+1$ if α is finite and $d=\omega$ if α is an infinite ordinal number.

The latter lemma has important consequences for direct limits that are "small enough". Recall that given a class \mathcal{C} of modules, we denote by $\operatorname{Add} \mathcal{C}$ the class of all direct summands of arbitrary direct sums of modules in \mathcal{C}.

Lemma 6.5. Let R be a ring and $\left(M_{i}\right)_{i \in I}$ be a direct system of R modules such that $|I|<\aleph_{\omega}$. Then there is an exact sequence:

$$
0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow \underset{\longrightarrow}{\lim } M_{i} \rightarrow 0,
$$

where n is a non-negative integer and $X_{j} \in \operatorname{Add}\left\{M_{i} \mid i \in I\right\}$ for all $j=0, \ldots, n$.
Proof. Consider the canonical presentation of $\underset{\longrightarrow}{\lim } M_{i}$:

$$
\cdots \xrightarrow{\delta_{2}} \bigoplus_{i_{0}<i_{1}<i_{2}} M_{i_{0} i_{1} i_{2}} \xrightarrow{\delta_{1}} \bigoplus_{i_{0}<i_{1}} M_{i_{0} i_{1}} \xrightarrow{\delta_{0}} \bigoplus_{i_{0} \in I} M_{i_{0}} \rightarrow \xrightarrow{\lim } M_{i} \rightarrow 0,
$$

where $M_{i_{0} i_{1} \ldots i_{k}}=M_{i_{0}}$ for all k-tuples $i_{0}<i_{1}<\cdots<i_{k}$ of elements of I. This is an exact sequence and it follows from [23] that

$$
\lim _{\rightleftarrows}^{k} \operatorname{Hom}_{R}\left(M_{i}, Y\right)=\operatorname{Ker} \operatorname{Hom}_{R}\left(\delta_{k}, Y\right) / \operatorname{Im} \operatorname{Hom}_{R}\left(\delta_{k-1}, Y\right)
$$

for any R-module Y and any $k \geq 0$ (we let $\delta_{-1}=0$ here). If we take the smallest n such that $|I| \leq \aleph_{n}$ and $Y=\operatorname{Ker} \delta_{n}$, it follows from Lemma 6.4 that the inclusion

$$
0 \rightarrow \operatorname{Ker} \delta_{n} \rightarrow \bigoplus_{i_{0}<i_{1}<\cdots<i_{n+1}} M_{i_{0} i_{1} \ldots i_{n+1}}
$$

splits since $\lim ^{n+2} \operatorname{Hom}_{R}\left(M_{i}, Y\right)=0$ in this case. The claim of the lemma follows immediately.

Corollary 6.6. Let R be a quasi-Frobenius ring and let $\underline{\mathcal{A}}$ be a localizing subcategory of Mod- R. Assume that $\left(M_{i}\right)_{i \in I}$ is a direct system in Mod- R such that $|I|<\aleph_{\omega}$ and M_{i} is an object of $\mathcal{\mathcal { A }}$ for each $i \in I$. Then also $\xrightarrow{\lim } M_{i}$ is an object of \mathcal{A}.
Proof. Note that any localizing subcategory is closed under direct summands [11]. Then the claim follows immediately from the preceding lemma when taking into account that triangles in Mod- R correspond to short exact sequences in $\operatorname{Mod}-R$ and that the canonical functor Mod- $R \rightarrow$ Mod- R preserves coproducts.

Now we are in a position to prove the theorem.
Proof of Theorem 6.3. Let $\underline{\mathcal{A}}$ be a smashing subcategory of $\mathcal{T}=\underline{\operatorname{Mod}-R}$ and let $(\mathcal{A}, \mathcal{B})$ be the corresponding projective cotorsion pair in Mod- R with \mathcal{B} closed under direct limits given by Theorem 6.1. Then by Theorem 3.5, there is a set \mathcal{S} of countably generated R-modules that generates the cotorsion pair.

Let us denote by \mathcal{L} the localizing subcategory of \mathcal{T} generated by \mathcal{S}, viewed as set of (countable) objects of \mathcal{T}. We claim that then for each $X \in \mathcal{T}$, there is a triangle $X \xrightarrow{w_{X}} B_{X} \rightarrow L_{X} \rightarrow X[1]$ in \mathcal{T} such that $B_{X} \in \underline{\mathcal{B}}$ and $L_{X} \in \mathcal{L}$.

Let us assume for a moment that we have proved the claim and let $A \in \underline{\mathcal{A}}$. If we consider the shifted triangle $L_{A}[-1] \xrightarrow{f} A \xrightarrow{w_{A}} B_{A} \rightarrow L_{A}$, then clearly $w_{A}=0$ and f is split epi. Hence, A is a direct summand of $L_{A}[-1]$ and consequently, since \mathcal{L} is closed under direct summands by [11], $A \in \mathcal{L}$. Thus, $\mathcal{A}=\mathcal{L}$ and the theorem follows.

Therefore, it remains to prove the claim. Let $X \in \mathcal{T}$. If we view X as an R-module, we can construct a special \mathcal{B}-preenvelope $0 \rightarrow X \rightarrow$ $B_{X} \rightarrow L_{X} \rightarrow 0$ following the lines of [19, Theorem 3.2.1]: We construct a well-ordered continuous chain

$$
B_{0} \subseteq B_{1} \subseteq B_{2} \subseteq \cdots \subseteq B_{\alpha} \subseteq \cdots
$$

indexed by ordinal numbers such that $B_{0}=X$ and $B_{\alpha+1}$ is a universal extension of B_{α} by modules from \mathcal{S}. That is, there is an exact sequence of the form:

$$
0 \rightarrow B_{\alpha} \rightarrow B_{\alpha+1} \rightarrow \bigoplus_{j \in J_{\alpha}} Y_{j} \rightarrow 0
$$

where Y_{j} is isomorphic to a module from \mathcal{S} for each $j \in J_{\alpha}$ and the connecting homomorphisms $\delta_{Z}: \operatorname{Hom}_{R}\left(Z, \bigoplus_{j \in J} Y_{j}\right) \rightarrow \operatorname{Ext}_{R}^{1}\left(Z, B_{\alpha}\right)$ are surjective for all $Z \in \mathcal{S}$. In particular, $\operatorname{Ext}^{1}(Z,-)$ applied on $B_{\alpha} \subseteq B_{\beta}$ for any $\alpha<\beta$ gives the zero map. Since all the modules in \mathcal{S} are countably presented, any morphism $\Omega(Z) \rightarrow B_{\aleph_{1}}$ in Mod- R, where $Z \in \mathcal{S}$, factors through the inclusion $B_{\alpha} \subseteq B_{\aleph_{1}}$ for some $\alpha<\aleph_{1}$. It follows that $\operatorname{Ext}_{R}^{1}\left(Z, B_{\aleph_{1}}\right)=0$ for each $Z \in \mathcal{S}$; hence $B_{\aleph_{1}} \in \mathcal{B}$. Now, if we set $L_{\alpha}=B_{\alpha} / X$ for each α, we have a well-ordered continuous chain

$$
L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \cdots \subseteq L_{\alpha} \subseteq \cdots
$$

such that $L_{\alpha+1} / L_{\alpha} \cong B_{\alpha+1} / B_{\alpha} \in \operatorname{Add} \mathcal{S}$. It follows from Eklof's Lemma ([19, Lemma 3.1.2] or [16, Lemma 1]) that $L_{\alpha} \in \mathcal{A}$ for each ordinal α. Hence, $0 \rightarrow X \rightarrow B_{\aleph_{1}} \rightarrow L_{\aleph_{1}} \rightarrow 0$ is a special \mathcal{B}-preenvelope of X.

Now let us focus on the corresponding triangle $X \rightarrow B_{\aleph_{1}} \rightarrow L_{\aleph_{1}} \rightarrow$ $X[1]$ in \mathcal{T}. Clearly $B_{\aleph_{1}} \in \underline{\mathcal{B}}$. Moreover, it follows by a straightforward transfinite induction on α that $L_{\alpha} \in \mathcal{L}$ for each $\alpha \leq \aleph_{1}$. For $\alpha=0$, obviously $L_{0}=0 \in \mathcal{L}$. To pass from α to $\alpha+1$, we use the fact that the third term in the triangle $L_{\alpha} \rightarrow L_{\alpha+1} \rightarrow \coprod_{j \in J_{\alpha}} Y_{j} \rightarrow L_{\alpha}[1]$ is in Add \mathcal{S}. Finally, limit steps are taken care of by Corollary 6.6. The claim is proved and so is the theorem.

Inspired by Theorem 6.3, we can ask the following question:
Question (Countable Telescope Conjecture). Let \mathcal{T} be an arbitrary compactly generated triangulated category. Is every smashing localizing subcategory of \mathcal{T} generated by a set of countable objects? ${ }^{2}$

In this context, it is a natural question if one can characterize the countable objects in a smashing subcategory of a triangulated category. That is, we are looking for a triangulated category analogue of Theorem 4.8. It turns out that there is an analogous statement that holds for any compactly generated triangulated category.

Theorem 6.7. Let \mathcal{T} be a compactly generated triangulated category and let \mathcal{X} be a smashing subcategory of \mathcal{T}. Denote by \mathfrak{I} the ideal of all morphisms between compact objects which factor through some object in \mathcal{X}. Then the following are equivalent for a countable object $X \in \mathcal{T}$:
(1) $X \in \mathcal{X}$,
(2) X is the homotopy colimit of a countable direct $\operatorname{system}\left(X_{n}, \varphi_{n}\right)$ of compact objects such that $\varphi_{n} \in \mathfrak{I}$ for every n.
Proof. (1) \Longrightarrow (2). Since X is countable, we have $X=\underline{\operatorname{hocolim}} Y_{n}$ where $\left(Y_{n}, \psi_{n}\right)$ is a direct system of compact objects (not necessarily from $\mathcal{X})$. Let Z be an \mathcal{X}-local object and let $\tilde{Z}=\coprod_{i<\omega} Z_{i}$, where

[^1]$Z_{i}=Z$ for each $i<\omega$. By assumption, \tilde{Z} is also \mathcal{X}-local. If we apply $\operatorname{Hom}_{\mathcal{T}}(-, \tilde{Z})$ on the triangle $\coprod_{n} Y_{n} \xrightarrow{\Phi} \coprod_{n} Y_{n} \rightarrow X \rightarrow \coprod_{n} Y_{n}[1]$, we see that $\operatorname{Hom}_{\mathcal{T}}(\Phi, \tilde{Z})$ is an isomorphism. Hence we get:

Note also that $\operatorname{Hom}_{\mathcal{T}}\left(Y_{n}, \tilde{Z}\right)$ is canonically isomorphic to $\operatorname{Hom}_{\mathcal{T}}\left(Y_{n}, Z\right)^{(\omega)}$ for each $n<\omega$ since all the Y_{n} are compact. Consequently, the inverse system

$$
\left(\operatorname{Hom}_{\mathcal{T}}\left(Y_{n}, Z\right), \operatorname{Hom}_{\mathcal{T}}\left(\psi_{n}, Z\right)\right)_{n<\omega}
$$

is Mittag-Leffler by Proposition 1.4 and T-nilpotent by Lemma 4.5. Since the class of all \mathcal{X}-local objects is closed under coproducts, we infer, as in the proof of Theorem 4.8, that there are some bounds for T-nilpotency common for all \mathcal{X}-local objects Z. In other words, there is a cofinal subsystem $\left(Y_{n_{k}}, \varphi_{k} \mid k<\omega\right)$ of the direct $\operatorname{system}\left(Y_{n}, \psi_{n}\right)$ such that $\operatorname{Hom}_{\mathcal{T}}\left(\varphi_{k}, Z\right)=0$ for all $k<\omega$ and \mathcal{X}-local objects Z. Note that $X \cong \xrightarrow{\text { hocolim }} Y_{n_{k}}$ since the homotopy colimit does not change when passing to a cofinal subsystem, [36, Lemma 1.7.1].

Finally, if φ is a morphism in \mathcal{T} such that $\operatorname{Hom}_{\mathcal{T}}(\varphi, Z)=0$ whenever Z is \mathcal{X}-local, then φ factors through an object in \mathcal{X} by [29, Lemmas 3.4 and 3.8]. Hence, $\varphi_{k} \in \mathfrak{I}$ for each k and we can just put $X_{k}=Y_{n_{k}}$.
$(2) \Longrightarrow$ (1). If X and $\left(X_{n}, \varphi_{n}\right)$ are as in the assumption, then, by Lemma 4.5,

$$
\lim _{\leftrightarrows}^{\operatorname{Hom}_{\mathcal{T}}\left(X_{n}, Z\right)=0=\lim _{\leftrightarrows}^{1} \operatorname{Hom}_{\mathcal{T}}\left(X_{n}, Z\right), ~}
$$

whenever Z is \mathcal{X}-local. Thus, if we consider the triangle $\coprod_{n} X_{n} \xrightarrow{\Phi}$ $\coprod_{n} X_{n} \rightarrow X \rightarrow \coprod_{n} X_{n}[1]$ defining X, then $\operatorname{Hom}_{\mathcal{T}}(\Phi, Z)$ is an isomorphism. For a similar reason, $\operatorname{Hom}_{\mathcal{T}}(\Phi[1], Z)$ is an isomorphism, and consequently $\operatorname{Hom}_{\mathcal{T}}(X, Z)=0$ for all \mathcal{X}-local objects Z. In other words: $X \in \mathcal{X}$.

Triangulated category analogues of Theorems 4.9 and 5.13, the remaining main results of this paper, have been proved by Krause in [29]. We include the corresponding statements from [29] here to underline how straightforward the translation is. Let us start with Theorem 4.9 actually, [29, Theorem A] served as an inspiration for it:

Theorem 6.8. [29, Theorem A] Let \mathcal{T} be a compactly generated triangulated category and let \mathcal{X} be a smashing subcategory of \mathcal{T}. Denote by \mathfrak{I} the ideal of all morphisms between compact objects which factor through some object in \mathcal{X}. Then the following are equivalent for $Y \in \mathcal{T}$:
(1) Y is \mathcal{X}-local,
(2) $\operatorname{Hom}_{\mathcal{T}}(f, Y)=0$ for each $f \in \mathfrak{I}$.

We conclude the paper with an analogue of Theorem 5.13. Let us first recall that one defines pure-injective objects in a compactly generated triangulated category \mathcal{T} as follows (see [29]): Let us call a morphism
$X \rightarrow Y$ in \mathcal{T} a pure monomorphism if the induced map $\operatorname{Hom}_{\mathcal{T}}(C, X) \rightarrow$ $\operatorname{Hom}_{\mathcal{T}}(C, Y)$ is a monomorphism for every compact objects C. An object X is then called pure-injective if every pure monomorphism $X \rightarrow Y$ splits. As for module categories, the isomorphism classes of indecomposable pure-injective objects form a set which we call a spectrum of \mathcal{T}. The following has been proved in [29]:
Theorem 6.9. [29, Theorem C] Let \mathcal{T} be a compactly generated triangulated category and let \mathcal{X} be a smashing subcategory of \mathcal{T}. Then $X \in \mathcal{X}$ if and only if $\operatorname{Hom}_{\mathcal{T}}(X, Y)=0$ for each indecomposable pureinjective \mathcal{X}-local object Y.

For stable module categories over self-injective artin algebras, the correspondence via Theorem 6.1 works especially well because of the following result from [29]:

Proposition 6.10. [29, Proposition 1.16] Let R be a quasi-Frobenius ring and X be a right R-module. Then X is a pure-injective module if and only if X is a pure-injective object in Mod- R.

References

[1] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Math. Soc. Lect. Note Ser., Vol. 189, Cambridge Univ. Press, Cambridge, 1994.
[2] L. Angeleri Hügel, S. Bazzoni and D. Herbera, A solution to the Baer splitting problem, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2409-2421.
[3] L. Angeleri Hügel, D. Happel and H. Krause, Handbook of Tilting Theory, London Math. Soc. Lect. Note Ser., Vol. 332, Cambridge Univ. Press, 2007.
[4] L. Angeleri Hügel, J. Šaroch and J. Trlifaj, On the telescope conjecture for module categories, J. Pure Appl. Algebra 212 (2008), 297-310.
[5] L. Angeleri Hügel and J. Trlifaj, Direct limits of modules of finite projective dimension, Rings, Modules, Algebras, and Abelian Groups, LNPAM 236 (2004), 27-44.
[6] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.
[7] S. Bazzoni, P. C. Eklof and J. Trlifaj, Tilting cotorsion pairs, Bull. London Math. Soc. 37 (2005), no. 5, 683-696.
[8] S. Bazzoni and D. Herbera, One dimensional tilting modules are of finite type, Algebr. Represent. Theory 11 (2008), no. 1, 43-61.
[9] S. Bazzoni and J. Šťovíček, All tilting modules are of finite type, Proc. Amer. Math. Soc. 135 (2007), no. 12, 3771-3781.
[10] A. Beligiannis Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, Journal of Algebra 288 (2005), 137-211.
[11] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209-234.
[12] A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257-281.
[13] W. W. Crawley-Boevey, Infinite dimensional modules in the representation theory of finite dimensional algebras, in Algebras and Modules I, Canad. Math. Soc. Conf. Proc., Vol. 23, AMS, Providence 1998, 29-54.
[14] P. C. Eklof, Shelah's Singular Compactness Theorem, Publ. Mat. 52 (2008), no. 1, 3-18.
[15] P. C. Eklof and A. H. Mekler, Almost Free Modules, 2nd Ed., NorthHolland Math. Library, Elsevier, Amsterdam 2002.
[16] P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1, 41-51.
[17] L. Fuchs and S. B. Lee, From a single chain to a large family of submodules, Port. Math. (N.S.) 61 (2004), no. 2, 193-205.
[18] S. I. Gelfand and Y. I. Manin, Methods of homological algebra, Second edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[19] R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics 41, Berlin-New York 2006.
[20] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Inst. Hautes Études Sci. Publ. Math. No. 11, 1961.
[21] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.
[22] P. Hill, The third axiom of countability for abelian groups, Proc. Amer. Math. Soc. 82 (1981), 347-350.
[23] C. U. Jensen, Les foncteurs dérivé de $\underset{\rightleftarrows}{\lim }$ et leurs applications en théorie des modules, Lectures Notes in Math. 254, Springer Verlag, Berlin-New York 1972.
[24] C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach S. Publishers, 1989.
[25] B. Keller, Introduction to abelian and derived categories, Representations of reductive groups, 41-61, Publ. Newton Inst., Cambridge Univ. Press, Cambridge, 1998.
[26] B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84 (1994), no. 2, 193-198.
[27] H. Krause, Cohomological quotients and smashing localizations, Amer. J. Math. 127 (2005), no. 6, 1191-1246.
[28] H. Krause, Localization for triangulated categories, preprint.
[29] H. Krause, Smashing subcategories and the telescope conjecture-an algebraic approach, Invent. Math. 139 (2000), no. 1, 99-133.
[30] H. Krause and Ø. Solberg, Applications of cotorsion pairs, J. London Math. Soc. (2) 68 (2003), no. 3, 631-650.
[31] H. Krause and \emptyset. Solberg, Filtering modules of finite projective dimension, Forum Math. 15 (2003), 377-393.
[32] H. Lenzing, Homological transfer from finitely presented to infinite modules, Lectures Notes in Math. 1006, Springer, New York (1983), 734-761.
[33] B. Mitchell, The cohomological dimension of a directed set, Canad. J. Math. 25 (1973), 233-238.
[34] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547-566.
[35] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236.
[36] A. Neeman, Triangulated categories, Annals of Mathematics Studies, 148, Princeton University Press, Princeton, NJ, 2001.
[37] M. Prest, Model theory and modules, London Math. Soc. Lec. Note Ser. 130, Cambridge University Press, Cambridge, 1988.
[38] D. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351-414.
[39] J. Rickard, Idempotent modules in the stable category, J. London Math. Soc. (2) 56 (1997), no. 1, 149-170.
[40] L. Salce, Cotorsion theories for abelian groups, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), pp. 11-32, Academic Press, London-New York, 1979.
[41] J. Šaroch and J. Trlifaj, Completeness of cotorsion pairs, Forum Math. 19 (2007), 749-760.
[42] J. Šťovíček and J. Trlifaj, All tilting modules are of countable type, Bull. Lond. Math. Soc. 39 (2007), 121-132.
[43] J. Šťovíček and J. Trlifaj, Generalized Hill lemma, Kaplansky theorem for cotorsion pairs, and some applications, to appear in Rocky Mountain J. Math.
[44] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
[45] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149213.

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Prague 8, Czech Republic

E-mail address: saroch@karlin.mff.cuni.cz
Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway

E-mail address: stovicek@math.ntnu.no

II.

TELESCOPE CONJECTURE, IDEMPOTENT IDEALS, AND THE TRANSFINITE RADICAL

Abstract

We show that for an artin algebra Λ, the telescope conjecture for module categories is equivalent to certain idempotent ideals of $\bmod \Lambda$ being generated by identity morphisms. As a consequence, we prove the conjecture for domestic standard selfinjective algebras and domestic special biserial algebras. We achieve this by showing that in any KrullSchmidt category with local d.c.c. on ideals, any idempotent ideal is generated by identity maps and maps from the transfinite radical.

This paper has been accepted in Trans. Amer. Math. Soc.

TELESCOPE CONJECTURE, IDEMPOTENT IDEALS, AND THE TRANSFINITE RADICAL

JAN ŠŤOVÍČEK

Abstract

We show that for an artin algebra Λ, the telescope conjecture for module categories is equivalent to certain idempotent ideals of $\bmod \Lambda$ being generated by identity morphisms. As a consequence, we prove the conjecture for domestic standard selfinjective algebras and domestic special biserial algebras. We achieve this by showing that in any Krull-Schmidt category with local d.c.c. on ideals, any idempotent ideal is generated by identity maps and maps from the transfinite radical.

Introduction

The aim of this paper is to further develop and apply connections between seemingly rather different topics in algebra:
(1) localizations of triangulated compactly generated categories;
(2) theory of cotorsion pairs and induced approximations;
(3) the structure of idempotent ideals in a module category;
(4) representation type of a finite dimensional algebra.

The main motivation for this paper was point (1), the study of so called smashing localizations in triangulated compactly generated categories. There is an important conjecture, the telescope conjecture, which roughly says that any smashing localization of a compactly generated triangulated category comes from a set of compact objects. For an extensive study of this problem and explanation of the terminology we refer to work by Krause [18, 16]. Even though the conjecture is known to be false in this generality - see [14] for a simple algebraic counterexample - it is not resolved for many particular important settings. Such special solutions would still have significant consequences. In the case of unbounded derived categories of rings, this is discussed in [16].

Date: April 22, 2008.
2000 Mathematics Subject Classification. 18E35 (primary), 16E30, 16G60 (secondary).

Key words and phrases. Telescope conjecture, idempotent ideals, transfinite radical.

The author was supported by the Research Council of Norway through Storforskproject Homological and geometric methods in algebra, and also by the grant GAČR 201/05/H005 and the research project MSM 0021620839.

In this paper, we will focus on another setting. Let R be a quasiFrobenius ring (that is, the projective and injective left modules coincide), and $\underline{\operatorname{Mod}} R$ be the stable module category of left R-modules. Then $\operatorname{Mod} R$ is a triangulated compactly generated category in the sense of $[18,16]$. If, moreover, R is a self-injective artin algebra, the telescope conjecture has been translated by Krause and Solberg [20] to a statement about modules, or more precisely about certain cotorsion pairs of modules. The precise statements and explanation of terminology are given below. Recently, a positive solution to the telescope conjecture for stable module categories over finite group algebras was annouced by the authors of [4]. Their methods are, however, closely tied to group algebras and do not allow direct generalization to other self-injective artin algebras. We will develop an alternative approach.

The above mentioned version of the telescope conjecture for cotorsion pairs of modules from [20, §7] makes sense not only for self-injective artin algebras, but in fact for any associative ring with unit, leading to a problem in homological algebra which is of interest by itself (cf. [2, $25]$). Even though one loses the translation to triangulated categories, similarities between the new and the original settings are striking and have been analyzed more in detail in [25].

In the present paper, we further develop the approach from [25] and show that the telescope conjecture for module categories depends on the structure of certain idempotent ideals of the category of finitely presented modules. This is another analogy to so called exact ideals from [16]. Further, we prove that the structure of idempotent ideals in the category of finitely presented modules over an artin algebra, as well as in many other categories studied by representation theory, heavily depends on idempotent ideals inside the radical. In particular, if there are no non-zero idempotent ideals in the radical, we get a positive answer to the telescope conjecture.
The condition of no non-zero idempotent ideals in the radical of the module category seems to be closely related to the domestic representation type. These notions were proved to coincide for special biserial algebras by Schröer [27, 24]. A stronger but closely related condition when the infinite radical is nilpotent was studied by several authors, see for example $[15,28,5,6]$. Our main interest in the existing results stems from the fact that they provide us with non-trivial examples of artin algebras over which the telescope conjecture for module categories holds. Some of them, coming from a paper by Skowroński and Kerner [15], are self-injective, thus allowing us to go all the way back and get a statement about smashing localizations of their stable module categories.

Another condition which seems to be closely related to both the domestic representation type and vanishing of the transfinite radical is
that of the Krull-Gabriel dimension of an artin algebra being an ordinal number. The concept of the Krull-Gabriel dimension of a ring R can be interpreted as a measure for complexity of both the category $\mathrm{fp}(\bmod R, \mathrm{Ab})$ of finitely presented additive functors $\bmod R \rightarrow \mathrm{Ab}$, and the lattice of primitive positive formulas over R. Using a result from [19], we prove that the telescope conjecture for module categories holds true if the Krull-Gabriel dimension of the artin algebra in question is an ordinal number.

The author would like to thank Øyvind Solberg for several helpful discussions. The author is also grateful to Otto Kerner for his comments on idempotent ideals in the radical of some module categories and communicating the unpublished result by Dieter Vossieck mentioned in Section 2.

1. Preliminaries

In this text, Λ will always be an artin algebra and all modules will be left Λ-modules. Let us denote by $\operatorname{Mod} \Lambda$ the category of all modules and by $\bmod \Lambda$ the full subcategory of finitely generated modules. Some results in this paper will be proved for more general categories: KrullSchmidt categories with local d.c.c. on ideals as defined in Section 3. This setting includes $\bmod \Lambda$, derived bounded categories, categories of coherent sheaves, and other categories of representation theoretic significance. A reader who is not interested in the full generality can, nevertheless, read the corresponding statements as if they were stated for $\bmod \Lambda$.

A cotorsion pair in $\operatorname{Mod} \Lambda$ is a pair $(\mathcal{A}, \mathcal{B})$ of full subcategories of $\operatorname{Mod} \Lambda$ such that $\mathcal{A}=\operatorname{Ker}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}(-, \mathcal{B})$ and $\mathcal{B}=\operatorname{Ker~}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}(\mathcal{A},-)$. A cotorsion pair is called hereditary if in addition $\operatorname{Ext}_{\Lambda}^{i}(\mathcal{A}, \mathcal{B})=0$ for all $i \geq 2$. This paper deals with the telescope conjecture for module categories (TCMC) as formulated in [20, Conjecture 7.9]. Actually, we slightly alter the assumptions - we require the cotorsion pair in question to be hereditary (since the cotorsion pairs of interest in [20] always are) and relax the condition that [20] imposes on the class \mathcal{A} of the cotorsion pair. We state the conjecture as follows:

Conjecture (A). Let Λ be an artin algebra and let $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod} \Lambda$ such that \mathcal{B} is closed under taking filtered colimits. Then every module in \mathcal{A} is a colimit of a filtered system of finitely generated modules from \mathcal{A}.

Note that, in view of [1, Theorem 1.5], we can equivalently replace filtered colimits by direct limits in the statement above. We say that a cotorsion pair $(\mathcal{A}, \mathcal{B})$ in $\operatorname{Mod} \Lambda$ is of finite type if $\mathcal{B}=\operatorname{Ker}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}(\mathcal{S},-)$ for a set \mathcal{S} of finitely generated modules. Similarly, we define $(\mathcal{A}, \mathcal{B})$ to be of countable type if we can take \mathcal{S} to be a set of countably generated
modules. With this definition we can for any particular algebra Λ equivalently restate Conjecture (A) as follows, see [2, Corollary 4.6]:

Conjecture (B). Let Λ be an artin algebra and let $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod} \Lambda$ such that \mathcal{B} is closed under taking direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

As a tool to handle the conjectures, we will need the notion of an ideal of an additive category. Let \mathcal{C} be a skeletally small additive category. A class \mathfrak{I} of morphisms in \mathcal{C} is called a (2-sided) ideal of \mathcal{C} if \mathfrak{I} contains all zero morphisms, and it is closed under addition and under composition with arbitrary morphisms from left and right, whenever the operations are defined. Let us denote $\mathfrak{I}(X, Y)=\mathfrak{I} \cap \operatorname{Hom}_{\mathcal{C}}(X, Y)$. Note that if $\mathcal{C}=\bmod \Lambda$ then $\mathfrak{I}(X, Y)$ is always a k-submodule of $\operatorname{Hom}_{\Lambda}(X, Y)$ where k is the centre of Λ. Since \mathcal{C} was assumed to be skeletally small, ideals of \mathcal{C} form a set.

We say that an additive category \mathcal{C} is a Krull-Schmidt category if it is skeletally small, every indecomposable object of \mathcal{C} has a local endomorphism ring, and every object of \mathcal{C} (uniquely) decomposes as a finite coproduct of indecomposables. As an example to keep in mind, we can put $\mathcal{C}=\bmod \Lambda$. For Krull-Schmidt categories there is a prominent ideal called the radical - it is the ideal generated by all non-invertible morphisms between indecomposable objects. We denote this ideal by $\operatorname{rad}_{\mathcal{C}}$ and if $\mathcal{C}=\bmod \Lambda$ we use the abbreviated notation $\operatorname{rad}_{\Lambda}$. Let us recall the well known fact that rad ${ }_{\mathcal{C}}$ contains no identity morphisms and, clearly, it is the maximal ideal with this property. Here and also later in this paper we, of course, mean no identity morphisms of non-zero objects since zero morphisms are in any ideal by definition.
Following an idea in [23], we can inductively define transfinite powers \mathfrak{I}^{α} for any ideal \mathfrak{I} and any ordinal number α. Let \mathfrak{I}^{0} be the ideal of all morphisms in \mathcal{C} and $\mathfrak{I}^{1}=\mathfrak{I}$. For a natural number $n \geq 1$, we define \mathfrak{I}^{n} as usual as the ideal generated by all compositions of n-tuples of morphisms from \mathfrak{I}. If α is a limit ordinal, we define $\mathfrak{I}^{\alpha}=\bigcap_{\beta<\alpha} \mathfrak{I}^{\beta}$. If α is infinite non-limit, then uniquely $\alpha=\beta+n$ for some limit ordinal β and natural number $n \geq 1$, and we set $\mathfrak{I}^{\alpha}=\left(\mathfrak{I}^{\beta}\right)^{n+1}$. Note that since we assume that \mathcal{C} is skeletally small, the decreasing chain

$$
\mathfrak{I}^{0} \supseteq \mathfrak{I}^{1} \supseteq \mathfrak{I}^{2} \supseteq \cdots \supseteq \mathfrak{I}^{\alpha} \supseteq \mathfrak{I}^{\alpha+1} \supseteq \ldots
$$

stabilizes for cardinality reasons. Let us denote $\mathfrak{I}^{*}=\bigcap_{\alpha} \mathfrak{I}^{\alpha}$, the minimum of the chain.

We will focus mostly on the case when $\mathfrak{I}=\operatorname{rad}_{\mathcal{C}}$. In this case we call $\operatorname{rad}_{\mathcal{C}}^{*}$ the transfinite radical of \mathcal{C}. Notice that not necessarily $\operatorname{rad}_{\mathcal{C}}^{*}=0$, even when $\mathcal{C}=\bmod \Lambda$ for an artin algebra Λ-see the next section or $[23,27]$. The main goal of this paper is to prove that TCMC formulated as Conjecture (B) holds true over those artin algebras for which $\operatorname{rad}_{\Lambda}^{*}=0$. This applies in particular to:

- [15] standard selfinjective algebras of domestic representation type;
- [27] special biserial algebras of domestic representation type.

Recall that a finite dimensional algebra over an algebraically closed field is of domestic representation type if there is a natural number N such that for each dimension d, all but finitely many indecomposable modules of dimension d belong to at most N one-parametric families.

2. Transfinite radical

Let \mathcal{C} be an additive category. We call an ideal \mathfrak{I} of \mathcal{C} idempotent if $\mathfrak{I}=\mathfrak{I}^{2}$. Equivalently, \mathfrak{I} is idempotent if and only if for each $f \in \mathfrak{I}$ there are $g, h \in \mathfrak{I}$ such that $f=g h$. Using idempotency, we can give the following characterization of the transfinite radical:

Lemma 1. Let \mathcal{C} be a Krull-Schmidt category. Then $\operatorname{rad}_{\mathcal{C}}^{*}$ is the unique maximal idempotent ideal of \mathcal{C} which does not contain any identity morphisms.

Proof. We use the same (just more verbose) proof as the one given for $[19,8.10]$ for module categories. Clearly, $\operatorname{rad}_{\mathcal{C}}^{*}$ contains no identity morphisms since neither $\operatorname{rad}_{\mathcal{C}}$ does. It is easy to check that $\operatorname{rad}_{\mathcal{C}}^{*}$ is idempotent [23, Proposition 0.6]. On the other hand, if \mathfrak{I} is idempotent without identity maps, then $\mathfrak{I}=\mathfrak{I}^{*} \subseteq \operatorname{rad}_{\mathcal{C}}^{*}\left(\right.$ since $\mathfrak{I}=\mathfrak{I}^{\alpha}$ for any ordinal α by idempotency). Hence $\operatorname{rad}_{\mathcal{C}}$ is maximal with respect to those two properties.

There is also a useful characterization of the morphisms in $\operatorname{rad}_{\mathcal{C}}^{*}$ "from inside", sheding more light on the concept than a little cryptic definition as the intersection of a series of transfinite powers. The following statement has been proved in [23] for $\mathcal{C}=\bmod \Lambda$ using standard means similar to those when one deals with Krull dimension of a poset, and the proof reads equally well for any skeletally small Krull-Schmidt category:

Lemma 2. [23, Proposition 0.6] Let \mathcal{C} be a Krull-Schmidt category and f be a morphism in \mathcal{C}. Then $f \in \operatorname{rad}_{\mathcal{C}}^{*}$ if and only if there exists a collection of morphisms $f_{p r}: X_{r} \rightarrow X_{p}$ in $\operatorname{rad}_{\mathcal{C}}$, one for each pair of rational numbers p, r such that $0 \leq p<r \leq 1$, such that
(1) $f_{p s}=f_{p r} f_{r s}$ whenever $p<r<s$;
(2) $f_{01}=f$.

Note that the collection $\left(f_{p r}\right)_{0 \leq p<r \leq 1}$ is nothing else than an inverse system indexed by $[0,1] \cap \mathbb{Q}$. Using the two lemmas above, we can give some examples of what the transfinite radical can be:

- If Λ is an artin algebra of finite representation type, then $\operatorname{rad}_{\Lambda}$ is nilpotent. Hence $\operatorname{rad}_{\Lambda}^{*}=0$.
- If Λ is a tame hereditary artin algebra, then $\operatorname{rad}_{\Lambda}^{\omega+2}=\left(\operatorname{rad}_{\Lambda}^{\omega}\right)^{3}=$ 0 . Hence $\operatorname{rad}_{\Lambda}^{*}=0$.
- If Λ is a standard (that is, having a simply connected Galois covering) selfinjective algebra of domestic representation type, then $\operatorname{rad}_{\Lambda}^{\omega}$ is nilpotent [15]. Hence $\operatorname{rad}_{\Lambda}^{*}=0$.
- If Λ is a special biserial algebra, then $\operatorname{rad}_{\Lambda}^{*}=0$ if and only if $\operatorname{rad}_{\Lambda}^{\omega^{2}}=0$ if and only if Λ is of domestic representation type. If Λ is not domestic, then there exists an indecomposable Λ module X such that $0 \neq \operatorname{rad}_{\Lambda}^{*}(X, X) \subseteq \operatorname{End}_{\Lambda}(X)$ (see [27, Theorem 2 and Prop. 6.2]).
- As special case of the previous point, one may consider "GelfandPonomarev" algebras $\Lambda_{m, n}=k[x, y] /\left(x y, y x, x^{m}, y^{n}\right)$, see [11]. The algebra $\Lambda_{2,3}$ is not of domestic represetation type and provides a very illustrative example of non-zero maps in the transfinite radical, see [23].
- If Λ is a wild hereditary artin algebra, it is conjectured that $\operatorname{rad}_{\Lambda}^{\omega}$ is idempotent. In view of Lemma 1, this cojecture can be rephrased as $\operatorname{rad}_{\Lambda}^{*}=\operatorname{rad}_{\Lambda}^{\omega}$.
- It is an unpublished result due to Dieter Vossieck that for the category $\mathcal{C}=\bmod k\langle x, y\rangle$ of finite dimensional modules over the free algebra $k\langle x, y\rangle$, the radical $\operatorname{rad}_{\mathcal{C}}$ is idempotent. In particular $\operatorname{rad}_{\mathcal{C}}^{*}=\operatorname{rad}_{\mathcal{C}}$.
There is an important consequence of some of the examples above for wild artin algebras over an algebraically closed field. Namely, they always have the transfinite radical non-zero. Let us state this precisely.
Definition 3. Let Λ and Γ be finite dimensional algebras over a field k and let $F: \bmod \Gamma \rightarrow \bmod \Lambda$ be an additive functor. Then F is called a representation embedding if F is faithful, exact, preserves indecomposability (i.e. if X is indecomposable, so is $F X$) and reflects isomorphism classes (i.e. if $F X \cong F Y$ then also $X \cong Y$).

A finite dimensional k-algebra is called wild if for any other finite dimensional algebra Γ over k, there is a representation embedding $\bmod \Gamma \rightarrow \bmod \Lambda$.

The following statement immediately follows from [27, Proposition 6.2] and [23, Lemma 0.2] (the same idea is also presented in [19, 8.15]):

Proposition 4. Let Λ be a wild algebra over an algebraically closed field. Then $\operatorname{rad}_{\Lambda}^{*} \neq 0$. Moreover, there exists an indecomposable Λ module X such that $0 \neq \operatorname{rad}_{\Lambda}^{*}(X, X) \subseteq \operatorname{End}_{\Lambda}(X)$.

3. Idempotent ideals in Krull-Schmidt categories

Let \mathfrak{I} be an ideal of a Krull-Schmidt category. Then clearly, if \mathfrak{I} is generated by a collection of identity morphisms, it is necessarily an idempotent ideal. In the sequel we will show that in "nice" categories,
any idempotent ideal is generated by a collection of identity morphisms together with some morphisms from the transfinite radical. To make the word nice precise, we need the following definition:

Definition 5. A skeletally small additive category \mathcal{C} is said to have local descending chain condition on ideals if for any decreasing series

$$
\mathfrak{I}_{0} \supseteq \mathfrak{I}_{1} \supseteq \mathfrak{I}_{2} \supseteq \ldots
$$

of ideals of \mathcal{C} and any pair of objects X, Y in \mathcal{C}, the decreasing chain

$$
\mathfrak{I}_{0}(X, Y) \supseteq \mathfrak{I}_{1}(X, Y) \supseteq \mathfrak{I}_{2}(X, Y) \supseteq \ldots
$$

stabilizes.
Now, our category is "nice" if it is Krull-Schmidt with local d.c.c. on ideals. In fact, this setting is very common in representation theory. Assume that k is a commutative artinian ring and \mathcal{C} is a skeletally small k-category (Hom-spaces are k-modules and composition is k-linear) and satisfies the following conditions:
(C1) \mathcal{C} has splitting idempotents (that is, idempotent morphisms have kernels in \mathcal{C});
$(\mathrm{C} 2) \mathcal{C}$ is Hom-finite (that is, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a finitely generated k module for any objects $X, Y \in \mathcal{C})$.
Then \mathcal{C} is "nice":
Lemma 6. Let k be a commutative artinian ring and \mathcal{C} be a skeletally small Hom-finite k-category with splitting idempotents. Then \mathcal{C} is Krull-Schmidt with local d.c.c. on ideals.

Proof. It is a well known fact that \mathcal{C} is Krull-Schmidt under the assumption. It is straightforward to show that $\mathfrak{I}(X, Y)$ is a k-submodule of $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ for any ideal \mathfrak{I} and any pair of objects $X, Y \in \mathcal{C}$. Hence \mathcal{C} has clearly local d.c.c. on ideals thanks to (C2).

As a consequence, we can give plenty of examples of "nice" categories:

- $\bmod \Lambda$ for an artin algebra Λ;
- $D^{b}(\Lambda)$, the derived bounded category for an artin algebra Λ;
- The category of finite dimensional modules over any algebra over a field;
and many others.
Let us start with the proof of the aforementioned statement. First we need a technical lemma.

Lemma 7. Let \mathcal{C} be a Krull-Schmidt category with local d.c.c. on ideals. Let $X, Y \in \mathcal{C}$ and α be a limit ordinal. Then there is $\beta<\alpha$ such that $\operatorname{rad}_{\mathcal{C}}^{\beta}(X, Y)=\operatorname{rad}_{\mathcal{C}}^{\alpha}(X, Y)$.

Proof. Since \mathcal{C} has local d.c.c. on ideals, the decreasing chain $\left(\operatorname{rad}_{\mathcal{C}}^{\gamma}(X, Y)\right)_{\gamma<\alpha}$ is stationary. Therefore, there is $\beta<\alpha$ such that

$$
\operatorname{rad}_{\mathcal{C}}^{\beta}(X, Y)=\bigcap_{\gamma<\alpha} \operatorname{rad}_{\mathcal{C}}^{\gamma}(X, Y)=\operatorname{rad}_{\mathcal{C}}^{\alpha}(X, Y)
$$

Now, we are in a position to give the structure theorem for idempotent ideals:

Theorem 8. Let \mathcal{C} be a Krull-Schmidt category with local d.c.c. on ideals. Let \mathfrak{I} be an idempotent ideal of \mathcal{C} and $f \in \mathfrak{I}$. Then there are $f_{1}, f_{2} \in \mathfrak{I}$ such that $f=f_{1}+f_{2}$, the morphism f_{1} is generated by identity morphisms from \mathfrak{I}, and $f_{2} \in \operatorname{rad}_{\mathcal{C}}^{*}$.

Proof. We will prove the following statement for all ordinal numbers α by induction:
$(*):$ For every $f \in \mathfrak{I}$ there are $f_{\alpha, 1}, f_{\alpha, 2} \in \mathfrak{I}$ such that $f=f_{\alpha, 1}+$ $f_{\alpha, 2}$, the morphism $f_{\alpha, 1}$ is generated by identity morphisms from \mathfrak{I}, and $f_{\alpha, 2} \in \operatorname{rad}_{\mathcal{C}}^{\alpha}$.

Then the theorem will follow if we take α sufficiently big. Let f : $X \rightarrow Y$ be a morphism from \mathfrak{I}-we can without loss of generality assume that X and Y are indecomposable.

For $\alpha=0$, we can simply take $f_{0,1}=0$ and $f_{0,2}=f$. If α is non-zero finite, we can construct by induction morphisms $g^{1}, g^{2}, \ldots, g^{\alpha} \in \mathfrak{I}$ such that $f=g^{1} g^{2} \ldots g^{\alpha}$. The morphisms $g^{i}, 1 \leq i \leq \alpha$, are not necessarily morphisms between indecomposable objects of \mathcal{C}, but we can write f as a finite sum of compositions of morphisms between indecomposables. That is:

$$
f=\sum_{j} g^{1 j} g^{2 j} \ldots g^{\alpha j}
$$

where we take $g^{i j}$ as components of g^{i}, so that all $g^{i j}$ are in \mathfrak{I}. Finally, we can take $f_{\alpha, 1}$ as the sum of those compositions $g^{1 j} g^{2 j} \ldots g^{\alpha j}$ where at least one of the morphisms in the composition is invertible, and $f_{\alpha, 2}$ the sum of the remaining compositions. Then clearly $f_{\alpha, 1}$ is generated by identities from \mathfrak{I} and $f_{\alpha, 2} \in \operatorname{rad}_{\mathcal{C}}^{\alpha}$.

If α is a limit ordinal, there is an ordinal $\beta<\alpha \operatorname{such}$ that $\operatorname{rad}_{\mathcal{C}}^{\beta}(X, Y)=$ $\operatorname{rad}_{\mathcal{C}}^{\alpha}(X, Y)$ by Lemma 7 . Of course, β depends on X and Y. Hence we can set $f_{\alpha, 1}=f_{\beta, 1}$ and $f_{\alpha, 2}=f_{\beta, 2}$, where the existence of $f_{\beta, 1}, f_{\beta, 2}$ is given by inductive hypothesis.

Assume now that α is an infinite non-limit ordinal and $g_{\beta, 1}, g_{\beta, 2}$ have been already constructed for all $g \in \mathfrak{I}$ and $\beta<\alpha$. We can write $\alpha=$ $\beta+n$ where β is a limit ordinal and $n \geq 1$ is a natural number. Since \mathfrak{I} is idempotent, we can as in the finite case construct $g^{1}, g^{2}, \ldots, g^{n+1} \in \mathfrak{I}$ such that $f=g^{1} g^{2} \ldots g^{n+1}$. By inductive hypothesis, we can for each $1 \leq i \leq n+1$ write $g^{i}=g_{\beta, 1}^{i}+g_{\beta, 2}^{i}$ where $g_{\beta, 1}^{i}$ is generated by identity
morphisms from \mathfrak{I} and $g_{\beta, 2}^{i} \in \mathfrak{I} \cap \operatorname{rad}_{\mathcal{C}}^{\beta}$. Now,

$$
f=\sum g_{\beta, k_{1}}^{1} g_{\beta, k_{2}}^{2} \ldots g_{\beta, k_{n+1}}^{n+1}
$$

where the sum is running through all tuples $\left(k_{1}, k_{2}, \ldots, k_{n+1}\right) \in\{1,2\}^{n+1}$. Put $f_{\alpha, 2}=g_{\beta, 2}^{1} g_{\beta, 2}^{2} \ldots g_{\beta, 2}^{n+1}$ and $f_{\alpha, 1}=f-f_{\alpha, 2}$. Then it immediately follows by the choice of $g_{\beta, 1}^{i}$ and $g_{\beta, 2}^{i}$ that $f_{\alpha, 1}$ is generated by identity morphisms from \mathfrak{I} and $f_{\alpha, 2} \in\left(\operatorname{rad}_{\mathcal{C}}^{\beta}\right)^{n+1}=\operatorname{rad}_{\mathcal{C}}^{\alpha}$.

Just by reformulating Theorem 8, we get the following corollary:
Corollary 9. Let \mathcal{C} be a Krull-Schmidt category with local d.c.c. on ideals. Let \mathfrak{I} be an idempotent ideal of $\mathcal{C}, \mathfrak{L}$ be a representative set of identity maps contained in \mathfrak{I}, and let $\mathfrak{R}=\mathfrak{I} \cap \operatorname{rad}_{\mathcal{C}}^{*}$. Then \mathfrak{I} is generated, as an ideal of \mathcal{C}, by $\mathfrak{L} \cup \mathfrak{R}$.

By combining the above statements, we can also characterize the situation when ideals are idempotent exactly when they are generated by a set of identity maps.

Corollary 10. Let \mathcal{C} be a Krull-Schmidt category with local d.c.c. on ideals. Then the following are equivalent:
(1) Every idempotent ideal of \mathcal{C} is generated by a set of identity maps.
(2) $\operatorname{rad}_{\mathcal{C}}^{*}=0$.

Proof. (1) $\Longrightarrow(2)$. If $\operatorname{rad}_{\mathcal{C}}^{*} \neq 0$, then by Lemma 1 it is a non-zero idempotent ideal without identity maps, hence (1) does not hold.
$(2) \Longrightarrow(1)$. This is immediate by Corollary 9 since, assuming (2), we always get $\mathfrak{R}=0$.

4. Telescope conjecture for module categories

The aim of this section is to prove TCMC for algebras with vanishing transfinite radicals. First, we need to collect some general results about TCMC from [25]. Even though the results are often proved under weaker assumptions and work almost unchanged for left coherent rings, we specialize them to artin algebras since this is our main concern here.

Proposition 11. [25, Theorems 3.5, 4.8 and 4.9] Let Λ be an artin algebra, $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod} \Lambda$ such that \mathcal{B} is closed under unions of well ordered chains, and \mathfrak{I} be the ideal of all morphisms in $\bmod \Lambda$ which factor through some (infinitely generated) module from \mathcal{A}. Then:
(1) $(\mathcal{A}, \mathcal{B})$ is of countable type.
(2) $\mathcal{B}=\operatorname{Ker}_{\operatorname{Ext}}{ }_{\Lambda}^{1}(\mathcal{I},-)=\left\{X \in \operatorname{Mod} \Lambda \mid \operatorname{Ext}^{1}(f, X)=0 \quad(\forall f \in\right.$ I) $\}$.
(3) Every countably generated module in \mathcal{A} is the direct limit of a countable chain

$$
C_{1} \xrightarrow{f_{1}} C_{2} \xrightarrow{f_{2}} C_{3} \xrightarrow{f_{3}} \ldots
$$

of finitely generated modules such that $f_{i} \in \mathfrak{I}$ for each $i \geq 1$.
We also need a technical lemma about filtrations which has been studied in $[8,26,31]$, and whose origins can be traced back to an ingenious idea of Paul Hill. Let us recall definitions.
Definition 12. Given a class of modules \mathcal{S}, an \mathcal{S}-filtration of a module M is a well-ordered chain $\left(M_{\alpha} \mid \alpha \leq \sigma\right)$ of submodules of M such that $M_{0}=0, M_{\sigma}=M, M_{\alpha}=\bigcup_{\beta<\alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and $M_{\alpha+1} / M_{\alpha}$ is isomorphic to a module from \mathcal{S} for each $\alpha<\sigma$. A module is called \mathcal{S}-filtered if it possesses (at least one) \mathcal{S}-filtration.

We will use the following specializations of a general statement from [31] for finitely and for countably presented modules:
Lemma 13. [31, Theorem 6]. Let \mathcal{S} be a set of finitely (countably, resp.) presented modules over an arbitrary ring and M be a module possessing an \mathcal{S}-filtration $\left(M_{\alpha} \mid \alpha \leq \sigma\right)$. Then there is a family \mathcal{F} of submodules of M such that:
(1) $M_{\alpha} \in \mathcal{F}$ for all $\alpha \leq \sigma$.
(2) \mathcal{F} is closed under arbitrary sums and intersections.
(3) For each $N, P \in \mathcal{F}$ such that $N \subseteq P$, the module P / N is \mathcal{S} filtered.
(4) For each $N \in \mathcal{F}$ and a finite (countable, resp.) subset $X \subseteq M$, there is $P \in \mathcal{F}$ such that $N \cup X \subseteq P$ and P / N is finitely (countably, resp.) presented.

Most of what we need to do now before proving the main results is to observe that the ideal \mathfrak{I} from Proposition 11 is always idempotent. We state this statement for artin algebras, but it again admits an almost verbatim generalization to left coherent rings.
Lemma 14. Let $\Lambda,(\mathcal{A}, \mathcal{B})$ and \mathfrak{I} be as in Proposition 11. Then \mathfrak{I} is an idempotent ideal of $\bmod \Lambda$.

Proof. Let $f: X \rightarrow Y$ be a morphism from \mathfrak{I}. By definition, f factors as $X \xrightarrow{g} A \xrightarrow{h} Z$ for some $A \in \mathcal{A}$. Since $(\mathcal{A}, \mathcal{B})$ is of countable type, A must be filtered by countably generated modules from \mathcal{A} [31, Theorem 10]. By Lemma 13, we can find a countably generated submodule $A^{\prime} \subseteq A$ such that $\operatorname{Im} g \subseteq A^{\prime}$ and $A^{\prime} \in \mathcal{A}$. More precisely, we use part (4) of the countable version of Lemma 13 for $N=0$ and X a finite set of generators of $\operatorname{Im} g$. Hence, f factors as $X \xrightarrow{g^{\prime}} A^{\prime} \xrightarrow{h^{\prime}} Z$, and, by Proposition 11, we can express A^{\prime} as the direct limit of a system

$$
C_{1} \xrightarrow{f_{1}} C_{2} \xrightarrow{f_{2}} C_{3} \xrightarrow{f_{3}} \ldots
$$

of finitely generated modules such that $f_{i} \in \mathfrak{I}$ for each $i \geq 1$. Finally, since X is finitely generated, g^{\prime} factors through C_{i} for some $i \geq 1$. But then we can write $f=h^{\prime} v f_{i+1} f_{i} u$ for some morphisms u and v, and clearly both $f_{i} u$ and $h^{\prime} v f_{i+1}$ are in \mathfrak{I}. Hence $f \in \mathfrak{I}^{2}$ and \mathfrak{I} is idempotent.

Now, we can equivalently rephrase Conjecture (B) in the language of ideals:

Proposition 15. Let $\Lambda,(\mathcal{A}, \mathcal{B})$ and \mathfrak{I} be as in Proposition 11. Then the following are equivalent:
(1) $(\mathcal{A}, \mathcal{B})$ is of finite type.
(2) \mathfrak{I} is generated by a set of identity morphisms from $\bmod \Lambda$.

Proof. (1) $\Longrightarrow(2)$. Assume that $(\mathcal{A}, \mathcal{B})$ is of finite type, that is, $\mathcal{B}=\operatorname{Ker}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}(\mathcal{S},-)$ for some set \mathcal{S} of finitely generated modules. We can without loss of generality assume that \mathcal{S} is a representative set of all finitely generated modules in \mathcal{A}.

We claim that \mathfrak{I} is then generated by the set $\left\{1_{X} \mid X \in \mathcal{S}\right\}$. To this end we recall that under our assumption, \mathcal{A} consists precisely of direct summands of \mathcal{S}-filtered modules (see [32, Theorem 2.2] or [12, Corollary 3.2.3]). Hence, if $f: X \rightarrow Y$ is a morphism from \mathfrak{I}, then it factors as $X \xrightarrow{g} A \xrightarrow{h} Z$ for some \mathcal{S}-filtered module A. Using part (4) of the finite version of Lemma 13 for $N=0$ and a finite set X of generators of $\operatorname{Im} g$, we can find a module $A^{\prime} \subseteq A$ such that A^{\prime} is isomorphic to some module in $X \in \mathcal{S}$ and $\operatorname{Im} g \subseteq A^{\prime}$. Thus, f factors through 1_{X} and since f was chosen arbitrarily, the claim is proved.
$(2) \Longrightarrow(1)$. Suppose that \mathcal{S} is a set of finitely generated modules such that $\left\{1_{X} \mid X \in \mathcal{S}\right\}$ generates \mathfrak{I}. It is straightforward by Proposition 11 (2) that $\mathcal{B}=\bigcap_{X \in \mathcal{S}} \operatorname{Ker}_{\operatorname{Ext}}^{\Lambda}{ }_{\Lambda}^{1}\left(1_{X},-\right)$. But this is exactly the same as saying that $\mathcal{B}=\operatorname{Ker}_{\operatorname{Ext}}^{\Lambda}{ }^{1}(\mathcal{S},-)$. Hence, the cotorsion pair $(\mathcal{A}, \mathcal{B})$ is of finite type.

Finally, we can prove TCMC formulated as Conjecture (B) for those artin algebras Λ for which $\operatorname{rad}_{\Lambda}^{*}=0$. Note that all what we need to do in view of Lemma 14 and Proposition 15 is to show that certain idempotent ideals are generated by identities, and this is always the case when $\operatorname{rad}_{\Lambda}^{*}=0$. As mentioned above, $\operatorname{rad}_{\Lambda}^{*}=0$ whenever Λ is a domestic standard selfinjective algebra [15] or a domestic special biserial algebra [27] over an algebraically closed field.

Theorem 16. Let Λ be an artin algebra such that $\operatorname{rad}_{\Lambda}^{*}=0$. Then every hereditary cotorsion pair $(\mathcal{A}, \mathcal{B})$ in $\operatorname{Mod} \Lambda$ such that \mathcal{B} is closed under unions of well ordered chains is of finite type.

Proof. Let \mathfrak{I} be the ideal of all morphisms in $\bmod \Lambda$ which factor through some module from \mathcal{A}. Then \mathfrak{I} is an idempotent ideal by

Lemma 14 and, therefore, generated by a set of identity maps by Corollary 10. The latter is equivalent to saying that $(\mathcal{A}, \mathcal{B})$ is of finite type by Proposition 15.

Another condition on an artin algebra Λ which seems to be closely related to vanishing of the transfinite radical and the domestic representation type is that of the Krull-Gabriel dimension of Λ being an ordinal number. Let us recall first that the category $\mathcal{C}(\Lambda)=\mathrm{fp}(\bmod \Lambda, \mathrm{Ab})$ of finitely presented covariant additive functors $\bmod \Lambda \rightarrow \mathrm{Ab}$ is an abelian category, and we can inductively define a filtration

$$
\mathcal{S}_{0} \subseteq \mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \cdots \subseteq \mathcal{S}_{\alpha} \subseteq \mathcal{S}_{\alpha+1} \subseteq \ldots
$$

of Serre subcategories of $\mathcal{C}(\Lambda)$ as follows: Let \mathcal{S}_{0} be the full subcateory of $\mathcal{C}(\Lambda)$ formed by functors of finite length, and for each ordinal number α, let $\mathcal{S}_{\alpha+1}$ be the full subcategory of all functors whose image under the localization functor $\mathcal{C}(\Lambda) \rightarrow \mathcal{C}(\Lambda) / \mathcal{S}_{\alpha}$ is of finite length. At limit ordinals α, we take just the unions $\mathcal{S}_{\beta}=\bigcup_{\beta<\alpha} \mathcal{S}_{\alpha}$. We refer to [19, §7] for more details and further references. The construction leads to the following definition:

Definition 17. The Krull-Gabriel dimension of an artin algebra Λ is defined as $\operatorname{KGdim} \Lambda=\alpha$ where α is the least ordinal number such that $\mathcal{S}_{\alpha}=\mathcal{C}(\Lambda)$. If no such α exists, one puts $\operatorname{KGdim} \Lambda=\infty$.

As a consequence of a deeper and more refined theorem, [19, Corollary 8.14] shows that $\operatorname{rad}_{\Lambda}^{*}=0$ whenever $\operatorname{KGdim} \Lambda<\infty$. In particular, we get as a corollary of Theorem 16 that TCMC holds for any artin algebra with ordinal Krull-Gabriel dimension:

Corollary 18. Let Λ be an artin algebra such that $\operatorname{KGdim} \Lambda<\infty$. Then every hereditary cotorsion pair $(\mathcal{A}, \mathcal{B})$ in $\operatorname{Mod} \Lambda$ such that \mathcal{B} is closed under unions of well ordered chains is of finite type.

Remark. The concept of the Krull-Gabriel dimension has been nicely illustrated by Geigle for tame hereditary algebras Λ in [9], where he explicitly computed that $\operatorname{KGdim} \Lambda=2$ and described the localization categories $\mathcal{S}_{1} / \mathcal{S}_{0}$ and $\mathcal{S}_{2} / \mathcal{S}_{1}$.

The proof of the fact that $\operatorname{KGdim} \Lambda<\infty$ implies $\operatorname{rad}_{\Lambda}^{*}=0$ in [19] goes through a stronger statement and involves many technical arguments. There is, however, a more elementary way to see this. Namely, one can define a so called m-dimension of a modular lattice following $[22, \S 10.2]$. Then $\operatorname{KGdim} \Lambda$ is equal to the m-dimension of the lattice of subobjects in $\mathrm{fp}(\bmod \Lambda, \mathrm{Ab})$ of the forgetful functor $\operatorname{Hom}_{\Lambda}(\Lambda,-)$, [19, 7.2]. Such subobjects precisely correspond to pairs (M, m) where $M \in \bmod \Lambda$ and $m \in M$, and $\left(M^{\prime}, m^{\prime}\right)$ corresponds to a subobject of (M, m) if and only if there is a homomorphism $f: M \rightarrow M^{\prime}$ in $\bmod \Lambda$ such that $f(m)=m^{\prime},[19,7.1]$. Now, $\operatorname{KGdim} \Lambda=\infty$ if and only if there is a factorizable system in $\bmod \Lambda$ in the sense of [23]. Existence of such
a factorizable system is easily implied by Lemma 2 or [23, Proposition $0.6]$ if $\operatorname{rad}_{\Lambda}^{*} \neq 0$.

The Krull-Gabriel dimension of Λ gives also a strong link to model theory of modules, as it is equal to the m-dimension of the lattice of primitive positive formulas in the first order theory of Λ-modules. We refer to [23, Proposition 0.3] and [22, §12] for more details.

5. Telescope conjecture for triangulated categories

We also shortly recall the application on the telescope conjecture for triangulated categories. If Λ is a selfinjective artin algebra, then the stable module category Mod Λ modulo injective modules is triangulated in the sense of $[10$, IV] or $[13, \mathrm{I}]$. The triangles are, up to isomorphism, of the form

$$
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X
$$

where $0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0$ is a short exact sequence in $\operatorname{Mod} \Lambda$, and the suspension functor $\Sigma: \underline{\operatorname{Mod}} \Lambda \rightarrow \underline{\operatorname{Mod}} \Lambda$ corresponds to taking cosyzygies in $\operatorname{Mod} \Lambda$. Clearly, Σ is an auto-equivalence of $\operatorname{Mod} \Lambda$ and the corresponding inverse Σ^{-1} is given by taking syzygies in $\operatorname{Mod} \Lambda$.

An object X in a triangulated category with (set-indexed) coproducts is called compact if the representable functor $\operatorname{Hom}(X,-)$ commutes with coproducts. In particular, an object $X \in \underline{\operatorname{Mod}} \Lambda$ is compact if and only if it is isomorphic to a finitely generated Λ-module in $\underline{\operatorname{Mod}} \Lambda$ (see $[18, \S 1.5]$ or $[17, \S 6.5]$).

A full triangulated subcategory \mathcal{X} of $\underline{\operatorname{Mod}} \Lambda$ is called localizing if it is closed under forming coproducts in Mod Λ. A localizing subcategory \mathcal{X} is called smashing if the inclusion $\mathcal{X} \hookrightarrow \underline{M o d} \Lambda$ has a right adjoint which preserves coproducts. We say that a localizing subcategory \mathcal{X} is generated by a class \mathcal{C} of objects if there is no proper localizing subclass of \mathcal{X}^{\prime} of \mathcal{X} such that $\mathcal{C} \subseteq \mathcal{X}^{\prime}$. We refer to $[18,16]$ for a thorough discussion of these concepts. It follows that Mod Λ is a compactly generated triangulated category, that is, $\operatorname{Mod} \Lambda$ is generated, as a localizing class, by a set of compact objects.

The telescope conjecture studied in $[18,16]$ asserts that every smashing localizing subcategory of a compactly generated triangulated category is generated by a set of compact objects. Even though it is generally false as mentioned in the introduction, we can give an affirmative answer in a special case. Namely Theorem 16 together with results from [20] imply that the conjecture holds for $\operatorname{Mod} \Lambda$ where Λ is a selfinjective artin algebra with vanishing transfinite radical.

Theorem 19. Let Λ be a selfinjective artin algebra such that $\operatorname{rad}_{\Lambda}^{*}=$ 0 . Let \mathcal{X} be a smashing localizing subcategory of $\operatorname{Mod} \Lambda$. Then \mathcal{X} is generated by a set of finitely generated Λ-modules.

Proof. We know that Conjecture (B) (see page 72) holds for Λ by Theorem 16. Hence also Conjecture (A) holds by the discussion in Section 1. The rest follows immediately from [20, Corollary 7.7].

6. Examples

We conclude with some examples of particular representation-infinite selfinjective algebras with vanishing transfinite radical.

Example 20. The simplest example is probably the exterior algebra of a 2 -dimensional vector space over an algebraically closed field. That is, $\Lambda_{2}=k\langle x, y\rangle /\left(x^{2}, y^{2}, x y+y x\right)$. It is a special biserial algebra in the sense of [30] and it has, up to rotation equivalence and inverse, only one band $x y^{-1}$. In particular, Λ_{2} is domestic and we have exactly one oneparametric family of indecomposable modules in each even dimension. For example, we have $M_{(a: b)}=\Lambda_{2} / \Lambda_{2}(a x+b y)$ for each $(a: b) \in \mathbb{P}^{1}(k)$ in dimension 2. Thus, $\operatorname{rad}_{\Lambda_{2}}^{*}=0$ by [27, Theorem 2].

With a little more effort, we can classify all smashing localizations and all hereditary cotorsion pairs with the right hand class closed under unions of chains. Using the representation theory of special biserial algeras, one can readily compute the Auslander-Reiten quiver of Λ_{2}. It consists of a family $\left(\mathcal{T}_{(a: b)} \mid(a: b) \in \mathbb{P}^{1}(k)\right)$ of homogeneous tubes, the corresponding quasi-simples being precisely the modules $M_{(a: b)}$ above. In addition, there is one more component, which we denote by \mathcal{C}, of the form

where X_{0} is the unique simple module, and X_{n} and X_{-n} are the string modules corresponding to the strings $\left(y x^{-1}\right)^{n}$ and $\left(x^{-1} y\right)^{n}$, respectively. In particular, $\operatorname{dim}_{k} X_{n}=2 \cdot|n|+1$. It is easy to compute that $\Omega^{-}\left(X_{n}\right) \cong$ X_{n+1} and $\Omega^{-}(M)=M$ for each indecomposable finite dimensional module in a tube. This describes the restriction of the suspension functor $\Sigma: \underline{\operatorname{Mod}} \Lambda_{2} \rightarrow \operatorname{Mod} \Lambda_{2}$ to $\bmod \Lambda_{2}$.

We recall that a full triangulated subcategory \mathcal{X}_{0} of $\underline{\bmod } \Lambda_{2}$ is called thick if it is closed under direct summands. There is a bijective correspondence between thick subcategories \mathcal{X}_{0} of $\underline{\bmod } \Lambda_{2}$ and localizing subcategories \mathcal{X} of $\underline{\operatorname{Mod}} \Lambda_{2}$ generated by a set of compact objects. More precisely, if \mathcal{X} is generated by $\mathcal{X}_{0} \subseteq \underline{\bmod } \Lambda_{2}$ and \mathcal{X}_{0} is thick, then $\mathcal{X} \cap \underline{\bmod } \Lambda_{2}=\mathcal{X}_{0},[21,2.2]$. It is clear that each thick subcategory is uniquely determined by its indecomposable objects.

We will now describe thick subcategories of $\underline{\bmod } \Lambda_{2}$. It is straightforward to check that if an indecomposable non-injective module $M \in$ $\bmod \Lambda_{2}$ is contained in a thick subcategory \mathcal{X}_{0}, then all modules in the same component of the Auslander-Reiten quiver are in \mathcal{X}_{0}, too. On the other hand, if \mathcal{T}_{p} is a tube for some $p \in \mathbb{P}^{1}(k)$, then one can check that in $\bmod \Lambda_{2}$, the additive closure of $\mathcal{T}_{p} \cup\left\{\Lambda_{2}\right\}$ equals to

$$
\left\{X \in \bmod \Lambda_{2} \mid \underline{\operatorname{Hom}}_{\Lambda_{2}}\left(X, \mathcal{T}_{q}\right)=0=\underline{\operatorname{Hom}}_{\Lambda_{2}}\left(\mathcal{T}_{q}, X\right) \quad\left(\forall q \in \mathbb{P}^{1}(k) \backslash\{p\}\right)\right\}
$$

Therefore, $\operatorname{add}\left(\mathcal{T}_{p} \cup\left\{\Lambda_{2}\right\}\right)$ is closed under extensions, syzygies and cosyzygies in $\bmod \Lambda_{2}$, and consequently add \mathcal{T}_{p} is thick in $\underline{\bmod } \Lambda_{2}$. It is easy to see that $\underline{\operatorname{Hom}}_{\Lambda_{2}}\left(\mathcal{T}_{p}, \mathcal{T}_{q}\right)=0$ for $p \neq q$, so the additive closure of any set of tubes is thick in $\bmod \Lambda_{2}$. Finally, there is an exact sequence $0 \rightarrow M \rightarrow X_{m} \rightarrow X_{m+1} \rightarrow 0$ for each $m<0$ and each quasi-simple module M in a tube; hence a thick subcategory containing the component \mathcal{C} contains all the tubes, too. When summarizing all the facts (and using Theorem 19), we obtain the following classification:

Proposition 21. Let k be an algebraically closed field, $\Lambda_{2}=$ $k\langle x, y\rangle /\left(x^{2}, y^{2}, x y+y x\right)$, and \mathcal{C} and $\mathcal{T}_{p}, p \in \mathbb{P}^{1}(k)$, be the components of the Auslander-Reiten quiver of Λ_{2} as above. Then each smashing localizing class \mathcal{X} in $\underline{\operatorname{Mod}} \Lambda_{2}$ is generated by $\mathcal{X}_{0}=\mathcal{X} \cap \underline{\bmod } \Lambda_{2}$, and the possible intersections \mathcal{X}_{0} are classified as follows:
(1) $\mathcal{X}_{0}=0$; or
(2) \mathcal{X}_{0} is the additive closure of $\bigcup_{p \in P} \mathcal{T}_{p}$ for some $P \subseteq \mathbb{P}^{1}(k)$; or
(3) $\mathcal{X}_{0}=\underline{\bmod } \Lambda_{2}$.

In the same spirit, we can classify the hereditary cotorsion pairs $(\mathcal{A}, \mathcal{B})$ in $\operatorname{Mod} \Lambda_{2}$ such that \mathcal{B} is closed under unions of chains. Recall that a subcategory \mathcal{A}_{0} of $\bmod \Lambda_{2}$ is called resolving if it contains Λ_{2} and it is closed under extensions, kernels of epimorphisms and direct summands. There is a bijective correspondence between resolving subcategories \mathcal{A}_{0} in $\bmod \Lambda_{2}$ and hereditary cotorsion pairs $(\mathcal{A}, \mathcal{B})$ of finite type in $\operatorname{Mod} \Lambda_{2},[3,2.5]$. Note that if \mathcal{A}_{0} is resolving and contains a module $X_{m} \in \mathcal{C}$, it must contain all $X_{z}, z \leq m$, and all tubes. On the other hand, it is not difficult to see that there is an exact sequence $0 \rightarrow X_{n} \rightarrow U \rightarrow X_{-k} \rightarrow 0$ with an indecomposable (string) module U from a tube for each $n, k>0$. Hence \mathcal{A}_{0} must contain all of \mathcal{C}, too. We will leave details of the following statement (using Theorem 16) for the reader:

Proposition 22. Let k be an algebraically closed field, $\Lambda_{2}=$ $k\langle x, y\rangle /\left(x^{2}, y^{2}, x y+y x\right)$, and \mathcal{C} and $\mathcal{T}_{p}, p \in \mathbb{P}^{1}(k)$, be the components of the Auslander-Reiten quiver of Λ_{2} as above. Let $(\mathcal{A}, \mathcal{B})$ be a hereditary cotorsion pair in $\operatorname{Mod} \Lambda_{2}$ such that \mathcal{B} is closed under unions of chains, and let $\mathcal{A}_{0}=\mathcal{A} \cap \bmod \Lambda_{2}$. Then $\left.\mathcal{B}=\operatorname{Ker}_{\operatorname{Ext}}^{\Lambda_{2}} 1 \mathcal{A}_{0},-\right)$, and the possible classes \mathcal{A}_{0} are classified as follows:
(1) $\mathcal{A}_{0}=\operatorname{add}\left\{\Lambda_{2}\right\}$; or
(2) \mathcal{A}_{0} is the additive closure of $\left\{\Lambda_{2}\right\} \cup \bigcup_{p \in P} \mathcal{T}_{p}$ for $P \subseteq \mathbb{P}^{1}(k)$; or
(3) $\mathcal{A}_{0}=\bmod \Lambda_{2}$.

Example 23. A recipe for construction of more complicated examples is given in [15]. Let B be a representation-infinite tilted algebra of Euclidean type over an algebraically closed field and \hat{B} be its repetitive algebra. Put $\Lambda=\hat{B} / G$ where G is an admissible infinite cyclic group of k-linear automorphisms of \hat{B} (see [29, §1] for unexplained terminology). Then Λ is selfinjective and $\operatorname{rad}_{\Lambda}^{*}=0$ by the main result of [15].

We illustrate the construction on $B=k(\cdot \rightrightarrows \cdot)$, the Kronecker algebra. The repetitive algebra \hat{B} is then given by the following infinite quiver with relations:

$$
\begin{aligned}
x_{i+1} x_{i}-y_{i+1} y_{i}=0, \quad & \stackrel{x_{y_{0}}}{x_{0}} \cdot \stackrel{x_{1}}{y_{1}} y_{i}=0, \quad \stackrel{x_{y_{2}}}{x_{2}} \cdot \stackrel{y_{y_{3}}}{x_{3}} \cdot \cdots
\end{aligned} \quad \text { for each } i \in \mathbb{Z} .
$$

Let $n \geq 1$ and $\bar{q}=\left(q_{1}, \ldots, q_{n}\right)$ be an n-tuple of non-zero elements of k. It is not difficult to see that we get the algebra $\Lambda_{n, \bar{q}}$ described by the quiver and relations below as \hat{B} / G for a suitable G :

$x_{i+1} y_{i}+q_{i} y_{i+1} x_{i}=0, x_{i+1} x_{i}=0, y_{i+1} y_{i}=0 \quad$ for each $i \in\{1,2, \ldots, n\}$. The addition in indicies of arrows above is considered modulo n. It is easy to see that $\Lambda_{n, \bar{q}}$ is special biserial and there are exactly n oneparametric families of indecomposable $\Lambda_{n, \bar{q}}$-modules in each even dimension. They correspond to the bands $x_{i} y_{i}^{-1}$. In fact, if $n=1$ and $q_{1}=1$, we get precisely the exterior algebra on a 2 -dimensional space.

References

[1] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Math. Soc. Lect. Note Ser., Vol. 189, Cambridge Univ. Press, Cambridge, 1994.
[2] L. Angeleri Hügel, J. Šaroch and J. Trlifaj, On the telescope conjecture for module categories, to appear in J. Pure Appl. Algebra.
[3] L. Angeleri Hügel and J. Trlifaj, Direct limits of modules of finite projective dimension, Rings, Modules, Algebras, and Abelian Groups, LNPAM 236 (2004), 27-44.
[4] D. Benson, S. Iyengar and H. Krause, Local cohomology and support for triangulated varieties, preprint.
[5] F. U. Coelho, E. N. Marcos, H. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, Representation theory of algebras (Cocoyoc, 1994), 141-154, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996.
[6] F. U. Coelho, E. N. Marcos, H. Merklen and A. Skowroński, Module categories with infinite radical cube zero, J. Algebra 183 (1996), no. 1, 1-23.
[7] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. (3) 56 (1988), no. 3, 451-483.
[8] L. Fuchs and S. B. Lee, From a single chain to a large family of submodules, Port. Math. (N.S.) 61 (2004), no. 2, 193-205.
[9] W. Geigle, The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences, Manuscripta Math. 54 (1985), 83-106.
[10] S. I. Gelfand and Y. I. Manin, Methods of homological algebra, Second edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[11] I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspehi Mat. Nauk 231968 no. 2 (140), 3-60; translated in Russian Math. Surveys, 23 (2) (1968), 1-58.
[12] R. Göbel and J. Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics 41, Berlin-New York 2006.
[13] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.
[14] B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84 (1994), no. 2, 193-198.
[15] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 (1991), no. 3, 313-333.
[16] H. Krause, Cohomological quotients and smashing localizations, Amer. J. Math. 127 (2005), no. 6, 1191-1246.
[17] H. Krause, Derived categories, resolutions, and Brown representability, lecture notes for the summer school "Interactions between Homotopy Theory and Algebra" at the University of Chicago, 2004.
[18] H. Krause, Smashing subcategories and the telescope conjecture-an algebraic approach, Invent. Math. 139 (2000), no. 1, 99-133.
[19] H. Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 149 (2001), no. 707.
[20] H. Krause and \varnothing. Solberg, Applications of cotorsion pairs, J. London Math. Soc. (2) 68 (2003), no. 3, 631-650.
[21] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), no. 5, 547-566.
[22] M. Prest, Model theory and modules, London Mathematical Society Lecture Note Series 130. Cambridge University Press, Cambridge, 1988.
[23] M. Prest, Morphisms between finitely presented modules and infinitedimensional representations, Algebras and modules, II (Geiranger, 1996), 447455, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998.
[24] M. Prest and J. Schröer, Serial functors, Jacobson radical and representation type, J. Pure Appl. Algebra 170 (2002), no. 2-3, 295-307.
[25] J. Šaroch and J. Šťvíček, The Countable Telescope Conjecture for Module Categories, preprint, arXiv:0801.3936.
[26] J. Šaroch and J. Trlifaj, Completeness of cotorsion pairs, to appear in Forum Math. 19 (2007).
[27] J. Schröer, On the infinite radical of a module category, Proc. London Math. Soc. (3) 81 (2000), no. 3, 651-674.
[28] A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), no. 1, 105-116.
[29] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), no. 2, 177-199.
[30] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
[31] J. Š̌ovíček and J. Trlifaj, Generalized Hill lemma, Kaplansky theorem for cotorsion pairs, and some applications, to appear in Rocky Mountain J. Math.
[32] J. Trlifaj, Cotorsion theories induced by tilting and cotilting modules, Abelian groups, rings and modules (Perth, 2000), 285-300, Contemp. Math., 273, Amer. Math. Soc., Providence, RI, 2001.

Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway

E-mail address: stovicek@math.ntnu.no

III.

THE TELESCOPE CONJECTURE FOR HEREDITARY RINGS VIA EXT-ORTHOGONAL PAIRS

(JOINT WITH HENNING KRAUSE)

Abstract

For the module category of a hereditary ring, the Ext-orthogonal pairs of subcategories are studied. For each Ext-orthogonal pair that is generated by a single module, a 5 -term exact sequence is constructed. The pairs of finite type are characterized and two consequences for the class of hereditary rings are established: homological epimorphisms and universal localizations coincide, and the telescope conjecture for the derived category holds true. However, we present examples showing that neither of these two statements is true in general for rings of global dimension 2 .

This paper is a preprint available as arXiv:0810.1401.

Is not included due to copyright

IV.

LOCALLY WELL GENERATED HOMOTOPY CATEGORIES OF COMPLEXES

Abstract

We show that the homotopy category of complexes $\mathbf{K}(\mathcal{B})$ over any finitely accessible additive category \mathcal{B} is locally well generated. That is, any localizing subcategory \mathcal{L} in $\mathbf{K}(\mathcal{B})$ which is generated by a set is well generated in the sense of Neeman. We also show that $\mathbf{K}(\mathcal{B})$ itself being well generated is equivalent to \mathcal{B} being pure semisimple, a concept which naturally generalizes right pure semisimplicity of a ring R for $\mathcal{B}=\operatorname{Mod}-R$.

This paper is a preprint available as arXiv:0810.5684.

Is not included due to copyright

[^0]: ${ }^{1}$ It may cause some confusion that the meaning of the terms generated and cogenerated is sometimes swapped in the literature. Our terminology follows the monograph [19].

[^1]: ${ }^{2}$ An affirmative and far more general answer to this question was given by Krause in $[28, \S 7.4]$ after submission of this paper.

