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Abstract
Background: Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like
microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need
for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the
investigator with large volumes of apparently unorganized information. To meet this interpretation challenge,
gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software
packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological
information. However, the field is still evolving, and there is a great need for "integrated" solutions.

Results: GeneTools is a web-service providing access to a database that brings together information from a broad
range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently
available. Data submitted by the user are stored in the database, where it can easily be updated, shared between
users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which
offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both
single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations
to genes of interest. These user defined GO annotations can be used in further analysis or exported for public
distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation.
As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation,
mutually exclusive target-target situation and intersecting target-target situation). An important additional
function is an evidence-code filter that allows users, to select the GO annotations for the analysis.

Conclusion: GeneTools is the first "all in one" annotation tool, providing users with a rapid extraction of highly
relevant gene annotation data for e.g. thousands of genes or clones at once. It allows a user to define and archive
new GO annotations and it supports hypothesis testing related to GO category representations. GeneTools is
freely available through www.genetools.no
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Background
Microarray technology allows researchers to monitor tran-
script levels of thousands of genes in a single experiment
[1]. Typically it confronts the researcher with vast
amounts of numerical data as a starting point from which
to begin to investigate how molecular mechanisms are
involved in a specific biological setting. Typically, scien-
tists have to manually query several resources/databases
for information. Although these can be highly informative
individually, the collection of available content would be
more useful if provided in an integrated manner. High-
throughput, automated annotation summaries can expe-
dite this step and today several resources like Source [2],
GeneCards [3] and NetAffx [4] already offer this.

In order to understand how cells function within a tissue,
e.g. in a given state one can use data-driven methods, such
as hierarchical clustering and self-organizing maps [5,6],
which identify groups of genes with similar expression
patterns. However, a complementary approach is to view
data at the level of biological background knowledge such
as a gene's involvement in a biological processes or path-
way. The leading controlled vocabulary for such func-
tional information is Gene Ontology (GO) [7].
Annotation of genes with GO terms creates a biological
knowledge profile, in three layers dependent on the top-
level GO branch used (biological process, molecular func-
tion or cellular component).

Several tools are suited for analysis of the GO hierarchy
and for statistical evaluation of GO category representa-
tions between gene lists [8]. Comparisons of gene lists are
important in order to answer questions such as "are genes
involved in process P overrepresented among the total of
differentially expressed genes in an experiment" or "does
treatment A induce more genes involved in process P than
treatment B?".

A potential problem using such tools, is that the existing
annotation databases are incomplete and for most organ-
isms only a subset of the known genes are functionally
annotated [8]. Moreover, a major part of the available
annotations e.g. those inferred from electronic annota-
tions may be imprecise or incorrect.

The present paper describes GeneTools, a package of web-
based tools for gene annotation. GeneTools is built on top
of an underlying database that is updated on a weekly
basis to provide information as recent as possible. The
annotation data is accessible through two user interfaces,
the NMC Annotation Tool which offers general functional
annotation information in both single- and batch search
mode, and the eGOn tool which can annotate, display
and perform statistical hypothesis testing to assess the
degree of similarity of GO category representation

between different gene lists. An important function in
eGOn is the possibility to filter on evidence codes. Also,
additional user defined GO annotations can be added to
the database through the GO Annotator Tool for use in fur-
ther analysis. Another unique feature in GeneTools is that
user submitted data is stored in the database and can be
shared with other users.

Finally, a significant part of this paper deals with how the
hypothesis testing for GO category representations is per-
formed, which we think has been inadequately described
for many other resources.

Implementation
GeneTools is a web service. It runs on most web browsers,
including IE 5.0 or higher, Netscape 7 or higher and
Mozilla Firefox 1.0 or higher, and is platform-independ-
ent. GeneTools is implemented in the PHP programming
language. We have chosen to implement this tool as a web
service to make it as user-friendly as possible, as most of
the users are not bioinformaticians able to perform pro-
gramming. However, more advanced use of the service is
possible as described later in this chapter.

GeneTools is the front-end of a MySQL database contain-
ing annotation data from the following publicly available
resources: UniGene [9], EntrezGene [10] (including GOA
[11], Proteome, MGD [12] and RDG [13] annotations),
Gene Ontology [14], SwissProt [15], and HomoloGene
[16]. Information from 64 organisms available through
UniGene is included, but the most comprehensive infor-
mation is available for human, rat and mouse genes. All
these databases are stored as local copies, enabling quick
access to the data in response to the user query. Since
many of the resources on which GeneTools draws continu-
ously change their information content, the GeneTools
database is updated on a weekly basis to ensure that it
contains the most up-to-date information, continuously
updating the stored gene reporter lists. An automated
process checks for updates of the outside databases,
downloads these files, and populates database tables
accordingly. This ensures that the connections between
external databases made within GeneTools are as accurate
as possible. Thus, both the mapping of clones to genes
and the functional attributes associated with those genes
are dynamic and current. All data and graphics from
searches and analysis can be exported in various formats
(txt, XML or as Excel files).

Due to the heterogeneous nature of annotation informa-
tion, bioinformaticians and systems biology researchers
may want to perform more high-level analysis than
offered through our web service. We therefore offer an API
solution, based on web services description language
(WSDL), for external resources wishing to use data from
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our database. Typically new and important tools like Tav-
erna [17] can easily utilize this system using SOPE/RPC.
Currently our API solution is utilized by the Norwegian
Microarray Consortium (NMC) which updates their local
BASE (BioArray Software Environment) [18] servers with
information from this database. Moreover, SciCraft [19],
a general data analysis tool, uses data from the GeneTools
database in its microarray data analysis tool box. We will
also offer R code for the statistical testing in eGOn upon
request. The structure of our GeneTools database is built so
that it can be used in the future as part of local or external
data warehouses.

Results and discussion
Inputs
Figure 1 gives an overview of GeneTools with its single
search and batch search (gene reporter lists) inputs, its
underlying database structure and associated tools for
analysis. The ability to simultaneously collect data from

numerous sources for e.g. thousands of genes from micro-
array experiments in batch is especially important and
made very user friendly through GeneTools.

Single search
The database enables searching by gene symbols/names,
GenBank accession numbers, UniGene cluster IDs, Swiss-
Prot entry names and several unique clone IDs (IMAGE
clone IDs, University of Iowa clone IDs, Operon oligo
IDs, TAIR IDs and a subset of selected Affymetrix and Agi-
lent IDs).

The names and symbols of genes/proteins may be highly
ambiguous [20]. We therefore recommend using primary
gene IDs, like GeneBank accession numbers or specific
probe IDs when querying the database. However, if gene
names or symbols are used, caution is advised because
only official names/symbols associated with UniProt
knowledgebase will be recognized.

Flowchart of the GeneTools program and the underlying databaseFigure 1
Flowchart of the GeneTools program and the underlying database. The underlying database is updated on a weekly 
basis with annotation information from several external databases including UniGene, Swiss-Prot, Entrez Gene and GO. User 
data are submitted to the database as text files of gene reporters and analysis of the annotation data can be performed through 
three user interfaces: the NMC Annotation Tool, the GO Annotator Tool and eGOn. Analysis results and annotation data can be 
exported in various formats.
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Batch search
Input of gene reporter lists for batch search is done by
uploading tab-delimited text files to the server. After sub-
mission, the gene reporters are automatically mapped to a
UniGene cluster, and functional annotations/attributes
(e.g. GO annotation) are associated with the specific
gene/protein (Figure 1). Uploaded gene reporter lists are
stored and can easily be managed in folders or shared with
other users. If new annotation information becomes avail-
able for any of the stored gene reporter lists, the user will
be notified.

Updates
The user may at any time choose to update a stored gene
reporter list, thus incorporating the most recent annota-
tion information from the weekly update of the GeneTools
database in the analysis. The updating process is fast even
for lists of thousands of gene reporters. The user receives a
specified report detailing which gene reporters are associ-
ated with new annotation information and the changes
made.

Tools, analyses and outputs
NMC annotation Tool
A major challenge when using genomic scale methods like
microarrays, is to handle annotation information from
the resulting comprehensive gene reporter lists. Thus, one
of the most important features of GeneTools is the ability
to simultaneously extract pre-existing annotation data
from a wide variety of database resources for thousands of
genes in a batch. Since the GeneTools database is weekly
updated and the NMC Annotation Tool provides user
friendly functionalities for associating new annotation
information with the reporters in uploaded gene lists, the
NMC Annotation Tool is particularly useful when it is
important to always have access to the most recent infor-
mation on the genes and clones being examined. The
NMC Annotation Tool enables the user to query the Gene-
Tools database by singe gene search or by batch search after
submission of a gene reporter list for a microarray experi-
ments. Given the massive amount of data available
through GeneTools (Figure 1), information overload can
be a potential problem. Therefore, we have provided the
user with the option to select (in the "preferences" menu)
the information to be shown on the screen for single
search and batch view and to select which information to
export. However, we will stress that this option should be
used cautiously, because it may introduce selection bias
and important information may be lost.

Single search outputs
The single search function captures the collection of fea-
tures attributable to the given gene and its products, when
a gene is defined by a unique UniGene cluster. Whenever

available, each single search result view will contain all or
a subset of the following categories of data:

I. Data from Unigene, including e.g. A. gene cluster, name
and symbol. B. protein similarities with selected organ-
isms (with direct link to Entrez protein). C. chromosome
localization information. D. UniGene associated
sequences with cluster.

II. Data from Homologene: Shows homologous genes for
human, rat and mouse.

III. Data from Entrez Gene: A. gene name, symbol and ali-
ases. B. biological roles and summary of functions curated
by Entrez (Ref.seq summary). C. gene ontology (GO)
annotations with direct link to references and links to
alternative ontologies like KEGG. D. direct link to curated
PubMed Gene RIFs (reference into function).

IV. Data from Swiss Prot: A. protein names and aliases. B.
biological role and function information curated by Swiss
Prot. C. protein sequence information. D. direct links to
various external sources associated with current protein
are offered for each gene reporter.

Batch search outputs
One of the most important and unique features of the
NMC Annotation Tool is the batch search mode which uti-
lizes all of our database sources for gene reporter lists from
microarray experiments. For instance, the users can easily
extract biological function, chromosomal localization,
and get access to publications (GeneRIFs) that describe
gene functions. The results for reporter gene list from a
batch search can be viewed in a user-friendly tabular form
(Figure 2). Moreover, the annotation data displayed on
the screen are associated with hyperlinks to the underly-
ing database or to the single search view. The annotation
data can be exported in several formats for printing or
storage (XML and XLS).

NMC Annotation Tool provides several features not availa-
ble in other gene annotation tools. To our knowledge, few
other application stores users' gene reporter lists allowing
update of the reporter lists at any time with the most
recent UniGene, Entrez Gene and GO information. This is
important since the clusters in UniGene change rapidly
and new GO annotations are being added continuously.
To achieve this, the submitted gene reporter lists can easily
be updated with all new information. Information about
the external databases included in GeneTools and their last
updates can be found from a link named "database status"
in the menu, and provides useful documentation for pub-
lishing purposes. Information about commercial arrays
supported by GeneTools (currently Affymetrix, Operon
and Agilent) is also given. To our knowledge, a similar
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variety of important features is not available in gene anno-
tation tools like Source [2], GeneCards [3], NetAffx [4],
GeneCruiser [21], Onto-Tools [22], GARBAN [23] and
GeneLynx [24].

GO annotator tool (user defined GO annotations)
The introduction of Gene Ontology (GO) [25] as a stand-
ardised vocabulary for describing genes, gene products
and their biological functions represents an important

Typical "overview" result output for a submitted gene reporter listFigure 2
Typical "overview" result output for a submitted gene reporter list. Input gene reporter and associated UniGene 
cluster, gene name, symbol and chromosome localization is shown for all the gene reporters in the submitted lists. Several of 
the information boxes are hyperlinked redirecting the user to the original source. More specific annotations can be found 
under the "tabs" named Entrez, SwissProt and GO. By clicking on the gene reporter ID, a single search window for the 
selected gene reporter will appear.
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milestone in the possibilities to handle and include bio-
logical background information in functional genomics
analyses. Many databases today provide GO annotations
for a variety of organisms including humans and other
species. However, GO is still incomplete and significant
extensions to its structure are needed before all available
biological knowledge can be represented as GO annota-
tions in public databases. Also, besides the human
research filed other organisms e.g. common model organ-
isms like rat and mouse are still lagging behind when it
comes to raising the quality of curation of GO annota-
tions. Thus, a high proportion of GO annotations offered
in the rat genome database (RGD) [13] and the mouse
genome database (MGD) [12] are associated with the IEA
(inferred by electronic annotation) evidence code, which
implies a lower degree of certainty than some users may
require.

To overcome at least some of these problems, GeneTools
allows a user to define their own GO annotations to genes
of interest. The GO Annotation Tool (accessible through
"single search" mode in the NMC Annotation Tool) enables
the addition of new, user defined GO annotations as well
as the curation of GO annotations e.g. annotations with
evidence code IEA. GO Annotation Tool is supported by a
GO term search system, simplifying the browsing for GO
terms. Evidence codes and references (e.g. PMID) accord-
ing to GO standards and free text can be added (Figure 3).
New annotations are stored in the database and can be
included in further analysis (e.g. added to the GO analysis
in the eGOn tool). We are in the process of making an
export function, where these user defined GO annotations
can be exported to the GOA database [11] by an email
service. GOA will curate these annotations and make
them available for others through the GO annotation
database [26].

Explore Gene Ontology (eGOn)
Controlled vocabularies facilitate query and retrieval of
knowledge from many different sources using a common
query structure. Three separate important activities are
needed to enable this: the production and maintenance of
the ontologies themselves; the creation of associations (or
annotations) between the GO terms and gene products,
and the development of tools that facilitate the creation,
maintenance and use of the ontologies.

eGOn visualizes gene annotations in the GO hierarchy
and offers a collection of statistical tests that translate the
GO annotation information associated with the reporters
in gene lists from functional genomics experiments to
provide insight into the biological mechanisms involved.

A wide range of resources are available for GO analysis
[27]. In a recent review, Khatri et al. [8] question how such

resources are built and used. Khatri et al. point out that
existing annotation databases are incomplete, that a pro-
portion of the annotations may be imprecise or incorrect,
that name space mapping (how to connect a probe
sequence to a gene/protein) is a problem, and that availa-
ble statistical tests are not always validated. We think that
the tool eGOn of the GeneTools suite meets many of these
challenges since it enables filtering of annotations by evi-
dence code, it allows the entry of new annotations and
curation via the GO Annotator Tool and it provides a series
of robust statistical tests that are thoroughly validated and
documented.

For GO annotations, GeneTools uses Entrez Gene which
offers curated data from the GO database that includes all
registered GO annotations [26]. Some annotations avail-
able in the GO database will not be included using the
Entrez curated GO annotations but the quality of annota-
tion is most likely better. eGOn offers the possibility to fil-
ter the GO annotations from a gene reporter list by
evidence codes. A substantial proportion of GO annota-
tions are inferred by electronic methods (evidence code
IEA), potentially being imprecise and possibly biasing fur-
ther analysis. Thus, in a given analysis, it may be beneficial
to exclude IEA annotations and only use more robust
annotations, like e.g. annotations derived from "traceable
author statement" (TAS), "inferred from direct assay"
(IDA) or "inferred by curator" (IC). In other situations it
may be desirable to include electronic annotations in
order to obtain a sufficient amount of data to do a valid
analysis, e.g. for rat and mouse genes where most of the
annotations up to now are IEA. Another possibility which
to our knowledge is not in use by any GO analysis tool
today, might be to perform some kind of weighting by the
type of evidence code for the statistical calculations.

An essential feature of eGOn is the possibility to compare
and analyze annotated genes from two or more gene
reporter lists in the GO-tree. eGOn both visualizes these
comparisons within the GO-tree and formally calculates
the degree of GO category representation similarity
between the gene lists using statistical tests (Figure 4).

Testing statistical hypotheses of association between gene reporter 
lists
To investigate and better interpret the relevance of biolog-
ical annotations of lists of gene reporters, statistical
hypothesis testing can be a valuable tool. Let us for exam-
ple consider a microarray experiment where the objective
of the study is to compare the differentially expressed
genes from heart failure tissue between cases and controls
where the cases are patients with coronary artery disease
(CAD) or dilated cardiomyopathy (DCM) and the con-
trols are tissue from non-failing hearts [28].
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To formally state the statistical hypothesis, consider a ran-
domly chosen gene and a given GO category denoted G.
Define the following three events:

• A = the gene is in gene reporter list A

• B = the gene is in gene reporter list B

• G = the gene is a member of GO category G.

In this example the list A would be the list of differentially
expressed genes between CAD and controls while list B
would be the differentially expressed genes between DCM
and controls. At the given GO category G (e.g. catabo-
lism), we are interested in investigating whether the prob-

User interface for the GO Annotator ToolFigure 3
User interface for the GO Annotator Tool. To add a new GO annotation, the user selects a gene, adds a GO term, 
chooses an appropriate evidence code and adds a reference article (PMID). The GO annotations are then stored in the data-
base and an exported function to GOA for world wide distribution is under development. A link to the GO Annotator Tool can 
be launched from the top of the page of the result window from a single gene search, in the NMC Annotation Tool mode.
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Result report output from eGOnFigure 4
Result report output from eGOn. Gene reporter lists submitted to eGOn can be visualized in tree-view, as result-view or 
as report-view. In the tree-view (A) the nodes may be collapsed or expanded producing the desired level of detail and the 
resulting structure can be saved as a template for future use. Several preset levels can also be selected. By clicking on a GO 
node the gene reporter associated with this GO node in the GO-tree can be interactively examined and links are offered to 
single gene view in the NMC Annotation Tool. In result view p-values for all GO categories are shown and for the report view 
(B), only the GO categories that fit the user's p-value cut-off are shown.
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ability of belonging to GO category G is different for genes
on gene list A and genes on gene list B. For each gene on
list A, there is a conditional probability P(G|A) of belong-
ing to GO category G, and for each gene on list B, there is
a conditional probability P(G|B) of belonging to GO cat-
egory G. Under the null hypothesis these two probabili-
ties are equal. From this the following null hypothesis and
alternative hypothesis can be formulated.

H0: P(G|A) = P(G|B) vs. H1: P(G|A)  P(G|B)

By using the laws of conditional probability, we have the
following additional interpretation. For a chosen GO cat-
egory G, the ratio between the probability of membership
of gene reporter list A and membership of gene reporter
list B, is the same as the ratio between the probability of
being a member of gene reporter list A to the probability
of being a member of gene reporter list B in the whole
GO-tree. Statistically we need to distinguish between three
situations, to correctly handle the possible dependencies
between gene reporter lists A and B. An illustration of
these situations is given in figure 5. Different statistical
hypothesis tests are suitable for the three situations. In
eGOn we have implemented three tests for these situa-
tions: the master-target test, the mutually exclusive target-
target test and the intersecting target-target test. In brief,
all three tests are parametric and the tests for the master-
target situation and the mutually exclusive target-target
situation are based on the same implementation of
Fisher's exact test, but with different inputs. The intersect-
ing target-target test is based on a test statistic by Leisen-
ring et al. [29]. The test of Leisenring is designed to test if
the positive predictive value (PPV) of two medical diag-
nostic tests is equal. A further description of the different
situations and the corresponding tests can be found in the
next chapters. Moreover, a detailed description of the sta-
tistical tests is offered in the supplementary material
(additional file 1).

Master-target situation
In the master-target situation the GO categories (e.g. bio-
logical processes) of the genes of interest (e.g. differen-
tially expressed) from a given experiment (target list) are
compared with the distribution of GO categories for all
gene reporters represented as physical probes on the
microarray (master list) used in the experiment. The pur-
pose is to find whether, in any of the GO categories, the
genes of interest are over- or underrepresented compared
to the genes represented on the microarray. For our heart
failure example, list M would be a list of all the genes
investigated on the microarray and list B would be the
genes that are found to be differentially expressed
between the DCM hearts and the controls (Figure 5).

This type of comparison between two gene reporter lists is
useful and most GO tools offer tests for this. Statistically
this situation can be transformed into a problem where
we for each GO category under consideration want to test
if two independent binomial proportions are equal (for
details, see Günter et al. [30]). Several statistical
approaches can be used, e.g. Fisher's exact test, Pearson's
asymptotic Chi-square-test, a conditional mid-p test, or
an unconditional test. We refer to Agresti [31] for a pres-
entation of these tests, and to Khatri and Dragici [8] for an
overview of different statistical tests implemented in the
various GO-tools available in the master-target situation.
In eGOn we have chosen the Fisher's exact test for the
master-target situation and we call this the master-target
test. The implementation is based on a translation to PHP
of a JAVA-script by Langsrud [32]. The use of this two
sided test is further explained by Zeeberg et al. [33].

Mutually exclusive target-target situation
In the mutually exclusive target-target situation there are
no common genes in the two lists compared, in the heart
failure example list A1 could be the list of differentially
expressed genes that are up-regulated for the CAD hearts
compared to the controls, while list A2 contains the genes
that are down-regulated for the CAD hearts compared to
the controls. The purpose with this type of comparison is
to find which e.g. biological processes as defined by GO
categories are differentially represented in the up- and
down-regulated genes in the same experiment (Figure 5).

Statistically this situation is very similar to the master-tar-
get situation and can be transformed into a problem
where we for each GO category under consideration want
to test if two independent binomial proportions are
equal. The same statistical tests as listed for the master-tar-
get test can be used. In eGOn we have chosen to imple-
ment the Fisher's exact test for the mutually exclusive
target-target situation, called the mutually exclusive tar-
get-target test, using the same implementation, but with
different inputs, as for the master-target test.

Intersecting target-target situation
When two gene reporter lists are compared and a number
of gene reporters are represented on both lists, the inter-
secting target-target test is used to investigate whether the
GO categories represented by these genes are over- or
under represented in the experiments behind the two lists.
In our heart failure example, list A could be the differen-
tially expressed genes between CAD hearts and controls
while list B would be the differentially expressed genes
between DCM hearts and controls (Figure 5).

In Günther et al. [30], three different statistical tests are
presented in the situation where the two gene lists are
intersecting. All three tests are constructed for use with
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large samples, and are based on an asymptotic relation to
the Chi-square distribution. In eGOn we have chosen to
implement the test based on Leisenring et al. [29], origi-
nally constructed for comparing positive predictive values
of two diagnostic tests, tests A and B, with respect to a dis-
ease G. This test uses a score statistic based on generalized
estimating equations to fit a generalized linear model. We
have translated this test into the setting of comparing two
gene lists at a given GO category. Further details can be

found in Günther et al. [30] or in the supplementary
material (additional file 1).

Methodical considerations
The statistical tests for association between two gene
reporter lists under consideration are based only on the
gene lists submitted to eGOn, and the raw data underlying
the statistical analyses producing the gene reporter lists are
not submitted to eGOn. This means that eGOn does not

Three different situations covered by the statistical testes in e GOnFigure 5
Three different situations covered by the statistical testes in e GOn. Master-target situation: When one gene reporter 
list is a subset of the other list (the master list) the master-target test can be used in the comparison. Mutually exclusive target-
target situation: If the gene reporters do not have any reporters in common (e.g. lists of up- vs. down regulated genes form the 
same experiment) the mutually exclusive target-target test can be used. Intersecting target-target situation: if the two lists com-
pared include common gene reporters, from e.g. two experiments, then the intersecting target-target test can be used.
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offer permutation based methods for addressing the
dependence structure between the genes. The statistical
tests in eGOn are thus based on the assumption that
under the null hypothesis the genes on the lists (or subsets
of the lists in the intersecting target-target situation) act
independently, as is also commonly assumed in other
GO-tools. This should be taken into consideration when
analysis is performed, and duplicate genes/reporters, close
family members or pathways partners may be removed.
This can easily be done by the filtering tool in GeneTools.

The p-values produced by the statistical test can be dis-
played for all GO categories or only those satisfying a cer-
tain p-value cut-off. Adjusted p-values can be calculated
for a selected set of GO categories and is dependent on
how the GO hierarchy is collapsed/expanded, using the
step-up procedure of Benjamini and Hochberg [34] for
controlling the False Discovery Rate (FDR). Setting a cut-
off at 0.05 for the adjusted p-value will control the (FDR)
at level 0.05. The Benjamini-Hochberg step-up procedure
controls the FDR under certain dependence structures (for
example positive regression dependency, see Benjamini
and Yekutieli [35] for a detailed presentation). However,
the dependency structure among the selected GO-catego-
ries in the GO-tree is not known, and questions remain
about controlling the FDR in hierarchical structures.

One important "consensus point" within statistical infer-
ence discussed by Allison et al. [36] is that gene set testing
is desirable, and has become a popular and widely
accepted analytical tool. However, one problem with gene
class testing, according to Allison et al. [36], is that the
null hypotheses of these tests are not, or poorly defined.
By formally stating the null and alternative hypotheses,
we think our paper has addressed these concerns in a thor-
ough manner. An important consideration when search-
ing for statistically significant GO categories within a gene
reporter list (our master-target test) is the choice of the ref-
erence (master) list of gene reporters from which the p-
values for each GO category in the results are calculated.
Some tools use the total set of genes in a genome as a ref-
erence (the master list). We do not think this is the best
solution since the observed number of gene reporters for
a specific GO category should be compared with the
number of gene reporters that could appear if a random
selection was taken from the list of all genes that was
under study in the experiment.

In eGOn p-values can be shown for the whole GO tree and
unlike most other tools several preset levels can be chosen
and users can modify the tree as they like. In addition a
result report view is accessible, showing only the GO
nodes which satisfy a specific pre set p-value cutoff.
Unique in the eGOn tool, we offer statistical tests for com-
parisons between gene reporter lists. The master-target test

and mutually exclusive target-target test are both used in
different variations in several programs today, but no
other GO-tool, to our knowledge, offers tests for the inter-
secting target-target situation. However, the statistical test
of FatiGO [37] is valid for the mutually exclusive target-
target situation, and was in a simulation study found to
preserve the test size when the gene reporter lists are of
equal length [30]. Our intersecting target-target test is
valid when the two gene reporter lists are intersecting,
potentially constituting a useful test, since it offers the
opportunity to compare gene reporter list for different
experiments (as previously described by the heart diseases
example). In this way both our target-target tests may
answer questions not necessary answered by the standard
master-target tests applied to most tools.

Future plans
GeneTools was released in September 2005 and has stead-
ily gained popularity since then. In October 2006 over 1
700 users from 60 countries were registered and over 4
000 gene reporter lists were submitted to the database. We
plan to continue adding new features to GeneTools, includ-
ing more information from external databases like e.g.
Ensembl and OMIM. Furthermore, we hope to provide
developers of other tools an extended version of our API
and extend the export function to support SBML (systems
biology markup language) [38] which will make more
high-level analysis possible. We think the need for central
and publicly available resources which curate biological
data will only continue to grow and that GeneTools and
similar tools will be essential for biologists and bioinfor-
maticians to efficiently analyze genome-scale datasets.
Today their main utility is for gene expression analysis,
but in the future proteomic and SNP data need to be ana-
lyzed by similar tools. In addition, an important future
use of annotation tools will be in systems biology
approaches that are now evolving rapidly.

Conclusion
GeneTools is a flexible and user friendly "all in one" anno-
tation tool, where the users can rapidly extract gene anno-
tation data for e.g. thousands of genes or clones at once.
The user can add "user defined" GO annotation to gene
products and all annotation information is stored in a
database which can easily be shared with other users and
exported in different formats. eGOn is the first tool that
can perform hypothesis testing for three different situa-
tions, looking for over- or under-representation of GO cat-
egories between gene reporter lists.

Availability and requirements
Project name: GeneTools

Project Homepage: http://www.genetools.no
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Operating System: Platform independent

Programming Language: PHP

Underlying Database: mySQL
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Abstract

The Fas-Fas ligand (FasL) system contributes to immune tolerance at the feto-maternal site and has been ascribed a role in
implantation and placental development by regulating trophoblast invasion and spiral artery remodelling. In the present study,
we have examined FasL expression in decidual tissue from pregnancies with impaired placental development. Women with pre-
eclampsia (PE) and/or fetal growth restriction (FGR) were enrolled as cases (n = 33), and women with normal pregnancies were used
as controls (n = 27). Decidua basalis tissue was obtained by vacuum suction of the placental bed after delivery. FasL expression by
extravillous trophoblasts (EVTs) and decidual cells (DeCs), together with EVT apoptosis, were assessed by immunohistochemistry.
Levels of soluble FasL in maternal serum and apoptosis-related gene expression in decidual tissue were determined.

The proportion of FasL-expressing DeCs was high in controls (72.0 ± 10.2%), with a significant reduction among cases
(58.1 ± 19.7%; p = 0.002), especially in those with FGR (54.3 ± 19.9%; p < 0.001). EVTs had a lower proportion of FasL expres-
sion than DeCs, with a less pronounced reduction in cases compared to controls (10.9 ± 3.9 and 8.3 ± 4.0%, respectively; p = 0.02).
Decidual FasL expression correlated with placental growth. The EVT apoptosis rate did not differ between cases and controls
(1.1 ± 1.9 and 1.1 ± 1.3%, respectively).

These findings indicate a reduction of immune privilege in decidua of PE/FGR pregnancies by reduced FasL expression and that
DeCs may have a central role in the Fas-FasL-based feto-maternal immune balance.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Fas ligand (FasL) is a member of the tumour necrosis
(TNF) superfamily (Bohana-Kashtan and Civin, 2004).
Its expression is confined to activated T lymphocytes,
natural killer (NK) cells and cells in immune privi-
leged sites (Medvedev et al., 1997; Bohana-Kashtan

0165-0378/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.jri.2006.11.002
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and Civin, 2004). In contrast, its receptor Fas (belong-
ing to the TNF receptor superfamily) is expressed by
most cell types (Bohana-Kashtan and Civin, 2004). The
interaction between Fas-FasL induces apoptosis of the
Fas-expressing cell (Bohana-Kashtan and Civin, 2004).
The Fas-FasL system has been ascribed a role in immune
tolerance at the feto-maternal interface (Straszewski-
Chavez et al., 2005), and has been considered a potential
pathway to prevent excessive infiltration of leukocytes
into the decidua (Hunt et al., 1997; Mor et al., 1998;
Kauma et al., 1999; Qiu et al., 2005). Both extravil-
lous trophoblasts (EVTs) (Runic et al., 1996; Uckan
et al., 1997; Hammer and Dohr, 2000) and decidual
cells (DeCs) (Hunt et al., 1997; Makrigiannakis et al.,
2003; Kayisli et al., 2003) express FasL. Apoptotic
leukocytes have been detected in close proximity to
FasL-expressing EVTs in in vivo materials (Mor et al.,
1998), and trophoblast-induced FasL-mediated apopto-
sis of activated lymphocytes has been confirmed in vitro
(Coumans et al., 1999). In a recent study, an inverse rela-
tionship was reported between FasL-expressing DeCs
and maternal leukocytes (Qiu et al., 2005). Based on
these data, Qiu et al. (2005) hypothesized that FasL-
expressing DeCs may regulate infiltration of maternal
Fas-positive leukocytes at the feto-maternal interface.

Superficial trophoblast invasion and insufficient
spiral artery remodelling characterize pregnancies com-
plicated by pre-eclampsia (PE) and/or fetal growth
restriction (FGR) (Redman and Sargent, 2005). The Fas-
FasL system is involved in these processes (Murakoshi
et al., 2003; Ashton et al., 2005; Harris et al., 2005)
and, in accordance with this, abnormal Fas-FasL expres-
sion has been reported in PE/FGR. FasL exists also
in a soluble (s) form. The physiological functions of
sFasL are not completely understood, but it is assumed
to play a role in the regulating functions of the immune
system. In women with PE/FGR, reduced leukocyte
expression of FasL has been reported (Kuntz et al.,
2001), whereas observations regarding sFasL are con-
flicting; some report elevated levels in PE/FGR (Kuntz
et al., 2001; Hu et al., 2005) and others find sFasL con-
centrations corresponding to those in normal pregnant
women (Laskowska et al., 2006). Similarly, observations
at the local site are diverging—reduced (Allaire et al.,
2000; Yue et al., 2005), unchanged (Hu et al., 2005) and
increased (Koenig and Chegini, 2000) FasL expression
have been reported in PE/FGR pregnancies.

The closest interaction between fetal and maternal
cells occurs in decidua and thus this tissue will proba-
bly provide the most sensitive detection of changes in
FasL expression, disturbing immune privilege and phys-
iological implantation processes. Thus, in this study, we

have used decidual tissue to examine FasL expression
and apoptosis in pregnancies with PE and/or FGR. Con-
comitantly, maternal sFasL levels were assessed to learn
whether disease is associated with changes.

2. Materials and methods

2.1. Study groups

Since we aimed to study FasL expression in impaired
placental development, cases with suspected placental
insufficiency (with PE and/or FGR) were recruited. PE
was defined as persistent hypertension (blood pressure
of ≥140/90 mmHg) plus proteinuria (≥0.3 g/24 h or ≥2+
according to a dipstick test), developing after 20 weeks
of pregnancy (Gifford et al., 2000). FGR implied birth
weight ≤2 standard deviations (S.D.) below the expected
birth weight as related to gestational age (GA) and sex
(Marsal et al., 1996). Due to tissue sampling procedures,
only cases delivered by caesarean section (CS) could
be included. Healthy women with normal pregnancies
undergoing CS for various reasons considered irrelevant
to the aim of this study (e.g. breech presentation and
previous CS) served as controls.

Materials were collected at St. Olavs Hospital (the
University Hospital in Trondheim). The study was
approved by the Regional Committee for Medical
Research Ethics. Informed consent was obtained from
all participants.

2.2. Sample collection and preparation

Decidual tissue was obtained by vacuum suction of
the placental bed after the placenta was delivered (Staff
et al., 1999; Harsem et al., 2004). Some tissue was snap-
frozen in liquid nitrogen and stored at −80 ◦C, some
was fixed in 10% neutral buffered formalin and paraffin-
embedded. Tissue for gene expression was immediately
submerged in a RNA stabilization solution (RNAlater,
Ambion, Huntington, UK), incubated at 4 ◦C overnight
and stored at −80 ◦C. Peripheral maternal blood was
collected, centrifuged and serum was stored at −80 ◦C.

2.3. Placental growth and histology

Placental weight and placental weight ratio (PWR:
observed placental weight/expected placental weight)
were registered. Expected placental weight according to
GA was obtained from published standards (Benirschke
and Kaufmann, 2000). All placentas were examined by
one pathologist in accordance with established clinical
routines.
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2.4. Expression of FasL by DeCs and EVTs

The expression of FasL in decidual tissue was
assessed by a double immunofluorescence technique
using an antibody against FasL in combination with
antibodies to detect decidual cells (anti-prolactin) or
trophoblasts (anti-cytokeratin 7). A polyclonal rabbit
antibody (pAb) against FasL (Q-20; Santa Cruz Biotech-
nology, Santa Cruz, CA; diluted 1:20), with highly
ranked specificity (Hammer and Dohr, 2000), was used
for FasL detection. Tissue was cut in three serial sec-
tions at 5 �m on a freeze microtome. One section was
stained with haematoxylin and eosin (HE) and used for
quality control. Only specimens containing both DeCs
and EVTs, with a low contamination of blood and/or pla-
cental tissue, were included for further studies. The two
remaining cryosections were fixed in acetone (10 min at
4 ◦C). Bovine serum albumin (2%) was added for 10 min
to inhibit non-specific binding and, subsequently, pAb
against FasL (Q-20) was added for 1 h either in combi-
nation with a mouse monoclonal antibody (mAb) against
cytokeratin 7 (CK7, clone OV-TL 12/30; DakoCytoma-
tion, Glostrup, Denmark; diluted 1:300) or mouse mAb
against human prolactin (clone PRL02; Neo Markers,
Fremont, CA, USA; diluted 1:2). Sections were incu-
bated with secondary antibodies (TRITC-conjugated
swine anti-rabbit pAb (code R0156; DakoCytomation;
diluted 1:30) and FITC-conjugated goat anti-mouse pAb
(code F0479; DakoCytomation; diluted 1:10) for 30 min.
All incubations were performed at room temperature in
a dark moist chamber, and phosphate-buffered saline
(PBS) was used for washing between all incubation
periods. Sections were counterstained with 1000 ng/mL
4,6-diamidino-2-phenylindole (DAPI 1, Abbott Labo-
ratories AS, Gentofte, Denmark) and examined with a
fluorescent microscope (Nicon Eclipse E600) at ×600
magnification using CytoVision 3.6 software (Applied
Imaging, Newcastle upon Tyne, UK). Placental tissue
(with FasL-expressing villous trophoblasts, Hofbauer
cells and fetal blood vessels) (Hammer and Dohr, 2000)
were used as positive controls, whereas sections incu-
bated with serum from non-immunized rabbits (Code
X0936; DakoCytomation; diluted 1:20) served as nega-
tive controls in the FasL experiments. Glands in decidua
were used as internal positive control for mAb against
CK7, and sections of pituitary glands were included as
a positive control for anti-prolactin (not shown).

The ratio of FasL-expressing DeCs and EVTs was
calculated as the percentage of FasL-positive DeCs and
EVTs in each section (number of FasL-positive prolactin
or CK7-positive cells among 100 of the corresponding
cell type).

2.5. Soluble FasL in maternal blood

Levels of sFasL in maternal serum were assessed
by a sandwich enzyme-linked immunoassay (ELISA,
R&D Systems, Abingdon, UK), according to the man-
ufacturer’s standard procedure. Samples were tested in
duplicates (50 �L each). The detection level of the assay
was 2.7 pg/mL.

2.6. Apoptosis-related gene expression in decidua

The expression of apoptosis-relevant genes in decid-
ual tissue was studied by Affymetrix GeneChip analysis.
Total RNA was purified from decidual tissue using
a RNeasy Midi Kit according to the manufacturer’s
instructions (Qiagen, Crawley, UK), and RNA con-
centration and purity were measured using NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies,
Rockland, DE, USA). Double stranded cDNA was syn-
thesized using 5 �g total RNA. Synthesis of cDNA
(cDNA synthesis kit; Invitrogen, Carlsbad, CA, USA)
and biotin-labeled cRNA (BioArrayTM HighYieldTM

kit; Enzo Life Sciences, NY, USA), cRNA frag-
mentation, target hybridization, washing, staining and
scanning were performed using standard Affymetrix
protocols (Affymetrix, Santa Clara, USA). Fragmented
biotinylated cRNA targets were hybridized to Human
Genome Focus Arrays (Affymetrix) using 10 �g frag-
mented biotinylated cRNA. The arrays were scanned
using a Agilent GeneArray Scanner controlled by MAS
5.0. Gene expression data were analyzed with a Gene
Map Annotator and Pathway Profiler (GenMAPP, Glad-
stone Institute, CA, www.GenMAPP.org).

2.7. Trophoblast apoptosis

Apoptosis of EVTs was assessed in two serial sec-
tions of formalin-fixed decidual tissues by counting
mAb M30 (clone M30; Roche, Mannheim, Germany;
diluted 1:50) (Kadyrov et al., 2001) positive cells in
one section and relating numbers to mAb CK7 (clone
OV-TL 12/30; Dako Cytomation; diluted 1:1000) pos-
itive cells in section two. The staining was performed
in an automated slide stainer (DakoCytomation) after
deparaffination, rehydration and heat-induced antigen
retrieval. Endogenous peroxidase activity was blocked,
and primary antibodies added. Incubation time was 30
and 40 min for anti-CK7 and M30, respectively. Sec-
ondly, a peroxidase-conjugated polymer with antibodies
against rabbit/mouse (ChemMate Dako Envision Detec-
tion Kit Peroxidase/DAB) (DakoCytomation) was used
according to the manufacturer’s standard procedure.
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Antibody-diluent without antibody was used as a con-
trol for non-specific staining, and sections from colon
adenocarcinoma were used as positive controls for M30.
The sections were counterstained in haematoxylin for
1 min and analyzed at ×200 magnification in a light
microscope.

The trophoblast apoptosis ratio in decidual tissues
was calculated as M30-positive cells among CK7-
positive cells. Cell counting was performed in areas that:
(1) contained at least 100 trophoblasts, and (2) were
easily reproduced from one section to the other. Areas
that fulfilled these criteria were demarcated with Indian
ink in paired serial sections. One case with 35 EVTs in
the whole section was excluded from further apoptosis
analyses due to statistical considerations.

Cell counting was performed by two independent
individuals, blinded for the case/control status at ×200
magnification, using a 13 mm × 13 mm reticule. The
mean count was used for statistical analysis.

2.8. Statistical analysis

The clinical data and the results of cell counting were
expressed as the mean ± the corresponding S.D. The
Mann–Whitney test was used for comparison between
groups. Spearman’s ranked correlation test was used
to examine correlation between FasL expression, EVT
apoptosis, placental weight and clinical data. p < 0.05
was considered significant. SPSS Version 12 was used
for all statistical analyses.

Statistical analysis of the Affymetrix GeneChip
arrays data was based on summary expression mea-
sures for each gene probe set. These summary measures
were computed from quantile-normalized and log-
transformed perfect match values for each probe pair
using the robust multiarray average method (Irizarry et
al., 2003). Tests for significant differential expression for
cases versus controls were performed using moderated
T-tests (Smyth, 2004). To account for multiple testing,
we calculated adjusted p-values controlling the false
discovery rate and inserted the estimated value of the pro-
portion of non-differentially expressed genes (Langaas et
al., 2005). All analyses were performed using the R sta-
tistical package and the Affy & Limma sofware packages
from the Bioconductor project (Gentleman et al., 2004).

3. Results

Sixty women were included in the study (33 cases and
27 controls). Cases and controls differed significantly
with respect to GA, birth weight and placental weight
(Table 1).

Table 1
Clinical information

Cases (n = 33) Controls (n = 27)

Maternal age (years) 30 ± 5 31 ± 5
Gestational age (weeks)

at delivery
32 ± 4* 39 ± 1

Systolic blood pressure
(mmHg)

148 ± 20* 121 ± 14

Diastolic blood pressure
(mmHg)

93 ± 12* 71 ± 13

Birth weight (g) 1525 ± 668* 3662 ± 501
BWRa 0.71 ± 0.16* 1.10 ± 0.15
Placental weight (g) 323 ± 116* 644 ± 144
PWRb 0.96 ± 0.25* 1.45 ± 0.33

Values are expressed as mean ± S.D., unless stated otherwise. All case
groups were compared to controls.

a BWR: birth weight ratio (observed birth weight/expected birth
weight).

b PWR: placental weight ratio (observed placental weight/expected
placental weight).

* p < 0.001.

3.1. Placental weight and histology

The PWR was significantly lower among cases
(0.96 ± 0.25) than the control group (1.45 ± 0.33)
(p < 0.001). Reduced PWR was observed in pregnan-
cies with FGR (p < 0.001), whereas pregnancies with
isolated PE had a PWR comparable with controls.
Abnormal morphological findings in the placenta were
more frequent among cases than controls; 13 (39.4%)
cases demonstrated advanced villous maturation com-
pared with 3 (11.1%) controls, and 4 (12.1%) cases
had multiple infarcts compared with none in the control
group.

3.2. Expression of FasL by DeCs and EVTs

FasL staining of DeCs demonstrated a distinct punc-
tuate staining pattern in the cytoplasm (Fig. 1A),
with a less intense staining of EVTs (Fig. 1C).
The proportion of FasL-expressing DeCs was reduced
among cases (58.1 ± 19.7%) compared with controls
(72.0 ± 10.2%) (p = 0.002) (Fig. 1B). The reduction was
most pronounced in pregnancies complicated with FGR
(54.3 ± 19.9%) (p = 0.001), whereas isolated PE did not
differ significantly from controls. A positive correlation
was observed between the proportion of FasL expression
by DeCs and PWR (p < 0.001).

EVTs demonstrated a much lower proportion of FasL-
expressing cells than DeCs, both in cases and controls
(Fig. 1D). As with DeCs, FasL expression by EVTs
was reduced among cases (8.3 ± 4.0%) compared with
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Fig. 1. Double immunofluorescence and single immunohistochemical staining on cryosections (A and C) and formalin-fixed, paraffin-embedded
section (E) of decidua basalis obtained from women at delivery. The immunofluorescence staining was performed on two serial sections: (A)
demonstrates FasL staining (red signal) of decidual cells (DeCs) with anti-prolactin (green signal) as DeC marker, and (C) illustrates FasL expression
(red signal) in extravillous trophoblasts (EVTs) with anti-CK7 (green signal) as EVT marker. Two FasL-positive DeCs are shown in (A), whereas
both FasL-positive ( ) and FasL negative ( ) trophoblasts are presented in (B). DeCs demonstrated a distinct and punctuate FasL staining in
cytoplasm ( ) (A), whereas the FasL staining of EVTs was less intense ( ) (B). Trophoblast apoptosis was detected by M30 monoclonal
antibody (brown staining) (E). The proportions of FasL-positive DeCs (B), FasL-positive EVTs (D) and apoptotic EVTs (F) were calculated. Results
are displayed as mean values with the corresponding S.D.

controls (10.9 ± 3.9%) (p = 0.02) (Fig. 1C). A positive
correlation was observed between the proportion of
FasL-positive EVTs and PWR (p = 0.045).

3.3. Soluble FasL levels in maternal serum

Levels of sFasL in maternal serum did not differ
between cases (n = 14) and controls (n = 12); 77.6 ± 16.4
and 81.3 ± 13.5 pg/mL, respectively. No correlation was
observed between decidual FasL expression and sFasL
concentrations.

3.4. Apoptosis-related gene expression in decidua

Gene expression analyses in decidual tissue were
performed on 37 of the specimens collected (18 cases
and 19 controls). Due to operating costs, the num-
ber of samples subjected to gene expression analyses
was restricted. The pregnancies included were randomly
selected, and the gene expression analysis of cases and
controls did not differ from the total case and con-
trol group with respect to GA, birth weight and blood
pressure.
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In total, 82 genes involved in main apoptotic pathways
(both activation and inhibition, including genes involved
in the Fas-FasL pathway) were studied. Expression of
apoptotic pathway genes did not differ between groups.
Different expression of genes known to change in PE
was verified (Gallery et al., 1999), suggesting that the
experimental setting had the statistical power required
to detect differences between study groups.

3.5. Trophoblast apoptosis

The apoptosis rate was low both in cases and
in controls, and the proportion of apoptotic EVTs
(M30+/CK7+) did not differ between groups (1.1 ± 1.9
and 1.1 ± 1.3%, respectively) (Fig. 1E and F). No corre-
lation was observed between the proportion of apoptotic
EVTs and FasL expression by DeCs and by EVTs.

4. Discussion

In the present investigation we have found that FasL
was expressed by both DeCs and EVTs. This observa-
tion is in accordance with previous reports (Hammer
and Dohr, 1999; Kayisli et al., 2003). The physiological
proportion of FasL-expressing DeCs was much higher
(72%) than that of EVTs (11%). Both were reduced in
association with placental disease (i.e. PE and/or FGR),
but the reduction in FasL expressed by DeCs was most
pronounced.

Our findings are in agreement with earlier obser-
vations indicating that decidual cells are involved in
immune interactions at the feto-maternal site, with
possible consequences for implantation and placental
development (Olivares et al., 1997; Ruiz et al., 1997;
Kitaya et al., 2000; Dimitriadis et al., 2002). Correla-
tions between PWR and the proportion of FasL-positive
DeCs (p < 0.001) and EVTs (p = 0.045) found in the
present study suggest a possible association between
decidual FasL expression and placental development and
growth.

Trophoblast expression of FasL has been suggested
as a protective mechanism against maternal leukocyte-
induced apoptosis (Hammer and Dohr, 2000). Reduced,
enhanced and unchanged FasL expression have been
reported in PE/FGR (Koenig and Chegini, 2000; Allaire
et al., 2000; Hu et al., 2005; Yue et al., 2005). All
these studies were, however, performed on placental tis-
sue/villous trophoblasts. Only one previous study has
focused on changes in decidual FasL expression in asso-
ciation with disease (Koenig and Chegini, 2000). Koenig
and Chegini (2000) found raised expression of Fas-L in
cases, but their diagnosis is pregnancy-induced hyper-

tension and the clinical information given is sparse.
Accordingly, we are not sure whether the cases included
in the study of Koenig and Chegini (2000) may be
compared to the cases with quite severe pregnancy com-
plications included in the present study. Since PE/FGR
pregnancies are commonly delivered preterm, sampling
of GA-matched healthy controls is difficult and the mean
GA among cases was 6 weeks shorter than controls
(Table 1). However, since FasL expression on villous
trophoblasts has been reported to decrease towards term
(Balkundi et al., 2000), it is likely that the observed dif-
ferences in FasL expression are underestimated due to
the fact that GA-matching between groups cannot be
carried out.

Some investigators have reported increased EVT
apoptosis in PE (Genbacev et al., 1999), whereas oth-
ers found reduced apoptosis of interstitial EVTs and
increased apoptosis of endovascular EVTs in PE and
FGR (Kadyrov et al., 2003, 2006). No difference and
generally low proportion of apoptotic EVTs (both inter-
stitial and endovascular) has been shown in the present
study (1.1% in both cases and controls). Contrasting
reports on EVT apoptosis can be partly explained by
use of different methods and reflect difficulties in apop-
tosis assessment. As decidual samples were taken from
women with active disease, the presence of EVT apop-
tosis may have preceded the time of analyses; thus, the
possibility of altered EVT apoptosis in placental insuf-
ficiency cannot be excluded.

Some investigators have reported raised maternal
sFasL concentrations in PE (Kuntz et al., 2001; Hu et al.,
2005), whereas we and others (Laskowska et al., 2006)
found similar sFasL levels in cases and controls. Dis-
crepancies between studies may be due to differences
in diagnostic criteria and small study groups. The fact
that decidual tissue from cases with placental disease
demonstrated altered decidual FasL expression, whereas
normal sFasL serum levels remained unchanged, makes
it tempting to assume that the local immunological envi-
ronment is more important for successful pregnancy than
systemic regulatory events (Saito and Makino, 2005).
The specific role of DeCs, compared to that of EVTs,
in FasL-based immune privilege (Hunt et al., 1997;
Kauma et al., 1999) remains to be elucidated, but some
murine experiments are indicated. Hunt et al. (1997)
found decidual necrosis and poor pregnancy outcome in
mice lacking functional FasL on both fetal trophoblasts
and maternal decidual cells. Thus, a normal pregnancy
outcome is obtained if non-functional fetal FasL is
combined with functional FasL expressed by maternal
decidual cells (Rogers et al., 1998). This is supported by
observations made in the present study that DeCs seem to
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be a fundamental contributor to appropriate FasL-based
balance between mother and fetus in decidual tissues.
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SUMMARY

Within the field of diagnostic tests, the positive predictive value is the probability of being
diseased given that the diagnostic test is positive. Two diagnostic tests are applied to each subject
in a study and in this report we look at statistical hypothesis tests for large samples to compare
the positive predictive values of the two diagnostic tests. We propose a likelihood ratio test and
a restricted difference test, and we perform simulation experiments to compare these tests with
existing tests. For comparing the negative predictive values of the diagnostic tests, i.e. the proba-
bility of not being diseased given that the test is negative, we propose negative predictive versions
of the same tests. The simulation experiments show that the restricted difference test performs
well in terms of test size.

1 INTRODUCTION

Diagnostic tests are used in medicine to e.g. detect diseases and give prognoses. Diagnostic tests
can for example be based on blood samples, X-ray scans, mammography, ultrasound or computed
tomography (CT). Mammography is used for detecting breast cancer, a blood sample may show if
an individual has an infection, fractures may be detected from X-ray images, gallstones in the gall-
bladder can be found using ultrasound, and CT scans are useful for identifying tumours in the liver.
A diagnostic test can have several outcomes or the outcome may be continuous, but it can often be
dichotomized in terms of presence or absence of a disease and we will only consider diagnostic tests
for which the disease status is binary.

When evaluating the performance of diagnostic tests, the sensitivity, specificity and positive and neg-
ative predictive values are the common accuracy measures. The sensitivity and specificity are proba-
bilities of the test outcomes given the disease status. The sensitivity is the probability of a positive test
outcome given that the disease is present and the specificity is the probability of a negative outcome
given no disease. These measures tell us the degree to which the test reflects the true disease status.

The predictive values are probabilities of disease given the test result. The positive predictive value
(PPV) is the probability that a subject who has a positive test outcome has the disease and the negative
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predictive value (NPV) is the probability that a subject who has a negative test outcome does not have
the disease. The predictive values give information about the prediction capabilities of the test. For a
perfect test both the PPV and NPV are 1, the test result will then give the true disease status for each
subject.

When there are several diagnostic tests available for the same disease, we are interested in knowing
which test is the best to use, but depending on what we mean by best, there are different methods
available. If we want to find the best test regarding the ability to give a correct test outcome given
the disease status then e.g. McNemar’s test, see Alan Agresti (2002), can be used for comparing the
sensitivity or specificity of two tests evaluated on the same subjects.

A test that has a high sensitivity and specificity will be most likely to give the patient the correct test
result. However, for the patient it is utterly important to be correctly diagnosed and thereby getting
the right treatment. We need to take into account the prevalence of the disease. If the prevalence
is low, the probability that the patient does have the disease when the test result is positive, will be
small even if the sensitivity of the applied test is high. Therefore, comparing the positive or negative
predictive values is often more relevant in clinical practise as discussed by Guggenmoos-Holzmann
and van Houwelingen (2000).

In the remainder of this work, we wish to test if the positive or negative predictive values of two
diagnostic tests are equal. In this report we apply existing tests by Leisenring, Alonzo and Pepe (2000)
and Wang, Davis and Soong (2006), we propose a likelihood ratio test, and suggest improvements for
some of the already existing tests in the large sample case.

In Section 2 we describe the model and the structure of the data and define the predictive values.
The null hypothesis, along with our proposed methods and already existing methods are presented in
Section 3. A simulation study is conducted to compare the methods in Section 4. In Section 5 the
methods are applied to data from the literature. We also present an alternative model and test statistic
for the likelihood ratio test in Section 6. The results are summarised in the conclusions in Section 7.

2 MODEL AND DATA

Next we define the random variables and the model used to describe the situation when comparing the
predictive values.

2.1 DEFINITIONS

Two tests, test A and test B, are evaluated on each subject in a study. Each test can have a positive
or negative outcome, i.e. indicating whether the subject has the disease under study or not. The true
disease status for each subject is assumed to be known. For each subject, we define three events:

• D: The subject has the disease.

• A: Test A is positive.

• B: Test B is positive.

Let D∗, A∗ and B∗ denote the complementary events. The situation can then be illustrated by a Venn
diagram as in Figure 1. There are eight mutually exclusive events and we define the random variable
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Ni, i = 1, ..., 8, to be the number of times event i occurs. In total there are N = N1 + . . . + N8

subjects in the study. Table 1 gives an overview of the notation for the eight random variables in terms
of the events A, B, D and their complements.

Notation Alternative notation Explanation
N1 NA∩B∩D∗ number of non-diseased subjects with positive tests A and B
N2 NA∩B∗∩D∗ number of non-diseased subjects with positive test A and negative test B
N3 NA∗∩B∩D∗ number of non-diseased subjects with negative test A and positive test B
N4 NA∗∩B∗∩D∗ number of non-diseased subjects with negative tests A and B
N5 NA∩B∩D number of diseased subjects with positive tests A and B
N6 NA∩B∗∩D number of diseased subjects with positive test A and negative test B
N7 NA∗∩B∩D number of diseased subjects with negative test A and positive test B
N8 NA∗∩B∗∩D number of diseased subjects with negative tests A and B

TABLE 1: Notation for the random variables defined by the events A, B and D and their complements.

A

N2 N3

N8

N4

N7

N5

N1

N6

D

B

N

FIGURE 1: Venn diagram for the events D, A and B showing which events the random variables
N1, ..., N8 correspond to.

To each of the eight mutually exclusive events there corresponds an unknown probability pi,
i = 1, . . . , 8, where

∑
8

i=1
pi = 1, which is the probability that event i occurs for a randomly cho-

sen subject. The positive predictive values of test A and test B can be expressed in terms of these
probabilities and are given as

PPVA = P (D|A) =
P (D ∩ A)

P (A)
=

p5 + p6

p1 + p2 + p5 + p6

and

PPVB = P (D|B) =
P (D ∩ B)

P (B)
=

p5 + p7

p1 + p3 + p5 + p7

.
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Similarly, the negative predictive values of test A and B are

NPVA = P (D∗|A∗) =
P (D∗ ∩ A∗)

P (A∗)
=

p3 + p4

p3 + p4 + p7 + p8

and

NPVB = P (D∗|B∗) =
P (D∗ ∩ B∗)

P (B∗)
=

p2 + p4

p2 + p4 + p6 + p8

.

The predictive values are dependent on the prevalence of the disease, P (D), which is the probability
that a randomly chosen subject has the disease. For the positive predictive value,

PPVA = P (D|A) =
P (D ∩ A)

P (A)
=

P (A|D) · P (D)

P (A|D) · P (D) + (1 − P (A∗|D∗)) · (1 − P (D))
,

where P (A|D) is the sensitivity and P (A∗|D∗) is the specificity of test A. When P (A) = P (B)
testing if PPVA = PPVB is equivalent to testing if P (A|D) = P (B|D), i.e. testing whether the
sensitivities of the two tests are equal. We assume that the prevalence among the subjects in the study
is the same as the prevalence in the population, and this can be achieved with a cohort study in which
the subjects are randomly selected.

2.2 THE MULTINOMIAL MODEL

Given the total number of subjects N in the study, the random variables N1, N2, ..., N8 can be seen
to be multinomially distributed with parameters p = (p1, p2, p3, p4, p5, p6, p7, p8) and N , where∑

8

i=1
pi = 1. The joint probability distribution of N1, N2, ..., N8 is

P

(
8⋂

i=1

(Ni = ni)

)
= N !

8∏
i=1

pi
ni

ni!
.

The expectation of Ni is
E(Ni) = μi = Npi

for i = 1, ..., 8, and the variance is

Var(Ni) = Npi(1 − pi).

The covariance between Ni and Nj is

Cov(Ni, Nj) = −Npipj

for i �= j. This leads to the covariance matrix

Σ = Cov(N ) = N(Diag(p) − pT p),

for the multinomial distribution, Johnson, Kotz and Balakrishan (1997). The general unrestricted
maximum likelihood estimator of pi is

p̂i = ni/N (1)

for i = 1, ..., 8.

4



2.3 DATA

For a number of subjects under study, we observe for each i = 1, ..., 8, the number of times event
i occurs among the N subjects, ni. Table 2 shows the observed data in a 23 contingency table. In
the following, let n = (n1, n2, n3, n4, n5, n6, n7, n8) be the vector of the observed data. Using the
unrestricted maximum likelihood estimators for p, we can then estimate the positive and negative
predictive values of test A and B as follows:

P̂PVA =
n5 + n6

n1 + n2 + n5 + n6

, P̂PVB =
n5 + n7

n1 + n3 + n5 + n7

N̂PVA =
n3 + n4

n3 + n4 + n7 + n8

, N̂PVB =
n2 + n4

n2 + n4 + n6 + n8

.

Subjects without disease Subjects with disease
Test B Test B

+ − + −
Test A + n1 n2 n5 n6

− n3 n4 n7 n8

TABLE 2: Observed data n1, ..., n8 presented in a 23 contingency table.

3 METHOD

Assume that we would like to test the null hypothesis that the positive predictive values are equal for
test A and B, i.e. PPVA = PPVB . The null hypothesis can be written as

HP
0 : P (D|A) = P (D|B), i.e. HP

0 :
p5 + p6

p1 + p2 + p5 + p6

=
p5 + p7

p1 + p3 + p5 + p7

. (2)

Alternatively, if we would like to test whether the negative predictive values are equal for test A and
B, i.e. if NPVA = NPVB , the null hypothesis is

HN
0 : P (D∗|A∗) = P (D∗|B∗), i.e. HN

0 :
p3 + p4

p3 + p4 + p7 + p8

=
p2 + p4

p2 + p4 + p6 + p8

. (3)

Our alternative hypotheses will be that the predictive values are not equal, i.e.
HP

1 : P (D|A) �= P (D|B) and HN
1 : P (D∗|A∗) �= P (D∗|B∗).

3.1 LIKELIHOOD RATIO TEST

One possibility to test the null hypothesis in (2) is to use a likelihood ratio test. We first write down
the test statistic and then describe how to find the maximum likelihood estimates of parameters.
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3.1.1 TEST STATISTIC

In a general setting, if we want to test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ
c
0 where Θ0 ∪ Θ

c
0 = Θ

and Θ denotes the entire parameter space, we may use a likelihood ratio test. This approach was also
suggested by Leisenring et al. (2000), who faced numerical difficulties trying to implement it. The
likelihood ratio test statistic is in general defined as

λ(n) =
supΘ0

L(θ|n)

supΘ L(θ|n)

where n is the observed data, Casella and Berger (2002). The denominator of λ(n) is the max-
imum likelihood of the observed sample over the entire parameter space and the numerator is the
maximum likelihood of the observed sample over the parameters satisfying the null hypothesis. Let
N = (N1, N2, N3, N4, N5, N6, N7, N8) be the vector of the random variables. When the sample size
is large,

−2 · logλ(N ) ≈ χ2
k

i.e. −2 · logλ(N ) is χ2 distributed with k degrees of freedom where k is the difference between the
number of free parameters in the unrestricted case and under the null hypothesis.

Let θ = p = (p1, . . . , p8) be the parameters in the multinomial distribution and n = (n1, . . . , n8) the
observed data. The log-likelihood to be maximized for the multinomial distribution is

l(p) = logL(p|n) = c +

8∑
i=1

ni · log(pi) (4)

where c is a constant.

The sum of p1, p2, ..., p8 must equal 1,
8∑

i=1

pi = 1. (5)

Under the null hypothesis that the positive predictive values for the two tests are equal, their difference
δP is zero, i.e.

δP =
p5 + p6

p1 + p2 + p5 + p6

− p5 + p7

p1 + p3 + p5 + p7

= 0. (6)

In the unrestricted case (i.e. H0 ∪ H1), the maximum likelihood estimates for p1, . . . , p8 are the
estimates given by (1), which satisfy (5). Under the null hypothesis, the estimates cannot be given in
closed form and we will need to use an optimization routine to estimate p1, . . . , p8 by maximizing the
log-likelihood (4) under the constraints (5) and (6).

Let p̂ = (p̂1, p̂2, p̂3, p̂4, p̂5, p̂6, p̂7, p̂8) be the unconstrained maximum likelihood estimates and
p̃ = (p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7, p̃8) the maximum likelihood estimates under the null hypothesis. Then,
in our model, asymptotically as N is large,

−2 · log(λ(n)) = −2

(
8∑

i=1

ni · (log(p̃i) − log(p̂i))

)
≈ χ2

1. (7)

We have one less free parameter in the restricted case because of the constraint (6).
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For testing whether the negative predictive values for the two tests are equal, the constraint δP (6) is
replaced by δN , where

δN =
p3 + p4

p3 + p4 + p7 + p8

− p2 + p4

p2 + p4 + p6 + p8

= 0. (8)

3.1.2 FINDING MAXIMUM LIKELIHOOD ESTIMATES UNDER THE NULL HYPOTHESES

To find the maximum likelihood estimates under the null hypothesis, we can either maximize the
likelihood function under the given constraints using a numerical optimization routine or find the esti-
mates analytically by solving a system of equations. In both approaches we use Lagrange multipliers
and in either case we have two constraints.

NUMERICAL MAXIMIZATION OF THE LOG-LIKELIHOOD If we want to find the maximum likeli-
hood estimates using an optimization routine, the goal is to find the values p̃ under the null hypothesis
such that logL(p̃) ≥ logL(p) for all p that satisfies the two constraints (5) and (6).

To maximize the log-likelihood (4) under the null hypotheses, we use the R interface version of
TANGO (Trustable Algorithms for Nonlinear General Optimization), see Andreani, Birgin E. G.,
Martinez and Schuverdt (2007) and Andreani, Birgin, Martinez and Schuverdt (2008), which is a set of
Fortran routines for optimization. In order to run the program, one must specify the objective function
and the constraint and their corresponding first order derivatives. We reparametrize the problem by
setting

p1 =
1

1 + ey1 + ... + ey7

,

p2 =
ey1

1 + ey1 + ey2 + ... + ey7

,

p3 =
ey2

1 + ey1 + ey2 + ... + ey7

,

...

p8 =
ey7

1 + ey1 + ey2 + ... + ey7

where −∞ < yi < ∞, i = 1, . . . , 7. This reparametrization ensures that the constraint (5) is
satisfied, in addition to restricting the estimated probabilities to be 0 ≤ pi ≤ 1, i = 1, . . . , 8. Let
y = (y1, y2, y3, y4, y5, y6, y7). The constraint under the null hypothesis (2) is then

δP,y =
ey4 + ey5

1 + ey1 + ey4 + ey5

− ey4 + ey6

1 + ey2 + ey4 + ey6

= 0 (9)

and the constraint under the null hypothesis (3) is

δN,y =
ey2 + ey3

ey2 + ey3 + ey6 + ey7

− ey1 + ey3

ey1 + ey3 + ey5 + ey7

= 0. (10)

These constraints are both non-linear equality constraints. The TANGO program uses an augmented
Lagrangian algorithm to find the minimum of the negative log-likelihood while ensuring that the H0

constraints (9) and (10) are satisfied when testing the null hypotheses (2) and (3) respectively. The
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Lagrangian multiplier is updated successively starting by an initial value that must be set. We also
set the initial value of y and its lower and upper bounds. The value of y at the optimum is returned.
Some computational remarks are given in Appendix D.

ANALYTICAL MAXIMIZATION OF THE LOG-LIKELIHOOD Another approach is to find the esti-
mates analytically by solving a system of equations arising from the method of Lagrange multipliers,
for an introduction see Edwards and Penney (1998). The constraint under the null hypothesis can be
rewritten as

k(p) = p1p7 + p2p7 + p2p5 − p1p6 − p3p5 − p3p6 = 0. (11)

In addition, let h(p) be the constraint that p1, ..., p8 must sum to one,

h(p) =

8∑
i=1

pi = 1, (12)

and let l(p) be the log-likelihood function given in (4).

The system of equations to be solved then consists of

∇l = γ∇h + κ∇k (13)

where γ and κ are Lagrangian multipliers, together with the above constraints.

The partial derivatives of the log-likelihood l and the constraints h and k with respect to p1, p2, p3,
p4, p5, p6, p7 and p8 are given by

∇l =

(
n1

p1

,
n2

p2

,
n3

p3

,
n4

p4

,
n5

p5

,
n6

p6

,
n7

p7

,
n8

p8

)
, (14)

∇k = (p7 − p6, p5 + p7,−p5 − p6, 0, p2 − p3,−p1 − p3, p1 + p2, 0), (15)

and
∇h = (1, 1, 1, 1, 1, 1, 1, 1). (16)

From Equations (11) – (16) we obtain the following system of equations, which consists of ten equa-
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tions and ten unknown variables

n1 = p1(γ + κ(p7 − p6))

n2 = p2(γ + κ(p5 + p7))

n3 = p3(γ + κ(−p5 − p6))

n4 = p4γ

n5 = p5(γ + κ(p2 − p3)) (17)

n6 = p6(γ + κ(−p1 − p3))

n7 = p7(γ + κ(p1 + p2))

n8 = p8γ
8∑

i=1

pi = 1

p1p7 + p2p7 + p2p5 − p1p6 − p3p5 − p3p6 = 0.

The denominators of (14) have been multiplied over to the right hand side in order to allow for pi = 0
as a possible solution for ni = 0. Obviously, l cannot have a maximum value pi = 0 if ni �= 0, as
l(p) would be −∞ in this case. The solutions of this system of equations involve roots of third degree
polynomials, and we have used the Maple 12 command solve to find solutions. Among its solutions,
the one that maximizes l(p) and where all pi ≥ 0 yields the likelihood estimates p̃i under the null
hypothesis. We can show that when ni = 0, the corresponding likelihood estimate under the null
hypothesis p̃i is 0 for i = 1, 4, 5, 8, but that this is not necessarily true for i = 2, 3, 6, 7. For p̃4 and p̃8

we have the more general result that p̃4 = n4/N and p̃8 = n8/N , see Appendix A for the proofs.

A gradient based optimization routine searches for the global minimum across the negative log-
likelihood surface and it can get stuck in a local minimum. In our experience this especially happens
when some of the cell counts in the contingency table are small. The analytical maximization might
yield more accurate estimates in these cases, see Appendix D.

3.2 DIFFERENCE BASED TESTS

Other possible test statistics start out by looking at the difference of the PPVs, and then these test
statistics can be standardized by using Taylor series expansion. We also suggest some improvement
to these tests.

3.2.1 TEST STATISTICS

Based on the difference δP given in Equation (6), which equals zero under the null hypothesis, we
may suggest a variety of possible test statistics.

Wang et al. (2006) suggested the test statistics

g1(N ) =
N5 + N6

N1 + N2 + N5 + N6

− N5 + N7

N1 + N3 + N5 + N7

(18)

and

9



g2(N ) = log
(N5 + N6)(N1 + N3 + N5 + N7)

(N5 + N7)(N1 + N2 + N5 + N6)
. (19)

For a more detailed description of their work, see Appendix B.1. Moskowitz and Pepe (2006) also
suggest a similar test statistic to g2(N ), see Appendix B.2.

Since the null hypothesis can be written

HP
0 :

p1 + p3

p5 + p7

=
p1 + p2

p5 + p6

another test statistic to be used may be

g3(N ) =
N1 + N3

N5 + N7

− N1 + N2

N5 + N6

.

Another possibility is to use the log ratio of the terms, instead of their difference,

g4(N ) = log
(N1 + N3)(N5 + N6)

(N1 + N2)(N5 + N7)

or we may rewrite the null hypothesis in order to obtain

g5(N ) =
N5 + N6

N1 + N2

− N5 + N7

N1 + N3

.

3.2.2 STANDARDIZATION BY TAYLOR SERIES EXPANSION

For a general test statistic, g(N ), we may construct a standardized test statistic by subtracting the
expectation of the test statistic, E(g(N )), and dividing by its standard deviation,

√
Var(g(N )). In

the large sample case the square of the standardized test statistics may then be assumed to be approx-
imately χ2

1-distributed,

T (N ,μ,Σ) =

{
g(N ) − E(g(N ))√

Var(g(N ))

}2

≈ χ2
1. (20)

The expectation and variance of the test statistic can be approximated with the aid of Taylor series ex-
pansion as suggested by Wang et al. (2006). Let E(N ) = μ be the point around which the expansion
is centered. As before, Σ = Cov(N ). A second order Taylor expansion in matrix notation is given as

g(N ) ≈ g(μ) + GT (μ)(N − μ) +
1

2
(N − μ)T H(μ)(N − μ) (21)

where G is a vector containing the first order partial derivatives of g(N ) with respect to the compo-
nents of N and GT is the transpose of G. Further H is a matrix with second order partial derivatives
of g(N ) with respect to the components of N , i.e. the Hessian matrix.

The expectation of g(N ) can then be approximated as

E(g(N )) ≈ g(μ)

10



for the first order Taylor expansion and as

E(g(N )) ≈ g(μ) +
1

2
tr(H(μ)Σ) (22)

for the second order Taylor expansion, since

E
(

1

2
(N − μ)T H(μ)(N − μ)

)
= E

(
tr

(
1

2
H(μ)(N − μ)T (N − μ)

))
= 1

2
tr

(
H(μ)E((N − μ)T (N − μ))

)
where we have used the result xT Ax = tr(xT Ax) = tr(AxxT ) where x = N − μ and A is the
Hessian matrix H. E((N − μ)(N − μ)T ) is the covariance matrix Σ of N .

The variance of g(N ) can be approximated as

Var(g(N )) ≈ GT (μ)Σ G(μ)

for the first order Taylor expansion. Using a second order Taylor expansion for the variance requires
finding the third and fourth order moments of N .

Using the first order Taylor approximation of E(g(N )) and Var(g(N )) in the standardized test statistic
of (20) yields

T (N ) =
(g(N ) − g(μ))2

GT (μ)ΣG(μ)
≈ χ2

1. (23)

Under the null hypothesis, g(μ) = 0. G(μ) and Σ are functions of the unknown parameters p and
needs to be estimated. We can either insert the general maximum likelihood estimates p̂i = ni/N
or the maximum likelihood estimates p̃i under HP

0 , as found in Section 3.1.2. When we use the
standardized test statistic (23) with g1(N ) and estimate the variance using the maximum likelihood
estimates under H0 we refer to it as the restricted difference test. If we instead use the unrestricted
maximum likelihood estimates to estimate the variance, we refer to it as the unrestricted difference
test.

We have investigated two possible improvements of the standardized test statistics. In addition to
using the restricted maximum likelihood estimates to estimate the variance of (23), we have looked
at the effect of using a second order Taylor series approximation to E(g(N )) as an attempt to arrive
at a more accurate approximation to a χ2

1 distributed test statistic. The expectation and variance in
the standardized test statistic given in (20) is found using a first order Taylor series expansion and the
difference between using the first order and the second order Taylor series approximation to E(g(N ))
is the term 1/2 · tr(H(μ)Σ). For the simulation experiment in Section 4 this turned out to be very
small as compared to the denominator of (23).

3.3 TEST BY LEISENRING, ALONZO AND PEPE (LAP)

Leisenring et al. (2000) present a test for the null hypothesis given in (2). We will denote this the LAP
test. They define three binary random variables; Dij that denotes disease status, Zij that indicates
which test was used and Xij that describes the outcome of the diagnostic test for test j, j = 1, 2, for
subject i, i = 1, . . . , N .
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Dij =

{
0, non-diseased
1, diseased

Zij =

{
0, test A
1, test B

Xij =

{
0, negative
1, positive

The PPV of test A can be written as PPVA = P (Dij = 1 | Zij = 0,Xij = 1) and the PPV of test B
as PPVB = P (Dij = 1 | Zij = 1,Xij = 1). Based on generalized estimation equations Leisenring
et al. (2000) fit the generalized linear model

logit(P (Dij = 1 | Zij ,Xij = 1)) = αP + βP Zij.

Testing the null hypothesis H0 : PPVA = PPVB is equivalent to testing the null hypothesis
H0 : βP = 0. To derive the generalized score statistic, an independent working correlation structure
is assumed for the score function and the corresponding variance function is vij = μij(1−μij) where

μij = E(Dij). The score function is then SP =
∑Np

i=1

∑mi

j=1
Zij(Dij − D̄) which also can be written

as SP =
∑Np

i=1

∑mi

j=1
Dij(Zij − Z̄). Here Np is the number of subjects with at least one positive test

outcome and mi is the number of positive test results for subject i.

Z̄ =

∑Np

i=1
miZiDi∑Np

i=1
mi

is the proportion of positive B tests for the diseased subjects among all the positive tests and

D̄ =

∑NP

i=1
miDi∑NP

i=1
mi

is the proportion of positive tests for the diseased subjects among all the positive tests.

The resulting test statistic for testing the null hypothesis H0 : βP = 0 is obtained by taking the square
of the score function divided by its variance:

TPPV =

{∑Np

i=1

∑mi

j=1
Dij(Zij − Z̄)

}2

∑Np

i=1

{∑mi

j=1
(Dij − D̄)(Zij − Z̄)

}2
. (24)

Under the null hypothesis, this test statistic is asymptotically χ2
1-distributed. It is worth noting that

only the subjects with at least one positive test outcome contribute to the test statistic (24).

The test statistic in (24) is general and can be used even if the disease status is not constant within a
subject. Usually the disease status will be constant within the subject and the test statistic can be then
simplified. By defining Ti =

∑mi

j=1
Zij , the number of positive B tests subject i contributes to the

analysis, the statistic can be written

TPPV =

{∑Np

i=1
Di(Ti − miZ̄)

}2

∑Np

i=1
(Di − D̄)2(Ti − miZ̄)2

.
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We derived the test statistic by using our notation of the eight mutually exclusive events in Figure 1.
The numerator can be separated into six terms, in three of which the disease status D = 0 and three
where D = 1, by noting that Ti = 0 and mi = 1 when only test A is positive, Ti = 1 and mi = 1
when only test B is positive and Ti = 1 and mi = 2 when both tests are positive. Then

TPPV =
((N1 + N2 + N5 + N6)(N5 + N7) − (N1 + N3 + N5 + N7)(N5 + N6))

2

f(N1, N2, N3, N5, N6, N7)
(25)

where

f(N1, N2, N3, N5, N6, N7)

= N1(N2 − N3 + N6 − N7)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N2(N1 + N3 + N5 + N7)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N3(N1 + N2 + N5 + N6)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N5(N2 − N3 + N6 − N7)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N6(N1 + N3 + N5 + N7)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N7(N1 + N2 + N5 + N6)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

.

To compare the NPVs for test A and test B, Leisenring et al. (2000) fit the generalized linear model

logit(P (Dij = 1|Zij ,Xij = 0)) = αN + βNZij .

by using the generalized estimating equations method. The null hypothesis in this case is
H0 : βN = 0. Under the assumption that disease status is constant within a subject, this leads to the
test statistic

TNPV =

{∑Nn

i=1
Di(Ti − kiZ̄)

}2

∑Nn

i=1
(Di − D̄)2(Ti − kiZ̄)2

where Nn is the number of subjects with at least one negative test outcome and ki is the number of
negative test results for subject i. Only the subjects with at least one negative test outcome contribute
to this test statistic.

Leisenring et al. (2000) also propose a Wald test based on the estimates of the regression coefficients,
but their simulation studies show that the score test performs better.

4 SIMULATION STUDY

In order to compare the test size under the null hypothesis for the tests presented in Section 3 and to
assess the power of the tests under the alternative hypothesis, we perform a simulation experiment.
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All the tests are asymptotic tests, but it is not clear how large the sample size has to be for the tests
to preserve their test size. Therefore we will consider different sample sizes. Two different simula-
tion strategies for generating datasets will be presented. The maximum likelihood estimates under
the null hypotheses needed for the likelihood ratio test and the restricted difference test are found
using TANGO as described in Section 3.1.2. All analyses are performed using the R language, R
Development Core Team (2008).

4.1 SIMULATION EXPERIMENT FROM LEISENRING, ALONZO AND PEPE

The first simulation experiment is based on the simulation experiment of Leisenring et al. (2000) and
we use their algorithm to generate the data. Therefore we denote this simulation experiment the LAP
simulation experiment.

4.1.1 ALGORITHM

We generate datasets by using the algorithm presented in Appendix B in Leisenring et al. (2000). Let
ID denote the disease status,

ID =

{
1, diseased
0, non-diseased

and IA and IB the test results of test A and B,

IA =

{
1, test A positive
0, test A negative

IB =

{
1, test B positive
0, test B negative

In order to generate the datasets, the number of subjects tested, N , the positive and negative predictive
values for both tests, the prevalence of the disease P (D) and the variance σ2 for the random effect
for each subject must be set. The random effect introduces correlation between the test outcomes for
each subject. Our interpretation of the simulation algorithm is as follows:

1. Set N , P (D), PPVA, NPVA, PPVB, NPVB and σ.

2. Calculate the true positive rate TP and the false positive rate FP for test A and test B defined by
the equations

TP =
(1 − P (D) − NPV) · PPV
(1 − PPV − NPV) · P (D)

and

FP =
1 − P (D) − NPV

(1 − P (D))(1 − NPV − PPV·NPV
1−PPV )

.

3. Given TP and FP, the parameters αi and βi, i = 1, 2, for each test are calculated from the
following equations,

αi = Φ−1(FP)
√

1 + σ2

βi = Φ−1(TP)
√

1 + σ2,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
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Case no. N P (D) σ PPVA PPVB NPVA NPVB

1 100 0.25 0.1 0.75 0.75 0.85 0.85
2 500 0.25 0.1 0.75 0.75 0.85 0.85
3 100 0.50 0.1 0.75 0.75 0.85 0.85
4 500 0.50 0.1 0.75 0.75 0.85 0.85
5 100 0.25 1.0 0.75 0.75 0.85 0.85
6 500 0.25 1.0 0.75 0.75 0.85 0.85
7 100 0.50 1.0 0.75 0.75 0.85 0.85
8 500 0.50 1.0 0.75 0.75 0.85 0.85

TABLE 3: Specifications of the cases under the null hypotheses in the LAP simulation experiment.

4. For each subject the disease status ID is drawn independently with probability P (D).

5. A random effect r ∼ N(0, σ2) is generated for each subject.

6. Given the disease status and the random effect r, the probability of a positive test outcome for
each subject is given by

P (IA = 1|ID, r) = Φ(α1(1 − ID) + β1ID + r)

for test A and by
P (IB = 1|ID, r) = Φ(α2(1 − ID) + β2ID + r)

for test B. The test outcomes are drawn with these probabilities for each subject.

7. Find n1, . . ., n8 by counting the number of subjects that belongs to each of the eight events
described in Section 2, e.g. n1 is the number of subjects for which ID = 0, IA = 1 and IB=1,
the number of subjects that are not diseased and have positive tests A and B.

The algorithm is repeated M times, providing M datasets of n1, . . . , n8.

4.1.2 CASES UNDER STUDY

In the simulation experiment, we suggest eight cases by varying the input parameters N , P (D) and
σ in the LAP simulation algorithm. The setup of the experiment is a 23 factorial experiment, i.e. we
have three factors, N , P (D) and σ, and each factor has two levels. The low level for N is 100 and
the high level is 500, while the low level for P (D) is 0.25 and the high level is 0.50. For σ the low
level is 0.1 and the high level is 1.0. The response in this experiment is the estimated test size for each
test. The cases that are under the null hypotheses HP

0 and HN
0 in equations (2) and (3) are given in

Table 3. For cases not under the null hypotheses, the parameters N , P (D) and σ are the same, but
the remaining parameters are changed and will be described below. For each of these eight cases we
simulate M = 5000 datasets.

We generate data under the null hypotheses (2) and (3), by setting PPVA = PPVB = 0.75 and
NPV1 = NPV2 = 0.85. These datasets are used to estimate the test size under H0 for both the
PPV and NPV tests. To estimate the power of the tests, we need datasets under H1, and for PPV
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we generate datasets where PPVA = 0.85 and PPVB = 0.75 and NPV1 = NPV2 = 0.85. To
compare the power for the NPV tests, we generate datasets where NPV1 = 0.85 and NPV2 = 0.80
and PPVA = PPVB = 0.75.

To compare the positive predictive values of test A and B, we calculate the test statistics for the
LAP test, the likelihood ratio test and the unrestricted and restricted difference tests. To compare the
negative predictive values for test A and B we use the negative predictive value versions of these test
statistics. We calculate p-values based on the χ2

1 distribution. We also assess the performance of the
four other difference based tests as proposed in Section 3.2.1.

4.1.3 RESULTS

A summary of the results of the simulation experiment will follow. For each case and selected value of
the nominal significance level α, let W be a random variable counting the number of p-values smaller
than or equal to α. Then W is binomially distributed with size M , the number of p-values generated,
and probability α. An estimate of the true significance level of the test, α̂ is then

α̂ =
W

M
. (26)

Let

W̃ = W + 2

M̃ = M + 4

α̃ =
W̃

M̃
.

A 100 · (1 − γ)% confidence interval for α̂ with limits α̂L and α̂U , according to Agresti and Coull
(1998) is given as

α̂L = α̃ − zγ
2

√
α̃ · (1 − α̃)

M̃
(27)

and

α̂U = α̃ + zγ
2

√
α̃ · (1 − α̃)

M̃
(28)

where zγ/2 is the γ/2-quantile in the standard normal distribution. When the samples are drawn under
H0, α̂ will be an estimate of the test size, i.e. the probability of making a type I error, P (reject H0|H0).
A p-value is valid, as defined by Lloyd and Moldovan (2008), if the actual probability of rejecting the
null hypothesis never exceeds the nominal significance level. We choose the nominal significance
level to be 0.05 and we say that the test preserves its test size if the lower confidence limit is less
than or equal to 0.05, i.e. if α̂L ≤ 0.05. If α̂U < 0.05, the test is said to be conservative, while if
α̂L > 0.05 it does not keep its test size and it is then optimistic. If the samples are drawn under the
alternative H1, α̂ is an estimate of the power of the test, i.e. P (reject H0 | H1), the probability to
correctly reject the null hypothesis when it is not true.

Table 4 shows the estimated test size with 95% confidence limits for the LAP test, the likelihood ratio
test and the restricted and unrestricted difference tests in Case 1–8 where the data is generated under
the null hypothesis that PPVA = PPVB .
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.058 0.052 0.065
Case 1 Likelihood ratio test 0.065 0.059 0.072
Case 1 Restricted difference test 0.051 0.046 0.058
Case 1 Unrestricted difference test 0.067 0.060 0.074

Case 2 LAP test 0.056 0.050 0.063
Case 2 Likelihood ratio test 0.056 0.050 0.063
Case 2 Restricted difference test 0.055 0.049 0.062
Case 2 Unrestricted difference test 0.058 0.051 0.064

Case 3 LAP test 0.051 0.046 0.058
Case 3 Likelihood ratio test 0.050 0.044 0.056
Case 3 Restricted difference test 0.048 0.043 0.055
Case 3 Unrestricted difference test 0.051 0.045 0.058

Case 4 LAP test 0.057 0.051 0.064
Case 4 Likelihood ratio test 0.057 0.051 0.064
Case 4 Restricted difference test 0.057 0.051 0.064
Case 4 Unrestricted difference test 0.057 0.051 0.064

Case 5 LAP test 0.058 0.052 0.065
Case 5 Likelihood ratio test 0.070 0.063 0.077
Case 5 Restricted difference test 0.053 0.047 0.059
Case 5 Unrestricted difference test 0.065 0.058 0.072

Case 6 LAP test 0.054 0.048 0.060
Case 6 Likelihood ratio test 0.053 0.048 0.060
Case 6 Restricted difference test 0.052 0.046 0.058
Case 6 Unrestricted difference test 0.055 0.049 0.061

Case 7 LAP test 0.053 0.047 0.060
Case 7 Likelihood ratio test 0.055 0.049 0.061
Case 7 Restricted difference test 0.049 0.044 0.056
Case 7 Unrestricted difference test 0.054 0.048 0.060

Case 8 LAP test 0.055 0.049 0.062
Case 8 Likelihood ratio test 0.055 0.049 0.062
Case 8 Restricted difference test 0.054 0.048 0.061
Case 8 Unrestricted difference test 0.055 0.049 0.062

TABLE 4: Estimated test size with 95% confidence limits when testing PPVA = PPVB for data
generated under the null hypothesis using the LAP-simulation algorithm.
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In Case 3, 6, 7 and 8 all four test preserve the test size. In Case 2 the unrestricted difference test is too
optimistic, while the other tests preserve the test size.

In Case 1 and 5 the restricted difference test is the only test preserving the test size. The other tests
are too optimistic. These cases have small cell counts, and it might be that the restricted difference
test is more robust towards small cell counts than the other tests. Table 5 shows the mean observed
cell counts in Case 1–8 for the data generated under the null hypothesis that PPVA = PPVB. We see
that in Case 1 and 5, n̄1 is 0.2 and 1.1 respectively, and thereby n1 = 0 in many of the datasets, and
also some of the other cell counts are small.

In Case 4 none of the four tests preserve the test size, i.e. all the tests are slightly optimistic. As all the
cell counts are high in this case it is not surprising that the estimated test size is the same for all the
tests, however we see no apparent reason why the test size is not preserved, and thus this may perhaps
be a purely random event.

For the likelihood ratio test we analysed the 23 factorial experiment using α̂ as the response and found
that the interaction between the factors N and P (D) is the most significant effect on the the test size
with a p-value of 0.012. When N is at its high level, N = 500, the test size is less affected by
P (D) which makes sense, since the high value of N ensures that all the cells will have large expected
values unless the corresponding cell probabilities are very small. There is also a significant interaction
between N and σ, when N = 100, the estimated test size is higher for σ = 1.0 than for σ = 0.01 and
when N = 500, the estimated test size is lower for σ = 1.0 than for σ = 0.01.

Table 12 (see Appendix C) shows the estimated test size with 95% confidence limits for the NPV
versions of the LAP test, the likelihood ratio test and the restricted and unrestricted difference tests
in Case 1–8 where the data is generated under the null hypothesis that NPV1 = NPV2. In Case 1,
2, 4 and 8, all the cases preserve the test size. In Case 5 all the cases except the likelihood ratio test
preserve the test size too. In Case 3 and 7 however, only the restricted difference test preserves the
test size, none of the other tests do. It may be because it is more robust to the small cell counts in the
eight cell, n̄8, which is 0.8 and 2.2 respectively in these two cases.

Table 13 and 14 (see Appendix C) show the estimated power with 95% confidence intervals for the
PPV and NPV versions respectively of the LAP test, the likelihood ratio test and the restricted and
unrestricted difference tests in Case 1–8 for the data generated under the two alternative hypotheses.
The power of the restricted difference test is generally lower than the power of the other tests, which is
not surprising since it preserves its test size when the other tests do not. The power increases with the
number of subjects N as we would expect. For the PPV tests, it also increases when the prevalence
P (D) increases. When the prevalence increases it is more likely that a random subject has the disease,
therefore more subjects will have the disease and there will be more positive tests. P (D) = 0.50 in
Case 4 and 8 where the tests have higher power than in Case 2 and 6 where P (D) = 0.25. We
also note that in general the test power is higher when σ = 1 compared to when σ = 0.1. For the
NPV tests, the power increases when N increases and when P (D) decreases. When P (D) = 0.25,
P (D∗) = 1 − P (D) = 0.75, and the higher this probability is the more likely it is that a random
subject does not have the disease. The number of subjects that do not have the disease are then
expected to be higher than when P (D) = 0.50 and P (D∗) = 0.50. As for the PPV tests, the power
increases when σ increases.

Table 6 shows the estimated test size with 95% confidence intervals in Case 1–8 for the four other
difference based test statistics from Section 3.2.1. When calculating the observed value of the stan-
dardized test statistics the unrestricted maximum likelihood estimates in the variance are inserted
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Case no. n̄1 n̄2 n̄3 n̄4 n̄5 n̄6 n̄7 n̄8

1 0.2 3.9 3.9 67.0 6.3 6.2 6.2 6.3
2 1.2 19.7 19.6 334.6 31.4 31.1 31.0 31.5
3 4.3 10.3 10.2 25.1 38.4 5.4 5.5 0.8
4 21.4 51.5 51.3 125.7 191.8 27.1 27.1 4.0
5 1.1 3.1 3.1 67.8 8.3 4.2 4.2 8.4
6 5.3 15.6 15.5 338.6 41.7 20.9 20.8 41.6
7 7.5 7.0 7.0 28.3 39.8 4.1 4.0 2.2
8 37.6 35.3 35.2 141.9 198.7 20.1 20.0 11.2

TABLE 5: Mean cell counts for the cases in the LAP simulation study under H0.

since in the LAP simulation experiment, the test size for the restricted difference test was lower than
the test size for the unrestricted difference test. If we compare these results with the results for the
unrestricted difference test, we see that the estimated test size depend highly on the choice of test
statistic. The test based on g2(N ) preserves its test size in all the cases except Case 4. It is however
conservative in Case 1 and 5. The test based on g3(N ) preserves its test size in all the cases, but it
is conservative in all except Case 4 and 8. In Case 1 and 5 it is very conservative with an estimated
test size of just 0.008 and 0.007 respectively. For the fourth difference based test statistic, g4(N ), the
test size is preserved in all the cases except Case 4. It is conservative in Case 1, 3 and 5. The test
based on g5(N ) is conservative in all the cases, and more conservative than the other tests. In Case
1 and 5 the estimated test size is 0 and 0.001 which shows that this test statistic almost never rejects
the null hypothesis. The tests based on g2(N ) and g4(N ) can be used as their estimated test size is
reasonable, although conservative in some of the cases. We do not recommend using the tests based
on g3(N ) and g5(N ) as these are even more conservative than the other tests.

4.2 MULTINOMIAL SIMULATION EXPERIMENT

In the LAP-simulation algorithm, n1, . . . , n8 are not drawn from a particular probability distribution,
but obtained from the disease status and test results which are drawn with the specified probabilities
in Section 4.1.1. However, in our model for the likelihood ratio test we assume that N1, ..., N8 are
multinomially distributed. This can be used in the sampling strategy and we simulate data by sampling
n1, ..., n8 from the multinomial distribution given the total number of subjects N and the parameters
p1, ..., p8. This is less challenging to implement than the LAP-simulation algorithm and when using
the likelihood ratio test it is natural to sample data from the distribution assumed when deriving the
test statistic.

4.2.1 ALGORITHM

Given p = (p1, p2, p3, p4, p5, p6, p7, p8) and the total number of subjects N , we can generate datasets
by drawing n1, n2, ..., n8 from a multinomial distribution with parameters p and N . We first need
to set p and if we want to sample under the null hypotheses, we need to ensure that p satisfy the
constraints δP in Equation (6) and/or δN in Equation (8). In addition p1, ..., p8 must sum to 1.

Our simulation algorithm is as follows:
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Case/test α̂ α̂L α̂U

Case 1 g2(N ) 0.042 0.037 0.048
Case 1 g3(N ) 0.008 0.006 0.011
Case 1 g4(N ) 0.021 0.017 0.025
Case 1 g5(N ) 0.000 0.000 0.001

Case 2 g2(N ) 0.056 0.050 0.063
Case 2 g3(N ) 0.043 0.038 0.049
Case 2 g4(N ) 0.051 0.045 0.058
Case 2 g5(N ) 0.008 0.006 0.011

Case 3 g2(N ) 0.045 0.040 0.051
Case 3 g3(N ) 0.037 0.032 0.042
Case 3 g4(N ) 0.043 0.038 0.049
Case 3 g5(N ) 0.001 0.000 0.002

Case 4 g2(N ) 0.057 0.051 0.063
Case 4 g3(N ) 0.056 0.050 0.063
Case 4 g4(N ) 0.057 0.051 0.064
Case 4 g5(N ) 0.042 0.036 0.048

Case 5 g2(N ) 0.039 0.034 0.044
Case 5 g3(N ) 0.007 0.005 0.010
Case 5 g4(N ) 0.027 0.023 0.032
Case 5 g5(N ) 0.000 0.000 0.001

Case 6 g2(N ) 0.049 0.043 0.055
Case 6 g3(N ) 0.040 0.035 0.046
Case 6 g4(N ) 0.047 0.042 0.054
Case 6 g5(N ) 0.007 0.005 0.010

Case 7 g2(N ) 0.047 0.042 0.053
Case 7 g3(N ) 0.035 0.031 0.041
Case 7 g4(N ) 0.047 0.042 0.054
Case 7 g5(N ) 0.001 0.000 0.003

Case 8 g2(N ) 0.054 0.048 0.061
Case 8 g3(N ) 0.052 0.046 0.058
Case 8 g4(N ) 0.054 0.048 0.061
Case 8 g5(N ) 0.042 0.036 0.048

TABLE 6: Estimated test size with 95% confidence limits when testing PPVA = PPVB using the
difference based tests.
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Case N p1 p2 p3 p4 p5 p6 p7 p8

Case 3MN 100 0.05 0.10 0.10 0.25 0.39 0.05 0.05 0.01
Case 5MN 100 0.01 0.03 0.03 0.68 0.08 0.04 0.04 0.09

TABLE 7: Specification of the parameters in the multinomial simulation experiment.

1. Set p = (p1, p2, p3, p4, p5, p6, p7, p8) and N .

2. Draw n1, n2, ..., n8 ∼ multinom(p, N). Repeat M times.

4.2.2 CASES UNDER STUDY

We performed a small simulation study by drawing data from a multinomial distribution. Under the
null hypothesis (2) we defined two cases called Case 3MN and Case 5MN. The parameters for these
cases are given in Table 7.

The parameters p1, ..., p8 for each of the cases sum to one and the δP -constraint (6) and δN -constraint
(8) are both satisfied. The parameters were set in order to represent Case 3 and 5 from the LAP-
simulation experiment. In both of these cases N = 100, while P (D) is 0.5 in Case 3MN and 0.25 in
Case 5MN as in Case 3 and 5 in the LAP-simulation experiment. For both Case 3MN and 5MN the
PPVs are equal and approximately 0.75, the NPVs are equal and approximately 0.85. However, since
the datasets in the LAP simulation experiment were not drawn from a multinomial distribution, the
mean and the variance of n will not be exactly the same in Case 3MN and 5MN as in Case 3 and 5.

The parameters p1, ..., p8 were found by setting the value of P (D), the values of PPV1 = PPV2 and
NPV1 = NPV2 and by considering the mean observed values for Case 3 and 5 in Table 5. These
two cases were chosen because we would like to test the multinomial sampling strategy for one case
where the likelihood ratio test did not preserve its test size (Case 5) as well as one case where the test
size was preserved (Case 3) in the LAP simulation experiment when testing if the positive predictive
values are equal.

For each of the cases we draw M = 5000 samples from the multinomial distribution with parameters
as given in Table 7.

4.2.3 RESULTS

The estimated test size and 95% confidence limits for the LAP test, the likelihood ratio test and
the restricted and unrestricted difference tests for the two cases in the simulation study using the
multinomial simulation algorithm are given in Table 8.

In Case 3MN all the tests preserve the test size. We note that the estimated test size is lower for the
restricted difference test than for the other tests. In Case 5MN only the restricted difference test and
the LAP test preserve their test size.

If we compare the results to Case 3 in the LAP simulation experiment we see that α̂ is higher in Case
3MN than in Case 3 for all the tests. In Case 5MN, α̂ is higher for the likelihood ratio test and lower
for the other tests compared to Case 5 in the LAP simulation experiment. The datasets in the two
simulation experiments are not identical, but since they are generated with approximately the same
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Case/test α̂ α̂L α̂U

Case 3MN LAP 0.054 0.048 0.060
Case 3MN Likelihood ratio test 0.054 0.048 0.060
Case 3MN Restricted difference test 0.052 0.046 0.058
Case 3MN Unrestricted difference test 0.054 0.048 0.061

Case 5MN LAP 0.056 0.050 0.063
Case 5MN Likelihood ratio test 0.072 0.065 0.079
Case 5MN Restricted difference test 0.050 0.044 0.057
Case 5MN Unrestricted difference test 0.064 0.058 0.071

TABLE 8: Estimated test size with 95% confidence limits for testing PPV1 = PPV2 under the null
hypothesis using the multinomial simulation algorithm.

values for PPV1, PPV2, NPV1, NPV2 and P (D) we find it surprising that the estimated test size for
the likelihood ratio test is higher in the multinomial simulation experiment than in the LAP simulation
experiment. We would expect the likelihood ratio test to perform better, i.e. have a lower test size, on
datasets that are drawn from the model on which the test statistic is based, namely the multinomial
model.

Case/test α̂ α̂L α̂U

Case 3MN LAP 0.059 0.053 0.066
Case 3MN Likelihood ratio test 0.061 0.054 0.068
Case 3MN Restricted difference test 0.052 0.046 0.058
Case 3MN Unrestricted difference test 0.060 0.054 0.067

Case 5MN LAP 0.049 0.044 0.056
Case 5MN Likelihood ratio test 0.062 0.056 0.069
Case 5MN Restricted difference test 0.051 0.045 0.057
Case 5MN Unrestricted difference test 0.049 0.044 0.056

TABLE 9: Estimated test size with 95% confidence limits for testing NPV1 = NPV2 under the null
hypothesis using the multinomial simulation algorithm.

The estimated test size with 95% confidence limits for testing if the NPVs are equal in the same cases
are shown in Table 9. In Case 3MN only the restricted difference test preserves its test size, while in
Case 5MN the LAP test and the unrestricted difference test also preserve their test size. The likelihood
ratio test does not preserve its test size in any of these cases.

5 DATA FROM LITERATURE

We will use the dataset from Weiner, Ryan, McCabe, Kennedy, Schloss, Tristani and Fisher (1979)
which is the same dataset as used in Leisenring et al. (2000) and Wang et al. (2006). There were
871 subjects of which 608 subjects had coronary artery disease (CAD) and 263 subjects did not have
CAD. For all the subjects the results of clinical history (test A) and exercise stress testing (EST) (test
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B) were registered. The dataset is shown in Table 10.

Coronary artery disease - Coronary artery disease +
Result of EST Result of EST

+ - + -
Result of clinical history + 22 44 473 81

- 46 151 29 25

TABLE 10: Data from the coronary artery disease study.

Table 11 shows the resulting p-values for comparing the positive and negative predictive values using
the LAP-test, the likelihood ratio test and the restricted and unrestricted difference test.

Test PPV NPV
LAP 0.3706 <0.0001
Likelihood ratio test 0.3710 <0.0001
Restricted difference test 0.3696 <0.0001
Unrestricted difference test 0.3705 <0.0001

TABLE 11: Comparison of p-values for the tests using data from the coronary artery disease study.

We see that all the tests yield the same results. We do not reject the null hypothesis that the PPVs are
equal, but we reject the null hypothesis that the NPVs are equal. The estimated NPVs are 0.78 for the
clinical history and 0.65 for EST. Therefore the clinical history is more likely to reflect the true disease
status for subjects without CAD than without EST. Since all the cell counts in Table 10 are large, it is
to be expected that the p-values are equal for all the tests, as seen in our simulation experiments.

6 ALTERNATIVE MODEL

When deriving the test statistic for comparing the positive predictive values for two tests, Leisenring
et al. (2000) only consider the subjects that have at least one positive test result. The subjects that do
not have any positive tests do not contribute to the test statistic, i.e. there is no information in how
many subjects have two negative test results. Our multinomial setting with eight probabilities is useful
because the null hypothesis for both the PPV and NPV can easily be expressed using the same model.
However, for testing the equivalence of the PPVs, it is interesting to consider only using the subjects
with at least one positive test result also for our likelihood ratio test as this will reduce the number of
parameters and thereby reducing the dimension of the optimization problem. Similarly, for testing the
equivalence of the NPVs for test A and test B, we only need to look at the subjects with at least one
negative test.

This situation is illustrated in Figure 2. We still have the three main events A, B and D, but we only
consider the data contained in A and/or B. The sample space is divided into six mutually exclusive
events, to each of which a random variable N∗

i , i = 1, ..., 6, corresponds. We define N∗
i to be the

number of subjects for which event i occurs and n∗
i to be the observed value of N∗

i . There are N∗

subjects in total, i.e.
∑

6

i=1
N∗

i = N∗. Let qi be the probability that event i, i = 1, ..., 6, occurs. q1

is then the probability that a subject has a positive test result for both test A and B and has the dis-
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ease. N∗
1 , N∗

2 , ..., N∗
6 are multinomially distributed with parameters N∗ and q = (q1, q2, q3, q4, q5, q6)

where
∑

6

i=1
qi = 1.

The null hypothesis that the positive predictive value for test A is equal to the positive predictive value
for test B can be written

HP,6
0

:
q4 + q5

q1 + q2 + q4 + q5

− q4 + q6

q1 + q3 + q4 + q6

= 0 (29)

The likelihood ratio test statistic in this case is then

−2 · logλ(n∗) = −2

(
6∑

i=1

n∗
i · (log(q̃i) − log(q̂i)

)
(30)

where n∗ = (n∗
1, n

∗
2, n

∗
3, n

∗
4, n

∗
5, n

∗
6), q̃i is the maximum likelihood estimate for qi under the null

hypothesis (29) and q̂i = n∗
i /N

∗ is the general maximum likelihood estimate.
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FIGURE 2: Venn diagram for the events D, A and B showing which events the random variables
N∗

1 , ..., N∗
6 correspond to.

If there is no information in the number of subjects not having at least one positive rest result, then n4

and n8 should not affect the value of the likelihood ratio test statistic. From the Lagrangian system
of equations in Section 3.1.2, we can show that the estimates of p4 and p8 under H0 are p̃4 = n4

N and
p̃8 = n8

N , see Appendix A.

Maximizing the multinomial likelihood with six parameters yields the same test statistic and thereby
the same p-value as when maximizing the multinomial likelihood with eight parameters as both the
restricted and unrestricted maximum likelihood estimates of q1, q2, q3, q4, q5, q6 are obtained from the
restricted and unrestricted estimates of p1, p2, p3, p5, p6, p7, p8 respectively by scaling the estimates
so they sum to one (see Appendix A).

7 CONCLUSIONS

In this report we have studied large sample tests for comparing the positive and negative predictive
value of two diagnostic tests in a paired design.
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Based on the simulation experiments in Section 4, we have found that our restricted difference test
outperforms the existing methods (Leisenring et al. (2000) and Wang et al. (2006)) as well as our
likelihood ratio test with respect to test size.

A very important prerequisite of our methods is the estimation of the maximum likelihood estimates
for the parameters in the multinomial distribution under the null hypothesis, and this has shown to be
a challenging task as is also mentioned in Leisenring et al. (2000). We have found these estimates in
two different ways, by using numerical optimization and solving a system of equations.

We have seen that when the sample size decreases, the LAP test, likelihood ratio test and unrestricted
difference test do not preserve their test size. In our future work we will abandon the large sample
assumption and work with small sample versions of our test statistics.
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A PROOFS OF PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMA-
TORS UNDER THE NULL HYPOTHESIS

We show some properties of the maximum likelihood estimators under the positive predictive value
constraint (6). Similar properties can be shown for maximum likelihood estimators satisfying the
negative predictive value constraint (8).

We start by showing that if n1 = 0, then the maximum likelihood estimate of p1 under the null hy-
pothesis, p̃1, is 0. In the following, let p1, . . . , p8 denote estimates, not true multinomial probabilities.

First we rewrite the constraint (11) under the null hypothesis as

p1 + p2

p5 + p6

=
p1 + p3

p5 + p7

(31)

Assume that n1 = 0,
∑

8

i=1
pi = 1, the H0 constraint (31) is satisfied and that p1 > 0. We will prove

that when n1 = 0, the maximum likelihood estimate of p1 is zero, i.e. p̃1 = 0.

Let p′1 = 0, p′2 = k(p1 + p2), p′3 = k(p1 + p3), p′4 = p4, p′5 = p5, p′6 = p6, p′7 = p7 and p′8 = p8

where k = p1+p2+p3

2p1+p2+p3
.

Then
∑

8

i=1
p′i = 1 and p′ also satisfy H0, since

0 + p′2
p5 + p6

=
0 + p′3
p5 + p7

.

We will show that p′2 > p2 and p′3 > p3, implying logL(p′1, ..., p
′
8) > logL(p1, ..., p8). We start by

writing down the expression for p′2 and check if it is greater than p2.

k(p1 + p2) > p2

p1 + p2 + p3

2p1 + p2 + p3

(p1 + p2) > p2

(p1 + p2 + p3) · (p1 + p2) > (p1 + p1 + p2 + p3)p2

(p1 + p2 + p3)p1 > p1 · p2

p1 + p2 + p3 > p2

The inequality is satisfied and therefore p′2 > p2. The same argument can be used to show that
p′3 > p3.

26



The non-constant part of the log likelihood function is
∑

8

i=1
ni · logpi, and when n1 = 0, the first

term in the sum is 0, regardless of the value of p1. When p′2 > p2 and p′3 > p3 we see that

logL(0, p′2, p
′
3, p4, p5, p6, p7, p8) > logL(p1, p2, p3, p4, p5, p6, p7, p8).

Therefore p̃1 = 0. The same argument is valid for p̃5, i.e. p̃5 = 0 when n5 = 0. When n4 and/or n8

is 0, then p̃4 and/or p̃8 are also 0, see below.

However, the argument does not hold for p̃2, p̃3, p̃6 and p̃7 when n2, n3, n6 or n7 is 0. Even though
e.g. p̃2 may sometimes be 0 when n2 = 0, this is not always true. If e.g. p̃1 = 0 and p̃3 > 0, then
p̃2 cannot be equal to 0 even if n2 = 0 because then the null hypothesis constraint (31) will not be
satisfied. One example of this situation is the table n = (0, 0, 6, 0, 2, 6, 0, 0). The analytic solution
of the Lagrangian system of equations is p̃ = (0, 2/7, 1/7, 0, 2/7, 2/7, 0, 0) and we see that p̃2 �= 0
even though n2 = 0.

We proceed to show that p̃4 = n4/N and p̃8 = n8/N . If we add the first eight Lagrangian equations
in (18), we get

N = γh(p) + 2κk(p) = γ,

where h(p) = 1 and k(p) = 0 are the two constraints. Thus γ = N , and p̃4 = n4/N and p̃8 = n8/N
follow from (18).

So the maximum likelihood estimate p̃ under the null hypothesis is among the p = (p1, . . . , p8)
for which p4 = n4/N and p8 = n8/N . For such a p, let s(p) = r · (p1, p2, p3, p5, p6, p7), where
r = N/(N − n4 − n8) so that the sum of the components of s(p) is 1. Let logL and logL′ denote
the log-likelihood of the original multinomial model with eight parameters and the alternative multi-
nomial model with six parameters in Section 6. Then logL(p) − logL′(s(p)) is constant, showing
that logL(p) is maximal if and only if logL′(s(p)) is. Furthermore, p satisfies the null hypothesis
for the multinomial model with eight parameters if and only if s(p) does for the multinomial model
with six parameters, showing that the maximum likelihood estimates under the null hypothesis for
the multinomial model with eight and six parameters are obtained from the other model by up- and
downscaling, respectively.

There are also other relationships between the restricted parameter estimates that can easily be shown
and used in the estimation of the parameters:

p1 + p2 + p3 =
n1 + n2 + n3

N

p5 + p6 + p7 =
n5 + n6 + n7

N

n1

p1

+ N =
n2

p2

+
n3

p3

n5

p5

+ N =
n6

p6

+
n7

p7

B EXISTING DIFFERENCE BASED METHODS

The already published difference based tests for comparing predictive values will here be described
briefly.
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B.1 TEST BY WANG

Recently Wang et al. (2006) presented two tests, one based on the difference of the PPVs and one
based on the log ratio of the PPVs for testing the null hypothesis in (2). The data are assumed to be
multinomially distributed.

They fit the model PPVA − PPVB = βP
1 using the weighted least squares approach.1 Testing if the

positive predictive values for test A and B are equal is equivalent to testing H0 : βP
1 = 0.

The test statistic is

W P
1 =

(√
N

Σ̂P
1

(P̂PVA − P̂PVB)

)2

, (32)

which is asymptotically χ2
1-distributed. Σ̂P

1 is the estimated variance of β̂P
1 = P̂PVA − P̂PVB . To

compare the negative predictive values the same approach is followed by looking at the difference
of the two negative predictive values. They fit the model NPVA − NPVB = βN

1 and test the null
hypothesis H0 : βN

1 = 0 using the following test statistic

W N
1 =

(√
N

Σ̂N
1

(N̂PVA − N̂PVB)

)2

(33)

where Σ̂N
1 is the estimated variance of β̂N

1 = N̂PVA − ̂NPVB . W N
1 is asymptotically χ2

1-distributed.

In the second test they consider the log ratio of the PPVs as their test statistic and fit the model
log PPVA

PPVB
= βP

2 . Testing if the positive predictive values are equal is in this case equivalent to testing

the null hypothesis H0 : βP
2 = 0. The test statistic is

W P
2 =

(√
N

Σ̂P
2

log
P̂PVA

̂PPVB

)2

(34)

which is asymptotically χ2
1 distributed. Σ̂P

2 is the estimated variance of β̂P
2 = log

dPPVA

dPPVB

. The same

approach is followed to derive a second test for the negative predictive values by looking at the log

ratio of the negative predictive values for test A and test B, the model fitted is log
(

NPVA

NPVB

)
= βN

2 . To

test if the negative predictive values are equal, the null hypothesis is H0 : βN
2 = 0 and they use the

following test statistic

W N
2 =

(√
N

Σ̂N
2

log
N̂PVA

N̂PVB

)2

(35)

where Σ̂N
2 is the estimated variance of β̂N

2 = log
dNPVA

dNPVB

. The test statistic in (35) is χ2
1-distributed.

They recommend using the tests based on the difference of the predictive values because it performs
better than the tests based on the log ratio of the predictive values in terms of test size and power.

B.2 TEST BY MOSKOWITZ AND PEPE

Moskowitz and Pepe (2006) look at the relative predictive values, rPPV = PPVA

PPVB
and rNPV = NPVA

NPVB
.

By using the multivariate central limit theorem and the Delta method (which uses Taylor series ex-

1The notation in Appendix B.1 differs from the notation used in Wang et al. (2006).
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pansions to derive the asymptotic variance), the following 100 · (1−α)% confidence intervals can be
estimated for log rPPV and log rNPV,

log rPPV ± z1−α/2

√
σ̂2

P

N

log rNPV ± z1−α/2

√
σ̂2

N

N

where σ̂2
P and σ̂2

N are the estimated variances of 1√
N

log ̂rPPV and 1√
N

log ̂rNPV respectively and N

is the number of subjects under study. Moskowitz and Pepe (2006) do not present a hypothesis test,
but based on the confidence intervals we have the asymptotically χ2

1 distributed test statistic

ZP =

(
log

(√
N

σ̂P
rPPV

))2

(36)

for testing the null hypothesis (2) for the positive predictive values. When testing the null hypothesis
(3) whether the negative predictive values are equal the test statistic

ZN =

(
log

(√
N

σ̂N
rNPV

))2

, (37)

which has an asymptotic χ2
1 distribution can be used. The test statistic in (36) only differs from the test

statistic in (32) in the estimated variance. Moskowitz and Pepe (2006) use the multinomial Poisson
transformation to simplify the variances.

C RESULTS FROM THE LAP SIMULATION EXPERIMENT

Table 12 shows the estimated test size with 95% confidence limits when comparing the negative
predictive values for data generated the null hypothesis. Table 13 and 14 show the estimated test
power when comparing the positive and negative predictive values respectively for data generated
under the alternative hypothesis.
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.052 0.046 0.059
Case 1 Likelihood ratio test 0.056 0.050 0.063
Case 1 Restricted difference test 0.048 0.043 0.055
Case 1 Unrestricted difference test 0.052 0.046 0.059

Case 2 LAP test 0.050 0.045 0.057
Case 2 Likelihood ratio test 0.050 0.044 0.057
Case 2 Restricted difference test 0.050 0.044 0.056
Case 2 Unrestricted difference test 0.050 0.045 0.057

Case 3 LAP test 0.058 0.052 0.065
Case 3 Likelihood ratio test 0.059 0.053 0.066
Case 3 Restricted difference test 0.052 0.047 0.059
Case 3 Unrestricted difference test 0.060 0.053 0.067

Case 4 LAP test 0.046 0.041 0.052
Case 4 Likelihood ratio test 0.046 0.040 0.052
Case 4 Restricted difference test 4 0.045 0.039 0.051
Case 4 Unrestricted difference test 0.047 0.041 0.053

Case 5 LAP test 0.050 0.044 0.056
Case 5 Likelihood ratio test 0.061 0.055 0.068
Case 5 Restricted difference test 0.049 0.044 0.056
Case 5 Unrestricted difference test 0.050 0.044 0.056

Case 6 LAP test 0.049 0.044 0.056
Case 6 Likelihood ratio test 0.049 0.044 0.056

Case 6 Restricted difference test 0.049 0.043 0.055
Case 6 Unrestricted difference test 0.049 0.044 0.056

Case 7 LAP test 0.060 0.053 0.067
Case 7 Likelihood ratio test 0.067 0.061 0.074
Case 7 Restricted difference test 0.056 0.050 0.063
Case 7 Unrestricted difference test 0.060 0.054 0.067

Case 8 LAP test 0.046 0.040 0.052
Case 8 Likelihood ratio test 0.047 0.041 0.053
Case 8 Restricted difference test 0.044 0.039 0.050
Case 8 Unrestricted difference test 0.046 0.040 0.052

TABLE 12: Estimated test size with 95% confidence limits when testing NPVA = NPVB for data
generated under the null hypothesis using the LAP simulation algorithm.
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.125 0.116 0.135
Case 1 Likelihood ratio test 0.143 0.134 0.153
Case 1 Restricted difference test 0.111 0.102 0.120
Case 1 Unrestricted difference test 0.141 0.131 0.151

Case 2 LAP test 0.396 0.383 0.410
Case 2 Likelihood ratio test 0.390 0.376 0.403

Case 2 Restricted difference test 0.380 0.367 0.394
Case 2 Unrestricted difference test 0.400 0.386 0.413

Case 3 LAP test 0.369 0.356 0.383
Case 3 Likelihood ratio test 0.361 0.348 0.375
Case 3 Restricted difference test 0.349 0.336 0.363
Case 3 Unrestricted difference test 0.369 0.356 0.383

Case 4 LAP test 0.945 0.938 0.951
Case 4 Likelihood ratio test 0.944 0.937 0.950
Case 4 Restricted difference test 0.943 0.936 0.949
Case 4 Unrestricted difference test 0.944 0.938 0.950

Case 5 LAP test 0.146 0.137 0.156
Case 5 Likelihood ratio test 0.174 0.163 0.184
Case 5 Restricted difference test 0.124 0.116 0.134
Case 5 Unrestricted difference test 0.158 0.149 0.169

Case 6 LAP test 0.463 0.450 0.477
Case 6 Likelihood ratio test 0.458 0.444 0.472
Case 6 Restricted difference test 0.449 0.435 0.463
Case 6 Unrestricted difference test 0.466 0.452 0.479

Case 7 LAP test 0.485 0.471 0.498
Case 7 Likelihood ratio test 0.484 0.470 0.498
Case 7 Restricted difference test 0.468 0.454 0.482
Case 7 Unrestricted difference test 0.485 0.471 0.498

Case 8 LAP test 0.987 0.984 0.990
Case 8 Likelihood ratio test 0.987 0.984 0.990
Case 8 Restricted difference test 0.987 0.983 0.990
Case 8 Unrestricted difference test 0.987 0.984 0.990

TABLE 13: Estimated power with 95% confidence limits when testing PPVA = PPVB for data gen-
erated under the alternative hypothesis.
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.324 0.312 0.338
Case 1 Likelihood ratio test 0.336 0.323 0.349
Case 1 Restricted difference test 0.048 0.043 0.055
Case 1 Unrestricted difference test 0.052 0.046 0.059

Case 2 LAP test 0.929 0.921 0.935
Case 2 Likelihood ratio test 0.929 0.921 0.935
Case 2 Restricted difference test 0.050 0.044 0.056
Case 2 Unrestricted difference test 0.050 0.045 0.057

Case 3 LAP test 0.113 0.105 0.122
Case 3 Likelihood ratio test 0.114 0.105 0.123
Case 3 Restricted difference test 0.052 0.047 0.059
Case 3 Unrestricted difference test 0.060 0.053 0.067

Case 4 LAP test 0.350 0.337 0.364
Case 4 Likelihood ratio test 0.349 0.336 0.362

Case 4 Restricted difference test 0.045 0.039 0.051
Case 4 Unrestricted difference test 0.047 0.041 0.053

Case 5 LAP test 0.427 0.413 0.441
Case 5 Likelihood ratio test 0.458 0.444 0.471

Case 5 Restricted difference test 0.049 0.044 0.056
Case 5 Unrestricted difference test 0.050 0.044 0.056

Case 6 LAP test 0.986 0.982 0.989
Case 6 Likelihood ratio test 0.986 0.982 0.989

Case 6 Restricted difference test 0.049 0.043 0.055
Case 6 Unrestricted difference test 0.049 0.044 0.056

Case 7 LAP test 0.136 0.127 0.146
Case 7 Likelihood ratio test 0.146 0.136 0.156

Case 7 Restricted difference test 0.056 0.050 0.063
Case 7 Unrestricted difference test 0.060 0.054 0.067

Case 8 LAP test 0.465 0.451 0.478
Case 8 Likelihood ratio test 0.463 0.450 0.477
Case 8 Restricted difference test 0.044 0.039 0.050
Case 8 Unrestricted difference test 0.046 0.040 0.052

TABLE 14: Estimated power with 95% confidence limits when testing NPVA = NPVB for data
generated under the alternative hypothesis using the LAP simulation algorithm.
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D COMPUTATIONAL REMARKS

When using the TANGO program Andreani et al. (2007), Andreani et al. (2008), there are several
parameters that can be set or modified by the user. Along with the specification of the objective
function and the constraints, the initial estimates of the Lagrange multipliers, the initial values of the
variables and their lower and upper bounds must be set. Other parameters have a default value, but
these can be altered by the user. These parameters include tolerance limits and the maximum number
of iterations.

In our simulation studies we have chosen the initial value 0.0 for all the variables with upper and
lower bounds ±200000. The initial value for the Lagrangian multiplier was set to 0.0 as advised in
the program when one does not believe it should have a specific value. The feasibility and optimality
tolerances are 10−4 by default. We found that with these tolerances, the resulting variable values
depend on both the initial value of the Lagrange multiplier and the initial values of the variables.
However, different initial values for the variables give more similar results than different initial values
of the Lagrange multipliers. The smaller the tolerance is, the more similar the results will be, so in
order to get results that do not depend on any of the initial values one should use smaller values for
the tolerances and in our problems, smaller than 10−4. The problem is then that it takes longer for the
algorithm to converge. When performing the likelihood ratio test for one or a few datasets this is not
an issue, but when performing simulation experiments with several thousand datasets this will slow
down the experiment considerably.

Another problem is that of the algorithm converging to a local maximum. For example, the analytical
restricted likelihood estimates for the table n = (0, 7, 0, 69, 5, 3, 11, 5) is -115.73 while it is -166.38
using the numerical estimates from TANGO. The difference is caused by the fact that p̃3 = 0 using
the numerical optimization routine, while it is 0.04 using the analytical optimization. For most of
the large sample datasets the difference is less, with e.g. 15 of 5000 estimates in Case 1 in the LAP
simulation experiment differ by more than 1.0 between the analytical and numerical estimates. We
recommend using the analytical estimates.
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SUMMARY

Motivated by the challenge of detecting Gene Ontology (GO) categories which are over-
represented or depleted when comparing biological findings represented by two over-lapping lists
of genes, we examine the performance of different statistical tests. One key feature with this type
of data is that the sample size at each GO category often is small and thus large sample asymptotic
tests are not suitable. We look at four different test statistics in combination with parametric boot-
strapping, and compare the methods with their asymptotic alternatives. We find that the choice of
test statistic influence which GO categories are found to be significant, and all tests under study
perform increasingly conservative as the sample size decreases. We observe that this problem is
statistically the same as comparing the positive predictive values of two diagnostic tests.

1 INTRODUCTION

In some biological experiments the aim is, e.g. by using DNA microarrays, to discover genes that are
differentially expressed between two or more conditions. The conditions may be defined by the pres-
ence or absence of a disease or by different treatments like diets, drugs or amount of physical exercise.
As an example we consider a situation where the relationship between inborn aerobic capacity and
cardiac gene expression in rats was studied, Bye, Langaas, Høydahl, Kemi, Heinrich, Koch, Britton,
Najjar, Ellingsen and Wisløff (2008). The rats were born with either high running capacity (HCR) or
low running capacity (LCR), and half of the rats were trained, while the others remained sedentary.
Thus there were four groups of rats, LCR trained, LCR sedentary, HCR trained and HCR sedentary.
Several comparisons were done, and the comparison of the gene expression for the sedentary HCR rats
with the gene expression for the sedentary LCR rats resulted in a list of 1540 differentially expressed
genes between these two groups.

However, since such lists contains only single genes, i.e. without information about potential con-
nections to the other genes on the list, it can be challenging to interpret the biological meaning of
the results. What may be more interesting for interpretation purposes is the biological pathways that
are active in the conditions under study. To do this, groups of genes instead of single genes are
considered. In this paper we consider groups of genes selected from a predefined set using the Gene
Ontology (GO) vocabulary, The Gene Ontology Consortium (2000). GO is a vocabulary that classifies
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genes into the three main categories: biological process, molecular function and cellular component
and their subcategories.

Given the list of differentially expressed genes from the experiment and the list of all genes present on
the microarray chip, called the master list, the biologist wants to know whether certain gene classes
are over-represented or depleted in the list of differentially expressed genes compared to the master
list. In the rat example, we are interested in knowing if the number of genes related to aerobic ca-
pacity among those differentially expressed between the sedentary HCR rats and the sedentary LCR
rats is higher than what we would expect by chance if we compare it to the master list. The list of
differentially expressed genes is contained in the master list, and the statistical hypothesis problem is
to test whether two binomial proportions are equal. Common approaches are Pearson’s asymptotic
χ2-test and Fisher’s exact test for large and small samples, respectively.

If there are more than two conditions in the experiment, several comparisons can be done which may
each result in a list of differentially expressed genes between the conditions being compared. Then
we would like to see whether some specific gene classes of interest are over-represented or depleted
on one of the lists compared to one of the others. The two lists may either be mutually exclusive or
partly overlapping. If they are mutually exclusive the problem reduces to test whether two binomial
proportions are equal as for the master list problem and the same approaches can be used. We will
consider only the situation of overlapping gene lists. In the rat example, we want to compare the
list of differentially expressed genes between trained HCR and LCR rats to the list of differentially
expressed genes between trained HCR rats and sedentary LCR rats.

Comparing two overlapping gene lists in terms of over-represented or depleted gene classes is sta-
tistically the same situation as comparing the positive predictive values for two diagnostic tests and
several hypothesis tests for this situation can be found in the literature, see Leisenring, Alonzo and
Pepe (2000), Wang, Davis and Soong (2006) and Moskowitz and Pepe (2006). Günther, Bakke,
Lydersen and Langaas (2008) presented a likelihood ratio test and a restricted difference test and
compared them to the other existing tests. Simulation experiments showed that for smaller sample
sizes these tests did not preserve their test size. When comparing gene lists, the actual sample size is
the number of genes associated with each of the three main GO-categories, not the number of genes
on the microarray chip, nor the total number of genes on the lists. This number is usually quite small
and large sample tests are not a suitable approach. Instead small sample tests should be applied.

In this paper we evaluate small sample tests for comparing two overlapping gene lists, i.e. to test
whether the probabilities that a randomly chosen gene belongs to a specific gene class are equal for
the two lists. We first describe the assumed model and define the null and alternative hypotheses
in Section 2, and then present the test statistics and how to calculate the p-values in Section 3. A
simulation study is conducted to assess the method and described in Section 4 and in Section 5 an
example in which data from the literature is given. A short discussion is given in Section 6 before we
end with the conclusions in Section 7.

2 MODEL AND DATA

We assume that we have two lists of genes, list A and list B. For each gene we are interested in
comparing the probability that it belongs to a certain gene class D given that it is on list A, with
the probability that it belongs to D given that it is on list B. Our null hypothesis is that these two
probabilities are equal. By defining the three events
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• D: The gene belongs to gene class D.

• A: The gene is present on gene list A.

• B: The gene is present on gene list B.

we can express the null hypothesis as

H0 : P (D | A) = P (D | B). (1)

Statistically, this is the same problem as testing equality of the positive predictive values of two diag-
nostic tests for the same disease. Two diagnostic tests with binary outcomes, i.e. positive or negative,
are applied to each subject in the study. The positive predictive value (PPV) is defined as the proba-
bility that the subject has the disease of study given that the test is positive. If we let event D be that
the subject has the disease, A the event that the outcome of test A is positive and B the event that
the outcome of test B is positive, then the positive predictive value of test A is PPVA = P (D | A),
and the positive predictive value of test B is PPVB = P (D | B). Our null hypothesis is that the two
positive predictive values are equal, i.e. H0 : P (D | A) = P (D | B) as in (1).

The Venn diagram in Figure 1 shows the six mutually exclusive events defined by A, B and D. We
only look at the restricted sample space, i.e. A ∪ B, and thereby only the part of D that intersects
A ∪ B. Let A∗, B∗ and D∗ be the complementary events of A, B and D respectively. Günther et al.
(2008) argue that when comparing positive predictive values it suffices to consider only the subjects
with at least one positive test result, which equals the set A∪B. In the GO setting the number of genes
belonging to the GO category D that are not present on any of the lists, i.e. the event (A∗ ∪ B∗) ∩ D,
is unknown as is the number of genes not present on the lists that do not belong to the GO category
D, therefore the part of D that intersects with A∗ ∪ B∗ is not included.

To each of the six events in the Venn diagram there corresponds the probability qi that event i oc-
curs, i = 1, ..., 6. The sum of these probabilities is one, i.e.

∑
6

i=1
qi = 1. Associated with each

event is also a random variable Ni, i = 1, . . . , 6, Ni being the number of times event i occurs. We
consider one main category at a time, such that in total there are N =

∑
6

i=1
Ni unique genes on

the two lists associated with either biological process, cellular component or molecular function. The
number N will typically change between the three main categories. Given N , the random variables
N1, N2, . . . , N6 are multinomially distributed with parameters N and
q = (q1, q2, q3, q4, q5, q6). The joint probability function of N1, N2, . . . , N6 is

P

(
6⋂

i=1

(Ni = ni)

)
= N !

6∏
i=1

qni
i

ni!
. (2)

The expected value of N = (N1, N2, N3, N4, N5, N6) is μ = E(N) = N · q and the covariance
matrix is Σ = Cov(N) = N(Diag(q) − qT q), Johnson, Kotz and Balakrishan (1997). We do not
assume that a random gene’s presence on list A is independent on its presence on list B and of whether
it belongs to GO category D. This is implicitly handled by the multinomial model, since each gene
yields only one observation of one of the six mutually exclusive events. We do however assume that
the genes are sampled independently of each other and we will comment this further in Section 6.

Throughout this work, we assume that only N is fixed and that N are realisations of multinomial
samples. Other sampling schemes are possible as well, for instance by fixing ND, NA and NB , the
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number of genes belonging to gene class D, are present on list A and are present on list B respectively,
and sampling N independently from three binomial distributions. In this report, we will not consider
these approaches.

The probabilities P (D|A) and P (D|B) can be expressed in terms of the parameters q since

P (D|A) =
P (D ∩ A)

P (A)
=

q4 + q5

q1 + q2 + q4 + q5

and

P (D|B) =
P (D ∩ B)

P (B)
=

q4 + q6

q1 + q3 + q4 + q6

.

Thus, the null hypothesis can be written

H0 : δ =
q4 + q5

q1 + q2 + q4 + q5

− q4 + q6

q1 + q3 + q4 + q6

= 0. (3)

N4

A

D

N2

N5

N1

N3

N6

B

FIGURE 1: Venn diagram for the events D, A and B showing which events the random variables
N1, . . . , N6 correspond to.

There are several possible alternative hypotheses. If we are interested in whether there is an en-
richment or depletion of genes belonging to gene class D on list A compared to list B, we have the
two-sided alternative

H1 : P (D|A) �= P (D|B). (4)

If we are interested in testing only whether there is an enrichment of genes belonging to gene class D
on list A compared to list B, we have the one-sided alternative

H1 : P (D|A) > P (D|B). (5)

When testing whether there is a depletion of genes belonging to gene class D on list A compared to
list B, the alternative hypothesis is

H1 : P (D|A) < P (D|B). (6)

In this work we will focus on the two sided alternative. We observe data n = (n1, n2, n3, n4, n5, n6)
which are realizations of N = (N1, N2, N3, N4, N5, N6) and can be represented in a table as shown
in Table 1.
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Event D∗ D

A ∩ B n1 n4

A ∩ B∗ n2 n5

A∗ ∩ B n3 n6

TABLE 1: The observed data classified by the events A, B and D.

3 METHOD

In this section we present the test statistics we considered to test whether the probability of a gene
belonging to gene class D given that it is present on list A is equal to the probability of a gene
belonging to gene class D given that it is present on list B. We also describe how to calculate the
p-values.

3.1 TEST STATISTICS

To test the null hypothesis (3), we consider four test statistics: a likelihood ratio test statistic, a score
test statistic and two difference test statistics. They have all been shown to be asymptotically χ2

1

distributed when the sample size is large, Casella and Berger (2002), Leisenring et al. (2000), Wang
et al. (2006), but here we will use parametric bootstrapping to approximate their distribution under the
null hypothesis for small samples. We describe the test statistics briefly, more details can be found in
Günther et al. (2008).

The likelihood ratio test statistic is

TLR = −2 · log(λ(N))

where λ(N) is the maximum likelihood of a multinomial sample under the null hypothesis divided
by the general maximum likelihood of the multinomial sample. Let Q denote the parameter space for
q and Q0 the subspace of Q in which q satisfy the constraint given by the null hypothesis (3). Then,

λ(n) =
supQ0

L(q|n)

supQL(q|n)
.

Let q̃i, i = 1, . . . , 6, be the restricted maximum likelihood estimates, that is, the maximum likelihood
estimates under H0, and let q̂i, i = 1, . . . , 6 be the unrestricted general maximum likelihood estimates
for the multinomial distribution, i.e. q̂i = ni/N . Inserting these estimates in the log-likelihood
function for the multinomial distribution leads to the test statistic

TLR = −2

(
6∑

i=1

ni · (log q̃i − log q̂i)

)
. (7)

Note that q̃i, i = 1, . . . , 6, cannot be written in any comprehensible closed form, but can be found
using an optimization routine or analytically by solving a Lagrangian system of equations. We do the
latter using Maple 12, for details see Günther et al. (2008).
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The difference tests are based on the estimator g(N) for the difference δ in (3),

g(N) =
N4 + N5

N1 + N2 + N4 + N5

− N4 + N6

N1 + N3 + N4 + N6

(8)

and the test statistic is derived by subtracting the expectation of g(N) and dividing by its approximate
standard deviation, which is found by taking the variance of the first order Taylor expansion of g(N).
Let μ = E(N) and Σ = Cov(N) as defined in Section 2. This yields

Tg =
(g(N) − g(μ))2

GT (μ)Σ G(μ)
(9)

where G is a vector containing the first order partial derivatives of g(N) with respect to the compo-
nents of N and GT is the transpose of G. G(μ) is G with μ inserted for N .

Under the null hypothesis g(μ) = 0. G(μ) and Σ depend on the unknown parameters q which must
be estimated when calculating the test statistic. We can either use the unrestricted maximum likelihood
estimates q̂ for the multinomial distribution or the restricted maximum likelihood estimates q̃ under
H0. In the first case we refer to the test as the unrestricted difference test (uDT) and denote the test
statistic TuDT and in the second case we refer to the test as the restricted difference test (rDT) and
denote the test statistic TrDT.

Leisenring et al. (2000) presented a score test, which we denote the LAP test, for testing equivalence
of positive predictive values of two diagnostic tests, based on generalized estimating equations. They
define three indicator variables. First Dij indicates the disease status of subject i for diagnostic test
j, i.e. Dij = 0 if the subject does not have the disease and Dij = 1 if it does have the disease.
Zij indicates which test is used, it is 0 for test A and 1 for test B. Xij indicates the test result, it is
0 if the test is negative and 1 if it is positive. Then the positive predictive value for test A can be
written PPVA = P (Dij = 1 | Zij = 0, Xij = 1) and the positive predictive value for test B is
PPVB = P (Dij = 1 | Zij = 1, Xij = 1). Leisenring et al. (2000) fit the generalized linear model

logit(P (Dij = 1 | Zij , Xij = 1)) = αP + βP Zij ,

and test whether βP = 0 which is equivalent to testing whether PPVA = PPVB . We translate the test
to the GO situation and in our notation the test statistic can be written as

TLAP =
((N1 + N2 + N4 + N5)(N4 + N6) − (N1 + N3 + N4 + N6)(N4 + N5))

2

f(N1, N2, N3, N4, N5, N6)
, (10)
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where

f(N1, N2, N3, N4, N5, N6)

= N1(N2 − N3 + N5 − N6)
2

(
2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

+ N2(N1 + N3 + N4 + N6)
2

(
2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

+ N3(N1 + N2 + N4 + N5)
2

(
2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

+ N4(N2 − N3 + N5 − N6)
2

(
1 − 2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

+ N5(N1 + N3 + N4 + N6)
2

(
1 − 2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

+ N6(N1 + N2 + N4 + N5)
2

(
1 − 2N4 + N5 + N6

2N1 + N2 + N3 + 2N4 + N5 + N6

)2

.

The numerator can be found from by setting the difference in (8) equal to 0 and rearranging the terms.
In the denominator, the number of genes that do not belong to GO category D, N1, N2 and N3, are
each multiplied by the proportion of genes that belong to the category D and in this proportion, the
genes that are present on both lists, N1 and N4, are given double weight. The number of genes that
belong to GO category D, N4, N5 and N6, are each multiplied by the proportion of genes that do not
belong to the gene class D where the genes that are present on both lists are given double weight.

3.2 CALCULATION OF p-VALUES

We will use parametric bootstrapping to approximate the distribution of the test statistics under the
null hypothesis and find approximate p-values. The test statistic of interest, is either TLAP, TLR, TuDT
or TrDT. To calculate the p-values we use the following algorithm:

1. For a given sample of size N , find the maximum likelihood estimates of the parameters under
H0, q̃, and calculate the test statistic t for this sample, denoted ts.

2. Draw B samples from the multinomial distribution with parameters N and q̃.

3. Calculate the test statistic tk for each of these samples, 1 ≤ k ≤ B.

4. The p-value is given as
∑B

k=1
I(tk ≥ ts), where I(tk ≥ ts) =

{
1 if tk ≥ ts
0 if tk < ts

, thus the p-

value is the proportion of simulated test statistics greater than or equal to the given test statistics.

4 ASSESSMENT OF METHOD

To assess the performance of the four tests in terms of test size, we perform a simulation study.
The test size is the probability of making a type I error, i.e. for rejecting H0 when H0 is true. We
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consider different sample sizes to evaluate the effect of N on the test size, and we also use several
parameter values of q in the multinomial distribution to explore different areas of the null hypothesis.
All analysis are performed using the R language, R Development Core Team (2008), except finding
the maximum likelihood estimates under H0 which is done using Maple 12.

4.1 SIMULATION ALGORITHM

Given q and N , we draw M datasets from the multinomial distribution with parameters q and N . For
each of these datasets we find the p-value using parametric bootstrapping as described in Section 3.2.

4.2 CASES UNDER STUDY

The data sets are generated from the parameters q in the multinomial distribution and we choose six
cases of parameters, given in Table 2 and depicted in Figure 2.

Case q1 q2 q3 q4 q5 q6

1 0.068 0.135 0.135 0.527 0.068 0.068
2 0.043 0.130 0.130 0.348 0.174 0.174
3 0.267 0.267 0.267 0.067 0.067 0.067
4 0.300 0.267 0.267 0.033 0.067 0.067
5 0.400 0.200 0.200 0.100 0.050 0.050
6 0.450 0.200 0.200 0.050 0.050 0.050

TABLE 2: Specification of parameters in the simulation study.

The parameters in case 1 and 2 are motivated by the setting for diagnostic tests and chosen as described
in the multinomial simulation experiment of Günther et al. (2008). In case 3–6, we first set the
probabilities o1 = P (A ∩ B), o2 = P (A ∩ B∗) and o3 = P (A∗ ∩ B) and then p1 = P (D|A ∩ B),
p2 = P (D|A ∩ B∗) and p3 = P (D|A∗ ∩ B). From these probabilities q are calculated as follows,

qi =

{
oi(1 − pi) i = 1, 2, 3
oipi i = 4, 5, 6.

In case 3 o1 = o2 = o3 = 1/3 and p1 = p2 = p3 = 1/5. In case 4 o1 = o2 = o3 = 1/3 and
p1 = 1/10 while p2 = p3 = 2/10. The probabilities in case 5 are o1 = 1/2, o3 = o4 = 1/4 and
p1 = p2 = p3 = 1/5. Finally, in case 6, o1 = 1/2, o2 = o3 = 1/4, p1 = 1/10 and p2 = p3 = 2/10.

The remaining parameter in the multinomial distribution, N , must also be chosen and since we are
considering small sample sizes, we use N = 10, 15, 20 and 25. For each of the values of N all the
cases given in Table 2 are run. In each of the six cases we draw M = 10000 samples and for each of
these samples we draw B = 10000 bootstrap samples.

4.3 RESULTS

The test size is estimated as the proportion of p-values being less than or equal to the chosen nominal
level α. Let W be a random variable counting the number of p-values smaller than or equal to α.
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FIGURE 2: Values of qi, i = 1, . . . , 6, black: case 1, red: case 2, green: case 3, dark blue: case 4,
turquoise: case 5, cyan: case 6.

Then W is binomially distributed with size M , the number of p-values generated, and probability α.
The estimate of the test size of the test, α̂ is then

α̂ =
W

M
. (11)

We say that the test preserves its test size if α̂ ≤ α. The smaller α̂ is, while less than α, the more
conservative the test is. If α̂ > α the test does not preserve its test size and we say that it is too
optimistic. We choose α = 0.05 and calculate α̂ for the four test statistics, six cases and four values
of N .

Table 3 show the estimated test size for all the combinations of q, N and test statistic. There is one
table for each of the six cases. The likelihood ratio test has the largest test size in all the cases and for
all values of N except for N = 20 and N = 25 in case 1 and N = 25 in case 2. The unrestricted
difference test has the smallest test size in all the cases and for all values of N except for N = 20 and
N = 25 in case 1 and N = 25 in case 2, which are the exceptions when the likelihood ratio test has
the smallest test size. The test size of the LAP test and the unrestricted difference test lies somewhere
in between, which one is the largest varies.

When N = 10, all the tests are conservative for all the cases, but when N increases, the test size also
increases and in case 1 and 2 the tests do not preserve their test size for N ≥ 15. This also happens
in case 3 for N ≥ 20 for the likelihood ratio test and for N = 25 for the restricted difference test. In
case 4, 5 and 6, the tests are conservative for all values of N except the likelihood ratio test which test
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(a) Case 1

N LAP LRT rDT uDT
10 0.042 0.046 0.039 0.035
15 0.059 0.061 0.060 0.057
20 0.063 0.061 0.062 0.062
25 0.055 0.052 0.054 0.055

(b) Case 2

N LAP LRT rDT uDT
10 0.038 0.043 0.040 0.018
15 0.056 0.058 0.057 0.047
20 0.056 0.057 0.057 0.054
25 0.058 0.057 0.058 0.057

(c) Case 3

N LAP LRT rDT uDT
10 0.014 0.028 0.026 0.007
15 0.029 0.044 0.041 0.024
20 0.041 0.055 0.051 0.038
25 0.047 0.056 0.053 0.046

(d) Case 4

N LAP LRT rDT uDT
10 0.012 0.023 0.021 0.004
15 0.026 0.041 0.036 0.020
20 0.035 0.047 0.044 0.029
25 0.044 0.051 0.047 0.041

(e) Case 5

N LAP LRT rDT uDT
10 0.010 0.022 0.020 0.008
15 0.021 0.037 0.033 0.020
20 0.032 0.042 0.039 0.031
25 0.040 0.049 0.046 0.040

(f) Case 6

N LAP LRT rDT uDT
10 0.007 0.013 0.012 0.004
15 0.014 0.024 0.022 0.011
20 0.029 0.037 0.034 0.026
25 0.039 0.045 0.041 0.037

TABLE 3: Estimated test size, α̂, for α = 0.05. LAP denotes the LAP test, LRT the likelihood ratio
test and uDT and rDT denote the unrestricted and restricted difference test respectively.

size is 0.050 for N = 25 in case 4 and 6.

Figure 3 shows the estimated test size for the asymptotic methods plotted against the estimated test
size for the parametric bootstrap methods, there is one plot for each method for α = 0.05. If the
points lie above the diagonal line, the test size of the asymptotic test is higher than the test size of
the parametric bootstrap test, and lower if the points are below the line. If the points lie above the
horizontal line the test size for the asymptotic test is greater than α = 0.05 and smaller if they lie
below the line. Similarly, for the points that lie to the right of the vertical line, the test size for the
parametric bootstrap test is higher than 0.05 and it is lower than 0.05 if they lie to the left of this line.

We note in particular that for all the cases and for all values of N , the test size for the parametric
bootstrap restricted difference test is greater than the test size for the large sample restricted difference
test. For the likelihood ratio test, the opposite is true, the test size of the asymptotic likelihood ratio
test is greater than the test size of the parametric bootstrap likelihood ratio test. This indicates that
the parametric bootstrap test is an improvement compared to the asymptotic likelihood ratio test for
small samples. However, the asymptotic likelihood ratio test does not preserve its test size in 15 of
the 24 combinations of N and q and in six of those the parametric bootstrap test is still too optimistic.
To use the parametric bootstrap restricted difference test does not yield an improvement compared to
using the asymptotic restricted difference test.

Figure 4 shows the observed level, i.e. the test size, of the tests plotted against the nominal level for
N = 10, 15, 20, 25 in case 3 for a chosen nominal level in the range from 0 to 0.10. We see that the
test size increases when N increases and also that the tests yield more similar results for the higher
values of N . The unrestricted difference test and the LAP test preserve the test size in all the cases
while the likelihood ratio test is too optimistic when N = 20 or 25.

10



(a) (b)

(c) (d)

FIGURE 3: Estimated test size for the asymptotic versus the small sample tests, for different values of
N : Red=10, green=15, dark blue=20, cyan=25.
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(a) (b)

(c) (d)

FIGURE 4: Observed level versus nominal level for (a) N = 10, (b) N = 15, (c) N = 20, (d) N = 25,
green = LRT, red = LAP, dark blue = rDT, grey = uDT.
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5 EXAMPLE FROM GENE ONTOLOGY

As an example of how the tests perform on a data set from literature, we use part of the data presented
by Bye et al. (2008). To estimate the effect of running capacity of the trained rats, we compare the
gene expression for the HCR trained rats with the LCR trained rats. This gives us a list of differentially
expressed genes between these two groups, we call this list A. It may be of interest to estimate the joint
effect of training and inbread running capacity by comparing the trained HCR rats versus the sedentary
LCR rats. This gives us another list of differentially expressed genes which we call list B. To determine
which genes are differentially expressed a cut-off must be chosen. For each gene, a p-value and an
adjusted p-value are calculated. The adjusted p-values are adjusted using the Benjamini-Hochberg
step-up procedure to control the false discovery rate (FDR), Benjamini and Hochberg (1995). The
cut-off is chosen such that all the genes that have a p-value smaller than or equal to this value are said
to be differentially expressed. We will use two different cut-offs and first we choose an FDR cut-off of
0.025 for both lists, which yields 12 genes on list A and 24 genes on list B. These lists are submitted
to eGOn, Beisvåg, Jünge, Bergum, Jølsum, Lydersen, Günther, Ramampiaro, Langaas, Sandvik and
Lægreid (2006), a web-based tool that automatically translates the lists to GO categories. We are
interested in genes annotated to the main category molecular function. There are three genes from the
first list and nine genes from the second list annotated to this category. Of these genes two are on both
list A and B and therefore there are N = 10 unique genes on the two lists associated with molecular
function.

The GO tree has several levels corresponding to the hierarchy of the GO categories. One gene can
belong to more than one GO category, and given that it belongs to a subcategory it will also belong
to the parent categories of this subcategory on the upper levels. After submitting the lists, one has to
choose which main category to consider, i.e. either molecular function, biological process or cellular
component. Level 1 is the main category itself with no subcategories, e.g. molecular function. The
higher level number is chosen, the more subcategories are included, and they are all subcategories of
the chosen main category. We choose to display the GO tree at level 3 for the main category molecular
function and Table 4 shows the 11 GO categories that are represented on the lists, i.e. the categories
which the genes on the lists belong to. A hypothesis test is performed for each category, testing
whether it is over-represented or depleted on one of the lists compared to the other list.

If we use an FDR cut-off of 0.05 on differential expression instead we get two lists of 30 and 63 genes,
42 of these genes can be classified under the main category molecular function. Within this category,
seven genes are present on both lists, seven genes are present only on list A and 21 genes are present
only on list B, yielding N = 35 unique genes. Table 5 shows the GO categories for these genes along
with their p-values.

Table 4 and 5 both include a column with the p-value calculated by eGOn. These p-values are cal-
culated using the asymptotic LAP test. We calculate the p-values for the three other tests, i.e. the
likelihood ratio test and the restricted and unrestricted difference test using parametric bootstrapping
and compare them to the asymptotic p-values for all four tests. When performing the bootstrapping
we draw B = 10000 bootstrap samples for each GO category.

Table 6 shows the results for the FDR cut-off of 0.025. The GO category ion binding (GO:0043167)
is significant when using either the parametric bootstrap or asymptotic likelihood ratio or restricted
difference test. It is also significant when using the asymptotic unrestricted difference test, while
it is not significant when using the parametric bootstrap or asymptotic LAP test or the asymptotic
unrestricted difference test. None of the other GO categories are significant for any of the tests.
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GO identifier Name p-value n4 n5 n6

GO:0005488 binding 0.157 2 1 5
GO:0030246 carbohydrate binding 0.273 1 0 0
GO:0043167 ion binding 0.077 1 1 0
GO:0008289 lipid binding 0.279 0 1 0
GO:0003676 nucleic acid binding 0.317 0 0 1
GO:0005515 protein binding 0.705 2 0 5
GO:0046906 tetrapyrrole binding 0.279 0 1 0
GO:0003824 catalytic activity 0.245 1 1 2
GO:0016787 hydrolase activity 0.273 1 0 0
GO:0016874 ligase activity 0.317 0 0 1
GO:0016491 oxidoreductase activity 0.46 0 1 1

TABLE 4: GO categories within molecular function with their corresponding p-values and number of
genes on the lists.

When considering only the parametric bootstrap tests, in general the likelihood ratio test and restricted
difference test give similar p-values which in some cases are smaller than the p-values for the LAP
test and the unrestricted difference test. One example is the GO category lipid binding (GO:0008289)
where the p-values are 0.160, 0.065, 0.065 and 0.220 for the LAP, likelihood ratio, restricted difference
and unrestricted difference tests respectively. Even though lipid binding is not significant for any of
these tests, it is not far from being significant for the LRT and rDT tests which is not the case for
the LAP and unrestricted difference tests. Together with the example ion binding, this indicates that
a GO category may be declared significant more often for the likelihood ratio test and restricted
difference tests than with the LAP and unrestricted difference tests. This coincide with the findings in
the simulation experiments where the estimated test size in several cases were higher for the likelihood
ratio and restricted difference tests than for the LAP and uDT tests.

Table 7 shows the results for the FDR cut-off of 0.05. The GO category catalytic activity (GO:0003824)
is significant with a p-value <0.05 for all the tests, both the parametric bootstrap and asymptotic tests.
The GO category hydrolase activity (GO:0016787) is significant when using the parametric bootstrap
LRT or rDT tests and when using the asymptotic LRT, rDT and uDT tests. We see the same for the GO
category substrate-specific transporter activity (GO:0022892), except that it is not significant using the
asymptotic uDT test. We note that the category ion binding which is significant when we use an FDR
cut-off of 0.025 is not significant now. In general, for the parametric bootstrap tests, the LRT and rDT
tests yield similar p-values that are often smaller than the p-values for the LAP and uDT tests. The
difference between the p-values can be quite large and for the GO term lipid binding (GO:0008289)
the p-values are 0.179, 0.0345, 0.036 and 0.188 for the LAP, likelihood ratio, restricted difference
and urestricted difference tests respectively. This example shows that the choice of test statistic is
critical when finding GO categories that are significantly over-represented or depleted in one gene list
compared to the other list. The differences between the parametric bootstrap and asymptotic tests do
not follow a clear pattern, for some GO categories the parametric bootstrap p-values are smaller, for
other GO categories they are greater.

The GO category chromatin binding (GO:0003682) was found to be significantly over-represented on
the list of differentially expressed genes between HCR and LCR sedentary rats, using an FDR cut-off
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GO identifier Name p-value n4 n5 n6

GO:0005488 binding 0.651 5 7 18
GO:0030246 carbohydrate binding 0.325 1 0 0
GO:0003682 chromatin binding 0.313 0 0 1
GO:0043167 ion binding 0.13 3 1 1
GO:0008289 lipid binding 0.161 1 1 0
GO:0003676 nucleic acid binding 0.485 1 1 5
GO:0000166 nucleotide binding 0.518 1 2 3
GO:0005515 protein binding 0.544 4 6 14
GO:0046906 tetrapyrrole bindin 0.308 0 1 0
GO:0003824 catalytic activity 0.016 5 5 6
GO:0016787 hydrolase activity 0.059 1 4 2
GO:0016874 ligase activity 0.56 1 0 2
GO:0016829 lyase activity 0.325 1 0 0
GO:0016491 oxidoreductase activity 0.226 2 1 1
GO:0016740 transferase activity 1 1 0 1
GO:0030234 enzyme regulator activity 0.325 1 0 0
GO:0030695 GTPase regulator activity 0.325 1 0 0
GO:0060089 molecular transducer activity 0.325 1 0 0
GO:0004871 signal transducer activity 0.325 1 0 0
GO:0005198 structural molecule activity 1 1 0 1
GO:0005201 extracellular matrix structural constituent 0.325 1 0 0
GO:0008307 structural constituent of muscle 0.313 0 0 1
GO:0030528 transcription regulator activity 0.388 1 1 1
GO:0003702 RNA polymerase II transcription factor activity 0.325 1 0 0
GO:0003700 transcription factor activity 0.388 1 1 1
GO:0016564 transcription repressor activity 0.325 1 0 0
GO:0005215 transporter activity 0.168 1 2 1
GO:0022892 substrate-specific transporter activity 0.073 1 2 0
GO:0022857 transmembrane transporter activity 0.168 1 2 1

TABLE 5: GO categories within molecular function with their corresponding p-values and number of
genes on the lists.
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Parametric bootstrap Asymptotic
GO identifier LAP LRT rDT uDT LAP LRT rDT uDT
GO:0005488 0.198 0.315 0.344 0.204 0.157 0.249 0.354 0.109
GO:0030246 0.162 0.072 0.067 0.179 0.273 0.127 0.132 0.257
GO:0043167 0.054 0.004 0.007 0.072 0.077 0.010 0.012 0.021
GO:0008289 0.160 0.065 0.065 0.220 0.279 0.074 0.065 0.221
GO:0003676 0.383 0.371 0.401 0.446 0.317 0.433 0.540 0.289
GO:0005515 0.845 0.803 0.817 0.805 0.705 0.687 0.683 0.699
GO:0046906 0.146 0.062 0.062 0.206 0.279 0.074 0.065 0.221
GO:0003824 0.338 0.263 0.219 0.448 0.245 0.207 0.213 0.194
GO:0016787 0.164 0.073 0.065 0.181 0.273 0.127 0.132 0.257
GO:0016874 0.390 0.375 0.402 0.454 0.317 0.433 0.540 0.289
GO:0016491 0.678 0.454 0.299 0.714 0.460 0.376 0.353 0.431

TABLE 6: Parametric bootstrap and asymptotic p-values for the subcategories of molecular function.

of 0.05, compared to the list of all genes by Bye et al. (2008). Another GO category, nucleic acid
binding (GO:0003676) was significantly over-represented on the list of genes that were significantly
more expressed for HCR rats than for LCR rats compared to the list of genes that were significantly
more expressed for LCR rats than for HCR rats, Bye et al. (2008). None of these GO-categories
are over-represented in our two lists, but since we are not comparing the gene expression between
sedentary HCR and LCR rats it is not surprising.

Instead of comparing the comparison of gene expression for the HCR trained rats and the LCR trained
rats to the comparison of trained HCR rats and sedentary LCR rats, we could have compared the gene
expression of trained LCR rats with the gene expression of the sedentary LCR rats directly. This is
done in Bye et al. (2008). The list of differentially expressed genes is then submitted to eGOn and
compared to the master list. However, with an FDR cut-off of 0.05 the comparison results in only one
gene on the list and this gene is not annotated to any GO category.

With the first FDR cut-off of 0.025, we compared the two lists at 11 GO categories and with the second
FDR cut-off at 0.05 we compared the lists at 29 GO categories. The problem thus involves multiple
testing, and the p-values should be adjusted accordingly. This has not been done when comparing the
methods and the p-values in Table 6 and 7 are therefore unadjusted.

6 DISCUSSION

To obtain list of differentially expressed genes, a cut-off on the differential expression must be set.
The lists can then be submitted to a GO tool, e.g. eGOn, to discover GO categories that are over-
represented or depleted. This approach has been criticised, see Goeman and Bühlman (2007) for an
overview. Firstly, it is not clear where the cut-off should be set and secondly, one may argue that all
the data should be used. Other proposed methods address this problem by either using all the p-values
from the experiment or use raw expression data instead of p-values, see Goeman and Bühlman (2007).

The statistical tests in this report all treat the genes as the sampling units and are based on the as-
sumption that the genes on the lists act independently under the null hypothesis. Statistically, it would
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Parametric bootstrap Asymptotic
GO identifier LAP LRT rDT uDT LAP LRT rDT uDT
GO:0005488 0.670 0.672 0.676 0.667 0.651 0.652 0.657 0.649
GO:0030246 0.369 0.180 0.171 0.371 0.325 0.240 0.308 0.326
GO:0003682 0.382 0.393 0.407 0.403 0.313 0.363 0.472 0.309
GO:0043167 0.124 0.113 0.075 0.128 0.130 0.095 0.091 0.127
GO:0008289 0.179 0.034 0.036 0.188 0.161 0.053 0.075 0.152
GO:0003676 0.511 0.528 0.535 0.512 0.485 0.500 0.510 0.483
GO:0000166 0.544 0.528 0.516 0.544 0.518 0.498 0.491 0.515
GO:0005515 0.561 0.564 0.568 0.559 0.544 0.547 0.552 0.541
GO:0046906 0.182 0.091 0.082 0.190 0.308 0.132 0.151 0.299
GO:0003824 0.017 0.017 0.016 0.020 0.016 0.015 0.016 0.011
GO:0016787 0.093 0.043 0.022 0.094 0.059 0.029 0.027 0.046
GO:0016874 0.606 0.612 0.609 0.606 0.56 0.559 0.568 0.557
GO:0016829 0.378 0.175 0.167 0.38 0.325 0.240 0.308 0.326
GO:0016491 0.262 0.227 0.166 0.262 0.226 0.180 0.175 0.222
GO:0016740 1.000 0.871 1.000 1.000 1.000 1.000 1.000 1.000
GO:0030234 0.372 0.182 0.172 0.375 0.325 0.240 0.308 0.326
GO:0030695 0.368 0.18 0.171 0.371 0.325 0.240 0.308 0.326
GO:0060089 0.374 0.178 0.168 0.378 0.325 0.240 0.308 0.326
GO:0004871 0.371 0.176 0.166 0.373 0.325 0.240 0.308 0.326
GO:0005198 1.000 0.876 1.000 1.000 1.000 1.000 1.000 1.000
GO:0005201 0.366 0.173 0.164 0.37 0.325 0.240 0.308 0.326
GO:0008307 0.377 0.382 0.393 0.394 0.313 0.363 0.472 0.309
GO:0030528 0.501 0.422 0.349 0.501 0.388 0.340 0.33 0.384
GO:0003702 0.364 0.180 0.168 0.366 0.325 0.240 0.308 0.326
GO:0003700 0.494 0.418 0.346 0.493 0.388 0.340 0.33 0.384
GO:0016564 0.373 0.180 0.169 0.376 0.325 0.240 0.308 0.326
GO:0005215 0.236 0.134 0.079 0.237 0.168 0.107 0.101 0.157
GO:0022892 0.064 0.008 0.009 0.055 0.073 0.012 0.019 0.062
GO:0022857 0.234 0.132 0.081 0.234 0.168 0.107 0.101 0.157

TABLE 7: Parametric bootstrap and asymptotic p-values for the subcategories of molecular function.
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be more intuitive to use the subjects as the sampling units, as discussed by Goeman and Bühlman
(2007). Indeed, when testing for equality of the positive predictive values of two diagnostic tests,
the observational unit is the individual and the assumption of independence of test results between
individuals is in most cases not seen to be problematic. But in the gene class setting the assumption
does not hold, because genes act together in pathways and genes that are functionally related can be
strongly correlated. If the gene expression measurements are correlated, the p-values tend to be pos-
itively correlated, see Goeman and Bühlman (2007). A possible extension of the methods developed
in this report could be to look at different dependence structures between the observational units.

We have considered test statistics designed for comparing positive predictive values for diagnostic
tests which translates to comparing association with GO categories for overlapping gene lists. Other
possible approaches to handle overlapping gene lists include deleting the genes that are on both lists
from each list or simply ignore the fact that there are genes that are on both lists and treat them as
mutually exclusive lists. The deletion approach is implemented in the GO tool FatiGO, Al Shahrour,
Diaz Uriarte and Dopazo (2004), in which Fisher’s exact test is implemented. In the ignore approach
Fisher’s exact test or Pearson χ2 test can be used. The asymptotic LAP test is implemented in eGOn
which then handles the problem of overlapping gene lists more correctly than other GO-tools by not
deleting the genes that are on both lists or ignore that the genes are overlapping.

In the simulation experiments in Section 4 and the example using data from the literature in Section
5, we see that the likelihood ratio and restricted difference tests yields similar results which differ
from the LAP and unrestricted difference tests. The likelihood ratio and restricted difference test both
use the maximum likelihood estimates for the parameters under the null hypothesis in addition to the
general maximum likelihood estimates. The LAP and unrestricted difference also yield similar test
results and these test statistics are functions of the observed data n and thereby the general maximum
likelihood estimates only, and are thus not influenced by the maximum likelihood estimates under the
null.

When considering small sample sizes, one or more of the cells in Table 1 have often zero counts
which leads to non-computable test statistics for the LAP and difference tests. In these cases, we set
the test statistics to 0 if the numerator is 0, implying that the null hypothesis will never be rejected for
such tables. If only the denominator is 0, the test statistic is disregarded. For N = 10 there are 18
out of 3003 possible tables for which this will happen, while if N = 15 it will happen for 28 out of
15504 tables, for N = 20 for 38 of 53130 tables and for N = 25 for 48 of 142506 outcomes. For the
likelihood ratio test statistic zero counts does not represent a problem, it can always be calculated. If
any of the counts are 0, the summation term in (7) is also 0.

While the methodology in the present paper does not rely on asymptotic results, it is still approxima-
tive in the sense that it relies on simulations. Another shortcoming is that the test size is not preserved
in general. Both these issues will be addressed in a forthcoming paper, Günther, Bakke, Rue and
Langaas (2009), where enumeration rather than simulation will be applied to the testing method of
the present paper and where it will be modified to yield p-values that preserve the test size. The test
size and power will be calculated exactly.

7 CONCLUSIONS

In this report we look at the problem of testing the null hypothesis given in (3) when the sample
size is small. The large sample tests using asymptotic distributions do not preserve their test size in
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this case and therefore small sample tests are needed. We suggest using parametric bootstrapping to
approximate the distribution and to calculate the p-values. The likelihood ratio test and the restricted
difference test are both functions of the maximum likelihood estimates q under the null hypothesis
which may be difficult to find because of local optima. Especially zero counts causes problems, but
our method that analytically solves the system of equations handles these problems well.

The simulation experiments show, at least based on the present six cases, that the small sample like-
lihood ratio test yields a smaller test size than the large sample likelihood ratio test, while for the
restricted difference test the large sample test yields the smallest test size and is still conservative,
thus for this test there was no improvement.

For testing whether there is a difference in enrichment or depletion of genes belonging to a certain
GO category between two list of genes from a microarray experiment, there are several test statistics
to choose from, and depending on the sample size, one can use either parametric bootstrapping or
the asymptotic χ2

1 distribution to calculate p-values. The choice of test statistic can influence which
GO categories that are found to be significant and because the small sample parametric bootstrap
likelihood ratio and restricted difference tests are more optimistic than the small sample parametric
bootstrap LAP and unrestricted difference tests, the first two will yield more significant GO categories
than the other two. The smaller the sample size is, the more conservative all the tests are which means
they will not reject the null hypothesis even when it is not true., i.e. the tests will not discover gene
classes that are over-represented or depleted on one list compared to the other list. Therefore, para-
metric bootstrapping does not seem to be an optimal solution and a better approach would probably
be to use an exact small sample test that preserves its test size without being conservative, which will
be investigated further.

REFERENCES

Al Shahrour, F., Diaz Uriarte, R. and Dopazo, J. (2004). FatiGO: a web tool for finding significant
associations of Gene Ontology terms with groups of genes, Bioinformatics 20(4): 578–580.

Beisvåg, V., Jünge, F. K., Bergum, H., Jølsum, L., Lydersen, S., Günther, C.-C., Ramampiaro, H.,
Langaas, M., Sandvik, A. K. and Lægreid, A. (2006). GeneTools - application for functional
annotation and statistical hypothesis testing, BMC Bioinformatics 7(470).

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing, Journal of the Royal Statistical Society 57: 289–300.

Bye, A., Langaas, M., Høydahl, M. A., Kemi, O. J., Heinrich, G., Koch, L. G., Britton, S. L., Najjar,
S. M., Ellingsen, Ø. and Wisløff, U. (2008). Aerobic capacity-dependent differences in cardiac
gene expression., Physiol Genomics 33: 100–109.

Casella, G. and Berger, R. L. (2002). Statistical inference, second edn, Duxbury, chapter 8.

Goeman, J. J. and Bühlman, P. (2007). Analyzing gene expression data in terms of gene sets: method-
ological issues., Bioinformatics 23(8): 980–987.

Günther, C.-C., Bakke, Ø., Lydersen, S. and Langaas, M. (2008). Comparison of predictive values
from two diagnostic tests in large samples. Preprint Statistics No. 9, Department of Mathematical
Sciences, Norwegian University of Science and Technology.

19



Günther, C.-C., Bakke, Ø., Rue, H. and Langaas, M. (2009). Statistical hypothesis testing for cate-
gorical data using enumeration in the presence of nuisance parameters. Preprint Statistics No. 4,
Department of Mathematical Sciences, Norwegian University of Science and Technology.

Johnson, N. L., Kotz, S. and Balakrishan, N. (1997). Discrete multivariate distributions, Wiley series
in probability and statistics, chapter 35.

Leisenring, W., Alonzo, T. and Pepe, M. S. (2000). Comparisons of predictive values of binary
medical diagnostic tests for paired designs, Biometrics 56: 345–351.

Moskowitz, C. S. and Pepe, M. S. (2006). Comparing the predictive values of diagnostic tests: sample
size and analysis for paired study designs, Clinical Trials 3: 272–279.

R Development Core Team (2008). R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria.
http://www.r-project.org

The Gene Ontology Consortium (2000). Gene Ontology: tool for the unification of biology, Nature
Genetics 25: 25–29.

Wang, W., Davis, C. S. and Soong, S.-J. (2006). Comparison of predictive values of two diagnos-
tic tests from the same sample of subjects using weighted least squares, Statistics in Medicine
25: 2215–2229.

20







STATISTICAL HYPOTHESIS TESTING FOR CATEGORICAL

DATA USING ENUMERATION IN THE PRESENCE OF NUISANCE

PARAMETERS

CLARA-CECILIE GÜNTHER, ØYVIND BAKKE, HÅVARD RUE AND METTE LANGAAS
Department of Mathematical Sciences.

The Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway.

MARCH 2009

SUMMARY

The existing asymptotic tests for comparing positive predictive values of two diagnostic tests
do not preserve the test size when the sample is small. As an exact approach we suggest using
enumeration for small sample spaces, i.e. to utilize the exact distribution of the test statistic by
adding probabilities of each outcome. In the problem of comparing positive predictive values,
there are nuisance parameters present which must be handled. We discuss different solutions, e.g.
estimation, maximization, integration and combinations thereof. The methods presented in this
report are general and can be applied to different discrete finite distributions. Further insight into
the mechanisms behind the different approaches are given and the performance of various test
statistics and p-values are compared systematically with respect to test size and power, both in the
setting of positive predictive values and in an example from literature comparing independent bi-
nomial proportions. We find in general that a combination of estimation and maximization yields
the highest test size and power among the valid p-values, and when comparing the positive predic-
tive values, the test statistics involving maximum likelihood estimates under the null hypothesis
perform the best in terms of test size and power.

1 INTRODUCTION

In many hypothesis testing problems, tests statistics with a known asymptotic distribution are avail-
able. When the sample size is small, however, the asymptotic distribution may approximate the exact
distribution poorly and the exact distribution of the test statistics can be challenging or impossible to
derive. For discrete models, one solution is to use enumeration, i.e. to find p-values by adding prob-
abilities under the null hypothesis of all possible outcomes having a more extreme value of the test
statistic than the observed outcome. If there are nuisance parameters in the model, this is however not
straight forward, the unknown parameters must be handled appropriately.

We consider different approaches, in particular estimation, maximization and integration. Our main
focus will be on the problem of comparing positive predictive values from two diagnostic tests where
a multinomial distribution is assumed, but the methods are general and can be applied to other null
hypotheses for other finite discrete distributions.
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We start by defining important properties for p-values and different ways to handle the problem of
nuisance parameters in Section 2. A trinomial situation is used as an example to explain how to
calculate the various p-values. As a stepping stone to our main problem, comparing positive predictive
values, in Section 3 we go through a fictitious example discussed and analyzed by Berger and Boos
(1994) and by Lloyd (2008) that concerns testing independence in a 2 × 2 contingency table. We
suggest alternative test statistics and compare their performance in terms of test size and power to
the test statistics used by Lloyd (2008). In Section 4 we present the problem of comparing positive
predictive values for two diagnostic tests, and evaluate a variety of test statistics and p-values for
this problem. Some computational details are given in Section 5, we discuss further aspects of the
presented problems in Section 6 and summarize the conclusions in Section 7.

2 THEORY

Before applying the methods, the general framework should be set. We present the necessary notation,
definitions and properties of p-values and explain different approaches on how to calculate p-values
by enumeration in the presence of nuisance parameters.

2.1 NULL HYPOTHESIS

In the general outline we assume that the random variables Y1, . . . , Yn are multinomially distributed
with parameters p = (p1, . . . , pn) and N , but other discrete distributions are possible (see e.g. Sec-
tion 3). Let Y denote the vector of the random variables, i.e. Y = (Y1, . . . , Yn), and let Y be the
sample space or reference set of Y .

Our null hypothesis is that a function f of some or all the parameters p1, . . . , pn equals 0, i.e.

H0 : f(p) = 0. (1)

The alternative hypothesis is
H1 : f(p) �= 0.

Let P be the parameter space for p and P0 the subspace of P for which the null hypothesis (1)
is satisfied, i.e P0 = {p : f(p) = 0}. For illustrative purposes, an example from the trinomial
distribution will be studied throughout this section.

Trinomial example As an illustrative example we will use the trinomial model where Y = (Y1, Y2, Y3)
are multinomially distributed with parameters p = (p1, p2, p3) and N , or alternatively Y = (Y1, Y2,
N − Y1 − Y2), are multinomially distributed with parameters p = (p1, p2, 1 − p1 − p2). The joint
probability function of Y is

Pr(Y1 = y1, Y2 = y2) =
N !

y1!y2!(N − y1 − y2)!
py1

1
py2

2
(1 − p1 − p2)

N−y1−y2 .

We consider the null hypothesis,

H0 : f(p) = p1 − p2 = 0, (2)
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that is P0 = {(φ, φ, 1 − 2φ) : 0 ≤ φ ≤ 1/2}. So p1 = p2 = φ under the null hypothesis, which can
be considered an unknown nuisance parameter. The probability function of Y simplifies to

Pr(Y1 = y1, Y2 = y2) =
N !

y1!y2!(N − y1 − y2)!
φy1+y2(1 − 2φ)N−y1−y2 (3)

under the null hypothesis. �

2.2 PROPERTIES OF p-VALUES

When testing whether a null hypothesis is true, one usually calculates a p-value and if this p-value is
less than or equal to some chosen significance level α the null hypothesis is rejected.

A p-value may initially be defined as the probability of what has been observed or something more
extreme, given that the null hypothesis is true. A p-value can also be considered a test statistic in
its own right. We let P (Y ) denote our p-value statistic which is a function of the random variables
Y . For continuous models without nuisance parameters and for simple null hypotheses, i.e. when the
parameter space under H0 consists of only one point, the p-values are uniformly distributed under the
null hypothesis and the test size of a test that rejects H0 when P (Y ) ≤ α is exactly equal to α, Bickel
and Doksum (2001). Our sample space is discrete which means that not all p-values can possibly be
obtained. Instead, is is usually demanded that the p-value is valid, i.e. the probability of rejecting the
null hypothesis when it is true is less than or equal to the significance level α,

Pr(P (Y ) ≤ α; p) ≤ α

for all p in P0 and all α, 0 ≤ α ≤ 1, Casella and Berger (2002). The valid p-values yield a valid test
for any chosen significance level, although they are often conservative. If a p-value satisfy

supp∈P0
Pr(P (Y ) ≤ P (y);p) = P (y),

for all y in Y , then Lloyd (2008) call it exact.

In general, p-values are found by means of a test statistic T (Y ) having the property that for all y in Y
and for all p in P0, Pr(P (Y ) ≤ P (y);p) = Pr(T (Y ≥ T (y);p), assuming without loss of generality
that the null hypothesis is rejected for larges values of T (y). We define the tail set of an outcome yobs
to be the set of all y for which T (y) ≥ T (yobs), i.e. the critical region for a significance level given
T (yobs) as a critical value. For an observed outcome yobs, the reference set Y can be partitioned into
the tail set R(yobs) of the observed outcome and the complement of the tail set RC(yobs), so that
Y = R ∪ RC where R(yobs) = {y : T (y) ≥ T (yobs)} and RC(yobs) = {y : T (y) < T (yobs)}.

Trinomial example We set N = 3, and then the reference set is Y =
{(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}. One
possible test statistic is

T (Y ) = |Y1/N − Y2/N |. (4)

Table 1 shows the calculated test statistic for all the outcomes in the reference set. For example,
T (0, 2, 1) = 2/3 and R(0, 2, 1) = {(0, 2, 1), (0, 3, 0), (2, 0, 1), (3, 0, 0)}. �

The test statistic T (Y ) used to define the tail set can be an ordinary test statistic like the likelihood ratio
test statistic, a p-value originating from another test statistic, or even the multinomial probabilities of
the outcomes themselves. If the tail sets are defined by the probabilities of the outcomes, they will
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Outcome y y1/N y2/N T (y)

(0,0,3) 0 0 0
(0,1,2) 0 1/3 1/3
(0,2,1) 0 2/3 2/3
(0,3,0) 0 1 1
(1,0,2) 1/3 0 1/3
(1,1,1) 1/3 1/3 0
(1,2,0) 1/3 2/3 1/3
(2,0,1) 2/3 0 2/3
(2,1,0) 2/3 1/3 1/3
(3,0,0) 1 0 1

TABLE 1: The reference set in the trinomial example with associated test statistic, T (y) given in (4).

depend on p. This is not so if the tail sets are defined by either a p-value or some test statistic that
does not depend on p. A practical detail, when the multinomial probabilities or a p-value are used as
the test statistic, actually the negative of the probabilities and the p-values will be applied since only
the outcomes with probabilities or p-values smaller than or equal to the probability or p-value of the
observed outcome will be in the tail set.

2.3 CALCULATING p-VALUES BY ENUMERATION

Let π(y; p) = Pr(Y = y; p) be the probability of an outcome y. If π(y; p) is known, the p-value for
the observed outcome can be calculated using the following algorithm which is motivated by Fisher’s
exact test for 2 × 2 tables, Fisher (1935):

1. Generate all possible outcomes in the reference set Y .

2. Calculate the probability of observing each outcome under the null hypothesis.

3. The p-value of an observed outcome is the sum of the probabilities of all outcomes that are in
the tail set of the observed outcome.

Zelterman, Chan and Mielke (1995) tested mutual independence of all the three factors of a 23 contin-
gency table using a multinomial distribution with eight parameters. Any outcome given N will then
correspond to a specific table where the entries sum to N and the reference set Y will be all possible
tables with grand total N . By conditioning on the set of one-way marginal totals, M , the probabil-
ity π(y|M) under H0 can be derived. It does not depend on nuisance parameters, and therefore the
second step in the algorithm is easily performed once the tables are generated.

With other null hypotheses it might be impossible to get rid of the nuisance parameters and condi-
tioning only reduces the number of possible outcomes or the number of nuisance parameters. In this
case, we must find a way to deal with the (remaining) nuisance parameters to be able to calculate the
probability of each outcome. There are several ways to do this.

ESTIMATION The simplest approach to deal with nuisance parameters is to insert e.g. the maximum
likelihood estimates p̃ under H0 for p. This is called the plug-in p-value by Bayarri and Berger (2000)
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and the estimation (E) p-value by Lloyd (2008). For an observed outcome yobs we insert p̃obs for p
and the p-value is given as

PE(yobs) = Pr(T (Y ) ≥ T (yobs); p̃obs) =
∑

y∈R(yobs)

π(y; p̃obs).

This p-value, however, is not valid as we will see numerically in Section 4.2.

Trinomial example Under H0, given the outcome yobs = (y1,obs, y2,obs, y3,obs) the maximum like-
lihood estimate of φ is φ̃obs =

y1,obs+y2,obs
2N . If we insert this estimate in the multinomial probability

function, we obtain the estimation p-value

PE(yobs) =
∑

y∈R(yobs)

π(y; φ̃obs) =
∑

y∈R(yobs)

N !

y1!y2!(N − y1 − y2)!
φ̃y1+y2

obs (1 − 2φ̃obs)
N−y1−y2 .

The third column of Table 2 shows the estimation p-values for all outcomes in the reference set
when N = 3. To explain how the p-values are calculated, we consider the outcome y = (0, 2, 1).
The maximum likelihood estimate under H0 is φ̃ = 1/3. We then calculate the probability for each
outcome from (3) with φ̃ inserted for φ. The tail set consists of the four outcomes y of Table 1 for
which T (y) ≥ T (yobs), where T (y) is given in (4), and the estimation p-value of yobs is the sum
0.30, of the four probabilities. �

Outcome y φ̃ PE(y)

(0,0,3) 0 1.00
(0,1,2) 1/6 0.56
(0,2,1) 1/3 0.30
(0,3,0) 1/2 0.25
(1,0,2) 1/6 0.56
(1,1,1) 1/3 1.00
(1,2,0) 1/2 1.00
(2,0,1) 1/3 0.30
(2,1,0) 1/2 1.00
(3,0,0) 1/2 0.25

TABLE 2: P -values for the trinomial example when substituting φ̃ for φ.

CONDITIONING ON A SUFFICIENT STATISTIC Another solution to the problem of nuisance param-
eters is to condition on a sufficient statistic X for p, Casella and Berger (2002), then the probability of
the observed outcome given H0 and the sufficient statistic can be calculated and the p-value is given
by

Psuff(yobs) = Pr(T (y) ≥ T (yobs) | X; p ∈ P0) =
∑

y∈R(yobs)

π(y | X; p ∈ P0).

Trinomial example Under H0, X = Y1+Y2 is a sufficient statistic for φ. The conditional probability
distribution of (Y1, Y2) given X is

Pr(Y1 = y, Y2 = y | X = x) =
x!

y1!y2!

(
1

2

)x
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and the p-value is then the sum of these probabilities over the outcomes in the tail set,

Psuff(yobs) =
∑

y∈R(yobs)

x!

y1!y2!

(
1

2

)x

.

The p-value for outcome yobs = (0, 2, 1) is found by considering only the outcomes with X = 2. They
are (0,2,1), (1,1,1) and (2,0,1). Looking back at Table 1, we see that T (0, 2, 1) = 2/3, T (1, 1, 1) = 0
and T (2, 0, 1) = 2/3. The p-value for (0, 2, 1) is then the sum of the probabilities Pr(Y = y|X = 2)
for outcome y = (0, 2, 1) and y = (2, 0, 1) which are both 0.25, so the p-value is 0.50. The conditional
probabilities and p-values for all the outcomes are given in Table 3. �

Outcome y x P (Y = y; X = x) Psuff

(0,0,3) 0 1 1
(0,1,2) 1 0.5 1
(0,2,1) 2 0.25 0.5
(0,3,0) 3 0.125 0.25
(1,0,2) 1 0.5 0.25
(1,1,1) 2 0.5 1
(1,2,0) 3 0.375 1
(2,0,1) 2 0.25 0.5
(2,1,0) 3 0.375 1
(3,0,0) 3 0.125 0.25

TABLE 3: P -values obtained for the trinomial example by conditioning on the sufficient statistic X =
Y1 + Y2.

However, an appropriate sufficient statistic does not always exist. Instead of conditioning on a suffi-
cient statistic, we may condition on an ancillary statistic, Berger and Boos (1994). We will not pursue
this approach here.

FULL MAXIMIZATION Another approach to deal with nuisance parameters is to maximize over the
set of unknown parameters, Casella and Berger (2002). In this approach, called full maximization by
Lloyd (2008), the p-value is calculated as the supremum of the probability of the tail set over the
parameter space of p under H0, i.e. over P0. This p-value is valid and exact (as we will explain later
in this section) and is given as

PM(yobs) = supp∈P0
Pr(T (Y ) ≥ T (yobs);p) = supp∈P0

∑
y∈R(yobs;p)

π(y; p).

Trinomial example For each outcome we calculate the full maximization p-value by maximizing the
sum of multinomial probabilities for the outcomes in the tail set over all values of φ, 0 ≤ φ ≤ 1/2.
Thus, the full maximization p-value for each outcome is the maximum of the sums of multinomial
probabilities,

PM(yobs) = supφ∈[0,0.5]

∑
y∈R(yobs;φ)

N !

y1!y2(N − y1 − y2)!
φy1+y2(1 − 2φ)N−y1−y2 .
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In this example, numerically we used a grid for φ of 5001 points, {0, 0.0001, 0.0002, . . . , 0.5000} in
the maximization. For the outcome yobs = (0, 2, 1), in each grid point, the multinomial probabilities
are calculated for the outcomes in the tail set defined by T (y) ≥ T (yobs) where T (y) is given in (4),
i.e. for the outcomes (0,2,1), (0,3,0), (2,0,1), (3,0,0), and added. Then the maximum of those sums is
the full maximization p-value. For this outcome, the maximum p-value is obtained when φ = 0.4, then
π((0, 2, 1);φ = 0.4) = π((2, 0, 1);φ = 0.4) = 0.096 and π((0, 3, 0);φ = 0.4) = π((3, 0, 0);φ =
0.4) = 0.064. Adding these probabilities yields the p-value 0.32. The p-values for the other outcomes
are given in the third column of Table 4 with the value of φ for which the maximum p-value is obtained
in the second column. �

PARTIAL MAXIMIZATION Not all values of p are equally likely under the null hypothesis, therefore
it might not be desirable to maximize over all possible values of p. The set over which the supremum
is found can be restricted to a confidence set for p as suggested by Berger and Boos (1994). This
partial maximization p-value is valid when a penalty ζ is added, Berger and Boos (1994), but it is not
exact by the definition of Lloyd (2008). It is given by

PPM(yobs) = supp∈Cζ
Pr(T (Y ) ≥ T (yobs); f(p) = 0) + ζ = supp∈Cζ

∑
y∈R(yobs;p)

π(y; p) + ζ,

where Cζ is the 1 − ζ confidence region for p under the null hypothesis.

Trinomial example Under H0, Y1 + Y2 is binomially distributed with parameters 2φ and N . We
will use the Clopper–Pearson confidence interval which is an exact confidence interval for binomial
proportions, Agresti (2002). The 1 − ζ confidence interval for φ is given by its lower limit CL and
upper limit CU,

CL =
1

2

(
1 +

N − y1 − y2 + 1

(y1 + y2)F2(y1+y2),2(N−y1−y2+1)(1 − ζ/2)

)−1

CU =
1

2

(
1 +

N − y1 − y2

(y1 + y2)F2(y1+y2+1),2(N−y1−y2)(ζ/2)

)−1

where Fν1,ν2
(c) denotes the 1− c quantile from the F distribution with ν1 and ν2 degrees of freedom.

When y1 +y2 = 0, the lower limit is 0 and when y1 +y2 = N = 3, the upper limit is 0.50. We choose
ζ = 0.001 as suggested by Berger and Boos (1994) and calculate the p-values from the formula

PPM(yobs) = supφ∈[CL,CU]

∑
y∈R(yobs;φ)

N !

y1!y2(N − y1 − y2)!
φy1+y2(1 − 2φ)N−y1−y2 + ζ.

The p-values are calculated the same way as the full maximization p-values except that the maximiza-
tion is now done over the possible values of φ in the confidence interval. The tail set is unchanged.
Table 4, column 4 and 5, show the partial maximization p-values and the value of φ for which the
maximum p-value is found. We see that the partial maximization p-values are the same as the full
maximization p-values, except for the outcomes (0,1,2) and (1,0,2) where the p-values are smaller
because the value of p that maximizes the full maximization p-value is outside the confidence interval
for φ used by the partial maximization p-value.�

7



ESTIMATION AND MAXIMIZATION Lloyd (2008) proposed the estimation followed by maximiza-
tion (E+M) p-value, where the negative of the estimation p-values serve as the values of a new test
statistic, followed by a full maximization step. In this way valid and exact p-values are obtained.

Since the test statistic is the estimation (E) p-values, performing the estimation step results in a differ-
ent ordering of the outcomes before performing the maximization step than the ordering defined by
the original test statistic. Thus the tail sets are changed and the E+M p-values may differ from the full
maximization (M) p-values. The estimation step can be done more than once with or without a final
maximization step, each time resulting in a different ordering of the outcomes. If two estimation steps
are performed before a maximization step, the p-values are called E2M p-values, again yielding valid
p-values.

Another way to look at the difference and similarity between the E and M p-values, is that for the E
p-values, first the probability of the observed outcome is maximized through the maximum likelihood
estimate of p under H0, and then the probability of the tail set is calculated. For the M p-values, the
tail sets are defined first, and then the probability of the tail set is maximized over p in P0. That is,

PE(yobs) =
∑

y∈R(yobs)

supp∈P0
π(y; p),

and
PM(yobs) = supp∈P0

∑
y∈R(yobs)

π(y; p).

Performing more than one maximization step in a sequence has no effect on the p-values. The reason
is that the tail sets remain the same. Assume some chosen test statistic defines the tail set to be used
in the first maximization step. The outcome having the largest value of this test statistic will have
the smallest M p-value, the outcome having the second largest value of the test statistic will have the
second smallest M p-value and so on. In the second maximization step, the negative of the M p-values
are the values of the test statistic that defines the new tail set. The outcome having the largest negative
M p-value is the outcome that had the largest value of the first test statistic, the outcome having the
second largest negative M p-value is the outcome that had the second largest value of the first test
statistic and so on. Since the p-value is the maximum sum of probabilities of the outcomes in the tail
set, maximized over p, and the tail set is the same, the p-values are unchanged.

Regardless of the choice of test statistic the M p-values are always valid. Assume that the chosen
significance level is α. We would then reject the null hypothesis for all outcomes for which the test
statistic T (Y ) is greater than or equal to some critical value k, where k is chosen so that all values
of the test statistic that are greater than or equal to k yield a p-value less than or equal to α. The
probability that a random outcome yobs is rejected under the null hypothesis is the probability that
the test statistic T (yobs) is greater than or equal to the critical value and this probability is less than
or equal to the p-value for an outcome y for which T (y) = k, which is less than or equal α. Also
exactness of the M p-value follows by construction.

The M p-values are often conservative, see Bayarri and Berger (2000), whereas the E p-values are
not valid and thus generally smaller than or equal to the M p-values. It is desired when comparing
different p-values to obtain p-values as small as possible while still valid.

Trinomial example We first find the E p-values for all the outcomes where each p-value is calculated
by inserting the maximum likelihood estimate p̃ for p for that particular outcome as described pre-
viously and given in Table 2. The E p-values are used to define the tail set of the observed outcome
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which is the set of outcomes for which PE(y) ≤ PE(yobs). For the observed outcome we then calcu-
late the E+M p-value as the sum of multinomial probabilities of the outcomes in the tail set maximized
over φ. Let RE(yobs) be the tail set of the observed outcome defined by the E p-values smaller than or
equal to the E p-value of the observed outcome. The E+M p-value is then given by

PE+M(y) = supφ∈[0,0.5]

∑
y∈RE(y)

N !

y1!y2!(N − y1 − y2)!
φy1+y2(1 − 2φ)N−y1−y2 .

The E p-value of outcome (0,2,1) is 0.30. The tail set RE(0, 2, 1) = {(0, 2, 1), (0, 3, 0), (2, 0, 1),
(3, 0, 0)}. This is the same tail set as when we used the test statistic T (Y ) = |Y1/N − Y2/N | and
therefore the maximization over φ here yields the same maximum p-value as the full maximization
approach. The E+M p-values for all the outcomes are given in Table 4, column 7, with the value of φ
for which the maximum p-value is found, φM , in column 6. The p-values are maximized with respect
to φ over the same grid as in the full maximization approach. We see that for all the outcomes, except
(0,1,2) and (1,0,2), the E+M p-values are the same as the full maximization p-values. For those two
outcomes, the p-values are reduced from 1 to 0.5982 if we use the E+M approach, and they are the
same outcomes for which the p-values were reduced when performing partial maximization instead
of full maximization. �

Outcome y φM PM φPM PPM φE+M PE+M

(0,0,3) 0.4535 1 0.4591 1 0.4535 1
(0,1,2) 0.50 1 0.4935 0.982 0.2265 0.5982
(0,2,1) 0.40 0.32 0.40 0.32 0.40 0.32
(0,3,0) 0.50 0.25 0.50 0.25 0.50 0.25
(1,0,2) 0.50 1 0.4935 0.982 0.50 0.5982
(1,1,1) 0.4535 1 0.4726 1 0.4535 1
(1,2,0) 0.50 1 0.50 1 0.4535 1
(2,0,1) 0.40 0.32 0.40 0.32 0.40 0.32
(2,1,0) 0.50 1 0.50 1 0.4535 1
(3,0,0) 0.50 0.25 0.50 0.25 0.50 0.25

TABLE 4: P -values obtained for the trinomial example by full maximization, partial maximization
and estimation plus maximization with values of φ for which the p-values are maximized.

INTEGRATION In the partial maximization approach, the points in P0, the parameter space for p
under H0, are given weights 0 or 1. If p lie within their confidence interval, they are given weight
1 and 0 otherwise. Instead of weighing the probabilities with 0 and 1, we want to apply Bayesian
methodology and weigh the points in P0 according to a prior distribution π(p). We integrate out p in
order to be able to calculate π(y | H0). Bayarri and Berger (2000) review several Bayesian p-values as
well as suggesting two new p-values. First there is the prior predictive p-value where a prior π(p | H0)
is chosen, so that the probability of an outcome under the null hypothesis is

π(y | H0) =

∫
P0

π(y | p)π(p | H0)dp.

The prior predictive (PP) p-value of an observed outcome yobs is the sum of the probabilities
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π(y | H0) that are less than or equal to the probability π(yobs | H0). As we will see numerically in
Section 4.2, these PP p-values are not valid.

Trinomial example We choose the uniform Dirichlet prior as the joint distribution of p1 and p2, thus
π(p) = 2. Let z = p1 − p2. Under H0, z = 0, so that π(p | H0) = π(p | z = 0). The joint density of
the transformed variables is π(p1, z) = 2. Then π(p | z = 0) = π(p1, z = 0)/π(z = 0). The density
of z can be found by integrating out p1 from π(p1, z), giving π(z = 0) = 1, after having identified
the triangular region to which (p1, z) belongs. The probability of the trinomial outcome given H0 is

π(y | H0) =

∫
1/2

0

N !

y1!y2!
py1+y2

1
(1 − 2p1)

N−y1−y22dp1 =
(y1 + y2)!

y1!y2!(N + 1)

(
1

2

)y1+y2

.

The p-value of the observed outcome is the sum of the probabilities π(y | H0) that are less than or
equal to the probability of the observed outcome. Table 5 shows the calculated probabilities as well as
the p-values for the possible outcomes in the trinomial example. �

Outcome y π(p | H0) PPP

(0,0,3) 0.25 1
(0,1,2) 0.125 0.625
(0,2,1) 0.0625 0.1875
(0,3,0) 0.03125 0.0625
(1,0,2) 0.125 0.625
(1,1,1) 0.125 0.625
(1,2,0) 0.09375 0.375
(2,0,1) 0.0625 0.1875
(2,1,0) 0.09375 0.375
(3,0,0) 0.03125 0.0625

TABLE 5: P -values for the trinomial example using the Bayesian approach and a uniform Dirichlet
prior on p.

One challenge with the prior predictive approach is that the resulting p-values depend on the prior.
To make them less dependent on the choice of prior and more dependent on the data, one can use
the posterior predictive p-value, Bayarri and Berger (2000), where the probability of the observed
outcome is given in terms of the posterior probability,

π(y | H0) =

∫
P0

π(y | p)π(p | yobs)dp.

To calculate this probability, improper priors can be used, and the probability will be less influenced by
the choice of prior. However, the data are used twice since it first is needed to determine the posterior
distribution and then in computing the tail set.

As improvements to the posterior predictive p-value, Bayarri and Berger (2000) also suggested the
partial posterior predictive p-value and the conditional predictive p-value. In this work, we will only
consider the prior predictive p-values.

TEST SIZE AND POWER. The test size and test power are common evaluation measures on the
performance of a statistical hypothesis test. The test size is the probability of making a type I error,
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i.e. to reject the null hypothesis, when it is true. The power is the probability of rejecting the null
hypothesis when it is not true, which is one minus the probability of making a type II error, i.e. to not
reject the null hypothesis when it is not true. Given the chosen significance level α, the test size for a
test for which we reject the null hypothesis when the p-value P (y) is less than α is

Pr(P (Y ) ≤ α; p) =
∑

y; P (y)≤α

π(y; p) (5)

for a parameter p in P0.

The test power is
Pr(P (y) ≤ α; p) =

∑
y; P (y)≤α

π(y; p) (6)

for a parameter p in P .

3 INDEPENDENT BINOMIAL PROPORTIONS

Before focusing on our main problem of comparing positive predictive values, we go through a fic-
titious example analyzed in Berger and Boos (1994) and Lloyd (2008), and present alternative test
statistics and a more elaborate analysis of the p-values.

3.1 PRESENTATION OF THE PROBLEM

There are n = 330 subjects in a clinical trial of which n1 = 47 subjects receive treatment and
n2 = 283 subjects receive placebo. Let X1 be the number of subjects that survive among those
who received treatment and let X2 be the number of subjects that survive among those who received
placebo. If p1 is the survival probability for the treatment group and p2 is the survival probability
for the placebo group, we assume that X1 is binomially distributed with parameters n1 and p1 and
X2 is binomially distributed with parameters n2 and p2. Let X = (X1, X2) and p = (p1, p2). The
two-sided null hypothesis is that the survival probabilities in the two groups are equal, i.e.

H0 : f(p) = p1 − p2 = 0 (7)

versus the alternative that they are not equal,

H1 : f(p) = p1 − p2 �= 0.

Lloyd (2008) also considered the one-sided null hypothesis that the survival probability of the treat-
ment group is no better than the survival probability of the placebo group, i.e.

H0 : f(p) = p1 − p2 ≤ 0 (8)

versus the alternative that the survival probability of the treatment group is better than the probability
of the placebo group,

H1 : f(p) = p1 − p2 > 0.
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Assuming independence between the treatment and placebo group, the joint distribution of X1 and
X2 is the product of the two binomial distributions,

Pr(X1 = x1, X2 = x2) =

(
n1

x1

)
px1

1
(1 − p1)

n1−x1 ·
(

n2

x2

)
px2

2
(1 − p2)

n2−x2

In this situation, the reference set is all possible outcomes (x1, x2) given n1 = 47 and n2 = 283 which
is a set of 13 682 outcomes. When calculating p-values various test statistics can be used to define the
tail set. One of the test statistics used by Berger and Boos (1994) and Lloyd (2008) is

TT(x1, x2) =
x1/n1 − x2/n2√

(x1 + x2)(n − x1 − x2)/(nn1n2)
.

When testing the null hypothesis (7) the tail set of an observed outcome (x1,obs, x2,obs) is
R(x1,obs, x2,obs) = {(x1, x2) : |TT(x1, x2)| ≥ |TT(x1,obs, x2,obs)|}, and when testing the null hy-
pothesis (8) the tail set is R(x1,obs, x2,obs) = {(x1, x2) : TT(x1, x2) ≥ TT(x1,obs, x2,obs)}.

Lloyd (2008) also uses the likelihood ratio test statistic

TLR = 2
2∑

i=1

(
xilog

p̂i

p̃i
+ (ni − xi)log

1 − p̂i

1 − p̃i

)
where p̂i = xi/ni is the general maximum likelihood estimate for pi, i = 1, 2 and p̃i is the maximum
likelihood estimate for pi, i = 1, 2 under the null hypothesis. If we are testing the two-sided null
hypothesis p̃1 = p̃2 = (x1 + x2)/(2n), and if we are testing the one-sided null hypothesis, p̃1 =
p̃2 = (x1 + x2)/(2n) when x1/n1 ≥ x2/n2 and p̃i = xi/ni, i = 1, 2, when x1/n2 < x2/n2.
These estimates were also used for the E step. For the maximization in the M step, 1001 equally
spaced values of p1 = p2 in [0,1] were used for the two-sided test and 5151 equally spaced points in
a rectangular grid in the triangular region 0 ≤ p1 ≤ 1, p1 ≤ p2 ≤ 1, were used for the one-sided test.

In addition to TT and TLR we propose three additional test statistics. Let π(x; p) denote Pr(X1 =
x1, X2 = x2; p). First, we define a simplified version of the likelihood ratio test statistic,

Tπe(xobs) = π(xobs; p̃obs),

which is simply the probability of the observed outcome xobs = (x1,obs, x2,obs) with the maximum
likelihood estimate of p under H0 for this outcome, p̃obs, inserted for p.

In our second and third additional test statistic, TπE and TπM, we let the probability π(x; p) of an
outcome x play the role of a test statistic. It is of course dependent on the unknown parameters, and
thus not a test statistic in the ordinary sense. It still makes sense to apply an E or M step to it, yielding
the πE p-value

TπE(xobs) = Pr(π(X; p̃obs) ≤ π(xobs; p̃obs); p̃obs) =
∑

x∈R∗(xobs)

π(x; p̃obs)

where R∗(xobs) consists of those x for which π(x; p̃obs) ≤ π(xobs; p̃obs), and the πM p-value

TπM(xobs) = supp∈P0
Pr(π(X; p) ≤ π(xobs; p);p) = supp∈P0

∑
x∈R∗(xobs)

π(x; p),

where R∗(xobs) consists of those x for which π(x; p) ≤ π(xobs; p). Note that the sets R∗(x) for
these two statistics are dependent on the parameter p, as opposed to the tail sets defined by an ordinary
statistic. Although TπE and TπM are constructed in a similar manner as p-values constructed by an E
and an M step, respectively, their use will be as test statistics, rather than p-values.
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3.2 COMPARISON OF TEST STATISTICS

Lloyd (2008) recommends using the E+M p-values in the problem of comparing independent binomial
proportions and we want to compare the test size and power of the TT, TLR, Tπe , TπE and TπM test
statistics for these p-values when testing both the one-sided and two-sided null hypotheses given in
(7) and (8). To calculate the test size, i.e. the probability of rejecting the null hypothesis given that the
null hypothesis is true, we generated 10001 equally spaced values of p1 = p2 in [0, 1] and calculated
the test size for each value p according to (5) by adding the probabilities of the outcomes that had a
p-value less than or equal 0.05, which was the chosen significance level. To assess power, we used
9001 equally spaced points on the line p1 = p2 + 0.1, for which we calculated the power by adding
the probabilities of the outcomes that had p-values less than or equal to 0.05, i.e. using (6).

Table 6 shows the mean test size and power for the five test statistics followed by an E and an M
step. For the two-sided hypothesis, TT, Tπe , TπE and TπM have similar mean test size, of which Tπe

has the greatest. TLR yields a smaller test size than the other test statistics. When testing the one-sided
hypothesis, the test size of Tπe is 0.0434 which is greater than the test size for the other test statistics
which ranges from 0.0382 to 0.0387. We see that the test statistics have similar power, lower for the
two-sided test than for the one-sided test, and for the two-sided test, TLR has the smallest power and
Tπe has the largest power. For the one-sided test, TπE has the lowest power and Tπe has the largest
power. This indicates that for this problem, the Tπe statistic performs best and should be considered
an alternative to TT and TLR.

Table 7 shows the E+M p-values for the observed outcome (x1, x2) = (14, 48) which for TT and TLR
agree with Lloyd (2008). For the two-sided test, the p-value for outcome (14,48), which is used as a
test case by Berger and Boos (1994) and Lloyd (2008), is less than 0.05 for all the test statistics except
TLR so the null hypothesis would be rejected on a 5% significance level for four of the test statistics.
TT yields the smallest p-value. For TLR we reject the one-sided null hypothesis. All test statistics yield
the p-value 0.025 for the one-sided test and thus reject the null hypothesis.

Hypothesis TT TLR Tπe TπE TπM

Two-sided 0.0472 0.0435 0.0479 0.0478 0.0472
One-sided 0.0386 0.0384 0.0434 0.0382 0.0387
Two-sided 0.3629 0.3475 0.3649 0.3644 0.3622
One-sided 0.4421 0.4410 0.4639 0.4388 0.4427

TABLE 6: Mean test size in the two upper rows and mean test power in the two lower rows for the
two-sided and one-sided hypothesis for the E+M p-values using different test statistics.

Hypothesis TT TLR Tπe TπE TπM

Two-sided 0.037 0.057 0.040 0.041 0.040
One-sided 0.025 0.025 0.025 0.025 0.025

TABLE 7: E+M p-values from the two-sided and one-sided tests for outcome (14,48).

Figure 1 shows the E+M p-values for Tπe test plotted against the E+M p-values for TT for p-values
less than or equal to 0.11. The plot shows that Tπe overall yields smaller p-values than TT and as we
want p-values that are as small as possible provided that they are valid, Tπe seems to be preferable
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over TT.
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FIGURE 1: E+M p-values for Tπe plotted against E+M p-values for TT.

To explain what happens in the E and M steps, we look into the results for three particular outcomes,
(16,52), (1,0) and (30,126), which are consecutive decreasing outcomes when ordering by TT. Table
8 shows the value of TT for these outcomes in the third column and the probabilities π(x; p) of the
outcomes inserted the maximum likelihood estimates under the null hypothesis in the second column.
Note how much larger π((1, 0); p̃(1,0)) is than π((16, 52); p̃(16,52)) and π((30, 126); p̃(30,126)). When
performing the E step, this larger probability has a significant effect, as it is included in the sum of
probabilities that yields the p-value for outcome (1,0). The fourth column of Table 8 shows the E
p-values for the three outcomes. The p-value for outcome (1,0) is 0.05970 which is much greater
than the two other p-values and H0 is rejected on a 5% significance level, the other two p-values are
both less than 0.01 and H0 will not be rejected. Thus, the decision of whether to reject H0 differ
for these three outcomes, even though the values of TT are almost the same. The effect of the large
probability of outcome (1,0) also shows in the M p-values in the fifth column in Table 8. We note a
large increase in the M p-value for outcome (30,126) as compared to the E p-value, the reason being
that the M p-value is at least as large as the E p-value by construction, in particular for (1,0), and next,
that the the M p-value is at least as large as the M p-value of (1,0), since (1,0) has a larger test statistic
value. According to the M p-values, we would not reject H0 for any of those outcomes as opposite to
the E p-values where H0 is rejected for outcome (30,126). To avoid the effect of outcome (1,0), we
need a different ordering of the outcomes, in which (1,0) is placed further down on the list where the
outcomes are sorted by decreasing value of a test statistic. This is obtained by treating the E p-value as
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x π(x; p̃) TT(x1, x2) PE PM PE+M

(16,52) 0.00049 2.45928 0.00968 0.02458 0.01029
(1,0) 0.05247 2.45756 0.05970 0.06112 0.07229

(30,126) 0.00028 2.45512 0.00722 0.06112 0.00746

TABLE 8: The test statistic TT(x1, x2) and corresponding E, M and E+M p-values for outcomes
(16,52), (1,0) and (30,126).

a test statistic and then applying the M step. The outcomes that had unusually large p-values after the
E step compared to their neighbours, e.g. as outcome (1,0) had, is then moved down on the list when
sorting the outcomes by decreasing negative E p-values. The sixth column of Table 8 shows these
E+M p-values and we see that outcome (30,126) now has a p-value of 0.00746 and is thus unaffected
by the outcome (1,0). This example indicates why it is beneficial to perform an E step prior to the M
step. The M step is necessary to obtain valid p-values and therefore the E step alone is not sufficient.

The M p-value for the outcome (14,48) is 0.06114, see Lloyd (2008), which is significantly greater
than the E+M p-value of Table 7. Our investigation showed that the value 0.06114 also arises from
outcome (1,0), because the value of TT is less for outcome (14,48) than for outcome (1,0) which is
thus in the tail set of (14,48). The E+M p-value is smaller (0.025) because the E step changed the
ordering of the outcomes and (1,0) was placed behind (14,48) so that after performing the E step,
(1,0) is no longer in the tail set of (14,48). It should also be noted that π((14, 48); φ), as a function
of φ = p1 = p2 has a prominent and narrow peak near φ = 0 (but φ > 0), which explains the large
value of π((1, 0); p̃) and thus of PE(1, 0). Partial maximization avoids this peak, explaining that the
PM p-value is reasonable as reported by Berger and Boos (1994), though not as small as the E+M
p-values as reported by Lloyd (2008).

4 COMPARING POSITIVE PREDICTIVE VALUES

We now present the main problem of comparing the positive predictive values of two diagnostic tests.
The performance of various test statistics and p-values are compared in terms of test size and power.

4.1 PRESENTATION OF THE PROBLEM

Suppose that two diagnostic tests are available for a particular disease of interest. We want to compare
the prediction abilities of the two tests, which can be quantified by the positive and negative predictive
values. The positive predictive value is defined as the probability that a subject has the disease given
that the test is positive and the negative predictive value is the probability that a subject does not have
the disease given that the test is negative. Without loss of generality, in this work we will only consider
the positive predictive values, as the tests for the negative predictive values can easily be derived along
the same lines. We want to test whether the positive predictive value of test A is equal to the positive
predictive value of test B against the alternative that they are not equal;

H0 : PPVA = PPVB vs H1 : PPVA �= PPVB.

In this situation we define six random variables that are given in Table 9. Let Y be the vector of these
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random variables, i.e. Y = (Y1, Y2, Y3, Y4, Y5, Y6). We assume that Y is multinomially distributed
with parameters N and p = (p1, p2, p3, p4, p5, p6). Thus, the probability function of Y is

Pr(Y = y) = N !
6∏

i=1

pyi
i

yi!
.

Variable Description
Y1 Number of non-diseased subjects with positive test A and B.
Y2 Number of non-diseased subjects with positive test A and negative test B.
Y3 Number of non-diseased subjects with negative test A and positive test B.
Y4 Number of diseased subjects with positive test A and B.
Y5 Number of diseased subjects with positive test A and negative test B.
Y6 Number of diseased subjects with negative test A and positive test B.

TABLE 9: Definition of the random variables Y1, . . . , Y6.

The positive predictive value of test A is

PPVA =
p4 + p5

p1 + p2 + p4 + p5

and the positive predictive value of test B is

PPVB =
p4 + p6

p1 + p3 + p4 + p6

.

The null hypothesis is then

H0 : fPPV(p) =
p4 + p5

p1 + p2 + p4 + p5

− p4 + p6

p1 + p3 + p4 + p6

= 0. (9)

The parameters p are not completely determined by the null hypothesis, we only know that fPPV(p) =
0 and that

∑
6

i=1
pi = 1. Thus, from these two constraints, two of the parameters can be expressed

in terms of the four other remaining parameters, but these four parameters will be unknown nuisance
parameters.

In order to test the null hypothesis (9) we will calculate p-values by enumeration as described by the
algorithm in Section 2.3. The first step is to find the reference set.

4.1.1 FINDING THE REFERENCE SET

In the first step in the algorithm for calculating p-values, we enumerate using five nested for-loops
to find all possible outcomes having the value of N , which is the number of observations. It can
be distributed among six non-negative integer random variables having sum N , and the number of
possible outcomes is

(
N+5

5

)
. This is a general result for the number of distinct unordered selections of

N elements from six elements drawn with replacement. Figure 2 shows the number of outcomes on a
log10 scale plotted against N . The number of outcomes grows very quickly when N increases. When
N = 25 there are 142506 possible outcomes and when N = 50, there are nearly 3.5 million possible
outcomes.
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FIGURE 2: Number of possible outcomes on log10 scale as a function of N .

4.1.2 CALCULATING THE PROBABILITY OF THE OBSERVED OUTCOME

In the setting of comparing positive predictive values we will focus on calculating the probability of
an outcome either by substituting maximum likelihood estimates for p, maximize over the parameter
space for p or integrate out p by a Bayesian approach. This results in the estimation (E), maximization
(M) or combinations of these like the estimation and maximization (E+M) p-values, and the Bayesian
prior predictive p-values. As far as we know, there is no sufficient or ancillary statistic for p in this
problem. To calculate the p-values, a test statistic T (Y ) must be chosen. There are several possible
test statistics for this problem, and they will be presented in Section 4.1.3.

ESTIMATION AND MAXIMIZATION If we substitute the maximum likelihood estimates p̃ for p
under H0, the E p-value for an outcome yobs is

PE(yobs) = Pr(T (Y ) ≥ T (yobs); p̃obs) =
∑

y∈R(yobs)

N !
6∏

i=1

p̃yi

i,obs

yi!
(10)

where the tail set R(y) is defined by the chosen test statistic, T (Y ), and p̃i,obs is the maximum
likelihood estimate under H0 for pi, i = 1, . . . , 6 for the outcome yobs.

By maximizing the probability of the outcome yobs over the parameter space P0 where fPPV(p) = 0,
the M p-value is given by

PM(yobs) = supp∈P0
Pr(T (Y ) ≥ T (yobs);p) = supp∈P0

∑
y∈R(yobs)

N !
6∏

i=1

pyi

i,obs

yi!
, (11)

where R(y) is defined by the chosen test statistic. When we calculate the E+M p-value, the expression
is the same as in (11), but the tail set is then defined by the p-values calculated from (10). We will also
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consider the double estimation (E2) p-values, where we first calculate p-values from (10) and then use
these p-values as test statistics to define the tail set when calculating p-values from (10) once more.
Finally we will maximize the E2 p-values by using these as test statistics to define the tail set in (11),
which results in E2M p-values.

INTEGRATION We also consider the Bayesian prior predictive p-values, which requires a different
approach. The starting point is still that the probability of an outcome under the null hypothesis is un-
known because the parameters p are not completely specified. Instead of estimating p or maximizing
the p-values over p, we weigh them according to how likely they are under the null hypothesis.

We start out by conditioning on the parameter p. Let π(y|H0) be the probability of the outcome y
under the null hypothesis (9). Then

π(y|H0) =

∫
P0

π(y|p) · π(p|H0)dp (12)

The first factor of the integrand, the probability of y given p is simply the multinomial distribution,
i.e.,

π(y|p) = N !
6∏

i=1

pyi
i

yi!
,

and π(p|H0) is the probability density function for p under the null hypothesis.

Since p6 = 1 − ∑
5

i=1
pi we first reduce the problem to five unknown parameters. Let

z =
p4 + p5

p1 + p2 + p4 + p5

− 1 − p1 − p2 − p3 − p5

1 − p2 − p5

. (13)

which is fPPV(p) (9) with 1 − ∑
5

i=1
pi inserted for p6.

Under the null hypothesis z = 0 and from this an expression for p4 can be derived, yielding four
unknown parameters. We change variables from p1, p2, p3, p4, p5 to p1, p2, p3, z, p5. The vector of the
new parameters is denoted p∗ in the following. Then π(p∗|z = 0) ∝ π(p∗, z = 0) so therefore we
start by finding π(p∗, z). We use the formula for change of variables, π(p) = π(p∗, z) · |J |, where J
is the Jacobian determinant,

J =

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
∂z
∂p1

∂z
∂p2

∂z
∂p3

∂z
∂p4

∂z
∂p5

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
=

∂z

∂p4

The absolute value |J | is p1+p2

(p1+p2+p4+p5)2
. As a prior distribution for p we first apply the Dirichlet

distribution with parameters α1 = α2 = . . . α5 = 1, thus π1(p) is constant. Then

π(p∗|z = 0) ∝ π(p∗, z = 0) = π1(p) · |J |−1 ∝ (p1 + p2 + p4 + p5)
2

p1 + p2

,

and

π(p|H0) =
1

k1

· (p1 + p2 + p4 + p5)
2

p1 + p2

,
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where k1 is a normalizing constant which can be found from
∫
P0

π(p|H0) = 1.

This leads to the following expression for the probability under H0 of an outcome y,

π(y|H0) =

∫
P0

N !

k1

(
6∏

i=1

pyi
i

yi!

)
(p1 + p2 + p4 + p5)

2

p1 + p2

dp. (14)

For details on how to numerically compute the integral, see Section 5.

The p-value is the sum of these probabilities for outcomes in the tail set of the observed outcome. In
this setting we use the probability of an outcome under H0 as the test statistic and the tail set for an
outcome yobs is defined as the outcomes for which π(y|H0) ≤ π(yobs|H0), so the p-value is given as

PPP,1(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !

k1

(
6∏

i=1

pyi
i

yi!

)
(p1 + p2 + p4 + p5)

2

p1 + p2

dp. (15)

To assess the effect of the choice of prior, we choose the non-uniform prior π2(p) ∝ p1 as an alterna-
tive prior, which leads to

π2(p|H0) =
p1(p1 + p2 + p4 + p5)

2

k2(p1 + p2)
,

where k2 is a normalizing constant and the probability under H0 of an outcome y is

π(y|H0) =

∫
P0

N !

k2

(
6∏

i=1

pyi
i

yi!

)
p1(p1 + p2 + p4 + p5)

2

p1 + p2

dp. (16)

We see that the probability of the outcome depends on the chosen prior π2(p) as expected. The p-
value, which is the sum of the probabilities in (16) for the outcomes that are in the tail set of the one
observed, is denoted PPP,2 and given by

PPP,2(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !

k2

(
6∏

i=1

pyi
i

yi!

)
p1(p1 + p2 + p4 + p5)

2

p1 + p2

dp. (17)

An alternative formulation of the null hypothesis (9) is

f∗
PPV(p) = p1(p1 + p2 + p3 + p4 + 2p5 − 1)− p2(1− p1 − p2 − p3 − p5) + p3(p4 + p5) = 0. (18)

In this case the absolute value of the Jacobi determinant will be p1 + p3 and if we assume the uniform
Dirichlet prior π1(p),

π(p|H0) =
1

k3

· 1

p1 + p3

,

where k3 is a normalizing constant and the probability under H0 of an outcome is

π(y|H0) =

∫
P0

N !

k3

(
6∏

i=1

pyi
i

yi!

)
· 1

p1 + p3

dp. (19)
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This probability is clearly not equal to the probability (14) and this is an example of Borel’s paradox.
The p-value is the sum of the probabilities in (19) for the outcomes in the tail set of the observed
outcome. It is denoted PPP,3 and given by

PPP,3(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !

k3

(
6∏

i=1

pyi
i

yi!

)
1

p1 + p3

dp. (20)

4.1.3 DEFINING THE TAIL SET

The tail set of an outcome y is defined by a test statistic T (y). To test the null hypothesis in (9) there
are several tests available that are used for large samples, see Günther, Bakke, Lydersen and Langaas
(2008) for a detailed description of four possible test statistics. In this work we will use these test
statistics to define the tail set while ignoring their asymptotic distribution.

The first test statistic is the likelihood ratio test statistic which is the ratio between the maximum
likelihood under the null hypothesis and the general maximum likelihood, of which by convenience
the logarithm is taken and which is multiplied by −2, Casella and Berger (2002). In our multinomial
situation, it is given as

TLR = −2 · log
supp∈P0

L(p|y)

supp∈PL(p|y)
= −2

6∑
i=1

yi · (log p̃i − log p̂i), (21)

where p̃i is the restricted maximum likelihood estimates of pi, i.e. under H0, i = 1, . . . , 6, and p̂i is the
unrestricted general maximum likelihood estimates for the multinomial distribution, i.e., p̂i = ni/N ,
i = 1, . . . , 6, Johnson, Kotz and Balakrishan (1997). The maximum likelihood estimates under H0,
p̃i, i = 1, . . . , 6 cannot be written in closed form, but can be found analytically by solving a system
of equations arising from the method of Lagrange multipliers, which we did using Maple 12. More
details can be found in Günther et al. (2008), Section 3.1.2.

The difference test statistic is given by

Tg(y) =
(g(Y ) − g(μ))2

GT (μ)Σ G(μ)
(22)

where g(Y ) is an estimator for the difference fPPV(p) in (9), i.e.

g(Y ) =
Y4 + Y5

Y1 + Y2 + Y4 + Y5

− Y4 + Y6

Y1 + Y3 + Y4 + Y6

,

and μ = E(Y ) = N · p, Σ = Cov(Y ) = N(Diag(p) − pT p), G is a vector containing the first
order partial derivatives of g(Y ) with respect to the components of Y , GT is the transpose of G,
and G(μ) is G with μ inserted for Y . Under the null hypothesis g(μ) = 0. G(μ) and Σ depend on
the unknown parameters p which must be estimated when calculating the test statistic. We can either
insert the unrestricted maximum likelihood estimates for the multinomial distribution p̂ and then we
refer to the test as the unrestricted difference test (uDT) and denote the test statistic TuDT, or insert
restricted maximum likelihood estimates under H0, p̃. Then the test is referred to as the restricted
difference test (rDT) and the test statistic is denoted TrDT .
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Leisenring, Alonzo and Pepe (2000) presented a score test based on generalized estimating equations.
We denote this test the LAP test. The test statistic can be written as

TLAP =
((Y1 + Y2 + Y4 + Y5)(Y4 + Y6) − (Y1 + Y3 + Y4 + Y6)(Y4 + Y5))

2

h(Y1, Y2, Y3, Y4, Y5, Y6)
, (23)

where

h(Y1, Y2, Y3, Y4, Y5, Y6)

= Y1(Y2 − Y3 + Y5 − Y6)
2

(
2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y2(Y1 + Y3 + Y4 + Y6)
2

(
2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y3(Y1 + Y2 + Y4 + Y5)
2

(
2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y4(Y2 − Y3 + Y5 − Y6)
2

(
1 − 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y5(Y1 + Y3 + Y4 + Y6)
2

(
1 − 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y6(Y1 + Y2 + Y4 + Y5)
2

(
1 − 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

.

These four test statistics will be used to define the tail set for the E and M p-values. Other test statistics
are possible and we suggest three, Tπe , TπE and TπM, which are defined in the same way as they were
for the independent binomial proportions (Section 3), but with the multinomial distribution with six
parameters substituted for the joint distribution of two independent binomial distributions, that is,

Tπe(yobs) = π(yobs; p̃obs), (24)

TπE(yobs) = Pr(π(Y ; p̃obs) ≤ π(yobs; p̃obs); p̃obs) (25)

and
TπM(yobs) = sup

p∈P0

Pr(π(Y ; p) ≤ π(yobs; p);p). (26)

Finally, we also consider the Bayesian prior predictive p-values, that in addition to being p-values in
their own right, can be used as test statistics to define the critical region for the E and M p-values, and
we denote them TPP where

TPP(yobs) =
∑

π(y|H0)≤π(yobs|H0)

∫
P0

π(y | p) · π(p | H0)dp. (27)

4.2 RESULTS

In the PPV setting, we have studied the performance of the different types of p-values with respect to
test statistics and the parameters in the multinomial distribution. The performance will be evaluated
in terms of test size and test power, which are calculated as given by (5) and (6). We choose the
significance level α = 0.05.
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4.2.1 EVALUATION OF TEST SIZE

The test statistics considered were the LAP, likelihood ratio, unrestricted difference and restricted
difference test statistics, TLAP, TLR, TuDT and TrDT. In addition we used the πe-probabilities and the
πE, πM and Bayesian p-values as test statistics, i.e. Tπe , TπE , TπM and TPP. For each of these test
statistics and for the chosen values of N we calculated the E, M, E+M, E2 and E2M p-values. We also
considered the performance of the Bayesian p-values as p-values in itself.

The performance of the test statistics can depend highly on the parameters p in the multinomial
distribution. Both the overall mean performance as well as the performance for specific values are
evaluated. For the mean performance a set of 10385 values of p in P0 is used, which are obtained
by using a four dimensional grid for the four free parameters where each side in the grid is divided
into 30 subintervals, and the 10385 values of p in the grid that belong to P0 are then the cases we
consider. For this set of cases we calculate the mean test size, i.e. we calculate the test size from (5)
for each case and then find the average for the 10385 cases. In addition, six specific cases of p in P0

are evaluated, see Table 10. These are the same cases as in Günther, Bakke and Langaas (2009) where
the reasoning for choosing these values can be found.

Case p1 p2 p3 p4 p5 p6

1 0.068 0.135 0.135 0.527 0.068 0.068
2 0.043 0.130 0.130 0.348 0.174 0.174
3 0.267 0.267 0.267 0.067 0.067 0.067
4 0.300 0.267 0.267 0.033 0.067 0.067
5 0.400 0.200 0.200 0.100 0.050 0.050
6 0.450 0.200 0.200 0.050 0.050 0.050

TABLE 10: Specification of multinomial parameters under H0.

The size of the multinomial sample determines how many possible outcomes there are and is an
interesting factor to consider. We want to investigate whether the performance of the test statistics
depends on sample size, in particular for small sample sizes, so we use N = 10, 15, 20, 25.

When maximizing the p-values over p in P0 we used a four-dimensional grid since there are four
free parameters, with 50 points on each side. In addition, the maximum likelihood estimates for all
possible outcomes given N were included in the grid. The Bayesian p-values were calculated on the
grid with 50 points in each side, for further details see Section 5.

Table 11 shows the mean test size for all the test statistics, values of N and type of p-values investi-
gated. We first compare the performance of the different types of p-values, E, M, E+M, E2 and E2M.

The M p-values yield the smallest test size for all values of N for all the test statistics except for the
likelihood ratio test when N = 20, there the E2M p-values yields the smallest test size. In general the
E and E2 p-values result in larger test sizes than the E+M and E2M p-values which we would expect
since the E and E2 p-values are not valid, whereas the E+M and E2M p-values are. The exception is
TuDT, when N = 10, the E p-values yield smaller test size than the E+M and E2M p-values, and when
N = 15, the E p-values yield smaller test size than the E2M p-values. The E2 p-values yield larger
test sizes than the E p-values, except for Tπe .

Next we compare the performance of the different test statistics. First we consider the test statistics
that originated from large samples where their asymptotic distributions were utilized, i.e. the LAP,
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N p-value LRT LAP uDT rDT πM πE πe PP1 PP3

10 M 0.0164 0.0092 0.0019 0.0130 0.0177 0.0088 0.0145 0.0104 0.0190
10 E 0.0381 0.0282 0.0179 0.0352 0.0388 0.0359 0.0643 0.0330 0.0366
10 E+M 0.0285 0.0198 0.0181 0.0285 0.0286 0.0242 0.0207 0.0257 0.0297
10 E2 0.0456 0.0420 0.0395 0.0439 0.0435 0.0441 0.0549 0.0441 0.0435
10 E2M 0.0273 0.0247 0.0220 0.0268 0.0279 0.0213 0.0260 0.0297 0.0299
15 M 0.0256 0.0122 0.0006 0.0242 0.0227 0.0085 0.0138 0.0061 0.0150
15 E 0.0451 0.0395 0.0297 0.0447 0.0438 0.0376 0.0650 0.0395 0.0428
15 E+M 0.0354 0.0243 0.0234 0.0354 0.0364 0.0317 0.0274 0.0339 0.0360
15 E2 0.0470 0.0466 0.0462 0.0470 0.0479 0.0453 0.0538 0.0472 0.0480
15 E2M 0.0332 0.0303 0.0302 0.0350 0.0355 0.0305 0.0311 0.0374 0.0370
20 M 0.0333 0.0140 0.0002 0.0277 0.0239 0.0091 0.0130 0.0024 0.0088
20 E 0.0469 0.0430 0.0365 0.0475 0.0468 0.0394 0.0640 0.0433 0.0458
20 E+M 0.0395 0.0308 0.0283 0.0386 0.0392 0.0337 0.0317 0.0369 0.0378
20 E2 0.0488 0.0477 0.0492 0.0482 0.0490 0.0465 0.0544 0.0491 0.0491
20 E2M 0.0319 0.0331 0.0329 0.0339 0.0365 0.0341 0.0324 0.0381 0.0388
25 M 0.0335 0.0124 0.0001 0.0136 0.0214 0.0089 0.0131 0.0009 0.0032
25 E 0.0483 0.0449 0.0403 0.0486 0.0479 0.0405 0.0636 0.0449 0.0469
25 E+M 0.0385 0.0324 0.0313 0.0403 0.0403 0.0314 0.0343 0.0402 0.0398
25 E2 0.0492 0.0479 0.0496 0.0490 0.0497 0.0482 0.0540 0.0494 0.0494
25 E2M 0.0359 0.0353 0.0343 0.0360 0.0362 0.0374 0.0349 0.0381 0.0379

TABLE 11: Mean test size for the 10385 values of p in P0, for all the test statistics and M, E, E+M,
E2 and E2M p-values when the chosen significance level is α = 0.05. The top row denotes the test
statistics, LRT is given in (21), LAP in (23), uDT and rDT in (22) with unrestricted and restricted
maximum likelihood estimates inserted for p respectively, πM in (26), πE in (25), πe in (24), PP1 in
(15) and PP3 in (20). N is the sample size.
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likelihood ratio, unrestricted difference and restricted difference test statistics. In general, for all types
of p-values, TLR and TrDT have the largest test size, TuDT and TLAP have the smallest test size and TuDT
has mostly smaller test size than TLAP. TLR has the largest test size for the M p-values. When N = 20,
TuDT has the largest test size for the E2 p-values, a result for which we have found no apparent reason.

If we look into the performance of Tπe , TπE and TπM we see that Tπe has the largest test size compared
to all the other test statistics for the E and E2 p-values for all N . TπM has the largest test size for the M,
E+M and E2M p-values for N = 10, for the E+M and E2M p-values when N = 15 and for the E2M
p-values when N = 20, whereas TπE has the largest test size for the E2M p-values when N = 25.
We note that when N increases the likelihood ratio or restricted difference test performs better than
the πM statistic for the M, E+M and E2M p-values, therefore the πM test statistic is probably a better
choice only when N is small.

What is worth noting, is that for the test statistics that are most conservative with respect to test size
for the M p-values, the gain is greater when performing one or more E step(s) before the M step
compared to the test statistics for which the test size for the M p-values is less conservative. This is
particularly evident for TuDT, TLAP and TπE compared to TLR. The test size for TLR increases less than
the test size for the other three test statistics when comparing the M and E+M p-values. For TLR the
test size is also reduced if two E steps instead of one are applied before the M step, whereas for TLAP
and TuDT the test size increases when two E steps are applied before the M step.

The mean test size increases when N increases. Comparing the test sizes for N = 10 to the test sizes
for N = 25 reveals an increase for all test statistics and type of p-values except for some of the M
p-values which have test size that is approximately 0. As an illustration, the mean test size for the M
p-value for the likelihood ratio test statistic is 0.0164 when N = 10 and 0.0335 when N = 25.

In addition to the test statistics discussed so far, the Bayesian prior predictive p-values PPP,1 and
PPP,3, originated from using the same prior π1(p), but different formulations of the null hypothesis,
were used as test statistics to compute E, M, E+M, E2 and E2M p-values. When N = 10, the PP3

test statistic yields larger test size than all the other test statistics for the M, E+M and E2M p-values.
Otherwise the test size of these two test statistics lies between the test size of the other test statistics,
not following a clear pattern, except that the PP3 yields larger test size than the PP1 in general.

We also evaluated the performance of all the test statistics, values of N and types of p-values for the
six multinomial cases of Table 10. Table 12 shows the test size for TLR for N = 10 and N = 25.
We see that the E and E2 p-values yield a test size greater than 0.05 in case 1–5 for N = 25 and
thus proves that these p-values are not valid. We also see that the test size is greater when N = 25
compared to N = 10. The results for the other test statistics and values of N are omitted in this report
since the findings in respect to test statistics and p-values in the six specific multinomial cases were
similar to the overall findings, however the test size for all test statistics was clearly dependent of the
chosen multinomial cases, i.e. the parameter p in the multinomial distribution. In general, which can
also be seen in Table 12, case 1 and 2 have larger test size than case 3–6. This trend was consistent
through the different test statistics, types of p-values and N and indicates that when comparing test
sizes the multinomial case chosen will have a large influence the test size, but it will not change the
conclusions with respect to which test statistic or which p-value results in the largest or smallest test
size.

Figure 3 shows histograms for the test size in the 10385 cases under H0 for the M, E, E+M, E2

and E2M p-values for each of the test statistics TLAP, TLR, TuDT, TrDT, TπM, TπE , Tπe and TPP,1 for
N = 10. We see that for TLR, TrDT, TπE , TπM,and TPP,1 the distribution of the test size for the E
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N p-value case 1 case 2 case 3 case 4 case 5 case 6
10 M 0.0199 0.0193 0.0097 0.0071 0.0061 0.0035
10 E 0.0412 0.0426 0.0281 0.0218 0.0197 0.0122
10 EM 0.0281 0.0366 0.0242 0.0193 0.0170 0.0111
10 E2 0.0475 0.0500 0.0379 0.0302 0.0333 0.0220
10 E2M 0.0322 0.0294 0.0200 0.0157 0.0166 0.0101
25 M 0.0431 0.0428 0.0386 0.0391 0.0313 0.0287
25 E 0.0528 0.0529 0.0573 0.0563 0.0495 0.0441
25 EM 0.0431 0.0435 0.0458 0.0448 0.0389 0.0339
25 E2 0.0510 0.0514 0.0573 0.0569 0.0523 0.0469
25 E2M 0.0401 0.0387 0.0415 0.0404 0.0367 0.0322

TABLE 12: Test size for the likelihood ratio test statistic for the six multinomical cases.

p-values is skewed towards the right compared to the distribution for the M p-values, and we note
that the test size is sometimes larger than 0.05, showing that the E p-values are not valid. The E+M
p-values preserve the skewed distribution while shifting it to the left so that no test size is greater than
0.05. For the LAP and uDT test statistics, we note that the distribution of test size for the E p-values
is not skewed in the same way, but the E2 p-values are, so apparently it is necessary to do two E steps
before maximization for the LAP and uDT statistics.

Figure 3 illustrates what happens under the E and M steps. To obtain an even better understand-
ing of the effect of the E and M steps, we consider two possible outcomes when N = 10, y1 =
(1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0). Table 13 shows the p-values for these outcomes using the
likelihood ratio and LAP test statistics.

Outcome Test statistic M E E+M E2 E2M
y1 TLRT = 4.159 0.1025 0.0940 0.1108 0.0770 0.1062
y2 TLRT = 4.077 0.1025 0.0349 0.0450 0.0279 0.0408
y1 TLAP = 3.932 0.1048 0.0805 0.1056 0.0768 0.1064
y2 TLAP = 2.492 0.2297 0.0978 0.1329 0.0654 0.0855

TABLE 13: P -values for the likelihood ratio and LAP test statistics for the outcomes y1 =
(1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0).

Let us first consider the p-values for the likelihood ratio test statistic. We note that for y2 with a 5%
significance level, we would reject the null hypothesis based on the E p-value and not reject it based
on the M p-value. Since the likelihood ratio test statistic is greater for y1 than for y2, the M p-value
for y2 will necessarily be greater than for y1, which will be greater than the E p-value for y1. Since
the E p-value is less for y2 than for y1, y1 will not be in the tail set for y2 when performing the M step
after the E step and the E+M p-value results in rejection of the null hypothesis on a 5% significance
level for y2. Since the E and E2 steps alone do not result in valid p-values, we should perform an
M step afterwards. But as we see, the E step(s) are means to avoid certain outcomes having a large
p-value because of other outcomes having greater test statistics and artifically large E and M p-values
compared to other outcomes with similar magnitude of the test statistics.
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FIGURE 3: Distribution of test size for the various test statistics and p-values, N = 10, the x-axis is
cut at 0.08 and the y-axis at 3000.

26



For the LAP test statistic, we do not see the same effect, even though the p-value with the smallest
test statistic, y2, has an M p-value greater than the M p-value for y1. Here the E p-value for y2 is also
greater than the one for y1, and thus this ordering is preserved when performing an M step after the E
step. The E2 p-value however, is smaller for y2 than y1, and performing the M step afterwards does
not change this.

Here y1 is an example of an outcome for which the decision of rejecting the null hypothesis does not
only depend on the type of p-value, but also of the chosen test statistic. Using the likelihood ratio test
statistic, we reject the null hypothesis on a 5% confidence level for all of the p-values E, E+M, E2 and
E2M. If we use the LAP test statistic instead, we do not reject it for any of the p-values.

Table 14 shows the mean test size for the Bayesian prior predictive p-values for N = 10, 15, 20, 25
using a grid with 50 points in each direction for both formulations of H0, i.e. fPPV(p) and f∗

PPV(p) and
both priors for p. We see that the test size depends highly on the choice of prior and formulation of
H0. The test size is smallest using the uniform Dirichlet prior and f∗

PPV(p) = 0 as H0, it increases to
around 0.055 with fPPV(p) = 0 as H0 and if we choose the non-uniform Dirichlet prior π2(p), the test
size becomes very high. Clearly, the non-uniform prior is not a good choice and it also indicates that
the choice of prior has a larger effect than how we choose to formulate the null hypothesis. Comparing
these results to the results when using the prior predictive p-values as test statistics to define the tail
sets for the M, E, E+M and E2M p-values in Table 11 shows that the M step reduces the test size
in all cases for all values of N and for both formulations of H0 as expected. The test size for the
E2 p-values is higher than for the Bayesian p-values in many of the cases and in some cases, e.g.
case 5 for N = 15, 20, 25 for H0 : fPPV(p) = 0 and for N = 20, 25 for H0 : f∗

PPV(p) = 0, the test
size increases for all the p-values except the M p-values. Table 14 also shows that the Bayesian prior
predictive p-values are not valid since the test size is larger than the significance level.

N PP1 PP2 PP3

10 0.0561 0.1272 0.0489
15 0.0557 0.1465 0.0491
20 0.0556 0.1533 0.0494
25 0.0552 0.1556 0.0494

TABLE 14: Test size for the Bayesian positive predictive p-values using different priors, formulation
of H0 and values of N , PP1 is given in (15), PP2 is given in (17) and PP3 is given in (20).

The prior predictive p-values for the two outcomes y1 = (1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0)
are given in Table 15. We see that the three Bayesian p-values are quite different for both outcomes.
For y2 we reject the null hypothesis, whereas for y1 we do not reject the null hypothesis. The two
p-values both found from the model with uniform Dirichlet prior are similar for y2, but for y1 it is
the two p-values that are based on the same formulation of H0 that are similar. The null hypothesis is
rejected for y2, but not for y1 for any of the p-values.

4.2.2 EVALUATION OF TEST POWER

We would like to compare the test power of TLR, TLAP, TuDT, TrDT and TπM. Since the results of the
test size comparisons showed that the M p-values have the smallest test sizes and since the E and E2

p-values are not valid, we consider only the E+M and E2M p-values when comparing test power. We
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Outcome PP1 PP2 PP3

y1 0.1086 0.1084 0.0506
y2 0.0382 0.0171 0.0323

TABLE 15: Bayesian prior predictive p-values for the outcomes y1 = (1, 3, 0, 6, 0, 0) and y2 =
(1, 0, 1, 3, 5, 0).

expect that the power increases with N and we used N = 10 and N = 25 to investigate the magnitude
of the increase. The power was calculated the same way as the test size except that the values of p are
chosen so that p does not satisfy the null hypothesis (9).

We wanted to compare the test power in specific multinomial cases and we chose six sets of the
parameters p, these were denoted case 7–12 and are given in Table 16. They were chosen because of
their decreasing distance from H0 which is measured by the magnitude of fPPV(p). If fPPV(p) is close
to 0, then p nearly satisfies H0 while the greater |fPPV(p)| is, the further away from H0 p is. Since
the power in our chosen cases may not be representative for a randomly chosen case, we also generate
10385 random cases under H1, by drawing 10385 vectors of length 6 from the uniform distribution
and scaling each vector to sum to 1.

Case p1 p2 p3 p4 p5 p6 fPPV(p)

7 0.06 0.01 0.44 0.26 0.22 0.01 0.52
8 0.01 0.10 0.44 0.01 0.43 0.01 0.76
9 0.20 0.05 0.24 0.28 0.22 0.01 0.27
10 0.01 0.07 0.27 0.28 0.26 0.11 0.29
11 0.06 0.12 0.18 0.14 0.35 0.15 0.18
12 0.17 0.12 0.18 0.21 0.16 0.16 0.05

TABLE 16: Specification of cases under H1.

Table 17 and 18 shows the test power for the chosen cases, test statistics and p-values when N = 10
and N = 25 respectively. As expected the power increases when N increases. The test statistics TuDT
and TLAP have the smallest power except for the E2M p-values in case 6 when N = 25. When N = 25
the TπM statistic has the highest power except in case 6 for the E2M p-values. For N = 10, the TLR
statistic has highest power for the E+M p-values in four of six cases, while only in one case for the
E2M p-values. The E+M p-values yields in general higher power than the E2M p-values, except for
the TLAP and TuDT statistics when N = 10. If we compare these results to the calculated mean power
for all the power cases, given in the last column of Table 17 and 18, we see that TLAP and TuDT have
smaller power for the E+M than the E2M p-values when N = 10 and also when N = 25 for TuDT.
TLR has the largest power for the E+M p-values when N = 10, otherwise the πM has the largest test
power.

When comparing the power in each of the six cases by considering the value of fPPV(p) in Table 16
we see that the power seems to decrease when fPPV(p) decreases which we would expect since in
cases that are far from H0 the test should have higher power than in cases closer to H0. However, in
case 7 and 8 fPPV(p) is 0.52 and 0.76 respectively and yet case 7 has the highest power, particularly
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Test statistic p-value case 7 case 8 case 9 case 10 case 11 case 12 mean
TLRT E+M 0.8344 0.7210 0.4125 0.2332 0.1161 0.0547 0.1064
TLAP E+M 0.7165 0.7203 0.2909 0.1863 0.0801 0.0360 0.0810
TuDT E+M 0.6997 0.3815 0.3269 0.1446 0.0556 0.0345 0.0697
TrDT E+M 0.8372 0.7173 0.4096 0.2286 0.1108 0.0529 0.1044
TπM E+M 0.8271 0.7568 0.3996 0.2119 0.1080 0.0472 0.1016
TLRT E2M 0.8219 0.7159 0.4140 0.2020 0.1006 0.0463 0.0967
TLAP E2M 0.7492 0.7044 0.3498 0.1857 0.0848 0.0416 0.0881
TuDT E2M 0.7640 0.3903 0.3712 0.1923 0.0755 0.0442 0.0844
TrDT E2M 0.8240 0.7160 0.4081 0.2162 0.1028 0.0476 0.0977
TπM E2M 0.8274 0.7500 0.4112 0.2031 0.1060 0.0467 0.0994

TABLE 17: Test power for the E and E2M p-values in case 7–12 and mean over 10385 cases for
N = 10.

Test statistic p-value case 7 case 8 case 9 case 10 case 11 case 12 mean
TLRT E+M 0.9979 0.9967 0.8014 0.4974 0.1936 0.0537 0.2163
TLAP E+M 0.9967 0.9935 0.7897 0.4713 0.1686 0.0509 0.2038
TuDT E+M 0.9970 0.9592 0.8056 0.4788 0.1699 0.0547 0.2075
TrDT E+M 0.9985 0.9976 0.8179 0.5275 0.2193 0.0585 0.2241
TπM E+M 0.9987 0.9978 0.8296 0.5378 0.2257 0.0586 0.2242
TLRT E2M 0.9976 0.9963 0.7908 0.4793 0.1835 0.0499 0.2080
TLAP E2M 0.9961 0.9935 0.7866 0.4609 0.1691 0.0515 0.2063
TuDT E2M 0.9969 0.9622 0.7874 0.4660 0.1704 0.0504 0.2068
TrDT E2M 0.9980 0.9969 0.7938 0.5017 0.2005 0.0501 0.2087
TπM E2M 0.9983 0.9969 0.8091 0.5080 0.2070 0.0510 0.2101

TABLE 18: Test power for the E and E2M p-values in case 7–12 and mean over 10385 cases for
N = 25.

when N = 10. We see the same in case 9 and 10, fPPV(p) is then 0.27 and 0.29, and the power in case
9 is a lot higher than in case 10.

The mean value of |fPPV(p)| for the 10385 cases is 0.13, which explains the small overall power, since
the mean value is not as far from H0 as e.g. case 7 or 8. The mean power is comparable to case 11
where the distance from H0 is 0.18.

It is not surprising that the likelihood ratio, restricted difference and πM test statistics perform simi-
larly, considering they are all functions of the maximum likelihood estimates for p under H0, p̃. The
LAP and unrestricted difference test statistics however, do not depend on these estimates and this can
be the reason their performance is poorer.
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5 COMPUTATIONAL DETAILS

To compute the integral (14), we used the midpoint rule on a 4-dimensional grid. The four dimensions
correspond to p1, p2, p3 and p5. Each side in the grid is divided into a number of subintervals of equal
length, and the midpoint in each subinterval is calculated. For each point (p1, p2, p3, p5) in the grid,
we set p4,

p4 =
p1(1 − p1 − 2p2 − p3 − 2p5) + p2(1 − p2 − p3 − p5) − p3p5

p1 + p3

which is derived from (13).

If 0 < p4 < 1, we set p6 = 1 − ∑
5

i=1
pi and if 0 < p6 < 1 then the value

N !

(
6∏

i=1

pyi
i

yi!

)
(p1 + p2 + p4 + p5)

2

p1 + p2

, (28)

which is π(y|p) multiplied with the non-normalized density of p, is added to the present value of the
integral. If either p4 or p6 are less than 0 or greater than 1, the current point in the grid is discarded.
The total non-normalized integral is the sum of (28) over the p’s satisfying the constraints for p4 and
p6. The integrals (16) and (19) are computed similarly.

The number of points in the grid has to be chosen and in the results presented in this report, a grid
where each side is divided into 50 subintervals was used. This resulted in 79876 points after discarding
those with p4 or p6 outside [0,1]. Table 19 shows the test size for the Bayesian prior predictive values
using the uniform Dirichlet prior and original formulation of H0 (9) for the six values of p given in
Table 10 and N = 10 when the number of subintervals, nint, on each side in the grid is 30, 35, 40, 45
and 50. We see that the test size varies with the grid size to some extent, the largest difference is in
case 1 between nint = 45 and nint = 50.

nint case 1 case 2 case 3 case 4 case 5 case 6
30 0.0395 0.0642 0.0401 0.0365 0.0186 0.0157
35 0.0389 0.0632 0.0405 0.0367 0.0191 0.0159
40 0.0384 0.0620 0.0405 0.0367 0.0191 0.0159
45 0.0384 0.0620 0.0405 0.0367 0.0191 0.0159
50 0.0407 0.0625 0.0408 0.0372 0.0193 0.0162

TABLE 19: Test size in case 1–6 for the Bayesian prior predictive p-value in (15) for N = 10 using
different grid sizes, nint is the number of sub intervals on each of the four sides in the grid.

A grid for p is also needed for the p-values that include a maximization step, i.e. the M, E+M and
E2M p-values. In the positive predictive value setting, we used the same grid as for the Bayesian prior
predictive p-values with 50 possible subintervals for each of the four sides in the grid, but in addition
we included the maximum likelihood estimates p̃ of p under H0 for all possible outcomes given N .
Table 20 shows the number of possible outcomes in the positive predictive value situation for a given
value of N and the size of the grid with the maximum likelihood estimates included. Thus, the size
of this grid increased with N , for N = 10, the grid consisted of 3003 + 79876 = 82879 points
and when N = 25, it consisted of 142506 + 79876 = 222382 points. Comparisons of the test size
for different grid sizes showed that the grid did not have a great influence on the test size when the
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N Number of outcomes Size of grid
10 3003 82879
15 15504 95380
20 53130 133006
25 142506 222382

TABLE 20: Number of possible outcomes given N and size of grid used when calculating p-values in
the problem of comparing positive predictive values.

grid is used for maximization. We also investigated how often the maximum p-value was obtained in
one of maximum likelihood points compared to the other points. The percentage increased with N
and decreased with the size of the grid without maximum likelihood estimates. When N increases
the number of maximum likelihood estimates increases, and it is not surprising that more of these
points will give the maximum p-value and similarly, when the number of grid points in the grid
without maximum likelihood estimates increases, more of the points that are not maximum likelihood
estimates will give the maximum p-value.

The p-value computations for a sequence of E and M steps are quite computer intensive, as p-values for
all outcomes (except in the last step), not only the one of interest in a specific study, must be computed
for further use as a test statistic in the next step. The test statistic giving the original ordering of
outcomes, e.g. the likelihood ratio test statistic, should be computed only once, as should the maximum
likelihood estimates of p under the null hypothesis. The grid used for the numerical maximization in
the M step and for calculation of the πM statistic was also calculated in advance.

In both the E and the M step, the outcomes should be sorted according to the test statistic (original test
statistic or negative output of a previous E or M step). In the E step, the p-values are then accumulated,
starting with the probability of the outcome having the most extreme value of the test statistic, and the
probabilities (with the maximum likelihood estimates of p under the null hypothesis of the outcome
of interest as parameters) of the forthcoming outcomes successively being added until the outcome
of interest is reached. Special care must be taken to include possible outcomes having an equal test
statistic value (“draws”), and because of possible numerical inaccuracies also a threshold for when
two values are counted as equal should be specified. In order to compute all possible p-values, this
should be repeated for all outcomes – we have chosen to accumulate probabilities for all outcomes in
parallel. Taking care when dealing with draws also applies to the M step and calculation of the πE and
πM test statistics.

In the M step we accumulated probabilities given by the grid points as parameters in parallel while
going through the sorted outcomes. As the number of grid points times the number of outcomes may
be huge, only the accumulated probabilities for each outcome were saved, and for each outcome
reached, the maximum of the accumulated probabilities were saved as the p-value of that outcome.

Calculation of the πE and πM test statistics, based on the probabilities of the outcomes themselves
instead of on an external test statistic, are more computer intensive, as the ordering of the outcomes
is specific for each outcome of interest, and not to a given test statistic. For πE, the p-value for an
outcome of interest is found by adding probabilities of all outcomes having a probability that is not
greater, using the maximum likelihood estimate of p under the null hypothesis of the outcome of
interest as parameters, thus the probability of each outcome has to be calculated for each outcome of
interest. We found some gain in computation speed by sorting the outcomes before adding.
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N E M πe πE πM

10 0m0.33s 0m17.69s 0m0.06s 0m2.84s 1m29.94s
25 16m17.13s 14m4.51s 0m0.96s 155m13.68s 101m20.51s
10 0m0.34s 0m18.65s 0m0.01s 0m2.86s 1m33.01s
25 15m51.13s 39m17.33s 0m0.97s 156m40.3s 262m6.08s

TABLE 21: Running time for E and M p-values and for calculating the test statistics Tπe , TπE and TπM
in the positive predictive values setting for samples sizes N = 10, 25 (3003 and 142506 outcomes,
respectively). The two upper rows show the time when using a grid with nint = 50 without maximum
likelihood estimates and the time in the two lower rows is the time when using the grid with nint = 50
including maximum likelihood estimates (79876 points without estimates, 82879 including estimates
for N = 10, and 222382 points including estimates for N = 25).

For πM, the grid points rather than the outcomes were gone through in an outer loop. For each grid
point, the probability of each outcome was calculated, the outcomes sorted accordingly, and probabil-
ities accumulated from the smallest to the greatest. If the cumulative probability of an outcome was
greater than some earlier maximum for that outcome, the maximum was replaced by the current sum.

In contrast, calculation of πe is trivial, this is simply the probability of an outcome taking its maximum
likelihood estimate of p under the null hypothesis as the parameter vector.

Power and size calculations for a given parameter vector are simply a matter of adding probabilities
of outcomes having p-values not exceeding the significance level (in our case 0.05).

The code was written in C++, implemented in GCC and the calculations were performed with the
Standard Template Library, using one of eight processors on a Dell PowerEdge 2950 with two Quad-
core Xeon X5365 3.0 GHz processors, 4 MB cache, 16 GB RAM. The running time for calculating E
and M p-values for any test statistic, along with the running time for calculating the πe, πE and πM test
statistics when comparing positive predictive values for N = 10 and N = 25 are given in Table 21
for the grid with nint = 50, without and with the maximum likelihood estimates of p included. When
N = 10, all the calculations are performed rather fast, except calculating the values of the πM test
statistic which takes one and a half minute. When N increases, the running time naturally increases
severely since all calculations must be performed for all possible outcomes. We note that calculating
the πE test statistic takes longer than calculating the πM test statistic when N = 25 for the grid with-
out maximum likelihood estimates. This is because the number of possible outcomes is less than the
number of grid points in this case. If the number of grid points is larger than the number of outcomes,
as in the grid where the maximum likelihood estimates are included, calculating the πM statistic takes
much longer than calculating the πE statistic.

6 DISCUSSION

The enumeration idea is not new as it goes back to Fisher (1935), but it has often been overlooked. We
have demonstrated how to apply the idea for testing independent binomial proportions and comparing
positive predictive values. Another recent application of the idea is in genome-wide association stud-
ies, in which single nucleotide polymorphisms (SNP) across the human genome are studied. When the
mode of inheritance is unknown, the MAX test statistic, which is the maximum of the three Cochrane–
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Armitage trend statistics for dominant, recessive and additive inheritance modes, see Freidlin, Zheng,
Li and Gastwirth (2002), tests the association between the genotype and phenotype. The exact distri-
bution of the MAX test statistic is unknown and calculating p-values based on proposed asymptotic
distributions involves numerical integration. Another common approach is to use permutations tests,
but both solutions leads to possible random errors in the calculated p-values. Moldovan, Langaas and
Bahlo (2009) instead calculate exact p-values using the enumeration approach and thereby avoid this
uncertainty.

When the sample size increases and enumeration will be too time consuming, the parametric boot-
strapping approach can be used instead. Günther et al. (2009) used parametric bootstrapping to ap-
proximate the distribution of the likelihood ratio, LAP and restricted and unrestricted difference test
statistics. The p-values obtained from this distribution are approximately the same as the E p-values
we find by enumeration in this report, and the parametric bootstrap approach involving simulated out-
comes is actually a numerical approximation that calculates the tail without using enumeration. This
is seen if the test size for case 1–6 in Table 12 is compared to the test size for the small sample para-
metric bootstrap likelihood ratio test in Table 3 of Günther et al. (2009) – the values are almost the
same. It may be of use for larger sample sizes when calculating maximum likelihood estimates and
p-values for the bootstrap samples is less time consuming than calculating the maximum likelihood
estimates and p-values for all possible outcomes. When using the formulas for calculating exact test
size and power, i.e., (5) and (6), drawing outcomes from the multinomial distribution under H0 or H1

and estimating the test size or power by the proportion of these outcomes having p-values less than
or equal to the significance level as was done in Günther et al. (2009) is not necessary, and therefore
the uncertainty in the estimates are removed. This is however, only possible when the sample size is
small enough so that the p-values for all possible outcomes can be calculated.

Another option when the sample size increases is to condition on sums of Ni, i = 1, . . . , 6, which
in a contingency table setting corresponds to conditioning on the marginals. This reduces the number
of possible outcomes and makes it possible to use exact tests for higher values of N . The usability
of this approach depends on the actual problem. In the example from Lloyd (2008), n1 and n2 are
fixed as the number of subjects who receives treatment and placebo respectively. In the setting of
positive predictive values, it is not clear which values that should be fixed. It could be the number of
diseased and non-diseased subjects, if the disease status is decided before the two tests are applied, or
it could be the number of subjects with positive test A, positive test B and positive tests A and B, but
in practise, these numbers will usually not be fixed in advance.

As Table 12 showed, the test size of a test statistic for any p-value depends on the chosen value of
p, the parameter in the multinomial distribution. When the chosen significance level is 0.05, some
cases have test size close to 0.05, whereas other cases have smaller test sizes. A further investigation
reveals what the cases for which the test size is close to 0.05 have in common. Assume the outcomes
are sorted by decreasing value of some chosen test statistic. The M step will result in rejection of the
null hypothesis for outcomes that are above a certain limit, where the limit is the p-value closest to
0.05 (but not greater than 0.05). The null hypothesis is not rejected for any of the outcomes below
the limit. Assume that the last outcome for which H0 is rejected, y0 has a maximum tail probability
PM,0, i.e. p-value, in the point p0. If the true value of p is in fact p0, then the probability of rejecting
H0 is the sum of the probabilities of this outcome and the outcomes above, which is PM,0. Thus a
test size of almost 0.05 is always obtained for a particular p, it is only the discreteness that prevents it
from exactly being obtained for a specific value of p. This value is the value of p that maximizes the
p-value for the outcome that has the largest p-value less than or equal to 0.05. If one wants to report
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the test size in a certain multinomial case, choosing this value of p will ensure that the test size is
close to 0.05 unlike the six multinomial cases we chose.

7 CONCLUSIONS

In this work we have provided an in-depth effort of using enumeration and exact p-values to ad-
dress the problem of comparing positive predictive values. The existing tests for this situation rely on
asymptotic distributions and have previously been shown not to preserve the test size when the sam-
ple size was moderate. The test size and power of nine test statistics in combination with five types
of p-values have been thoroughly evaluated for different sample sizes. As demonstrated, the M step
yields valid p-values, although these are often conservative. The E step provides a reordering of the
reference set in contrast to the M step and one or two E steps before the M step increases the test size
while yielding valid p-values.

We have presented three new test statistics, Tπe , TπE and TπM, that can be applied to any problem.
In the problem of comparing binomial proportions, the πe test statistic performed better than the test
statistics analyzed by Lloyd (2008) in terms of test size and power for the E+M p-values.

For comparing the positive predictive values from two diagnostic tests, we recommend using either
the likelihood ratio, restricted difference or πM test statistic and to calculate the E+M p-values. These
p-values are valid, and for these test statistics the results have indicated that there is no need to do
more than one E step before the final M step. However, the importance of one or more E steps before
maximization is greater for e.g. the LAP and unrestricted difference test than for the likelihood ratio
test as it increases the test size more significantly, suggesting that the ordering provided by the LAP
and unrestricted difference test is not optimal with respect to test size and power.

We do not recommend using the prior predictive p-values, as these are very sensitive to the choice of
prior and on the null hypothesis formulation.

This report gives further general insight into the mechanisms behind the E, M and E+M p-values in
general and in the example discussed by Lloyd (2008). We describe how the E p-value changes the
ordering of outcomes and why this reduces the conservativeness of the M p-values if the E p-values
are applied before the M step.

In further work, it would be of interest to find a test statistic that in some sense provides an optimal
ordering of the outcomes with respect to test size and power and in particular, the πe, πE and πM should
be studied in greater detail and compared to other test statistics. We would also like to investigate if
ordering of the outcomes converges after a certain number of E steps, and also the effect of performing
two or more consecutive sequences of the form EkM.
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