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Abstract. Surface plasmon-polariton waves with low-phase speed in carbon nanostructures can
be utilized for the generation of coherent terahertz radiation through the Čerenkov mechanism,
the effect being especially pronounced in bilayer and multilayer graphene. Using the many-body
formalism and the tight-binding approach, we derived the dispersion equations of the surface
plasmon-polariton waves in graphene. In single-layer graphene, the phase speed is about three to
five times smaller than the speed of light in a vacuum. In bilayer graphene, inter-layer electron
tunneling suppresses the reduction of the phase speed. Reduction of the phase speed by as much
as 300 times is possible in a graphene structure with two spatially expanded monolayers, because
inter-layer tunneling is suppressed, and the interlayer distance can be used to tune the plasmon
frequency and the phase speed. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
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1 Introduction

Graphene, graphene bilayer, and other graphene structures are very interesting objects with many
applications in different science and practical areas. The plasmon-polariton waves in graphene are
generating significant interest. As graphene is a two-dimensional (2-D) structure, the plasmon-
polariton waves essentially have surface character. Surface plasmon-polariton (SPP) waves can
give rise to the field of nanophotonics and subwavelength wave localization. A very important
and interesting application is the generation in graphene of terahertz (THz) radiation. This can
be utilized for the design of compact sources of THz radiation, a problem of great scientific
and practical interest. There are very few commercially available instruments for the THz fre-
quency region and very often they lack the precision required for performing accurate measure-
ments. One of the latest trends is the use of single-wall carbon nanotubes (SWNTs), cylindrical
molecules with nanometer diameter and micrometer length,1–3 as building blocks of novel THz
devices.4–9 Proposals to realize a THz plasmon oscillator on the basis of graphene were also
recently made in Ref. 10. The Čerenkov and channeling radiation mechanisms in nanotubes
were proposed in Refs. 11–15 for the electromagnetic wave generation. The idea has been
extended to multiwall nanotubes and multilayer graphene in Ref. 16 without accounting for
the inter-layer tunneling. Here we show the important role of the latter mechanism.

The slowing of the electromagnetic wave is required for the realization of Čerenkov-type
synchronism. As was shown earlier,17 the single-wall nanotube can slow the surface electromag-
netic wave up to 100 times. Nevertheless, to provide the effective synchronization between elec-
tromagnetic wave and electron current in nanotubes or graphene structures, a stronger slowing is
required. The use of two-wall nanotubes has been proposed as a way to overcome the problem. 16

However, the difference of the radii in a two-wall nanotube prevent significant deceleration. This
paper discusses plane graphene structures. It is shown that the ability to slow the wave in such

0091-3286/2012/$25.00 © 2012 SPIE

Journal of Nanophotonics 061719-1 Vol. 6, 2012

Downloaded From: http://nanophotonics.spiedigitallibrary.org/ on 12/06/2012 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1117/1.JNP.6.061719
http://dx.doi.org/10.1117/1.JNP.6.061719
http://dx.doi.org/10.1117/1.JNP.6.061719
http://dx.doi.org/10.1117/1.JNP.6.061719
http://dx.doi.org/10.1117/1.JNP.6.061719


structures can essentially exceed the slowing in nanotubes. The dielectric function and plasmon
modes in graphene and graphene bilayer were considered in Refs. 18–20. However, in these
works the graphene bilayer was considered as an infinitely thin sheet of material with the con-
ductivity σðq; ωÞ. As different from that, we use a three-dimensional (3-D) approach for SPP
wave calculations.

The paper is organized in the following way. After a brief introduction in Sec. 1, the basic
equations describing SPP wave dynamics based on Maxwell equations for fields and operator
Heisenberg equations for many-body electron system are derived in Sec. 2 in the tight binding
approach for wave functions in multilayer graphene. Resulting calculations and discussions for
the slowing in single, bilayer, and spatially separated double-layer graphene are presented in
Secs. 3 and 4, followed by the concluding Sec. 5.

2 Basic Equations

In this paper, we consider the interaction between electromagnetic field and electron system in
graphene structure (single, bilayer, multilayer graphene). A self-consistent system describing
this system includes the electromagnetic field equations with charge and charge current densities
in the right-hand parts as a source, and the electron motion equation with electromagnetic field in
the right-hand part of equation as a force. The equations for scalar and vector potentials have the
form:

∇2A −
1

c2
∂2A
∂t2

¼ −
4π

c
jðr; tÞ; ∇2Φ −

1

c2
∂2Φ
∂t2

¼ −4πρðr; tÞ: (1)

The Lorentz gauge is used when Eq. (1) is written:

1

c
∂Φ
∂t

þ ∇A ¼ 0: (2)

In this paper, we consider the situation when the electromagnetic field is rather large, i.e., the
condition:

E ≫
ffiffiffiffiffiffi
ℏc

p �
ω

c

�
2

(3)

is fulfilled,21 where E is the electromagnetic field strength, ω is its angular frequency, and c is the
speed of light in vacuum. In this case, the electromagnetic wave has a classical character and is
described by the classical wave equations [Eq. (1)]. The electron motion is governed by the
Schrödinger equation, therefore the quantities jðr; tÞ ρðr; tÞ in the right-hand part of the field
[Eq. (1)] are the operators of the current density and the charge density averaged over the quan-
tum states of the electron system. Dynamics of the electron system in the electromagnetic field
are described by the Hamiltonian:

Ĥ ¼
X

Eksb̂
†

ksb̂ks þ e
Z

Φðr; tÞψ̂†ðr; tÞψ̂ðr; tÞdr

−
e

2mc

Z
ψ̂†ðr; tÞ½Aðr; tÞp̂þ p̂Aðr; tÞ�ψ̂ðr; tÞdr: (4)

The term proportional to the vector-potential squared has been neglected in Eq. (4). Here, Eks is
the electron energy characterized by the the quasi-momentum k and the electron subsystem band
number s. The electron quantum field operator is given by:

ψ̂ðr; tÞ ¼
X

ψksðrÞb̂ksðtÞ; (5)

where ψks is the electron Bloch wave function in the multilayer graphene structure, b̂ks, b̂
†

ks are
the annihilation and creation operators for the electron with the quasi-momentum k in the s band,
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p̂ is the quantum momentum operator. The Heisenberg equations for the annihilation/creation
operators corresponding to the Hamiltonian [Eq. (4)] have the form as follows:

˙b̂ksðtÞ ¼ −
i
ℏ
Eksb̂ksðtÞ −

i
ℏ
e
X
1

�
ks

����Φðr;ωÞ − 1

2mc
½Aðr;ωÞp̂þ p̂Aðr;ωÞ�

����k1s1
�
b̂k1s1ðtÞ;

(6)

˙b̂†ksðtÞ ¼
i
ℏ
Eksb̂

†

ksðtÞ þ
i
ℏ
e
X
1

�
k1s1

����Φðr;ωÞ − 1

2mc
½Aðr;ωÞp̂þ p̂Aðr;ωÞ�

����ks
�
b̂†k1s1ðtÞ: (7)

Hereafter, symbols 1 and 2 in summation denote summation over the sets k1s1 and k2s2,
respectively. Considering electromagnetic field in Eqs. (6) and (7) as a perturbation, in the
linear approximation we come to the following self-consistent equations for the electromagnetic
potentials:�
d2

dz2
− q2 þ ω2

c2

�
A ¼ −

2πe2

mc

X
1;2

Z
dr⊥e−iqr⊥ðψ�

k2s2
p̂ψk1s1 − p̂ψ�

k2s2
ψk1s1Þ

×

�
k1s1

����Φðr;ωÞ − 1
2mc ½Aðr;ωÞp̂þ p̂Aðr;ωÞ�

����k2s2
�

ωþ Ek2s2 − Ek1s1

ðnk2s2 − nk1s1Þ

þ 4πe2

mc2
X
1

Z
dr⊥e−iqr⊥ψ�

k1s1
ψk1s1Aðr;ωÞh0jb̂ð0Þ†k1s1

b̂ð0Þk1s1
j0i; (8)

�
d2

dz2
− q2 þ ω2

c2

�
Φ ¼ −4πe2

X
1;2

Z
dr⊥e−iqr⊥ψ�

k2s2
ψk1s1

×

�
k1s1

����Φðr;ωÞ − 1
2mc ½Aðr;ωÞp̂þ p̂Aðr;ωÞ�

����k2s2
�

ωþ Ek2s2 − Ek1s1

ðnk2s2 − nk1s1Þ: (9)

Here nk2s2 − nk1s1 ¼ h0jb̂ð0Þ†k2s2
b̂ð0Þk2s2

− b̂ð0Þ†k1s1
b̂ð0Þk1s1

j0i, b̂ð0Þks , b̂
ð0Þ†
ks are unperturbed operators, j0i is the

many-body state of the electron subsystem, and nkisi are quantum occupation numbers. When
deriving Eqs. (8) and (9), the Fourier transforms of the potentials over two space coordinates
parallel to the graphene layers and over time have been performed. The axis z is normal to the
graphene surface. In the left-hand parts of the above equations, the potentials A andΦ denote the
Fourier-transformed potentials: A ≡ Aðz; q;ωÞ and Φ ≡Φðz; q;ωÞ.

Equations (8) and (9) with Eqs. (6) and (7) describe a graphene structure with an arbitrary
number of layers. For deriving of graphene dispersion properties, a ground quantum state j0i that
is described by Fermi distribution function is usually used. However, the same equations can be
applied in the case of an excited electron system, for example in the case when the electron
current moves over the ground state. Then the state j0; nbi can be used in the matrix elements
of Eqs. (8) and (9) right hand parts instead of j0i. The numbers nb denote the electron excited
part of the electron system, directed electron flow for example. The right side of Eqs. (8) and (9)
contains expressions of wave functions jksi ¼ ψks, which should be defined. In the tight-
binding approximation, the electron wave-function in a multilayer graphene is given by
Ref. 22:

ψks ¼
X
i

½cAi
ksψ

Ai
k ðrÞ þ cBi

ksψ
Bi
k ðrÞ�; (10)

where ψAi
k ðrÞ and ψBi

k ðrÞ are the tight-binding Bloch functions of i’th layer corresponding to
carbon atoms in two graphene sublattices denoted by indexes A and B. These functions are
represented as:
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ψAi
k ðrÞ ¼

1ffiffiffiffi
N

p
X
Ai

ϕAðr − rAi
Þ expðikrAi

Þ

ψBi
k ðrÞ ¼ 1ffiffiffiffi

N
p

X
Bi

ϕBðr − rBi
Þ expðikrBi

Þ: (11)

Here, ϕA and ϕB are the atomic wave functions of carbon atoms in sublattices A and B, respec-
tively, and rAi

and rBi
are the positions of atoms in i’th layer; and N is the number of unit cells.

Coefficients cAi
ks and cBi

ks in Eq. (11) are derived by the tight-binding method.22 The method is
fully applied to graphene with any layer quantity (i ¼ 1; : : : ; n). For the graphene bilayer (i ¼ 1,
2) shown schematically in Fig. 1, the tight-binding method leads to four solutions derived from
the Schrödinger equation using Eq. (11). In that case we arrive at a four-dimensional matrix
equation:

Ac ¼ 0; (12)

where

A ¼

0
BBB@

E0 þ Δ − E ðγ 0
0 − s12EÞf γ

0
1 − s13E ðγ 0

4 − s14EÞf�
ðγ 0

0 − s12EÞf� E0 − E ðγ0
4 − s23EÞf� ðγ0

3 − s24EÞf
γ
0
1 − s13E ðγ 0

4 − s23EÞf E0 þ Δ − E ðγ 0
0 − s34EÞf�

ðγ 0
4 − s14EÞf ðγ0

3 − s24EÞf� ðγ0
0 − s34EÞf E0 − E

1
CCCA; (13)

and c is the column vector given as the transposition of the row vector

ð cA1

ks cB1

ks cA2

ks cB2

ks Þ: (14)

The overlap integrals sij are usually neglected in this system.2,22 The values of parameters γi, E0

are given in article devoted to analysis of graphene electron eigenstates and eigenvalues22 (for
graphene bilayer E0 ¼ −0.0206 eV, γ

0
0 ¼ 3.12 eV, γ

0
1 ¼ 0.377 eV, γ

0
3 ¼ 0.29.12 eV, γ

0
4 ¼

−0.120 eV), and function f ≡ fðkx; kyÞ ¼ expðikxa∕
ffiffiffi
3

p Þ þ 2 expð−ikxa∕2
ffiffiffi
3

p Þ cosðkya∕2Þ
(a is the in-plane lattice parameter). Following Ref. 22, further we neglect overlap integrals
sij. The functions ϕA and ϕB were chosen as

ϕA ¼ ϕB ¼ 1

4
ffiffiffiffiffi
2π

p ðZ∕aBÞ2ðZr∕aBÞ expð−Zr∕aBÞ cos θ: (15)

Here Z is atom charge (Z ¼ 6 for carbon), and aB is Bohr radius. Equation (12) for graphene
bilayer gives four different solutions and four eigenstates. The substitution of the tight-binding
form of the electron wave functions for multilayer graphene into Eqs. (8) and (9) gives:

Fig. 1 The crystal structure of graphene bilayer. ~a1, ~a2 are the translational vectors, and d is the
distance between graphene layers.
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�
d2

dz2
−q2þω2

c2

�
Aðz;q;ωÞ¼ 2πe2

mcS

X
1;2;i

δk2þq;k1ðnk2s2 −nk1s1Þ

×
X
α

ðcBi�
k2s2

cAi
k1s1

e−ik2δα −cAi�
k2s2

cBi
k1s1

eik1δαÞjAiBi
α ðz;qÞBs1s2

k1k2
ðq;ωÞ; (16)

�
d2

dz2
− q2 þ ω2

c2

�
Φðz; q;ωÞ ¼ −

4πe2

S

X
1;2;i

δk2þq;k1ðnk2s2 − nk1s1Þ

× ½cAi�
k2s2

cAi
k1s1

FAi
ðz;−qÞ þ cBi�

k2s2
cBi
k1s1

FBi
ðz;−qÞ�Bs1s2

k1k2
ðq;ωÞ; (17)

−iω
c

Φðz; q;ωÞ þ iqAðz; q;ωÞ þ dAzðz; q;ωÞ
dz

¼ 0: (18)

The system [Eqs. (12)–(18)] is closed and self-consistently describes the dynamics of the SPP
waves in graphene (single layer, bilayer, multilayer). S is the area of graphene layer,
FAi

ðz; qÞ ¼ ∫ expð−iqr⊥ÞjϕAi
ðrÞj2dr⊥, and FBi

ðz; qÞ ¼ ∫ expð−iqr⊥ÞjϕBi
ðrÞj2dr⊥ are carbon

atom form factors;

jAiBi
α ðz; qÞ ¼

Z
expð−iqrÞ½ϕAi

ðrÞp̂ϕBi
ðr − δαÞ − ϕBi

ðr − δαÞp̂ϕAi
ðrÞ�dr⊥; (19)

are hopping currents between nearest graphene neighbor atoms, δα are distances to near
neighbors in graphene,

Bs1s2
k1k2

ðq;ωÞ ¼
X
j

�R
dzΦðz; q;ωÞ½cAj�

k1s1
c
Aj

k2s2
FAj

ðz;−qÞ þ c
Bj�
k1s1

c
Bj

k2s2
FBj

ðz;−qÞ�
ωþ Ek2s2 − Ek1s1

−
P

αðcAj�
k1s1

c
Bj

k2s2
eik2δα − c

Bj�
k1s1

c
Aj

k2s2
e−ik1δαÞ R dzAðz; q;ωÞjAjBj

α ðz;−qÞ
2mcðωþ Ek2s2 − Ek1s1Þ

�
: (20)

3 Boundary Conditions and Dispersion Equations

The system [Eqs. (12)–(18)] has integro-differential form. They can be reduced to the system of
homogeneous integral Fredholm equations. It was shown in Ref. 23 that for long-wave case
when qa ≪ 1 (a is graphene constant), the effective boundary conditions17 give the same results.
Using this approach, the potentials are continuous when crossing the graphene layers and deri-
vative of potentials are discontinuous. The step of discontinuity is defined by integration of
Eqs. (16) and (17) over thin region near the graphene layers zi − 0 < z < zi þ 0:

Φjz¼ziþ0 ¼ Φjz¼zi−0; (21)

dΦ
dz

����
z¼ziþ0

−
dΦ
dz

����
z¼zi−0

¼ −
X

i 0
ðZΦΦ

ii 0 Φþ Z
ΦAq

ii 0 AqÞ
����
z¼zi 0

; (22)

Aqjz¼ziþ0
¼ Aqjz¼zi−0

; (23)

dAq

dz

����
z¼ziþ0

−
dAq

dz

����
z¼zi−0

¼ −
X

i 0
ðZAqΦ

ii 0 Φþ Z
AqAq

ii 0 AqÞ
����
z¼zi 0

: (24)
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Here

ZΦΦ
ii 0 ¼ 4πe2

S

X
1;2

δk2þq;k1ðcAi�
k2s2

cAi
k1s1

þ cBi�
k2s2

cBi
k1s1

Þ c
Ai 0 �
k1s1

c
Ai 0
k2s2

þ c
Bi 0 �
k1s1

c
Bi 0
k2s2

ωþ Ek2s2 − Ek1s1

× ðnk2s2 − nk1s1Þ

(25)

Z
ΦAq

ii 0 ¼ −
4πe2

S

X
1;2

δk2þq;k1ðcAi�
k2s2

cAi
k1s1

þ cBi�
k2s2

cBi
k1s1

Þðnk2s2 − nk1s1Þ

×

P
αðcAi 0 �

k1
cBi 0
k2
eik2δα − cBi 0 �

k1
cAk2e

−ik1δαÞ R dzqjAi 0Bi 0
α ðz;−qÞ

2mcqðωþ Ek2s2 − Ek1s1Þ
(26)

Z
AqAq

ii 0 ¼ 2πe2

mcqS

X
1;2;α

δk2þq;k1ðnk2s2 − nk1s1ÞðcAi�
k2

cBi
k1
eik1δα − cBi�

k2
cAi
k1
e−ik2δαÞ

Z
dzqjAiBi

α ðz; qÞ

×

P
α
0 ðcAi 0 �

k1
cBi 0
k2
eik2δα0 − cBi 0 �

k1
cAk2e

−ik1δα 0 Þ R dzqjAi 0Bi 0
α 0 ðz;−qÞ

2mcqðωþ Ek2s2 − Ek1s1Þ
(27)

Z
AqΦ
ii 0 ¼ −

2πe2

mcqS

X
1;2;α

δk2þq;k1ðcAi�
k2

cBi
k1
eik1δα − cBi�

k2
cAi
k1
e−ik2δαÞ

× ðnk2s2 − nk1s1Þ
cAi 0 �
k1s1

cAi 0
k2s2

þ cBi 0 �
k1s1

cBi 0
k2s2

ωþ Ek2s2 − Ek1s1

Z
dzqjAiBi

α ðz; qÞ: (28)

Using Eqs. (21)–(24), we obtain the following dispersion equation for single layer graphene:

ð2κ − ZΦΦ
11 Þð2κ − Z

AqAq

11 Þ − Z
ΦAq

11 Z
AqΦ
11 ¼ 0; (29)

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ω2∕c2

p
. The π-electrons which contribute to the graphene dielectric function

are nonrelativistic (vF ∼ c∕300). Correspondingly, we further consider the electrons moving in
graphene with nonrelativistic speeds. Besides, a part of the dielectric function corresponding to
the vector potential is proportional to overlap integrals. Neglecting terms which contain these

infinitesimals ðZΦAq

ii 0 ; Z
AqAq

ii 0 ; Z
AqΦ
ii 0 Þ, the standard equation for SPP waves in single-layer graphene

is obtained:

1 −
ZΦΦ
11

2κ
¼ 0: (30)

Taking into account the correspondence ZΦΦ
11 ¼ 4πe2Π, the above equation coincides with that

derived in Ref. 24 [see Eqs. (1) and (3)]. Under the derivation of Eq. (30), the normalization of
wave function and smallness of the SPP wave number jq∕kj ≪ 1 were used, which allowed the
following approximations: cA�k1s1c

A
k2s1

þ cB�k1s1c
B
k2s1

≈ cA�k1s1c
A
k1s1

þ cB�k1s1c
B
k1s1

¼ 1. Note also that
only intraband transitions have been taken into account.

In the case kFa ≪ 1, the doping electrons are in the vicinity of the Dirac point and the SPP
wave dispersion Eq. (30) can be rewritten as

1 ¼ 4e2

ℏvF
kF

ω − ðω2 − v2Fq
2Þ1∕2

κðω2 − v2Fq
2Þ1∕2 : (31)

Equation (31) is transformed into expressions derived in Ref. 24 if the SPP wave phase speed
exceeds considerably the Dirac electron speed, i.e., the inequality vph ≫ vF holds true.

For a graphene bilayer (Fig. 1) the field can be written in the following form:

Φðz; q;ωÞ ¼
8<
:

a1 expðκzÞ; z < 0

b1 expðκzÞ þ b2 expð−κzÞ; 0 < z < d
a2 exp½−κðz − dÞ�; z > d

; (32)
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where d is the distance between graphene layers, a1;2 and b1;2 are coefficients to be determined
from the boundary conditions [Eqs. (21)–(24)], which are rewritten as:

b1 þ b2 ¼ a1

κb1 − κb2 − κa1 ¼ −ZΦΦ
11 a1 − ZΦΦ

12 a2

b1eκd þ b2e−κd ¼ a2

κa2 þ κb1eκd − κb2e−κd ¼ ZΦΦ
22 a2 þ ZΦΦ

21 a1: (33)

There is a possibility to provide an additional slowing of the electromagnetic wave in bilayer
structures due to the low-frequency out-of-phase SPP wave mode (the acoustic SPP wave).25

However, the slowing effect is suppressed by interlayer tunneling: In the presence of tunneling,
the out-of-phase SPP wave mode develops a long-wavelength gap (a depolarization shift).25

Bigraphene has four π bands. In undoped bigraphene two of these zones are fully occupied.
If the Fermi level of doped bigraphene is below 0.4 eV, the doping electrons fill in the third
π-band with the energy:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ 02
0 jfðkx; kyÞj2 þ

γ 02
1

2
− γ 0

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ 02
0 jfðkx; kyÞj2 þ

γ 02
1

4

rs
; (34)

where γ 0
0 is the hopping between nearest neighbors in graphene plane, γ 0

1 is hopping between
planes. In this case boundary conditions [Eq. (33)] for in-phase mode (optical SPP wave) of
bilayer graphene gives the following SPP wave dispersion equation:

1 ¼ πe2

κS

X
k1;k2

δk2þq;k1

nk2s − nk1s
ωþ Ek2s − Ek1s

ð1þ e−dκÞ : (35)

The SPP wave dispersion equation in this case gives optical mode similar to optical mode in
single-layer graphene. Using the approximate energy dependence in the vicinity of the Dirac
point for bigraphene as ℏ2v2Fk

2∕γ 0
1 we reduce Eq. (35) to the form:

1 ¼ 2e2

κγ 0
1

ðℏkFÞ2
q2v2F
ω2

: (36)

The spatially separated double-layer graphene in which tunneling is negligible can be used for
achieving a large wave deceleration. In such systems the quantum wave function of electron state
is concentrated near one of the layers. Therefore, the boundary conditions [Eq. (33)] can be
written as:

b1 þ b2 ¼ a1

κb1 − κb2 − κa1 ¼ −ZΦΦ
11 a1

b1eκd þ b2e−κd ¼ a2

κa2 þ κb1eκd − κb2e−κd ¼ ZΦΦ
22 a2: (37)

Correspondingly, the dispersion equation is given by:

ð2κ − ZΦΦ
11 Þð2κ − ZΦΦ

22 Þ − ZΦΦ
11 ZΦΦ

22 e−2κd ¼ 0; (38)

where

ZΦΦ
ii ¼ 4e2

ℏvF
kiF

ω − ðω2 − v2Fq
2Þ1∕2

ðω2 − v2Fq
2Þ1∕2 ; (39)

and kiF are the Fermi momentums for layers i ¼ 1, 2. The dispersion equation [Eq. (38)] with
coefficients [Eq. (39)] is reduced to the dispersion equation obtained in Ref. 26 in the limit
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ω ≫ vFq. Because we are interested in a large wave deceleration, accounting for this difference
is very important.

4 Discussion

The slowing of an electromagnetic wave described in previous sections is a crucial effect for the
Čerenkov radiation mechanism. Figure 2 demonstrates the dependence ωðqÞ in the THz range,
whereas Fig. 3 presents the ratio of the electromagnetic wave phase speed to the speed of light in
a vacuum. One can see that the deceleration for single layer graphene is not too large and
strongly depends on the density of doping electrons. It is seen that the slowing down in a sin-
gle-layer graphene is 3 to 5 times at the typical electron doping ∼1012 cm−2. Such values of the
deceleration allow synchronization with an electron beam with the several tens of kilovolt
energy. It is clear that the synchronization regime is nonreachable in single-layer graphene
at reasonable densities. For the Čerenkov radiation by electrons with smaller energies, and par-
ticulary with nonrelativistic electron energies, corresponding to the electron bands in graphene, a

Fig. 2 The electromagnetic wave frequency ω (l∕s) versus wave number q (l∕cm) for single layer
graphene (the red curve). The dash curve shows the light line. Logarithmic scale of vertical axis
was used.

Fig. 3 The SPP wave phase speed vph∕c versus the wave number q (1∕cm) in a single-layer
graphene for the densities (1) 1012 cm−2 and (2) 5 × 1012 cm−2 of the doping electrons.
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stronger deceleration is required (up to 300 times). Such slowing can be reached in bilayer and
multilayer graphene structures for acoustic-type modes. The tunneling between graphene layers
can suppress the strong slowing effect in multilayer structures, therefore reducing the tunneling
is extremely desirable.

A spatially separated double-layer graphene monolayer with suppressed inter-layer tunneling
is a suitable candidate for this purpose. Figure 4 shows the frequency dependence on the wave
number for different inter-layer distances. The plots are obtained using Eqs. (38) and (39). The
slowing down up to the speed of π-electron can be reached in such structures. The spatially
expanded double-layer graphene has also another useful property: the frequency and the
phase speed appear to be tunable due to independent control of carrier densities n1 and n2
in the monolayers and the interlayer separation d.

5 Conclusion

The self-consistent equations describing SPP wave dynamics in multilayer graphene have been
derived and analyzed. The SPP wave dispersion law obtained from these equations has been
investigated to provide synchronization between the electromagnetic wave and the electron
beam, i.e., to achieve proximity of the electromagnetic wave phase speed to the Dirac electron
speed in graphene vF. It has been shown that the multi (double-) layer graphene nanoplatelets,
especially in the spatially separated double-layer graphene, allows such a proximity and thus are
promising candidates for the nano-sized Čerenkov-type THz emitters. The development of such
emitters is a challenging problem of present-day nanoelectronics and nanophotonics.
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