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INTRODUCTION

The system of partial differential equations studied in this thesis is a 3 × 3 system of
hyperbolic conservation laws that models the one dimensional, immiscible flow of several
isentropic gases. The main topic is showing existence of a weak solution of the Cauchy
problem when the initial data have large total variation.

The model

Some thermodynamics. This brief introduction to thermodynamics is included to intro-
duce the variables and motivate the equations studied in this thesis. An introduction to
compressible fluids and thermodynamics from a mathematical point of view can be found
in [9].

Each point in a fluid is in a definite state of thermodynamic equilibrium that is defined
by the pressure p, the temperature T , the specific volume1 v = 1/ρ where ρ is the density,
the specific entropy S, and the specific internal energy e. For any given medium, only two
of the above parameters are independent, and they can therefore be viewed as functions of
two of the others. This gives rise to relations, usually called equations of state, between the
parameters.

We assume that all gases are ideal gases, that is, there are no intermolecular forces and
the molecules themselves have no volume. The equation of state for an ideal gas can be given
as

pv = RT,(1)

where the constant R is the universal gas constant divided by the effective molecular weight
of the particular gas.

The change in the internal energy for a medium during a change from one state to another,
is due to the heat contributed and the work done. For an infinitesimal, reversible change
from one state to the neighboring one in a compressible fluid, this can be written as

de = TdS − pdv,(2)

where TdS, for a reversible process, is the heat acquired by conduction, and pdv is the
compressive work due to pressure forces. For an ideal gas, the internal energy is a function
of the temperature alone, as shown in [9, Ch. 1A4].

A polytropic gas is an ideal gas where the internal energy is proportional to the temper-
ature. Thus,

e = cV T =
pv

γ − 1
,(3)

where the specific heat capacity at constant volume, cV , is equal to R/(γ − 1), where γ > 1
is the adiabatic gas constant. In this case, the caloric equation of state can be written as

p = p(v, S) = (γ − 1)v−γ exp((γ − 1)(S − S0)/R),(4)

where S0 is a constant.

1The specific volume is frequently denoted by τ , but v is chosen here since this is the notation used in

the papers.
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The model we discuss in this thesis concerns isentropic gases. An isentropic flow is in [9]
defined as a flow in which the entropy is everywhere and always the same. The flow is
reversible and adiabatic, that is, the entropy is unchanged and there is no heat transfer. The
internal energy is still given by (3), thus, equation (2) reduces to

cV dT = −pdv.(5)

By eliminating p using the equation of state (1) and solving equation (5), we find that Tvγ−1

is constant, or equivalent, that pvγ equals a constant. From this we obtain the following
caloric equation of state for the isentropic flow

p = p(v) = k2v−γ ,(6)

where k is a constant. Whenever the pressure is given by (6), we say that the pressure is
given by a γ-law. Moreover, the constant k will be equal to one throughout this thesis.

With this short introduction to thermodynamics, we are ready to derive the equations for
our model.

The system. We want to describe the one dimensional, immiscible flow of several isentropic
gases. We assume that all gases are ideal gases, thus, the pressure is given by the caloric
equation of state (6) for each gas. The adiabatic gas constant, γ, now varies with the different
gases, and therefore, the pressure is a function of v and γ,

p = p(v, γ) = v−γ ,(7)

where we, as previously stated, have set the constant k in (6) equal to one.
We furthermore assume that the different gases are separated initially and that they do not

mix at any later time. It is therefore natural to look for a model in Lagrangian coordinates
where the reference frame follows the particles. To do this, we attach a number, h, to each
plane section of particles normal to the x-axis, so that the changing position of the plane is
given by the function x(h, t). When this is done, the parameters such as v, u and p can be
expressed as functions of our Lagrangian variables h and t.

Thus, we first have to choose a way to identify h. This can be done in many different
ways, and the most natural one would be to associate h with the abscissa of the particle at
some initial time, t = 0. However, in line with [9, Ch. 1A18], we choose to identify h based
on the fundamental law of mass conservation. We may think of the flow in a tube of unit
cross section along the x-axis, and we define a reference section, moving with the medium,
to be h = 0. Then we define h for a cross section as the amount of mass between that section
and the cross section h = 0. Thus, h is negative if the cross section identified by h is to the
left of the reference section on the x-axis, and positive if it is to the right. All cross sections
now have a uniquely defined h and, mathematically, h is given by the relation

h =
∫ x(h,t)

x(0,t)

ρ(x, t)dx,(8)

where ρ(x, t) is the density associated with the motion, that is, given in the Eulerian reference
frame.

We now have a reference frame given by h and t that follows the particles. From this way
of identifying h, mass conservation follows naturally. First, differentiating (8) with respect
to h yields

ρ(h, t)xh = 1,(9)
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where we use subscripts to indicate partial derivation. The quantity ρ(h, t)xh is the reference
density, that is, the density associated with a particle. This quantity does not change in time,
thus,

(ρxh)t = ρtxh + ρxht = 0.

From equation (9) we have xh = 1/ρ = v, where v is the specific volume. Furthermore,
xt equals the velocity u, and ρt = −vt/v2. Thus, conservation of mass is in Lagrangian
coordinates given by

vt − uh = 0.(10)

Furthermore, we neglect the external force of gravity and assume that no force other than
the pressure gradient is acting on the gases. According to Newton’s second law we then have

ρxtt = −px.

Recall that ρ = 1/v, xt = u, and px = ph/xh = ph/v, thus, after rearranging, conservation
of momentum in Lagrangian coordinates reads

ut + ph = 0.(11)

Equations (10)–(11) model the one-dimensional flow of one isentropic gas. In order to
include several gases, we need one additional equation. From the assumptions that the gases
are separated and not allowed to mix, the properties specific to one gas have to be conserved.
Since we have given the pressure as a function of the adiabatic gas constant for each gas,
it is natural to let γ be our third variable. In the Lagrangian reference frame, γ does not
change with time, and

γt = 0,(12)

serves as our last equation, representing conservation of the gas specific properties.
Letting now x ∈ R (replacing h by x) and t ∈ (0,∞) denote our Lagrangian coordinates,

the model of one dimensional, immiscible flow of several isentropic gases can be described
by the system

vt − ux = 0,

ut + p(v, γ)x = 0,(13)
γt = 0,

where v is the specific volume, u is the velocity, and p is the pressure function given by (7).
Note that if the specific volume, v, becomes infinite, which corresponds to zero density and
zero pressure, we have vacuum.

We discuss the properties of this 3× 3 system of hyperbolic conservation laws later. For
now, we note that system (13) can be rewritten as a 2 × 2 system with discontinuous flux.
We get

vt − ux = 0,

ut + p(v, γ(x))x = 0,

where the adiabatic gas constants for the different gases are given by the discontinuous
function γ(x).



4 INTRODUCTION

From Lagrangian to Eulerian coordinates. We have chosen to work with Lagrangian
coordinates throughout this thesis mainly due to the nice form system (13) then has. In
Eulerian coordinates with x ∈ R as the physical space variable and t ∈ (0,∞) as the time,
the system reads

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ, γ))x = 0,(14)

(ργ)t + (ρuγ)x = 0,

which can be obtained from system (13) by a transformation of reference frames. Let (x, t)
be the Eulerian coordinates and (h, t) the Lagrangian coordinates. Let furthermore the time
derivative in Lagrangian coordinates be denoted by a dot, like ḟ . The transition between
the Lagrangian and the Eulerian reference frame is given by

ẋ = u(x, t),(15)

since x(h, t) is the physical changing position of the particle and u is the velocity. Thus, we
have

ḟ = ft + ẋfx,(16)

for any function f . Starting from mass conservation given by (10) in Lagrangian coordinates,
the above relation gives us

0 = v̇ − uh = vt + ẋvx − xhux = − ρt

ρ2
− u

ρx

ρ2
− 1

ρ
ux,

where we have used that ẋ = u, xh = v and ρ = 1/v. Multiplying the equation with −ρ2

and writing uxρ+uρx = (ρu)x, we obtain the first equation of system (14) given in Eulerian
coordinates.

For the conservation of momentum given in Lagrangian coordinates by (11), we get

0 = u̇ + ph = ut + ẋux + xhpx = ut + uux +
px

ρ
.

To get this equation into the standard conservative form, we first multiply with ρ, and then
use that ρt + (ρu)x = 0 by mass conservation;

0 = ρut + ρuux + px = ρut + ρuux + px + (ρt + (ρu)x)u = (ρu)t + (ρu2 + p)x,

and we have obtained the second equation of system (14).
Finally, we transform the last equation given in Lagrangian coordinates by (12), and

obtain

0 = γ̇ = γt + ẋγx = γt + uγx.

Once more, we first multiply by ρ, then exploit the equation of mass conservation to obtain
the last equation of system (14) in its conservative form;

0 = ργt + ρuγx = ργt + ρuγx + (ρt + (ρu)x)γ = (ργ)t + (ρuγ)t.

By the results of Wagner [27], there is a one-to-one correspondence between a weak so-
lution of a system given in Lagrangian coordinates and a weak solution of the same system
given in Eulerian coordinates. Thus, proving existence results for system (13) in Lagrangian
coordinates also gives existence results for system (14) in Eulerian coordinates.
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Some other models. System (13) is an extension of the 2× 2 system modeling the flow of
one isentropic gas,

vt − ux = 0,

ut + p(v)x = 0,
(17)

where γ is constant and the pressure, p(v) = v−γ , depends solely on v. This system is known
as the p-system, and is a classic textbook example of systems of hyperbolic conservation
laws, see, e.g., [10, 15, 24].

To the best of our knowledge, system (13) has not been discussed earlier. Several other
3× 3 systems are extensions of the p-system (17), and we mention a few. In order to model
multiphase flow, Amadori and Corli [1] extend the p-system with an extra equation,

vt − ux = 0,

ut + p(v, λ)x = 0,(18)
λt = 0,

where λ ∈ [0, 1] is the mass density fraction of vapor in the fluid. The pressure function,
p(v, λ) = a2(λ)/v, is a function of both v and the new variable, λ, as it is for system (13),
making the two systems similar. However, the adiabatic gas constant is equal to one for
system (18), and therefore the properties of the two systems are quite different. For in-
stance, vacuum can never form for the model in [1] as it can for system (13). Moreover,
the wave curves of system (18) are monotone in λ, making the analysis of the interactions
less complicated than for system (13), where the wave curves are not monotone in γ. The
model in [1] is a simplified version of the model discussed by Fan in [13]. Similar models, but
with a rather different pressure laws, are also considered in [12] and [19] applying completely
different methods. A model in the context of the Navier–Stokes equation with finitely many
independent pressure laws has been studied in [6].

We furthermore mention the Euler equations modeling polytropic gas flow which in La-
grangian variables reads

vt − ux = 0,

ut + px = 0,(19)

Et + (pu)x = 0,

where the last equation is conservation of energy, E = e + 1
2u2, and e is the internal energy.

The gas is assumed to be ideal and polytropic, thus, the pressure is given by the caloric equa-
tion of state (4), as discussed earlier. Note that there is only one gas present in this model,
hence, γ is constant. System (19) is also frequently discussed in textbooks on conservation
laws, see, e.g., [24]

Systems of hyperbolic conservation laws

The theory of hyperbolic conservation laws dates back to the mid of the 19th century and
has developed in close relations with gas dynamics. The Riemann problem was, however,
already formulated by Riemann in the 18th century in connection with isentropic gas dy-
namics. Courant and Friedrichs [9] give a survey of this field up to 1948. The mathematical
formulation of the theory for systems of hyperbolic conservation laws in one space dimension
we use, was established in the paper by Lax [16]. Several books give an up-to-date overview
of the theory of hyperbolic conservation laws, see, e.g., [4, 10, 15, 24]. This introduction
briefly gives the theory and definitions needed to discuss the results proved in this thesis.
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An n×n system of hyperbolic conservation laws is n nonlinear partial differential equations
of the form

Ut + f(U)x = 0,(20)

where U = U(x, t) and f ∈ C2 are vectors in Rn. We restrict our discussion to systems in
one space dimension, that is, x ∈ R.

The Jacobian of the flux, df , for system (20) has n real eigenvalues, λ1, . . . , λn, with
corresponding right eigenvectors r1, . . . , rn. If the n eigenvalues are distinct, then the system
is strictly hyperbolic. Furthermore, if

∇λj(U) · rj(U) 6= 0,

we say that the jth family is genuinely nonlinear, and if

∇λj(U) · rj(U) = 0,

the jth family is linearly degenerate. In this thesis we are only concerned with strictly
hyperbolic systems of the form (20) where each family is either genuinely nonlinear or linearly
degenerate.

The Riemann problem. The problem solving system (20) with initial data consisting of
two constant states, that is,

U(x, 0) =

{
Ul, if x < 0,

Ur, if x > 0,
(21)

where Ul, Ur ∈ Rn are constants, is called the Riemann problem. Understanding this funda-
mental problem is essential in order to obtain results for system (20) for more general initial
data.

For an n×n system of hyperbolic conservation laws where each family is either genuinely
nonlinear or linearly degenerate, the two initial states of the Riemann problem are connected
by up to n elementary waves. There is at most one wave from each family, and the waves
have increasing wave speeds.

For a genuinely nonlinear family there are two types of waves; rarefaction waves which
are continuous waves of the form U(x, t) = w(x/t) satisfying

ẇ(x/t) = rj(w(x/t)), λj(w(x/t)) = x/t,(22)

where λj is increasing along the wave, and shock waves which are solutions

U(x, t) =

{
Ul, if x < σjt,

Ur, if x > σjt,
(23)

satisfying the Rankine–Hugoniot condition

(24) σj(Ur − Ul) = f(Ur)− f(Ul),

for a shock velocity σj . To rule out the non-physical shock waves, we use an entropy condition:
The admissible shock waves are those satisfying the Lax entropy conditions

λj−1(Ul) < σj < λj(Ul), λj(Ur) < σj < λj+1(Ur).(25)

For a linearly degenerate family there is only one type of waves called contact discontinuities.
These waves are solutions of the form (23) that satisfy the Rankine–Hugoniot condition (24)
with σ = λj .

The j-wave curve consists of all states U that can be connected to a given left state Ul

by a wave of family j, and is often denoted Wj(Ul). Thus, to solve the Riemann problem
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we have to find (up to) n − 1 intermediate states Ui so that U1 ∈ W1(Ul), Ui ∈ Wi(Ui−1),
and Ur ∈ Wn(Un−1). By Lax’s theorem [15, Thm. 5.17], we have a unique solution of the
Riemann problem for system (20) in a small neighborhood of Ul.

The Cauchy problem. Solving the Cauchy problem for system (20) means solving the
system with general initial data

U(x, 0) = U0(x).(26)

It is well-known that systems of hyperbolic conservation laws do not in general have smooth
solutions, even for smooth initial data. Thus, by a solution of the Cauchy problem for
system (20) we mean a weak solution in the distributional sense with U ∈ L1(R× [0,∞)) so
that ∫∫

R×[0,∞)

(Uφt − f(U)φx) dxdt +
∫

R
U0(x)φ(x, 0) dx = 0,(27)

for all infinitely differentiable functions φ(x, t) with compact support.
Glimm [14] proved global existence of a weak solution of the Cauchy problem with small

initial data for strictly hyperbolic systems where each family is either genuinely nonlinear or
linearly degenerate. This includes system (13) with sufficiently small initial data.

Proving existence of a solution for systems of hyperbolic conservation laws is typically
done in a constructive manner. Through an approximate method one obtains a sequence of
approximate solutions and thereafter shows that a subsequence converges to a weak solution.
Two frequently used methods are the Glimm scheme [14, 24] and the front-tracking method
[15, 4]. Both methods rely on solving several Riemann problems in order to obtain an
approximate solution.

For n × n systems of hyperbolic conservation laws with large initial data, there is no
general result similar to the theorem by Glimm [14] for small data. The topic for this thesis
has therefore been to extend the result by Glimm to obtain existence of a weak solution of
system (13) with large initial data.

Some properties of the system

System (13) is a 3 × 3 system of hyperbolic conservation laws that is strictly hyperbolic
for p > 0 with eigenvalues;

λ1 = −λ, λ2 = 0, λ3 = λ,(28)

where λ :=
√
−pv =

√
γv−γ−1. The corresponding eigenvectors are

r1 = (1, λ, 0), r2 = (−pγ , 0, pv) , r3 = (−1, λ, 0).(29)

Furthermore, the first and third wave family are genuinely nonlinear, while the second wave
family is linearly degenerate.

Recall that vacuum corresponds to infinite v, or equivalently, p = 0. The properties of
the system change at vacuum, and the methods used in this thesis do not apply then, see
[18]. Therefore we only consider system (13) for finite v, that is, p > 0. Furthermore, we
have from the thermodynamics that γ > 1.

The Riemann invariants for system (13) are given in Appendix A where we prove that
the system does not have a coordinate system of Riemann invariants, only a 2-Riemann
coordinate. Appendix A also includes the discussion of entropy/entropy flux pair for
system (13).
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Wave curves. For system (13) the rarefaction and shock waves of the first and third family
have constant γ, thus, they are equal to the wave curves of the corresponding p-system (17).
Along the contact discontinuities of the second family, p and u are constant, and only γ
changes. It is therefore easier to describe the wave curves, and other properties of the
system, using p, u and γ as our variables. For p > 0, the wave curves are then given as

Φ1(p, Ul) :=

{
(p, ul − r(p, pl, γl), γl) , p < pl,

(p, ul − s(p, pl, γl), γl) , p > pl,
(30)

Φ2(γ, Ul) := (pl, ul, γ), γ > 1,(31)

Φ3(p, Ul) :=

{
(p, ul + r(p, pl, γl), γl) , p > pl,

(p, ul − s(p, pl, γl), γl) , p < pl,
(32)

where

r(p, pl, γl) :=
2
√

γl

γl − 1

(
p

γl−1
2γl − p

γl−1
2γl

l

)
,(33)

s(p, pl, γl) :=
((

p
− 1

γl

l − p
− 1

γl

)
(p− pl)

)1/2

,(34)

and the shock velocities are

σ1(Ul, U) = −
√

pl − p

p−1/γl − p
−1/γl

l

, σ3(Ul, U) =

√
p− pl

p
−1/γl

l − p−1/γl

.(35)

The wave curves through two different left states are depicted in Figure 1 where the notation

u

p

γ

μ2

β2

U2

β1 U1
α1

ν2

α2

μ1

ζ

ν1

Figure 1. The wave curves through U1 = (pl, ul, γ1) and U2 = (pl, ul, γ2)
where γ1 < γ2.

of the different waves is consistent with the notation used throughout this thesis. That is,
we let

ε define a 1-wave, α a 1-shock wave, µ a 1-rarefaction wave,
η a 3-wave, β a 3-shock wave, ν a 3-rarefaction wave,
ζ a 2-wave.
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The backward 3-wave curve consists of all left states, U , that can be connected to a given
right state Ur by a 3-wave. This curve is useful when describing the Riemann problem and
is given by

Φ̃3(p, Ur) :=

{
(p, ur − r(pr, p, γr), γr) , p < pr,

(p, ur + s(pr, p, γr), γr) , p > pr,
(36)

where r and s are given by (33) and (34).
The 1-wave curve is strictly decreasing as a function of p, while the 3-wave curve and

the backward 3-wave curve are strictly increasing. Several properties of the wave curves
are given in the papers, but in this introduction we only include the most important one:
The rarefaction and shock waves are not monotone in γ, that is, the projected wave curves
onto the (p, u)-plane might intersect. Depending on the value of ∂

∂pr at the left state, the
projected wave curves going either to the left or to the right will intersect, see Figure 2. This

p

u

γ1

γ2

(pl, ul)

(a) When ∂
∂p

r(pl, pl, γl) > ∂
∂p

r(pl, pl, γ2), the

projected wave curves going to the right in-

tersect.

u

p
 

 
γ1

γ2

(pl, ul)

(b) When ∂
∂p

r(pl, pl, γl) < ∂
∂p

r(pl, pl, γ2), the

projected wave curves going to the left inter-

sect.

Figure 2. The wave curves through U1 = (pl, ul, γ1) (dashed lines) and
U2 = (pl, ul, γ2), where γ1 < γ2, projected onto the (p, u)-plane.

property considerably complicates the interactions of waves with different values of γ.

The Riemann problem. Given the wave curves we can solve the Riemann problem for
system (13) with initial data given by (21). From the general discussion of systems of
hyperbolic conservation laws, it follows that the solution of the Riemann problem consists
of up to three waves, one from each family. Since p and u are constant along the contact
discontinuities, we look for the intersection between the 1-wave curve of the left state and
the backward 3-wave curve of the right state projected onto the (p, u)-plane. Thus, the
solution of the Riemann problem (Ul, Ur) for system (13) is constructed as follows: Let (p̃, ũ)
be the intersection point between the projections of Φ1(p, Ul) and Φ̃3(p, Ur) onto the (p, u)-
plane. We connect Ul = (pl, ul, γl) to Ũ1 = (p̃, ũ, γl) by a 1-curve, then we go from Ũ1 to
Ũ2 = (p̃, ũ, γr) along a contact discontinuity, and finally connect Ũ2 to Ur = (pr, ur, γr) by
a 3-wave. The solution of a Riemann problem is shown in Figure 3.

We only consider system (13) away from vacuum, that is, for p > 0. Because the wave
curves are monotone with respect to p, there is at most one intersection point between the
projections of Φ1(p, Ul) and Φ̃3(p, Ur). The only case where the two projected curves never
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u

p

γ

ν
Ũ2

Ul

α

Ũ1

Ur

ζ

Figure 3. The solution of the Riemann problem (Ul, Ur) consisting of a
1-shock wave α, a contact discontinuity ζ, and a 3-rarefaction wave ν.

intersect, is if the projection of the backward 3-rarefaction wave from Ur always lies above
the projection of the 1-rarefaction wave from Ul. Thus, the Riemann problem for system (13)
has a unique solution if

ur − ul < r(pr, 0, γr)− r(0, pl, γl).(37)

It is important to note that if γl = γr, then the Riemann problem reduces to the Riemann
problem for the p-system (17) with γ = γl, and the solution consists of at most two waves,
a 1-wave and a 3-wave. We are therefore able to use results for the p-system, in particular
due to Nishida and Smoller [21], for problems where γ does not change.

Another important problem for system (13) is that its invariant region includes vacuum.
A region Ω is invariant for the Riemann problem if for any Riemann problem with initial
data in Ω, its solution is also in Ω. Since γ never takes any other values than those of the
initial data, we find the invariant region for the p-system for each γ and take the union of
these to get the invariant region for system (13). This invariant region gives an upper and
lower bound on u and an upper bound on p, but includes p = 0.

The Cauchy problem with large initial data

As already noted, there is no general result for systems with large data, in contrast to the
case of small data. Therefore, the topic for this thesis has been solving system (13) for large
initial data. However, there are several results with large data for other specific systems, or
systems with some given properties, and we give a short overview of some of these.

Some existence result for systems with large data. For 3 × 3 systems with a 2-
Riemann coordinate, Temple and Young [26] showed existence of a solution for initial data
with arbitrary large total variation, provided that the oscillations are small. This result
applies to our system as well, but we want to avoid the restriction on the oscillations.

For the p-system (17) with γ = 1, Nishida [20] showed existence of a global solution for
arbitrary, bounded initial data. This is a special case, since no vacuum can form and the
wave curves are translation invariant. For γ > 1, Nishida and Smoller [21] proved existence
of a solution for initial data where (γ − 1) times the total variation of the initial data is
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sufficiently small. The case with large initial data for 2 × 2 systems is also discussed in
[5, 11].

Since system (13) does not have a coordinate system of Riemann invariants, we do not
have the advantage of changing variables to Riemann invariants as for the p-system and other
2× 2 systems. Liu [17] proved existence of a solution for the Euler equations (19) with large
initial data. This system does not have a coordinate system of Riemann invariants, however,
in [17] Liu changes variables inspired by the use of Riemann invariants. This clever approach
does not simplify system (13) because γ is a function of x.

The general results by Temple [25] includes both the results of [21] and [17]. In [25] one
considers the flux function as a smooth one parameter family of functions where one has
existence of a solution for arbitrary large initial data for the system with the parameter, ε,
equal to zero. Then the system with 0 ≤ ε ≤ 1 has a unique solution if ε times the total
variation of the initial data is sufficiently small. Letting ε = γ − 1 for the p-system (17) and
the Euler equations (19), one obtains similar results as in [21] and [17]. However, this cannot
be used for system (13) since γ is one of the variables.

In [28] Wissman proved a large data existence theorem for the 3× 3 system of relativistic
Euler equations in the ultra-relativistic limit. Applying a change of coordinates, the shock
waves become translation invariant and a Nishida-type of analysis is used. Peng [23, 22] also
considered certain 3 × 3 systems (Lagrangian gas dynamics for a perfect gas and a model
originating in multiphase flow modeling) with large initial data.

All these existence results are proved using the Glimm scheme. Asakura applies front
tracking to show existence of a solution for the p-system [3] and for the Euler equations [2]
with large initial data. The conditions on the initial data are the same as obtained in [21]
and [17]. Amadori and Corli [1] also use front tracking to prove existence of a weak solution
of (18) when the initial data have large total variation.

In [7, 8] front tracking is used to study systems of conservation laws whose flux functions
depend on a parameter vector, µ, similar to those in [25]. An approach for establishing
L1-estimate pointwise in time between entropy solutions for µ 6= 0 and µ = 0 is given. In
particular, the L1-estimate between entropy solutions in the large for the isentropic Euler
equations, that is, system (17) with γ > 1, and the isothermal Euler equations, system (17)
with γ = 1, is established in [7] and between entropy solutions in the large for the the Euler
equations (19) and the isothermal Euler equations, system (17) with γ = 1, in [8]. For both
cases µ = γ − 1 where the adiabatic gas constant γ tends to one.

Existence results for system (13) with large initial data. In this thesis we prove
existence of a time-global, weak, entropy solution of system (13) for initial data

v(x, 0) = v0(x), u(x, 0) = u0(x), γ(x, 0) = γ0(x), x ∈ R,(38)

satisfying

(sup(γ0)− 1)T.V.(p0, u0) ≤ min
{

C

9kC1
, C3

}
,

T.V.(γ0) ≤
C

9C2
,

(39)

where k, C, C1, C2 and C3 are constants that only depend on the initial data. Note that by
reducing the supremum of γ0, we can allow arbitrary large total variation in p0 and u0.

We prove this using the Glimm scheme in Paper I and using front tracking in Paper II.
Through these numerical methods, we obtain a sequence of approximate solutions of sys-
tem (13). The first step towards showing convergence to a weak solution, is for both methods
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to prove that the approximate solutions have bounded total variation. To do this, we define
a Glimm type functional, and show that it decreases in time. This involves identifying and
estimating all possible interactions that might occur. We use the same functional in both pa-
pers, even though the definition of an interaction is different for the Glimm scheme compared
to front tracking. Note, however, that the interactions between two waves or two fronts are
the same for both methods. Since interactions that do not involve a contact discontinuity
are equal to the interactions for the p-system, our choice of the Glimm type functional is
inspired by the functional used in [21] by Nishida and Smoller, adding one extra term to
account for the interactions with a contact discontinuity. Furthermore, the estimates we use
for interactions between two waves or fronts where none of them are contact discontinuities,
are obtained by transferring the estimates in [21] to our variables. Due to space limitations,
this transformation is not included in the papers, and we have therefore included the detailed
discussion of these estimates in Appendix B. The estimates for interactions between a con-
tact discontinuity and another wave, or front, are in both papers found using an estimate
proved in Paper I on how different two waves, or fronts, with different values of γ are.

In Paper I we use the Glimm scheme for which the first step is to approximate the initial
data as piecewise constants, then solve the Riemann problems at each jump. This gives us
an approximate solution for small t > 0. Before any of the waves in the solutions of the
initial Riemann problems interact, we sample the solution at some random sampling points,
making it constant for each grid cell. Then the Riemann problems at the grid points are
solved, and this process is continued up to any given time. The grid points, xi, make up
a staggered grid as shown in Figure 4. Connecting the sampling points with lines called

t = 0

x1x
−1 x3

t = 3∆t

t = 2∆t
x
−2 x0 x2

t = ∆t
x1x

−1 x3

x2
x
−2 x0

Figure 4. The staggered grid for the Glimm scheme with the diamond structure.

mesh curves, we get a diamond structure, also depicted in Figure 4. Since the values at the
sampling points are the left and right state of the leftmost and rightmost wave entering the
diamond, respectively, we say that the waves entering one diamond interact. Due to this
diamond structure, and the wave speeds, at most four waves can enter one diamond. Thus,
the most complicated interactions we get in the Glimm scheme are interactions between four
waves.

For interactions with three or more incoming waves, we present a formal way of dividing
the interaction into several steps to obtain the estimates needed to show that the Glimm
functional is decreasing. The idea is to introduce intermediate mesh curves and inner dia-
monds so that only some of the waves enter the inner diamond and interact, while the rest is
left unchanged. Typically, two waves enter an inner diamond, see Figure 5, and we already
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(Ul, Ur)

β ′

β α

(Ul, U0) (U0, Ur)

µ

α′

(a) The interaction before division.

U0

µ

β ′α′

β

α̃

α
Ul Ur

α(Ul, U∗)

U1

U∗

(U1, Ur)

(Ul, Ur)β̃

β

(U0, Ur)(Ul, U0)

(b) The interaction divided into three steps with
two new mesh curves and two inner diamonds.

Figure 5. A typical interaction in the Glimm scheme.

have interaction estimates for these interactions. Thus, we know that the Glimm functional
is decreasing for each step. The process of letting some waves interact while the rest is
unchanged is continued until we have a collection of waves that we are able to compare to
the outgoing waves. It is important to note that this is only a formal tool in order to prove
that the Glimm functional is decreasing, and that no interactions in the Glimm scheme are
altered.

In this way we prove that the Glimm functional decreases in time, from which we obtain
bounded total variation of the approximate solution. Then, convergence to a weak solution
follows by standard arguments.

In Paper II we use front tracking to show the existence result for system (13). Again we
start by approximating the initial data as piecewise constants and then solve the Riemann
problems at the jumps. However, all solutions to Riemann problems in front tracking must
be piecewise constant, thus, we have to approximate rarefaction waves by step functions.
Each discontinuity in the solution is called a front; a shock wave or a contact discontinuity is
one front, while a rarefaction wave is approximated by several small fronts. We now have an
approximate solution for small t > 0, and we track all fronts until some of them collide. Then
we solve the Riemann problem with the left state of the leftmost front and the right state of
the rightmost front as initial data, and we continue this process of tracking fronts and solving
Riemann problems. However, to ensure that we always have a finite number of fronts, and
hence, interactions, we have to introduce a simplified solver generating non-physical fronts we
denoted by θnp. The simplified solver is only used when fronts of the same family collide with
a contact discontinuity and the sum of the strengths of the incoming fronts times the strength
of the contact discontinuity is less than some given threshold parameter. Then, the solution
of the Riemann problem consists of a non-physical front and two or three physical waves,
depending on the number of incoming fronts, see Figure 6. Unlike the standard front-tracking
algorithm with non-physical fronts, see [4], we introduce non-physical fronts traveling to the
left as well as to the right, to retain the nice symmetry property of system (13). Still, all
non-physical fronts have absolute speed greater than the speed of any other front.

In front tracking an interaction is an actually collision between fronts, and therefore
arbitrary many fronts might interact. However, using a stepping procedure by letting two
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Ũ2Ũ1
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U1

Ur

ǫ

θnpǫ′

ζ

ζ

(a) A contact discontinuity inter-
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Ũ1
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∑
i
ǫi

Ũ2 Ũ3

η′ζ

ζ

(b) A contact discontinuity inter-
acts with several fronts of the

first family.

Figure 6. The simplified Riemann solver with non-physical fronts (dashed lines).

and two fronts interact, we obtain estimates for interaction between arbitrary many fronts
of the same family. In this way we get the estimates needed for all possible interaction in
front tracking, including the ones involving non-physical fronts. Figure 7 shows a typical
interaction in front tracking where the interaction is divided into three steps. At the first
step we use the result for interactions between fronts of the same family and at the second
step we have an interaction between three fronts. Dividing the interaction into steps like
this is just a formal trick to show that the Glimm type functional decreases, and no fronts
or speeds are altered in the front-tracking algorithm.

t = tn

t = tn+1

(a) The original interaction.

t = tn

t = tn+1

t = t∗2
t = t∗1

(b) The interaction divided into steps.

Figure 7. A typical interaction in front tracking.

Using the decreasing Glimm type functional we obtain bounded total variation of the
approximate solution, and furthermore, prove that there is a finite number of physical and
non-physical fronts. Thus, front tracking gives an approximate solution for any given time
in a finite number of steps. We also bound the total amount of non-physical fronts that
are generated. Finally, we show that a subsequence of the approximate solutions converges,
and that the limit is a weak solution. To do this, we have to estimate the errors we do by
approximating the initial data and the rarefaction waves, and by introducing non-physical
fronts.
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Moreover, Paper I and Paper II include numerical examples solved using the Glimm
scheme and front tracking, respectively. One of these examples is common for both papers,
and in Paper II we compare the solutions found by the two methods.
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THE SOLUTION OF THE CAUCHY PROBLEM WITH LARGE DATA
FOR A MODEL OF A MIXTURE OF GASES

HELGE HOLDEN, NILS HENRIK RISEBRO, AND HILDE SANDE

Abstract. In this paper we study mixture of gases, each governed by a gamma law. The

system is modeled by the p-system with variable gamma. We use this model to study
immiscible gas flow. The main result is that the Cauchy problem with large data is shown

to have a solution. We use the Glimm scheme for the proof. The result is illustrated by
numerical examples.

1. Introduction

We want to describe the one dimensional flow for several isentropic gases. The different
gases are initially separated, and the pressure is for all gases given by a γ-law, that is, p = ργ ,
where ρ is the density and γ is the adiabatic gas constant for each gas. The different gases
cannot mix, therefore, in Lagrangian coordinates γ only depends on x and does not change
in time. The flow of these gases is thus in Lagrangian coordinates described for x ∈ R and
t ∈ (0,∞) by the system

vt − ux = 0,

ut + p(v, γ)x = 0,(1.1)
γt = 0,

where v = 1/ρ is the specific volume, u is the velocity, and p(v, γ) = v−γ is the pressure
function. We assume γ(x, t) > 1. This 3 × 3 system of hyperbolic conservation laws is
strictly hyperbolic. The first and third family are genuinely nonlinear and the second family
is linearly degenerate.

We consider the Cauchy problem for this system, that is, the system (1.1) with general
initial data

v(x, 0) = v0(x), u(x, 0) = u0(x), γ(x, 0) = γ0(x), x ∈ R.(1.2)

Glimm [9] proved global existence of a weak solution of the Cauchy problem with small
initial data for strictly hyperbolic systems where each family is either genuinely nonlinear or
linearly degenerate, thus including the present system. This solution is found by using the
Glimm scheme [9, 19, 20] or by using front tracking [11] by which one can prove stability of
the Cauchy problem. Here we extend the existence result to large initial data for (1.1).

System (1.1) is an extension of the 2× 2 system known as the p-system,

vt − ux = 0,

ut + p(v)x = 0,(1.3)
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which describes the flow of an isentropic gas, with only one gas is present here, thus γ is
constant and the pressure, still given by a γ-law, is a function of v only.

For the p-system with γ = 1, Nishida [15] showed existence of a global solution for arbitrary
bounded initial data. For γ > 1, Nishida and Smoller [16] proved existence of a solution for
initial data where (γ − 1) times the total variation of the initial data is sufficiently small.
The case with large initial data for 2× 2 systems is also discussed in [6, 4].

System (1.1) does not have a coordinate system of Riemann invariants, only a 2-Riemann
coordinate. Therefore we do not have the advantage of changing variables to Riemann
invariants as for the p-system and other 2×2 systems. Liu [12] proved existence of a solution
for the full Euler system with large initial data, another 3× 3 system without a coordinate
system of Riemann invariants. Liu’s change of variables is inspired by the use of Riemann
invariants, but a similar approach does not simplify system (1.1), because γ is a function
of x. The general results by Temple [21] includes both the results of [16] and [12]. In [21]
one considers the flux function as a smooth one parameter family of functions where one has
existence of a solution for arbitrary large initial data for the system with the parameter, ε,
equal to zero. Then the system with 0 ≤ ε ≤ 1 has a unique solution if ε times the total
variation of the initial data is sufficiently small. Letting ε = γ − 1 for the p-system and
the Euler equations, one obtains similar results as in [16] and [12]. However, this cannot be
used for system (1.1) since γ is one of the variables. Wissman proves in [25] a large data
existence theorem for the 3× 3 system of relativistic Euler equations in the ultra-relativistic
limit. Applying a change of coordinates the shock waves become translation invariant and a
Nishida-type of analysis is used.

For 3× 3 systems with a 2-Riemann coordinate, Temple and Young [22] showed existence
of a solution for initial data with arbitrary large total variation, provided that the oscillations
are small. This result applies to our system as well, but we want to avoid this restriction on
the oscillations. Peng [18, 17] also considered certain 3×3 systems (Lagrangian gas dynamics
for a perfect gas and a model originating in multiphase flow modeling) with large initial data.

All these existence results are proved using the Glimm scheme. Asakura applies front
tracking to show existence of a solution for the p-system [3] and for the Euler equations [2]
with large initial data. The conditions on the initial data are the same as obtained in [16]
and [12].

Amadori and Corli [1] extend the p-system with an extra equation, λt = 0, to model
multiphase flow, and they use front tracking to prove existence of a weak solution. As for
system (1.1), the pressure function in [1] is a function of both v and the new variable, λ,
making the two systems similar. However, since the adiabatic gas constant, γ, is equal to one
in [1], vacuum can never occur for their system as it can for system (1.1). Furthermore, the
wave curves in [1] are monotone in λ, resulting in a considerably simpler analysis of the wave
interactions compared to the system considered here. The system treated in [1] is a simplified
version of the model discussed by Fan in [8]. Similar models, but with a rather different
pressure law, are also considered in [7] and [14] applying completely different methods. A
model in the context of the Navier–Stokes equation with finitely many independent pressure
laws has been studied in [5].

System (1.1) can also be rewritten as a 2× 2 system with discontinuous flux. We get

vt − ux = 0,

ut + p(v, γ(x))x = 0,

where the adiabatic gas constant of the different gases is given by the discontinuous function
γ(x).
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This paper is organized as follows: In Section 2 we discuss the wave curves of the system.
The variable γ is constant along the rarefaction and shock waves of the first and third
family, therefore these curves are similar to the wave curves of the p-system. However, these
curves are not monotone in γ, which considerably complicates the interactions of waves with
different values of γ. The second family is linearly degenerate and gives rise to a contact
discontinuity along which p and u are constant. Thus, by changing variables to p, u and
γ, the Riemann problem is easy to describe. The invariant region for the Riemann problem
includes vacuum. This is a problem since the interaction estimates are not valid when p
tends to zero, see [13].

In Section 3 we describe the Glimm scheme and discuss all possible interactions before we
define the Glimm functional. In Lemma 3.3 we give the conditions needed on the initial data
for the Glimm functional to be decreasing in time. The main part of this paper is the proof
of Lemma 3.3, and we devote Section 4 to this. Here all possible interactions are discussed,
estimates are found and we show that the Glimm functional is decreasing for each of them.
The presentation aims at being self-contained.

In Section 5 we show convergence, and Lemma 5.1 states that given some conditions on
the total variation of the initial data, we have stability of the total variation. This follows
from the decreasing Glimm functional and is only valid when the approximate solution is
bounded away from vacuum. The conditions for this is given by Lemma 5.2. The main result
reads as follows:

Theorem 5.3. The Cauchy problem for system (1.1) has a global, weak solution if
(sup(γ)− 1)T.V.(p( · , 0), u( · , 0)) and T.V.(γ( · , 0)) are sufficiently small.

Observe that by reducing the total variation of γ and reducing its supremum, one can
allow for large total variation of p and u. Due to Wagner [23], this result translates into
existence for the system in Eulerian coordinates as stated in Theorem 5.4.

In the last section we study two examples numerically. In the first example we have
one gas confined to an interval, surrounded by another gas. The two gases have distinct
but constant gammas. The constants that limit the total variation of the initial data are
computed, and the initial data are chosen so that they satisfy the conditions in the theorem.
The Glimm functional is explicitly computed, and shown to decay in accordance with the
theorem. In the second example we consider a case with a continuously varying gamma.
Again the initial data are chosen so that they satisfy the explicitly computed constants that
appear in Theorem 5.3. Finally, the decaying Glimm functional is computed and displayed
for this example.

Further numerical experiments reveal that, as expected, the Glimm functional decays also
in cases where the fairly stringent restrictions on the initial data are violated. A necessary
condition for the Glimm scheme to work is that the Riemann problems that occur all are
solvable, but no conjecture as to the maximum size of the Glimm functional can be made at
this stage.

We intend to discuss the same system using the front-tracking method in a subsequent
paper. The basic interactions between two waves (fronts) in front-tracking are similar to
those of the Glimm scheme. Interactions between more waves (fronts) are different from
the interactions discussed in Section 4, but the same methods apply. In addition, the front-
tracking method requires a close control of the number of fronts at all times, possibly by
removing weak fronts according to some measure. These issues are not yet fully resolved for
our system, therefore we choose to use the Glimm scheme in this paper.
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2. The System

It is well-known that systems of hyperbolic conservation laws such as (1.1) do not in
general have smooth solutions, even for smooth initial data. Thus, by a solution of (1.1)
with the initial data (1.2) we mean a weak solution in the distributional sense with v, u, γ ∈
L∞(R× [0,∞)) so that∫∫

R×[0,∞)

(vφt − uφx) dxdt +
∫

R
v0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

(uφt + pφx) dxdt +
∫

R
u0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

γφt dxdt +
∫

R
γ0(x)φ(x, 0) dx = 0,

for all infinitely differentiable functions φ(x, t) with compact support.
If the specific volume, v, becomes infinite, which corresponds to zero density and zero

pressure, we have vacuum. At vacuum, the properties of the system change and the methods
used here do not apply, therefore we only consider system (1.1) for v(x, t) < ∞. Furthermore,
we assume γ(x, t) > 1.

We write U(x, t) = (v(x, t), u(x, t), γ(x, t)). Often we will work with p instead of v, and
then also write U(x, t) = (p(x, t), u(x, t), γ(x, t)).

For v < ∞, or equivalently, p > 0, the system (1.1) is strictly hyperbolic with eigenvalues

λ1 = −λ, λ2 = 0, λ3 = λ,(2.1)

where λ :=
√
−pv =

√
γv−γ−1, and corresponding eigenvectors

r1 = (1, λ, 0), r2 = (−pγ , 0, pv) , r3 = (−1, λ, 0).(2.2)

Note that the eigenvalues and eigenvectors do not depend on u. The first and the third
family are genuinely nonlinear, while the second family is linearly degenerate. Moreover,
the system does not possess a coordinate system of Riemann invariants, but γ is a Riemann
coordinate for the second family.

Before we can turn to solving system (1.1) for general initial data, we need to solve the
Riemann problem for (1.1), that is, when the initial data consists of two constant states
separated by a jump, cf. (2.26). The solution of the Riemann problem consists of up to
three elementary waves, one from each family, and up to two intermediate constant states
separating these waves. Thus, we start by looking at the wave curves.

2.1. Wave curves. For a genuinely nonlinear family there are two types of waves; rarefac-
tion waves which are continuous waves of the form U(x, t) = w(x/t) satisfying

ẇ(x/t) = rj(w(x/t)), λj(w(x/t)) = x/t, j = 1, 3,(2.3)

where λj is increasing along the wave, and shock waves which are solutions

(2.4) U(x, t) =

{
Ul, if x < σt,

Ur, if x > σt,

satisfying the Rankine–Hugoniot condition

(2.5) σ(Ur − Ul) = f(Ur)− f(Ul),
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for a shock velocity σ. The admissible shock waves are those satisfying the Lax entropy
conditions

λj−1(Ul) < σ < λj(Ul), λj(Ur) < σ < λj+1(Ur), j = 1, 3.(2.6)

For the linearly degenerate family j = 2 there is only one type of waves called contact
discontinuities. These waves are solutions of the form (2.4) that satisfy the Rankine–Hugoniot
condition (2.5) with σ = λ2.

We fix a left state Ul. For each family the wave curve consists of all states U that can be
connected to the given left state by a wave of this family. The rarefaction solution is of the
form

(2.7) U(x, t) =


Ul, if x < λj(Ul)t,
w(x/t), if λj(Ul)t < x < λj(U)t,
U, if x > λj(U)t.

The rarefaction wave curve is the set of all right states U that can be connected to the left
state by a rarefaction wave. For system (1.1) these are

R1(v, Ul) :=
(

v, ul −
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v > vl,

R3(v, Ul) :=
(

v, ul +
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v < vl.

The shock curves of all states which can be connected to Ul by an admissible shock wave are

S1(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl

)
, v < vl,

S3(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl,
)

, v > vl,

with the shock velocities

σ1(Ul, Ur) = −

√
v−γl

l − v−γl

v − vl
= −

√
pl − p

p−1/γl − p
−1/γl

l

,(2.8)

σ3(Ul, Ur) =

√
v−γl − v−γl

l

vl − v
=

√
p− pl

p
−1/γl

l − p−1/γl

,(2.9)

respectively. Note that the shock velocities do not depend on u. The curve of all right states
which can be connected to Ul by a contact discontinuity is

C2(γ, Ul) : =
(
v

γl/γ
l , ul, γ

)
, γ > 1,

with the velocity σ2 = λ2 = 0.
Note that γ only changes along the contact discontinuities. Furthermore, both u and

p = v−γ are constant along a contact discontinuity, and we therefore choose to work with p,
u and γ. A shock or a rarefaction curve through Ul lies in the plane γ = γl and is equal to
the corresponding wave curve for the p-system (1.3) with γ = γl. We proceed by defining
the wave curves using p, u, and γ;

Φ1(p, Ul) :=

{
(p, ul − r(p, pl, γl), γl) , p < pl,

(p, ul − s(p, pl, γl), γl) , p > pl,
(2.10)

Φ2(γ, Ul) := (pl, ul, γ), γ > 1,(2.11)
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Φ3(p, Ul) :=

{
(p, ul + r(p, pl, γl), γl) , p > pl,

(p, ul − s(p, pl, γl), γl) , p < pl,
(2.12)

where

r(p, pl, γl) :=
2
√

γl

γl − 1

(
p

γl−1
2γl − p

γl−1
2γl

l

)
,(2.13)

s(p, pl, γl) :=
((

p
− 1

γl

l − p
− 1

γl

)
(p− pl)

)1/2

.(2.14)

Recall that if p = 0, we have vacuum, and thus the wave curves are only well-defined for
p > 0 and pl > 0. All results are for waves contained in

D = {(p, u, γ) | p ∈ [pmin, pmax], |u | < ∞, γ ∈ (1, γ]},(2.15)

where pmin > 0, pmax < ∞ and γ ∈ (1,∞) are constants. For initial data given by (1.2) we
will later establish the upper and lower bound on p and argue that

γ := sup
x

(γ0(x)),(2.16)

for all waves.
The projection onto the (p, u)-plane of two wave curves with different γ’s are shown in

Figure 1. Note that the projected curves intersect. Before we discuss this and other important
properties of the wave curves, we mention the backward wave curves. These are the curves
of all left states U that can be connected to a given right state Ur by a wave of the given
family. We denote these wave curves by Φ̃i. We will use the backward 3-wave curve several
times and this is given by

Φ̃3(p, Ur) :=

{
(p, ur − r(pr, p, γr), γr) , p < pr,

(p, ur + s(pr, p, γr), γr) , p > pr,
(2.17)

where r and s are given by (2.13) and (2.14). We now turn to the properties of the wave
curves.

Lemma 2.1. Assume that the wave curves are contained in D. Then they have the following
properties:

(i) Viewed as functions of p, Φ1 is strictly decreasing and Φ3 is strictly increasing.
(ii) Given two wave curves, Φj(p, U1) and Φj(p, U2) where j ∈ {1, 3}, so that U1 is not

on Φj(p, U2) and U2 is not on Φj(p, U1). Then the two wave curves never intersect.
Moreover, if γ1 = γ2, then also the projected wave curves onto the (p, u)-plane never
intersect. However, if γ1 6= γ2, then the projected wave curves can intersect.

(iii) Consider the projections onto the (p, u)-plane of the wave curves through U1 = (pl, ul, γ1)
and U1 = (pl, ul, γ2) where γ1 ≤ γ2. If

∂

∂p
r(pl, pl, γl) <

∂

∂p
r(pl, pl, γ2),

then the projected wave curves going to the right (with respect to p) will never intersect,
while the projected wave curves going to the left will intersect as p decreases. If

∂

∂p
r(pl, pl, γl) >

∂

∂p
r(pl, pl, γ2),
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p

u

R1(p,U1)

R1(p,U2)

R3(p,U2)

R3(p,U1)

S1(p,U2)

S3(p,U1)
S1(p,U1)

S3(p,U2)
(pl, ul)

(a) The projected curves going to the left do not
intersect, while the curves going to the right

do.

p

u

R1(p,U2)

S3(p,U2) S1(p,U1)

R3(p,U1)

S1(p,U2)
(pl, ul)

S3(p,U1)

R1(p,U1)

R3(p,U2)

(b) The projected curves going to the left inter-
sect, while the curves going to the right do

not.

Figure 1. The wave curves through U1 = (pl, ul, γ1) (dotted line) and
U2 = (pl, ul, γ2), where γ1 < γ2, projected onto the (p, u)-plane are depicted
for two different values of the parameters.

then the projected wave curves going to the right will intersect, while the projected wave
curves going to the left will not. If

∂

∂p
r(pl, pl, γl) =

∂

∂p
r(pl, pl, γ2),

then none of the projected wave curves will intersect.
(iv) The slope of a rarefaction wave in the plane γ = γl, ∂r/∂p, only depends on p and

γl, not on pl. Furthermore, there exist two constants r′min and r′max only depending on
pmin, pmax and γ so that

r′min ≤
∂

∂p
r(p, pl, γl) ≤ r′max.

(v) The slope of a shock wave in the plane γ = γl, ∂s/∂p, depends on p, γl and pl. Fur-
thermore, there exist two constants s′min and s′max only depending on pmin, pmax and γ
so that

s′min ≤
∂

∂p
s(p, pl, γl) ≤ s′max.

(vi) The wave curves have a continuous derivative at Ul,

lim
p→pl

∂

∂p
s(p, pl, γl) =

∂

∂p
r(pl, pl, γl).

Furthermore,

∂

∂p
s(p, pl, γl) ≥

∂

∂p
r(p, pl, γl),

for all pl. Hence, a shock wave is always steeper than a rarefaction wave at a given
p 6= pl provided both waves lie in the plane γ = γl.
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(vii) Rarefaction waves are additive; if a rarefaction wave connects U1 to U2 and another
rarefaction wave of the same family connects U2 to U3, then the rarefaction wave con-
necting U1 to U3 equals the sum of the other two rarefaction waves.

(viii) Given two 1-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and assume
p1 < p2. Then the shock wave starting at p1 is steeper than the shock wave starting at
p2 at any given point p, that is,

∂

∂p
s(p, p2, γ) <

∂

∂p
s(p, p1, γ),

for all p ≥ p2 > p1.
(ix) Given two 3-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and assume

p1 < p2. Then the shock wave starting at p2 is steeper than the shock wave starting at
p1 at any given point p, that is,

∂

∂p
s(p, p1, γ) <

∂

∂p
s(p, p2, γ),

for all p ≤ p1 < p2.

Proof. All the properties follows from differentiating the wave curves. �

According to the above lemma, the slopes of the projected wave curves onto the (p, u)-
plane depend on γ. The next lemma gives an estimate on how different two waves with
different γ’s are.

Lemma 2.2. Let ε1 and ε2 be 1-waves of the same type such that ε1 connects (p0, u0, γ1) to
(p, u1, γ1) and ε2 connects (p0, u0, γ2) to (p, u2, γ2), or let η1 and η2 be 3-waves of the same
type such that η1 connects (p, u1, γ1) to (p0, u0, γ1) and η2 connects (p, u2, γ2) to (p0, u0, γ2).
Assume that all waves are contained in D and furthermore that u1 < u2. Then

u2 − u1 ≤ c2 |p− p0 | |γ2 − γ1 | ,(2.18)

where c2 only depends on pmin, pmax and γ.

Note that for 1-waves we compare two waves where the projected waves start at the same
point in the (p, u)-plane, while we for 3-waves compare two waves where the projected waves
end at the same point. The proof is based on the same techniques as used in [24].

Proof. Since the projection of the 3-waves end at the same point, we make use of the 3-
backward wave curves. The projected (backward) wave curves can be described by a function
of two variables,

u(p, γ) =


u0 − s(p, p0, γ), p > p0, for 1-shock waves,
u0 − r(p, p0, γ), p < p0, for 1-rarefaction waves,
u0 + s(p0, p, γ), p > p0, for 3-shock waves,
u0 − r(p0, p, γ), p < p0, for 3-rarefaction waves,

(2.19)

where u(p0, γ1) = u(p0, γ2) = u0, u(p, γ1) = u1 and u(p, γ2) = u2 for all cases. Figure 2
illustrates this when the waves are 1-shocks. If the two wave curves do not intersect between
p0 and p, then∫ γ2

γ1

∫ p

p0

upγ(s, t) dsdt = u(p, γ2)− u(p, γ1)− u(p0, γ2) + u(p0, γ1),(2.20)

where upγ denotes the second order partial derivative with respect to p and γ. If the two
wave curves intersect at p = pm, then we integrate from pm to p and replace p0 by pm at
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p

u

u0 − s(p,p0, γ2)

u0 − s(p,p0, γ1)

u(p0, γ1) = u(p0, γ2) = u0

u(p,γ1) = u1

u(p,γ2) = u2

Figure 2. When ε1 and ε2 of Lemma 2.2 are 1-shocks.

the right-hand side. This will give us an even stronger estimate than (2.18), and therefore
we can assume for the rest of the proof that the wave curves do not intersect.

If we can show that |upγ | ≤ c2, where c2 is a constant only depending on pmin, pmax and
γ, then

u2 − u1 = u(p, γ2)− u(p, γ1)− u(p0, γ2) + u(p0, γ1)

=
∫ γ2

γ1

∫ p

p0

upγ(s, t) dsdt ≤ c2 |γ2 − γ1 | |p− p0 | ,

and we have proved (2.18).
Let us first consider when the waves are either 1- or 3-rarefaction waves. Then we find

that

∂2r

∂p∂γ
(p, p0, γ) = − ∂2r

∂p∂γ
(p0, p, γ) =

1
2
γ−5/3p−(1+γ)/2γ(ln p− γ).(2.21)

For a fixed γ, we see that (2.21) is negative for ln p < γ. By differentiating (2.21) with
respect to p, we find that it is increasing in p until it reaches its maximum value,

0 < γ−
2
3 exp

(
−3 + γ

2

)
≤ 1,

at ln p = γ(3 + γ)/(1 + γ). After this point, (2.21) is strictly decreaseing towards zero as p
grows large. Thus, if ln pmin ≤ γ, then the minimum value of (2.21) is obtained at p = pmin,
otherwise (2.21) is positive for all pmin ≤ p ≤ pmax. Define

c := max
γ∈(1,γ]

1
2
γ−5/3p

−(1+γ)/2γ
min |ln pmin − γ | ,(2.22)

which is a constant depending only on pmin and γ. We conclude that when the waves are
either 1- or 3-rarefaction waves, then

|upγ | ≤ max{c, 1}.
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For shock waves we have
∂2s

∂p∂γ
(p, p0, γ) = − ∂2s

∂p∂γ
(p0, p, γ) = f,(2.23)

where

f :=
−sp−

γ+1
γ (p− p0) + γ(p

− 1
γ

0 ln p0 − p−
1
γ ln p)((p− p0) ∂s

∂p + s)

2γ3s2
,(2.24)

and s = s(p, p0, γ). By differentiating with respect to p, we find that (2.24) does in general
behave similar to (2.21); its minimum value is obtained at the limit when p tends to p0, and
this limit equals the value of (2.21) at p = p0. Furthermore, also (2.24) increases until it
reaches its maximum value, which is positive and less than one, before it decreases towards
zero as p grows large. However, (2.24) does depend on p0 while (2.21) does not, therefore
the two expressions behave different for small p0. Then (2.24) is negative and increasing for
all p, but still its minimum value is obtained at the limit when p goes to p0. Therefore,

|upγ | ≤ max{c, 1},

also when the waves are shock waves where c is given by (2.22). We define

c2 := max{c, 1},(2.25)

and conclude that |upγ | ≤ c2 for u given by any of the cases in (2.19), and for all p ∈
[pmin, pmax] and γ ∈ (1, γ]. This ends the proof of the lemma. �

2.2. The Riemann Problem. We have the following fundamental definition.

Definition 2.3. The Riemann problem for (1.1) is the Cauchy problem with initial data

U(x, 0) =

{
Ul, if x < 0,

Ur, if x > 0,
(2.26)

where U = (v, u, γ) and Ul, Ur ∈ R3 are constants.

Lemma 2.4. The Riemann problem for (1.1) where Ul and Ur are contained in D, cf. (2.15),
has a unique solution with no vacuum if

ur − ul < r(pr, 0, γr)− r(0, pl, γl).(2.27)

Proof. Note that if γl = γr, then the Riemann problem for (1.1) reduces to the Riemann
problem for the p-system (1.3). The solution of this problem is described in detail in [20,
Ch. 17, §A], and it is unique if (2.27) is satisfied with γl = γr.

A 2-wave takes us from one plane, γ = γ1, to another plane, γ = γ2, while p and u remain
constant. Therefore, the Riemann problem has a unique solution if the projections onto the
(p, u)-plane of the 1-wave curve, Φ1(p, Ul), and the backward 3-wave curve, Φ̃3(p, Ur), have
a unique intersection point. From property (i) we have that the projection of Φ1 is strictly
decreasing in p and it follows that the projection of Φ̃3 is strictly increasing in p. Hence,
the projected curves intersect at most once. The only case where the two curves do not
intersect is if the projection of the backward 3-rarefaction wave from Ur always lies above
the projection of the 1-rarefaction wave from Ul. Thus, if

ur − r(pr, 0, γr) < ul − r(0, pl, γl),

then the projections of Φ̃3(p, Ur) and Φ1(p, Ul) onto the (p, u)-plane have a unique intersection
point, and the Riemann problem has a unique solution. �
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The solution of the Riemann problem (Ul, Ur) is constructed as follows: Let (p̃, ũ) be
the unique intersection between the projections of Φ1(p, Ul) and Φ̃3(p, Ur) onto the (p, u)-
plane. We connect Ul = (pl, ul, γl) to Ũ1 = (p̃, ũ, γl) by a 1-curve, then we go from Ũ1 to
Ũ2 = (p̃, ũ, γr) along a contact discontinuity, and finally connect Ũ2 to Ur = (pr, ur, γr) by
a 3-wave.

2.3. Invariant region and vacuum. A region Ω is invariant for the Riemann problem if
for any Riemann problem with initial data in Ω, its solution is also in Ω. For the p-system
we know from [10, Ex. 3.5] that the convex region in the (v, u)-plane between the integral
curves of the eigenvectors is invariant. This region bounds v from below, but not from above,
thus vacuum is included in the invariant region. In the (p, u)-plane this corresponds to the
region bounded by p = 0 and the two integral curves. Since γ cannot take any other values
than those of the initial data, we find the invariant region for the p-system for each γ and
take the union of these. This gives us an invariant region for (1.1). Moreover, this gives us
the upper bound on p, pmax, which we need, but p is still not bounded away from vacuum.

3. Decreasing Glimm Functional

In order to prove existence of a unique weak solution of (1.1) with the initial data (1.2),
we first find a sequence of approximate solutions of (1.1), and then show that this converges
to a weak solution. We use the Glimm scheme to obtain the approximate solutions, for
details on the Glimm scheme see, e.g., [20, Ch. 19]. If we can show that the total variation of
the approximate solution is bounded, convergence to a weak solution of (1.1) follows. To do
this we use a Glimm functional and therefore need interaction estimates which are quadratic
in the incoming waves for all possible interactions. As discussed for the p-system by Liu
and Smoller [13], it is not possible to find such estimates if the approximate solution is not
bounded away from vacuum. Fortunately, using the Glimm scheme we have a region U which
contains the approximate solution and this region is bounded by the total variation of the
initial data. Therefore, given some assumptions on the initial data, we can show that this
region does not contain vacuum.

3.1. The Glimm Scheme. Before we define the Glimm functional and prove it is decreas-
ing, we need to introduce the Glimm scheme and some more notation.

Choose the spatial mesh size ∆x = h and the temporal mesh size ∆t so that

h

∆t
> max

U∈U
|λj(U) | , j = 1, 2, 3,(3.1)

and define xi := ih for i = 0,±1,±2, . . . , and tn := n∆t for n = 0, 1, 2, . . . . The mesh
points (xi, tn) with i + n even, n = 0, 1, 2, . . . , make up a staggered grid, see Figure 3. Let
furthermore a = {a0, a1, . . . } be a random sequence, equidistributed in the interval [−1, 1],
and let

yn
i := xi + anh, i + n odd,(3.2)

be the sampling points. Figure 3 shows the characteristic diamonds we get by drawing the
lines between the sampling points, each diamond containing exactly one mesh point. A curve
going from the left to the right along the edges of the diamonds, connecting yn

i to either yn−1
i+1

or yn+1
i+1 , is called a mesh curve. Two mesh curves, Jj−1 and Jj , are indicated by dotted lines

in Figure 3. These curves are called successive mesh curves since they only differ at one
point.
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yn
−1 yn

1

Jj

Jj−1

t = (n− 1)∆t

t = n∆t

t = (n + 1)∆t

x1x
−1

x
−2 x0 x2

x1x
−1

yn+1
0 yn+1

2

yn−1
2yn−1

0

Figure 3. The staggered grid with the diamonds and two successive mesh
curves indicated by dotted lines. Here n is even.

We approximate the initial data by piecewise constants,

Uh(x, 0) = U0(y0
i−), (i− 1)h ≤ x ≤ (i + 1)h, i odd,(3.3)

and at each time step we use the solution already found for 0 ≤ t < tn to define Uh(x, tn) as
a piecewise constant function by

Uh(x, tn) = Uh(yn
i −, tn−), (i− 1)h ≤ x ≤ (i + 1)h, i + n odd,(3.4)

i.e., by using the values of the solution at the sampling points. We solve all Riemann problems
at t = tn and together these waves give the approximate solution for tn ≤ t < tn+1. None of
the waves will interact before the next time step because the ratio between the spatial mesh
and the temporal mesh is larger than the speed of any of the waves, cf. (3.1).

We now turn to what happens inside one diamond. Waves may enter a diamond through
its lower left or lower right edge. A shock wave or a contact discontinuity either enters
the diamond or not. For a rarefaction wave one part of the wave can enter one diamond,
while the rest of the rarefaction wave enters the nearby diamond. As stated in property (vii),
rarefaction waves are additive and therefore this corresponds to one rarefaction wave entering
each diamond. We call waves that are entering a diamond incoming waves.

At the grid point inside the diamond we solve the Riemann problem (Ul, Ur) where Ul

and Ur are the values at the sampling points. Since the sampling points are the corners of
the diamond, Ul is the leftmost state (with respect to x) among the incoming waves and Ur

is the rightmost state. The solution of the Riemann problem (Ul, Ur) consists of up to three
waves. These waves are called outgoing waves and are the only waves leaving the diamond.
Let Ui, i = 1, . . . , 3, be the intermediate states among the incoming waves and Ũj , j = 1, 2,
the intermediate states among the outgoing waves. Note that p̃1 = p̃2 and ũ1 = ũ2, and we
refer to them by p̃ and ũ.

We define an interaction between incoming waves as solving the Riemann problem with
the leftmost state among the incoming waves as the left state and the rightmost state among
the incoming waves as the right state. We also say that two or more waves interact meaning
the interaction between these waves. In other words, the waves entering one diamond inter-
acts and the result of this interaction is the outgoing waves. Note that there is no actual
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interaction in the Glimm scheme because the grid is constructed so that no waves can collide
at any time.

The goal is to estimate the total strength of the outgoing waves, that is, the sum of the
strengths of the outgoing waves, in terms of the strengths of the incoming waves. First we
define the strength of a 1-wave or a 3-wave as the jump in p across the wave, and the strength
of a 2-wave as the jump in γ across the wave. Furthermore, we let

ε define a 1-wave, α a 1-shock wave, µ a 1-rarefaction wave,
η a 3-wave, β a 3-shock wave, ν a 3-rarefaction wave,
ζ a 2-wave, δ a 1- or 3-wave.

The strength of a wave is written |δ |. We use a prime, like δ′, to indicate an outgoing wave
and write an interaction as δ1 + δ2 → δ′1 + δ′2 where δ1 enters the diamond through its left
edge and δ2 through its right edge. If more than two waves interact, we use parentheses to
indicate which waves enter the diamond through the left and the right edge.

Since γ only changes along ζ-waves, the incoming and outgoing ζ-waves will always be
equal and we write them all as ζ. Moreover, the incoming and outgoing ζ-waves have the
same strength and we therefore omit them from the interaction estimates.

3.2. Possible interactions in a diamond. Due to the staggered grid used in the Glimm
scheme, the number of possible interactions in one diamond is limited. All contact disconti-
nuities have zero speed, therefore at most one contact discontinuity can enter one diamond.
Moreover, it follows from the wave speeds that two rarefaction waves of the same family can
only enter the same diamond if there is another wave between them. Furthermore, it is not
possible to have both a 1-wave and a 3-wave entering through both the left and the right
edge. Therefore we do not get interactions between more than four waves.

We divide all possible interactions into four main types:
(A) Waves entering through only one edge, see Figure 4: (ε+ ζ + η) where one or two of the

waves can be absent.
(B) Two waves entering the diamond through different edges, see Figure 5:

(a) Both waves are of the same family: ε1 + ε2 or η1 + η2 where at least one wave is a
shock wave.

(b) Different families, but no contact discontinuity: η + ε.
(c) With a contact discontinuity: ζ + ε or η + ζ.

(C) Three waves entering the diamond, see Figure 6:
(a) No contact discontinuity: (ε + η) + ε or η + (ε + η).
(b) A contact discontinuity as the leftmost or rightmost wave: (ζ + η)+ ε or η +(ε+ ζ).
(c) A contact discontinuity as the middle wave: (ε1 + ζ) + ε2 or η1 + (ζ + η2).

(D) Four waves entering the diamond, see Figure 7: (ε1 + ζ + η) + ε2 or η1 + (ε + ζ + η2).
(a) Waves of the same family are also of the same type.
(b) Waves of the same family are not of the same type.

Even though we have at most four interacting waves, we get a notable number of inter-
actions. However, symmetries of the system considerably reduce the number of cases that
need to be discussed. The symmetries are summarized in the following lemma.

Lemma 3.1 (Symmetry property). By letting x go to −x, a 1-wave connecting Ul to Ur

becomes a 3-wave connecting Ur to Ul, and vice versa. A 2-wave is unchanged under this
transformation. Furthermore, the leftmost wave with respect to x will be the rightmost wave
with respect to −x.
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Figure 4. Interactions of type A.

(a) Type Ba (b) Type Bb (c) Type Bc

Figure 5. Interactions of type B.

(a) Type Ca (b) Type Cb (c) Type Cc

Figure 6. Interactions of type C.

Figure 7. Interactions of type D.

Proof. Consider first a 1-rarefaction wave connecting Ul to Ur. In the (x, t)-plane this wave
is the fan between the lines x = λ1(Ul) t and x = λ1(Ur) t where λ1(Ul) ≤ λ1(Ur). Recall
that λ1 = −λ3. Changing variables from x to y = −x, we get

dy

dt
=

dy

dx

dx

dt
= −dx

dt
,

thus, in the new variables, we have the fan between y = −λ1(Ur) t = λ3(Ur) t and y =
−λ1(Ul) t = λ3(Ul) t, or in other words, we have obtained the 3-rarefaction wave connecting
Ur to Ul.

In the (x, t)-plane, a 1-shock wave connecting Ul to Ur is given by the line x = σ1(Ul, Ur) t.
Note that pl < pr according to (2.10) and that the shock velocity σ1(Ul, Ur) satisfies the
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Rankine–Hugoniot condition (2.5). Changing variables from x to y = −x, we get

σ =
dy

dt
=

dy

dx

dx

dt
= −dx

dt
= −σ1(Ul, Ur) = σ3(Ur, Ul),

where the last equality follows from (2.8) and (2.9). Thus, the 1-shock wave changes into
the line x = σ t = σ3(Ur, Ul) t. The Rankine–Hugoniot condition must still be satisfied after
the change of variables, thus

σ(Ur − Ul) = f(Ur)− f(Ul),

⇔ −σ1(Ul, Ur)(Ur − Ul) = f(Ur)− f(Ul),

⇔ σ3(Ur, Ul)(Ul − Ur) = f(Ul)− f(Ur).

Hence, we have a wave connecting Ur to Ul with the shock velocity σ3(Ur, Ul) satisfying the
Rankine–Hugoniot condition. Furthermore, pr > pl, therefore it is an admissible 3-shock
wave connecting Ur to Ul.

The fact that a 3-wave becomes a 1-wave under this transformation follows by the same
arguments.

For a 2-wave we have σ = λ = 0, therefore a 2-wave is unchanged when sending x to
−x. �

For instance, it follows from Lemma 3.1 that ζ + ν + α becomes β + µ + ζ under the
transformation from x to −x and therefore the two interactions are symmetric. This means
that all estimates found for ζ + ν + α will apply to β + µ + ζ as well, and we only need to
consider one of them.

3.3. The Glimm functional. Our Glimm functional is defined on a mesh curve J by

G(J) := F (J) + 3C1(γ − 1)Q1(J) + 3C2Q2(J),(3.5)

where C1 is the constant appearing in the estimates given by (4.3) for the interaction between
two shock waves, cf. the case Bb-ii (see Subsection 4.2.2), and

C2 :=
c2

min{r′min, s′min}
= kc2,(3.6)

where c2 is the constant from Lemma 2.2 defined by (2.25) and

k :=
1

min{r′min, s′min}
.(3.7)

Note that both C1 and C2 are constants only depending on pmin, pmax and γ. The linear
functional F and the two quadratic functionals Q1 and Q2 are defined by

F (J) :=
∑

{|δ | | all shock waves δ crossing J},(3.8)

Q1(J) :=
∑

{|α | |β | | all approaching 1- and 3-shock waves crossing J},(3.9)

Q2(J) :=
∑

{|ζ | |δ | | all approaching pairs of ζ and δ crossing J},(3.10)

where two waves of different families are approaching if the wave of the lowest family is the
rightmost wave with respect to x. Note that F and Q1 only sum over shock waves.

Remark 3.2. The Glimm functional used in [16] is similar to the two first terms of our
Glimm functional (3.5), only the constants differ slightly.
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We need two more functionals, one summing over all shock and rarefaction waves crossing
a mesh curve J and one summing over the contact discontinuities crossing J . We define

L(J) :=
∑

{|δ | | all δ crossing J},(3.11)

and

Fγ(J) = Fγ :=
∑

{|ζ | | all ζ crossing J}.(3.12)

Note that the sum of all contact discontinuities, Fγ , is constant for all mesh curves.
The key point in order to show convergence, is to prove that this Glimm functional is a

decreasing functional in time. Define the constant

C = min{C̃, 1},(3.13)

where the minimum is taken over all the constants C̃ appearing in the estimates for interac-
tions of type Ba considered in Subsection 4.2.1. Note that 0 < C ≤ 1 depends only on pmin,
pmax and γ. We can now state the following lemma.

Lemma 3.3. Assume that all waves are contained in D and let G(J) be the Glimm functional
defined by (3.5). If

(γ − 1)L(J0) ≤
C

9C1
,(3.14)

Fγ ≤
C

9C2
,(3.15)

then G(J) is a decreasing functional, that is, G(JN ) ≤ G(JN−1) ≤ · · · ≤ G(J0). Further-
more, F (JN ) ≤ 5

3L(J0).

We prove this lemma by going through every possible interaction we can get in the Glimm
scheme, and we devote the next section to this.

4. Proof of Lemma 3.3

We prove that the Glimm functional (3.5) is decreasing by induction on successive mesh
curves. Since two successive mesh curves only differ at the edges of one diamond, we have
to consider all possible interactions that can take place in one diamond and show that G is
decreasing across these.

Before we start on the induction, we prove the last part of Lemma 3.3. Assume that G
is decreasing for successive mesh curves up to Jn and assume furthermore that L0 = L(J0)
and Fγ satisfy (3.14) and (3.15), respectively. To simplify the notation we write Gj = G(Jj),
Fj = F (Jj), and Qk,j = Qk(Jj). We get

Fn ≤ Gn ≤ Gn−1 ≤ · · · ≤ G0 = F0 + 3C1(γ − 1)Q1,0 + 3C2Q2,0

≤ F0 + 3C1(γ − 1)(F0)2 + 3C2L0Fγ

≤ (1 + 3C1(γ − 1)F0 + 3C2Fγ)L0

≤ (1 + 3C1(γ − 1)L0 + 3C2Fγ)L0

≤
(

1 +
C

3
+

C

3

)
L0 ≤

5
3
L0,

(4.1)

where we have used that C ≤ 1. This proves that if G is decreasing, then F (JN ) ≤ 5
3L(J0).

We now turn to the induction argument. The first step is to show that G1−G0 ≤ 0 where
J0 is the unique mesh curve connecting the sampling points at t = 0 to the sampling points
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at t = ∆t. Then we assume that G is decreasing for successive mesh curves up to Jn, that
is, Gn ≤ Gn−1 ≤ · · · ≤ G0. The induction step is to show that ∆G := Gn+1 −Gn ≤ 0. For
a given interaction, the calculations needed to estimate G1−G0 and ∆G are the same. The
sum over all shock waves or all contact discontinuities crossing the first of the two successive
mesh curves most often show up in the estimates, and we use conditions (3.14) and (3.15)
in addition to (4.1) to show that the estimates are nonpositive. Thus, the only difference in
the estimates for G1−G0 and ∆G is that for the first one we might get terms with F0 ≤ L0,
while for the second one these terms involve Fn ≤ 5

3L0. We only include the calculations for
∆G.

In Section 3.2 we discussed all the possible interactions and divided them into four main
types. Recall that the projection of 1- or 3-wave curves onto the (p, u)-plane can intersect
if they have different γ’s, cf. property (ii) in Lemma 2.1, therefore each interaction has up
to four possible outcomes and they all have to be considered. Fortunately, the symmetry
properties of system (1.1) stated in Lemma 3.1 nearly halve the number of interactions we
have to consider.

Before we start considering each interaction, we describe our general approach. We start
by proving that the Glimm functional is decreasing for all interactions of type B, that is,
interactions between two waves. This is either done by using estimates and properties of the
wave curves given in [16] and translating these into estimates using p and u as the variables,
or by applying Lemma 2.2.

To show that ∆G ≤ 0 for interactions between more than two waves, we use a strategy
of dividing the interaction into several steps. As long as we can show that G is decreasing
across each step, it follows that G is decreasing going from the first to the last step and
that ∆G ≤ 0 across the interaction. Based on this, we divide the interaction into steps for
which we already know that G is decreasing. Thus, at each step we let two (or sometimes
three) waves interact. As long as this is an interaction already analyzed, we know that G
decreases across this step. We continue this until we at some point easily can show that G
is decreasing across the last step, that is, we are able to find sufficiently strong estimates of
the outgoing waves in terms of the collection of waves obtained through the previous steps.

Formally, we can describe the division of the interaction into k steps using inner diamonds
and intermediate mesh curves. Start by identifying two (or three) nearby waves among the
incoming waves for which we already have established that the Glimm functional is decreasing
across the interaction. Introduce an intermediate mesh curve, J∗1 , which coincides with Jn

everywhere except near the lower corner of the original diamond. Near the lower corner J∗1
lies above Jn so that J∗1 and Jn enclose a small inner diamond inside the original diamond.
This is done so that the waves interacting at the first step enter the inner diamond, while
the waves left unchanged at this step cross Jn and J∗1 outside the inner diamond. Observe
that Jn and J∗1 act as successive mesh curves. Since the waves entering this inner diamond
correspond to an interaction already analyzed, we have ∆G1 := G(J∗1 ) − G(Jn) ≤ 0. Note
that J∗1 is not a real mesh curve by the definition given above, since it inside the original
diamond does not consist of lines connecting sampling points. However, the outcome of the
interaction inside an inner diamond is found by solving the Riemann problem where the
left and right states are the values at the corners of the inner diamond, so the corners act
as sampling points. Let the fan of the outgoing waves be situated somewhere on the line
between the left and the right corner of the inner diamond in such a way that the waves
interacting at the next step enter the next inner diamond while the rest of the waves do not.
Thus, both the intermediate mesh curves and the inner diamonds resemble the real mesh
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curves and diamonds. One example of an interaction divided into steps and the introduced
intermediate mesh curves and inner diamonds is shown in Figure 8.

For each step i = 2, . . . , k−1 we introduce a new mesh curve J∗i which acts as a successive
mesh curve to J∗i−1, that is, the two intermediate mesh curves enclose an inner diamond which
the interacting waves enter. Since the waves entering an inner diamond correspond to an
interaction already analyzed, we have that ∆Gi := G(J∗i )−G(J∗i−1) ≤ 0 for i = 2 . . . k−1. We
stop this process when we after step k−1 are able to show that ∆Gk := G(Jn+1)−G(J∗k−1) ≤
0. In other words, we divide the interaction into steps until we after step k−1 have a collection
of waves which are easy to compare (possibly using Lemma 2.2) with the outgoing waves so
that we are able show that ∆Gk ≤ 0. Then we have G(Jn+1) ≤ G(J∗k−1) ≤ · · · ≤ G(J∗i ) ≤
· · · ≤ G(J∗1 ) ≤ G(Jn), thus, ∆G = G(Jn+1)−G(Jn) ≤ 0.

In most cases only a few extra steps are needed in order to show ∆G ≤ 0. However, for
the cases where many steps are required, we change our strategy slightly. At the first step1

we replace the incoming waves with a new set of waves connecting Ul to Ur. We introduce
inner diamonds and intermediate mesh curves as before, thus, all the incoming waves enter
the first inner diamond and the introduced waves leave this diamond. The only difference
from before is that these outgoing waves of the first diamond is not a result of some known
interaction. Therefore, we have to obtain estimates on these introduced waves in terms of
the original incoming waves, so that we can show ∆G1 ≤ 0. After this step of replacing
one interaction with a new one, we carry on as before. We identify nearby waves among
the introduced waves for which we already have analyzed the corresponding interaction, and
then carry on as above. The advantage of this method is that it requires only a few extra
steps for an interaction where we otherwise would need many steps.

We use the notation ∆Gi−−−→ to indicate the different steps of an interaction and square
brackets to group the waves that interact at each step. Recall that we use ordinary paren-
theses to indicate which waves enter through the same edge. In the figures displaying the
interactions we see the projection of the interaction onto the (p, u)-plane. The left and right
states are drawn as circles, the incoming waves are drawn by dashed lines and the outgoing
waves with dash-dotted lines. The contact discontinuities, ζ, are indicated by asterisks. For
most of the interactions that are divided into steps, we have included the intermediate waves
drawn by dotted lines. Furthermore, any wave drawn by a solid line is a introduced wave
which is not a result of an interaction.

We are now ready to prove that ∆G ≤ 0 across all possible interactions.

4.1. Type A: Waves entering through only one edge. These interactions are trivial:
If one, two or three waves all enter one diamond through the same edge, then they are by
definition the solution of a Riemann problem (Ul, Ur). If no more waves enter the diamond,
then the Riemann problem to be solved inside the diamond is also (Ul, Ur). Thus we have

(ε + ζ + η) → ε′ + ζ + η′, where ε = ε′, η = η′,

and since the incoming and outgoing waves are equal, so are their strengths and ∆G = 0 for
all interactions of type A.

4.2. Type B: Two waves entering the diamond. The interactions between two waves
that do not include a contact discontinuity, are the same interactions as for the p-system and
are discussed in [16] where the waves are measured by the jumps in the Riemann invariants
for the p-system, r and s, defined by [16, Eq. (5)]. We use the estimates given in [16] and
transform these into estimates using the jump in p to measure the strength of the waves. The

1For the last case of interaction Db-iv we actually do this replacement at the second step.
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(Ul, Ur)

Jn+1

Jn

β ′

β α

(Ul, U0) (U0, Ur)

µ

α′

(a) The interaction before division.

U0

µ

β ′α′

J∗

1

J∗

2

β

α̃

α
Ul Ur

α(Ul, U∗)

U1

U∗

(U1, Ur)

(Ul, Ur)β̃

β

Jn+1

Jn

(U0, Ur)(Ul, U0)

(b) The interaction divided into three steps with two new mesh curves, J∗
1 and J∗

2 , and
two inner diamonds.

Figure 8. An interaction divided into three steps: µ + β + α → α′ + β′

which is the second case of Ca-v. The projection onto the (p, u)-plane is
shown in Figure 16(b).
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map from (p, u) to (r, s) is one-to-one and onto for all p > 0. We state the estimates and skip
the detailed transformations going from the estimates and properties in (r, s)-coordinates to
estimates in (p, u)-coordinates. Note that the constants appearing in [16] depend on pmin,
pmax and γ. However, for a given pmin and pmax we take the maximum or minimum over
all γ and find an upper bound of these constants that only depend on pmin, pmax and γ.
For the interactions involving a contact discontinuity, we obtain the needed estimates using
Lemma 2.2.

Recall that for all interactions of type B we have one wave entering through each edge,
otherwise the interaction is a trivial interaction of type A.

4.2.1. Type Ba: Two waves of the same family.
(i) α1 +α2 → α′+ν′ (and β1 +β2 → µ′+β′): Property (viii) implies that α2 lies above α′

p

u

Ur

ν′

α′

α1

α2

Ul

Figure 9. The interaction α1 + α2 → α′ + ν′.

and there is only one possible outcome of this interaction, see Figure 9. We have that

|α′ | − |α1 | − |α2 | = − |ν′ | ,
from which we get

∆F = − |ν′ | , ∆Q1 ≤ 0, ∆Q2 ≤ |ν′ |Fγ ,

where ∆F := Fn+1 − Fn and ∆Qi := Qi,n+1 −Qi,n. Thus,

∆G ≤ |ν′ | (−1 + 3C2Fγ) ≤ |ν′ |
(
−1 +

C

3

)
≤ |ν′ |

(
−1 +

1
3

)
≤ 0.

By the symmetry property ∆G ≤ 0 also across the interaction β1 + β2.
(ii) α + µ (and ν + β): There are two possible outcomes of this interaction.

• α + µ → µ′ + β′: In this case Ur is to the left of the 3-shock curve starting at Ul,
see Figure 10(a). From [16] we find that there exists a C̃ depending only on pmin,
pmax and γ such that

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ≤ −C |β′ | .

Recall that C is defined as minimum over all C̃. This gives us

∆F = −C |β′ | ,
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p

u

α

β ′

Ur

μ′

Ul

μ

(a) α + µ→ µ′ + β′.

p

u

Ul

α

Ur

β ′

μ

α′

(b) α + µ→ α′ + β′.

Figure 10. The interaction α + µ.

∆Q1 ≤ |β′ |Fn ≤
5
3
|β′ |L0,

∆Q2 ≤ |β′ |Fγ ,

and we find

∆G ≤ |β′ |
(
−C + 3C1(γ − 1)

5
3
L0 + 3C2Fγ

)
≤ |β′ |

(
−C +

5
3

C

3
+

C

3

)
≤ 0.

• α+µ → α′+β′: In this case Ur is to the right of the 3-shock curve starting at Ul,
see Figure 10(b). Then there exists a constant C̃ ≥ C so that

|α′ |+ |β′ | − |α | ≤ −C̃ |β′ | ≤ −C |β′ | .

As above we find

∆F = −C |β′ | ,

∆Q1 ≤ |β′ |Fn ≤
5
3
|β′ |L0,

∆Q2 ≤ |β′ |Fγ ,

thus, G ≤ 0.
Due to symmetry, ∆G ≤ 0 across the interaction ν + β.

(iii) µ + α (and β + ν): There are two possible outcomes of this interaction.
• µ + α → µ′ + β′: In this case Ur is to the left of the 3-shock curve starting at Ul,

see Figure 11(a). There exists a C̃ ≥ C so that

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ≤ −C |β′ | .(4.2)

Thus, ∆G ≤ 0 by the same calculation as we just did for α + µ.
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p

u

μ

μ′β ′ Ul

Ur

α

(a) µ + α→ µ′ + β′.

p

u

μ

α

α′

β ′

Ul

Ur

α

β

(b) µ + α→ α′ + β′.

Figure 11. The interaction µ + α.

• µ + α → α′ + β′: In this case Ur is to the right of the 3-shock curve starting at
Ul, see Figure 11(b). For this interaction we use the same approach as in [16] and
replace the interaction by a new one. There exists two waves, β and α, so that

|α |+
∣∣β ∣∣− |α | ≤ −C̃

∣∣β ∣∣ ≤ −C
∣∣β ∣∣ ,

and

β + α → α′ + β′.

We write the interaction as

µ + α
∆G1−−−→ [β + α] ∆G2−−−→ α′ + β′,

where the square brackets indicate that the two waves interact at the second step,
unlike the first step where we just replace the waves.
For the first step we find using the above estimate that

∆F = −C
∣∣β ∣∣ ,

∆Q1 ≤ |α |
∣∣β ∣∣+ ∣∣β ∣∣∑

i

|αi | ≤
∣∣β ∣∣Fn ≤

5
3

∣∣β ∣∣L0,

∆Q2 ≤
∣∣β ∣∣Fγ ,

where αi are all 1-shock waves that are approaching β, that is, all 1-shock waves
to the right of the diamond. From this we find that ∆G1 ≤ 0 at the first step when
passing from µ + α to β + α, regardless of the introduced approaching waves. The
interaction at the second step is of type Bb-ii and by the estiamate (4.3) below we
have ∆G2 ≤ 0.
We have now proved that the Glimm functional is decreasing for both steps, thus,
∆G ≤ 0.

Due to symmetry, ∆G ≤ 0 across the interaction β + ν.
All the constants C̃ in the above estimates consist of one constant from the estimates

in [16], let us call this C0, and one constant due to the transformation into estimates
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using p to measure the wave strengths. From [16] we have C0 > 0, thus, C̃ > 0 for all
the above estimates and 0 < C ≤ 1 since C is the minimum of all C̃ and 1.

4.2.2. Type Bb: Different families, no contact discontinuity.
(i) ν+µ → µ′+ν′: This interaction has only one outcome, see Figure 12(a), and we obtain

|µ′ | ≤ |µ | , |ν′ | ≤ |ν | ,

thus ∆G ≤ 0.

p

u

μ

ν

Ur

Ul

μ′

ν′

(a) ν + µ→ µ′ + ν′.

p

u

Ur

Ul

β ′

β

α

α′

(b) β + α→ α′ + β′.

p

u

ν′

ν

Ul

α′

Ur

α

(c) ν + α→ α′ + ν′.

Figure 12. The interactions of type Bb

(ii) β + α → α′ + β′: This interaction has only one outcome, see Figure 12(b), and we
obtain

|α′ | − |α | ≤ C1(γ − 1) |α | |β | , |β′ | − |β | ≤ C1(γ − 1) |α | |β | ,(4.3)

where C1 is a constant depending only on pmin, pmax and γ, see Remark 4.1. From
these estimates we find

∆F ≤ 2C1(γ − 1) |α | |β | ,

∆Q1 ≤ C1(γ − 1) |α | |β |Fn − |α | |β | ≤
5
3
C1(γ − 1) |α | |β |L0 − |α | |β | ,

∆Q2 ≤ C1(γ − 1) |α | |β |Fγ .

Thus,

∆G ≤ C1(γ − 1) |α | |β |
(

2 +
5
3
3C1(γ − 1)L0 − 3 + 3C2Fγ

)
≤ C1(γ − 1) |α | |β |

(
5
3

C

3
+

C

3
− 1
)
≤ 0.

Remark 4.1. In Nishida–Smoller [16], where the strength of the waves are measured
using the Riemann invariants r and s, interaction Bb-ii is divided into three different
cases with different estimates. However, when transforming these estimates into esti-
mates using p to measure the strength of the waves, we get the same estimate for all the
three cases. Similar to C, the constant C1 is computed from the estimate in [16] and
the transformation back from Riemann invariants, and it does only depend on pmin,
pmax and γ.
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(iii) ν + α → α′ + ν′ (and β + µ → µ′ + β′): There is only one outcome for this interaction,
see Figure 12(c), and we find that

|α′ | − |α | = −q, |ν′ | − |ν | = q,

where q is a positive constant. We get that

∆F = −q, ∆Q1 ≤ 0, ∆Q2 ≤ qFγ ,

and furthermore,

∆G ≤ q (−1 + 3C2Fγ) ≤ q

(
−1 +

C

3

)
≤ 0.

Due to symmetry, ∆G ≤ 0 across the interaction β + µ.

4.2.3. Type Bc: With a contact discontinuity. Interactions of this type do not occur in [16]
and we prove all estimates.

(i) ζ + µ (and ν + ζ): In general we do not know which of the curves µ with γr or µ′

with γl lies above the other, or whether they cross, and therefore there are two possible
outcomes of this interaction, see Figure 13. Recall that contact discontinuities are
denoted by asteriks in the figures.

p

u

μ

μ′

ν′

Ur

Ul

(a) ζ + µ→ µ′ + ζ + ν′.

p

u

β ′

Ur
μ′

μ

Ul

(b) ζ + µ→ µ′ + ζ + β′.

Figure 13. The interaction ζ + µ.

• ζ + µ → µ′ + ζ + ν′: In this case Ur lies above µ′, see Figure 13(a). We have
that |µ′ | − |µ | = |ν′ |, and want an estimate on |ν′ |. Let u denote the point on µ′

where p = pr and apply Lemma 2.2 on the two rarefaction waves µ and µ′ on the
interval from pl = p1 to pr, then

ur − u ≤ c2 |µ | |ζ | .

From the mean value theorem we have |ur − ũ | = |r′(p∗, pl, γ) | |pr − p̃ | for some
p∗ ∈ (p̃, pr) where the derivative is with respect to the first variable. Recall from
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property (iv) that |r′(p∗, pl, γ) | ≥ r′min where r′min is a constant only depending
on pmin, pmax and γ. We get

|ν′ | = |pr − p̃ | ≤ 1
r′min

|ur − u | ≤ c2

r′min

|µ | |ζ | .

This proves the estimate

|µ′ | − |µ | = |ν′ | ≤ C2 |µ | |ζ | ,(4.4)

where C2 is defined by (3.6). Using this estimate we find

∆F = 0,

∆Q1 = 0,

∆Q2 ≤ C2 |µ | |ζ |Fγ − |µ | |ζ | ,

which gives

∆G ≤ C2 |µ | |ζ | (3C2Fγ − 3) ≤ C2 |µ | |ζ |
(

C

3
− 3
)
≤ 0.

• ζ + µ → µ′ + ζ + β′: In this case Ur lies below µ′, see Figure 13(b). We have
|µ′ | − |µ | ≤ 0. Let u be the point on µ with p = p̃ and apply Lemma 2.2 to µ and
µ′ on the interval from pl = p1 to p̃, then

ũ− u ≤ c2 |ζ | |µ′ | ≤ c2 |ζ | |µ | .

From the mean value theorem, for a p∗ ∈ (pr, p̃), and property (v), we get

|β′ | = |pr − p̃ | = 1
|s′(p̃, p∗, γr) |

|ũ− ur |

≤ 1
s′min

|ũ− u | ≤ c2

s′min

|µ | |ζ | ,

where the derivative is with respect to the first variable. This proves the estimates

|µ′ | − |µ | ≤ 0, |β′ | ≤ C2 |µ | |ζ | ,(4.5)

where C2 is defined by (3.6). We get

∆F ≤ C2 |µ | |ζ | ,

∆Q1 ≤ C2 |µ | |ζ |Fn ≤
5
3
C2 |µ | |ζ |L0,

∆Q2 ≤ C2 |µ | |ζ |Fγ − |µ | |ζ | ,

which gives

∆G ≤ C2 |µ | |ζ |
(

1 +
5
3
3C1(γ − 1)L0 + 3C2Fγ − 3

)
≤ C2 |µ | |ζ |

(
5
3

C

3
+

C

3
− 2
)
≤ 0.

By symmetry it follows that ∆G ≤ 0 across the interaction ν + ζ.
(ii) ζ + α (and β + ζ): We do not know in general which of the curves α with γr or α′

with γl lies above the other, therefore this interaction has two possible outcomes. Since
this interaction is very similar to the interaction between a contact discontinuity and
a rarefaction wave discussed above, we do not include all details.
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Figure 14. The interaction ζ + α.

• ζ + α → α′ + ζ + ν′: In this case Ur is above α′, see Figure 14(a). We have that

|α′ | − |α | ≤ 0, |ν′ | ≤ C2 |α | |ζ | ,

where C2 is defined by (3.6). This follows by applying Lemma 2.2 to α and α′

similar to what we did for the interaction ζ + µ → µ′ + ζ + β′. We get

∆F ≤ 0,

∆Q1 ≤ 0,

∆Q2 ≤ C2 |α | |ζ |Fγ − |α | |ζ | ,

which gives

∆G ≤ C2 |α | |ζ | (3C2Fγ − 3) ≤ C2 |α | |ζ |
(

C

3
− 3
)
≤ 0.

• ζ + α → α′ + ζ + β′: In this case Ur is below α′, see Figure 14(b). We have that

|α′ | − |α | = |β′ | ≤ C2 |α | |ζ | ,

where C2 is defined by (3.6). This estimate is obtained using Lemma 2.2 on α
and α′, similar to what we did for the interaction ζ + µ → µ′ + ζ + ν′. From this
estimate we find

∆F ≤ 2C2 |α | |ζ | ,

∆Q1 ≤ C2 |α | |ζ |Fn ≤
5
3
C2 |α | |ζ |L0,

∆Q2 ≤ C2 |α | |ζ |Fγ − |α | |ζ | ,

which gives

∆G ≤ C2 |α | |ζ |
(

2 +
5
3
3C1(γ − 1)L0 + 3C2Fγ − 3

)
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≤ C2 |α | |ζ |
(

5
3

C

3
+

C

3
− 1
)
≤ 0.

Due to symmetry, ∆G ≤ 0 across the interaction β + ζ.

4.3. Type C: Three waves entering the diamond.

4.3.1. Type Ca: No contact discontinuities. The interactions of this type are also present for
the p-system and are covered by [16], although the detailed estimates are not given there.
We choose to include the discussion of this type of interactions in detail since we measure
the waves in p and since the methods are useful for later interactions. Note the increase of
complexity one gets for the later interactions involving a contact discontinuity. Recall that
regular parentheses are used to indicate which edge the waves enter through, while square
brackets are used to indicate which waves interact at each step.
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Figure 15. Some interactions of type Ca.
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(i) (µ1 + ν) + µ2 → µ′ + ν′ (and ν1 + (µ + ν2) → µ′ + ν′): This interaction has only one
outcome, see Figure 15(a), and we divide it into two steps,

µ1 + [ν + µ2]
∆G1−−−→ µ1 + µ + ν

∆G2−−−→ µ′ + ν′.

We have ∆G1 ≤ 0 because the interaction at the first step is of type Bb-i. From
property (iv) and property (vii) it follows that µ1 + µ = µ′ and ν = ν′, therefore
∆G2 = 0.

By symmetry it follows that ∆G ≤ 0 across ν1 + (µ + ν2).
(ii) (α1 + β) + α2 → α′ + β′ (and β1 + (α + β2) → α′ + β′): There is only one outcome of

this interaction, see Figure 15(b), and we divide it into two steps,

α1 + [β + α2]
∆G1−−−→ α1 + α + β

∆G2−−−→ α′ + β′.

We have ∆G1 ≤ 0 because the interaction at the first step is of type Bb-ii. Due to
properties (viii) and (ix) we have

|α′ | − |α1 | − |α | ≤ 0, |β′ | −
∣∣β ∣∣ ≤ 0,

and it follows that ∆G2 ≤ 0.
By symmetry we have ∆G ≤ 0 across β1 + (α + β2).

(iii) (µ1 + β) + µ2 → µ′ + β′ (and ν1 + (α + ν2) → α′ + ν′): There is only one possible
outcome of this interaction, see Figure 15(c), and we divide it into two steps,

µ1 + [β + µ2]
∆G1−−−→ µ1 + µ + β

∆G2−−−→ µ′ + β′.

The first interaction is of type Bb-iii, thus ∆G1 ≤ 0. From property (iv) and prop-
erty (vii) it follows that µ1 + µ = µ′, therefore we must also have β = β′, and then
∆G2 = 0.

It follows from symmetry that ∆G ≤ 0 across ν1 + (α + ν2).
(iv) (α1 + ν) + α2 → α′ + ν′ (and β1 + (µ + β2) → µ′ + β′): This interaction has only one

possible outcome, see Figure 15(d), and we divide it into two steps,

α1 + [ν + α2]
∆G1−−−→ α1 + α + ν

∆G2−−−→ α′ + ν′.

Since the first interaction is of type Bb-iii, we have ∆G1 ≤ 0. Property (iv) and
property (viii) imply that

|α′ | − |α1 | − |α | = −q, |ν′ | − |ν | = q,

for a q > 0, and it follows that ∆G2 ≤ 0.
From symmetry we have that ∆G ≤ 0 across β1 + (µ + β2).

(v) (µ + β) + α (and β + (α + ν)): This interaction has two possible outcomes.
• (µ + β) + α → µ′ + β′: In this case Ur is to the left of the 3-shock curve starting

at Ul, see Figure 16(a). We divide the interaction into three steps,

µ + [β + α] ∆G1−−−→ [µ + α] + β
∆G2−−−→ µ̃ + β̃ + β

∆G3−−−→ µ′ + β′,

where we have ∆G1 ≤ 0 because the interaction at the first step is of type Bb-ii,
and ∆G2 ≤ 0 because the second interaction is of type Ba-iii. From property (vi)
and property (ix) we know that the intersection between α and β is to the right of
β′, but still

∣∣β ∣∣ ≤ |β′ |. However, from property (iv) and property (ix) it follows
that β̃ starts to the left of β′ and we have

|µ′ | − |µ̃ | = q, |β′ | −
∣∣β ∣∣− ∣∣∣β̃ ∣∣∣ = −q,

from which we obtain ∆G3 ≤ 0.
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Figure 16. The interaction (µ + β) + α.

• (µ + β) + α → α′ + β′: In this case Ur is to the right of the 3-shock curve starting
at Ul, see Figure 16(b). We divide the interaction into three steps,

µ + [β + α] ∆G1−−−→ [µ + α] + β
∆G2−−−→ α̃ + β̃ + β

∆G3−−−→ α′ + β′.

Again we have ∆G1 ≤ 0 and ∆G2 ≤ 0 because the interactions at the first and
second step are of type Bb-ii and Ba-iii, respectively. Due to property (vi) and
property (ix), the intersection between α and β is to the right of β′. Therefore,
we have from property (ix) that the intersection between α̃ and β̃ is to the right
of the intersection between α′ and β′, and

|α′ | − |α̃ | ≤ 0, |β′ | −
∣∣β ∣∣− ∣∣∣β̃ ∣∣∣ ≤ 0,

hence ∆G3 ≤ 0.
By symmetry we have ∆G ≤ 0 across β + (α + ν).

(vi) (α + β) + µ (and ν + (α + β)): This interaction has two outcomes.
• (α + β) + µ → µ′ + β′: In this case Ur is to the left of the 3-shock wave starting

at Ul, see Figure 17(a). We divide this interaction into three steps,

α + [β + µ] ∆G1−−−→ [α + µ] + β
∆G2−−−→ µ̃ + β̃ + β

∆G3−−−→ µ′ + β′,

where ∆G1 ≤ 0 and ∆G2 ≤ 0 since the interactions at the first and second step
are of type Bb-iii and Ba-ii, respectively. By property (vi) we know that µ is
lying below α, and together with property (ix), this implies that the intersection
between µ and β is to the right of β′. From property (iv) and property (ix) we
then get

|µ′ | − |µ̃ | = q, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ = −q,

and it follows that ∆G3 ≤ 0.
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Figure 17. The interaction (α + β) + µ.

• (α + β) + µ → α′ + β′: In this case Ur is to the right of the 3-shock wave starting
at Ul, see Figure 17(b). We divide this interaction into three steps,

α + [β + µ] ∆G1−−−→ [α + µ] + β
∆G2−−−→ α̃ + β̃ + β

∆G3−−−→ α′ + β,

where ∆G1 ≤ 0 and ∆G2 ≤ 0 because the interactions at the first and second
step are of type Bb-iii and Ba-ii, respectively. By properties (vi) and (ix) we have
that the intersection between µ and β is to the right of β′. Furthermore, the
intersection between α̂ and β̂ is then by property (viii) and property (ix) to the
right of the intersection between α′ and β′, thus

|α′ | − |α̃ | ≤ 0, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ ≤ 0,

and it follows that ∆G3 ≤ 0.
Due to symmetry, ∆G ≤ 0 across ν + (α + β).
Before we carry on with the last two interactions of this type, we prove the following

proposition.

Proposition 4.2. If Ur is below the outgoing 1-wave for the interaction

µ + ν + α, or α + ν + µ,

then the interaction can be replaced by

µ̂ + α̂, or α̂ + µ̂,(4.6)

respectively, where

|µ̂ | ≤ |µ | , |α̂ | ≤ |α | ,(4.7)

and ∆G ≤ 0 for the replacement.

Proof. Let us start with the second interaction. For Ur to be below the outgoing 1-
wave, µ has to cross α. From property (iv) it then follows that Ul can be connected to
Ur by following the wave α until the intersection point and then following µ from the
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intersection point to Ur. Obviously, the estimates in (4.7) are then satisfied and from
these it follows that ∆G ≤ 0.

Also for the first interaction α and µ have to intersect if Ur is below the outgoing
1-wave. We are looking for a 1-shock wave, α̂, which ends at Ur and starts somewhere
on µ. By property (viii) it follows that α̂ has to start to the left of the intersection
point between µ and α, but to the right of the starting point of α. Thus, there exist
a µ̂ and an α̂ so that (4.7) is satisfied and the interaction can be replaced by µ̂ + α̂.
From (4.7) we obtain ∆G ≤ 0. �

(vii) (µ + ν) + α (and β + (µ + ν)): This interaction has four possible outcomes.
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Figure 18. The interaction (µ + ν) + α.

• (µ+ν)+α → µ′+ν′: In this case Ur is above µ′ and to the left of the 3-rarefaction
curve starting at Ul, see Figure 18(a). Observe that |µ′ | ≤ |µ | and |ν′ | ≤ |α |. It
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then follows that

∆F = − |α | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ≤ |α |Fγ ,

and we obtain ∆G ≤ 0.
• (µ + ν) + α → µ′ + β′: In this case Ur is below µ′ and to the left of the 3-shock

curve starting at Ul, see Figure 18(b). By Proposition 4.2 we can replace this
interaction by a new one,

µ + ν + α
∆G1−−−→ [µ̂ + α̂] ∆G2−−−→ µ′ + β′,

where ∆G1 ≤ 0. Moreover, the interaction at the second step is of type Ba-iii,
thus ∆G2 ≤ 0.

• (µ+ν)+α → α′+ν′: In this case Ur is above α′ and to the right of the 3-rarefaction
wave starting at Ul, see Figure 18(c). We divide this interaction into four steps,

µ + [ν + α] ∆G1−−−→ [µ + α] + ν

∆G2−−−→ α̃ + [β̃ + ν]
∆G3−−−→ α̃ + α̂ + ν̂

∆G4−−−→ α′ + ν′,

where the interaction at the first step is of type Bb-iii, thus ∆G1 ≤ 0. Furthermore,
∆G2 ≤ 0 and ∆G3 ≤ 0 because the interactions at the second and third step are
both of type Ba-iii. From properties (iv) and (viii) we obtain

|α′ | − |α̃ | − |α̂ | = −q, |ν′ | − |ν̂ | = q,

thus ∆G4 ≤ 0.
• (µ + ν) + α → α′ + β′: In this case Ur is below α′ and to the right of the 3-shock

wave starting at Ul, see Figure 18(d). From Proposition 4.2 we know that the
interaction can be replaced by µ̂ + α̂,

µ + ν + α
∆G1−−−→ [µ̂ + α̂] ∆G2−−−→ α′ + β′,

where ∆G1 ≤ 0. The interaction at the second step is of type Ba-iii and therefore
∆G2 ≤ 0.

By symmetry we have ∆G ≤ 0 across β + (µ + ν).
(viii) (α + ν) + µ (and ν + (µ + β)): This interaction has four possible outcomes.

• (α+ν)+µ → µ′+ν′: In this case Ur is above µ′ and to the left of the 3-rarefaction
wave starting at Ul, see Figure 19(a). We divide this interaction into two steps,

α + [ν + µ] ∆G1−−−→ α + µ + ν
∆G2−−−→ µ′ + ν′,

where the interaction at the first step is of type Bb-i, thus ∆G1 ≤ 0. By prop-
erty (vi) we have that µ lies below α, and therefore |ν′ | ≤ |ν |. Since also |µ′ | ≤ |µ |,
we get ∆G2 ≤ 0.

• (α + ν) + µ → µ′ + β′: In this case Ur is below µ′ and to the left of the 3-shock
wave starting at Ul, see Figure 19(b). According to Proposition 4.2 the interaction
can be replaced by a new one,

α + ν + µ
∆G1−−−→ [α̂ + µ̂] ∆G2−−−→ µ′ + β′,
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Figure 19. The interaction (α + ν) + µ.

where ∆G1 ≤ 0. Furthermore, ∆G2 ≤ 0 because the interaction at the second
step is of type Ba-ii.

• (α+ν)+µ → α′+ν′: In this case Ur is above α′ and to the right of the 3-rarefaction
wave starting at Ul, see Figure 19(c). This interaction is divided into two steps,

α + [ν + µ] ∆G1−−−→ α + µ + ν
∆G2−−−→ α′ + ν′,

where the first interaction is of type Bb-i, thus ∆G1 ≤ 0. We have |α′ | ≤ |α |.
Since µ lies below α by property (vi), we furthermore have |ν′ | ≤ |ν |, and thus,
∆G2 ≤ 0.

• (α + ν) + µ → α′ + β′: In this case Ur is below α′ and to the right of the 3-shock
wave starting at Ul, see Figure 19(d). Again we can replace the interaction by a
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new one,

α + ν + µ
∆G1−−−→ [α̂ + µ̂] ∆G2−−−→ α′ + β′,

where ∆G1 ≤ 0 by Proposition 4.2. At the second step we have an interaction of
type Ba-ii, thus ∆G2 ≤ 0.

It follows from symmetry that ∆G ≤ 0 across ν + (µ + β).

4.3.2. Type Cb: A contact discontinuity as the leftmost or rightmost wave. All these inter-
actions have two possible outcomes.

(i) (ζ + ν) + µ (and ν + (µ + ζ)):
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Figure 20. The interaction (ζ + ν) + µ.

• (ζ +ν)+µ → µ′+ζ +ν′: In this case Ur lies above µ′, see Figure 20(a). We divide
the interaction into two steps

ζ + [ν + µ] ∆G1−−−→ ζ + µ + ν
∆G2−−−→ µ′ + ζ + ν′.

The interaction at the first step is of type Bb-i and thus ∆G1 ≤ 0. If the intersec-
tion between µ and ν is below µ′, then |µ′ | ≤ |µ | and |ν′ | ≤ |ν | and ∆G2 ≤ 0. If
the intersection is above µ′, then |µ′ | − |µ | = |ν′ | − |ν | and by using Lemma 2.2
on µ and µ′ we get

|µ′ | − |µ | ≤ C2 |µ | |ζ | , |ν′ | − |ν | ≤ C2 |µ | |ζ | ,
and hence, ∆G2 ≤ 0.

• (ζ + ν) + µ → µ′ + ζ + β′: In this case Ur lies below µ′, see Figure 20(b). We
divide the interaction into two steps,

ζ + [ν + µ] ∆G1−−−→ ζ + µ + ν
∆G2−−−→ µ′ + ζ + β′.

The interaction at the first step is of type Bb-i and we have ∆G1 ≤ 0. Furthermore,
we have |β′ | ≤ |µ | − |µ′ | and applying Lemma 2.2 on µ and µ′ we obtain

|µ′ | − |µ | ≤ 0, |β′ | ≤ C2 |µ′ | |ζ | ≤ C2 |µ | |ζ | ,
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from which we get ∆G2 ≤ 0.
Due to symmetry, ∆G ≤ 0 across ν + (µ + ζ).

(ii) (ζ + ν) + α (and β + (µ + ζ)):
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Figure 21. The interaction (ζ + ν) + α.

• (ζ + ν) + α → α′+ ζ + ν′: In this case Ur is above α′, see Figure 21(a). We divide
the interaction into two steps,

ζ + [ν + α] ∆G1−−−→ ζ + α + ν
∆G2−−−→ α′ + ζ + ν′.

At the first step we have an interaction of type Bb-iii, thus ∆G1 ≤ 0. If the
intersection between α and ν is above α′ as in Figure 21(a), then we have

|α′ | − |α | = −q, |ν′ | − |ν | = q,

which results in ∆G2 ≤ 0. If the intersection is below, we use Lemma 2.2 on α
and α′, and get

|α′ | − |α | ≤ C2 |ζ | |α | , |ν′ | − |ν | ≤ 0,

therefore, ∆G2 ≤ 0.
• (ζ + ν) +α → α′+ ζ +β′: In this case Ur is below α′, see Figure 21(b). We divide

the interaction into two steps,

ζ + [ν + α] ∆G1−−−→ ζ + α + ν
∆G2−−−→ α′ + ζ + β′.

Since the interaction at the first step is of type Bb-iii we have ∆G1 ≤ 0, and by
construction |β′ | ≤ |α′ | − |α |. We apply Lemma 2.2 on α and α′ and find

|α′ | − |α | ≤ C2 |ζ | |α | , |β′ | ≤ C2 |ζ | |α | ,

thus ∆G2 ≤ 0.
By symmetry we have ∆G ≤ 0 across β + (µ + ζ).

(iii) (ζ + β) + µ (and ν + (α + ζ)):
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Figure 22. The interaction (ζ + β) + µ.

• (ζ + β) + µ → µ′+ ζ + ν′: In this case Ur is above µ′, see Figure 22(a). Two steps
are enough,

ζ + [β + µ] ∆G1−−−→ ζ + µ + β
∆G2−−−→ µ′ + ζ + ν′,

where the interaction at the first step is of type Bb-iii, thus ∆G1 ≤ 0. We have
|ν′ | ≤ |µ′ | − |µ | and apply Lemma 2.2 on µ and µ′. We get

|µ′ | − |µ | ≤ C2 |µ | |ζ | , |ν′ | ≤ C2 |µ | |ζ | ,
and it follows that ∆G2 ≤ 0.

• (ζ + β) + µ → µ′ + ζ + β′: In this case Ur is below µ′, see Figure 22(b). This
interaction is divided into two steps,

ζ + [β + µ] ∆G1−−−→ ζ + µ + β
∆G2−−−→ µ′ + ζ + ν,

where ∆G1 ≤ 0 because the interaction at the first step is of type Bb-iii. If the
intersection between µ and β is above µ′, it follows from property (ix) that

|µ′ | − |µ | = q, |β′ | −
∣∣β ∣∣ = −q,

thus, ∆G2 ≤ 0. If the intersection is below, as in Figure 22(b), it follows from
property (ix) that |µ′ | ≤ |µ |. We then use Lemma 2.2 on β and β′ and obtain

|µ′ | − |µ | ≤ 0, |β′ | −
∣∣β ∣∣ ≤ C2 |ζ |

∣∣β ∣∣ ,
thus, ∆G2 ≤ 0.

Due to symmetry, ∆G ≤ 0 across ν + (α + ζ).
(iv) (ζ + β) + α (and β + (α + ζ)):

• (ζ + β) + α → α′ + ζ + ν′: In this case Ur is above α′, see Figure 23(a). We can
divide the interaction into steps by the same approach as above, but this is not
necessary for this interaction. We have |α′ | − |α | ≤ − |ν′ |, thus

∆F = |α′ | − |α | − |β | ≤ − |ν′ | ,
∆Q1 ≤ 0,
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Figure 23. The interaction (ζ + β) + α.

∆Q2 ≤ |ν′ |Fγ ,

which yields ∆G ≤ 0.
• (ζ + β) + α → α′ + ζ + β′: In this case Ur is below α′, see Figure 23(b). Again we

divide into two steps

ζ + [β + α] ∆G1−−−→ ζ + α + β
∆G2−−−→ α′ + ζ + β′,

where the interaction at the first step is of type Bb-iii with ∆G1 ≤ 0. If the
intersection between α and β is above α′, as in Figure 23(b), it follows from
property (viii) and property (ix) that

|α′ | − |α | ≤ 0, |β′ | −
∣∣β ∣∣ ≤ 0,

hence, ∆G2 ≤ 0. If the intersection is below, we have |α′ | − |α | = |β′ | −
∣∣β ∣∣ and

by applying Lemma 2.2 to the 1-shock curves we obtain

|α′ | − |α | ≤ C2 |α | |ζ | , |β′ | −
∣∣β ∣∣ ≤ C2 |α | |ζ | .

From these estimates we obtain ∆G2 ≤ 0.
By symmetry we have ∆G ≤ 0 across the interaction β + (α + ζ).

4.3.3. Type Cc: A contact discontinuities as the middle wave.
(i) (µ1 + ζ) + µ2 (and ν1 + (ζ + ν2)): This interaction has two possible outcomes.

• (µ1 + ζ) + µ2 → µ′ + ζ + ν′: In this case Ur is above µ′, see Figure 24(a). We
divide the interaction into two steps,

µ1 + [ζ + µ2]
∆G1−−−→ µ1 + µ + ζ + ν

∆G2−−−→ µ′ + ζ + ν′.

The interaction at the first step is of type Bc-i, thus ∆G1 ≤ 0. Note that µ1, µ and
µ′ all have γ = γl, and ν and ν′ have γ = γr. By property (iv) and property (vii)
we therefore have µ1 + µ = µ′ and ν = ν, thus ∆G2 = 0.
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Figure 24. The interaction (µ1 + ζ) + µ2.

• (µ1 + ζ) + µ2 → µ′ + ζ + β′: In this case Ur lies below µ′, see Figure 24(b). This
interaction is divided into two steps,

µ1 + [ζ + µ2]
∆G1−−−→ µ1 + µ + ζ + β

∆G2−−−→ µ′ + ζ + β′.

The interaction at the first step is of type Bc-i with ∆G1 ≤ 0. Furthermore, µ1, µ
and µ′ all have the same γ, and so do β and β′. Property (iv) and property (vii)
then imply that µ1 + µ = µ′, therefore we also have that β = β′, and it follows
that ∆G2 = 0.

Due to symmetry, ∆G ≤ 0 across the interaction ν1 + (ζ + ν2) as well.
(ii) (α1 + ζ) + α2 (and β1 + (ζ + β2)): This interaction has two possible outcomes.

• (α1 + ζ)+α2 → α′+ ζ +ν′: In this case Ur is above α′, see Figure 25(a). No extra
steps are needed because we have

|α′ | − |α1 | − |α2 | = − |ν′ | ,
which gives us

∆F = − |ν | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ − |ζ | |α2 | ≤ |ν′ |Fγ ,

and

∆G ≤ |ν′ | (−1 + 3C2Fγ) ≤ |ν′ |
(
−1 +

C

3

)
≤ 0.

• (α1 + ζ) + α2 → α′ + ζ + β′. In this case Ur is below α′, see Figure 25(b). In this
case we need two steps,

α1 + [ζ + α2]
∆G1−−−→ α1 + α + ζ + β

∆G2−−−→ α′ + ζ + β′.

The interaction at the first step is of type Bc-ii, thus ∆G1 ≤ 0. Note that α and
α′ have the same γ, and so do β and β′. It therefore follows from property (viii)
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Figure 25. The interaction (α1 + ζ) + α2.

and property (ix) that the intersection point between α and β is to the right of
the intersection point between α′ and β′. This yields

|α′ | − |α1 | − |α | ≤ 0, |β′ | −
∣∣β ∣∣ ≤ 0,

and we obtain ∆G2 ≤ 0.
By symmetry it follows that ∆G ≤ 0 across the interaction β1 + (ζ + β2).
Before discussing the last interactions of this type, we prove a useful proposition.

Proposition 4.3. If Ur is below the outgoing 1-wave for the interactions

µ + ζ + α, or α + ζ + µ,

and if

ζ + α → α + ζ + ν, or ζ + µ → µ + ζ + ν,

respectively, then Ul can be connected to Ur by

µ̂ + α̂ + ζ, or α̂ + µ̂ + ζ,(4.8)

respectively, where

|µ̂ | ≤ |µ | , and |α̂ | ≤ |α | ,(4.9)

and ∆G ≤ 0 for the replacement.

Proof. For the first interaction we are looking for a 1-shock wave, α̂, with γ = γl that
is starting somewhere at µ and ending at Û = (pr, ur, γl). From property (viii) it
follows that α̂ cannot reach Û if it starts to the left of α. Moreover, since Ur lies below
any 1-wave starting at Ul, so does Û , and therefore α̂ has to start to the right of Ul.
This proves that there exists a µ̂ and an α̂ so that Ul is connected to Ur by the first
interaction of (4.8) and so that (4.9) is satisfied. From (4.9) it follows that ∆G ≤ 0 for
the replacement.

For the second interaction consider the backward 1-rarefaction curve from Û . By
property (iv) this wave will stay above µ and, since Û lies below any 1-wave starting
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at Ul, the backward rarefaction curve must intersect α. Thus, there exists a µ̂ and an
α̂ so that Ul is connected to Ur by the second interaction of (4.8) and so that (4.9) is
satisfied. Furthermore, it follows from (4.9) that ∆G ≤ 0 for the replacement. �

(iii) (µ + ζ) + α (and β + (ζ + ν)): This interaction has four different outcomes.
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Figure 26. Two outcomes of the interaction (µ + ζ) + α.

• (µ+ζ)+α → µ′+ζ+ν′: In this case Ur is above µ and to the left of the 3-rarefaction
curve starting at Ul, see Figure 26(a). We have |µ′ | ≤ |µ | and |ν′ | ≤ |α |, thus

∆F = − |α | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ≤ |α |Fγ ,

which gives

∆G ≤ |α | (−1 + 3C2Fγ) ≤ |α |
(
−1 +

C

3

)
≤ 0.

• (µ+ ζ)+α → µ′+ ζ +β′: In this case Ur is below µ′ and to the left of the 3-shock
curve starting at Ul, see Figure 27. This interaction needs several steps, and it is
natural to let ζ and α interact first. We do not know what type of outgoing 3-wave
this interaction gives, and we will have to look at each case separately. Assume
first that ζ + α → α + ζ + β, as in Figure 27(a), then we have

µ + [ζ + α] ∆G1−−−→ [µ + α] + ζ + β

∆G2−−−→ µ̃ + β̃ + ζ + β

∆G3−−−→ µ′ + ζ + β′.

The interaction at step one is of type Bc-ii, therefore ∆G1 ≤ 0. At the second
step the interaction is of type Ba-iii, thus ∆G2 ≤ 0. We do not know whether β̃
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Figure 27. The interaction (µ + ζ) + α → µ′ + ζ + β′.

starts to the left or the right of β′ because the two waves have different γ’s. If β̃
starts to the right, as in Figure 27(a), we have for a q > 0 that

|µ′ | − |µ̃ | ≤ q, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ = −q,

which gives

∆F = −q, ∆Q1 ≤ 0, ∆Q2 ≤ qFγ ,

and it follows that ∆G3 ≤ 0. If β̃ starts to the left of β′, we claim that

|µ′ | − |µ̃ | ≤ 0, |β′ | −
∣∣β ∣∣− ∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,(4.10)

which gives us

∆F ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,
∆Q1 ≤ C2

∣∣∣β̃ ∣∣∣ |ζ |Fn,

∆Q2 ≤ C2

∣∣∣β̃ ∣∣∣ |ζ |Fγ −
∣∣∣β̃ ∣∣∣ |ζ | ,

and furthermore that

∆G3 ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | (1 + 3C1(γ − 1)Fn + 3C2Fγ − 3) ≤ 0.

Thus, we just have to prove (4.10). We introduce a 3-shock curve with γ = γr, β∗,
that starts somewhere on µ and ends at the same point as β̃ ends. Since β∗ has
the same γ as β′, it follows from property (ix) that β∗ starts to the right of β′,
thus |β′ |−

∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ ≤ |β∗ |−
∣∣∣β̃ ∣∣∣. Moreover, β∗ and β̃ have different γ’s and ends

at the same point, therefore we can apply Lemma 2.2 on the two shock waves and
obtain |β∗ |−

∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ |. Since the estimate on the rarefaction waves follows
directly from the construction, we have proved (4.10).



42 HOLDEN, RISEBRO, AND SANDE

Assume now that ζ + α → α + ζ + ν, this is illustrated in Figure 27(b). By
Proposition 4.3 we can replace the interaction by a new one,

µ + ζ + α
∆G1−−−→ [µ̂ + α̂] + ζ

∆G2−−−→ µ̃ + β̃ + ζ

∆G3−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0. The interaction at the second step is of type Ba-iii, thus ∆G2 ≤ 0.
If β̃ starts to the right of β′, we have for a q > 0 that

|µ′ | − |µ̃ | = q, |β′ | −
∣∣∣β̃ ∣∣∣ = −q,

which gives ∆G3 ≤ 0. If β̃ starts to the right of β′, we have |µ′ | − |µ̃ | ≤ 0.
Furthermore, since β̃ and β′ ends at the same point, but have different γ’s, it
follows by applying Lemma 2.2 that

|β′ | −
∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,
and we get ∆G3 ≤ 0. Figure 27(b) do not show β̃ since it lies very close to β′.

• (µ + ζ) + α → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the
3-rarefaction curve starting at Ul, see Figure 26(b). Since

|α′ |+ |ν′ | ≤ |α | , or |α′ | − |α | ≤ − |ν′ | ,
we have

∆F = − |ν′ | , ∆Q1 ≤ 0, ∆Q2 ≤ |ν′ |Fγ ,

which gives

∆G ≤ |ν′ | (−1 + 3C2Fγ) ≤ |ν′ |
(
−1 +

C

3

)
≤ 0.
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Figure 28. The interaction (µ + ζ) + α → α′ + ζ + β′.



THE CAUCHY PROBLEM FOR A MIXTURE OF GASES 43

• (µ+ζ)+α → α′+ζ +β′: In this case Ur is below α′ and to the right of the 3-shock
curve starting at Ul, see Figure 28. Again we do not know what type of outgoing
3-wave we get if ζ and α interact, and we need to consider each case separately.
Assume first that ζ + α → α + ζ + β, as illustrated in Figure 28(a), then we need
four steps,

µ + [ζ + α] ∆G1−−−→ [µ + α] + ζ + β

∆G2−−−→ α̃ + [β̃ + ζ + β]
∆G3−−−→ α̃ + α̂ + ζ + β̂

∆G4−−−→ α′ + ζ + β′.

The interaction at the first step is of type Bc-ii, thus ∆G1 ≤ 0. At the second step
the interaction is of type Ba-iii and ∆G2 ≤ 0. If β̃ starts to the right of β′, the
remainding steps can be skipped because then

|α′ | − |α̃ | ≤ 0, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ ≤ 0,

and going straight to the last step we get ∆G∗ ≤ 0. If β̃ starts to the left of β′,
we need one more step2 and the interaction at the third step is of type Cc-ii, thus
∆G3 ≤ 0. The waves α̃, α̂ and α′ all have γ = γl and β̂ and β′ have γ = γr.
Combining properties (viii) and (ix) it follows that

|α′ | − |α̃ | − |α̂ | ≤ 0, |β′ | −
∣∣∣β̂ ∣∣∣ ≤ 0,

and we have ∆G4 ≤ 0. The waves α̃ and β̃ are not denoted in Figure 28(a) because
they lie very close to α′ and β′.
Assume now that ζ+α → α+ζ+ν, see Figure 28(b). According to Proposition 4.3,
we can replace the interaction with a new one,

µ + ζ + α
∆G1−−−→ [µ̂ + α̂] + ζ

∆G2−−−→ α̃ + β̃ + ζ

∆G3−−−→ α′ + ζ + β′,

where ∆G1 ≤ 0. At the second step we have an interaction of type Ba-iii with
∆G2 ≤ 0. If β̃ starts to the right of β′, we have

|α′ | − |α̃ | ≤ 0, |β′ | −
∣∣∣β̃ ∣∣∣ ≤ 0,

hence ∆G3 ≤ 0. If β̃ starts to the left of β′, we have |α′ | − |α̃ | = |β′ | −
∣∣∣β̃ ∣∣∣.

Furthermore, since β̃ and β′ ends at the same point, but have different γ’s, it
follows by applying Lemma 2.2 that

|β′ | −
∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,
and therefore ∆G3 ≤ 0.

By symmetry it follows that ∆G ≤ 0 across the interaction β + (ζ + ν).
(iv) (α + ζ) + µ (and ν + (ζ + β)): This interaction has four different outcomes.

2Here we could compare β̃ to an auxiliary curve β∗ with γ = γr, similar to what we did before, but since
only one more step is needed, we chose this approach.
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Figure 29. Two outcomes of the interaction (α + ζ) + µ.

• (α + ζ) + µ → µ′ + ζ + ν′: In this case Ur is above µ′ and to the left of the
3-rarefaction wave starting at Ul, see Figure 29(a). We divide the interaction into
two steps,

α + [ζ + µ] ∆G1−−−→ α + µ + ζ + ν
∆G2−−−→ µ′ + ζ + ν′,

where the interaction at the first step is of type Bc-i, thus ∆G1 ≤ 0. Since µ has to
lie below α by property (vi), the outgoing 3-wave of the first step is a rarefaction
wave. From this it follows that

|µ′ | − |µ | ≤ 0, |ν′ | − |ν′ | ≤ 0,

and therefore ∆G2 ≤ 0.
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Figure 30. (α + ζ) + µ → µ′ + ζ + β′.
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• (α + ζ) + µ → µ′ + ζ + β′: In this case Ur is below µ′ and to the left of the
3-rarefaction wave starting at Ul, see Figure 30. If ζ and µ interact we again do
not know the type of the outgoing 3-wave we get, and we choose to look at the
two cases separately. Assume first that the outgoing 3-wave is a shock wave as
illustrated in Figure 30. Then we need three steps,

α + [ζ + µ] ∆G1−−−→ [α + µ] + ζ + β

∆G2−−−→ µ̃ + β̃ + ζ + β

∆G3−−−→ µ′ + ζ + β′.

The interaction at the first step is of type Bc-i with ∆G1 ≤ 0. At the second step
we have an interaction of type Ba-ii, thus ∆G2 ≤ 0. If β̃ starts to the right of β′,
then

|µ′ | − |µ̃ | = q, |β′ | −
∣∣∣β̃ ∣∣∣ = −q,

and it follows that ∆G3 ≤ 0. If β̃ starts to the left of β′, as is the case in Figure 30,
we once again introduce an auxiliary curve β∗, and this curve is indicated in the
figure. This curve has γ = γr, starts somewhere along µ′, and ends at the same
point as β̃. By property (ix) the starting point of β∗ has to be to the right of β′,
thus |β′ | −

∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ ≤ |β∗ | −
∣∣∣β̃ ∣∣∣. Moreover, we apply Lemma 2.2 on β̃ and β∗,

and get |β∗ | −
∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ |. Thus,

|µ′ | − |µ̃ | ≤ 0, |β′ | −
∣∣β ∣∣− ∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,
and ∆G3 ≤ 0.
Assume now that the outgoing 3-wave of the interaction between ζ and µ is a
rarefaction wave. According to Proposition 4.3 we can replace the interaction by
a new one,

α + ζ + µ
∆G1−−−→ [α̂ + µ̂] + ζ

∆G2−−−→ µ̃ + β̃ + ζ

∆G3−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0. The interaction at the second step is of type Ba-ii, thus ∆G2 ≤ 0.
If β̃ starts to the right of β′, we have

|µ′ | − |µ̃ | = q, |β′ | −
∣∣∣β̃ ∣∣∣ = −q,

which gives ∆G3 ≤ 0. If β̃ starts to the right of β′, we have |µ′ | − |µ̃ | ≤ 0.
Furthermore, since β̃ and β′ end at the same point and have different γ’s, it
follows by applying Lemma 2.2 that

|β′ | −
∣∣∣β̃ ∣∣∣ ≤ C2

∣∣∣β̃ ∣∣∣ |ζ | ,
and we get ∆G3 ≤ 0.

• (α + ζ) + µ → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the
3-rarefaction wave starting at Ul, see Figure 29(b). We have

|α′ |+ |ν′ | ≤ |α | , or |α′ | − |α | ≤ − |ν′ | ,



46 HOLDEN, RISEBRO, AND SANDE

which gives

∆F = |α′ | − |α | ≤ − |ν′ | ,
∆Q1 ≤ 0,

∆Q1 ≤ |ν′ |Fγ − |µ | |ζ | ≤ |ν′ |Fγ ,

and

∆G ≤ |ν′ | (−1 + 3C2Fγ) ≤ 0.
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Figure 31. The interaction (α + ζ) + µ → α′ + ζ + β′.

• (α + ζ) + µ → α′ + ζ + β′: In this case Ur is below α′ and to the right of the
3-shock wave starting at Ul, see Figure 31. We divide the interaction into steps,

α + [ζ + µ] ∆G1−−−→ [α + µ] + ζ + η

∆G2−−−→ α̃ + [β̃ + ζ + η]
∆G3−−−→ α̃ + α̂ + ζ + β̂

∆G4−−−→ α′ + ζ + β′.

The interaction at the first step is of type Bc-i and ∆G1 ≤ 0. We do not know
whether the outgoing 3-wave is a shock wave or a rarefaction wave, but in this
case we are able effectively to treat both case at the same time.3 At the second
step we have an interaction of type Ba-ii, thus ∆G2 ≤ 0. If β̃ starts to the right
of β′, as is the case in Figure 31(b), then

|α′ | − |α̃ | ≤ 0,

|β
′ | −

∣∣∣β̃ ∣∣∣ ≤ 0, if η = ν,

|β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ ≤ 0, if η = β,

3This is the shortest way to do it, although we could for η = β use Lemma 2.2 and be able to stop after
step two (similar to the case → µ′ + ζ + β′). Moreover, for η = ν we could replace the interaction according
to Proposition 4.3.
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and going straight to the last step we get ∆G∗ ≤ 0. However, if β̃ starts to the
left of β′ as in Figure 31(a), we need more steps. We then let three waves interact
at the third step. This is an interaction of type Cc-ii if η = β and of type Cc-iv if
η = ν, in either case we have ∆G3 ≤ 0 and the outgoing 1- and 3-waves are shock
waves. By property (viii) and property (ix) we obtain

|α′ | − |α̃ | − |α̂ | ≤ 0, |β′ | −
∣∣∣β̂ ∣∣∣ ≤ 0,

thus, ∆G4 ≤ 0.
By symmetry we have ∆G ≤ 0 across ν + (ζ + β).

This ends the discussion of interactions of type Cc, but before we carry on to interactions
between four waves, we collect some results that will be useful when discussing the interac-
tions of type Db. During the discussion of Cc-iii and Cc-iv we have shown the following:

Proposition 4.4. For the interactions

µ + α + ζ + β → ε′ + ζ + β′, and(4.11)

α + µ + ζ + β → ε′ + ζ + β′,(4.12)

where ε′ is either α′ or µ′, the Glimm functional is decreasing, that is, ∆G ≤ 0.

Furthermore, we have also proved the following result:

Proposition 4.5. For the interactions

µ + α + ζ → ε′ + ζ + β′, and(4.13)

α + µ + ζ → ε′ + ζ + β′,(4.14)

where ε′ is either α′ or µ′, the Glimm functional is decreasing, that is, ∆G ≤ 0.

4.4. Type D: Four waves entering the diamond.

4.4.1. Type Da: Waves of the same family are also of the same type. The interactions of this
type all have two possible outcomes to be considered.

(i) (µ1 + ζ + ν) + µ2 (and ν1 + (µ + ζ + ν2)):
• (µ1 + ζ + ν) + µ2 → µ′ + ζ + ν′: In this case Ur lies above µ′, see Figure 32(a).

This interaction is divided into two steps,

µ1 + [ζ + ν + µ2]
∆G1−−−→ µ1 + µ + ζ + ν

∆G2−−−→ µ′ + ζ + ν′.

The interaction at the first step is of type Cb-i, therefore ∆G1 ≤ 0. By prop-
erty (iv) and property (vii) we have µ1 + µ = µ′ and ν = ν′, thus ∆G2 = 0.

• (µ1 + ζ + ν) + µ2 → µ′ + ζ + β′: In this case Ur lies below µ′, see Figure 32(b).
Again we need two steps,

µ1 + [ζ + ν + µ2]
∆G1−−−→ µ1 + µ + ζ + β

∆G2−−−→ µ′ + ζ + β′.

The first interaction is of type Cb-i, thus ∆G1 ≤ 0. From property (iv) and
property (vii) we have µ1 + µ = µ′. It then follows that β = β′, and therefore
∆G2 = 0.

Due to symmetry, ∆G ≤ 0 across ν1 + (µ + ζ + ν2).
(ii) (µ1 + ζ + β) + µ2 (and ν1 + (α + ζ + ν2)):
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Figure 32. The interaction (µ1 + ζ + ν) + µ2.
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Figure 33. The interaction (µ1 + ζ + β) + µ2.

• (µ1 + ζ + β) + µ2 → µ′ + ζ + ν′: In this case Ur is above µ′, see Figure 33(a).
Observe that µ2 crosses µ′, which is possible since the two waves have different
γ’s. We divide the interaction into two steps,

µ1 + [ζ + β + µ2]
∆G1−−−→ µ1 + µ + ζ + ν

∆G2−−−→ µ′ + ζ + ν′,

where the interaction at the first step is of type Cb-iii, thus ∆G1 ≤ 0. Due to
property (iv) and property (vii) we have that µ1 + µ = µ′ and ν = ν′, and it
follows that ∆G2 = 0.
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• (µ1 + ζ + β) + µ2 → µ′+ ζ + β′: In this case Ur is below µ′, see Figure 33(b). The
interaction is divided into two steps,

µ1 + [ζ + β + µ2]
∆G1−−−→ µ1 + µ + ζ + β

∆G2−−−→ µ′ + ζ + β′,

where the interaction at the first step is of type Cb-iii, thus ∆G1 ≤ 0. Due to
property (iv) and property (vii) we have µ1 + µ = µ′ and therefore also β = β′,
thus ∆G2 = 0.

By symmetry we have ∆G ≤ 0 across ν1 + (α + ζ + ν2).
(iii) (α1 + ζ + ν) + α2 (and β1 + (µ + ζ + β2)):
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Figure 34. The interaction (α1 + ζ + ν) + α2.

• (α1 + ζ + ν)+α2 → α′+ ζ + ν′: In this case Ur is above α′, see Figure 34(a). Two
steps are needed,

α1 + [ζ + ν + α2]
∆G1−−−→ α1 + α + ζ + ν

∆G2−−−→ α′ + ζ + ν′.

The first interaction is of type Cb-ii, therefore ∆G1 ≤ 0. It follows from prop-
erty (iv) and property (viii) that

|α′ | − |α1 | − |α | = −q, |ν′ | − |ν | = q,

for a q > 0, and this gives ∆G2 ≤ 0.
• (α1 + ζ + ν) + α2 → α′ + ζ + β′: In this case Ur is below α′, see Figure 34(b). We

divide the interaction into two steps,

α1 + [ζ + ν + α2]
∆G1−−−→ α1 + α + ζ + β

∆G2−−−→ α′ + ζ + β′.

The first interaction is of type Cb-ii, therefore ∆G1 ≤ 0. The 1-shock waves α′ and
α have γ = γl and β′ and β have γ = γr, therefore it follows from property (viii)
and property (ix) that

|α′ | − |α1 | − |α | ≤ 0, |β′ | −
∣∣β ∣∣ ≤ 0,

resulting in ∆G2 ≤ 0.
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It follows from symmetry that ∆G ≤ 0 across β1 + (µ + ζ + β2).
(iv) (α1 + ζ + β) + α2 (and β1 + (α + ζ + β2)):
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Figure 35. The interaction (α1 + ζ + β) + α2.

• (α1 + ζ + β) + α2 → α′ + ζ + ν′: In this case Ur lies above α′, see Figure 35(a).
Here α2 crosses α′, which is possible since they have different γ’s. We do not need
to divide this interaction because we have

|α′ | ≤ |α1 |+ |α2 | ,
|α′ |+ |ν′ | ≤ |α1 |+ |α2 |+ |β | ,

and from this we find

∆F = |α′ | − |α1 | − |α2 | − |β | ≤ − |ν′ | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ,

which gives us ∆G ≤ 0.
• (α1 + ζ + β) + α2 → α′ + ζ + β′: In this case Ur lies below α′, see Figure 35(b).

We divide this interaction into two steps,

α1 + [ζ + β + α2]
∆G1−−−→ α1 + α + ζ + β

∆G2−−−→ α′ + ζ + β′,

where the interaction at the first step is of type Cb-iv, thus ∆G1 ≤ 0. Due to
property (viii) and property (ix) the intersection between α and β is to the right
of the intersection between α′ and β′, thus

|α′ | − |α1 | − |α | ≤ 0, |β | −
∣∣β ∣∣ ≤ 0,

and we get ∆G2 ≤ 0.
By symmetry we have ∆G ≤ 0 across β1 + (α + ζ + β2).
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4.4.2. Type Db: Waves of the same family are not of the same type. Before we discuss each
interaction of this type, we state some useful observations in the following propositions.

Proposition 4.6. If µ and α cross in the interaction

µ + ζ + ν + α, or α + ζ + ν + µ,

then the interaction can be replaced by

µ̂ + ζ + α̂, or α̂ + ζ + µ̂,(4.15)

respectively, where

|µ̂ | ≤ |µ | , and |α̂ | ≤ |α | ,(4.16)

and ∆G ≤ 0 for this replacement.

Proof. For the first interaction we have to prove that the backward 1-shock curve at Ur

crosses µ, and in order to show (4.16), that this intersection is to the right of the starting
point of α. By property (viii) a 1-shock with γ = γr that starts to the right of the intersection
point between µ and α can never reach Ur. Furthermore, if α̂ starts to the left of α, it will
always be steeper than α and hence never reach Ur. Thus, there is a α̂ starting at µ so that
(4.15) connects Ul to Ur and so that (4.16) is satisfied.

Since the slope of a rarefaction wave is independent of the starting point, the proof for
the second interaction is easier. Then α̂ is the part of α from Ul to the intersection point
between α and µ, while µ̂ is the part of µ from the intersection point to Ur. Thus, (4.16) is
satisfied, and the interaction can be replaced by (4.15).

For both cases it follows from (4.16) that ∆G ≤ 0 for this replacement. �

Proposition 4.7. If Ur is to the right of Ul and µ and α do not intersect for the interaction

µ + ζ + ν + α,

then the interaction can be replaced by

ζ + ν̂ + α̂,(4.17)

where, for a positive constant q,

|α̂ | − |α | = −q, and |ν̂ | − |ν | ≤ q,(4.18)

and ∆G ≤ 0 for this replacement.

Proof. We have from property (viii) and property (iv) that the backward 1-shock curve from
Ur has a unique intersection point with the 3-rarefaction curve starting at (pl, ul, γr), and
that this point is to the right of the starting point of α. Thus, |α̂ | − |α | = −q for a positive
constant q. Furthermore we find that

|µ |+ |ν̂ |+ |α̂ | = |ν |+ |α | ,
hence

|ν̂ | − |ν | = −(|α̂ | − |α |)− |µ | = q − |µ | ≤ q,

which proves (4.18). Moreover, ∆G ≤ 0 follows directly from this estimate. �

Proposition 4.8. If Ur is to the left of Ul and µ and α do not intersect for the interaction

α + ζ + ν + µ,

then the interaction can be replaced by

ζ + ν̂ + µ̂,(4.19)
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where

|µ̂ | − |µ | ≤ 0, and |ν̂ | − |ν | ≤ |α | ,(4.20)

and ∆G ≤ 0 for this replacement.

Proof. It follows from property (iv) that µ̂ starts at the point where the 3-rarefaction curve
from (pl, ul, γr) intersects µ. Thus, |µ̂ | − |µ | ≤ 0 and furthermore,

|µ | − |µ̂ |+ |ν̂ | = |α |+ |ν | ,

hence, |ν̂ | − |ν | = |α | − (|µ | − |µ̂ |) ≤ |α |. This proves (4.20) from which it follows that
∆G ≤ 0 for the replacement. �

(i) (µ + ζ + ν) + α (and β + (µ + ζ + ν)). This interaction has four different outcomes as
shown in Figure 36.
• (µ + ζ + ν) + α → µ′ + ζ + ν′: In this case Ur is above µ′ and to the left of

the 3-rarefaction wave starting at Ul, see Figure 36(a). We have |µ′ | ≤ |µ | and
|ν′ | − |ν | ≤ |α |, thus

∆F = − |α | ,
∆Q1 ≤ 0,

∆Q2 ≤ (|ν′ | − |ν |)
∑

i

|ζi | ≤ |α |Fγ ,

where ζi are all contact discontinuities to the right of the diamond. From this we
obtain ∆G ≤ 0.

• (µ + ζ + ν) + α → µ′ + ζ + β′: In this case Ur is below µ′ and to the left of
the 3-shock wave starting at Ul, thus α has to cross µ, see Figure 36(b). Then it
follows from Proposition 4.6 that the interaction can be replaced by a new one,

µ + ζ + ν + α
∆G1−−−→ [µ̂ + ζ + α̂] ∆G2−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0. Since the interaction at the second step is of type Cc-iii, we also
have ∆G2 ≤ 0.

• (µ + ζ + ν) + α → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the
3-rarefaction wave starting at Ul, see Figure 36(c). Since α and µ cannot intersect,
it follows from Proposition 4.7 that the interaction can be replaced by a new one,

µ + ζ + ν + α
∆G1−−−→ [ζ + ν̂ + α̂] ∆G2−−−→ α′ + ζ + ν′,

where ∆G1 ≤ 0. At the second step we have an interaction of type Cb-ii, thus
∆G2 ≤ 0.

• (µ + ζ + ν) + α → α′ + ζ + β′: In this case Ur is below α′ and to the right of
the 3-shock wave starting at Ul, see Figure 36(d). If α crosses µ, we replace the
interaction according to Proposition 4.6,

µ + ζ + ν + α
∆G1−−−→ [µ̂ + ζ + α̂] ∆G2−−−→ α′ + ζ + β′,

where ∆G1 ≤ 0. The interaction at the second step is of type Cc-iii, thus ∆G2 ≤
0. If, however, α does not cross µ, we use on Proposition 4.7 and replace the
interaction by a new one,

µ + ζ + ν + α
∆G1−−−→ ζ + ν̂ + α̂

∆G2−−−→ α′ + ζ + β′,

where ∆G1 ≤ 0. Furthermore, ∆G2 ≤ 0 because the interaction at the second
step is of type Cb -ii.
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Figure 36. The interaction (µ + ζ + ν) + α.

By symmetry we have ∆G ≤ 0 across β + (µ + ζ + ν).
(ii) (α + ζ + ν) + µ (and ν + (µ + ζ + β)): This interaction has four possible outcomes as

shown in Figure 37.
• (α + ζ + ν) + µ → µ′ + ζ + ν′: In this case Ur is above µ′ and to the left of the

3-rarefaction curve starting at Ul, see Figure 37(a). Since α and µ do not cross,
we can by Proposition 4.8 replace the interaction by a new one,

α + ζ + ν + µ
∆G1−−−→ [ζ + ν̂ + µ̂] ∆G2−−−→ µ′ + ζ + ν′,

where ∆G1 ≤ 0. The second interaction is of type Cb-i, thus ∆G2 ≤ 0.4

4This interaction can also be divided into two steps by letting ζ + ν + µ interact at the first step.
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Figure 37. The interaction (α + ζ + ν) + µ.

• (α + ζ + ν) + µ → µ′ + ζ + β′: In this case Ur is below µ′ and to the left of the
3-shock curve starting at Ul, see Figure 37(b). If α and µ do not intersect, we use
Proposition 4.8 as above and replace the interaction,

α + ζ + ν + µ
∆G1−−−→ [ζ + ν̂ + µ̂] ∆G2−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0.Because the interaction at the second step is of type Cb-i, we have
∆G2 ≤ 0. If, however, α and µ do intersect as in Figure 37(b), we replace the
interaction according to Proposition 4.6,

α + ζ + ν + µ
∆G1−−−→ [̂α + ζ + µ̂] ∆G2−−−→ µ′ + ζ + β′,

with ∆G1 ≤ 0. Since the interaction at the second step is of type Cc-iv, also
∆G2 ≤ 0.
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• (α + ζ + ν) + µ → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the
3-rarefaction curve starting at Ul, see Figure 37(c). We have

|α′ |+ |ν′ |+ |µ | = |α |+ |ν | , |α′ | − |α | = −q,

where q > 0, hence,

|ν′ | − |ν | = q − |µ | ≤ q,

and

∆F = |α′ | − |α | = −q,

∆Q1 ≤ 0,

∆Q1 ≤ qFγ ,

from which we obtain ∆G ≤ 0.
• (α + ζ + ν) + µ → α′ + ζ + β′: In this case Ur is below α′ and to the right of the

3-shock curve starting at Ul, see Figure 37(d). Hence, α and µ have to intersect
and by Proposition 4.6 we can replace the interaction

α + ζ + ν + µ
∆G1−−−→ [α̂ + ζ + µ̂] ∆G2−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0. The interaction at the second step is of type Cc-iv, thus ∆G2 ≤ 0.
By symmetry we have ∆G ≤ 0 across ν + (µ + ζ + β).
Yet another proposition is useful before discussing the last two interactions.

Proposition 4.9. If Ur is below the outgoing 1-wave for the interaction

µ + ζ + β + α, or α + ζ + β + µ,

and if

ζ + β + α → α + ζ + ν, or ζ + β + µ → µ + ζ + ν,

respectively, then Ul can be connected to Ur by

µ̂ + α̂ + ζ, or α̂ + µ̂ + ζ,(4.21)

respectively, where

|µ̂ | ≤ |µ | , and |α̂ | ≤ |α | ,(4.22)

for the first interaction and

|µ̂ | ≤ |µ | , and |α̂ | ≤ |α | ,(4.23)

for the second.

Proof. The proof for the first interaction is exactly the same as for the first interaction
of Proposition 4.3. Also for the second interaction the arguments are the same as for
the second interaction of Proposition 4.3, but due to the extra wave, β, we here only
know that the strength of µ̂ is less than the strength of µ. �

(iii) (µ + ζ + β) + α (and β + (α + ζ + ν)): This interaction has four possible outcomes.
• (µ + ζ + β) + α → µ′ + ζ + ν′: In this case Ur is above µ′ and to the left of

the 3-rarefaction wave starting at Ul, see Figure 38(a). We have |µ′ | ≤ |µ | and
moreover, |ν′ | ≤ |α |, therefore

∆F = − |α | − |β | ≤ − |α | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ≤ |α |Fγ ,
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Figure 38. Two outcomes of the interaction (µ + ζ + β) + α.
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Figure 39. (µ + ζ + β) + α → µ′ + ζ + β′.

• (µ + ζ + β) + α → µ′ + ζ + β′: In this case Ur is below µ′ and to the left of
the 3-shock wave starting at Ul, see Figure 39. If ζ + β + α → α + ζ + β as in
Figure 39(a), then we divide the interaction into two steps,

µ + [ζ + β + α] ∆G1−−−→ µ + α + ζ + β
∆G2−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0 because the interaction at the first step is of type Cb-iv and
∆G2 ≤ 0 follows from Proposition 4.4.
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If, however, ζ + β + α → α + ζ + ν as in Figure 39(b), we replace the interaction
by µ̂ + α̂ + ζ according to Proposition 4.9,

µ + ζ + β + α
∆G1−−−→ µ̂ + α̂ + ζ

∆G2−−−→ µ′ + ζ + β′.

It follows from (4.22) that ∆G1 ≤ 0 and from Proposition 4.5 we have ∆G2 ≤ 0.
• (µ + ζ + β) + α → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the

3-rarefaction wave starting at Ul, see Figure 38(b). We have |α′ | − |α | ≤ − |ν′ |,
therefore

∆F = |α′ | − |α | − |β | ≤ − |ν′ | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ,

and we obtain ∆G ≤ 0.
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Figure 40. (µ + ζ + β) + α → α′ + ζ + β′.

• (µ + ζ + β) + α → α′ + ζ + β′: In this case Ur is below α′ and to the right of
the 3-shock wave starting at Ul, see Figure 40. If ζ + β + α → α + ζ + β as in
Figure 40(a), then we divide the interaction into two steps,

µ + [ζ + β + α] ∆G1−−−→ µ + α + ζ + β
∆G2−−−→ α′ + ζ + β′,

where the interaction at the first step is of type Cb-iv, thus ∆G1 ≤ 0. Furthermore,
∆G2 ≤ 0 follows from Proposition 4.4.
If ζ + β + α → α + ζ + ν as in Figure 40(b), we again replace the interaction
according to Proposition 4.9,

µ + ζ + β + α
∆G1−−−→ µ̂ + α̂ + ζ

∆G2−−−→ α′ + ζ + β′,

and get ∆G1 ≤ 0 from (4.22) and ∆G2 ≤ 0 from Proposition 4.5.
Due to symmetry, ∆G ≤ 0 across β + (α + ζ + ν).

(iv) (α + ζ + β) + µ (and ν + (α + ζ + β)): This interaction has four different outcomes.
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Figure 41. Two outcomes of the interaction (α + ζ + β) + µ.

• (α + ζ + β) + µ → µ′ + ζ + ν′: In this case Ur is above µ′ and to the left of the
3-rarefaction curve starting at Ul, see Figure 41(a). We divide the interaction into
two steps,

α + [ζ + β + µ] ∆G1−−−→ α + µ + ζ + ν
∆G2−−−→ µ′ + ζ + ν′,

where ∆G1 ≤ 0 since the first interaction is of type Cb-iii. From property (vi) we
know that µ lies below α, therefore

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ 0,

and we obtain ∆G2 ≤ 0.
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Figure 42. (α + ζ + β) + µ → µ′ + ζ + β′.
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• (α + ζ + β) + µ → µ′ + ζ + β′: In this case Ur is below µ′ and to the left of the
3-shock curve starting at Ul. We first assume that ζ + β + µ → µ + ζ + β as in
Figure 42. Then we divide the interaction into two steps

α + [ζ + β + µ] ∆G1−−−→ α + µ + ζ + β
∆G2−−−→ µ′ + ζ + β′,

where ∆G1 ≤ 0 since the first interaction is of type Cb-iii. Furthermore, it follows
from Proposition 4.4 that ∆G2 ≤ 0.
When ζ + β + µ → µ + ζ + ν, we replace the interaction at the second step with a
new one according to Proposition 4.9,

α + [ζ + β + µ] ∆G1−−−→ α + µ + ζ + ν

∆G2−−−→ α̂ + µ̂ + ζ

∆G3−−−→ µ′ + ζ + β′.

The first interaction is of type Cb-iii, thus ∆G1 ≤ 0. This step is included because
we are only able to relate µ̂ to µ, not to µ. From (4.23) we obtain ∆G2 ≤ 0, and
∆G3 ≤ 0 follows from Proposition 4.5.

• (α + ζ + β) + µ → α′ + ζ + ν′: In this case Ur is above α′ and to the right of the
3-rarefaction curve starting at Ul, see Figure 41(b). We observe that |α′ | − |α | ≤
− |ν′ |, thus

∆F = |α′ | − |α | − |β | ≤ − |ν′ | ,
∆Q1 ≤ 0,

∆Q2 ≤ |ν′ |Fγ ,

and we have ∆G ≤ 0.
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Figure 43. (α + ζ + β) + µ → α′ + ζ + β′.

• (α + ζ + β) + µ → α′ + ζ + β′: In this case Ur is below α′ and to the right of the
3-shock curve starting at Ul. Again we have to look at two cases. Assume first
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that ζ + β + µ → µ + ζ + β as in Figure 43(a), then we divide the interaction into
two,

α + [ζ + β + µ] ∆G1−−−→ α + µ + ζ + β
∆G2−−−→ α′ + ζ + β′,

where the interaction at step one is of type Cb-iii, thus ∆G1 ≤ 0. Furthermore, it
follows from Proposition 4.4 that ∆G2 ≤ 0.
Assume now that ζ +β +µ → µ+ ζ +ν as in Figure 43(b). Then we at the second
step replace the interaction with a new one according to Proposition 4.9,

α + [ζ + β + µ] ∆G1−−−→ α + µ + ζ + ν

∆G2−−−→ α̂ + µ̂ + ζ

∆G3−−−→ α′ + ζ + β′.

Since the interaction at the first step is of type Cb-iii, we have ∆G1 ≤ 0. Moreover,
∆G2 ≤ 0 follows from (4.23) and ∆G3 ≤ 0 follows from Proposition 4.5.

By symmetry it follows that ∆G ≤ 0 across ν + (α + ζ + β).

5. Convergence

We have to show that the approximate solution, Uh(x, t) given by (3.4), converges and
that the limit is a weak solution of (1.1). From [20, Ch. 19 §C] we know that an approximate
solution converges to a weak solution if the approximation is uniformly bounded, has bounded
total variation and is locally L1 Lipschitz continuous in time. Note that the analysis in [20,
Ch. 19 §C] to obtain convergence and to show that the limit is a weak solution, only relies
on the above conditions and does not require a sufficiently small total variation of the initial
data. Furthermore, if we have that the total variation of the approximate solution is bounded,
then we can show that it is L1 Lipschitz continuous in time. Thus, the requirement in the
general theory that the total variation of the initial data should be sufficiently small is only
needed in order to prove that the total variation of the approximate solution is bounded.
Therefore, convergence to a weak solution of (1.1) follows if we can show that the total
variations of Uh( · , t) is bounded, and we show this using the decreasing Glimm functional.
Then we find the domain U that contains the approximate solution. As long as U does not
include vacuum, we have that Uh(x, t) is bounded.

Recall from Section 3.3 that the constant C1 is the constant appearing in estimate (4.3),
C2 is given by (3.6), k by (3.7) and C is the minimum of the constants C̃ appearing in the
estimates for interactions of type Ba, cf. Section 4.2.1. Define the constant

κ :=
10
3

s′maxk + 1.(5.1)

Note that all these constants only depend on pmin, pmax and γ. We are now ready to prove
that the total variation is bounded.

Lemma 5.1. If the initial data satisfy

(γ − 1)T.V.(p0, u0) ≤
C

9kC1
,(5.2)

T.V.(γ0) ≤
C

9C2
,(5.3)
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and the approximate solution Uh(x, t) = (ph(x, t), uh(x, t), γh(x, t)) obtained by the Glimm
scheme is bounded away from vacuum, then

T.V.(ph( · , t), uh( · , t)) ≤ 2κkT.V.(p0, u0),(5.4)

T.V.(γh( · , t)) ≤ T.V.(γ0).(5.5)

Moreover, the solution is always contained in the domain

U =
{

(p, u, γ) |max{|p− p− | , |p− p+ |} ≤ 2κkT.V.(p0, u0),

max{|u− u− | , |u− u+ |} ≤ 2κT.V.(p0, u0), γ ∈ (1, γ]
}

,(5.6)

where p± = p0(±∞) and u± = u0(±∞).

Proof. Let Jn be the mesh curve connecting sampling points at the times (n + 1)∆t and
n∆t, and let n∆t ≤ t < (n + 1)∆t. First of all, (5.5) is obvious since γ only changes along
contact discontinuities, thus

T.V.(γh( · , t)) = Fγ = T.V.(γh(·, 0)) ≤ T.V.(γ0).(5.7)

We furthermore have that

L(J0) ≤ T.V.(ph( · , 0)) + kT.V.(uh( · , 0)) ≤ kT.V.(ph( · , 0), uh( · , 0)),(5.8)

where J0 is the mesh curve connecting sampling points at t = 0 and t = ∆t. When (5.2) and
(5.3) are satisfied, we therefore have

L(J0) ≤ kT.V.(ph( · , 0), uh( · , 0)) ≤ kT.V.(p0, u0) ≤
C

9C1(γ − 1)
,(5.9)

Fγ = T.V.(γh( · , 0)) ≤ T.V.(γ0) ≤
C

9C2
,(5.10)

hence, the Glimm functional is decreasing and F (Jn) ≤ 5
3L(J0) by Lemma 3.3. We use this

first to find a bound on T.V.(uh( · , t)). Since u is increasing along all rarefaction waves and
decreasing along all shock waves, we have∑

rf

[[u]] =
∑
shock

[[u]] + u(∞, · )− u(−∞, · ),(5.11)

where [[u]] := |ur − ul | for a wave connecting Ul to Ur, and rf is short for rarefaction wave.
Let c := |u(∞, · )− u(−∞, · ) | = |u+ − u− |, then∑

rf

[[u]] ≤
∑
shock

[[u]] + c,(5.12)

and we have

T.V.(uh( · , t)) = T.V.(uh|Jn) =
∑
rf

[[u]] +
∑
shock

[[u]] ≤ 2
∑
shock

[[u]] + c

≤ 2
∑
shock

|s′(p̃, pl, γl) | [[p]] + c ≤ 2s′max

∑
shock

[[p]] + c

= 2s′maxFn + c ≤ 2s′max

5
3
L0 + c

=
10
3

s′maxkT.V.(p0, u0) + c ≤ κT.V.(p0, u0),
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where we have used that c ≤ T.V.(u0). For T.V.(ph( · , t)) we find

T.V.(ph( · , t)) = T.V.(ph|Jn) =
∑
rf

[[p]] +
∑
shock

[[p]] ≤ k

(∑
rf

[[u]] +
∑
shock

[[u]]

)
= kT.V.(uh) ≤ κkT.V.(p0, u0),

and moreover,

T.V.(ph( · , t), uh( · , t)) = T.V.(ph( · , t)) + T.V.(uh( · , t))
≤ 2κkT.V.(p0, u0).(5.13)

To show the last part of the lemma we use that

sup(y) ≤ |y(∞) |+ |y(−∞) |+ T.V.(y),

and since ph(±∞, · ) = p0(±∞), we find

sup(ph − p0(∞)) ≤ |ph(∞, · )− p0(∞) |+ |ph(−∞, · )− p0(∞) |+ T.V.(ph)

= |p0(∞)− p0(−∞) |+ T.V.(ph)

≤ 2T.V.(ph) ≤ 2κkT.V.(p0, u0).

Furthermore,

sup(ph − p0(−∞)) ≤ 2κkT.V.(p0, u0),

sup(uh − u0(∞)) ≤ 2κT.V.(p0, u0),

sup(uh − u0(−∞)) ≤ 2κT.V.(p0, u0).

We can do the same for γ, but since γh( · , t) only takes the same values as γh( · , 0), we know
that γ always lies between 1 and γ. In other words, Uh( · , t) is always contained in U given
by (5.6). �

Let us now prove that Uh(x, t) is bounded, and in particular, bounded away from vacuum.
First of all, the Riemann problems we solve at the first step in the Glimm scheme must have
a solutions without vacuum, that is, all jumps in Uh(x, 0) must satisfy (2.27), cf. Lemma 2.4.
If the initial data, for any a0 ∈ [−1, 1], satisfy

(5.14) u0(y0
r−1−)− u0(y0

r+1−)

< r(p0(y0
r−1−), 0, γ0(y0

r−1−))− r(0, p0(y0
r+1−), γ0(y0

r+1−)), r even,

where y0
r = xr + a0h, then no vacuum forms at the first step. The approximate solution is

contained in U which is bounded by the total variation of the initial data, thus, by imposing
an extra condition on the initial data, we ensure that all U ∈ U have p ≥ pmin > 0.

Lemma 5.2. If for a pmin > 0 the initial data satisfy

(γ − 1)T.V.(p0, u0) ≤ C3,(5.15)

where p̃ = max{p0(∞), p0(−∞)} and

C3 :=
γ1/2

κkr′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
.(5.16)

Then p ≥ pmin for all U ∈ U . Moreover, the solution obtained using the Glimm scheme is
bounded and, in particular, satisfies 0 < pmin ≤ ph(x, t) ≤ pmax.
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Proof. For a p < min(p0) we have

max{|p− p(∞) | , |p− p(−∞) |} = max{p(∞), p(−∞)} − p = p̃− p,

hence, p is in U if p̃− p ≤ 2κkT.V.(p0, u0). Thus, if

2κkT.V.(p0, u0) ≤ p̃− pmin,(5.17)

for a given pmin so that 0 < pmin ≤ min(p0), then p ≥ pmin for all U ∈ U .
Since condition (5.2) gives restriction on (γ − 1)T.V.(p0, u0), we reformulate condition

(5.17) to do the same. For a p0 ≥ p̃ ≥ pmin there is a u0 so that we can write

u(p) = u0 − r(p, p0, γ).

From the mean value theorem we get that

|p̃− pmin | =
1

|u′(p̂) |
|u(p̃)− u(pmin) | ≥ 1

r′max

(u(pmin)− u(p̃)),

for pmin ≤ p̂ ≤ p̃. Furthermore,

u(pmin)− u(p̃) = u0 −
2γ

1
2

γ − 1

(
p

γ−1
2γ

min − p
γ−1
2γ

0

)
− u0 +

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ

0

)
=

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,

so that

p̃− pmin ≥
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
.

Therefore, we have that p ≥ pmin > 0 for all p ∈ U if

2κkT.V.(p0, u0) ≤
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,(5.18)

which proves the lemma. �

We have proved that Uh(x, t) given by (3.4) is bounded and have bounded total variation.
Similar to Corollary 19.8 in [20], it can then be proved that Uh(x, t) is locally L1 Lipschitz
continuous in time. As already noted, these are the three conditions needed to ensure that
Uh(x, t) converges to a weak solution of (1.1). Hence, we have the following theorem:

Theorem 5.3. Consider the Cauchy problem for system (1.1) with bounded initial data (1.2)
where inf(p0(x)) > 0 and 1 < γ0(x) < γ. Assume that the initial data satisfies (5.14) so that
no vacuum occurs initially. If

(γ − 1)T.V.(p0, u0) ≤ min
{

C

9kC1
, C3

}
,(5.19)

T.V.(γ0(x)) ≤ C

9C2
,(5.20)

then there exists a time global weak entropy solution with bounded total variation of system
(1.1).

By the results of Wagner [23], there is a one-to-one correspondence between a weak solution
of (1.1) and a weak solution of the system given in Eulerian coordinates,

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ, γ))x = 0,(5.21)
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(ργ)t + (ρuγ)x = 0,

where x ∈ R is the physical space variable and t ∈ (0,∞) denotes time.

Theorem 5.4. If there exists a global weak solution to system (1.1) with initial data (1.2),
then there exists a global weak solution of system (5.21) where 0 < ρmin ≤ ρ(x, t) ≤ ρmax <
∞.

6. Numerical Results

We have implemented the Glimm scheme as described in Subsection 3.1 using matlab.
The random sequence a(s) is generated using the function rand and imagesc is used to
visualize the solution.

We find pmax as described in Subsection 2.3. Instead of using (5.15) to find pmin, we choose
a suitable candidate for pmin and then check that this candidate indeed satisfy pmin ≤ ph(x, t)
for all x and t. We have chosen

pmin = min(p0(x))− (pmax −max(p0(x))),(6.1)

as our candidate, and for both examples this is a good lower bound on p(x, t). In both
examples the initial data satisfy (5.2) and (5.3). Since we also have an upper and a lower
bound on ph(x, t), these initial data satisfy the conditions of Theorem 5.3.

Example 1: Piecewise constant initial data. The initial data in this example are piece-
wise constant and symmetric. We have one gas with p = 1.26, u = 3.00 and γ = 1.051
which is initially trapped between a second gas with p = 1.30, u = 2.99 and γ = 1.010. The

Table 1. The constants for Example 1.

pmax pmin γ C1 C2 C k
1.3067 1.2534 1.051 15.9703 1.3309 1 1.3309

constants calculated for this example are listed in Table 1, and (5.2) and (5.3) are satisfied
since

T.V.(p0, u0) = 0.1 ≤ 0.1025 = C/(9kC1(γ − 1)),(6.2)

T.V.(γ0) = 0.082 ≤ 0.0835 = C/(9C2).(6.3)

The solution is computed up to the time T = 4.5 using ∆x = 0.005 and ∆x/∆t = 1.3805 =
max |λ(U) | so that condition (3.1) is satisfied. This corresponds to 1500×1242 mesh points.
Figure 44 shows the solution for different times. The solution of the Riemann problem
initially situated at x = −1.0 consists of a 1-rarefaction wave, a contact discontinuity and
a 3-shock wave, while the solution of the Riemann problem at x = 1.0 consists of a 1-shock
wave, a contact discontinuity and a 3-rarefaction wave. In Figure 45 one can see how the
waves from these two initially Riemann problems evolve in time and space, and how they
interact. Moreover, Figure 46 shows the decreasing Glimm functional for this example.

Example 2: Continuous initial data. In this example the initial data are constant for
x < −1 and x > 1. For −1 < x < 1 we have a smooth function connecting the constant
states. For p and γ this function is an increasing function based on sinx, while for u the two
constant states are equal and connected by a function based on cos x.

The constants for this example are listed in Table 2, and (5.2) and (5.3) are satisfied since

T.V.(p0, u0) = 0.0533 ≤ 0.0536 = C/(9kC1(γ − 1)),(6.4)
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Figure 44. Uh(x, t) at different times.
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Figure 45. The solution Uh(x, t) in the (x, t)-plane.
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Figure 46. The Glimm functional for Example 1.

Table 2. The constants for Example 2.

pmax pmin γ C1 C2 C k
1.323 1.277 1.098 15.4427 1.3691 1 1.3691

T.V.(γ0) = 0.0799 ≤ 0.0812 = C/(9C2).(6.5)

The solution is computed up to the time T = 1.4 using ∆x = 0.002 and ∆x/∆t = 1.4185 =
max |λ(U) | so that condition (3.1) is satisfied. This corresponds to 1600× 992 mesh points.
Figure 47 shows the solution at different times, and Figure 48 shows how the waves from all
the initial Riemann problems interact and evolve. Finally, Figure 49 shows the decreasing
Glimm functional for this example.
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FRONT TRACKING FOR A MODEL OF IMMISCIBLE GAS FLOW
WITH LARGE DATA

HELGE HOLDEN, NILS HENRIK RISEBRO, AND HILDE SANDE

Abstract. In this paper we study front tracking for a model of one dimensional, immis-

cible flow of several isentropic gases, each governed by a gamma-law. The model consists
of the p-system with variable gamma representing the different gases. The main result is

the convergence of a front tracking algorithm to a weak solution, thereby giving existence
as well. This convergence holds for general initial data with a total variation satisfying a
specific bound. The result is illustrated by numerical examples.

1. Introduction

We want to describe the one dimensional, immiscible flow of several isentropic gases. The
different gases are initially separated, and the pressure is for all gases given by a γ-law, that
is, p = ργ , where ρ is the density and γ is the adiabatic gas constant for each gas. We
assume γ(x, t) > 1. In Lagrangian coordinates γ only depends on x because the different
gases cannot mix. Thus, the flow of these gases is described for x ∈ R and t ∈ (0,∞) by the
system

(1.1)

vt − ux = 0,

ut + p(v, γ)x = 0,

γt = 0,

where v = 1/ρ is the specific volume, u is the velocity, and p(v, γ) = v−γ is the pressure
function. This 3× 3 system of hyperbolic conservation laws is strictly hyperbolic for v < ∞.

We consider the Cauchy problem for this system, that is, system (1.1) with general initial
data

(1.2) v(x, 0) = v0(x), u(x, 0) = u0(x), γ(x, 0) = γ0(x), x ∈ R.

Glimm [13] proved global existence of a weak solution of the Cauchy problem with initial data
of small total variation for strictly hyperbolic systems where each family is either genuinely
nonlinear or linearly degenerate, thus including the present system. This solution is found as
a limit of the Glimm scheme [13] or of the front tracking method [15, 4]. In [16] we extended
the existence result to large initial data for (1.1) by using the Glimm scheme. In this paper
we prove that a front tracking algorithm converges to a weak solution, thereby giving an
alternative existence argument.

System (1.1) is an extension of the 2× 2 system

(1.3)
vt − ux = 0,

ut + p(v)x = 0,
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which describes the flow of one isentropic gas. The parameter γ is constant, and the pressure,
still given by a γ-law, is a function of v only. For the p-system with γ = 1, Nishida [20]
showed existence of a global weak solution for arbitrary bounded initial data. For γ > 1,
Nishida and Smoller [21] proved existence of a weak solution for initial data where (γ − 1)
times the total variation of the initial data is sufficiently small. The case with large initial
data for 2× 2 systems is also discussed in [5, 9].

The system (1.1) does not have a coordinate system of Riemann invariants, only a 2-
Riemann coordinate. Therefore we do not have the advantage of changing variables to
Riemann invariants as for the p-system and other 2 × 2 systems. Liu [17] proved existence
of a solution for the full Euler system with large initial data, another 3× 3 system without
a coordinate system of Riemann invariants. Liu’s change of variables is inspired by the use
of Riemann invariants, but a similar approach does not simplify system (1.1) because γ is a
function of x. The general results by Temple [25] include both the results of [21] and [17].
In [25] one considers the flux function as a smooth one-parameter family of functions where
one has existence of a solution for initial data in B.V. when ε = 0. Then the system with
0 ≤ ε ≤ 1 has a unique solution if ε times the total variation of the initial data is sufficiently
small. Letting ε = γ−1 for the p-system and the Euler equations, one obtains similar results
as in [21] and [17]. However, this approach cannot be used for system (1.1) since γ is one of
the variables. Wissman proved in [29] a large data existence theorem for the 3× 3 system of
relativistic Euler equations in the ultra-relativistic limit. Applying a change of coordinates
the shock waves become translation invariant and a Nishida-type of analysis is used.

For 3× 3 systems with a 2-Riemann coordinate, Temple and Young [26] showed existence
of a solution for initial data with arbitrary large total variation, provided that the oscillations
are small. This result applies to (1.1) as well, but we want to avoid this restriction on the
oscillations. Peng [23, 22] also considered certain 3×3 systems (Lagrangian gas dynamics for
a perfect gas and a model originating in multiphase flow modeling) with large initial data.

All these existence results are proved using the Glimm scheme. Asakura shows the conver-
gence of front tracking for the p-system [3] and for the Euler equations [2] with large initial
data. The conditions on the initial data are the same as obtained in [21] and [17]. In [7, 8]
front tracking is used to study systems of conservation laws whose flux functions depend on
a parameter vector, µ, similar to those in [25]. An approach for establishing L1-estimate
pointwise in time between entropy solutions for µ 6= 0 and µ = 0 is given. In particular,
letting µ = γ − 1, the L1-estimate between entropy solutions in the large for the isentropic
Euler equations and the isothermal Euler equations is established in [7] and between entropy
solutions in the large for the the Euler equations and the isothermal Euler equations in [8].

Amadori and Corli [1] extend the p-system with an extra equation, λt = 0, to model
multiphase flow, and use front tracking to prove existence of a weak solution for large data.
As for system (1.1), the pressure function in [1] is a function of both v and the new variable,
λ, making the two systems similar. However, since the adiabatic gas constant, γ, is equal to
one in [1], vacuum can never occur for their system as it can for system (1.1). Furthermore,
the wave curves in [1] are monotone in λ, resulting in a considerably simpler analysis of the
wave interactions compared with the analysis necessary for the model considered here. The
system treated in [1] is a simplified version of the model discussed by Fan in [12]. Similar
models, but with a rather different pressure law, are also considered in [11] and [19] applying
completely different methods. A model in the context of the Navier–Stokes equation with
finitely many independent pressure laws has been studied in [6].
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System (1.1) can also be rewritten as a 2× 2 system with discontinuous flux. We get

vt − ux = 0,

ut + p(v, γ(x))x = 0,

where the adiabatic gas constant of the different gases is given by the discontinuous function
γ(x).

This rest of this paper is organized as follows: In Section 2 we discuss the wave curves of
the system. The variable γ is constant along the rarefaction and shock waves of the first and
third family, therefore these curves are similar to the wave curves of the p-system. However,
these curves are not monotone in γ, which considerably complicates the interactions of waves
with different values of γ. The second family is linearly degenerate and gives rise to a contact
discontinuity along which p and u are constant. Thus, by changing variables to p, u and
γ, the Riemann problem is easy to describe. The invariant region for the Riemann problem
includes vacuum. This is a problem since the interaction estimates are not valid when p
tends to zero, see [18].

Section 3 is the main part of this paper where we first present the front-tracking algo-
rithm. The solution of any Riemann problem is made piecewise constant by approximating
rarefaction waves as step functions. In addition, a simplified Riemann solver generating non-
physical fronts is introduced in order to ensure that the number of fronts remains finite. The
simplified solver is only used for interactions where one or more fronts of the same family
collide with a contact discontinuity and the sum of the strengths of the incoming fronts
times the strength of the contact discontinuity is less than some threshold parameter. This
solver generates non-physical fronts, traveling either to the left or the right, with absolute
speed larger than any other front. Moreover, when these non-physical fronts collide with
other fronts, they just pass through without changing strength. In Section 3.2 we define a
Glimm functional and by considering all possible interactions we prove that it is decreasing
under the conditions given in Proposition 3.7. We use this to show that there is a finite
number of interactions up to any given time, hence, and thus the front-tracking algorithm
is well-defined. Furthermore, we introduce a generation concept in order to bound the total
amount of non-physical fronts present at any time. The approximate solution found using
front tracking has bounded total variation and is bounded away from vacuum whenever the
conditions on the initial data given in Lemma 3.18 and Lemma 3.19 are satisfied. We end
Section 3 by proving that the sequence of approximate solutions converges to a weak solution
of the system. This proves the main theorem:
Theorem 3.20. Assume that (sup(γ( · , 0))− 1)T.V.(p( · , 0), u( · , 0)) and T.V.(γ( · , 0)) are
sufficiently small. The the front tracking algorithm is well-defined and gives a sequence which
converges to a weak solution of (1.1).

Observe that by reducing the total variation of γ and reducing its supremum, one can
allow for arbitrary large total variation of p and u. Due to Wagner [27], this result translates
into existence for the system (3.58) in Eulerian coordinates.

In the last section we study some examples numerically. In the first example we have
one gas confined to an interval, surrounded by another gas. The two gases have distinct
but constant gammas. The constants that limit the total variation of the initial data are
computed, and the initial data are chosen so that they satisfy the conditions in the theorem.
The Glimm functional is explicitly computed, and we observe decay in accordance with
the theorem. In the second example the initial data are piecewise constant, while γ is
continuously varying in the third example. For these two examples, the total variation of the
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chosen initial data do not satisfy the theorem, nevertheless we still observe that the Glimm
functional is decaying.

2. The system

It is well-known that systems of hyperbolic conservation laws such as (1.1) do not in
general have smooth solutions, even for smooth initial data. Thus, by a solution of (1.1)
with the initial data (1.2) we mean a weak solution in the distributional sense with (v, u, γ) ∈
L1

loc(R× [0,∞)) so that

(2.1)

∫∫
R×[0,∞)

(vφt − uφx) dxdt +
∫

R
v0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

(uφt + pφx) dxdt +
∫

R
u0(x)φ(x, 0) dx = 0,∫∫

R×[0,∞)

γφt dxdt +
∫

R
γ0(x)φ(x, 0) dx = 0,

for all test function φ ∈ C∞0 (R× [0,∞)).
If the specific volume, v, becomes infinite, which corresponds to zero density and zero

pressure, we have vacuum. At vacuum, the properties of the system change and the methods
used here do not apply, therefore we only consider system (1.1) for v(x, t) < ∞. Furthermore,
we assume γ(x, t) > 1.

We write U(x, t) = (v(x, t), u(x, t), γ(x, t)). Often we will work with p instead of v, and
then also write U(x, t) = (p(x, t), u(x, t), γ(x, t)).

For v < ∞, or equivalently, p > 0, system (1.1) is strictly hyperbolic with eigenvalues

λ1 = −λ, λ2 = 0, λ3 = λ,(2.2)

where λ :=
√
−pv =

√
γv−γ−1, and corresponding eigenvectors

r1 = (1, λ, 0), r2 = (−pγ , 0, pv) , r3 = (−1, λ, 0).(2.3)

Note that the eigenvalues and eigenvectors do not depend on u. The first and the third
family are genuinely nonlinear, while the second family is linearly degenerate. Moreover,
the system does not possess a coordinate system of Riemann invariants, but γ is a Riemann
coordinate for the second family.

Before we turn to solving system (1.1) with general initial data, we need to solve the
Riemann problem for (1.1), that is, when the initial data consists of two constant states
separated by a jump, cf. (2.21). The solution of the Riemann problem consists of up to
three elementary waves, one from each family, and up to two intermediate constant states
separating these waves. Thus, we start by looking at the wave curves.

2.1. Wave curves. For the genuinely nonlinear families there are two types of waves; rar-
efaction waves which are continuous waves of the form U(x, t) = w(x/t) satisfying

(2.4) ẇ(x/t) = rj(w(x/t)), λj(w(x/t)) = x/t, j = 1, 3,

where λj is increasing along the wave, and shock waves which are solutions

(2.5) U(x, t) =

{
Ul, if x < σjt,
Ur, if x > σjt,

satisfying the Rankine–Hugoniot condition

(2.6) σj(Ur − Ul) = f(Ur)− f(Ul), j = 1, 3,
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for a shock velocity σj . The admissible shock waves are those satisfying the Lax entropy
conditions

(2.7) λj−1(Ul) < σ < λj(Ul), λj(Ur) < σ < λj+1(Ur), j = 1, 3.

For the linearly degenerate family j = 2 there is only one type of waves called contact
discontinuities. These waves are solutions of the form (2.5) which satisfy the Rankine–
Hugoniot condition (2.6) with σ = λ2.

Fix a left state Ul. For each family the wave curve consists of all states U that can be
connected to the given left state by a wave of this family. The rarefaction solution is of the
form

(2.8) U(x, t) =


Ul, if x < λj(Ul)t,
w(x/t), if λj(Ul)t < x < λj(U)t,
U, if x > λj(U)t.

The rarefaction wave curve is the set of all right states U that can be connected to the left
state by a rarefaction wave. For system (1.1) these are

R1(v, Ul) :=
(

v, ul −
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v > vl,

R3(v, Ul) :=
(

v, ul +
2
√

γl

γl − 1

(
v

1−γl
2 − v

1−γl
2

l

)
, γl

)
, v < vl.

The shock curves of all right states which can be connected to Ul by an admissible shock
wave are

S1(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl

)
, v < vl,

S3(v, Ul) : =
(
v, ul −

(
(vl − v)(v−γl − v−γl

l )
)1/2

, γl,
)

, v > vl,

with the shock velocities

σ1(Ul, U) = −

√
v−γl

l − v−γl

v − vl
= −

√
pl − p

p−1/γl − p
−1/γl

l

,(2.9)

σ3(Ul, U) =

√
v−γl − v−γl

l

vl − v
=

√
p− pl

p
−1/γl

l − p−1/γl

,(2.10)

respectively. Note that the shock velocities do not depend on u. The curve of all right states
that can be connected to Ul by a contact discontinuity is

C2(γ, Ul) : =
(
v

γl/γ
l , ul, γ

)
, γ > 1,

with the velocity σ2 = λ2 = 0.
Note that γ only changes along the contact discontinuities. Furthermore, both u and

p = v−γ are constant along a contact discontinuity, and we therefore choose to work with p,
u and γ. A shock or a rarefaction curve through Ul lies in the plane γ = γl and is equal to
the corresponding wave curve for the p-system (1.3) with γ = γl. We proceed by defining
the wave curves using p, u, and γ, as depicted in Figure 1,

Φ1(p, Ul) :=

{
(p, ul − r(p, pl, γl), γl) , p < pl,

(p, ul − s(p, pl, γl), γl) , p > pl,
(2.11)

Φ2(γ, Ul) := (pl, ul, γ), γ > 1,(2.12)
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Φ3(p, Ul) :=

{
(p, ul + r(p, pl, γl), γl) , p > pl,

(p, ul − s(p, pl, γl), γl) , p < pl,
(2.13)

where

r(p, pl, γl) :=
2
√

γl

γl − 1

(
p

γl−1
2γl − p

γl−1
2γl

l

)
,(2.14)

s(p, pl, γl) :=
((

p
− 1

γl

l − p
− 1

γl

)
(p− pl)

)1/2

.(2.15)

Recall that if p = 0, we have vacuum, therefore, the wave curves are only well-defined for

1 2 3 4 5 6 7 8 0

1

2

3

4

1.5

2

2.5

3

u

p

γ

Figure 1. The wave curves through two left states with different γ.

p > 0 and pl > 0. All results are for waves contained in

D = {(p, u, γ) | p ∈ [pmin, pmax], |u | < ∞, γ ∈ (1, γ]},(2.16)

where pmin > 0, pmax < ∞ and γ ∈ (1,∞) are constants. For initial data given by (1.2) we
will later establish the upper and lower bound on p and show that

γ := sup
x

(γ0(x)),(2.17)

for all waves. We moreover have an upper bound on the wave speed for all waves (or fronts)
contained in D, and we define

λmax = max
U∈D

{λi, σi} = max
U∈D

{λi},(2.18)

where the last equality is due to the Lax entropy condition (2.7).
Before we discuss some important properties of the wave curves, we mention the backward

wave curves. These are the curves of all left states U that can be connected to a given right
state Ur by a wave of the given family. We denote these wave curves by Φ̃i. The backward
3-wave curve will be used several times and this is given by

Φ̃3(p, Ur) :=

{
(p, ur − r(pr, p, γr), γr) , p < pr,

(p, ur + s(pr, p, γr), γr) , p > pr,
(2.19)

where r and s are given by (2.14) and (2.15). We now turn to the properties of the wave
curves.
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Lemma 2.1. The wave curves in D have the following properties:
(i) The function Φ1 is strictly decreasing and the function Φ3 is strictly increasing when

considered as functions of p.
(ii) Given two wave curves, Φj(p, U1) and Φj(p, U2) where j ∈ {1, 3}, so that U1 is not on

Φj(p, U2) and U2 is not on Φj(p, U1). Then the two wave curves never intersect.
(iii) Consider the projections onto the (p, u)-plane of the wave curves through U1 = (pl, ul, γ1)

and U1 = (pl, ul, γ2) where γ1 ≤ γ2. If
∂

∂p
r(pl, pl, γ1) <

∂

∂p
r(pl, pl, γ2),

then the projected wave curves going to the right (with respect to p) will never intersect,
while the projected wave curves going to the left will intersect as p decreases. If

∂

∂p
r(pl, pl, γ1) >

∂

∂p
r(pl, pl, γ2),

then the projected wave curves going to the right will intersect, while the projected wave
curves going to the left will not. If

∂

∂p
r(pl, pl, γ1) =

∂

∂p
r(pl, pl, γ2),

then none of the projected wave curves will intersect.
(iv) The slope of a rarefaction wave in the plane γ = γl, ∂r/∂p, only depends on p and

γl, not on pl. Furthermore, there exist two constants r′min and r′max only depending on
pmin, pmax and γ so that

r′min ≤
∂

∂p
r(p, pl, γl) ≤ r′max.

(v) The slope of a shock wave in the plane γ = γl, ∂s/∂p, depends on p, γl and pl. Fur-
thermore, there exist two constants s′min and s′max only depending on pmin, pmax and γ
so that

s′min ≤
∂

∂p
s(p, pl, γl) ≤ s′max.

(vi) The wave curves have a continuous derivative at Ul,

lim
p→pl

∂

∂p
s(p, pl, γl) =

∂

∂p
r(pl, pl, γl).

Furthermore,
∂

∂p
s(p, pl, γl) ≥

∂

∂p
r(p, pl, γl),

for all pl. Hence, a shock wave is always steeper than a rarefaction wave at a given
p 6= pl provided both waves lie in the plane γ = γl.

(vii) Rarefaction waves are additive; if a rarefaction wave connects U1 to U2 and another
rarefaction wave of the same family connects U2 to U3, then the rarefaction wave con-
necting U1 to U3 equals the concatenation of the other two rarefaction waves.

(viii) Given two 1-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and assume
p1 < p2. Then the shock wave starting at p1 is steeper than the shock wave starting at
p2 at any given point p, that is,

∂

∂p
s(p, p2, γ) <

∂

∂p
s(p, p1, γ),
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for all p ≥ p2 > p1.
(ix) Given two 3-shock waves starting at (p1, u, γ) and (p2, u, γ), respectively, and assume

p1 < p2. Then the shock wave starting at p2 is steeper than the shock wave starting at
p1 at any given point p, that is,

∂

∂p
s(p, p1, γ) <

∂

∂p
s(p, p2, γ),

for all p ≤ p1 < p2.

Proof. All the properties follows from differentiating the wave curves. �

p

u

γ1

γ2

(pl, ul)

(a) Because ∂
∂p

r(pl, pl, γl) > ∂
∂p

r(pl, pl, γ2), the

projected wave curves going to the right inter-
sect.

u

p
 

 
γ1

γ2

(pl, ul)

(b) Because ∂
∂p

r(pl, pl, γl) < ∂
∂p

r(pl, pl, γ2), the

projected wave curves going to the left inter-
sect.

Figure 2. The wave curves through U1 = (pl, ul, γ1) (dotted line) and
U2 = (pl, ul, γ2), where γ1 < γ2, projected onto the (p, u)-plane.

The projection onto the (p, u)-plane of two wave curves with different γ’s are shown in
Figure 2. Note that the projected wave curves intersect, cf. property (iii), because the slopes
of the projected wave curves depend on γ. The next lemma gives an estimate on how different
two waves with different γ’s are.

Lemma 2.2. Let ε1 and ε2 be 1-waves of the same type such that ε1 connects (p0, u0, γ1) to
(p, u1, γ1) and ε2 connects (p0, u0, γ2) to (p, u2, γ2), or let η1 and η2 be 3-waves of the same
type such that η1 connects (p, u1, γ1) to (p0, u0, γ1) and η2 connects (p, u2, γ2) to (p0, u0, γ2).
Assume that all waves are contained in D and furthermore that u1 < u2. Then

u2 − u1 ≤ c2 |p− p0 | |γ2 − γ1 | ,(2.20)

where c2 only depends on pmin, pmax and γ.

Note that for 1-waves we compare two waves where the projected waves start at the same
point in the (p, u)-plane, while we for 3-waves compare two waves where the projected waves
end at the same point. The proof of this lemma is given in [16] and is based on the techniques
used in [28].
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2.2. The Riemann Problem. We have the following fundamental definition.

Definition 2.3. The Riemann problem for (1.1) is the Cauchy problem with initial data

U(x, 0) =

{
Ul, if x < 0,
Ur, if x > 0,

(2.21)

where U = (v, u, γ) and Ul, Ur ∈ R are constants.

Lemma 2.4. The Riemann problem for (1.1) where Ul and Ur are contained in D, cf. (2.16),
has a unique solution without vacuum if

ur − ul < r(pr, 0, γr)− r(0, pl, γl).(2.22)

Proof. Note that if γl = γr, then the Riemann problem for (1.1) reduces to the Riemann
problem for the p-system (1.3). The solution of this problem is described in detail in [24,
Ch. 17, §A], and it is unique if (2.22) is satisfied with γl = γr.

A 2-wave takes us from one plane, γ = γ1, to another plane, γ = γ2, while p and u remain
constant. Therefore, the Riemann problem has a unique solution if the projections onto the
(p, u)-plane of the 1-wave curve, Φ1(p, Ul), and the backward 3-wave curve, Φ̃3(p, Ur), have
a unique intersection point. From property (i) of Lemma 2.1 we have that the projection of
Φ1 is strictly decreasing in p and it follows that the projection of Φ̃3 is strictly increasing in
p. Hence, the projected curves intersect at most once. The only case where the two curves
do not intersect is if the projection of the backward 3-rarefaction wave from Ur always lies
above the projection of the 1-rarefaction wave from Ul. Thus, if

ur − r(pr, 0, γr) < ul − r(0, pl, γl),

then the projections of Φ̃3(p, Ur) and Φ1(p, Ul) onto the (p, u)-plane have a unique intersection
point, and the Riemann problem has a unique solution. �

The solution of the Riemann problem (Ul, Ur) is constructed as follows: Let (p̃, ũ) be
the unique intersection between the projections of Φ1(p, Ul) and Φ̃3(p, Ur) onto the (p, u)-
plane. We connect Ul = (pl, ul, γl) to Ũ1 = (p̃, ũ, γl) by a 1-curve, then we go from Ũ1 to
Ũ2 = (p̃, ũ, γr) along a contact discontinuity, and finally connect Ũ2 to Ur = (pr, ur, γr) by
a 3-wave.

2.3. Invariant region and vacuum. A region Ω is invariant for the Riemann problem if
for any Riemann problem with initial data in Ω, its solution is also in Ω. For the p-system
we know from [14, Ex. 3.5] that the convex region in the (v, u)-plane between the integral
curves of the eigenvectors is invariant. This region bounds v from below, but not from above,
thus vacuum is included in the invariant region. In the (p, u)-plane this corresponds to the
region bounded by p = 0 and the two integral curves. Since γ cannot take any other values
than those of the initial data, we find the invariant region for the p-system for each γ and
take the union of these. This gives us an invariant region for (1.1). Moreover, this gives us
the upper bound on p, pmax, which we need, but p is still not bounded away from vacuum.

3. The Cauchy problem

We now turn to the Cauchy problem and use front tracking to obtain a sequence of
approximate solutions. The goal of this section is to show that a subsequence converges to
a weak solution of (1.1). In order to do this, we find a suitable Glimm functional and show
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that it decreases in time. This requires detailed analysis of all possible interactions and most
of this section is devoted to this. First of all we need some notation. We let

ε define a 1-wave, α a 1-shock wave, µ a 1-rarefaction wave,
η a 3-wave, β a 3-shock wave, ν a 3-rarefaction wave,
ζ a 2-wave, θ a 1- or 3-wave.

Furthermore, we define the strength of a 1-wave or a 3-wave as the jump in p across the wave
and the strength of a 2-wave as the jump in γ across the wave. The strength of a wave or
a front is denoted by |θ |. We are now ready to discuss front tracking and to define fronts.
Note that we will use the above notation for fronts as well as waves. In addition, we will
define non-physical fronts which will be denoted by θnp and the strength of a non-physical
front will be defined as its jump in u.

3.1. Front tracking. The first step of front tracking is to approximate the initial data (1.2)
by a piecewise constant function Uδinit

0 so that

lim
δinit→0

‖Uδinit
0 − U0‖L1 = 0,

where U0 = (p0, u0, γ0) and δinit is the distance between the discontinuities. Furthermore,
the approximation has to satisfy (2.22) at every discontinuity so that all initial Riemann
problems have a unique solution. Thus, no vacuum forms at t = 0+.

We then solve the Riemann problem defined by the discontinuities in Uδinit
0 . All solutions

of Riemann problems in front tracking have to be piecewise constant. Since shock waves
and contact discontinuities are already piecewise constants, we use an approximate Riemann
solver where the continuous rarefaction waves are approximated. We replace the rarefaction
wave from the left state, Ul, to the right state, Ur, by a step function. Let k := d|pr − pl | /δe.
Then we divide the rarefaction wave into k jumps, each with strength δ̂ = |θ | /k ≤ δ.
The discontinuities move with the speed of their left state. Note that the jumps in the
approximated rarefaction wave do not satisfy the Rankine–Hugoniot condition. It is obvious
that this approximate solution of the Riemann problem converges to the exact solution
a.e. when δ tends to zero.

Solving all Riemann problems present initially by the approximate solver, generates an
approximate solution of the Cauchy problem for small t > 0. The solution is piecewise
constant and a front is one discontinuity in the solution. Hence, a shock wave or a contact
discontinuity is one front, while an approximated rarefaction wave consists of k fronts where
each front has strength less than or equal to δ. Note that the two parameters δinit and δ are
chosen so that δinit = O(δ). We denote the approximate solution Uδ.

We track all fronts in Uδ until two or more fronts interact, that is, collide at a collision
point (x, τ). The colliding fronts are called incoming fronts. Then we solve the Riemann
problem defined by the states immediately to the left and right of the incoming fronts, and
the fronts in this approximate solution are called outgoing fronts and are usually identifiable
by a prime. We keep tracking all fronts and solving Riemann problems each time fronts
collide.

In order to ensure that front tracking is well-defined for all times, we follow the approach
of Bressan [4] and introduce non-physical fronts. Thus, an interaction is either solved by
the standard approximate solver as described above, or by a simplified Riemann solver. Let
ρ > 0 be a fixed threshold parameter. Interactions of the form ζ +

∑
i εi, or the symmetric
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form
∑

i ηi + ζ, are solved using the simplified Riemann solver if

(3.1) |ζ |
∑

i

|εi | ≤ ρ, or |ζ |
∑

i

|ηi | ≤ ρ,

respectively, otherwise the approximate Riemann solver is used. All other interactions are
always solved using the approximate solver. The simplified Riemann solver introduces non-
physical fronts which we denote θnp. By construction, both p and γ are constant across a
non-physical front and its strength equals the jump in u. In order to preserve the symmetry
property of system (1.1), we introduce non-physical fronts traveling both to the left and to
the right. In either case they travel with the absolute speed λnp > λmax, hence the name.
Note that the Rankine–Hugoniot condition (2.6) is not satisfied for a non-physical front.

Let us first detail the solution of the interaction between one front and a contact dis-
continuity using the simplified solver. The solution consists of two physical fronts and a
non-physical front:

ζ + ε → ε′ + ζ + θnp.

The outgoing front ε′ has the same strength and type as ε, and connects Ul = (pl, ul, γl)
to Ũ1 = (pr, ũ, γl), as depicted in Figure 3(a). The contact discontinuity is, as always,
unchanged, connecting Ũ1 to Ũ2 = (pr, ũ, γr). The non-physical front then connects Ũ2 to
Ur = (pr, ur, γr). Moreover, the non-physical front has positive speed traveling to the right.
For the symmetric case,

η + ζ → θnp + ζ + η′,

the non-physical front has negative speed.

Ũ2Ũ1

Ul

U1

Ur

ǫ

θnpǫ′

ζ

ζ

(a) Simplified solver for ζ + ε.

U1

Ũ1

Ul Ur

θnpǫ′

∑
i
ǫi

Ũ2 Ũ3

η′ζ

ζ

(b) Simplified solver for ζ +
P

i εi.

Figure 3. The simplified Riemann solver with non-physical fronts (dashed lines).

The solution we get using the simplified solver when two or more fronts of the same family
interact with a contact discontinuity, consists of one physical front of each family, in addition
to a non-physical front;

ζ +
∑

i

εi → ε′ + ζ + η′ + θnp,

see Figure 3(b). In order to determine the outgoing fronts, we introduce two auxiliary fronts,
ε and η. These fronts are the solution of the Riemann problem (U1, Ur), thus, ε connects U1
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to the intermediate state U = (p, u, γr), and η connects U to Ur. Let ε′ be the front that has
the same strength and type as ε, but with γ = γl, that is, connecting Ul to Ũ1 = (p, ũ, γl).
The contact discontinuity is unchanged, connecting Ũ1 to Ũ2 = (p, ũ, γr). Let η′ be η

shifted in the u-direction so that η′ connects Ũ2 to Ũ3 = (pr, ur + ũ − u, γr). Finally, the
non-physical front connects Ũ3 to Ur. The non-physical front has positive speed and changes
only the value of u, as it is supposed to. This construction of the solution using the simplified
Riemann solver is inspired by the formal tool of splitting an interaction into steps that we
will introduce in the next section. More details on the process of finding the outgoing fronts
using the simplified solver are included in the proof of Lemma 3.11 where we obtain estimates
for these interactions. Note that ε′ + ζ + η′ is the solution of the Riemann problem (Ul, Ũ3),
thus, the Rankine–Hugoniot condition (2.6) is satisfied for any shock or contact discontinuity.
However, it is not satisfied for the non-physical front or any approximated rarefaction wave.
We resolve the symmetric interaction in a similar manner, and get a non-physical front with
negative speed; ∑

i

ηi + ζ → θnp + ε′ + ζ + η′.

β

Ul Ur

θnp

α

β ′ζα′

ζθnp

(a) in the (x, t)-plane.

p

u β ′

α′

β

α

Ur

Ul

θnp

θnp

(b) Projected onto the (p, u)-plane.

Figure 4. The interaction θnp + β + ζ + α → α′ + ζ + β′ + θnp.

Whenever we have an interaction with an incoming non-physical front, as in Figure 4, we
first let the non-physical front pass through with its strength unchanged. Then we solve the
remaining interaction, which is slightly shifted along the u-direction, using the approximate
or simplified solver according to condition (3.1). Note that all wave curves are invariant in
the (p, u) plane under a translation in u.

Before we turn to the discussion of all possible interactions, we look at the error introduced
using the simplified solver instead of the approximate solver. The lemma is given for the
interactions involving 1-fronts, but we have the same results for the symmetric interactions
involving 3-fronts.

Lemma 3.1. Consider the interaction ζ +
∑n

i εi for n ≥ 1. Let

ζ +
n∑
i

εi → ε̂ + ζ + η̂,
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be the solution, with intermediate states Ûi, i = 1, 2, obtained using the approximate solver,
and let

ζ +
n∑
i

εi →

{
ε′ + ζ + θnp, if n = 1,
ε′ + ζ + η′ + θnp, if n > 1,

be the solution obtained using the simplified solver, with intermediate states Ũi, i = 1, 2 and
i = 1, 2, 3, respectively. Then,

|σα̂ − σα′ | = O(1) |θnp | , if ε′ = α′,

|λµ̂ − λµ′ | = 0, if ε′ = µ′,

and, if η̂ is of the same type as η′ for n > 1,∣∣∣σβ̂ − σβ′

∣∣∣ = O(1) |θnp | , if η′ = β′,

|λν̂ − λν′ | = O(1) |θnp | , if η′ = ν′.

Moreover,
∣∣∣Ûi − Ũi

∣∣∣ = O(1) |θnp |, i = 1, 2, and
∣∣∣Ur − Ũj

∣∣∣ = O(1) |θnp | where j = 2 if n = 1
and j = 3 if n > 1.

Proof. First note that p and u are equal for Ũ1 and Ũ2, and for Û1 and Û2, and we therefore
omit the indices. Figure 5 shows the solutions of ζ+ε for both solvers, and Figure 6 shows the
solutions and the auxiliary fronts for an interaction of the type ζ +

∑
i εi. The rarefaction

p

u

μ̂

μ′

μ

β̂
Ur

θnp

Ul

Û

Ũ

(a) ζ + µ.

p

u

α′α

α̂

β̂

Ul

Ur

Ũ

Ûθnp

(b) ζ + α.

Figure 5. The interaction (dashed lines) solved by the approximate solver
(dash-dotted lines) and by the simplified solver (solid lines).

fronts µ′ and µ̂ have the same left state, and they therefore have the same speed. Likewise,
the left state is the same for α′ and α̂. However, the speed of a shock-front depends on
the value of p at the right state as well, where p = p̃ for α′ and p = p̂ for α̂. Since this
difference in p is less than a constant times the jump in u across the non-physical front, that
is, |p̃− p̂ | = O(1) |θnp |, we get

|σα̂ − σα′ | = |σ1(pl, p̂)− σ1(pl, p̃) | ≤ |σ′1(pl, p
∗) | |p̃− p̂ | = O(1) |θnp | ,
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p

u

α̂

α′

α

Ũ3

Ur

Û

Ul

θnp

α2

α3

α5

α4

α6
α7

α1

ν̂

ν

Ũ
ν′

U

(a) When η′ and η̂ are of the same type

p

u α′

α

U

Ũ

ν

Û
α̂

β̂

Ũ3

Ur

Ul

θnp

α3

α4

α5

α7

α1

α2

α6

(b) When η′ and η̂ are not of the same type.

Figure 6. The interaction ζ +
∑7

i=1 αi (dashed lines), with the auxiliary
curves (dotted lines), solved by the approximate solver (dash-dotted lines)
and by the simplified solver (solid lines).

where σ′1 is the derivative with respect to the second argument and p̂ ≤ p∗ ≤ p̃.
If n > 1 and η′ is of the same type as η̂, as for the interaction depicted in Figure 6(a),

then p = pr at the right state for both fronts. However, at the left state we have p = p̃ for
η′ and p = p̂ for η̂. This is the same difference in p as above, thus,∣∣∣σβ̂ − σβ′

∣∣∣ = |σ3(p̂, pr)− σ3(p̃, pr) | ≤ |σ′3(p∗, pr) | |p̃− p̂ | = O(1) |θnp | ,

|λν̂ − λν′ | = |λ(p̂)− λ(p̃) | ≤ |λ′3(p∗) | |p̃− p̂ | = O(1) |θnp | ,

where σ′3 is the derivative with respect to the first argument, λ′3 the derivative with respect
to p, and p̂ ≤ p∗ ≤ p̃.

Moreover, γ is equal for the two solutions and |ũ− û | ≤ |θnp |, thus,
∣∣∣Ûi − Ũi

∣∣∣ = O(1) |θnp |,
i = 1, 2. Finally, let j = 2 for n = 1 and j = 3 for n > 1. Then, p̃j = pr and |ũj − ur | = |θnp |,
hence,

∣∣∣Ur − Ũj

∣∣∣ = O(1) |θnp |. �

In front tracking an interaction is a collision of arbitrarily many fronts at one point in
space-time. However, in order to collide at the same point, their speeds must decrease from
left to right. This observation has the immediate consequence.

Lemma 3.2. All interactions between physical fronts in front tracking for system (1.1) is of
the general form

m∑
i=1

ηi + ζ +
n∑

j=1

εj ,(3.2)

where ηi is a 3-front, ζ is a contact discontinuity, εj is a 1-front, and two adjacent fronts
cannot both be rarefaction-fronts. All interactions with incoming non-physical fronts are
of the same general form with a non-physical front as the leftmost and/or the rightmost
incoming front. Furthermore, all wave families do not need to be present in an interaction.
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This is a major difference between front tracking and the Glimm scheme where at most
four waves can interact. Furthermore, only the case with two interacting fronts or waves is
the same in front tracking and in the Glimm scheme. Still, the following, simple symmetry
property for system (1.1) proved in [16], is useful also for the interactions in front tracking.

Lemma 3.3. [16, Lemma 3.1] Under the transformation x 7→ −x, a 1-wave connecting Ul

to Ur becomes a 3-wave connecting Ur to Ul, and vice versa. A 2-wave is unchanged under
this transformation, and a non-physical front becomes a non-physical front traveling in the
opposite direction. Furthermore, the leftmost wave with respect to x will become the rightmost
wave with respect to −x, and so on.

One of our main goals is to show that the approximate solution can be constructed at
any time in a finite number of steps. Therefore we look at which interactions increase the
number of fronts present. Firstly, recall that the solution of a Riemann problem consists
of up to three waves, one from each family. Hence, the solution found by the approximate
Riemann solver has four or more fronts if, and only if, a rarefaction wave splits into several
fronts. For an interaction between three or more fronts solved by the approximate solver,
the number of fronts can therefore only increase due to splitting of rarefaction waves.

Furthermore, an outgoing contact discontinuity is only present if there is an incoming
contact discontinuity. Thus, the number of fronts for an interaction between two fronts,
none of which are contact discontinuities, can only increase due to splitting of rarefaction
waves.

Whenever the simplified solver is used for an interaction between two incoming fronts,
we get two outgoing physical waves and one outgoing non-physical front. If there are three
or more incoming fronts, the simplified solver gives three outgoing physical waves and one
non-physical front. Hence, for an interaction solved by the simplified solver, the number of
physical fronts can increase only due to splitting of rarefaction waves.

Except for split rarefaction waves, the number of fronts increases only for the interaction
between a contact discontinuity and one other front solved by the approximate solver. These
interactions have at least three outgoing fronts, and we refer to them as γ-collisions.

Definition 3.4. A γ-collision is the interaction between a contact discontinuity and a 1- or
3-front.

The four different γ-collisions, where symmetry reduces it to two distinct cases, are dis-
cussed discussed in the proof of Lemma 3.8 in Section 3.2.

If the strength of an outgoing rarefaction wave is larger than δ, it splits into several
fronts. The interactions where this might happen are either a new rarefaction-collision or an
increasing rarefaction-collision as defined below.

Definition 3.5. A new rarefaction-collision is an interaction where there is an outgoing
rarefaction wave of a family in which there are no incoming rarefaction-fronts.

Definition 3.6. An increasing rarefaction-collision is an interaction where the strength
of an outgoing rarefaction wave is greater than the sum of the strengths of the incoming
rarefaction-fronts of the same family.

Note that a γ-collision can also be a new rarefaction-collision, an increasing rarefaction-
collision, or even both.

Summing up the front tracking construction, we have defined a piecewise constant func-
tion Uδ, so that for all fixed t, Uδ(·, t) is a piecewise constant function. Furthermore the
construction gives a sequence of collision times τ1 < τ2 < . . . , and Uδ(·, t) is defined for all
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t ≤ limn→∞ τn. We shall show that either {τn} is a finite sequence or limn τn = ∞, i.e., that
Uδ(·, t) can be constructed for any t > 0.

3.2. The decreasing Glimm functional. Set tn = (τn + τn+1)/2, where we have defined
τ0 = 0, and define the functional

G(tn) := F (tn) + 3C1(γ − 1)Q1(tn) + 3C2Q2(tn),(3.3)

where C1 is the constant appearing in the estimates given by (3.16) for the interaction of
Type Bbii, cf. the proof of Lemma 3.8,

C2 :=
c2

min{r′min, s′min}
= kc2,(3.4)

where c2 is the constant from Lemma 2.2 and

k :=
1

min{r′min, s′min}
.(3.5)

Note that both C1 and C2 are constants only depending on pmin, pmax and γ. This is the
same functional as the Glimm functional defined in [16], and the two first terms are similar to
the Glimm functional used in [21]. The linear functional F and the two quadratic functionals
Q1 and Q2 are defined by

F (tn) :=
∑

{|θ | | all shock-fronts θ at t = tn},(3.6)

Q1(tn) :=
∑

{|α | |β | | all approaching 1- and 3-shock-fronts at t = tn},(3.7)

Q2(tn) :=
∑

{|ζ | |θ | | all approaching pairs of ζ and θ at t = tn},(3.8)

where two fronts of different families are approaching if the front of the lowest family is to
the right of the other. Note that F and Q1 only sum over shock-fronts, while Q2 also sums
over rarefaction-fronts. Furthermore, none of the terms involve the strength of non-physical
fronts.

We call the lines t = tn time lines. The only difference between the functionals above and
the functionals used for the Glimm scheme in [16] is that the above ones are defined on time
lines, while the functionals in [16] are defined on mesh curves.

We need two more functionals, one summing over all shock- and rarefaction-fronts at
t = tn and one summing over the contact discontinuities at t = tn. Note that the sum of all
contact discontinuities is constant for all time lines. We define

L(tn) :=
∑

{|θ | | all θ at t = tn},(3.9)

Fγ :=
∑

{|ζ | | all ζ}.(3.10)

We will show that G is a decreasing functional in time. Let

(3.11) C = min{C̃, 1},
where the minimum is taken over all the constants C̃ appearing in the estimates for interac-
tions of Type Ba discussed in the proof of Lemma 3.8. Note that 0 < C ≤ 1 depends only on
pmin, pmax and γ. The rest of this subsection will be devoted to proving the following result:

Proposition 3.7. If

3C1(γ − 1)L(t0) ≤
C

3
and 3C2Fγ ≤

C

3
.(3.12)

then G defined by (3.3) is decreasing and F (tn) ≤ 5
3L(t0). In particular, G decreases by

at least 2
3q across an increasing rarefaction-collision where the strength of the rarefaction
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wave increases by q > 0, by at least 2
3 |θ

′ | across a new rarefaction-collision where θ′ denotes
the new outgoing rarefaction wave, and by at least 3k |θnp | for an interaction where a non-
physical front is generated.

We prove this proposition through a series of lemmas where we start by considering
interactions between two fronts, then gradually build up to interactions of the general form
given by (3.2), including incoming non-physical fronts. For all possible interactions in front
tracking we show that G is decreasing and, in particular, we identify all new or increasing
rarefaction-collisions and all interactions generating a non-physical front.

Before we state and prove the different lemmas, we present the general idea based on
induction on successive time lines: First we show that G(t1) −G(t0) ≤ 0. Then we assume
G(tn) ≤ G(tn−1) ≤ · · · ≤ G(t0). The induction step is to show that ∆G := G(tn+1)−G(tn) ≤
0. Note that if G is decreasing up to t = tn, then we have

F (tn) ≤ G(tn) ≤ · · · ≤ G(t0) = F (t0) + 3C1(γ − 1)Q1(t0) + 3C2Q2(t0)

≤ F (t0) + 3C1(γ − 1)(F (t0))2 + 3C2L(t0)Fγ

≤ (1 + 3C1(γ − 1)F (t0) + 3C2Fγ)L(t0)

≤ (1 + 3C1(γ − 1)L(t0) + 3C2Fγ)L(t0)

≤
(

1 +
C

3
+

C

3

)
L(t0) ≤

5
3
L(t0).

(3.13)

We only give the estimates for ∆G here. Estimating G(t1) − G(t0) is very similar, giving
terms involving F (t0) where the estimate for ∆G has terms involving F (tn).

For the more involved interactions we use a computational trick where we divide the
interaction into steps where only a part of the fronts interact at each step. It is important to
note that in the front tracking algorithm all fronts in an interaction meet at the same point
and that no speeds are altered. It is just in the estimation of ∆G we do this step procedure
as a formal trick to go from the incoming fronts to a set of fronts which are comparable to
the outgoing fronts. Note also that the outgoing fronts are not altered in this process. This
method corresponds to the use of inner diamonds for the Glimm scheme in [16]. DiPerna [10]
constructs the outgoing solution by resolving the interaction into a composition of binary
interactions. This method of decomposition is similar to our formal method of dividing an
interaction into steps.

Thus, we divide the interaction into l steps where only some of the fronts interact at each
step, the rest is left unchanged. As long as the interaction at one step is an interaction
already analyzed, we know that G decreases across that step. We continue this until we at
some point directly can show that G is decreasing across the last step, where the last step is
going from some collection of fronts to the outgoing fronts. Formally, the steps are obtained
by shifting the speeds of the incoming fronts slightly, so that only the intended fronts meet
at a shifted collision point. This is done for each step and we introduce intermediate time
lines, t = t∗i , so that the interaction at the ith step lies between t∗i−1 and t∗i where t∗0 = tn
and t∗l = tn+1. As long as we have ∆Gi := G(t∗i ) − G(t∗i−1) ≤ 0 for i = 1, . . . , l, it follows
that ∆G ≤ 0. Note again that this step procedure is only a computational trick, and that
the front-tracking algorithm as such involves no shifting of speeds.

Figure 7 shows how a typical interaction of the type
∑

i ηi +
∑

j εj is divided into two
additional steps. First we let all 3-fronts interact at one collision point whereas all 1-fronts
interact at a different point. Both interactions result in a 1-wave and a 3-wave. At the second
step we let the approaching 3- and 1-wave interact. Thus, at t = t∗2 we have a collection of
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t = tn

t = tn+1

(a) The original interaction.

t = tn

t = tn+1

t = t∗2
t = t∗1

(b) The interaction divided into steps.

Figure 7. A typical interaction of the form
∑

i ηi +
∑

j εj .

four waves and we compare these to the outgoing fronts. Note that we have not shifted or
altered the outgoing fronts at any point in this step procedure.

For some cases we use an additional trick to avoid getting too many steps. Instead of
letting some fronts interact at a shifted collision point, we replace the fronts with new fronts
connecting the same left and right state. Since this is not a valid interaction, we need to
show that ∆Gi ≤ 0 for this step, and we do that by comparing the new fronts with the
replaced fronts. Still this is just a formal trick and the outgoing fronts are not altered.

In Lemma 3.8 through Lemma 3.14 we cover all possible interactions, and we start by
the cases with two interacting fronts. Recall that these are the same interactions as for the
Glimm scheme, cf. [16], and they are labeled in the same manner as in [16].

Lemma 3.8. For all interactions between two fronts we have ∆G ≤ 0. In particular, ∆G ≤
− 2

3q for all increasing rarefaction-collisions where the strength of the rarefaction wave has
increased by q > 0 and ∆G ≤ −2

3 |θ
′ | for new rarefaction-collisions where θ′ denotes the new

rarefaction wave. Moreover, ∆G ≤ − 1
9C2 |ζ | |θ | for all γ-collisions where θ is the incoming

front, and ∆G ≤ −3k |θnp | for interactions generating a non-physical front.

Proof. The possible interactions between two fronts are the same as the interactions of Type
B considered when using the Glimm scheme, cf. [16]. Therefore, we here give the estimates
without proofs. All the estimates for interactions without a contact discontinuity are obtained
from the estimates by Nishida and Smoller in [21], while the estimates for interactions with a
contact discontinuity are found using Lemma 2.2. The estimates for the interactions between
a contact discontinuity and another front solved by the simplified solver are also obtained
using Lemma 2.2.

Type Ba: Two waves of the same family.
(i) α1 + α2 → α′ + ν′, symmetric to β1 + β2 → µ′ + β′: This is a new rarefaction-collision

and we have

|α′ | − |α1 | − |α2 | = − |ν′ | ⇒ ∆G ≤ −2
3
|ν′ | .

(ii) α + µ, symmetric to ν + β. There are two possible outcomes:
• α + µ → µ′ + β′: For this case we have

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.
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Figure 8. The interaction α1 + α2 → α′ + ν′.
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(a) α + µ→ µ′ + β′.
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(b) α + µ→ α′ + β′.

Figure 9. The interaction α + µ.

• α + µ → α′ + β′: We have

|α′ |+ |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.

(iii) µ + α, symmetric to β + ν: There are two possible outcomes:
• µ + α → µ′ + β′: For this case

|µ′ | ≤ |µ | , |β′ | − |α | ≤ −C̃ |β′ | ⇒ ∆G ≤ 0.

• µ + α → α′ + β′. In this case, the interaction is replaced by a new one,

(3.14) µ + α
∆G1−−−→ β + α

∆G2−−−→ α′ + β′,
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(b) µ + α→ α′ + β′.

Figure 10. The interaction µ + α.

for which we have the estimate

|α |+
∣∣β ∣∣− |α | ≤ −C̃

∣∣β ∣∣ ⇒ ∆G1 ≤ 0.

Furthermore, we have ∆G2 ≤ 0 by estimate (3.16) for β +α below, cf. Type Bbii.
Hence, ∆G ≤ 0.

Type Bb: Different families, no contact discontinuity.
(i) ν + µ → ν′ + µ′. None of the rarefaction-fronts increase, and we have

(3.15) |µ′ | ≤ |µ | , |ν′ | ≤ |ν | ⇒ ∆G1 ≤ 0.
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(a) ν + µ→ µ′ + ν′.
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(c) ν + α→ α′ + ν′.

Figure 11. The interactions of Type Bb

(ii) β + α → α′ + β′. We have

(3.16) |α′ | − |α | ≤ (γ − 1)C1 |α | |β | , |β′ | − |β | ≤ (γ − 1)C1 |α | |β | ,
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thus
∆G ≤ −1

9
(γ − 1)C1 |α | |β | .

(iii) ν+α → α′+ν′, symmetric to β+µ → µ′+β′. This is an increasing rarefaction-collision
where we for q > 0 have

|α′ | − |α | = −q, |ν′ | − |ν | = q ⇒ ∆G ≤ −2
3
q.

Type Bc: With a contact discontinuity: These are the four possible γ-collisions.
(i) ζ + µ, symmetric to ν + ζ: There are two possible outcomes for this γ-collision, and, in

addition, we have the case where the simplified Riemann solver is used, introducing a
non-physical front.

p

u

μ

μ′

ν′

Ur

Ul

(a) ζ + µ→ µ′ + ζ + ν′.

p

u

β ′

Ur
μ′

μ

Ul

(b) ζ + µ→ µ′ + ζ + β′.

Figure 12. The interaction ζ + µ.

• ζ+µ → µ′+ζ+ν′: This interaction is a new rarefaction-collision and an increasing
rarefaction-collision with q = |ν′ |. We have

|µ′ | − |µ | = |ν′ | ≤ C2 |µ | |ζ | ,
from which we find

∆G ≤ −8
3
C2 |µ | |ζ | ≤ −2

3
|ν′ | − 2

3
q.

• ζ + µ → µ′ + ζ + β′: The rarefaction-front does not increase and

|µ′ | − |µ | ≤ 0, |β′ | ≤ C2 |µ | |ζ | ⇒ ∆G ≤ −10
9

C2 |µ | |ζ | .

• ζ + µ → µ′ + ζ + θnp: By construction, |µ′ | = |µ |. Using Lemma 2.2, we find

(3.17) |θnp | ≤ c2 |µ | |ζ | ,
from which we get

∆G ≤ −3C2 |µ | |ζ | ≤ −3k |θnp | ,
where k given by (3.5) depends only on pmin, pmax and γ.
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(a) ζ + µ→ µ′ + ζ + θnp.
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(b) ζ + α→ α′ + ζ + θnp.

Figure 13. The interaction ζ + ε solved using the simplified solver.

(ii) ζ + α, symmetric to β + ζ. This γ-collision has two possible outcomes, in addition to
the case with a non-physical front.
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(b) ζ + α→ α′ + ζ + β′.

Figure 14. The interaction ζ + α.

• ζ + α → α′ + ζ + ν′: For this new rarefaction-collision we have

|α′ | − |α | ≤ 0, |ν′ | ≤ C2 |α | |ζ | ,

thus,

∆G ≤ −2
3
C2 |α | |ζ | ≤ −2

3
|ν′ | .
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• ζ + α → α′ + ζ + β′: For this case we have

|α′ | − |α | = |β′ | ≤ C2 |α | |ζ | ⇒ ∆G ≤ −1
9
C2 |ζ | |β | .

• ζ + α → α′ + ζ + θnp: By construction, |α′ | = |α | and by Lemma 2.2

(3.18) |θnp | ≤ c2 |µ | |ζ | .

Thus,
∆G ≤ −3C2 |α | |ζ | ≤ −3k |θnp | ,

where k only depends on pmin, pmax and γ.
�

With the basic interactions between two fronts covered, we are able to consider more
involved interactions. First interactions between arbitrary many fronts of the same family
are studied. Two interactions of this kind are given in Figure 15, see also Example 3.10
below. Note that no interaction of this form can be an increasing rarefaction-collision.
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i=1 αi → α′ + ν′.
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(b) µ1 + α2 + µ3 + α4 → µ′ + β′.

Figure 15. Some interactions of the form (3.19).

Lemma 3.9. For all interactions between arbitrary many fronts of the same family where
two adjacent fronts cannot both be rarefaction-fronts, we have ∆G ≤ 0, and in particular,
∆G ≤ − 2

3 |θ
′ | for new rarefaction-collisions where θ′ denotes the new rarefaction wave.

Furthermore, there are three possible outcomes for these interactions;

(3.19)
n∑

i=1

εi →


µ′ + β′,

α′ + ν′,

α′ + β′,

symmetric to
n∑

i=1

ηi →


α′ + ν′,

µ′ + β′,

α′ + β′.

Proof. We prove the lemma for interactions between three or more 1-fronts, the interactions
with n = 2 are already covered by Lemma 3.8. None of the interactions can have two
rarefaction waves as outgoing waves due to property (i) of Lemma 2.1. Recall also that p
increases along a 1-shock wave and decreases along a 1-rarefaction wave.

Consider first the case α′ + ν′. Then the interaction is a new rarefaction-collision where
Ur is to the right of Ul and above the 1-shock wave starting at Ul. Since only the αi-fronts
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among the incoming fronts bring us to the right, we have

|α′ | −
n∑

i=1

|αi | ≤ − |ν′ | ⇒ ∆G ≤ −2
3
|ν′ | .

For the case µ′ + β′, Ur is to the left of Ul. The only incoming fronts bringing us to the
left are the µi-fronts, thus

|µ′ | ≤
n∑

i=1

|µi | .

Hence, no interaction between fronts of the same family is an increasing rarefaction-collision.
Therefore we consider the last two cases together, that is, ε′ + β′ where ε′ is either a

shock or a rarefaction wave. We divide the interaction into several steps where two fronts
interact at each step, hence, ∆Gj ≤ 0 by Lemma 3.8. Recall that two adjacent fronts in
the interaction cannot both be rarefaction-fronts. The strategy is as follows: Start with the
rightmost front and search for the first place where two adjacent fronts are of different types,
i.e., αi + µi+1 or µi + αi+1. Let these fronts interact with outcome ε̃k + β̃k. Whenever there
is a 1-shock to the right of β̃k, we proceed by letting them interact; β̃k + α → α̃k+1 + β̃k+1,
and we repeat this as long as there is a 1-shock to the right of the 3-shock. Thus, we end
up with a collection of β-waves as the rightmost waves. Furthermore, whenever this process
results in two adjacent rarefaction waves, we recall from property (vii) of Lemma 2.1 that
rarefaction waves (and fronts) are additive and we add them up to a new rarefaction wave.
We continue this process until all 1-fronts of different types have interacted, and we are left
with either µ̃ +

∑
β̃k or

∑
α̃k +

∑
β̃k. For the first case we have

(3.20)
n∑

i=1

εi
∆G1−−−→ µ̃ +

∑
k

β̃k
∆G2−−−→ µ′ + β′,

where we already know that ∆G1 ≤ 0. By property (ix) of Lemma 2.1 it follows that∑
k

∣∣∣β̃k

∣∣∣ > |β′ |, thus, there is a q > 0 so that

|µ′ | − |µ̃ | = q, |β′ | −
∑

k

∣∣∣β̃k

∣∣∣ = −q ⇒ ∆G2 ≤ 0.

For the latter case we have
n∑

i=1

εi
∆G1−−−→

∑
k

α̃k +
∑

k

β̃k
∆G2−−−→ α′ + β′,

where we already know that ∆G1 ≤ 0. Furthermore, it follows from the properties (viii) and
(ix) of Lemma 2.1 that

|α′ | −
∑

k

|α̃k | ≤ 0, |β′ | −
∑

k

∣∣∣β̃k

∣∣∣ ≤ 0 ⇒ ∆G2 ≤ 0.

This proves the lemma for the interaction
∑

i εi, and the results for
∑

i ηi follows by sym-
metry. However, we include another estimate for the last case discussed above, which will
prove useful later. The number of α̃k-fronts is less than or equal to the number of incoming
αi-fronts. Going carefully through each steps, we find that each α̃k has a corresponding
incoming αi so that

(3.21) |α̃k | ≤
∏
j 6=i

(1 + C1(γ − 1) |εj |) |αi | ≤
4
3
|αi | ,
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because ∏
j 6=i

(1 + C1(γ − 1) |εj |) ≤ 1 +
3
2

∑
j

C1(γ − 1) |εj |

≤ 1 +
3
2
C1(γ − 1)F (tn−1)

≤ 1 +
3
2
C1(γ − 1)

5
3
L(t0) ≤

4
3
.

Here we have used that∏
i

(1 + xi) ≤ exp

(∑
i

xi

)
≤ 1 +

3
2

∑
i

xi, for
∑

i

xi ≤
1
2
.

�

Before we continue to the more complicated interactions, we give an example to illustrate
how we divide an interaction of the form (3.19) into smaller steps.

Example 3.10. Consider the interaction µ1 + α2 + µ3 + α4 → α′ + β′ as depicted in
Figure 16(a). Dividing this interaction according to the strategy we discussed in the previous
proof, see Figure 16(b), we get

µ1 + α2 + [µ3 + α4]
∆G1−−−→ [µ1 + α2] + α̃1 + β̃1

∆G2−−−→ α̃2 + [β̃2 + α̃1] + β̃1

∆G3−−−→ α̃2 + α̃3 + β̃3 + β̃1
∆G4−−−→ α′ + β′,

where ∆Gi ≤ 0, i = 1, 2, 3, by Lemma 3.8. By the properties of shock waves, we have

|α′ | − |α̃2 | − |α̃3 | ≤ 0, |β′ | −
∣∣∣β̃1

∣∣∣− ∣∣∣β̃3

∣∣∣ ≤ 0, ⇒ ∆G4 ≤ 0.

Note that µ + α as above is the second case of the interaction of Type Baiii discussed in
Lemma 3.8, where we introduced an extra step to solve it. This is given in (3.14) where∣∣β ∣∣ ≤ |µ | and |α | ≤ |α |. Using this, and the estimates given by (3.16) for β + α, we find

|α̃2 | ≤ (1 + (γ − 1)C1

∣∣β2

∣∣) |α2 | ≤ (1 + (γ − 1)C1 |µ1 |) |α2 | ,

|α̃3 | ≤ (1 + (γ − 1)C1

∣∣∣β̃2

∣∣∣) |α̃1 |

≤ (1 + (γ − 1)C1(1 + (γ − 1)C1 |α2 |)
∣∣β2

∣∣)(1 + (γ − 1)C1

∣∣β1

∣∣) |α2 |
≤ (1 + (γ − 1)C1 |µ1 |)(1 + (γ − 1)C1 |α2 |)(1 + (γ − 1)C1 |µ3 |) |α4 | ,

showing that estimate (3.21) holds for α̃2 and α̃3.

Using Lemma 3.9 we are now able to divide the more involved interactions into smaller
steps and through this show that G decreases. We start by adding a contact discontinuity
to the interactions.

Lemma 3.11. The functional G decreases for all interactions of the form

(3.22) ζ +
n∑

i=1

εi and the symmetric form
n∑

i=1

ηi + ζ.

Furthermore, ∆G ≤ −2
3 |θ

′ | for new rarefaction-collisions where θ′ is the new wave, ∆G ≤
− 2

3q for increasing rarefaction-collisions where the strength of the rarefaction wave increases
by q > 0, and ∆G ≤ −3k |θnp | for interactions generating a non-physical front.
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Figure 16. The interaction µ1 + α2 + µ3 + α4 → α′ + β′ of Example 3.10.
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Proof. Let us first consider when |ζ |
∑

i |ε | > ρ, so that the approximate solver is used. We
then divide interaction ζ +

∑n
i=1 εi into two steps where we let

∑n
i=1 εi interact at the first

step. By Lemma 3.9 we know that G is decreasing for this interaction and that there are
three possible cases. We write this

ζ +
n∑

i=1

εi
∆G1−−−→ ζ +


µ + β

α + ν

α + β

∆G2−−−→ ε′ + ζ + η′,

where ∆G1 ≤ 0. At the second step there are three possible interactions of the form ζ+ε+η →
ε′ + ζ + η′. The outgoing 1-wave is of the same type as the incoming 1-wave for all of these
interactions, while the type of the 3-wave depends on the different γ-values, giving two
possible cases for each interaction.

Consider first the case where the incoming and outgoing 3-waves are of the same type. If
the intersection between ε′ and η′ is below the intersection between ε and η when viewed in
the (p, u)-plane, we have

|µ′ | − |µ | = q, |β′ | − |β | = −q ⇒ ∆G2 ≤ −2
3
|µ′ | ,

|α′ | − |α | = −q, |ν′ | − |ν | = q ⇒ ∆G2 ≤ −2
3
|ν′ | ,

|α′ | − |α | ≤ 0, |β′ | − |β | ≤ 0 ⇒ ∆G2 ≤ 0,

for the three interactions, respectively. The two first are increasing rarefaction-collisions,
however, the overall interactions are not increasing rarefaction-collisions because property
(i) of Lemma 2.1 yields that |ε′ | is less than the sum of the strengths of the incoming 1-
fronts of the same type. If the intersection in the (p, u)-plane between ε′ and η′ is above the
intersection between ε and η, we apply Lemma 2.2 to ε and ε′ and find that

0 ≤ |β′ | − |β | ≤ |µ | − |µ′ | ≤ C2 |µ′ | |ζ | ≤ C2 |µ | |ζ | ⇒ ∆G2 ≤ 0,

|α′ | − |α | ≤ C2 |α | |ζ | , |ν′ | − |ν | ≤ 0 ⇒ ∆G2 ≤ 0,

|β′ | − |β | = |α′ | − |α | ≤ C2 |α | |ζ | ⇒ ∆G2 ≤ 0,

for the three interactions, respectively.
Consider now the case where the 3-waves are of different types. The interactions with

η′ = ν′ are new rarefaction-collisions, and the interaction with ε′ = µ′ is also an increasing
rarefaction-collision with |ν′ | ≤ |µ′ | − |µ | = q. We obtain the following estimates;

|ν′ | ≤ q = |µ′ | − |µ | ≤ C2 |µ | |ζ | ⇒ ∆G2 ≤ −2
3
|ν′ | − 2

3
q,

|β′ | − |β | = |α′ | − |α | ≤ C2 |α | |ζ | ⇒ ∆G2 ≤ 0,

|α′ | − |α | = − |ν′ | − |β | ≤ − |ν′ | ⇒ ∆G2 ≤ −2
3
|ν′ | ,

where we used Lemma 2.2 on ε and ε′ for the two first interactions.
Next, we consider the case where the simplified solver is used to solve ζ +

∑n
j=1 εj with

n ≥ 2. The construction of the solution, as described in Section 3.1, can be viewed as
dividing the interaction into three steps. First we let

∑
i εi interact, resulting in ε + η, then

we solve the interaction between ζ + ε using the simplified solver. Finally, the non-physical
front interact with η. Since the non-physical front just passes through without changing its
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strength, η′ is just η shifted in the u-direction. We write this

ζ +
n∑

j=1

εj
∆G1−−−→


[ζ + µ] + β

∆G2−−−→ µ′ + ζ + [θnp + β] ∆G3−−−→ µ′ + ζ + β′ + θnp,

[ζ + α] + ν
∆G2−−−→ α′ + ζ + [θnp + ν] ∆G3−−−→ α′ + ζ + ν′ + θnp,

[ζ + α] + β
∆G2−−−→ α′ + ζ + [θnp + β] ∆G3−−−→ α′ + ζ + β′ + θnp.

Figure 6 shows the intermediate fronts for the second interaction, in addition to the solution
using the approximate solver. For the first step we have ∆G1 ≤ 0 by Lemma 3.9, and, from
the proof of the lemma, we have

|µ | ≤
∑

i

|µi | , |α | ≤
∑

i

|αi | , |α | ≤
∑

k

|α̃k | ≤
4
3

∑
i

|αi | ,

respectively, where the last inequality follows from estimate (3.21). For the second step, we
have from the proof of Lemma 3.8 and the above estimate that

(3.23) |θnp | ≤ c2 |ε | |ζ | ≤
4
3
c2 |ζ |

∑
i

|εi | , and ∆G2 ≤ −3k |θnp | .

Finally, since |η | = |η′ |, it follows that ∆G3 = 0. Hence, ∆G ≤ ∆G1 + ∆G2 + ∆G3 ≤
−3k |θnp |, and we have covered the case where non-physical fronts are generated.

Thus, G decreases for all interactions of the form ζ +
∑n

j=1 εj where the case n = 1 is
covered by Lemma 3.8. The result for

∑n
i=1 ηi + ζ follows by symmetry. �

Next, we consider interactions between arbitrary many fronts of the first and third family.

Lemma 3.12. The functional G is decreasing for all interactions of the form
n∑

i=1

ηi +
m∑

j=1

εj .(3.24)

Furthermore, ∆G ≤ −2
3q for increasing rarefaction-collisions where q > 0 is the increase in

the strength of the rarefaction wave, and ∆G ≤ − 2
3 |θ

′ | for new rarefaction-collisions where
θ′ is the new rarefaction wave.

Proof. If n > 1 and m > 1, we divide these interactions into steps as follows;

n∑
i=1

ηi +
m∑

j=1

εj
∆G1−−−→


µ1 + β1

α1 + ν1

α1 + β1

+


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + η′,

where ∆G1 ≤ 0 by Lemma 3.9. There are nine possible interactions at the third step, but
three of these are symmetric to one of the other, leaving us with six interactions to consider.
If n = 1 and m > 1 (symmetric to n > 1 and m = 1), the interactions are divided as follows;

η +
n∑

j=1

εj
∆G1−−−→

{
β1

ν1

+


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + η′,

where ∆G1 ≤ 0 by Lemma 3.9. This gives us six interactions to consider for the second step.
The interactions with n = m = 1 are already covered by Lemma 3.8.

We consider first the interactions with only one combination of outgoing waves, that is,

α1 + β1 + α2 + β2 → α′ + β′ and µ1 + β1 + µ2 + β2 → µ′ + β′,
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where the last one is symmetric to α1 + ν1 + α2 + ν2 → α′ + ν′. We divide these into one
extra step;

ε1 + [β1 + ε2] + β2
∆G2−−−→ ε1 + ε + β + β2

∆G3−−−→ ε′ + β′,

where all ε-fronts are of the same type. From Lemma 3.8 we have the necessary estimate on
∆G2. For the interactions at the last step, the latter one being an increasing rarefaction-
collision, we obtain from the properties of the shock waves that

|α′ | − |α1 | − |α | ≤ 0, |β′ | − |β2 | −
∣∣β ∣∣ ≤ 0 ⇒ ∆G3 ≤ 0,

|µ′ | − |µ1 | − |µ | = q3, |β′ | − |β2 | −
∣∣β ∣∣ = −q3 ⇒ ∆G3 ≤ −2

3
q3,

for a q3 ≥ 0. This also applies to the interactions β1 +α2 +β2, β1 +µ2 +β2 and ν1 +α2 + ν2

which all have only one combination of outgoing waves and where the last two are increasing
rarefaction-collisions.

We now turn to the interactions

α1 + β + α2 + ν, which is symmetric to µ + β1 + α + β2,

α1 + ν + α2 + β, which is symmetric to α + β1 + µ + β2.

These have two combination of outgoing waves, α′ + ν′ and α′ + β′, and are divided into
smaller steps;

α1 + [η1 + α2] + η2
∆G2−−−→ α1 + α + [η1 + η2]
∆G3−−−→ α1 + α + α̃ + η̃

∆G4−−−→ α′ + η′,

where η1 and η1 are of the same type, whereas η2 is not, and where η̃ and η′ are of the same
type. From Lemma 3.8 we have the needed estimates on ∆G2 and ∆G3. Due to property
(viii) of Lemma 2.1 we find for q4 > 0 that

|α′ | − |α̃ | − |α | − |α1 | = −q4, |ν′ | − |ν̃ | ≤ q4 ⇒ ∆G4 ≤ −2
3
q4,

|α′ | − |α̃ | − |α | − |α1 | ≤ 0, |β′ | −
∣∣∣β̃ ∣∣∣ ≤ 0 ⇒ ∆G4 ≤ 0.

This also covers the special cases β1 + α2 + ν2 and ν1 + α2 + β2. Note that if η1 = β1,
then |ν′ | ≤ |ν | by construction, so these interactions are actually not increasing rarefaction-
collisions.

Then we are left with two interactions, each having four subcases,

µ + β + α + ν, and α + µ + ν + β.

In the case with µ′ + ν′ we divide the first interaction into smaller steps

α + [ν + µ] + β
∆G2−−−→ α + µ + ν + β

∆G3−−−→ µ′ + ν′,

where ∆G2 ≤ 0 by Lemma 3.8 and

|µ′ | ≤ |µ | ≤ |µ | , |ν′ | ≤ |ν | ≤ |ν | ⇒ ∆G3 ≤ 0,

follows from the properties of wave curves and estimate (3.15). For the second interaction it
follows by construction that

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ 0 ⇒ ∆G ≤ 0.

In the case with α′ + ν′, it follows by construction that the first interaction is an increasing
rarefaction-collision where

|α′ | − |α | = −q, |ν′ | − |ν | ≤ q ⇒ ∆G ≤ −2
3
q.
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For the second interaction we have |ν′ | ≤ |ν |. We divide the interaction into smaller steps,

µ + [β + α] + ν
∆G2−−−→ [µ + α] + β + ν

∆G3−−−→ α̃ + [β̃ + β + ν]
∆G4−−−→ α̃ + α̂ + ν̂

∆G5−−−→ α′ + ν′,

where we have the necessary estimates on ∆G2 and ∆G3 from Lemma 3.8 and for ∆G4 by
Lemma 3.9. By property (viii) of Lemma 2.1 we find for a q > 0 that

|α′ | − |α̃ | − |α̂ | = −q, |ν′ | − |ν̂ | = q ⇒ ∆G5 ≤ 0.

The last two cases can be considered together. Note that for either interaction we obtain
|ν′ | ≤ |ν | so that none of them are increasing rarefaction-collisions. We divide the interac-
tions as follows;

ε1 + [η1 + ε2] + η2
∆G2−−−→ ε1 + ε + [η + η2]

∆G3−−−→ [ε1 + ε + α̃] + β̃

∆G4−−−→ ε̂ + β̂ + β̃
∆G5−−−→ ε′ + β′,

where ε is of the same type as ε2, η of same type as η1, and ε̂ of the same type as ε′. From
Lemma 3.8 and Lemma 3.9 we have estimates on ∆G2, ∆G3 and ∆G4, and by properties
(viii) and (ix) of Lemma 2.1 we find

|µ′ | − |µ̂ | = q, |β′ | −
∣∣∣β̂ ∣∣∣− ∣∣∣β̃ ∣∣∣ = −q ⇒ ∆G ≤ 0,

|α′ | − |α̂ | ≤ 0, |β′ | −
∣∣∣β̂ ∣∣∣− ∣∣∣β̃ ∣∣∣ ≤ 0 ⇒ ∆G ≤ 0.

The interaction ν1 + α2 + β2 has also four cases, and for all but one case, the above analysis
apply. In the case α′ + ν′, β2 must cross ν, and therefore there exist a ν̂ and a β̂ so that
ν̂ + β̂ connects Ul to Ur and

(3.25) |ν̂ | ≤ |ν | ,
∣∣∣β̂ ∣∣∣ ≤ |β | .

Then the interaction can be divided into the following steps,

ν1 + µ2 + β2
∆G2−−−→ [ν̂ + β̂] ∆G3−−−→ α′ + ν′,

where ∆G2 ≤ 0 follows from (3.25) and ∆G3 ≤ 0 from Lemma 3.8. Note that |ν′ | ≤ |ν | by
construction, so this is not an increasing rarefaction-collision.

This completes the discussion of all possible interactions at the second step, and thereby
completes the proof. �

Lemma 3.13. The functional G decreases for all interactions of the form
n∑

i=1

ηi + ζ +
m∑

i=1

εi.(3.26)

Furthermore, ∆G ≤ − 2
3q for all increasing rarefaction-collisions where the strength of the

outgoing rarefaction wave increases by q > 0, and ∆G ≤ − 2
3 |θ

′ | for new rarefaction-
collisions where θ′ denotes the new outgoing rarefaction wave.

Proof. This is the general form for interactions possible in front tracking. All interactions
without ζ are already covered by Lemma 3.12. Furthermore, Lemma 3.11 covers the inter-
action where m = 0 (or n = 0).



FRONT TRACKING FOR A MIXTURE OF GASES 31

If n > 1 and m > 1, then we divide the interactions into smaller steps as follows

(3.27)
n∑

i=1

ηi + ζ +
m∑

j=1

εj
∆G1−−−→


µ1 + β1

α1 + ν1

α1 + β1

+ ζ +


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + ζ + η′,

where three of the nine possible combinations at the last step are symmetric to one of the
other, thus, we have six different interactions to consider. If n = 1 and m > 1 (symmetric
to n > 1 and m = 1), we get

(3.28) η1 + ζ +
m∑

j=1

εj
∆G1−−−→ η1 + ζ +


µ2 + β2

α2 + ν2

α2 + β2

∆Gn−−−→ ε′ + ζ + η′,

with six different interactions at the second step. In addition, we have the four interactions
where m = n = 1,

(3.29) η1 + ζ + ε2
∆Gn−−−→ ε′ + ζ + η′,

where one is symmetric to one of the others.
An interaction that is symmetric to itself is referred to as a self-symmetric interaction.

Three of the interactions given by (3.27) are self-symmetric. The other interactions have a
symmetric interaction, and we choose to discuss the interactions starting with α1 + ν1 over
the ones starting with ε1 +β1, and the interaction starting with α1 +β1 over the one starting
with µ1 +β1. None of the interactions given by (3.28) are symmetric to itself or to one of the
other interactions. For the two interactions of the form ε + ζ + µ2 + β2, we will throughout
this proof consider their symmetric interactions, α1 + ν1 + ζ + η2 instead. There are two
self-symmetric interactions given by (3.29). The remaining two interactions are symmetric,
and we choose to discuss the one with η1 = ν1.

We write the six interactions given by (3.27) of the general form

(3.30) ε1 + η1 + ζ + ε2 + η2
∆Gn−−−→ ε′ + ζ + η′.

If ε1 is of the same type as ε2 and η1 is of the same type as η2, then the interaction has only
three possible combinations of outgoing fronts. Thus, two of the interactions given by (3.30)
have three possible combination of outgoing fronts, while the remaining four interactions
have four possible combination of outgoing waves

First, we consider the case where the outgoing fronts are µ′+ ζ +ν′. This is not a case for
the interaction where all incoming fronts are shock-fronts. For the two interactions where
ε1 + η1 is not equal to α1 + ν1, one of the following estimates holds;

(3.31)

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ 0 ⇒ ∆G ≤ 0,

|µ′ | − |µ | ≤ |β | = q, |ν′ | − |ν | ≤ 0 ⇒ ∆G ≤ −2
3
q,

|µ′ | − |µ | ≤ 0, |ν′ | − |ν | ≤ |α | = q ⇒ ∆G ≤ −2
3
q.

For the three interactions where ε1 + η1 = α1 + ν1, we need to divide the interactions into
smaller steps;

(3.32)
+ε2 + η2

∆G2−−−→ ε + ζ + [ν + ε2] + η2
∆G3−−−→ ε + [ζ + ε̃ + ν̃] + η2

∆G4−−−→ ε + ε̂ + ζ + ν̂ + η2
∆G5−−−→ µ′ + ζ + ν′,
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where ε̃ and ε̂ are of the same type as ε2. If ε2 is a shock-front, then ε is a rarefaction-front,
otherwise, ε can be of either type. From Lemma 3.8 and Lemma 3.9 we have estimates for
∆Gi for i = 2, 3, 4. Furthermore, we have

|µ′ | − |µ | − |µ̂ | ≤ 0, |ν′ | − |ν̂ | ≤ 0 ⇒ ∆G5 ≤ 0,

where |µ | is only included if ε is a rarefaction-front, and |ν̂ | only if ε̂ is a rarefaction-front.
Next, we consider interactions given by (3.28) and (3.29). If all incoming fronts are shock-

fronts, then µ′+ ζ +ν′ is not a possible combination of outgoing fronts. All interactions with
η1 = ν1 can be divided into smaller steps similar to (3.32), giving us the the same estimates
for the last step. For the interactions with η1 = β1, one of the estimates given by (3.31)
holds. Hence, the case µ′ + ζ + ν′ is covered for all interactions given by (3.28) and (3.29).

Let us now consider the case where the outgoing waves are µ′ + ζ + β′. This combination
is not possible for the interaction where the incoming 1-fronts are shock-fronts and the 3-
fronts are rarefaction-fronts. The other three interactions where the incoming 1-fronts are
shock-fronts, have at least one incoming 3-shock and we have

(3.33) |β′ | −
∑
η=β

|ηi | ≤ − |µ′ | ⇒ ∆G ≤ 0,

where we sum over the strength of the incoming 3-shocks. Thus, we are left with the
interactions α + ν + ζ + µ + β and µ + β + ζ + α + ν. First, note that if neither α nor
µ′ intersects µ for the first interaction, or if ν or β′ does intersect β for the second, we have
for a q > 0 that

|µ′ | − |µ | ≤ q, |β′ | − |β | = −q ⇒ ∆G ≤ −2
3
q.

If α intersects µ for the first interaction, we can replace the interaction with a new one, still
connecting the left state to the right state, as follows;

α + ν + ζ + µ + β
∆G2−−−→ α̂ + [ζ + µ̂ + β] ∆G3−−−→ α̂ + µ + ζ + β

∆G4−−−→ µ̃ + ζ + β̃ + β
∆G5−−−→ µ′ + ζ + β′.

From Lemma 3.9 we have estimates for ∆G3 and ∆G4. Moreover, we have for a q5 > 0 that

|α̂ | − |α | ≤ 0, |µ̂ | − |µ | ≤ 0 ⇒ ∆G2 ≤ 0,

|µ′ | − |µ̃ | ≤ q5, |β′ | −
∣∣∣β̃ ∣∣∣− ∣∣β ∣∣ = −q5 ⇒ ∆G5 ≤ −2

3
q5.

If µ′ intersects µ, we use a similar approach and replace the interaction with a new one,

α + ν + ζ + µ + β
∆G2−−−→ µ̂1 + [ζ + µ̂2 + β]
∆G3−−−→ µ̂1 + µ + ζ + β

∆G4−−−→ µ′ + ζ + β′,

where we have estimate for ∆G3 due to Lemma 3.9. Moreover,

|µ̂1 |+ |µ̂2 | − |µ | ≤ 0 ⇒ ∆G2 ≤ 0,

|µ′ | − |µ | − |µ̂1 | = 0, |β′ | −
∣∣β ∣∣ = 0 ⇒ ∆G5 ≤ 0.
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If no fronts intersect for the second interaction, we cannot apply a clever replacement. Thus,
we divide the interaction into several smaller steps,

[µ + β + ζ] + α + ν
∆G2−−−→ µ + ζ + [β + α] + ν

∆G3−−−→ µ + [ζ + α̃ + β̃] + ν

∆G4−−−→ µ + α̂ + [ζ + β̂ + ν] ∆G5−−−→ [µ + α̂ + α + ζ] + β

∆G6−−−→ µ̌ + ζ + β̌ + β
∆G7−−−→ µ′ + ζ + β′,

where we have estimates for ∆Gi, i = 2, . . . , 6, from Lemma 3.8 and Lemma 3.9. Further-
more, we have for a q7 > 0 that

|µ′ | − |µ̌ | ≤ q7, |β′ | −
∣∣β̌ ∣∣− ∣∣∣β ∣∣∣ = q7 ⇒ ∆G7 ≤ −2

3
q7.

Similarly, µ′ + ζ ′ + β′ is not a case for interactions given by (3.28) and (3.29) where the in-
coming 1-fronts are shock-fronts and the incoming 3-fronts are rarefaction-fronts. Moreover,
all interactions where ε2 = α2 have estimate given by (3.33). The remaining two interactions
are special cases of α1 + ν1 + ζ + µ2 + β2 where either α1 or β2 is missing, and they are
covered by the above discussion.

Observe that for the self-symmetric interactions the case where the outgoing waves are
µ′+ ζ +β′ is symmetric to the case where the outgoing waves are α′+ ζ +ν′. Thus, only one
case is left for these three interactions, the case where we have α′+ζ+β′. Some configurations
of fronts gives us

|α′ | − |α | ≤ 0, |β′ | − |β | ≤ 0 ⇒ ∆G ≤ 0,

directly. Otherwise, we have to divide the interactions into smaller steps as follows

ε1 + η1 + [ζ + ε2 + η2]
∆G2−−−→ ε1 + [η1 + ε] + ζ + η

∆G3−−−→ ε1 + [ε̃ + η̃ + ζ] + η

∆G4−−−→ [ε1 + ε̂ + ζ] + η̂ + η
∆G5−−−→ α + [ζ + η + η̂ + η]

∆G6−−−→ α + ε̌ + ζ + β̌
∆G7−−−→ α′ + ζ + β′,

where ε and ε̃ are of the same type as ε2, and η̃ is of the same type as η1. If η1 is a rarefaction-
front, then η is a shock-front, ε̂ can be of either type, and η will be of the opposite type of ε̂.
If η1 is a shock-front, then η can be of either type, ε̂ = α̂, and η is of the opposite type as ε1.
Moreover, if η and η̂ are both rarefaction-fronts, we add them together to one 3-rarefaction
wave according to property (i) of Lemma 2.1. If all 3-fronts at step six are shock-fronts, then
ε̌ = µ̌ and does not take part in the estimate below, otherwise ε̌ = α̌. We have estimates for
∆Gi, i = 2, . . . , 6, due to Lemma 3.8 and 3.9. Moreover,

|α′ | −
∣∣α ∣∣− |α̌ | ≤ 0, |β′ | −

∣∣β̌ ∣∣ ≤ 0 ⇒ ∆G7 ≤ 0.

None of the interactions given by (3.28) are self-symmetric. For interactions given by (3.29),
one of the self-symmetric interactions involve only rarefaction-fronts and α′+ζ+β′ is therefore
not a possible case. The other self-symmetric interaction, β + ζ + α, can be divided into
smaller steps as above and is thus covered by the estimates just given. Here, step four is
redundant.

Finally, we consider the last two cases, when the outgoing waves are α′ + ζ + ν′ or α′ +
ζ +β′, for the three interactions that are not self-symmetric. These interactions all have two
incoming shock-fronts of the first family, and we observe that

if |α′ | − |α1 | − |α2 | = −q ≤ 0, then

{
|ν′ | − |ν | ≤ q ⇒ ∆G ≤ −2

3q,

|β′ | − |β | ≤ 0 ⇒ ∆G ≤ 0.
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If this condition of the 1-shocks does not hold, we divide the interactions into smaller steps
as follows;

α1 + η1 + [ζ + α2 + η2]
∆G2−−−→ α1 + [η1 + α] + ζ + η

∆G3−−−→ α1 + [α̃ + η̃ + ζ] + η

∆G4−−−→ [α1 + ε̂ + ζ] + η̂ + η
∆G5−−−→ α + [ζ + η + η̂ + η]

∆G6−−−→ α + α̌ + ζ + η̌
∆G7−−−→ α′ + ζ + η′,

where η̃ and η̂ are of the same type as η1, and η̌ is of the same type as η′. Furthermore, if η1

and η2 are rarefaction-fronts and η′ is a shock-front, then η is also a shock-front. If η2 and η′

are of the same type, while η1 is not, then η is of the same type as η2. Otherwise, η can be
of either type. Likewise, ε̂ can be of either type, and we therefore have to include step five,
where η is not of the same type as ε̂. Moreover, if at some point, two adjacent 3-fronts are
both rarefaction-fronts, then we add them together to one 3-rarefaction wave according to
property (i) of Lemma 2.1. Finally, if all 3-fronts at step six, that is, η, η̂ and η, are all of the
same type as η′, then we skip step six and replace the strength of η̌ in the estimates below
by the sum of the strength of these 3-fronts. From Lemma 3.8 and 3.9 we have estimates for
∆Gi, i = 2, . . . , 6. Finally, we have

|α′ | −
∣∣α ∣∣− |α̌ | = q7, |ν′ | − |ν̌ | ≤ q7 ⇒ ∆G7 ≤ −2

3
q7,

|α′ | −
∣∣α ∣∣− |α̌ | ≤ 0, |β′ | −

∣∣β̌ ∣∣ ≤ 0 ⇒ ∆G7 ≤ 0,

for the two cases, respectively.
The interactions given by (3.28) and (3.29) can be divided into smaller steps in the same

way. For interactions with no ε1, we in general only need six steps because step four is not
needed. However, if ε̂ = µ̂, we may have to interchange step four and five, so that we still
have seven steps. Moreover, if

|α′ | − |α | ≤ − |ν′ | , then ∆G ≤ 0,

without dividing the interaction into smaller steps.
All cases for all interactions are now considered, thus, we have proved the lemma. �

This concludes the discussion of all interactions between physical fronts. For interactions
generating non-physical fronts and interactions where one of the incoming fronts is non-
physical, we have:

Lemma 3.14. For an interaction where a non-physical front is generated, we have

(3.34) ∆G ≤ −3k |θnp | , and |θnp | ≤ 4
3
c2ρ,

where the positive constants k and c2 depend only on pmin, pmax, and γ. Moreover, ∆G ≤ 0
for all interactions with incoming non-physical fronts, and the strength of a non-physical
front does not change in interactions.

Proof. The simplified Riemann solver is used for interactions of the type ζ +
∑n

i=1 εi, and
the symmetric interactions, where condition (3.1) holds, that is, where |ζ |

∑
i |εi | ≤ ρ. Since

non-physical fronts cannot be generated in any other interactions, it follows from Lemma 3.8
and Lemma 3.11 that ∆G ≤ −3k |θnp |. By estimates (3.17), (3.18), and (3.23) established
in the proofs of these lemmas, we have

|θnp | ≤ 4
3
c2 |ζ |

∑
i

|εi | ≤
4
3
c2ρ.
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Whenever a non-physical front is involved in an interaction, we let the non-physical front
pass through the interaction without changing its strength. Then we solve the remaining
interaction. The non-physical front only introduces a shift in the u-variable, and since all
wave curves are invariant under a transformation in u, the interaction and all its estimates
are the same as if it was not shifted. Hence, by Lemma 3.8 through Lemma 3.13, and the
fact that the non-physical front plays no role in G, we have ∆G ≤ 0 for all interactions
with an incoming non-physical front. This also applies to interactions having two incoming
non-physical fronts, one with negative and one with positive speed. In particular we have
∆G = 0 when a non-physical front collides with one other front, physical or non-physical;
they just pass through each other, continuing with the same strength. �

We have now established that ∆G ≤ 0 for all possible interactions and can finally prove
that G is decreasing in time.

Proof of Proposition 3.7. By Lemma 3.8 through Lemma 3.14 it follows that G decreases for
all possible interactions, and, in particular, that ∆G ≤ − 2

3q for all increasing rarefaction-
collisions where the strength of the rarefaction wave increases by q, ∆G ≤ −2

3 |θ
′ | for all new

rarefaction-collisions where θ′ denotes the new rarefaction wave, and ∆G ≤ −3k |θnp | for
all interactions generating a non-physical front. Finally, since G decreases, it follows from
(3.13) that F (tn) ≤ 5

3L(t0). �

3.3. Finite number of interactions. The next step is to show that the front-tracking
algorithm generates an approximate solution in a finite number of steps. We do this by
proving that there is a finite number of physical and non-physical fronts, and, hence, a finite
number of interactions.

As discussed in Subsection 3.1, the number of fronts increases when we have a γ-collision
solved by the approximate solver, or when a rarefaction wave splits. Moreover, splitting of
rarefaction waves can only be caused by new rarefaction-collisions or increasing rarefaction-
collisions, and we now show that the number of such interactions is finite.

Lemma 3.15. For a fixed δ, there is only a finite number of new rarefaction-collisions where
the new rarefaction wave splits into two or more fronts.

Proof. From Proposition 3.7 we have ∆G ≤ −2
3 |θ | for all new rarefaction-collisions, where θ

is the new outgoing rarefaction wave. This was proved in Subsection 3.2 where all interactions
of this type were identified. The new rarefaction wave splits into two or more fronts only if
its strength, |θ |, is larger than δ. Hence, ∆G ≤ −2

3δ across a new rarefaction-collision where
the new rarefaction wave splits. Since G is a decreasing, non-negative functional, there can
only be a finite number of interactions where G decreases by at least 2

3δ. This proves the
lemma. �

We next consider the increasing rarefaction-collisions and look at the change in G from
a split rarefaction-front appears until it has gained enough strength to split again. That is,
consider an increasing rarefaction-collision at t = τ1 where the outgoing rarefaction wave
splits into several fronts. Let τn be the collision time when the first of the split rarefaction-
fronts splits again after gaining strength through increasing rarefaction-collisions. Fix two
time lines, ti and tj , so that ti < τ1 < τn < tj . Assume that the only rarefaction-front cross-
ing t = ti that results in a split rarefaction wave (through increasing rarefaction-collisions)
before t = tj , is the rarefaction-front colliding at t = τ1. Define ∆Gsplit := G(tj)−G(ti).
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Lemma 3.16. Let ti < τ1 < τn < tj and ∆Gsplit be as defined above. Then, for a fixed δ,

(3.35) ∆Gsplit ≤ −1
3
δ.

Furthermore, there is only a finite number of increasing rarefaction-collisions where the in-
creasing rarefaction wave splits into two or more fronts.

Proof. From Proposition 3.7 we have ∆G ≤ − 2
3q for all increasing rarefaction-collisions

where q > 0 bounds the increase of the strength of the rarefaction wave, that is, the strength
of the outgoing rarefaction wave is less than or equal to q plus (the sum of) the strength(s)
of the incoming rarefaction-front(s) of the same family.

Let θ′ be the outgoing rarefaction wave of the increasing rarefaction collision at t = τ1,
thus, θ′ splits, and let furthermore θ0 be the incoming rarefaction-front of the same family.
By the assumptions, |θ0 | = aδ for 0 < a ≤ 1, and

δ < |θ′ | ≤ |θ0 |+ q1.

Furthermore, ∆G1 ≤ −2
3q1 across this interaction. Let m be the number of fronts θ′ splits

into and let furthermore θ1 denote the first of these split fronts that gain enough strength
to split again. Thus,

|θ1 | =
1
m
|θ′ | ≤ |θ0 |+ q1

m
=

aδ + q1

m
.

We follow this rarefaction-front until it splits again after an interaction at t = τn, and in

θn

t = tj
t = τn

t = τ1

t = ti

θ1

θ0

Figure 17. An illustration of several increasing rarefaction-collision where
a rarefaction wave splits at t = τ1 and t = τn.

Figure 17, where m = 2, this front is drawn by dashed lines. The only way for the rarefaction-
front to gain strength is through increasing rarefaction-collisions, all other interactions only
weaken the rarefaction-front. We can therefore assume that the rarefaction-front we follow
is only involved in increasing rarefaction-collisions up to t = tj . For each interaction the
strength of the rarefaction-front increases by at most qi, thus,

(3.36) |θn | ≤ |θn−1 |+ qn ≤ |θ1 |+
n∑
2

qk ≤
aδ + q1

m
+

n∑
2

qk ≤
a

m
δ +

n∑
1

qk,
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and ∆Gk ≤ −2
3qk for k = 1, . . . , n. By definition, τn is the first collision time after τ1 where

a rarefaction wave splits, thus,

(3.37) |θn−1 | ≤ δ < |θn | .

All interactions taking place between ti and tj have ∆G ≤ 0 by Proposition 3.7. Combin-
ing (3.36) and (3.37) we get

∆Gsplit =
∑
τk

∆G(τk) +
∑
τ 6=τk

∆G(τ) ≤
∑
τk

∆G(τk)

≤
n∑

i=1

−2
3
qk ≤ −2

3

(
1− a

m

)
δ ≤ −1

3
δ,

where we have used that 0 < a ≤ 1 and m ≥ 2. This proves (3.35).
Furthermore, G is non-negative and decreases by at least 1

3δ from the time when a rar-
efaction wave splits due to an increasing rarefaction-collision until the time when the first
of the split fronts has gained enough strength to split again. Hence, this can only happen
a finite number of times, and therefore, there can only be a finite number of increasing
rarefaction-collisions where the rarefaction wave splits. �

Thus, by Lemma 3.15 and Lemma 3.16, there is a finite number of interactions resulting
in split rarefaction waves. That is, there is only a finite number of interactions with more
than one outgoing front of each family.

The only other interactions with more outgoing physical fronts than incoming fronts, are γ-
collisions solved by the approximate solver. These interaction are solved by the approximate
solver if |θ | |ζ | > ρ, where θ is the incoming 1- or 3-front. By Proposition 3.7, G decreases
and, and in particular, ∆G ≤ 0 for all interactions. Therefore,

0 < G(tn) ≤ G(t0) +
∑
τ<tn

∆G(τ) ≤ G(t0) +
∑

τγ<tn

∆G(τγ),

where τ is any collision time and τγ is the collision time of a γ-collision solved by the
approximate solver. Furthermore, Lemma 3.8 states that ∆G ≤ −1

9 |θ | |ζ | for all γ-collisions,
thus, ∑

τγ<tn

|θ | |ζ | ≤ −9
∑

τγ<tn

∆G(τγ) ≤ 9G(t0).

This estimate is true for all tn < ∞, hence, there is at most 9G(t0)/ρ number of γ-collisions
where |θ | |ζ | > ρ, that is, where a γ-collision is solved by the approximate solver. These
are the only interactions creating more physical fronts in addition to the finite number
of split rarefaction waves. Thus, the number of physical fronts remains finite for all times.
Moreover, non-physical fronts are only generated when physical fronts interact with a contact
discontinuity. Each physical front can only interact once with a given contact discontinuity,
and there is a finite number of contact discontinuities, hence, there is a finite number of
interactions generating non-physical fronts.

In other words, there is a finite number of physical and non-physical fronts for any given
time, and these fronts can only interact a finite number of times. Thus, front tracking gives
us an approximate solution in a finite number of steps for any t ∈ (0,∞).
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3.4. The total amount of non-physical fronts. In order to prove that the sequence of
approximate solutions converges to a weak solution, we need to estimate the total amount
of non-physical fronts introduced. First of all, we assign a generation to all fronts except the
contact discontinuities.

All initial 1- and 3-fronts are of generation one. The outgoing front of an interaction has
the lowest generation of the incoming fronts of the same family. If there is no incoming
front of the same family, the outgoing front has a generation one higher than the highest
generation of the incoming fronts. If there is a non-physical front generated in an interaction,
its generation is also one higher than the highest generation of the incoming fronts. If an
interaction has an incoming non-physical front, the outgoing non-physical front has the same
generation as the incoming, thus, the generation of a non-physical front never changes once it
is created. Furthermore, all fronts part of a split rarefaction wave have the same generation
as the rarefaction wave.

From the results in Proposition 3.7 we have

0 < G(tn) = G(t0) +
∑
τ≤tn

∆G(τ) ≤ G(t0) +
∑

τnp≤tn

∆G(τnp),

where τnp is a collision time when a non-physical front is generated. Moreover, by Lemma 3.14
we have ∆G ≤ −3k |θnp | for all interactions where a non-physical front is generated. Let
θnp

i denote a non-physical front of generation i. Since neither the strength of a non-physical
front, nor its generation, changes due to interactions, we get∑

i

∑
t=tn

|θnp
i | =

∑
τnp≤tn

|θnp | ≤ − 1
3k

∑
τnp≤tn

∆G(τnp) ≤ G(t0)
3k

.(3.38)

Thus, there exists a j so that ∑
i>j

∑
t=tn

|θnp
i | = O(1) δinit.(3.39)

Let Nj be the number of fronts of generation less than or equal to j. From the previous
section we know that Nj is finite. and according to [4, Ch. 7.3],

Nj ≤ Pj(N0, δ
−1),

where Pj is a polynomial function of δ−1 and the number of initial fronts, N0. Using this,
we can now prove the following:

Lemma 3.17. For any given δinit > 0 there exists a ρ > 0 so that∑
t=tn

|θnp | = O (δinit) .

Proof. Fix a j = j0 so that (3.39) holds. The number of non-physical fronts of generation less
than or equal to j0 is less than Nj0 , which again is bounded by Pj0(N0, δ

−1). We therefore
get ∑

t=tn

|θnp | ≤
∑
i≤j0

∑
t=tn

|θnp
i |+

∑
i>j0

∑
t=tn

|θnp
i |

≤ 4
3
c2ρPj0(N0, δ

−1) +O(1)δinit = O (δinit) ,

by choosing ρ so that 4
3c2ρPj0(N0, δ

−1) = O(δinit)t. �

Recall that δinit = O(δ), so that δinit → 0 when δ → 0.
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3.5. Bounded total variation. We have established that if condition (3.12) is satisfied,
then G is decreasing and Uδ can be defined up to any time. The next step is to bound the
total variation of Uδ.

From Section 3.2 we recall that C1 is the constant appearing in estimate (3.16), C2 is
given by (3.4), k by (3.5), and C by (3.11). Define the constant

κ := 1 +
10
9

(3s′maxk + 1) ,

where s′max is the upper bound of ∂s/∂p, cf. property (v) of Lemma 2.1. Given these
constants, that only depend on pmin, pmax and γ, we can state the following result.

Lemma 3.18. If the initial data satisfy

(3.40) (γ − 1)T.V.(p0, u0) ≤
C

9kC1
and T.V.(γ0) ≤

C

9C2
,

and the approximate solution Uδ(x, t) = (pδ(x, t), uδ(x, t), γδ(x, t)) obtained using front track-
ing is bounded away from vacuum, then

T.V.(pδ( · , t), uδ( · , t)) ≤ 2κkT.V.(p0, u0),(3.41)

T.V.(γδ( · , t)) ≤ T.V.(γ0).(3.42)

Proof. First, (3.42) is obvious since γ only changes along contact discontinuities, thus,

T.V.(γδ( · , tn)) = Fγ = T.V.(γδ(·, 0)) ≤ T.V.(γ0),

for any time line t = tn. Furthermore,

L(t0) ≤ T.V.(pδ( · , 0)) + kT.V.(uδ( · , 0)) ≤ kT.V.(pδ( · , 0), uδ( · , 0)),

for t0 = 0+. Whenever (3.40) is satisfied, we therefore have

L(t0) ≤ kT.V.(pδ( · , 0), uδ( · , 0)) ≤ kT.V.(p0, u0) ≤
C

9C1(γ − 1)
,

Fγ = T.V.(γδ( · , 0)) ≤ T.V.(γ0) ≤
C

9C2
,

thus, by Proposition 3.7 the Glimm functional is decreasing and F (tn) ≤ 5
3L(t0). We use

this to bound T.V.(uδ( · , tn)). If there were no non-physical fronts, we would have∑
rf

[[u]] =
∑
shock

[[u]] + u(∞, · )− u(−∞, · ),

because u is increasing along all rarefaction waves and decreasing along all shock waves.
Here [[u]] := |ur − ul | for a wave connecting Ul to Ur, and rf is short for rarefaction wave.
Let u± = u0(±∞) and define

(3.43) c0 := |u(∞, · )− u(−∞, · ) | = |u+ − u− | ,

since u(±∞, · ) = u0(±∞). Including the non-physical fronts, we have∑
rf

[[u]] ≤
∑
shock

[[u]] +
∑
np

[[u]] + c0,

where “np” is short for non-physical front. Thus,

T.V.(uδ( · , tn)) =
∑
rf

[[u]] +
∑
shock

[[u]] +
∑
np

[[u]] ≤ 2
∑
shock

[[u]] + 2
∑
np

[[u]] + c0
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≤ 2
∑
shock

|s′(p̃, pl, γl) | [[p]] +
2
3k

G(t0) + c0

≤ 2s′max

∑
shock

[[p]] +
10
9k

L(t0) + c0 = 2s′maxF (tn) +
10
9k

L(t0) + c0

≤ 2s′max

5
3
L(t0) +

10
9k

L(t0) + c0 ≤
10
9

(3s′maxk + 1) T.V.(p0, u0) + c0

≤ κT.V.(p0, u0),

where we have used that c0 ≤ T.V.(u0) and
∑

np[[u]] =
∑
|θnp | ≤ G(t0)/3k, cf. (3.38). For

T.V.(pδ( · , tn)) we find

T.V.(pδ( · , tn)) =
∑
rf

[[p]] +
∑
shock

[[p]] ≤ k

(∑
rf

[[u]] +
∑
shock

[[u]]

)
≤ kT.V.(uδ( · , tn)) ≤ κkT.V.(p0, u0).

This proves (3.41) because

T.V.(pδ( · , tn), uδ( · , tn)) = T.V.(pδ( · , tn)) + T.V.(uδ( · , tn))

≤ 2κkT.V.(p0, u0).

�

We also have to bound the approximate solution away from vacuum. From

sup(y) ≤ |y(∞) |+ |y(−∞) |+ T.V.(y),

and the fact that pδ(±∞, · ) = p0(±∞) := p±, it follows that

sup(pδ − p+) ≤
∣∣pδ(∞)− p+

∣∣+ ∣∣pδ(−∞)− p+)
∣∣+ T.V.(pδ)

= |p+ − p−) |+ T.V.(pδ)

≤ 2T.V.(pδ) ≤ 2κkT.V.(p0, u0).

Similarly, we obtain

sup(pδ − p−) ≤ 2κkT.V.(p0, u0),

sup(uδ − u+) ≤ 2κT.V.(p0, u0),

sup(uδ − u−) ≤ 2κT.V.(p0, u0).

Furthermore, γδ( · , t) always lies between 1 and γ. Thus, the approximate solution obtained
by front tracking will always be contained in the domain

(3.44)
U =

{
(p, u, γ) |max{|p− p− | , |p− p+ |} ≤ 2κkT.V.(p0, u0),

max{|u− u− | , |u− u+ |} ≤ 2κT.V.(p0, u0), γ ∈ (1, γ]
}

,

where p± = p0(±∞) and u± = u0(±∞). We are now able to bound Uδ away from vacuum.

Lemma 3.19. If the initial data satisfy

(3.45) 2κkT.V.(p0, u0) ≤ p̃− pmin,

for a pmin > 0 and p̃ = max{p−, p+}, or the stronger condition

(3.46) (γ − 1)T.V.(p0, u0) ≤ C3,
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where

(3.47) C3 :=
γ1/2

κkr′max

(
p̃(γ−1)/(2γ) − p

(γ−1)/(2γ)
min

)
,

then p ≥ pmin for all U ∈ U . Moreover, the approximate solution obtained using front
tracking is bounded and, in particular, satisfies 0 < pmin ≤ pδ(x, t) ≤ pmax.

Proof. For a p < min(p0(x)) we have

max{|p− p(∞, · ) | , |p− p(−∞, · ) |} = max{p−, p+} − p = p̃− p,

hence, p is in U if p̃− p ≤ 2κkT.V.(p0, u0). Thus, if

2κkT.V.(p0, u0) ≤ p̃− pmin,

for a given pmin so that 0 < pmin ≤ min(p0), then p ≥ pmin for all U ∈ U .
Since condition (3.40) imposes a restriction on (γ − 1)T.V.(p0, u0), we reformulate con-

dition (3.45) to do the same. For a p∗ ≥ p̃ ≥ pmin there is a constant u∗ so that we can
write

u(p) = u∗ − r(p, p∗, γ).

From the mean value theorem we get that

|p̃− pmin | =
1

|u′(p̂) |
|u(p̃)− u(pmin) | ≥ 1

r′max

(u(pmin)− u(p̃)),

for pmin ≤ p̂ ≤ p̃. Furthermore,

u(pmin)− u(p̃) = u∗ −
2γ

1
2

γ − 1

(
p

γ−1
2γ

min − p
γ−1
2γ
∗

)
− u∗ +

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ
∗

)
=

2γ
1
2

γ − 1

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,

so that

p̃− pmin ≥
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
.

Therefore, we have that p ≥ pmin > 0 for all p ∈ U if

2κkT.V.(p0, u0) ≤
2γ1/2

(γ − 1)r′max

(
p̃

γ−1
2γ − p

γ−1
2γ

min

)
,

which proves the lemma. �

3.6. Convergence to a weak solution. The approximate solution, Uδ, is bounded and, in
particular, bounded away from vacuum. Furthermore, the total variation of Uδ is bounded
independent of δ, as shown in the previous section. Since v = p−1/γ , we furthermore have that
vδ is bounded and have bounded total variation independent of δ. Thus, the approximate
solution given in the conservative variables, Ũδ = (vδ, uδ, γδ), is bounded, and

(3.48) T.V.(Ũδ( · , t)) ≤ M0,

for a constant M0 independent of δ.
We first use Kolmogorov’s compactness theorem [15, Thm. A.5] to show that there is a

subsequence of {Ũδ}δ>0 that converges in L1
loc(R× [0, T ]). To that end we observe that

(3.49)
∫

R

∣∣∣Ũδ(x + ω, t)− Ũδ(x, t)
∣∣∣ dx ≤ ωT.V.(Ũδ(·, t)) ≤ M0ω.
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Thus, it remains to show that for any R > 0,

(3.50)
∫ R

−R

∣∣∣Ũδ(x, t)− Ũδ(x, s)
∣∣∣ dx ≤ M1(t− s),

where t ≥ s ≥ 0 and M1 is independent of δ. See Theorem A.8 in [15] for a detailed proof of
why (3.48)-(3.50) yield a convergent subsequence using Kolmogorov’s compactness theorem.
Here we proceed by showing that (3.50) holds for our system.

For t ∈ (τj , τj+1], where τj and τj+1 are two consecutive collision times, we can write Ũδ

as

Ũδ(x, t) =
Nτj∑
k=1

(U j
k−1 − U j

k)H(x− xj
k(t)) + UNτj ,

where xj
k is the position of the kth front from the left, H is the Heaviside function, Nτj is

the number of fronts after the collision at τj , and Ũδ(x, t) = U j
k for x ∈ (xj

k, xj
k+1). Assume

now that t ∈ [τj , τj+1] and s ∈ [τj , τj+1] where j ≤ i and s ≤ t. Then∫
R

∣∣∣Ũδ(x, t)− Ũδ(x, τj)
∣∣∣dx =

∫
R

∣∣∣∣∣
∫ t

τj

d
dt̂

Ũδ(x, t̂)dt̂

∣∣∣∣∣ dx

≤
∫

R

∫ t

τj

Nτj∑
k=1

∣∣∣U j
k−1 − U j

k

∣∣∣ ∣∣∣∣ d
dt̂

xj
k(t̂)

∣∣∣∣ ∣∣∣H ′(x− xj
k(t̂))

∣∣∣ dt̂dx

≤ λnp

∫ t

τj

Nτj∑
k=1

∣∣∣U j
k−1 − U j

k

∣∣∣ ∫
R

∣∣∣H ′(x− xj
k(t̂))

∣∣∣ dxdt̂

≤ λnp(t− τj)T.V.(Ũδ(·, t)) ≤ λnpM0(t− τj),

where we have used that
∣∣∣ d
dt̂

xj
k(t̂ )

∣∣∣ ≤ λnp. By similar arguments we get∫
R

∣∣∣Ũδ(x, τj)− Ũδ(x, τj+1)
∣∣∣ dx ≤ λnpM0(τj − τj+1), if j + 1 < i,∫

R

∣∣∣Ũδ(x, τj+1)− Ũδ(x, s)
∣∣∣ dx ≤ λnpM0(τj+1 − s).

Hence, ∫
R

∣∣∣Ũδ(x, t)− Ũδ(x, s)
∣∣∣ dx ≤

∫
R

∣∣∣Ũδ(x, t)− Ũδ(x, τj)
∣∣∣ dx

+
∫

R

∣∣∣Ũδ(x, τj)− Ũδ(x, τj+1)
∣∣∣ dx +

∫
R

∣∣∣Ũδ(x, τj+1)− Ũδ(x, s)
∣∣∣ dx

≤ λnpM0(t− s),

where the middle integral is only included if j+1 < i. Since λnpM0 is a constant independent
of δ, we have now established (3.50). Hence, there exists a function U(x, t) and a subsequence
{δj} ⊂ {δ} so that Ũδj → U in L1

loc(R× [0, T ]) as j →∞.
We still have to show that the limit is a weak solution. Recall from equation (2.1) that

U = (v, u, γ) is a weak solution on a strip [t, s] if

Is
t (U) :=

∫ s

t

∫
R

Uφt + f(U)φxdxdt(3.51)
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−
∫

R
U(x, s)φ(x, s)dx +

∫
R

U(x, t)φ(x, t)dx = 0,

for all test functions φ. Fix two successive collision times, τj and τj+1, and let Ũδ be the
approximate solution found using front tracking. The approximate solution Ũδ is not a weak
solution because we have introduced non-physical fronts and approximate rarefaction waves.
Therefore, we need to estimate how far Ũδ is from the weak solution.

Let s1 = τj and let Vi(x, s) be the weak solution of

(3.52) Vt + f(V )x = 0, V (x, si) = Ũδ(x, si).

We find V1 fot t close to s1 by solving exactly the Riemann problems at the jumps of Ũδ(x, s1).
This solution is defined up to the time s2 > s1 when the first waves interact. If no waves in
V1 collide before τj+1, we have s2 = τj+1. Otherwise, we let V2 be the solution for s ≥ s2 of
(3.52) with i = 2 and Ũδ(x, s2) as initial data. In this way we fill [τj , τj+1) with small strips
[si, si+1) on which we have defined Vi. Let V denote the function that equals Vi at each
interval [si, si+1), thus, V (x, si) = Ũδ(x, si) for each i. Figure 18(a) shows this construction
when a non-physical front is present in Ũδ, while Figure 18(b) shows the first steps in the
construction when a rarefaction front interacts with a front of the same family at τj+1.

τi

s1

s3

τi+1

(a) When Ũδ contains a non-physical front

s4

τi = s1

τi+1

s3

s2

(b) The first steps when a rarefaction front interacts

with a front of the same family at τj+1.

Figure 18. The approximate solution Ũδ (solid lines) and the exact solu-
tion Vi (dashed line) at each interval [si, si+1).

Let furthermore V δ be the approximation of V found by solving (3.52) using front tracking
without non-physical fronts. That is, we solve all Riemann problems using the approximate
solver and never use the simplified solver. No front in V δ will interact in one strip, thus,
V δ only differs from V for rarefaction waves. From the approximation of rarefaction waves
by fronts, we have that

∣∣Vi(x, t)− V δ(x, t)
∣∣ = O(δ) for (x, t) in a rarefaction fan. Thus, for

t ∈ [si, si+1] the integral ∫
R

∣∣V (x, t)− V δ(x, t)
∣∣ dx,

will be the sum of the integrals across the rarefaction fans of V . Let Vl and Vr be the left and
right state of such a fan. The integral over this fan will be the sum of the integrals across each
step in V δ, and there are |pr − pl | /O(δ) steps, each with the width (t−si)∆λ = (t−si)O(δ),
where ∆λ is the difference in the characteristic speed across a rarefaction-front in V δ. We
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sum over j, that is, over all rarefaction fans in V , and find that

(3.53)

∫
R

∣∣V (x, t)− V δ(x, t)
∣∣ dx =

∑
j

∣∣∣pj
r − pj

l

∣∣∣
O(δ)

O(δ)(t− si)O(δ)

≤ (t− si)T.V.(pδ)O(δ) ≤ (t− si)O(δ),

since
∑

j

∣∣∣pj
r − pj

l

∣∣∣ ≤ T.V.(pδ) ≤ M0.

Next, we compare V δ to Uδ. Since Uδ(x, si) is used as initial data solving (3.52) for each
strip, the two solutions only differs where Uδ have Riemann problems solved by the simplified
solver. Thus, in order to estimate the integral∫

R

∣∣Uδ(x, t)− V δ(x, t)
∣∣ dx,(3.54)

for a t ∈ [si, si+1), we need to take a closer look at the approximation done using the simplified
Riemann solver defined in Section 3.1. Consider the interaction ζ +

∑n
i εi and note that the

arguments are similar for the symmetric case. As in Lemma 3.1, we let ε̂ + ζ + η̂ with
intermediate states Ûi, i = 1, 2, be the solution using the approximate solver, and ε′+ζ +θnp

and ε′ + ζ + η′ + θnp with intermediate states Ũi, i = 1, 2 and i = 1, 2, 3, be the solution
using the simplified solver for n = 1 and n > 1, respectively. If ε′ is a shock-front, then
α′ and α̂ have slightly different speeds giving rise to a jump in

∣∣Uδ − V δ
∣∣ of the width

|σα̂ − σα′ | (t− si) = O(1) |θnp | (t− si), cf. Lemma 3.1. If ε′ is a rarefaction-front, the speeds
are equal. If n > 1 and η̂ is of the same type as η′, we also get a jump in

∣∣Uδ − V δ
∣∣ due

to different speeds. The width of this jump is |ση̂ − ση′ | (t− si) = O(1) |θnp | (t− si), where
we let σ denote the speed for both shock- and rarefaction-fronts. If η̂ and η′ are of different
types, the height of the jump due to different speeds is less than

∣∣∣Ur − Ũ3

∣∣∣. The remaining

jumps in
∣∣Uδ − V δ

∣∣ over this interaction are
∣∣∣Û1 − Ũ1

∣∣∣, ∣∣∣Û2 − Ũ2

∣∣∣, and
∣∣∣Ur − Ũj

∣∣∣ where
j = 2 if n = 1, and j = 3 if n > 1. From Lemma 3.1 we have that the heights of these jumps
are all bounded by O(1) |θnp |. Thus,

(3.55)
∫

R

∣∣Uδ(x, t)− V δ(x, t)
∣∣ dx ≤

∑
np

O(1) |θnp | (t− si) = O(δ)(t− si),

using that
∑
|θnp | ≤ O(1)δinit = O(δ) according to Lemma 3.17.

Combining (3.53) and (3.55), we finally get∫
R

∣∣Uδ(x, t)− V (x, t)
∣∣ dx ≤

∫
R

∣∣Uδ(x, t)− V δ(x, t)
∣∣+ ∫

R

∣∣V (x, t)− V δ(x, t)
∣∣

= O(δ)(t− si).

Our goal is to show that
∣∣IT

0 (U)
∣∣ = 0 where U(x, t) is the limit of Ũδj (x, t). We start by

estimating
∣∣∣Isi+1

si (Ũδ)
∣∣∣. Recall that Vi(x, si) = Ũδ(x, si) and that Vi is a weak solution on

each strip, thus, Isi+1
si (Vi) = 0. We start with vδ;∣∣Isi+1
si

(vδ)
∣∣ = ∣∣Isi+1

si
(vδ)− Isi+1

si
(vi)

∣∣
=
∣∣∣∣ ∫ si+1

si

∫
R
(vδ − vi)φt + (−uδ + ui)φxdxdt

−
∫

R
(vδ(x, si+1)− vi(x, si+1))φ(x, si+1)dx

∣∣∣∣
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≤ M2

(∫ si+1

si

∫
R

∣∣vδ − vi

∣∣+ ∣∣uδ − ui

∣∣ dxdt

+
∫

R

∣∣vδ(x, si+1)− vi(x, si+1)
∣∣ dx

)
≤ O(δ)

(
(si+1 − si)2 + (si+1 − si)

)
,

where M2 bounds |φx | and |φt |. For uδ we get∣∣Isi+1
si

(uδ)
∣∣ = ∣∣Isi+1

si
(uδ)− Isi+1

si
(ui)

∣∣
=
∣∣∣∣ ∫ si+1

si

∫
R
(uδ − ui)φt + (pδ − pi)φxdxdt

−
∫

R
(uδ(x, si+1)− ui(x, si+1))φ(x, si+1)dx

∣∣∣∣
≤ M2

(∫ si+1

si

∫
R

∣∣uδ − ui

∣∣+ ∣∣pδ − pi

∣∣ dxdt

+
∫

R

∣∣uδ(x, si+1)− ui(x, si+1)
∣∣ dx

)
≤ O(δ)

(
(si+1 − si)2 + (si+1 − si)

)
,

where we have used that ∫
R

∣∣pi(x, t)− pδ(x, t)
∣∣ dx ≤ (t− si)O(δ),

by the same arguments as above. Since γ only changes along contact discontinuities and
these are solved exactly both by the approximate and the simplified solver, we actually have
γi(x, t) = γδ(x, t), thus ∣∣Isi+1

si
(γδ)

∣∣ = ∣∣Isi+1
si

(γi)
∣∣ = 0.

Let τj and τj+1 still be two successive collision times and recall that τj+1−τj =
∑∞

i=1(si+1−
si). Thus, ∣∣∣Iτj+1

τj
(Ũδ)

∣∣∣ ≤ ∞∑
i=1

∣∣∣Isi+1
si

(Ũδ)
∣∣∣

≤
∞∑

i=1

O(δ)
(
(si+1 − si)2 + (si+1 − si)

)
≤ O(δ)

(
(τj+1 − τj)2 + (τj+1 − τj)

)
.

Since Ũδ is bounded and Ũδj (x, t) → U(x, t) in L1
loc where U = (v, u, γ), pδ will converge to

p = v−1/γ in L1
loc. Thus, for any time T < ∞,∣∣IT

0 (U)
∣∣ = lim

δ→0

∣∣∣IT
0 (Ũδ)

∣∣∣ = lim
δ→0

∑
j

∣∣∣Iτj+1
τj

(Ũδ)
∣∣∣

= lim
δ→0

∑
j

O(δ)
(
(τj+1 − τj)2 + (τj+1 − τj)

)
≤ lim

δ→0
O(δ)(T + T 2) = 0,

which proves that Ũδ converges to a weak solution of (1.1) as δ → 0.
Thus, we have finally proved the main theorem:
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Theorem 3.20. Consider the Cauchy problem for system (1.1) with initial data (1.2) where
inf(p0(x)) > 0 and 1 < γ0(x) ≤ γ. Assume that the initial data (u0, p0) and γ(x) satisfy

(γ − 1)T.V.(p0, u0) ≤ min
{

C

9kC1
, C3

}
,(3.56)

T.V.(γ(x)) ≤ C

9C2
.(3.57)

Then the front tracking algorithm produces a sequence of approximate solutions which con-
verges to a global weak solution of the system (1.1).

Note that all constants only depend on pmin, pmax and γ. Thus, by reducing γ, we may
allow arbitrary large total variation for p0 and u0.

By the results of Wagner [27], there is a one-to-one correspondence between a weak solution
of (1.1) and a weak solution of the system given in Eulerian coordinates,

(3.58)

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ, γ))x = 0,

(ργ)t + (ρuγ)x = 0,

where x ∈ R is the physical space variable and t ∈ (0,∞) denotes time.

4. Numerical examples

We have implemented an approximate and a simplified Riemann solver as described in
Subsection 3.1 using matlab. These are used together with the front-tracking code at
the web page of [15]1. The threshold parameter ρ, which determines when to invoke the
simplified Riemann solver, is set to δ3 for all examples. Furthermore, we let λnp = 2dλmaxe.
The front-tracking code is slightly adjusted so that G(t) is computed for all times.

We find pmax as described in Subsection 2.3. Instead of using (3.46) to find pmin, we
choose a suitable candidate for pmin and then check that this candidate indeed satisfies
pmin ≤ pδ(x, t) for all x and t. For the two first examples

pmin = min(p0(x))− (pmax −max(p0(x))),(4.1)

is used as our candidate.

Example 4.1. The initial data in this example are piecewise constant and symmetric. We
have one gas with p = 1.26, u = 3.00 and γ = 1.051 which initially is trapped by another gas
with p = 1.30, u = 2.99 and γ = 1.010. This is the same initial data as used in Example 1
in [16] where we solved the problem using the Glimm scheme. The constants calculated for

pmax pmin γ C1 C2 C k
1.3067 1.2534 1.051 15.9703 1.3309 1 1.3309

Table 1. The constants for Example 4.1.

this example are listed in Table 1, and (3.40) is satisfied since

T.V.(p0, u0) = 0.1 ≤ 0.1025 = C/(9kC1(γ − 1)),(4.2)

T.V.(γ0) = 0.082 ≤ 0.0835 = C/(9C2).(4.3)

Figure 19 shows Uδ( · , t) at some different times. In Figure 20 the solution is compared

1http://www.math.ntnu.no/~holden/FrontBook/matlabcode.html
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Figure 19. The solution Uδ( · , t) at different times t for Example 4.1.
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Figure 20. The solution of Example 4.1 at t = 4.002 using front tracking
(dotted line) and the Glimm scheme (solid line).

with the solution found using the Glimm scheme, cf. [16]. The solution obtained using the
two methods are very similar, except that the contact discontinuities move back and forth
due to the randomness of the Glimm scheme whereas they in front tracking always stay at
±1. Note that no non-physical fronts has been generated at this point.

The front-tracking solution in the (x, t)-plane is shown in Figure 21. Here δ = 0.0005,
thus, the rarefaction fronts are very close and look like rarefaction fans. Note furthermore
that one front is one line regardless of its strength, thus, in Figure 21 one does not distinguish
between strong and weak shock-fronts. Therefore, Figure 21 picks up the interaction of small
fronts which is very hard to do using the Glimm scheme, cf. [16]. In this example we see
that after some time, one non-physical front is generated, and from then on, there is no more
interactions with a contact discontinuity. Finally, Figure 22 shows G(t) for this example.

Example 4.2. The initial data in this example are also piecewise constant. For −1 < x < 1
we have p = 2.5 and u = 3.0, while we outside the unit interval have p = 1.5 and u = 2.0.
Furthermore, γ = 1.5 for x < −1 and 0 < x < 1 while γ = 2.0 for −1 < x < 0 and x > 1.

These initial data are far from satisfying condition (3.40), and are therefore not covered
by Theorem 3.20. However, as shown in Figure 25, G(t) does decrease for this example,
which is enough to ensure convergence to a weak solution.

In Figure 23 we see Uδ( · , t) at some different times, while Figure 24 shows the solution
in the (x, t)-plane. The split rarefaction waves are more visible here, because we have used
δ = 0.1. Initially we have three Riemann problems. The solution of the one situated at
x = −1 is a 1-shock wave, a contact discontinuity and a 3-rarefaction wave, the one situated
at x = 1 is almost symmetric with a solution consisting of a 1-rarefaction wave, a contact
discontinuity and a 3-shock wave, while at x = 0 we have only a jump in γ, hence, the solution
is a single contact discontinuity. We see that the first non-physical fronts are generated when
reflected fronts of a γ-collision interacts with another contact discontinuity. The reflected
fronts become weaker for each γ-collision, thus, after some time, all fronts present between the
contact discontinuities are non-physical fronts. These non-physical fronts just pass through
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Figure 21. The solution Uδ(x, t) in the (x, t)-plane for Example 4.1.

0 1 2 3 4 5 6 7 8 9 10
0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

t

G

Figure 22. G(t) for Example 4.1.

the contact discontinuities without generating more reflected fronts. Recall that p and γ are
constant across non-physical fronts, thus, comparing the plots for p and u in Figure 23 we
see that the non-physical fronts are small compared to the physical fronts.

Example 4.3. In this example γ0 is a continuous function where γ0 = 1.7406 for x ≤ −0.4,
γ0 = 2.6994 for x ≥ 0.6 and increases smoothly from 1.7406 to 2.6994 by a sine function in
the region −0.4 ≤ x ≤ 0.6. In the same region we have a high initial pressure, p0 = 8, while
p0 = 3 outside. The velocity is piecewise constant and decaying; u0 = 3 for x ≤ −0.4, u0 = 2
for −0.4 ≤ x ≤ 0.6 and u0 = 1 for x ≥ 0.6. The initial data are made piecewise constant
with δinit = ∆x = 0.2. Furthermore, we have chosen δ = 0.2.

These initial data are far from satisfying condition (3.40), but G is still decreasing as
shown in in Figure 28. For this example we have that pδ(x, t) ≥ 3, and therefore pmin is set
to 3.

In Figure 26 we see Uδ(·, t) at some different times, while Figure 27 shows the solution in
the (x, t)-plane. In Figure 27 we observe many fronts interacting, but Figure 26 reveals that
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Figure 23. Uδ( · , t) at different times t for Example 4.2.
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Figure 24. The solution Uδ(x, t) in the (x, t)-plane for Example 4.2.
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Figure 25. G for Example 4.2.

after a short time, all fronts except the leftmost and rightmost shocks are very weak fronts,
including the non-physical fronts. This is also in accordance with Figure 28 where we after
a short time have only very small changes in G.
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Figure 26. Uδ(·, t) at different times t for Example 4.3.
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APPENDIX

Appendix A. Some properties of the system

In this appendix we take a closer look at some properties of the system given in Lagrangian
coordinates as

vt − ux = 0,

ut + p(v, γ)x = 0,(A.1)
γt = 0,

for x ∈ R and t ∈ (0,∞). Recall that this system models one dimensional, immiscible flow
of several isentropic gases where v = 1/ρ is the specific volume, u is the velocity, γ > 1 is the
adiabatic gas constant for each gas, and the pressure p is given by a γ-law, p(v, γ) = v−γ .
Note also that we only consider the system away from vacuum, that is, for v < ∞, or
equivalently, p > 0.

A.1. Riemann invariants. First, we discuss the Riemann invariants and prove that system
(A.1) does not have a coordinate system of Riemann invariants, only a 2-Riemann coordinate.
For the general theory on Riemann invariants, see, e.g., [1]. Let us start with some definitions.

Definition A.1. An i-Riemann invariant is a function w such that

(A.2) ∇w · ri = 0,

where ri is the ith eigenvector. Furthermore, if wj is an i-Riemann invariant for all i 6= j,
i = 1, . . . , n, then wj is a Riemann coordinate for the jth family.

Definition A.2. An n× n system of hyperbolic conservation laws has a coordinate system
of Riemann invariants if there exist n scalar functions wi, i = 1, . . . , n, so that, for any
i, j = 1, . . . , n, where i 6= j, we have that wj is an i-Riemann invariant for the system.

Note that Definition A.2 implies that all 2× 2 systems of strictly hyperbolic conservation
laws have a coordinate system of Riemann invariants. By rewriting Definition A.2 using Lie
brackets, as shown in [1, p. 185], it becomes easier to verify whether or not an n×n system,
n > 2, has a coordinate system of Riemann invariants. We state this as a corollary.

Corollary A.3. An n × n system of hyperbolic conservation laws has a coordinate system
of Riemann invariants if, and only if,

(A.3) [rj , rk] = αk
j rj − αj

krk,

for j, k = 1, . . . , n, where j 6= k, αk
j are scalar fields, and [rj , rk] := ∇rj · rk −∇rk · rj.

The functions

(A.4)


γ, u + 2

√
γ

γ−1v(1−γ)/2,

u, v−γ ,

γ, u− 2
√

γ

γ−1v(1−γ)/2,

are, respectively, 1-, 2-, and 3-Riemann invariants for system (A.1). Furthermore, we have
the following result:

1
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Lemma A.4. System (A.1) does not have a coordinate system of Riemann invariants. How-
ever, γ is a Riemann coordinate for the second family.

Proof. It follows directly from Definition A.1 that γ is a Riemann coordinate for the second
family because γ is both a 1- and a 3-Riemann invariant for system (A.1).

Recall that the eigenvectors are given as

r1 = (1, λ, 0)t, r2 = (−pγ , 0, pv)t, r3 = (1,−λ, 0)t,

where λ =
√
−pv, thus,

∇r1 =

 0 0 0
λv 0 λγ

0 0 0

 = −∇r3 and ∇r2 =

−pγv 0 −pγγ

0 0 0
pvv 0 pvγ

 .

For j = 1 and k = 3, condition (A.3) is satisfied because

[r1, r3] = ∇r1 · r3 −∇r3 · r1 = (0, 2λv, 0)t = α3
1r1 − α1

3r3,

for α3
1 = α1

3 = λv/λ. This confirms that system (A.1) has a Riemann coordinate for the
second family. However, for j = 1 and k = 2, condition (A.3) is not satisfied because

[r1, r2] = ∇r1 · r2 −∇r2 · r1 = (pγv,−λvpγ + λγpv,−pvv)t,

and there are no scalar fields, α2
1 and α1

2, so that [r1, r2] = α2
1r1 − α1

2r2. Thus, condition
(A.3) is not satisfied for all j, k = 1, 2, 3, where j 6= k, thus, system (A.1) does not have a
coordinate system of Riemann invariants. �

A.2. Entropy/entropy flux pairs. Consider an n × n system of hyperbolic conservation
laws on the form Ut + f(U)x = 0, and let η and q be scalar functions of U . If

(A.5) ∇q = ∇η df(U),

then (η, q) form an entropy/entropy flux pair for the system. For system (A.1) we have the
following entropy/entropy flux pair:

Lemma A.5. The scalar functions defined by

η(v, u, γ) =
1
2
u2 −

∫ v

0

p(τ, γ)dτ + h(γ),

q(v, u, γ) = up(v, γ),
(A.6)

where h(γ) is an arbitrary function of γ, form an entropy/entropy flux pair for system (A.1).

Proof. We have to show that (A.6) satisfies (A.5) where f = (−u, p(v, γ) , 0)t so that the
right hand side reads

(ηv, ηu, ηγ)

 0 −1 0
pv 0 pγ

0 0 0

 = (pvηu,−ηv, pγηu).

Differentiating (A.6) gives us

qv = upv, qu = p, qγ = upγ ,

ηv = −p, ηu = u, ηγ = − d
dγ

∫ v

0

p(τ, γ)dτ + hγ ,

thus,
(qv, qu, qγ) = (pvηu,−ηv, pγηu),

and (A.5) is satisfied for any function h(γ). �
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Appendix B. Interactions between two waves or fronts with constant γ

An interaction has constant γ if there is no contact discontinuity among the incoming
waves or fronts. Moreover, the interactions with constant γ are equal to the interactions
of the corresponding p-system, and our estimates are based on the estimates for the p-
system given by Nishida and Smoller in [2, Lemma 4]. This transformation of the interaction
estimates were left out of the papers due to space limitations and is therefore discussed in
this appendix.

B.1. The p-system. First, we discuss some properties of the p-system, which is a 2 × 2
system describing the flow of one isentropic gas. In Lagrangian coordinates the system reads

vt − ux = 0,

ut + p(v)x = 0,
(B.1)

where v = 1/ρ is the specific volume, u is the velocity, and the pressure p is given by a γ-law,
p(v) = v−γ , where γ > 1 is the adiabatic gas constant. We only consider system (B.1) away
from vacuum, that is, for v < ∞, or equivalently, for p > 0. The functions

r = u−
2
√

γ

γ − 1

(
p(γ−1)/2γ − 1

)
and s = u +

2
√

γ

γ − 1

(
p(γ−1)/2γ − 1

)
,

are 1- and 2-Riemann invariants for (B.1), respectively.1 As noted in Section A.1, all 2 × 2
systems have a coordinate system of Riemann invariants, thus, (r, s) forms a coordinate
system for (B.1). Moreover, the mapping from (p, u) to (r, s) is one-to-one and onto for all
p > 0.

As noted in the papers, the rarefaction and shock curves for system (A.1) have constant
γ and are equal to the wave curves for the corresponding p-systems (B.1). Let us therefore
consider the wave curves for the p-system given by r and s as shown in Figure 1. For a wave
connecting (r1, s1) to (r2, s2) one of the following holds,

1-rarefaction: r1 < r2, s1 = s2,

3-rarefaction: r1 = r2, s1 < s2,

1-shock: r1 > r2, s1 > s2, |s1 − s2 | = q1 |r1 − r2 | for 0 < q1 < 1,

3-shock: r1 > r2, s1 > s2, |r1 − r2 | = q3 |s1 − s2 | for 0 < q3 < 1,

depending on the type and family of the wave.
In addition to the above properties of the wave curves, we need estimates on the trans-

formation between (r, s) and (p, u). First of all,

s + r = 2u,

s− r =
4γ1/2

γ − 1

(
p(γ−1)/2γ − 1

)
:= f(p).

Furthermore,
|f(p2)− f(p1) | = |f ′(p̃) | |p2 − p1 | ,

where f ′(p̃) = 2γ−
1
2 p̃−(γ+1)/2γ for a p̃ between p1 and p2. For p1 < p2, we therefore have

(B.2) |f ′(p2) | |p2 − p1 | ≤ |f(p2)− f(p1) | ≤ |f ′(p1) | |p2 − p1 | .
As in the papers, we only consider interactions between waves or fronts that are contained
in the domain

D = {(p, u, γ) | p ∈ [pmin, pmax], |u | < ∞, γ ∈ (1, γ]},

1This is the same Riemann invariants as used in [2] letting the constant k be equal to one.
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s

r

R3

S3

S1

(rl, sl)

R1

Figure 1. The rarefaction waves, R1 and R3, and the shock waves, S1 and
S3, through the point (rl, sl).

where 0 < pmin ≤ pmax < ∞ and γ := sup(γ0) ∈ (1,∞) are constants. Thus, we have upper
and lower bounds on p, and can define the constants

(B.3) Q := min
γ∈(1,γ]

f ′(pmax) and M := max
γ∈(1,γ]

f ′(pmin),

only depending on pmin, pmax and γ. This gives us the following estimate

(B.4) Q |p2 − p1 | ≤ |(s2 − r2)− (s1 − r1) | ≤ M |p2 − p1 | .

B.2. Estimates for interactions of Type Ba and Type Bb. We now prove the estimates
for interactions between two waves or fronts where no contact discontinuity is present. These
interactions are classified as Type Ba and Type Bb in the papers, and, more important, these
interactions are the same for the Glimm scheme and for front tracking. Thus, we will no
longer distinguish between waves and fronts, and we choose to use the term wave for the rest
of this section.

We follow the same notation as used in the papers: The two incoming waves connect
Ul to Ur with U1 as the intermediate state. Since no contact discontinuity is present, the
interactions have at most two outgoing waves, a 1-wave connecting Ul to the intermediate
state Ũ , and a 3-wave connecting Ũ to Ur.

Interactions of Type Ba. These are the interactions where the incoming waves are of the
same family. There are six interactions of this form, where three are symmetric to one of the
others. Before we discuss each interaction, we define the constant

(B.5) C̃ =
Q

M
min

γ∈(1,γ]
C0,

where C0 is the positive constant in the estimates given in [2, Lemma 4] and Q and M are
given by (B.3). Thus, C̃ is a positive constant depending only on pmin, pmax and γ.

(i) α1 +α2 → α′+ ν′, symmetric to β1 +β2 → µ′+β′: For this interaction we do not need
to use estimates from [2] because the estimates follows directly: We have pl ≤ p1 ≤ pr

and pl ≤ p̃ ≤ pr, see Figure 2, and the sum of the strengths of the incoming waves
equals the sum of the strengths of the outgoing waves. Therefore,

|α′ | − |α1 | − |α2 | = − |ν′ | .
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p

u

α′ α2

ν′

Ur

α1

Ul

Figure 2. The interaction α1 + α2 → α′ + ν′ in the (p, u)-plane.

(ii) α + µ, symmetric to ν + β. This interaction has two possible combinations of outgoing
waves. In both cases we have an outgoing 3-shock wave connecting Ũ to Ur, thus,

(B.6) |p̃− pr | ≤
1
Q
|(s̃− r̃)− (sr − rr) | =

1− q3

Q
|s̃− sr | ≤

1
Q
|s̃− sr | ,

since 0 < q3 < 1.

p

u

α
μ

Ul

μ′

β∗

Ur

β ′

U∗

(a) In the (p, u)-plane: α + µ→ µ′ + β′.

p

u

α′

α

μ

β ′

Ur

U∗ β∗

Ul

(b) In the (p, u)-plane: α + µ→ α′ + β′.

Ul

r

s U∗ Ũ

UrU1

(c) In the (r, s)-plane: α + µ→ µ′ + β′.

Ũ

r

s U∗

U1 Ur

Ul

(d) In the (r, s)-plane: α + µ→ α′ + β′.

Figure 3. The interaction α + µ.
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• α + µ → µ′ + β′: With respect to p, Ur is in this case to the left of the 3-shock
wave starting at Ul, see Figure 3(a). The interaction is depicted in the (r, s)-plane
in Figure 3(c). From [2] we have that

(B.7) |rl − r1 | =
1
q1
|sl − s1 | = (1 + C0) |s̃− sr | ,

where C0 > 0 is a constant. Using this, we want to estimate |α | − |β′ | where the
strengths are measured in p. First, we have to introduce an auxiliary curve; let β∗

be a copy of β′ that starts at U1, and let the point where β∗ ends be U∗. Then,
|α | − |β′ | = |p∗ − pl | in the (p, u)-plane, and r∗ = r1 + r̃ − rr and s∗ = s̃ in the
(r, s)-plane. We get

|α | − |β′ | = |p∗ − pl | ≥
1
M
|(s∗ − r∗)− (sl − rl) |

=
1
M
|rl − r1 − r̃ + rr | =

1
M
||rl − r1 | − |r̃ − rr | |

=
1
M
||rl − r1 | − q3 |s̃− sr | | ≥

1
M

C0 |s̃− sr |

≥ Q

M
C0 |p̃− pr | ≥ C̃ |β′ | ,

since 0 < q3 < 1 and we first used (B.7), then (B.6). Thus, we have proved that

(B.8) |β′ | − |α | ≤ −C̃ |β′ | ,

where C̃ given by (B.5) only depends on pmin, pmax and γ.
• α + µ → α′ + β′: With respect to p, Ur is in this case to the right of the 3-shock

wave starting at Ul. Figure 3(b) and Figure 3(d) show the interaction in the
(p, u)-plane and (r, s)-plane, respectively. Moreover, we have from [2] that

(B.9) |rl − r1 | − |rl − r̃ | = |r̃ − r1 | =
1
q1
|s̃− s1 | = (C0 + 1) |s̃− sr | ,

for a constant C0 > 0. In order to obtain an estimate of |α | − |α′ | − |β′ |, we
again introduce an auxiliary curve β∗ which is a copy of β′, starting at U1 and
ending at U∗. Then, we have |α | − |α′ | − |β′ | = |p∗ − p̃ | in the (p, u)-plane, and
r∗ = r1 + r̃ − rr and s∗ = s̃ in the (r, s)-plane. We get

|α | − |α′ | − |β′ | = |p∗ − p̃ | ≥ 1
M
|(s∗ − r∗)− (s̃− r̃) |

=
1
M
|r̃ − r1 − r̃ + rr |

=
1
M
||rl − r1 | − |rl − r̃ | − |r̃ − rr | |

=
1
M
||rl − r1 | − |rl − r̃ | − q3 |s̃− sr | |

≥ 1
M

C0 |s̃− sr | ≥
Q

M
C0 |p̃− pr | ≥ C̃ |β′ | ,

since 0 < q3 < 1 and we used (B.9) and (B.6). Hence,

(B.10) |α′ |+ |β′ | − |α | ≤ −C̃ |β′ | ,

where C̃ given by (B.5) only depends on pmin, pmax and γ.
(iii) µ + α, symmetric to ν + β: This interaction has two possible combinations of outgoing

waves.
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(a) In the (p, u)-plane: µ + α→ µ′ + β′.

p

u
μ

α

U∗

α′

β ′
Ur

α

β

β∗

Ul

(b) In the (p, u)-plane: µ + α→ α′ + β′.

U∗

r

s U1Ul Ũ

Ur

(c) In the (r, s)-plane: µ + α→ µ′ + β′.

Ul

r

s

U∗

U1

Ũ

UUr

(d) In the (r, s)-plane: µ + α→ α′ + β′.

Figure 4. The interaction µ + α.

• µ + α → µ′ + β′: With respect to p, Ur is in this case to the left of the 3-shock
wave starting at Ul, see Figure 4(a). The interaction in the (r, s)-plane is depicted
in Figure 4(c), and from [2] we have

(B.11) |r1 − rr | =
1
q1
|s1 − sr | = (1 + C0) |s̃− sr | ,

where C0 > 0 is a constant. Moreover, (B.6) also holds for this interaction because
it has an outgoing 3-shock wave connecting Ũ to Ur. As above, we introduce an
auxiliary curve β∗ which is a copy of β′, starting at U1 and ending at U∗. Then,
we have |α |− |β′ | = |pr − p∗ | in the (p, u)-plane, and r∗ = r1 + rr− r̃ and s∗ = sr

in the (r, s)-plane. Furthermore,

|α | − |β′ | = |pr − p∗ | ≥
1
M
|(sr − rr)− (s∗ − r∗) |

=
1
M
|r1 + rr − r̃ − rr | =

1
M
||r1 − rr | − |r̃ − rr | |

=
1
M
||r1 − rr | − q3 |s̃− sr | | ≥

1
M

C0 |s̃− sr |

≥ Q

M
C0 |p̃− pr | ≥ C̃ |β′ | ,

since 0 < q3 < 1 and we used (B.11) and (B.6). Furthermore, the constant C̃ is
given by (B.5) and depends only on pmin, pmax and γ.
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• µ + α → α′ + β′: With respect to p, Ur is in this case to the right of the 3-shock
wave starting at Ul, and we use the same strategy as Nishida and Smoller [2]
replacing the interaction with a new one, β + α → α′ + β′, where β + α connects
Ul to Ur. Figure 4(b) and Figure 4(d) show the interaction in the (p, u)-plane
and (r, s)-plane, respectively. The new interaction is of Type Bb which is covered
below, thus, we only need to show that

(B.12) |α |+
∣∣β ∣∣− |α | ≤ −C̃

∣∣β ∣∣ .

Let U denote the new intermediate state so that β connects Ul to U and α connects
U to Ur. In the (r, s)-plane we then have from [2] that

(B.13) |r1 − rr | − |r − rr | ≥ (1 + C0) |sl − s | ,

for a constant C0 > 0. Moreover,

(B.14) |pl − p | ≤ 1
Q
|(sl − rl)− (s− r) | = 1− q3

Q
|sl − s | ≤ 1

Q
|sl − s | .

Once more we introduce an auxiliary curve, and now β∗ is a copy of β, starting
at U1 and ending at U∗. Thus, |α | − |α | −

∣∣β ∣∣ = |p− p∗ | in the (p, u)-plane, and
r∗ = r1 + r − rl and s∗ = s in the (r, s)-plane, and

|α | − |α | −
∣∣β ∣∣ = |p− p∗ | ≥

1
M
|(s− r)− (s∗ − r∗) |

=
1
M
|r1 + r − rl − r |

=
1
M
||r1 − rr | − |r − rr | − |rl − r | |

=
1
M
||r1 − rr | − |r − rr | − q3 |sl − s | |

≥ 1
M

C0 |sl − s | ≥ Q

M
C0 |pl − p | ≥ C̃

∣∣β ∣∣ ,

since 0 < q3 < 1 and we used (B.13) and (B.14). This proves (B.12) with C̃ given
by (B.5).

Interactions of Type Bb. These are the interactions between a 3-wave and a 1-wave. There
are four interactions of this kind, and one of these is symmetric to one of the others.

(i) ν+µ → µ′+ν′: Since s and r are constant along 1- and 3-rarefaction waves, respectively,
we have

rl = r1, r̃ = rr, s1 = sr, sl = s̃,

as illustrated in Figure 5(b). Thus,

|ur − ũ | =
∣∣∣∣12(sr + rr)−

1
2
(s̃ + r̃)

∣∣∣∣ =
∣∣∣∣12(sr − s̃)

∣∣∣∣
=

∣∣∣∣12(s1 − sl)
∣∣∣∣ =

∣∣∣∣12s1 −
1
2
sl +

1
2
r1 −

1
2
rl

∣∣∣∣
=

∣∣∣∣12(s1 + r1)−
1
2
(sl + rl)

∣∣∣∣ = |u1 − ul | .
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(a) In the (p, u)-plane: ν + µ→ µ′ + ν′.

Ũ

s

r

Ul

U1 Ur

(b) In the (r, s)-plane: ν +µ→ µ′ +ν′.

Figure 5. The interaction ν + µ.

We furthermore know that a 3-rarefaction wave is steeper the smaller p is. Since
|ur − ũ | = |u1 − ul | and pr < p1, we have

|ur − ũ |
|pr − p̃ |

≥ |u1 − ul |
|p1 − pl |

⇒ |pr − p̃ | ≤ |p1 − pl | ,

hence, |ν′ | ≤ |ν |. Figure 5(a) shows the interaction in the (p, u)-plane, and we observe
that

|µ′ |+ |ν | = |µ |+ |ν′ | ⇒ |µ′ | − |µ | = |ν′ | − |ν | ≤ 0.

Thus, we have proved the estimates

|µ′ | ≤ |µ | and |ν′ | ≤ |ν | .
(ii) β + α → α′ + β′: In [2], three different estimates are given in Riemann invariants for

this interaction, depending on which of three given regions the intermediate state Ũ is
in. The positive constant C in the estimates in [2, Lemma 4] will here be denoted by
Cns and may depend on γ. Furthermore, the three regions are denoted I, II and III,
and they are shown in Figure 6(b). First, we introduce an auxiliary point U∗: Let α∗
be a copy of α that starts at the point Ul, and let β∗ be a copy of β that ends at Ur, as
shown in the (p, u)-plane in Figure 6(a). Then, the intersection point between α∗ and
β∗ is U∗. In Figure 6(b), where the interaction is depicted in the (r, s)-plane, the solid
curves are the copy of α, α∗, and the copy of the backward 3-shock wave connecting
U1 to Ul. These two curves also intersect at U∗, and they bound the three different
regions. We have that r∗ = rr + rl − r1 and s∗ = sl + sr − s1. Furthermore, due to the
properties of shock curves, p∗ ≤ p̃, where Ũ is the intersection point between α′ and
β′. Moreover, we have |α |+ |β′ | = |α′ |+ |β | in the (p, u)-plane, hence

(B.15) |α′ | − |α | = |β′ | − |β | = p̃− p∗.

If (r̃, s̃) is in Region II, as in Figure 6(b), then r̃ ≤ r∗ and s̃ ≥ s∗, and we have from
[2] that

|rl − r̃ | − |r1 − rr | ≤ Cns(γ − 1) |r1 − rl | |sl − s1 | ,
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Figure 6. The interaction β + α → α′ + β′.

|s̃− sr | − |sl − s1 | ≤ Cns(γ − 1) |r1 − rl | |sl − s1 | ,
where Cns is a positive constant. Thus,

|p̃− p∗ | ≤
1
Q
|(s̃− r̃)− (s∗ − r∗) | =

1
Q

(s̃− s∗ + r∗ − r̃)

=
1
Q

(s̃− sr − sl + s1 + rl + rr − r1 − r̃)(B.16)

=
1
Q

(|s̃− sr | − |sl − s1 |+ |rl − r̃ | − |r1 − rr |)

≤ 2Cns(γ − 1)
Q

|r1 − rl | |sl − s1 | .

For (r̃, s̃) in Region I, we have r̃ ≥ r∗ and s̃ ≥ s∗, and according to [2];

|rl − r̃ | − |r1 − rr | = −qε,

|s̃− sr | − |sl − s1 | ≤ Cns(γ − 1) |r1 − rl | |sl − s1 |+ qη,

where qη < qε and Cns is a positive constant.2 Thus,

|p̃− p∗ | ≤
1
Q
|(s̃− r̃)− (s∗ − r∗) |

=
1
Q
|s̃− sr − sl + s1 + rl + rr − r1 − r̃ |(B.17)

=
1
Q
||s̃− sr | − |sl − s1 |+ |rl − r̃ | − |r1 − rr | |

≤ 1
Q
|Cns(γ − 1) |r1 − rl | |sl − s1 |+ qη − qε |

≤ Cns(γ − 1)
Q

|r1 − rl | |sl − s1 | .

Finally, if (r̃, s̃) is in Region III, then r̃ ≤ r∗ and s̃ ≤ s∗, and from [2] we have

|rl − r̃ | − |r1 − rr | ≤ Cns(γ − 1) |r1 − rl | |sl − s1 |+ qη,

2The constants qε and qη correspond to the constants ε and η in [2], respectively.
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|s̃− sr | − |sl − s1 | = −qε,

where qη < qε and Cns is a positive constant. Thus,

|p̃− p∗ | ≤
1
Q
|(s̃− r̃)− (s∗ − r∗) |

=
1
Q
|s̃− sr − sl + s1 + rl + rr − r1 − r̃ |(B.18)

=
1
Q
||s̃− sr | − |sl − s1 |+ |rl − r̃ | − |r1 − rr | |

≤ 1
Q
|−qε + Cns(γ − 1) |r1 − rl | |sl − s1 |+ qη |

≤ Cns(γ − 1)
Q

|r1 − rl | |sl − s1 | .

From equation (B.15), together with estimates (B.16)–(B.18), we get

|α′ | − |α | = |β′ | − |β | ≤ 2Cns(γ − 1)
Q

|r1 − rl | |sl − s1 | ,

regardless of the region Ũ is in. Furthermore, we have

|α | = |pr − p1 | ≥
1
M
|(sr − rr)− (s1 − r1) |

=
1
M
|(r1 − rr)− (s1 − sr) | =

1
M

(1− q1) |(r1 − rr) | ,

where 0 < q1 < 1, and

|β | = |pl − p1 | ≥
1
M
|(sl − rl)− (s1 − r1) |

=
1
M
|(sl − s1)− (rl − r1) | =

1
M

(1− q3) |(sl − s1) | ,

where 0 < q3 < 1. Hence

|α′ | − |α | = |β′ | − |β | ≤ C1(γ − 1) |α | |β | ,

where

C1 =
2M2

Q
sup

γ∈(1,γ]

Cns

(1− q1)(1− q3)
,

only depends on pmin, pmax and γ.
(iii) ν + α → α′ + ν′, symmetric to β + µ → µ′ + β′. As for the first interaction, we only

need to consider this interaction in the (p, u)-plane to obtain the estimates. First, we
introduce an auxiliary point U∗ as follows: Let α∗ be a copy of α′ that ends at the
point Ur, and let ν∗ be a copy of ν′ starting at Ul. Thus, α∗ and ν∗ have the same
shape as α′ and ν′, respectively, but start and end at different points, see Figure 7.
The intersection point between α∗ and ν∗ is U∗. Recall that slope of a 3-rarefaction
wave only depends on p and decreases as p increases. Since ν starts at pl and ν′ starts
at p̃, where pl ≤ p̃, the first part of ν is steeper than the first part of ν′. The curve ν∗

has the same slope as ν′, therefore, ν∗ lies below ν, as depicted in Figure 7. The slope
of a 1-shock wave depends both on the starting point and on p. The starting point of
α′ is less than the starting point of α, therefore, the first part of α′ is steeper than α.
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Figure 7. The interaction ν + α → α′ + ν′ in the (p, u)-plane.

Since α∗ has the same slope as α′, but ends in the same point as α, α∗ has to lie above
α. Thus, p∗ ≥ p1 and |ν′ | − |ν | = p∗ − p1 ≥ 0. Furthermore,

|α |+ |ν | = |α′ |+ |ν′ | ⇒ |α′ | − |α | = |ν | − |ν′ | ,
hence

|ν′ | − |ν | = q, and |α′ | − |α | = −q,

where q ≥ 0.
This concludes the detailed discussion of the estimates for interactions of Type Ba and

Type Bb, that is, the interactions between two waves not involving a contact discontinuity.
The remaining interactions between two waves are discussed in detail in Paper I. These are
the interactions of Type Bc; the interactions between a contact discontinuity and another
wave, also called γ-collisions in Paper II.
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