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1 Introduction

Over the past three decades, in response to the competitive market’s need for increased
industrial automation, product diversification and the trend towards shorter product life
cycles, new manufacturing philosophies have been adopted by many of the established
manufacturing firms. Among those, group technology (GT) has been used to reduce
throughput and material handling times, to decrease work-in-progress and finished goods
inventories and to increase the ability to handle forecast errors (Won and Currie, 2007).
GT can be defined as a manufacturing philosophy identifying similar parts and grouping
them together to take advantage of their similarities in manufacturing and design
(Selim et al., 1998). GT is mainly applied in flexible manufacturing systems (FMS) and
cellular manufacturing systems (CMS) (Rao, 2006). Cellular manufacturing (CM) is an
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application of GT and has emerged as a promising alternative manufacturing system. CM
could be characterised as a hybrid system linking the advantages of both the jobbing
(flexibility) and mass (efficient flow and high production rate) production approaches.
CM entails the creation and operation of manufacturing cells. Parts are grouped into part
families and machines into cells. The aim of CM is to reduce setup and flow times and
therefore to reduce inventory and market response times (Wemmerlév and Hyer, 1989).
Setup times are reduced by using part-family tooling and sequencing, whereas flow times
are reduced by minimising setup and move times, wait times for moves and by using
small transfer batches. GT addresses issues such as average lot size decreasing,
part variety increasing, increased variety of materials with diverse properties and
requirements for closer tolerances. Venugopal (1999) described the basic idea behind
GT/CM is to decompose a manufacturing system into subsystems by identifying and
exploiting the similarities amongst part and machines. The very first step in this process
is to solve the complex part machine grouping (PMG) problem and the problem being
quite challenging under real time scenario, various approaches have been developed, and
among those, artificial neural network (ANN) have an eminent role in the GT/CM
literature (Sofianopoulou, 2010). ANN is being used in GT/CM literature from past two
decades (Rezaeian et al., 2011; Chattopadhyay et al., 2011). It is noticed that many
review works have been carried out in the area of GT/CM recently but only ANN-based
review work has not yet been done (Ghosh et al., 2011; Chattopadhyay et al., 2013). This
paper presents a chronological quantitative review of ANN in CMS from the very
beginning of its use in the early 90s till the 2012. An in depth analysis is carried out to
identify the research trend, which captures the chronological progress and continuous
improvement in the CMS. The study focuses on the influence of the ANN in CM,
emphasising various ANN approaches applied, analytical comparison of the research
patterns, and improvements achieved over the years.

2 Overview of ANN

ANN is also called connectionist model, neural net, or parallel distributed processor
(PDP) model as reported by Odejobi and Umoru (2009). ANNs are massively parallel
computer algorithms with an ability to learn from experience (Wasserman, 1989). They
have the capability to generalise, adapt, approximate given new information, and provide
reliable classifications of data. They basically consist of different components, e.g.,
processing unit (PU), connections, propagation rule, activation/transfer function and
learning rule (Venugopal, 1999). The PUs are densely interconnected through directed
links (connections). PUs take one or more input values, combine them into a single value
using propagation rule, then transform them into an output value through an
activation/transfer function. Complex networks can be constructed by connecting a
number of PUs together (Sengupta et al., 2011). The simplest network is a group of PUs
arranged in a single layer. Multi-layer networks may be formed by simply cascading a
group of single layers as shown in Figure 1. A neural network learns from a set of
training patterns by generalising the features within the training patterns. After sufficient
generalisation, the network stores these features internally in its architecture. After the
training, the neural network should be able to recognise and classify input patterns that it
has never seen before.
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Figure 1 Basic structure of an ANN

Hidden
Input
Output

The learning takes place mainly through the readjustment of the weights using certain
learning procedures such as the delta learning rule, Hebbian learning rule and competitive
learning rule. Supervised learning requires the pairing of each input value with a target
value representing the desired output and a ‘teacher’ who provides error information. In
unsupervised learning, the training set consists of input vectors only. The output is
determined by the network during the course of training. The unsupervised learning
procedures construct internal models that capture regularities in their input values without
receiving any additional information (Poto¢nik et al., 2012). Neural networks are of
major interest because when it is connected to computer, it mimics the brain and
bombard people with much more information. ANNs are being used in production and
manufacturing domain heavily (Azadeh et al., 2011a, 2011b).

3 ANNInGT/CM

The neural network approach in engineering field has been the subject of intensive study
by interdisciplinary researchers for a long time (Paliwal and Kumar, 2009). Though
neural networks have been successfully applied in a variety of fields, their use in CM
problems started in the late 80s and early 90s. Recognising ANN’s pattern recognition
ability, several researchers began to investigate neural network methods for the
part-machine grouping problem. Neural networks are of major interest because when it is
simulated to computer, it mimics the brain and bombard people with much more
information.

In this study, the ANN application in GT/CM has been classified in chronological
order. The next subsection reviews the literature from 90s to 2000 and the other
subsection portrays the articles published during 2000 to 2012.

3.1 ANN in GT/CM: from 1990 to 2000

An interactive activation and competition (IAC) model based on ANN was proposed by
Kao and Moon (1991) where part and machine similarities were considered to form the
part families for CM, which mimics the way biological brain neurons perform to generate
intelligent decisions. The procedure was described with suitable examples.
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Kao and Moon (1991), Dagli and Huggahalli (1991) and Kusiak and Chung (1991)
have applied ART1 to group parts or machines. Back propagation learning rule was also
implemented by Kao and Moon (1991) to address the PMG problems while Malave and
Ramachandran (1991) utilised competitive learning rule to the cell formation problem.
The input to the ANN is the process plan of each part, which offers a mechanism to
identify the ratio of the number of shared (bottleneck) machines to the total number of
machines used in each cell.

Carpenter Grossberg network is used by Kaparthi and Suresh (1992) for the
identification of clusters with fast execution time. It is a heuristic clustering method to
support procedures such as PFA. The network could also be trained without supervision.
Moon (1992) presented a neuro-computing model for part/machine grouping. The
spontaneous generalisation capability of ANN models is exploited by Moon and Chi
(1992) for solving the part family formation problem. The approach combined the useful
capacities of the ANN technique with the flexibility of the similarity coefficient method,
which proved to be highly flexible in satisfying various requirements and efficient for
integration with other manufacturing functions. The study of Burke and Kamal (1992)
introduced fuzzy ART neural network for CM. Whereas Moon and Roy (1992) presented
a new approach to part classification in GT, which advocated the introduction of a
feature-based solid-modelling scheme for part representation which, in turn, helped in
identifying features of interest. In this article a back-propagation learning rule was
implemented. ART1 neural network approach is used by Dagli and Sen (1992) to large
scale GT problems. However, Lee et al. (1992) presented an improved method for cell
formation, bottleneck machine detection and the natural cluster generation using a
self-organising neural network. In addition, the generalisation ability of the neural
network made it possible to assign the new parts to the existing machine cells without
repeating the entire computational process.

Chu (1993) presented a procedure which was based upon competitive learning
paradigm to form cells. The proposed algorithm was better than optimal algorithms or
other conventional heuristics as it took less time to obtain optimal or near optimal
solutions compared to other methods. Besides Liao and Chen (1993) used ART1 neural
network model and Chakraborty and Roy (1993) used Kohonen’s self-organising feature
maps for part family and machine cell formation. Lozano et al. (1993) also addressed cell
formation problem using neural network. Kaparthi et al. (1993) proposed a robust neural
network-based leader algorithm for the part-machine grouping problem. The clustering
method involved is a modification to the normal use of Carpenter and Grossberg’s ART1
neural network. The robustness of the modified algorithm to random ordering of the input
data was tested with the datasets including an industry-size problem consisting of
1,000 parts and 100 machine types.

Venugopal and Narendran (1994) made a comparative study based on competitive
learning model, SOFM and ARTI1 to suggest a cell that minimises within cell
dissimilarities and balances the number of machines assigned to each cell. The individual
performances of each network were compared to Zodiac, while Suresh and Kaparthi
(1994) investigated the performance of fuzzy ART in CF problem which outperformed
ART1 in terms of bond energy recovery. The proposed model clearly represented a
viable alternative for PMG problem. Rao and Gu (1994) presented a multilayered
constraint-bound neural network, which was structured to include practical limitations
such as duplicate machine availability and machine capacity during the cell design
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process. The interactive expert system took its input from the neural network and used
alternate process plans to reassign any exceptional parts that could occur as a result of the
constraint imposition during the initial cell design. Thus the hybrid neural net-expert
system technique gave an added flexibility to the design approach.

Dagli and Huggahalli (1995) used ARTI1 for automatic generation of an optimal
family formation solution promising both speed and functionality, while Chen and Cheng
(1995) improved the quality of grouping by the introduction of set of supplementary
procedure especially in the presence of bottleneck machines/bottleneck parts using the
ART1. Arizono et al. (1995) used stochastic neural network model to overcome the
defects of deterministic neural network problems which often stuck at local optimal
solutions. Burke and Kamal (1995) applied fuzzy ART neural network technique to the
part family formation problem in CM. This approach to GT solved to varying degrees,
the problems of speed and flexibility. Kulkarni and Kiang (1995) used a self-organising
neural network for dynamic grouping of parts in FMS. Malakooti and Yang (1995)
proposed an unsupervised clustering neural network method for solving machine part
group formation problem, which depicted a moderately good final grouping result in
terms of percentage of exceptional elements (EE), machine utilisation, and grouping
efficiency. Kiang et al. (1995) used SOFM as a clustering tool in GT problem, where the
part groupings were based on operations and not on machines. A multi-constraint neural
network was proposed by Rao and Gu (1995) for the pragmatic design of CMS. The
proposed multilayered neural network was capable of incorporating multiple constraints
and objectives during the cell design process.

Chen et al. (1996) proposed an improved ART neural net for machine cell formation.
To reduce the disadvantages of ART1 they proposed modified algorithm to improve the
learning rule of the standard ART1 and the representation of input vectors. Kamal and
Burke (1996) proposed a clustering algorithm fuzzy ART with add clustering technique
(FACT) for GT. It could be trained to cluster machines and parts for CM under a multiple
objective environment. Kusiak and Lee (1996) proposed a neural computing-based
component design for CM.

Chu (1997) proposed an unsupervised network model, based upon the IAC learning
paradigm which was easy to use, fairly efficient and robust and could simultaneously
form part families and machine cells. The computational results showed that the proposed
procedure was more efficient and effective than a similar IAC model. Inho and Jongtae
(1997) used SOFM for generalised CF problems considering material flow and plant
layout. The proposed method considered factors such as the operational sequences and lot
sizes and proved to be a flexible solving tool to GT. Kao and Moon (1997) presented a
new approach namely feature-based memory association network (FBMAN) using the
memory association of neural networks to identify naturally existing families, operates by
the exhaustive association approach which dealt with the difficult problem of exceptional
parts. FBMAN system with the exhaustive association approach was a robust part
clustering system. The evaluation criteria considered are the total bond energy, the
percentage of EE, the machine utilisation and the grouping efficiency. Lee et al. (1997)
proposed a new machine cell formation method based on the adaptive hamming net
which could produce good cells for the machine cell formation problem. The proposed
method was compared with other existing methods successfully. Zolfaghari and Liang
(1997) proposed a new structure of Hopfield neural network, OSHN, for the machine
grouping problems which was designed in conjunction with an objective-guided search
and could effectively handle bottleneck machines.
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Enke et al. (1998) presented a new ARTI paradigm which involved reordering of the
input vectors with a modified procedure for storing a group’s representation vectors. It
proved successful in both speed and functionality compared to previous techniques. The
techniques proved to be efficient and practical when implemented on a serial computer
that could be incorporated into a parallel environment with relative ease. Pilot and
Knosala (1998) presented a classification method based on the Kohonen network and its
modifications. Parallel, 2-layers net which allowed joining of both geometrical
technological features was used in the application. Input patterns were written in the form
of a raster grid, in which every raster had a defined number code. Kao and Moon (1998)
proposed a new approach for multiple-application set formation using feature-based
memory association performed by networks which demonstrated that feature-based
memory association is an effective way of forming cells.

Liang and Zolfaghari (1999) presented a neural network approach considering
processing time, lot size, machine capacity, and machine duplication. The computational
results obtained were compared against those obtained via an SA approach. Suresh et al.
(1999) identified families of parts having a similar sequence of operations using
fuzzy ART neural network. The experimental factors included size of the part machine
matrix, proportion of voids, proportion of EE, and vigilance threshold. Lee and Fischer
(1999) proposed a new part family classification system (IPFACS: image processing and
fuzzy ART-based clustering system), which incorporated image processing techniques
and a modified fuzzy ART. IPFACS could classify parts based on geometrical shape and
manufacturing attributes, simultaneously. Besides Lozano et al. (1999) also used a fuzzy
neural network (FNN) for part family formation.

Rao et al. (2000) applied SOFM utilising a syntactic pattern recognition approach.
The selection of an appropriate cell for a new part is based on the operational information
of the part. Enke et al. (2000) modified ART1 paradigm which reordered the input
vectors, along with a modified procedure for storing a group’s representation vectors. The
parallel implementation resulted in tremendous speed.

3.2 ANN in GT/CM: from 2001 to 2012

Lozano et al. (2001) considered a more comprehensive CF problem where the sequence
of operations on part types was also included. The authors proposed two sequence-based
neural network approaches, namely Hopfield model and Potts mean field annealing, with
the objective of minimising overall transportation costs and the latter proved to give
better and faster solutions, while Kuo et al. (2001) used fuzzy SOFM for clustering the
parts into several families based on the image captured from the vision sensor.
Mahdavi et al. (2001) develop an algorithm using graph neural approach with fast
computation and the ability to handle large scale industrial problems without the
assumption of any parameter and the least EE in the presence of bottleneck
machines-parts. Kiang (2001) extended the KSOM networks for clustering analysis. The
combination of SOM and the contiguity-constrained clustering method produced
comparative clustering results.

Soleymanpour et al. (2002) addressed a number of drawbacks of previous neural
network-based approaches for the CF problem and proposed a transiently chaotic ANN
algorithm with supplementary procedures to overcome a number of deficiencies. Dobado
et al. (2002) applied fuzzy min-max ANN for part family formation problem and a
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minimum cost flow model to form the corresponding machine cells minimising intracell
voids and intercell moves. Chen et al. (2002) presented integrated approach of ART1 and
tabu search (TS) to solve cell formation problems. The number of EE and group
efficiency (GE) were considered as the objectives for the problems under the constraints
of the number of cells and cell size. Guerrero et al. (2002) applied a new SOM approach
to form cells in two steps: first, part families were formed and then machines were
assigned. In phase one, weighted similarity coefficients were computed and parts were
clustered. In phase two, a linear network flow model was used to assign machines to
families.

Park and Suresh (2003) identified families of parts having a similar sequence of
operations. Based on promising new developments about the use of the fuzzy ART neural
network for sequence-based clustering, the objective here was to develop this
methodology further by introducing additional improvements.

Peker and Kara (2004) used both binary and non-binary part-machine incidence
matrices effectively using fuzzy ART network, applied to 26 test problems. Results
showed that the fuzzy ART network could solve both binary and non-binary problems
effectively, also showed that parameter combinations for binary and non-binary problems
differ. Intervals for parameter values for optimal solutions were. Solimanpur et al. (2004)
used transiently chaotic neural network (TCNN) that had the advantages of both the
chaotic and the Hopfield network and investigated the dynamics of the network and
studied the feasibility and robustness of final solutions.

Venkumar and Haq (2005) proposed a modified binary adaptive ART1 algorithm for
the binary machine/part matrix. The generated output was the list of the part families,
machine cells and number of EE. The results obtained, were superior and
computationally efficient. Miljkovic and Babic (2005) used ART1 simulator and FLEXY
in machine-part family formation problem. For a realistic size problem such as
1,500 parts and 110 machines, ART1 Simulator and FLEXY could be used successfully.

Venkumar and Haq (2006a) further applied modified ART1 in fractional cell
formation. The input is binary machine-part incidence matrix. Further they used Kohonen
SOM networks to measure the effectiveness with number of EE (Venkumar and Haq,
2006b), bottleneck parts and grouping efficiency of complete and fractional cell
formation. The computational effort was very low in the KSOM. Kuo et al. (2006)
presented a fuzzy ART2 neural network approach. The novel FNN, integrated both the
fuzzy set theory and ART 2 neural network for grouping the parts into several families
based on the image captured from the vision sensor. Even under the shift and noise
conditions, fuzzy ART2 had very promising results. In addition, the fuzzy ART2 neural
network, which was a kind of unsupervised network, did not need a very long training
time. Ozturk et al. (2006) made a comparative study on competitive neural network
(CNN) with Other Al Techniques. In this study, a CNN was presented to group parts and
machines into cells simultaneously. To test the success of this CNN in CF problems, its
performance was compared with those of other Al techniques such as genetic algorithms
(GA), simulated annealing (SA), TS and ant systems (AS). CNN outperformed all except
the AS technique.

Won and Currie (2007) used fuzzy ART neural network/RRR-RSS: a two-phase
neural network algorithm to solve the comprehensive PMG considering operation
sequences with multiple visits to the same machine, production volumes and multiple
identical machines. Experimental results from the modified replicated clustering showed
that the proposed fuzzy ART/RRR-RSS algorithm had robustness and recoverability to
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large-size ill-structured datasets. This could be applied as a useful alternative for
comparing and evaluating the robustness of PMG algorithms. Mehrabad and Safaei
(2007) proposed a new model of dynamic cell formation by a neural approach. Ozdemir
et al. (2007) introduced a two-stage clustering approach to cell design using modified
fuzzy ART neural network. The proposed algorithm involved modifications of the
learning procedure and resonance test of the fuzzy ART neural network. The two-stage
clustering approach had succeeded in grouping parts and machines with better degree of
perfection.

Yang and Yang (2008) proposed a modified ART1 neural learning algorithm with a
more efficient vigilance parameter than the traditional ART1 network. The method was
vigilance parameter-free and also more efficient in CF. It tried to overcome the
limitations of the previously addressed ART1 models. Ponnambalam et al. (2008)
proposed another modified ART1 neural network model for cell formation using
production data. An attempt was made to form disjoint machine cells using modified
ART1 (adaptive resonance theory) to handle the real valued workload matrix. The
proposed algorithm used a supplementary procedure to effectively take care of the
problem of generating cells with single machine that could be encountered at times.

Ateme-Nguema and Dao (2009) minimised the sum of dissimilarities between
machines using a hybrid algorithm of quantised and fluctuated Hopfield neural networks
and TS which proved to be effective in cell formation for big size industrial dataset in a
fast and effective manner. It is also illustrated that the fluctuation associated with this
quantisation enabled the network to escape from local minima, to converge to global
minima, and consequently to obtain optimal solutions very frequently and much more
quickly than pure quantised Hopfield networks (QHN). To improve the performance, a
local optimisation method (TS algorithm) is combined to form a global hybrid heuristic.
Pandian and Mahapatra (2009) applied modified ART1 in cell formation addressing
production factors like operation time and sequence of operations.

Xing et al. (2010) made a comparison between ART and ACO system in
part-machine clustering. Benchmark problems were chosen from literature and the
performance measure GE was selected to evaluate the results.

Rezaeian et al. (2011) solved a new non-linear programming model using a novel
hybrid approach based on the GA and ANN. From the computational analyses, the
proposed algorithm is found to be efficient than other published techniques.
Chattopadhyay et al. (2011) dealt with the self-organising map (SOM) method used as a
visually decipherable clustering tool to CMS. The objective is to cluster the binary
machine-part matrix through visually decipherable cluster of SOM colour-coding and
labelling via the SOM map nodes. The proposed SOM approach produced solutions with
a grouping efficacy that is at least as good as any results earlier reported in the literature
and improved the grouping efficacy for 70%. Sengupta et al. (2011) demonstrated a new
hybrid neural network approach, fuzzy ART K-means clustering technique (FAKMCT),
to solve the PMG problem considering operation time. The performance of the proposed
technique is compared to the existing clustering models such as simple K-means
algorithm and modified ART1 algorithm as found in the recent literature.

Poto¢nik et al. (2012) presented an approach to organise the production cells by
means of clustering-manufactured products into groups with similar product properties.
Several clustering methods are compared, including the hierarchical clustering, k-means
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and SOM clustering. Obtained results optimise the production resources and minimise the
work and material flow transfer between the production cells.

4 Analysis and discussion

Based on the above discussion, the different ANN approaches are identified and the
literature available is classified and presented in Table 1.

Table 1 Various ANN approaches in CF are categorised
IAC model Moon (1990, 1992), Moon and Chi (1992) and Chu (1997)
Stochastic neural Arizono et al. (1996)
network/modifications
Carpenter Grossberg Shashidhar et al. (1992)
network
Competitive Chu (1993), Malve and Ramachandran (1991), Venugopal and

learning/modifications
Graph neural approach

Self-organising feature
map/modifications

Adaptive resonance
theory/modifications/fuzzy
ART/ART2

Fuzzy min-max

Transiently chaotic neural
network

Hopfield neural
network/modifications

Kohonen self-organising
map networks

Adaptive hamming net

Back propagation (BP)
models

Narendran (1992, 1994) and Malakooti and Yang (1995)
Mahdavi et al. (2001)

Venugopal and Narendran (1992, 1994), Lee et al. (1992), Rao
and Gu (1994), Kiang et al. (1995), Rao and Gu (1995), Kulkarni
and Kiang (1995), Jang and Rhee (1997), Onwubolu (1999), Rao
et al. (2000), Kuo et al. (2001), Guerrero et al. (2002),
Chattopadhyay et al. (2011) and Poto¢nik et al. (2012)

Kusiak and Chung (1991), Dagli and Huggahali (1991), Kao and
Moon (1991), Burke and Kamal (1992), Dagli and Sen (1992),
Liao and Chen (1993), Kaparthi et al. (1993), Liao and Lee
(1994), Suresh and Kaparthi (1994), Dagli and Huggahalli (1995),
Chen and Cheng (1995), Burke and Kamal (1995), Suresh et al.
(1995), Chen et al. (1996, 2002), Kamal and Burke (1996),

Enke et al. (1998), Lee and Fischer (1999), Suresh et al. (1999),
Enke et al. (2000), Ming-Laing et al. (2002), Park and Suresh
(2003), Peker and Kara (2004), Venkumar and Haq (2005, 2006a,
2006b), Kuo et al. (2006), Won and Currie (2007), Ozdemir et al.
(2007), Yang and Yang (2008), Ponnambalam et al. (2008),
Pandian and Mahapatra (2009) and Sengupta et al. (2011)

Dobado et al. (2002)
Soleymanpour et al. (2002) and Solimanpur et al. (2004)

Ateme-Nguema and Dao (2009) and Zolfaghari and Liang (1997)

Chakraborty and Roy (1993), Pilot and Knosala (1998), Kiang
(2001) and Venkumar and Haq (2006)

Lee et al. (1997)

Kao and Moon (1991), Moon and Roy (1992), Kao and Moon
(1998) and Onwubolu (1999)

Further Figure 2 highlights the major ANN approaches in CMS and demonstrates the
usage percentage of the various neural network models as found in the literature. Table 1
states that the SOM and fuzzy ART-based methods are highly practiced as cell formation
methodologies due to the various advantages and disadvantages of both of the techniques.
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Discussion on the major ANN approaches in CMS

Table 2
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Discussion on the major ANN approaches in CMS (continued)

Table 2
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Discussion on the major ANN approaches in CMS (continued)

Table 2
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These are demonstrated in Table 2. Furthermore the progress report is also provided in
Table 2 for both of the methodologies. From the Figure 2, it could clearly be seen that
among the major ANN approaches, ART and SOM (including modifications) are the
most common approaches with significant results which supports the discussion of
Table 2.

Figure 2 Usage percentage of various neural network models in CM (see online version
for colours)
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ANN Approaches for Cell Formation

4.1 A quantitative analysis of the neural approaches in CMS

Some detailed analysis are presented in Tables 4.1 and 4.2 to analyse the solution trend in
the cell formation problem using neural network from its very beginning in the early 90s
till date. As presented earlier, numerous ANN-based models have been proposed in the
last two decades and provided some effective solutions in the CM domain. The survey
highlights the major contributions, ANN models used, their clustering efficiencies based
on GE, group efficacy, group technology efficiency (GTE), computational time and
weighted group capability index (WGCI) to calculate the solution’s performance.

In most cases the largest dataset used to demonstrate the performance is figured out,
compared and finally, each of the solutions capability discussed. The number of clusters
formed in each approach is noted. The programming language used and the computers
configurations are also enlisted for a better comparison. Table 3 shows the list of
references. Table 4.1 projects the solution approaches, experimented datasets and
compared algorithms, while in Table 4.2 the clustering efficiency, tool used, machine
configuration and overall improvements of the resulting solutions are analysed.

4.2 Observations

From Tables 4.1 and 4.2,

e It could clearly be seen that hybrid approaches provides good solutions and fuzzy
neural approaches are the most common which covers around 25% of the literary
observations, and has frequent successful results.
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Grouping efficiency and efficacy are the common performance measures used in the
literature (around 53%) while computational time clearly demonstrates the efficiency
of the algorithm to handle large complex datasets.

Among the datasets used in the literature, dataset presented by Chandrasekharan and
Rajagopalan (1987) proved to be a common participant with 40 machines and 100
parts. With the progress of neural network in cell formation the solution time of the
dataset kept reducing from 2 minutes and 36 EE to 0.05 seconds with just 2 EE
remaining.

The programming language used and the computer configuration gives a better
understanding of the solutions capability and its dependence on the PC and
individual programming skills. Pentium Processors are used often while C and C++
are the most frequent programming languages (around 37%).

Figure 3 demonstrates the approximate quantum of research carried out based on
neural network approaches in CMS since the last two decades while Figure 4 traces
the progress of the various ANN approaches in the domain by analysing the time
taken (in seconds) to cluster an incidence matrix of 40 x 100 [dataset given by
Chandrasekharan and Rajagopalan (1987)] by the different ANN models. The results
show a clear improvement in the speed of execution over the years.

So finally from these observations a holistic view and the success factors are conveyed

and

the analysed research trend of neural networks in cell formation problem is

identified.

Table 3 List of references

Solution no. Reference Solution no. Reference

1 Shashidhar and Suresh (1992) 17 Enke et al. (2000)

2 Chao-Hsien Chu (1993) 18 Lozano et al. (2001)

3 Suresh and Kaparthi (1994) 19 Kiang (2001)

4 Dagli and Huggahalli (1995) 20 Chen et al. (2002)

5 Chen and Cheng (1995) 21 Guerrero et al. (2002)

6 Burke and Kamal (1995) 22 Dobado et al. (2002)

7 Kulkarni and Kiang (1995) 23 Soleymanpour et al. (2002)

8 Chen et al. (1996) 24 Peker and Kara (2004)

9 Kamal and burke (1996) 25 Venkumar and Haq (2005)
10 Chao-Hsien Chu (1997) 26 Venkumar and Haq (2006a)
11 Inho and Jongtae (1997) 27 Venkumar and Haq (2006b)
12 Kao and Moon (1997) 28 Won and Currie (2007)

13 Zolfaghari and Liang (1997) 29 Ozdemir et al. (2007)

14 Enke et al. (1998) 30 Yang and Yang (2008)

15 Liang and Zolfaghari (1999) 31 Pandian and Mahapatra (2009)
16 Suresh et al. (1999) 32 Ateme-Nguema and Dao (2009)
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Solution methods, datasets used and compared algorithms

Table 4.1
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Solution methods, datasets used and compared algorithms (continued)

Table 4.1
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Clustering results and tools used (continued)
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Clustering results and tools used (continued)

Table 4.2
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Figure 3 Variation in number of articles published over the years
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5 Conclusions

This paper renders an analytical study of the ANN-based approaches in CF problem in
CM since the last two decades. A significant list of research papers were identified,
analysed and classified henceforth. The literature review part is distinctly separated in
two decades to reflect the grown up complexities in the applied ANN-based
methodologies. The study helped recognise the influence of ANN approaches in cell
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formation problem by incorporating the in-depth chronological analysis which further
helped to identify the trend of research, improvements over the years and the capability
of ANN approaches to handle complex data-sets in real-time industry scenario. The
comparative study of the computational time, number of cells formed and the clustering
efficiency obtained, helped to figure out the success rates of each approach and the
progress achieved since early 90s till the recent era. The study also portrays that the
future research could be carried out with the applications of SOM and ART with proper
hybridisation of heuristics or clustering approaches. Hybrid methods are more complex
but improved in terms of solution quality while dealing with CF problems. It is further
demonstrated, how the proposed ANN-based methodologies are being improved on the
largest dataset along with the period of time. The managerial implication is that
increasing complexities in terms of hybridisation in methodologies will improve the
solution to the CF problems when the problem is large and well balanced. Without the
good blend of justified solution searching techniques with the ANN approaches,
unnecessary complexities will make the cumbersome. It is also critical to utilise proper
industry data to achieve more realistic solutions in CM which is scarcely available in
published literature. This article could be immensely helpful for the researchers working
in the above mentioned area.
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Artificial neural network

fuzzy ART with add clustering technique
Adaptive resonance theory
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Tabu search
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Competitive neural network
Artificial intelligence
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Graph neural
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Part machine grouping
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