Hilde Grude Borgos

Stochastic Modeling and Statistical Inference of
Geological Fault Populations and Patterns

Dr. Ing. Thesis

Department of Mathematical Sciences
Norwegian University of Sciences and Technology
2000






Preface

This thesis is submitted in partial fulfillment of the requirements for the degree “Doktor
Ingenigr” (Dr.Ing.) at the Norwegian University of Science and Technology (NTNU).
The work is financed by a scholarship from VISTA, a research corporation between The
Norwegian Academy of Science and Letters and Den norske stats oljeselskap a.s. (Statoil).

[ first of all thank my supervisor Henning Omre at the Department of Mathematical Sci-
ences for all guidance and support. I also thank my cosupervisor Chris Townsend at Statoil
R&D for helpful advises on the geological aspects of my research and for providing data. I
thank my coauthors Patience Cowie and Nancye Dawers for a fruitful collaboration. I am
especially grateful to Patience Cowie for inviting me to stay six months at the Department
of Geology and Geophysics, the University of Edinburgh, UK, during the academic year
1998/99, and would like to thank all my colleagues during my stay in Scotland for making
this winter memorable. I thank Noelle Odling at Nansen Environmental and Remote Sens-
ing Center for permission to use data from Hornelen, western Norway. A special thanks
to the Department of Mathematical Sciences at NTNU, in particular my colleagues in
the statistics group and also the administrative staff, for providing a stimulating working
environment. The warmest thanks goes to Jan Terje for all love and support.

Trondheim, May 2000

Hilde Grude Borgos






Introduction

The content of this thesis is listed below. A background for the thesis is presented, giving
an introduction to the concepts of faults, fault analysis and modeling to readers not familiar
with this subject. A summary of the thesis is also provided.

Thesis Content

The thesis consists of the following units:

Part I: Model choice for fault size distributions
Report.
Part II: Sampling algorithm for estimating Bayes factor
Report.
Part III: Practicalities of extrapolating 1D fault and fracture size-

frequency distributions to higher dimensional samples
With Patience A. Cowie and Nancye H. Dawers.
Paper to appear in Journal of Geophysical Research - Solid Earth.

Part TV: Stochastic model for fault geometry conditioned to seismic data
and well observations
Report.

Part V: Partitioning of a line segment
Report.

Appendix A: Model choice for fault distribution
With Henning Omre.
Abstract; Conference: Modelling Permeable Rocks, Cambridge, UK,
March 1998.

Appendix B: Stochastic simulation of fault patterns conditioned on seismic
data and well data
Extended abstract; Conference: EAGE/SPE international symposium
on petroleum geostatistics, Toulouse, France, April 1999.

Appendix C: Uncertainty in fault geometries
With Henning Omre.
Paper to appear in Proceedings of the 6th International Geostatistics
Congress, Cape Town, South Africa, April 2000.



The units can be read independently of each other. It is however recommended to read
Part I, IT and III, which constitute the main part of the thesis, in this respective order. Part
IV is an independent part not related to the previous units. Part V is a short note. Part
IIT is written for a geophysical audience. The remaining parts are written for a statistical
audience, but can also be read by people with an interest in quantitative geology. The
appendices are abstracts and papers based on Part I and IV.

Thesis Background

The brittle deformation features in the Earth’s upper crust are generally referred to as
fractures. Fractures on which there has been significant shear displacement of rock are
denoted faults. Fractures and faults are one of the dominating structures of the Earth’s
geology, as a large amount of the Earth’s rock masses are fractured. Fractures and faults
have a mechanical origin, and are the results of stress release in rock acted upon by tectonic
forces, hydrostatic forces and gravity. The extent of fractures and faults can range from
millimeters to thousands of kilometers. Examples of well known faults are the San Andreas
fault in California and the faults in the East African rift valley. These are large scale faults
and result from movements of the tectonic plates of the Earth’s crust, see for instance
Monroe and Wicander (1994). The impact of fractures at smaller scales was experienced
during construction of the Romeriksporten tunnel on the railroad between Oslo, Norway,
and the new international airport at Gardermoen. The building of the tunnel led to
leakage into the tunnel of groundwater and surface water through the fracture network.
The fact that Puttjern, a small, scenic lake in a recreation area, was heavily drained gave
the problems great publicity.

In this work the focus is on faults, and the main issue is statistical analysis and stochastic
modeling of faults and fault patterns in petroleum reservoirs. A brief introduction to
geological faults is given below, presenting the terminology for faults used throughout this
thesis. For a more thorough introduction to fractures and faults, and the properties of
these geological structures, see for example Ramsay and Huber (1987) and Hatcher (1995).
Motivations behind analysis and modeling of faults are presented, and a short summary of
previous work on these topics is given.

Geological faults

When faulting occurs, movement of rock takes place along a surface, which is often steeply
inclined, creating a discontinuity in the lithology referred to as the fault surface, see Fig-
ure 1:
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Figure 1: (a) Illustration of a fault network. Fault traces are observed on the surface on top.
(b) Vertical cross section through a fault. Only rock inside a bounded volume is deformed or
displaced.

Fault surface: A discontinuity in the rock, where blocks of rock on either side of the
surface are displaced relative to each other. In general a fault surface is non-planar,
as faults tend to have a rough surface, which in some cases can also be curved.

Fault plane: The plane in which the fault surface is embedded. For the purpose of math-
ematical fault modeling, a curved, rough fault surface can be approximately repre-
sented by a planar surface.

Figure 1 shows a network of fault surfaces, where blocks of rock inbetween are displaced
and deformed due to faulting. The fault network can be interpreted as a collection of
three dimensional single faults of finite extension. Each fault has a fault surface of limited
extent where displacement of rock has occured along the fault surface. In addition, rock
within an associated finite volume surrounding the fault surface has been moved relative
to its original position and a continuous deformation of the blocks of rock has taken place.
Generally the movement and deformation of rock are largest close to the center of the
fault, defined as the center of the fault surface, and decreases continuously to zero in all
directions away from the center, see Figure 1b.

Fault volume: Three dimensional volume of displaced and deformed rock.

Faults can be classified into three main groups: normal faults, reverse faults and strike-slip
faults, which are illustrated in Figure 2a—c. A number of quantities can be used to describe
a fault. Some of these are listed below, and are illustrated in Figure 2a for normal faults.
The orientation of a fault is characterized by two quantities denoted strike and dip:

Strike direction: Orientation of intersection line between a fault plane and a horizontal
plane.

Dip: Angle between a horizontal plane and a fault plane, measured perpendicular to the
strike direction.
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Dip direction: Orientation of a line within the fault plane oriented normal to the strike
direction. The direction is taken towards increasing surface depth.

Normal faults and reverse faults are referred to as dip-slip faults, as the displacement of
rock is parallel to the direction of the dip, while for strike-slip faults the displacement is
in the direction of the strike. If rock is displaced both in the strike and dip direction, the
fault is called an oblique-slip fault, see Figure 2d. Rock above the fault surface of a normal
fault is denoted the hanging wall, and is displaced downwards relative to the rock below
the fault surface, referred to as the foot wall, as illustrated in Figure 2a.

In geophysical literature, the term size of a fault is used both for the displacement, mea-
suring the magnitude of movement of rock, and the volumetric extent of the fault. The
displacement of a fault varies along the fault surface, and is defined as follows:

Displacement: The distance between two points on opposite sides of the fault surface
that was infinitely close prior to faulting, measured in the fault plane.

Alternative quantities for representing the displacement exist:

Throw: Vertical component of the displacement.

Heave: Horizontal component of the displacement.

The term offset is also commonly used, although somewhat loosely, to describe displace-
ment both quantitatively and qualitatively. In Part IV of this thesis, the term offset is
used to describe the displacement observed when a fault plane intersects and creates a
discontinuity in a seismic horizon.

In Part T of this thesis faults are represented as three dimensional objects embedded in
a three dimensional space. The same nomenclature is used as in Walsh and Watterson
(1988), where the extent of the fault surface is represented by:

Width: Maximum horizontal extent of the fault volume in the strike direction.

Length: Maximum extent of the fault volume in the dip direction.

When a three dimensional fault is observed in two dimensions, the fault surface appears
as a single line, denoted a fault trace. A pattern of fault traces on a horizontal surface is
illustrated in Figure 1a.
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Figure 2: (a) Normal fault, (b) reverse fault, (c) strike-slip fault and (d) oblique-slip fault. The
colored regions illustrate how a bed in a layered rock is offset by the fault. In figure (a) D is the
displacement, T" is the throw and H is the heave of the fault.



Fault trace: Line of intersection between a fault surface and an intersecting, two dimen-
sional area of observations.

The two dimensional area of observations can for example be an outcrop surface or a
seismic horizon. Parts IIT and IV of this thesis focus on fault traces in two dimensions,
and in these papers the term length is used for the horizontal extent of a fault trace.

The definitions above apply to single faults. The following terms are used for the overall
set, of faults in the fault network, as illustrated in Figure 1a:

Fault population: Set of faults, where each fault is represented through displacement,
strike, dip, width, length, etc.

Fault pattern: Spatial arrangement of a fault population.

Faults may also interact, and link up to form fault structures or arrays of faults. One type
of fault array is en echelon faults, see Figure 3, which are in focus in Part III of this thesis.

En echelon faults: Structure of short, unconnected, overlapping fault segments with sub-
parallel strikes.

Figure 3: En echelon faults.

Fault analysis and modeling

There are several motives for the analysis and modeling of faults and fault patterns. The
geologists improve their understanding of the geological nature of faults and the process
of fault propagation, while the engineers use fault analysis and modeling as an integrated
part in reservoir characterization. The latter is the focus of this study.
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Analysis of fault populations found in literature can in general be divided into three cat-
egories: the statistical analysis of the distribution of fault size, represented as maximum
displacement D or fault width W; the analysis of the relationship between the two quan-
tities D and W; and the analysis of the spatial arrangement of faults. Cowie (1998) gives
an overview with references on these topics. Over the last decades, fault and fracture
analysis has mainly been performed under the assumption of a fractal nature of faulting,
see King (1983), involving fractal distributions and fractal scaling relationships. Fractal
distributions are also termed power law distributions.

In the petroleum industry, production forecasts are based on reservoir characterization.
Knowledge about fractures and faults are of great importance in the modeling of petroleum
reservoirs, as they have influence on the flow properties of the rock and compartmental-
ization of the reservoir, and thus on the oil and gas recovery, see for instance Omre et al.
(1994), Yielding et al. (1997), Jones et al. (1998) and Manzocchi et al. (1999). Open frac-
tures constitute channels for fluid flow, while sealing fractures or faults can act as barriers
to flow. The overall flow in open fractures depends on the connectivity of the fracture
network, which again depends on the fracture intensity and on the distribution of fracture
sizes. Faults can disconnect layers of rock, influencing the connectivity of the hydrocarbon
bearing lithologies, and can give rise to oil and gas traps.

The presence of faults is crucial in the modeling of groundwater flow. For instance, flow
properties of the groundwater in fractured and faulted rocks are of concern when planning
radioactive waste deposits. Analysis of faults and fault patterns also has a long tradition in
the mining industry. Furthermore, mapping of faults is of importance in the construction
of infrastructure, for example in the building of roads, bridges, tunnels, dams, etc.

Although faults are geological structures embedded in three dimensions, observations of
faults are usually limited to only one or two dimensions, and exact three dimensional imag-
ing of sub-surface faults is in general not obtainable. Faults at microscopic scales can be
observed in core samples and bore holes, giving accurate observations within a strictly lim-
ited volume. Faults at macroscopic scales can be observed in one or two dimensions in wells,
coal mines, outcrops or through seismic surveys. Interpretation of seismic observations can
also give indications of the three dimensional pattern of faults at large scales. Some well
observations are typically available for petroleum reservoirs, but the major source of in-
formation comes from seismic data. However, only faults of displacement above 10 — 30m
are easily resolved from the seismic data, while the typically greater number of sub-seismic
faults are unobservable.

Fault size distribution and fault numbers

Fault size distributions are the topic of Part I and Part III of this thesis. Fault sizes,
represented as either maximum displacement or width, are frequently assumed to follow a

vii



power law, or fractal, distribution. This assumption is supported by numerous field studies,
see for instance JSG (1996, Vol. 18). According to this power law, a fault population should
satisfy

P(X > ) = const x 77, (1)

where X is the fault size and 3 > 0 is denoted the power law exponent. The probability
(1) can be estimated by the relative number P(X > x) = N, /Nr, where N, is the number
of faults larger than x and Nr is the total number of observations. Statistical analysis of
fault size distributions is then concentrated on estimating the parameter (3. Inference is
frequently based on the expression

log N, = log Ny + log P(X > 2) = & — (logz,

which is often evaluated by visual inspection. A least square linear regression is performed
on log-log scale using the sorted observations z) < z@p) < -+ < x(n,) as explanatory
variables and Np, Ny —1,...,2,1 as response variables. This gives an estimator for (3,
however with mean and variance unknown. Alternative estimators, for example maximum
likelihood estimators, are discussed by Pickering et al. (1995) and Clark et al. (1999).
Estimation techniques accounting for sampling biases are also suggested, see Walsh et al.
(1994) and Pickering et al. (1996).

Although the belief in a power law distribution of fault and fracture size has proved per-
sistent, there are studies where other distributions are found to be more adequate, for
example an exponential distribution, see Cowie et al. (1994), Spryopoulos et al. (1999) and
Ackermann et al. (1999), and a log-normal distribution, see Odling (1997).

In reservoir modeling the aim of the statistical fault analysis is to predict the number of
faults of different sizes below seismic resolution. By assuming faults, including both seismic
and sub-seismic scales, having a common size distribution, the expected proportion of large
faults can be determined and the overall number of faults can be estimated. Modeling of
sub-seismic size distributions is based on extrapolation of the size distribution observed at
seismic scales, possibly supported by well observations, see Badley et al. (1990), Childs et al.
(1990), Gauthier and Lake (1993). Furthermore, extrapolation of the distribution from the
dimension of observations to the three dimensional reservoir is studied, see Heffer and
Bevan (1990), Marrett and Allmendinger (1991), Piggott (1997) and Berkowitz and Adler
(1998). When the results of an analysis of faults is used for extrapolation into unobserved
scales or dimensions, it is of great importance that the extrapolation is performed under
an appropriate model. If the model does not reflect the true distribution of fault sizes,
the number of faults estimated through extrapolation is unreliable. The uncertainty in the
estimated number of faults contains uncertainty both in the model assumption and in the
estimates of the corresponding model parameters.
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Fault patterns

Modeling of fault and fracture networks can be made either by modeling of the physical pro-
cess of faulting or by descriptive modeling of existing fault patterns. Numerical modeling,
see for instance Cowie et al. (1993) and Malthe-Sgrenssen et al. (1998), and experimental
modeling, see for example Sornette et al. (1993), McClay (1996) and Spryopoulos et al.
(1999), are applied to study the geological process of fault growth. These techniques are
thus aimed at gaining further knowledge about the physical processes that control faulting.
Descriptive modeling, providing a static representation of a fault pattern, is made through
spatial stochastic modeling of faults.

Stochastic modeling of the fault pattern of a petroleum reservoir can be used as an inte-
grated part in stochastic reservoir characterization. The uncertainties in the production
forecast of a reservoir can be studied through repeated sampling of the reservoir proper-
ties, followed by running a fluid flow simulator for each realization, see Lia et al. (1997).
Faults above seismic resolution can be interpreted from data, while stochastic models are
mainly created aiming at modeling sub-seismic faults and fractures, see for example Chiles
(1988), Brand and Haldorsen (1988), Gauthier and Lake (1993) and Munthe et al. (1993).
The results of a fault analysis is often used as input to the stochastic modeling, where
conditioning on data is performed in the sense that spatial fault intensity and distributions
of fault width, displacement, strike, dip, etc. are based on analysis of available data.

Thesis Summary

When fault size distributions are extrapolated beyond the scale and dimension of observa-
tions, the choice of model becomes very important. Model choice for fault size distribution
is frequently based on visual interpretations of the empirical cumulative distribution func-
tions. Part I of this thesis presents a statistical approach to model choice. To the knowledge
of the author, statistical tools for model choice have previously not been used for fault size
distributions. Fault size is represented by either maximum displacement or fault width,
and Part I compares the frequently used power law distribution with the exponential dis-
tribution. The model choice problem is defined in a Bayesian framework and Bayes factor
is used as a criterion for model choice, see Kass and Raftery (1995). The relationship
between the size distribution in three dimensions and the corresponding distribution in the
dimension of observations is considered, since observations from the lower dimension are
used to choose a model for the fault population in three dimensions. Furthermore, sampling
errors like missing observations, measurement errors, censoring, bias, etc. are accounted
for. Prior distributions are defined for the parameters of the competing models and the
number of faults, while sampling errors are modeled by the likelihood function. The paper
presents a sensitivity analysis for a seismic dataset from the Gullfaks field in the North
Sea, exploring the influence of the prior and likelihood parameters on the conclusion of the
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model choice. Well observations from the same field are used to calibrate the prior mean
number of faults. An early version of this work was presented at the conference Modelling
Permeable Rocks, Cambridge, UK, March 1998, see Appendix A.

Bayes factors are in general not analytically tractable, and this is also the case in the model
choice problem presented in Part I. Markov chain Monte Carlo (McMC) sampling tech-
niques can be used to estimate Bayes factor, see Han and Carlin (2000) for an overview,
and Part II of the thesis presents an McMC algorithm constructed for the type of problem
presented in Part I. Under both of the competing models, the initially high dimensional
posterior probability density functions (pdf) can be reduced to pdfs of low dimensional
variables through integration of analytically tractable components of the unknown vari-
ables. The target distribution of the McMC algorithm is a joint distribution of a model
indicator and parameters under both competing models, and Bayes factor and the model
parameters can be estimated based on samples from the algorithm. The joint pdf is defined
through the introduction of pseudopriors, see Carlin and Chib (1995). There is a freedom
of choice when defining the pseudopriors, and this freedom is explored to find optimal
choices with respect to uncertainty in the estimation of Bayes factor. The performance of
the McMC algorithm is studied for the case of no sampling errors, in which case Bayes
factor is analytically tractable and the estimates can be compared with the true values.

Published results on the relationship between fault size distributions in different dimensions
are all based on the assumption of independently, uniformly distributed fault positions,
and are in general based on power law size distributions. However, natural datasets are
not always found to obey the theoretically obtained relationship. Part III of this thesis
discusses possible sources of deviations, presenting analytical considerations of problems
encountered by the geophysicists. The paper focuses on the influence of spatial clustering
of faults and interacting faults linked into fault arrays. Furthermore, the paper illustrates
possible consequences if extrapolation of fault size distributions into higher dimensions are
performed based on a wrong assumption of a power law distribution. The paper is written
for a geophysical audience and the terminology is mainly chosen according to geophysical
tradition, hence deviating somewhat from the statistical terminology used elsewhere in the
thesis. The collaborative work of Part III was initiated while I was visiting the Department
of Geology and Geophysics, the University of Edinburgh, UK.

Part TV presents a spatial stochastic model for fault patterns at seismic scales. Faults at
this scale are traditionally mapped by human interpreters, while recently algorithms for
tracking faults have been developed, for example the coherence cube presented by Bahorich
and Farmer (1995). To the knowledge of the author, Part IV of this thesis presents for the
first time a stochastic approach to fault detection at seismic scales. The model is defined in
a Bayesian framework, and includes conditioning to three dimensional seismic data and well
observations. Through stochastic modeling, assessment of uncertainty in fault patterns at
seismic scales can be obtained. The prior distribution is used to model a faulted horizon,
including fault traces and displacement profiles along the traces, according to geological



expectations. The faulted horizon is represented by a hexagonal grid image, where the prior
pdf of fault traces is based on the work by Tjelmeland and Besag (1998). The relationship
between the faulted horizon, three dimensional seismic data and well observations is defined
through the likelihood function. The likelihood function is based on a Gaussian model for
reflection coefficients of a non-faulted reservoir, where reflection coefficients are linked with
seismic data through a linear convolution model, see Eide (1999). Based on this model, the
corresponding distribution of the observations of a faulted reservoir is obtained. An McMC
algorithm is constructed to sample from the posterior distribution of fault patterns, where
the implementation of the algorithm is a further development of the implementation used
by Tjelmeland and Besag (1998). The model and the algorithm works well for a synthetic
dataset. A real seismic dataset is also considered, but the results are not found to be
satisfactory. Problems with applying the model and the algorithm to these real data are
discussed. This work was presented at the conference EAGE/SPE international symposium
on petroleum geostatistics, Toulouse, France, April 1999 and at the 6th International
Geostatistics Congress, Cape Town, South Africa, April 2000, see Appendix B and C.

Part V originates from a discussion between my supervisor Henning Omre and Dr. John
Walsh, the Fault Analysis Group, University of Liverpool, UK. The discussion concerned
different schemes for partitioning of a line segment, and the corresponding length distribu-
tions of the resulting shorter segments. Some possible partitioning schemes are considered
in Part V, and the analytically obtained length distributions of the shorter segments are
discussed. The topic of Part V is related to analysis and modeling of faults or fractures
observed in one dimension, where fault positions constitute partitioning points along a line
and fault separation lengths are represented by the shorter segments, see Gillespie et al.
(1993).
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Model choice for fault size distribution

Hilde G. Borgos

Abstract

Information about the number of faults and the fault size distribution is an im-
portant factor in reservoir modeling and fluid flow simulations. Inference is often
made based on an assumption of a negative power law distribution of maximum
displacements or fault widths. In this work it is shown how this assumption can
be statistically validated, by comparing the negative power law distribution with
an exponential distribution using Bayes factor. Inference about three dimensional
fault size distributions are often based on observations obtained in lower dimension.
Thus the relationship between the distribution in three and two dimensions must be
known, for both the negative power law and the exponential distribution. Further-
more, observation errors, like bias, censoring and missing observations, are accounted
for in the model choice problem.

1 Introduction

When tectonic forces, forces from overburdens, hydrostatic pressure etc. act on a subsurface
rock, stress fields arise. Some of the stress can be released through the formation of faults
and subsequent displacement of rock. A fracture in the rock forms, and if shear forces are
present the rock in a volume on both sides of the fracture is displaced, creating a fault. See
for instance Hatcher (1995) for an introduction to faults. The fault geometry is defined by
the finite extension of the faulted volume. The displacement is typically at its maximum
near the center of the faulted volume, descending to zero at the boundaries of the fault.
Figure 1 gives a sketch of a vertical cross section through a fault, where the lines illustrate
the displacement of rock.

When a stress field is present in a rock, a number of faults can be produced, resulting in
a pattern of faults. The number of faults and the location, geometry and displacement of
each fault in the fault pattern can have great influence on fluid flow in a reservoir. Faults
can act as either channels or barriers to fluid flow, and compartmentalizing of reservoirs
can be related to the fault pattern, see for example Yielding et al. (1997) and Jones et al.
(1998). Thus the effect of faults should be taken into account in reservoir modeling and



Figure 1: Vertical cross section through a fault. To the left is an illustration of the rock prior to
faulting, with the fault geometry indicated. The right figure shows the rock after faulting. Only
rock inside a bounded volume is displaced.

fluid flow simulations. However, the fault pattern of a subsurface reservoir can not be
observed exactly, but inference can be made based on available observations. For example,
it is of interest to predict the number of faults in a reservoir and their size distribution.

Observations of faults often span only a few size scales. Seismic data include faults on a
large scale, while core samples provide observations on a small scale and within a limited
area. Extrapolation of fault size distributions obtained at seismic scales, combined with
core observations if available, can be used to predict the distribution of fault sizes and
the number of faults below seismic resolution, see for instance Badley et al. (1990), Childs
et al. (1990), Walsh et al. (1991, 1994), Sassi et al. (1992), Gauthier and Lake (1993).
Several uncertainties are related to the extrapolation of fault distributions, as discussed in
the cited papers. For example, errors in the fault sampling may lead to great uncertainties
in estimated model parameters. Furthermore, changes in geological properties beyond the
scales of observations can not be predicted based on the observations, thus extrapolation
of the estimated distribution can lead to unreliable results.

In this work the focus is on the size distribution of faults, where fault size is measured as
either maximum displacement or width. The width represents the maximum horizontal
extent of the fault. In order to make inference about the overall fault population based on
available observations, an appropriate model should be chosen to represent the distribution
of fault size, and the model parameters should be estimated. Model choice is important for
predictive purposes. However, the model choice can also influence on the understanding of
geological aspects related to the process of faulting.

Faults are objects embedded in a three dimensional space, while observations are often
obtained in a lower dimension. Two dimensional observations are obtained from seismic
maps or from surface outcrops of the rock, while one dimensional observations consist of
measurements along a line. The size distribution observed in a lower dimension does not
necessarily equal the original distribution, since large faults have a greater probability than



small ones of being observed in lower dimensions and may thus be over-represented, see
for example Heffer and Bevan (1990), Marrett and Allmendinger (1991). Hence, inference
about the size distribution of faults in three dimensions can only be made if the relationship
to the observations in lower dimensions is known. Another problem encountered when
investigating the fault size distribution is observation errors, which should also be accounted
for when choosing a proper model for the distribution.

If a fault size distribution is defined in three dimensions, corresponding unique distribu-
tions exist both in intersecting two dimensional planes and one dimensional lines. Under
reasonable assumptions on fault geometry and spatial distribution of faults, these dis-
tributions can be obtained by simulations or forward calculations. Examples of forward
calculations are found in the literature, mainly in the case of negative power law, or frac-
tal, distributions of fault size. Heffer and Bevan (1990), Piggott (1997) and Berkowitz and
Adler (1998) studied relationships between fault or fracture populations in three and two
dimensions, assuming faults in three dimensions are shaped as circular discs. Marrett and
Allmendinger (1991) presented a forward calculation performed without defining a specific
model for the fault geometry, but using a general relationship A oc W2 where A is the
surface area of the fault and W the fault width. A basic assumption in all the cited papers
is that fault positions are independently, uniformly distributed in space.

Consider a hypothesis testing problem concerning fault size distributions in three dimen-
sions. Inference can be made based on distributions in lower dimensions derived by forward
calculations, and observations obtained in two or one dimensions can be used to decide
which of two proposed distributions are most likely to describe the fault sizes in three
dimensions. The conclusion only tells which of the two models is favored based on the
observations, while there is still a possibility that none of the two distributions is the
right one. For example, for a size distribution obtained in lower dimensions, the initial
distribution in three dimensions need not be unique.

To the knowledge of the author, this work presents for the first time a statistical approach to
dealing with ambiguities related to choosing a proper fault size distribution. Two possible
distributions of maximum displacement of faults in three dimensions are considered: a
fractal distribution and an exponential distribution. Corresponding distributions of fault
width are obtained, and distributions of fault sizes observed in lower dimensions are derived
under both models. A model choice problem is defined, comparing the two possible models
for observations gathered in two dimensions. The uncertainty in the model choice is closely
related to sampling errors, which are accounted for in the stochastic model. The conclusion
of the model choice problem is based on Bayes factor, see Kass and Raftery (1995) for an
overview. Bayes factor can not be analytically obtained for the stochastic model presented
in this work, but is estimated using the Markov chain Monte Carlo (McMC) algorithm
presented by Borgos (2000). Only if all observation errors are ignored can Bayes factor be
calculated analytically.

The report is organized as follows. In Section 2 the fault model used in this work is



presented. In Section 3 it is described how the distribution of fault size in lower dimensions
can be derived from the distribution in three dimensions. This procedure is applied in
Section 4, for both the fractal and the exponential model. Fault observations are discussed
in Section 5, and the distribution of fault sizes and the number of faults, conditioned to the
observations, is defined in a Bayesian framework. In Section 6 it is described how Bayes
factor can be used to compare the two suggested models, and examples are provided in
Sections 7 and 8.

2 Fault Representation

A single fault is a three dimensional object, and can be described through a number of
fault characteristics. Throughout this work, fault geometry denotes the shape and extent
of the faulted volume. Figure 1 shows a vertical cross section through a fault. A fault
plane is a plane through the center of a fault, and the intersection of the faulted volume
and the fault plane is called the fault surface. The fault surface forms a discontinuity in the
rock, where rock on one side of the surface is displaced relative to the rock on the opposite
side. Away from the fault surface, rock within the faulted volume is still continuous, and
is only displaced relative to its original position. Consider two points infinitely close prior
to faulting, but located on opposite sides of the fault surface. The distance between the
two points after faulting, measured in the fault plane, is denoted the displacement. The
displacement is typically at its maximum near the center of the fault surface, decreasing to
zero along the fault surface and within the displaced volume (Walsh and Watterson, 1987).
The angle between the fault plane and the horizontal plane is called the dip of the fault,
and the direction of the line of intersection between the fault plane and the horizontal
plane is commonly known as the strike. The strike is measured as the angle between the
line and a reference direction, for example north.

In this study an individual fault is represented by its location, orientation, the fault geom-
etry and the displacement within the faulted volume. The location of a fault is defined at
its center point. To enable fault modeling, the complexity of fault geometries observed in
nature is simplified, and the geometry is represented by a parametric model. The param-
eters include the volumetric extent and orientation of the fault. A simplified parametric
model is also used for the displacement within the faulted volume.

2.1 Fault model

A fault pattern can be modeled as a marked point process where the points are the fault
locations and the marks are sets of fault characteristics, see Chiles (1988), Munthe et al.
(1993), Munthe et al. (1994), Stoyan and Stoyan (1994) and Stoyan et al. (1995). The
marked point process is given as follows:



Location The location of a fault is defined as its center point, and is represented by the
stochastic variable £€. In three dimensions the location is given by &€ = (&1, &2, &3).

Geometry The fault geometry G = G(¥) is a parametric model representing the shape
and extent of the faulted volume.

Parameterization The fault geometry is parameterized by a set of stochastic variables
denoted W. The parameterization includes the extents in three orthogonal directions:
the horizontal extent W, the extent L in the dip direction and the extent R perpen-
dicular to the fault plane. The angles of dip © and the strike ® is also included, thus
U=(WL,R,0O,7).

Maximum displacement The maximum displacement of the fault, obtained at the cen-
ter point £, is given by a stochastic variable D.

Displacement function For a fault with maximum displacement D = d, the displace-
ment at any point v within the faulted volume is given by the displacement function
d(u;d). The function should satisfy the following conditions:

(i) o(y;

d
(i) O(u;d)
(i) o(u;d

d, u=E§
d, wu inside G(¥).
0, wu at the boundary or outside of G(¥).

Fault representation One fault can now be represented as a stochastic variable M, given
as M = (&£,%,D,G(V),d(-)), constituting a marked point in the marked point pro-
cess.

In literature, the term size is used to represent both the width of a fault and the maximum
displacement. In the first case size is a measure of the horizontal extent of the fault. In
the latter case the maximum relative movement on opposite sides of the fault surface is
measured. Fault width and maximum displacement are related, see Watterson (1986), and
throughout this work the word size is used as a general expression for either quantity.

2.2 Fault geometry

The fault geometry G(W) in three dimensions is represented by an ellipsoid (Walsh and
Watterson, 1988, 1989), as illustrated in Figure 2a. A vertical cross section of the fault
ellipsoid is shown in Figure 2b, where the intersection of the ellipsoid with a plane results
in an ellipse. The ellipsoid is parameterized by the axis lengths W/2, L/2 and R/2 respec-
tively, measured from the center point to the boundary of the ellipsoid, and by the dip ©
and strike ®, see Figure 2. The strike is of no concern throughout this work, and all faults



(a) (b)

Figure 2: (a) Fault ellipsoid in three dimensions. The length of the horizontal major axis is w/2,
measured from the center point to the ellipsoid boundary. The lengths of the two other axes are
/2 and r/2, and are illustrated in figure (b), which shows a vertical cross section of the fault
ellipsoid perpendicular to fault strike. The dip of the fault is # and the vertical extent is h.

are assigned equal strike & = 0 without loss of generality. For a fault located at the origin,
the geometry G(1) is then the ellipsoid described by the set of points in R*:

r?  (ysin® — zcos 0)? (y0089+zsin9)2_1}

G)=G(w,l,r0,0) = {(xayaz);ﬁ‘i‘ 12 * r? 4

When faulting occurs, only the volume inside of the ellipsoid is deformed by the fault, while
the volume outside the ellipsoid is unaltered. The displacement inside the fault ellipsoid is
given by the maximum displacement D and the displacement function 4(-). Deterministic
relationships between D, W, L and R are assumed:

W= (De)Y", L=We', R=cs, (1)

where ¢y, ¢ and ¢3 and 7 are constants, see Watterson (1986), Walsh and Watterson (1987,
1988, 1989), Cowie and Scholz (1992a, b), Gauthier and Lake (1993), Dawers et al. (1993).
Several case studies have found values of the parameter 7 in the range [1, 2], and although
the relationship W oc DY7 is widely accepted, there has been some disagreement about
the actual value of 7. See Cowie (1998) for a discussion and for further references.

The vertical extent, or height, of the ellipsoid is given by a function A(-) depending on the
lengths of the axes and the dip, and is illustrated in Figure 2b. Since there is a deterministic
relationship between D, W, L and R, the height can be expressed as a function of either
of these, for example

h(w,0) = ((wcgl)?sinQH—1—03(30529)1/2 ~ we, ' sinf (2)
h(d,0) = (((dcl)l/Tcgl)Qsin29+0300529)1/2 ~ (dcy)Y ey sind. (3)

The approximations of the height function correspond to the height of the axis of the fault
ellipsoid in the dip direction. The length of the ellipsoid in the dip direction is L and the
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dip is ©, resulting in a vertical extent of Lsin®. Combining this with the expressions
in (1) gives the approximations in Expressions (2) and (3). The approximations of the
heights are used in later sections due to their simple analytical forms. A discussion of the
approximations and the error terms is given in Appendix A.

Consider a fault of width W = w, measured through the center of the ellipsoid. At a
vertical distance uh(w,#)/2 from the center, where u € [—1,1], the horizontal extent of
the ellipsoid is

w'(u; w) = wv1 —u? (4)

see Figure 3. Thus, if a horizontal plane intersects a fault of width W = w at a vertical
distance uh(w, #)/2 from the center of the fault, the width of the fault ellipse in this plane
is w'(u; w).

h(w,0)/2, /~ N |} uh(w,0)/2

~_

w

Figure 3: Vertical projection of the fault ellipsoid parallel to fault strike. At a vertical distance
uh(w,0)/2 from the center of the fault ellipsoid, the horizontal extent is given by w'(u;w) in
Expression (4). At the point p the displacement is given by d(u;d) in Expression (5).

2.3 Displacement function

The displacement function should satisfy the conditions (i)-(iii) given in the beginning of
Section 2. In this work, a general displacement function of the form

§(u;d) = (1 — |ul)d, -1<u<1, v>0, (5)

is used. The parameter 7y controls the shape of the displacement function along the axis in
the dip direction, and some examples are illustrated in Figure 4. Throughout this work, = is
assumed to be a constant. See Walsh and Watterson (1987), Barnett et al. (1987), Dawers
et al. (1993), and Dawers and Anders (1995) for discussions on displacement functions.
If a horizontal plane intersects a fault with maximum displacement D = d at a vertical
distance uh(d, 6)/2 from the center of the fault, see Figure 3, the maximum displacement
of the fault in this plane is §(u; d).
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Figure 4: The displacement function d(u;d) in Expression (5), with different values of ~.

3 Relationship Between Fault Distributions in One,
Two and Three Dimensions

If a stochastic model for the fault geometry is well specified and a distribution of fault size
in three dimensions is defined, the distribution in two dimensions can be found by forward
calculations. The calculations may lead to expressions that are not analytically tractable,
in which case numerical approximations can be used.

Consider faults spatially distributed within a three dimensional box B of vertical extent 7},
and horizontal extent Tj,; X Tyo. The box is given by the set B = [0,T,] x [0, Th1] X [0, Tha]-
If a two dimensional horizontal plane intersects B at an arbitrary depth ¢ € [0,7,], a
number of faults inside B are intersected by the plane. The geometry of the intersection
between the plane and an individual fault is a two dimensional ellipse, and within this
intersection area the displacement is at a maximum at the center point of the ellipse. The
stochastic variable X is now used as a common term for the size of a fault measured in
three dimensions, being either maximum displacement or width. The corresponding size
measured in two dimensions is denoted Y. The probability density functions (pdf) of
the variables are denoted f(x) and f(y) respectively. The pdf f(z) in three dimensions
is assumed to be known, and the aim is to derive the corresponding pdf f(y) in two
dimensions.

Large faults or faults near the boundaries of the box B may intersect the edges of B and
are thus not completely contained in the box. This is not accounted for in the calculations
below. The probability of a horizontal plane intersecting a fault depends on the vertical
thickness T,. The actual value of T}, is of no interest in the calculations, and for simplicity
T, is assumed to exceed the vertical fault extents.

The variable Y is defined only for faults intersected by the plane, and an indicator variable
I5 of this event is introduced. The discrete stochastic variable I, is assigned the value 1 if
a fault is intersected by the two dimensional plane, and thus is observed, or 0 otherwise:

I — { 1, if the fault is intersected by the horizontal plane
y =
0, else.



The probability of intersection is proportional to the vertical extent of the fault, see Fig-
ure 2b, thus larger faults have greater probability of being intersected by the plane. The
vertical extent, and hence also the probability of an intersection, are independent of the
fault strike. The fault height (X, ©) is given in Expressions (2) and (3), and the proba-
bility of the fault intersecting the plane, conditioned on the size X = x and the dip © = 6,
is

Prob(l, = 1|X = 2,0 = 0) = f,(1|z,0) =T, 'h(x,0).

The probability of the two dimensional plane intersecting an arbitrary fault of unknown
size is then found by solving the integral

fe(l) = / fr(lz,0)f(x,0) dx df
= 1,1 [[ ble.0)f(w0) deas = 1, "X 0)). (©)

The pdf of the size X of a fault intersected by the two dimensional plane is not the same
as the original pdf f(z), since the larger faults are over-represented in the two dimensional
sample. The new pdf can be found based on the joint pdf of X and © for an intersected
fault, denoted f(z,6|1), which is given by

f]2(1|33,9)f(33,9) h(l‘,e)f(aj,e)
fe b == =~ Bhx.0)

The fault height is assumed to be on the form h(x,8) = hy(x)hy(#). This is fulfilled by the
approximations in Expressions (2) and (3), where the height is given as h(z, ) = cz®sin 6.
Furthermore, X and © are assumed to be independent, giving f(z,0) = f(x)f(#) and
E[h(X,0)] = E[h(X)]E [h2(©)]. Under these assumptions, the marginal pdf of X of an
intersected fault is found to be

) @O f@0) . h@)f(@)
el = [ s om0 = | o P = Bl ™

which is independent of the dip.

The fault size X represents the maximum displacement D or the horizontal extent W.
The displacement is at its maximum at the center of the fault, and decreases to zero at
the border. The horizontal extent of the ellipsoid is also at its maximum at the center
of the fault, and decreases to zero on the top an bottom of the faulted volume. Thus,
if the horizontal plane intersects the fault at an arbitrary level away from the center, the
observed displacement or horizontal extent at this level are less than D and W respectively.
Thus the stochastic variable Y representing the size of the fault observed in the horizontal
plane, is equal to or less than X. The variable Y is equal to X only if the plane intersects
the fault through its center.



The size Y of a fault observed in an intersecting horizontal plane can be expressed as a
function of the size X in three dimensions and the relative vertical distance U from the
center of the fault to the horizontal plane, see Expressions (4) and (5). Given that a
variable of size X is intersected by the two dimensional plane, the pdf f(y|x,1) is found
by a transformation y = g(u;x), where the variable U has a uniform pdf f(u|z,1). The
unconditional pdf of Y is found by:

f) = fh) = / " Flasylt) do = / " Flyle, 1) f (1) do
~ Bl [ " Fyle, () f(2) d. ®)

The conditioning on I, = 1 in the pdf f(y) is omitted, since the variable Y is defined only
for intersected faults. Thus I = 1 for all faults where the size Y is measured.

The procedure described above can be used to derive the distribution in one dimension,
based on the distribution in two dimensions. Some of the faults in the two dimensional
plane are then intersected by a line across the plane. In one dimension a fault is only
observed as a point on a line, so the fault has no defined width. The size of the fault is
therefore represented by the local displacement at the observed point.

Expression (8) gives the forward relationship from the distribution of fault size in three
to two dimensions. Previous stereological analysis of ellipsoid or disc shaped faults obtain
similar results, and have also focused on the problem of inverting the integral equation (8)
in order to derive f(x) based on a known pdf f(y). See for instance Oakeshott and Edwards
(1992) and further references therein, Piggott (1997) and Berkowitz and Adler (1998). As
pointed out by Oakeshott and Edwards (1992), the inverse problem need not have a unique
solution, but may be under- or over-determined. Furthermore, the inverse problem can only
be solved analytically in special cases, but must in general be solved numerically. Berkowitz
and Adler (1998) present an algorithm for solving the inverse problem for general, non-
parametric, f(x). In the current work, the inverse problem is not explicitly solved. The
forward calculation in Expression (8) is performed under specified parametric models, and
for the distributions f(y) derived in two dimensions at least one solution of the inverse
problem exists: the initially specified pdf f(x). In most of the calculations below the
distribution class from three dimensions is preserved in two dimensions, and there are
reasons to believe that even if there exist other solutions to the inverse problem, the
initial pdf f(x) specified in three dimensions is the most plausible one. The results of
forward calculations presented below also provide a one-to-one correspondence between
the model parameters in two and three dimensions, thus the parameters of the model in
three dimensions can be estimated based on observations from two dimensions.
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4 Fault Size Distributions

The focus of this work is on fault size distributions. The distributions of interest are the
distribution of the displacement D in three, two and one dimensions, and the horizontal
extent W in three and two dimensions. First a distribution of D in three dimensions is
specified. Through the deterministic relationship between D and W given in Expression
(1), the distribution of W in three dimensions can be found based on the distribution of
D. By solving the integral (8) for X = D and X = W, the distributions of D and W in
two and one dimensions can be found. The pdfs of the displacement in three, two and one
dimensions are denoted

fz(d),  f2(d) and fi(d)

respectively, and the pdfs of the horizontal extent, or width, in three and two dimensions
are denoted

f3(w) and fo(w).

Before the fault size distributions are studied, a short discussion on the spatial distribution
of faults is given in Section 4.1. In Section 4.2 the cumulative distribution of fault size
is discussed in general, relating fault size distributions to common graphical presentations
of observed fault sizes. Two possible models for the distributions of fault size in three,
two and one dimensions are presented in Sections 4.3 and 4.4, a fractal model and an
exponential model respectively.

4.1 Spatial distribution of fault locations

Locations of fault centers & are assumed to form a stationary Poisson point process of
constant intensity A(z) = A, see Stoyan and Stoyan (1994), Stoyan et al. (1995). Condi-
tioned on the number of points, n, the center points &,,...,§, located within the box B
are independent uniformly distributed in B. The locations of the fault centers are assumed
to be independent of the marks of all faults, and the marks of different faults are assumed
to be mutually independent. Thus there are no clustering or repulsion of faults, and the
fault size is independent of the fault location. When a two dimensional plane intersects
B at an arbitrary depth, the expected number of faults to be intersected by the plane is
independent of the position ¢t € [0,T,] of the plane. Notice that for a fault with center
point outside of the box B, parts of the fault ellipsoid may still intersect B. Thus also
faults with center points in a volume surrounding B have influence on the number of faults
in B.

If the distance between the center points of two faults is small, the fault ellipsoids will
overlap. In nature, the younger fault may terminate in the older fault, and the resulting
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ellipsoid should be truncated. The marked point process does not take any truncation into
account. This can lead to a slight sampling bias in two dimensions, since the extents of
faults that should be truncated are slightly too large in the specified model.

4.2 Cumulative fault size distribution

Consider the stochastic variable X representing the size of a fault, with pdf f(z). The
function S(z) is defined in the following way:

S(x) = Prob(X > z) = / " Fu) du, ()

hence S(r) = 1 — F(x) where F(z) is the cumulative distribution function of X. If the
number of observed faults is n, with a corresponding set of observations z;, 1 = 1,2,...,n,
an empirical estimate of the function S(x) is given by

n

A 1

S(x) =~ 2 1[z; > ], (10)
where 1[-] is the indicator function. The estimate of S(x) is thus given as the relative
number of faults with size x; equal to or larger than z. Observations of fault sizes are often
presented on a bilogarithmic plot, hereafter referred to as a log-log plot, giving empirical
plots of log S’(x) versus logx. An example of a log-log plot of observed displacements is
shown in Figure 5. Instead of plotting the relative number of faults on log-log scale, the
absolute number is often plotted, thus giving an estimate nS’(x) In some cases the plots
are normalized to give the number of faults per km? in two dimensions or per km in one
dimension.

4.3 Fractal distributions

The term fractal was introduced by Mandelbrot (1983), and an introduction to fractals
is also given by Feder (1988). The distribution of the stochastic variable X, representing
the maximum displacement or width of a fault, is called fractal if it follows a scaling
relationship:

FAz) =M f(z),

where H is the scaling exponent, see Feder (1988). An example of a scaling distribution is
the negative power law distribution

S(z) = Cz™b, 6>0, (11)
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Figure 5: Log-log plot of relative number S (d) of faults with observed displacements larger than
d, plotted at observations points d;, i = 1,...,n.

where C' is a positive constant and S(x) is defined in Expression (9). The parameter 3 is
called the fractal dimension or the power law exponent. Negative power law distributions
are frequently used in geology to model distributions of fault displacements and widths, see
for example Childs et al. (1990), Heffer and Bevan (1990), Walsh et al. (1991), Marrett and
Allmendinger (1992), Gauthier and Lake (1993) and Odling (1997). See also JSG (1996,
Vol. 18).

The function S(z) is often estimated as the relative number of observations larger than
z, S(z), see Expression (10). If X follows the negative power law (11) and is observed
exactly, a plot of S(z) versus x should produce a straight line of slope —3 on a log-log plot.

The relative number S(z) should be bounded above by 1. According to the negative power
law (11) however, as  — 0, the function S(z) increases unlimited: S(z) — oco. Allowing
x = 0, no constant C' can be chosen to satisfy the upper bound condition. Thus it is not
possible to define a negative power law distribution for all X > 0, but a lower limit xy > 0
for X must be chosen. Above this lower bound the distribution of X is fractal, while below
the limit the distribution is left unspecified. Thus the need of a lower bound results in a
model which is not able to reflect the true distribution on all scales. The choice of xy can
be related to the geological properties of the rock, and a possible lower limit is the grain
size of the minerals. In practice, an artificial lower bound is often used, for example the
limit of resolution for a set of observations.

The pdf of a stochastic variable X following the negative power law distribution (11) is of
the form

Bag
f(xaxﬂaﬂ) = Wa x Z Lo, Tg > 07 ﬁ > 07 (12)

which is the pdf of the Pareto distribution (Johnson et al., 1994). The lower limit xy > 0,
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discussed above, ensures that the integral of the pdfis finite. The pdfis plotted in Figure 6a,
while Figure 6b shows a log-log plot of the function S(x), given as

sw=(2), ez (13)
Suppose a lower limit 3 is used in a negative power law distribution of the size of faults
in three dimensions. When the corresponding distribution of fault size in two dimensions
is studied, only faults of size above a lower limit xgy > o3 in two dimensions can be
considered. If a fault observed in two dimensions has a size smaller than z3, it is uncertain
if the size of the fault in three dimensions is smaller or larger than xy3, and thus the
distribution of the fault size in three dimensions is unknown. By the same reasoning a
lower limit x4; in one dimension must be defined, satisfying xq; > x¢s.
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Figure 6: The Pareto distribution with parameters a = 1.0 and 8 = 2.0. Figure (a) shows the
pdf f(z), Expression (12), and figure (b) the function S(x), Expression (13), on log-log scale.

4.3.1 Displacement

The pdf of the displacement in three dimensions is given by

Pados
f3(d) = pEESE d > do3, (14)

which is of the form given in Expression (12), where the lower bound and power law expo-
nent are denoted dyz and (33 respectively. Let D’ denote the displacement obtained in two
dimensions. The procedure described in Section 3 is used, with the approximation of the
height of the fault ellipsoid given in Expression (3). Then, for D' > dy3 the unconditional
pdf of D' is found to be

By —1/7 dgy M7
(Bs — U/r) +1 (d)fs Urt’

fo(d) = 5 (15)
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where 7 is the parameter involved in the displacement function (5). The calculations are
given in Appendix B. As pointed out above, a lower limit dyo > dy3 should be used for
the displacement D’ obtained in two dimensions. A distribution with this lower bound is
derived by conditioning on D' > dy;. The conditional pdf can be found from Expression
(15), without knowing the pdf for D' < dy3. The two parameters 3 and 7 only appear
in the combination 3 — 1/7 in Expression (15) and in the corresponding conditional pdf.
Thus the pdf in two dimensions can be expressed as a two-parameter distributions with
parameters (o = J3 — 1/7 and dys, and is found to be

 Bad

fold) = for(dld 2 doz) = =577,

d > dps. (16)

This pdf is of the form given in Expression (12), and the distribution of the displacement
is fractal also in two dimensions.

The distribution of maximum displacement in one dimension can only be found if the re-
lationship between D and W in two dimensions is known. This relationship is discussed
below, after obtaining the distribution of fault width in two dimensions. Under the assump-
tion that the relationship in three dimensions, Expression (1), also holds in two dimensions,
the distribution in one dimension is found by the same procedure as above. Assuming in-
dependence between fault strike and displacement, the pdf of D in one dimension is found
as

4%
fild) = g;lﬂa d > do1, (17)

where 8; = 53—2/7 and dy; > dpe. A negative power law is obtained also in one dimension.
This result is only valid if g3 > 2/7. If 3 < 2/7, non-tractable expressions arise in the
calculations.

4.3.2 Width

Expression (1) gives the relationship W = (D¢;)"/" between fault width and displacement.
Thus the pdf of W in three dimensions can be found from the pdf (14), by transformation
of D, giving the fractal distribution

u3
3w
f3 (w) = wTHU?{,

where wos = (dosc1)/" is the lower limit of W and ps = 735. Let W’ denote the width
obtained in two dimensions. The procedure described in Section 3, with the approximation
(2) of the fault heights, gives the following pdf of W' for W’ > wj;:

n T(ps+1)/2) m (5 — Dt
fW,(w)_WTW (19)

w Z Wo3, (18)
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The calculations are given in Appendix B. As for the displacement, a lower limit wgo in
two dimensions should be defined for the width, satisfying wgs > wp3. The pdf of the width
in two dimensions, now denoted W, is found from the pdf (19), conditioning on W > wjs:

(ns — Dwha ™ powhy
fow) = fur(who > wes) = =208 = = TR, w 2w, (20)

where pi9 = uz — 1 = 73 — 1. This pdf is of the form given in Expression (12), and thus
also the width distribution is fractal in two dimensions.

As pointed out in Section 4.3.1, the relationship between W and D in two dimensions is
needed to obtain fi(d) from f,(d). In three dimensions the relationship W = (D¢;)'/"
applies. The relationship between width W' and maximum displacement D’ of the ellipse
observed in an intersection plane is obtained by combining Expressions (4) and (5). If the
plane intersects the fault ellipsoid at relative distance Uh(d,#)/2 from the center point,
where U is uniformly distributed on [—1, 1], the relationship is given as

W' =V1-U2(1—|U|) """ (D'e)V".

If the mean value with respect to U is calculated, the relationship W' = (D'c))"/" is
obtained, assuming the expression is integrable. This relationship is consistent with the
transformation

fa(d) = fa(w(d)) - [w'(d)],

using fo(d) from Expression (16) and f>(w) from Expression (20), and is used above when
the pdf of the displacement in one dimension is found.

4.4 Exponential distributions

The fractal distribution is widely used to model the size distribution of faults. In some cases
however, fault sizes are observed to be better described by an exponential distribution. For
example, exponential distribution of fault size are observed on mid-ocean ridges, see Cowie
et al. (1994), and transformations from fractal distribution at early stages of deformation
into exponential distributions are observed in analog experiments of fault growth, see Spry-
opoulos et al. (1999) and Ackermann et al. (1999). The pdf of the exponential distribution
is

f(z; A) = Nexp(—Ax), x>0, \>0, (21)

and Figure 7a shows a plot of the function. For this distribution there is no need to specify
a lower limit for x, as was the case for the fractal distribution. The function S(z), defined
in Expression (9), is

S(x) = exp(—Az), x>0, (22)
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and is plotted on log-log scale in Figure 7b. For the exponential distribution, the integrals
which have to be solved to derive the size distributions in lower dimensions, see Section 3,
are not analytical tractable for general 7 and . Some expressions for general parameter
values are obtained below, but final results are obtained only under the assumption

T=y=1 (23)

This value of 7 corresponds to a linear relationship between maximum displacement and
fault width, Expression (1), while the value of v implies a liner displacement function, see
Expression (5). Under this requirement, the integrals involved in the calculations below
are analytically tractable.
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Figure 7: The exponential distribution with parameter A = 0.5. Figure (a) shows the pdf f(x)
in Expression (21) and figure (b) the function S(x) in Expression (22) on log-log scale.

4.4.1 Displacement

The pdf of the displacement in three dimensions is given by
f3(d) = Aexp(=Ad),  d>0. (24)

Using the procedure described in Section 3, and the approximation (3) of the height of the
fault ellipsoids, the pdf of D in two dimensions is found to be

D=1 +10d) 25)

d) = 71)\1/7d1/771
fald) =1 ra+1/r) =

where the parameters 7 and y must satisfy v > 7/(1+47), see Appendix B. The incomplete
gamma function T'(+,-) is described in Appendix C. Under the assumption in Expression
(23), the pdf simplifies to

fo(d) = Xexp(=Ad),  d >0, (26)
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which is the pdf of the exponential distribution, see Expression (21). Thus under the
specified assumptions, if the distribution of D in three dimensions is exponential, then the
distribution is exponential also in two dimensions. The parameter is A both in three and
two dimensions.

As in Section 4.3.1, the relationship between W and D in two dimensions is required to
be able to derive fi(d). This relationship is discussed below. If the relationship W o D is
assumed to be valid also for displacement and width in two dimensions, the displacement
has the same exponential distribution in one dimension as in three and two:

fild) = Xexp(=Xd),  d>0. (27)

4.4.2 Width

The pdf of the width in three dimensions is found from the pdf of D in Expression (24),
using the transformation W = (Dc;)'/7:

f3(w) = prw™ T exp(—pw"), w > 0, (28)

where the parameter p is given by p = Ac; . This is the pdf of a Weibull distribution. Let
W' denote the width obtained in two dimensions. Using the procedure in Section 3 and
the approximation (2) of the fault height, the pdf of W’ in two dimensions is found to be

fu () = =2 [ i (29)
TRVl e o ’

see Appendix B. The integral does not have a general analytical solution for arbitrary
7. Returning to the assumption in Expression (23), the pdf of W in three dimensions,
Expression (28), becomes f3(w) = pexp(—pw), the pdf on an exponential distribution.
The pdf of the width in two dimensions, now denoted W, is found from Expression (29):

fo(w) = pQng(pw), w > 0, (30)

see Appendix B. The mean and variance of W are E [WW] = n/2p and Var [W] = (16 —
7%)/4p*. The function K;(-) is the modified Bessel function of order 0, see Appendix C,
and the pdf fo(w) is shown in Figure 8a. Unlike the pdfs of the Pareto distribution and the
exponential distribution, this function is not monotonely decreasing. The function S(w)
defined in Expression (9) is in this case given by

S(w) = pwk;(pw), w >0, (31)
where K (-) is the modified Bessel function of order 1, see Appendix C. The function S(w)

is plotted on log-log scale in Figure 8b.
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The relationship between W and D in two dimensions was needed in the derivation of f;(d)
from f5(d), and the pdf in Expression (27) was derived under the assumption W oc D. This
relationship is however not consistent with the transformation

f2(d) = fa(w(d)) - [w'(d)], (32)

using fa(d) from Expression (26) and fy(w) from Expression (30). It can be shown that
this transformation is obtained for the relationship

D = - \"'In(pW K, (pW)).

This relationship is slightly convex, but a relatively good approach to an asymptotic lin-
earity is soon established as W increases.

0.4 T T 10
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Figure 8: (a) The pdf fo(w) given in Expression (30) with parameter p = 0.75. (b) The function
S(w) in Expression (31) on log-log scale.

4.4.3 Exponential distributions with lower bounds

The pdf of a fractal distribution only exists if a lower limit of fault size is specified. This
lower bound is not necessary for the distributions derived from an exponential distribution
of displacement in three dimensions. However, to compare these distributions with the
fractal distributions, the same lower bounds are introduced. Under the assumption in
Expression (23), equal exponential distributions are obtained for the displacement in three,
two and one dimensions, see Expressions (24), (26) and (27). Introducing a lower bound
dy, where dy = dy3 in three dimensions, dy, in two and dy; in one, the pdf becomes

f(d) = Xexp(=A(d —do)),  d=>dy. (33)
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The pdfs of the width distributions in Expressions (28) and (30), with the same lower
bounds as for the fractal distributions, are found to be

f3(w) = pexp(—p(w - w03)), w > wo3,
K
H) = oy v @

The pdf (34) is shown in Figure 9a. For reasonably large values of the lower bound wys, the
truncated pdf is monotonely decreasing. When lower bounds are imposed on the width,
the function S(w) corresponding to the pdf (34) is

wi; (pw)

S(w) = ———,
( ) w02K1(Pw02)

(35)

and is illustrated on log-log scale in Figure 9b.
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Figure 9: (a) The pdf fo(w) given in Expression (34) width parameter p = 0.75 and lower bound
wpz = 1.0. (b) The corresponding function S(w) in Expression (35) on log-log scale.

4.5 Number of faults

In addition to the fault size distributions, the distribution of the number of faults is also
of interest. The fault positions are assumed to follow a stationary Poisson point process,
see Section 4.1, thus the distribution of the number of faults, K, is a Poisson distribution:

k

f(k;w):%e“”, w>0,k=01,2,..., (36)

where w is the intensity of the Poisson process. The number of faults in both three, two
and one dimensions will follow a Poisson distribution, but with different intensity w in
different dimensions.
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For seismic data, prior information about fault intensity can be obtained from wells, pro-
viding information about the number of faults along a one dimensional line. Thus if data is
obtained in two dimensions, the fault intensity obtained from the well should be converted
to an approximate number of faults in the area of observations. Denote by K, the number
of faults in the two dimensional observation area and by K; the number intersected by
a one dimensional line. The expected number of faults along a line through the area is
then given as E [K;|K5| = f1, (1)K, where f;,(1) is the probability of a fault in the area
being intersected by the line. If k; is obtained from well information, a rough estimate of
K, given as ky = ki/fr,(1). The probability fr,(1) is calculated in a similar way as the
probability f7, of a fault being intersected by a two dimensional plane, see Expression (6),
and is proportional to the mean value of the fault width in two dimensions. Thus based
on one dimensional well observations, the prior mean number of faults in two dimensions,
E [K5] = w, should be chosen as

kq

w = const X E, D] (37)
under the assumption 7 = 1 in Expression (23), where E [D] is the expected maximum
displacement in two dimensions. The constant term is related to the size of the observation
area. Since Ey [D] differs under the fractal and exponential model, the mean number of
faults w should be chosen differently for each model, if based on the same fault intensity in
one dimension. Note that the mean value of D in two dimensions in the case of a Pareto
distribution is only finite for £, > 1, see Expression (16), thus Expression (37) only holds
in this case. If 35 < 1, the number of faults in two dimensions can be approximated by
only considering faults of displacement below some specified size, D < day, in which case
the mean value is finite under both models.

4.6 Prior distribution

The distributions presented in Sections 4.3-4.5 can serve as prior distributions for a fault
population, when a Bayesian framework is used to make inference based on observations
of faults. Fault sizes in an observation area are now denoted Y = (Y7,...,Yx), where Y;
represents either the maximum displacement or the width of a fault. The prior pdf of the
number of faults in the observation area, K, and their sizes Y can be expressed as

fy, k,0) = f(ylk,0)f(k; ) f(0), (38)

where © is a model parameter involved in the pdf of Y, while K has the prior pdf defined
in Expression (36) and is independent of ©. Assuming Y;, j =1,..., K, are iid variables,
the pdf f(y|k,0) is given as

k
Fylk,0) =] f(il9) (39)
7j=1
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where f(y;|0) is the marginal pdf of the fault size Y;. If the observation area is two
dimensional, the pdfs given in Expression (16), (26) or (33) can be used for the maximum
displacement. For fault widths observed in two dimensions the pdfs in Expression (20),
(30) or (34) can be used as prior pdfs. Some proper prior f(6) is chosen for the model
parameter. The prior pdf of (Y, K, #) is thus

k

k
Fy, k,0) = —= e fO) ] f(usl0)- (40)
7=1

5 Observations of Faults

Faults can be directly observed in outcrops or in core samples from wells, or indirectly
observed from seismic data. In either case there is a sampling error connected to the
observations, see for example Heffer and Bevan (1990) and Pickering et al. (1995). Different
types of errors are of interest in this work: measurement errors, censoring and missing
observations. A model for observation errors is defined through a likelihood function below.
Qualitatively the model is based on the discussions of error types given by Heffer and Bevan
(1990) and Pickering et al. (1995), although the cited papers do not use the same parametric
models.

For seismic data, measurement errors mainly consist of a downward bias, where both fault
widths and maximum displacements tend to be measured too small, due to the limit of
resolution. Furthermore, the resolution of seismic data also results in a number of faults
not being observed, even at scales above the limit of resolution, hence there are often
missing observations. In geophysical literature, the term truncation is sometimes used to
denote both the downward bias in measured fault width and the missing observations at
some scales. Censoring of fault size observations is a result of the bounded observation
area. For faults extending beyond the observation area, the observed sizes are censored
and only give the size observed within the area.

5.1 Likelihood function

Consider the set of faults within an observation area, with sizes Y = (Y7,...,Y%). Not
all faults are observed, and the stochastic vector S = (Si,...,Sk) of indicator variables
S; € {0,1} describes which faults that are observed. If fault j is observed, then S; = 1,
while S; = 0 otherwise. The number of observed faults is thus given as N = Ele S; < K.
Furthermore, due to measurement errors, the observed values, denoted Z, are not exact.
The likelihood function of the observations accounts for the observation errors described
above, and include information about the likelihood of observing the N faults defined by
the indicator vector S, with observed sizes Z, when the actual number of faults is K and
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their sizes are Y. The probability of observing a fault of size Y; is given as p(Y;), depending
on the fault size, but independent of all other faults. Thus P{S; = 1|Y; = y;} = p(y;).
If a fault is observed, i.e., S; = 1, the observed value Z; is described by the likelihood
function h(z;]y;), depending only on Y; since Z; is a measurement of this specific fault.
The likelihood function of the observations X = (Z, S) can thus be expressed as

k
h(zly, k) = h(sly, k)h(z]s,y, k) = [ [ p(y;)" (1 = pyp)) > T hlzilyy).  (41)
J=1 Jisi=1
5.1.1 Observed number of faults
For a seismic dataset € = (z,s) there are typically missing observations, and only a

proportion of the true number of faults is observed. The probability of observing exactly
the n faults observed, conditioned on K and Y, is given as

k

h(sly. k) =] p(y:)¥ (1 = p(y;)' ™

j=1

and is specified through the function p(y). It is natural to assume that p(y) is a mono-
tonely increasing function, see Clark et al. (1999), since missing observations due to limited
resolution of the measurement equipment is most dominant for small scale faults, while
the presence of large scale faults in the observation area is more frequently detected. In
this work p(y) is assumed to be piecewise linear, given as

D1, Y S m
p(y) =< (=) (P2 — 1)y +p1m2 —p2m), m <y <1 (42)
D2, Yy > T2,

and illustrated in Figure 10. The function gives a constant small probability p; of observing
faults of size smaller than y = 7, and a constant high probability ps of observing faults
of size larger than y = 7. Between y = 1, and y = 7, the probability of observation is
linearly increasing. The parameter 7, is related to the limit of resolution, and p; can be
interpreted as the probability of observing a fault of size at the limit of resolution. The
parameter 7, can be interpreted as a value for which most faults of size larger than this
value will be observed. In the special case p; = p, = 1 all faults have probability 1 of being
observed, thus S; =1, j = 1,..., K, and the observed number of faults equals the true
number, n = K.
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Figure 10: The function p(y) in Expression (42).

5.1.2 Observed fault sizes

The likelihood function of observed fault sizes Z,

h(z|87y7k) = H h(zj|yj)a

Jisj=1

is used to model the measurement errors, which typically leads to a downward bias. For
an observed fault, the measurement errors is given as the difference Y; — Z;. For seismic
observations, the observed value tends to give a too small measurement of Y}, due to the
resolution of the seismic data, thus Y; — Z; > 0. For simplicity, it is assumed to be a lower
and an upper limit of possible measurement error of this type, thus 6, <Y; —Z; <, and
a uniform distribution of the error within this interval is chosen.

The dimension of the observation area of faults enforces an upper bound 7 on observable
fault size Z. If fault widths are observed, 7 is directly related to the size of the observation
area. There is however no strict upper bound of observable maximum displacement inside
a bounded area, hence in this case n can be chosen as n = oo. If the true fault size is
only slightly larger than 7, the downward bias in the observations gives an observation
Z < n anyway. As Y increases, the observed value is censored and remains below 7. The
observation Z now only measures the size of the fault within the observation area, and
some bias is still allowed, with the same lower and upper limits as before.

If Y exceeds the upper bound 7, censoring is guaranteed. However, also smaller faults,
Y < n, can in practice be censored, if one or both fault tips cross the boundary of the
observation area. This kind of censoring is not accounted for in the model.

The uniform likelihood function h(z|y) is illustrated in Figure 11, and can be expressed as

1+ (62 — y)d.(0)
dg — 01 ’

h(zly) = 0 <min{y,n+ 4} — 2 < dy and z > 0, (43)
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where the term (0 — y)d,(0); §.(-) being the Dirac delta function, is included to account
for boundary effects for small fault sizes. The choice of edge correction has only minor
influence on the model.

The special case §; = d, = 0 implies no bias in the observations, and the fault size is
observed exactly for all faults with size below the upper bound 7. In this case the likelihood
function is replaced by h(z|y) = §,(min{y,n}). If in addition the upper bound is n = oo,
all fault sizes are observed exactly.

h(ZIy)h

y 52 n <
0y — O
h(ZIy)[ — 02 01
52 y 77 z : .y
y—02 y—0

Figure 11: The likelihood function h(z|y), Expression (43), for different values of Y. The left
hand figures illustrate the uniform distribution of Z for small, intermediate and large values of
Y. The right hand figure shows the interval boundaries of the distribution.

5.2 Posterior distribution

The focus of this work is on the posterior distribution of fault sizes, conditioned to obser-
vations, and inference about the underlying fault population is based on this distribution.
In a Bayesian setting, the prior pdf f(y, k,0) = f(y, k|0)f(0) of (Y, K, ©), see Section 4.6,
includes general geological knowledge about the distribution of fault sizes and the number
of faults in the observation area. The likelihood function h(x|y, k) of the observations
X = (Z,S) models the data collection, see Section 5.1. The observations are assumed
to be conditionally independent of the parameter ©, given (Y, K). Combining the prior
pdf (40) of the true fault population (Y, K,6) and the likelihood function (41) of the
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observations X = (Z,S), the posterior pdf is obtained:

k

flyk0lw) = constx e 7 (0) [] 1(uil0)
X Hp(yj)sj(l = ply;))' ™ H h(zly;)- (44)

6 Model Choice

The relationship between the observations X and the true variables (Y, K) is described
by the likelihood function in Expression (41). Suppose now that the pdf f(y,k|f), Sec-
tion 4.6, is unknown, but two possible models are suggested. The stochastic variable
M € Q,, = {mq,me} = {1, 2} indicates which model is the correct one, model 1 or 2 respec-
tively. Under model m, the pdf of (Y, K) is denoted f(y, k|m,0,,) = f(k|m)f(y|m,k,0),
m = 1,2, where different model parameters 6,, with prior pdfs f(6,,|m) describe the two
distributions. Based on the observations X it is of interest to determine which of the two
pdfs of (Y, K) is most likely. This can be expressed as a model choice problem, and Bayes
factor can be used as a criterion for choosing the model best fitted to the observations. See
Kass and Raftery (1995) for an overview. The two competing models are assigned prior
probabilities f(m;) and f(my). Bayes factor Biy(x) of the observations X is defined as

(my|2) ) f(ms) _ f(@|m)
(malz)  f(mi)  f(xlms)’

where f(m|x) is the posterior probability of model m. If the value of Bayes factor exceeds
one, Bia(x) > 1, model 1 is favored, while for a value smaller than one model 2 is most
likely. If the prior probabilities of model 1 and 2 are equal, Bayes factor coincides with the
posterior odds ratio. The marginal pdf of X under model m is given as

B (x) = ; (45)

flatm) = [ bialy. k)1 . k. 00) 0 ) 0 . (46)

In some cases Bayes factor can be found analytically, but in general the value must be
estimated by the use of numerical integration techniques. Evans and Swartz (1995) and
Kass and Raftery (1995) discuss different estimation techniques. In this work, Bayes factor
is estimated by the use of McMC sampling, where the model M is included as a stochastic
variable, see Carlin and Chib (1995). An introduction to McMC theory is given, for
instance, by Besag et al. (1995) and Han and Carlin (2000) give a review of McMC methods
for estimating Bayes factor.

Borgos (2000) describes an McMC sampling algorithm constructed to estimate Bayes factor
based on non-exact observations. The McMC algorithm introduces auxiliary variables K
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and Kj, representing the number of faults K under the two competing models. The pos-
terior distribution of (M, K1, K5, ©1,0,) given X can be found, integrating over Y. The
McMC algorithm then generate samples from this posterior distribution, and the variable
Y need not be included in the McMC simulations. Based on realizations (m?, ki, k3, 01, 63),
j=1,2,...,r, generated by the McMC algorithm, Bayes factor can be estimated as

- _ 2 ! =mi] f(my)
el = S A =] Fom)’ o

where 1[-] is the indicator function. Estimation of the model parameter ©,,, the number
of faults K and fault sizes Y under the favored model is discussed in Section 6.2.

6.1 Competing models

Two alternative fault size distributions are discussed in Section 4, a fractal and an exponen-
tial model. As illustrated in Figure 6b, for the fractal model a log-log plot of the function
S(z), Expression (9), gives a straight line. However, the log-log plot of the estimate S(z),
Expression (10), based on observed fault sizes often shows a concave shaped curve. The
concave shape can in some cases be explained by the typical sampling errors, especially
missing observations can result in this shape of the curve. However, the concave curve can
also be a result of a different underlying distribution, for example an exponential model.
As shown in Figure 7b, an exponential distribution gives a concave curve on a log-log plot
of S(z). The aim of this work is to use a statistical framework to investigate which model
is the most likely one, based on a set of fault observations.

In the calculations below, fault size Y is assumed to be measured as maximum displacement
D. True fault sizes Y are assumed to be iid variables, see Expression (39), while the number
of faults K follows a Poisson distribution, Expression (36). The fractal model with the
pdf in Expression (16) as marginal distribution of Y; and model parameter 6, = (3, is used
as model 1. The assumption in Expression (23) is assumed to hold, and the truncated
exponential model with the pdf in Expression (33) as marginal pdfs and model parameter
05 = A is chosen as model 2. Thus

0,y
Pl 0) = 58 and - f(yhma,00) = Gexp(—0ay —w), 2w (49)

A common lower bound yq is used in the two models.

The model choice problem is based on observations X = (Z, S) of maximum displacements
obtained in two dimensions, see Section 5, where the number of observed faults is given as
n = Z]K:1 S; and the observed maximum displacements are given as Z; for all {j;s; = 1}.
The two competing models are assigned equal prior probabilities, f(m;) = f(msg) = 0.5,
thus there is no prior belief that one model is more likely than the other.
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The variable K represents the same quantity under both models. As mentioned above,
auxiliary variables K; and K are introduced to represent this variable under the two com-
peting models in the McMC algorithm described by Borgos (2000). The main reason for
this is that the posterior distribution of K can be bimodal, with one mode corresponding to
each model, and auxiliary variables are introduced to avoid this bimodality. Depending on
how prior information about the number of faults is obtained, it may also be appropriate
to define different prior distributions of K under the two models, as discussed in Sec-
tion 4.5. This is obtained by choosing individual intensities w,, in the Poisson distribution
in Expression (36).

6.2 Inference under the favored model

When a model choice has been made based on a set of observations, the next aim is to
estimate the corresponding model parameters. Estimation of the power law exponent in a
fractal model is frequently found in the literature, and is used in prediction of the number
of faults in the observation area or in extrapolation to sub-seismic faults, see Gauthier and
Lake (1993), Walsh et al. (1994). The standard estimation procedure is to fit a straight
line to the log-log plot of the cumulative number of faults versus fault size. For discussions
and improvements on this estimation technique, see Pickering et al. (1996). Pickering et al.
(1995) and Clark et al. (1999) compared different procedures for estimating the exponent
in a negative power law distribution, for example maximum likelihood estimation.

In this work, the model parameters in the favored model is estimated based on McMC
simulations from the posterior distribution. Since the algorithm generates realizations of
the model indicator and the model parameters simultaneously, parameter estimation can
be performed based on output from the same run of the algorithm. An estimate of the
parameter value in model m is given by the estimated posterior mean

X Ot = m)
S VNI )

The number of faults in the observation area can be estimated similarly based on the real-
izations of K, under the favored model, and the unknown fault sizes Y can be generated
from the posterior distribution f(y|x, m, k., 0,,), see Borgos (2000).

The number of faults in the three dimensional reservoir, denoted K, 3 under the favored
model, can be predicted based on the estimate of the number of faults in two dimensions,
now denoted K,,>. The expected number in two dimensions, given K, 3, is

E[Kma|Kns] = fr,(1m)Kn3

where fr,(1|/m) is the probability of intersecting a fault by a two dimensional plane, under
model m, see Expression (6). In a reservoir of vertical thickness T, the probability is given
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as
fr,(1lm) = T;'E [h(D)|m] = const x T, 'E[D|m],

omitting the dip in the argument of the height function h(-), see Expression (3). The
assumption 7 = 1 in Expression (23) is used, and the thickness of the reservoir is assumed
to fulfill T, > h(D) for any maximum displacement D in the observation area, such that
the vertical extent of all faults are completely contained in the region under study. The
constant term depends on the distribution of the dip and on the constants ¢; and ¢,
quantities which are not discussed in this work. When K, » is observed or estimated, an
estimate of the frequency K,,3/T, is given by

Km,i% km,? t X km,Q (50)
= = cons T -
Tv fI2(1|m)Tv E[D m]

The mean value of D can be estimated for the chosen distribution, using the corresponding
estimated model parameter 6,,. Under the fractal model, this is found to be

E[D|mi] = 07" (0, + 1)dys,

and in the exponential model

E[D]ms] = 07" + dys.

6.3 Exact observations

In this section the special case of no sampling errors is considered, where the exact number
of faults is observed and fault sizes are observed without measurement errors. In this case
the observations are X = Y, and the likelihood function in Expression (41) is replaced
by h(z|y) = dz(y). The number of faults, K, is not treated as a stochastic variable in
this case. The two proposed pdfs of Y under model 1 and 2, Expression (48), are now
also the pdfs of X under the respective models. Bayes factor can in this situation be
found analytically, using gamma priors Gamma(a,,, 0,,) for the parameters 6,,, with mean
E [0] = @m0y, and variance Var [0,,] = a,,02,. The calculation of Bayes factor involves
solving some integrals which are recognized as gamma functions, and is demonstrated by
Borgos (2000). In this case Bayes factor is:

o 957 (e —20)* ™ T(ag)D(an + k)
Bl2(€13) = (H I]) 0?1 (Ufl + Z;?:l(lnxj o lnl‘o))al"‘k F(al)F(a2 n k)

J=1

(51)

The resulting posterior distributions of the parameters are gamma distributions with pa-
rameters o, + k and (0, + t,,(z))~", where t;(z) = Z?Zl(ln z; — Inzg)) and ty(x) =

k : : :
> j=1(xj — x0)). The posterior mean and variance are given as

Om(Qm + k)
14 omtm(z)’

o2 (am + k)
(1 + optm(x))?

E[0,|x] = Var [0, |x] = (52)

29



The model choice problem can thus be solved analytically, and the posterior mean can be
used as estimators of the model parameters.

7 Example: Seismic Data

Figure 12 shows a dataset containing maximum displacements & observed on a two di-
mensional surface, interpreted from seismic data. The data are from the Gullfaks field in
the North sea, see Fossen and Rgrnes (1996). The number of observations is n = 169,
with displacement values ranging from 2m to 256m. Figure 12a shows a histogram of the
observed displacements, corresponding to the pdf f(z). Figure 12b shows a log-log plot of
S(d), see Section 4.2 for an explanation.

The pdfs in Expression (48) are used as competing models, with yo = 2m chosen as the
minimum of the observations. The model parameters of the two competing models are
assigned gamma priors with hyper-parameters a; = as = 4, oy = 0.25 and o9 = 0.005.
Thus the prior mean values are E [0;|m;] = 1.0 and E [0,|ms] = 0.02. If the observations are
assumed to be exact, Bayes factor from Expression (51) is given as Bis(x) = O(107%%) ~ 0
and the posterior mean values are E [f;|z] = 0.393 and E [fy|x] = 0.0232, see Expression
(52). In this case the exponential model is undoubtedly favored. However, the seismic
data are not exact and the estimation of Bayes factor should account for the uncertainty
caused by sampling errors. These errors are modeled by the likelihood function. Different
choices of parameters in the likelihood function and prior distributions can lead to different
conclusions of the model choice problem. This is demonstrated through a number of
simulations examples, using the McMC algorithm described by Borgos (2000). In all
simulations reported below, the estimates of model parameters and the number of faults
are based on 5000 realizations from the McMC algorithm, separated by 10 iterations, while
all 50 000 iterations are used to estimate Bayes factor. A sensitivity analysis is first carried
out, exploring the influence of the parameters in the prior pdf and the likelihood function.
Finally, well information is used to determine which prior parameters are most realistic.

Only a few parameters are varied in the simulations, the parameters 7, and p; in the
likelihood function and the prior mean numbers of faults w,, under the two models. The
likelihood function of the observed displacements & = (z,s), Expression (41), contains
the functions p(y) given in Expression (42) and h(z|y) given in (43). In the simulation
study the function h(z|y) is held constant, with parameter values §; = 1m, d, = bm and
1n = oo. Thus the measurement error of each fault displacement is assumed to be in the
range 1m to 5m, while no censoring is assumed to occur. The influence of the parameters
ne and p; in the function p(y) is studied. The other values are held constant with values
171 = 2m, chosen as the minimum value of the observations, and p, = 0.99. For y > n,
there is a constant probability of 0.99 of observing the fault, while for decreasing y < 1y
the probability is decreasing to p; for y = 2m. Table 1 gives a summary of all parameter
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Figure 12: Maximum displacements observed on a two dimensional surface. (a) Histogram of
the observations. (b) Log-log plot of S(d), see Expression (10).

values held constant in the simulations, and the values of the hyper-parameters in the prior
distributions of the model parameters. Preliminary estimates of the number of faults in
two dimensions based on well observations, see Section 4.5, show that for typical values
of ©®; and ©, the number of faults in two dimensions under the fractal model exceeds the
number of faults under the exponential model. Thus throughout the simulation study,
wy > we is chosen. Assessment of w,, based on well observations from the Gullfaks field is
discussed in Section 7.4.

Figure 13 shows two realizations of (Y, K) from the posterior distribution (44) conditioned
to the observations x. For these realizations, w; = wy = 720, p; = 0.1 and 7y, = 20m.
Figure 13a shows a realization from the fractal model, while Figure 13b shows a realization
from the exponential model. The figures show log-log plots of the estimates kS (y) based on
the realizations, see Expression (10), plotting absolute number instead of relative number.
The estimates are compared with the estimate nS (z) for the observed fault sizes and the
functions £S(y) obtained using Expression (48) with estimated model parameters. In both
figures a number of unobserved small faults are present in the realization of Y, and the left
part of the estimate S(y) deviates to some extent from the corresponding estimate S(z)
based on the observations. In the right part of the figures there are only minor differences
between the curves based on the realizations and the observations. In this area almost all
faults are observed, and since 17 = oo no censoring is adjusted for in the realizations.

Prior distribution Likelihood function Hyper-Parameters
Yo o1 0 P2 Q1 01 (g P
2 1 5 oo 099 2 4 025 4 0.005

Table 1: Parameter values held constant in all simulations.
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Figure 13: Realizations of Y from the posterior distribution f(y|x,m, ks, 6y,) under (a) model
1 and (b) model 2. Estimates 6; = 0.780, k1 = 570, 65 = 0.0370 and ky = 329 are obtained using
parameters w; = wy = 720, 7o = 20m and p; = 0.1. The cumulative absolute number of faults,
S (y), is plotted on log-log scale (+), see Expression (10), and is compared to the observations
nS(z) (o). The corresponding function k,,S(y) for the prior distribution of Y is plotted with
solid line, using the estimated model parameters.

7.1 Dependence on the prior distribution

Dependence of the model choice on the prior distribution is studied by varying w; and ws,
keeping all parameters of the likelihood function constant. Thus different results of the
model choice problem is a consequence of the variations in w,,, m = 1,2. The parameter
value 17, = 20m is used, while p; is held constant at the value p; = 0.1 or p; = 0.01.
The remaining likelihood variables are given in Table 1. Table 2 shows the results of
McMC simulations, reporting the estimated Bayes factor, Blg(a:), for the observations
in Figure 12, and the conclusion of the model choice problem. The table also lists the
estimated model parameters, 0, and 92, and the estimated posterior mean number of

~ —

faults, E [K,,|®, m] = K,,, for the favored model m.

From Table 2 it is clear that the prior mean numbers of faults have great influence on the
result of the model choice problem. Especially, Table 2b illustrates how fast the conclusion
of the model choice problem can change with changes in prior mean values. In most of the
runs reported in the table, the exponential model is favored. However, with a relatively
large, equal prior mean number of faults under both models, the fractal model is favored.
From Table 2 it may seem that the model with the lowest prior mean number of faults in
general is favored. However, comparing the posterior mean number of faults, the model
with the higher mean number may be favored. In the simulation where w; = wy = 720 in
Table 2b, no clear conclusion can be drawn. In this case, the posterior mean number of
faults under model 1 is k; = 570, while under model 2 it is ko = 329, thus the posterior
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distribution of the number of faults alone is not crucial to the model choice.

In Table 2a,b the value of p; is p; = 0.1, while in Table 2c it is decreased to p; = 0.01. With
a lower probability of observing faults at the limit of resolution, the posterior mean number
of faults increases. Furthermore, different values of p; may result in different conclusions
of the model choice, as is observed in the case w; = wy = 700. The dependence of the
model choice on p; is studied below.

ASs wsq, the prior mean number of faults under model 2, increases, the posterior mean
number also increases, see Table 2. A corresponding change in parameter value 6y is
observed. Similarly, the posterior mean number of faults and the parameter ¢; under
model 1 is observed to increase when the prior mean number of faults, w, increases.

7.2 Dependence on the likelihood function

Dependence on the likelihood function is studied by assigning different values to 7, and
p1, keeping w; and wsy constant. Thus different results of the model choice are now a
consequence of the variations in the values of 7y or p;. Both parameters 7, and p; have
influence on the number of unobserved faults. Table 3 shows the results of McMC simu-
lations where 7, is varied, with p; = 0.1 constant. In Table 4 the parameter p; is varied,
keeping 1, = 20m constant. Estimates of Bayes factor, the conclusion of the model choice
and the model parameter of the favored model are reported.

As ny increases, the fault size required for an almost certain observation increases. The
overall probability of observation decreases, increasing the number of unobserved faults.
The results of Table 3 show tendencies of an increasing Bayes factor as 7, starts increasing,
thus model 1 becomes more favorable. However, as 7, increases further, Bayes factor
decreases again. This effect is observed using prior mean values w; = ws = 700 and
wy; = wy = 720. For the dataset studied here, the posterior probability of the fractal model
being the right model seems to have a maximum for values of 1, in the range 20-40. The
case w; = 600 and wy = 400 is also considered, in which case Bayes factor is approximately
equal to zero for all reported values of 7.

The number of unobserved faults also increases as p; decreases, since a small value of
py indicates a large proportion of unobserved faults at small scales. The effect of p; is
illustrated in Table 4, for some choices of w; and w,. In the case w; = wy = 700, model 2
is favored when p; = 0.1. As p; decreases, the conclusion changes and model 1 is favored.
The prior mean values w; = 600 and ws = 400 are also considered. In this case model 2 is
favored for all values of p; considered, and a reduction of p; from 0.1 to 0.0001 does not
give a change of the conclusion.
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w;  Woy 312(:6, n)  Model 0, kq 05 ko
400 400 0* 2 0.0281 234
500 500 0* 2 0.0303 256
600 600 0(10_17) 2 0.0329 284
700 700 0.00538 2 0.0364 322
800 800 (102 1 0822 624

900 900 oo™ 1 0.874 702

600 400 0* 2 0.0283 235
700 500 0* 2 0.0306 260
800 400 0* 2 0.0283 235
800 600 0* 2 0.0334 288
900 500 0* 2 0.0311 265
900 700 0* 2 0.0362 320
900 800 3.25-107° 2 0.0387 349

(a)
w1 %)) Blz(w, TL) Model él 12'1 92 EQ
700 700 0.00538 2 0.0364 322
710 710 0.115 2 0.0367 324
720 720 1.239 1/2 0.780 570 0.0370 329
730 730 169.8 1 0.770 559
(b)

W] Wy Blg(:c, n)  Model 0, ky 0, ks
500 500 0* 2 0.0317 271
700 500 0* 2 0.0320 273
700 700 oo* 1 0.795 589

900 500 0* 2 0.0322 273
900 700 0* 2 0.0383 340
900 900 oo* 1 0915 773

Table 2: Results of McMC simulations where 1, = 20m while various prior mean numbers wy,
are used. In (a) and (b) p; = 0.1 and in (c) this probability is reduced to p; = 0.01. Table (b)
illustrates how the conclusion of the model choice can change for only minor changes of w; and
wa. The estimates of Bayes factor and the model parameters are obtained using Expressions (47)
and (49). The estimates of the model parameters and the mean values k,, are based on 5000
realizations, separated by 10 iterations of the McMC algorithm. Bayes factor is estimated based
on all 50 000 iterations. The reported values 0* and oco* indicate that the estimate of Bayes
factor is either very small or very large, without being identically 0 or co. O(u) gives the order

of magnitude.

(c)
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w1 Wa T2 Blg(iL', n) Model él kl ég ]2'2

700 700 10 0 2 0.0275 225
700 700 20  0.00538 2 0.0364 322
700 700 40 0.129 2 0.0423 452
700 700 60 O(107!3) 2 0.0420 527
700 700 80 0 2 0.0402 568
700 700 100 0 2 0.0382 585
720 720 10 0 2 0.0282 231
720 720 20 1.239 /2 0.780 570 0.0370 329
720 720 30 8.41-10* 1 0.744 574

720 720 40 0.743 /2 0.743 621 0.0431 469
720 720 50 5.25-1077 2 0.0430 507
600 400 20 0* 2 0.0283 235
600 400 40 0 2 0.0320 295
600 400 60 0 2 0.0330 341
600 400 80 0 2 0.0326 369
600 400 100 0* 2 0.0316 381

Table 3: Results of McMC simulations with p; = 0.1, while various parameter values of wq, wo
and 7o are used. The estimates of Bayes factor and the model parameters are obtained using
Expressions (47) and (49). The estimates of the model parameters and the mean values k,, are
based on 5000 realizations, separated by 10 iterations of the McMC algorithm. Bayes factor is
estimated based on all 50 000 iterations. The reported value 0* indicates that the estimate of
Bayes factor is very small, without being identically 0. O(u) gives the order of magnitude.

~

w1 W2 P1 Blg(in, n) Model él El 92 ]_fQ
700 700 0.1 0.00538 2 0.0364 322

700 700 0.01 2.40-10% 0.791 583
700 700  0.001 9.00-10® 0.805 601
700 700 0.0001 1.34-10° 0.799 594

DN DN DN DN =

600 400 0.1 0 0.0283 235
600 400 0.01 0 0.0292 245
600 400 0.001 0* 0.0291 243
600 400 0.0001 0* 0.0296 249

Table 4: Results of McMC simulations with 7y = 20m, while various parameter values of wy,
wy and p; are used. The estimates of Bayes factor and the model parameters are obtained using
Expressions (47) and (49). The estimates of the model parameters and the mean values &y, are
based on 5000 realizations, separated by 10 iterations of the McMC algorithm. Bayes factor is
estimated based on all 50 000 iterations. The reported value 0* indicates that the estimate of
Bayes factor is very small, without being identically 0.

35



7.3 Parameter estimation and prediction of number of faults

Tables 2-4 show results of McMC simulations for observations with sampling errors. Both
Bayes factor and the model parameter under the favored model are estimated, see Expres-
sions (47) and (49). Figure 14 shows histograms of realizations of #; and 6, for some of the
simulation examples from Table 2. The histograms are compared with the corresponding
prior pdf, with hyper parameters given in Table 1. The histograms give an estimate of the
posterior pdf, showing how the modes of the posterior pdfs differ from the modes of the
prior pdfs. Furthermore, the histograms have narrower ranges than the prior pdfs, thus
the posterior distributions have a smaller variance than the prior distributions. As wy,
increases, the mode of the posterior pdf f(6,,|x) also increases. This coincides with the
results of Table 2, where the posterior mean is observed to increase with w,,.

Since the relationship between model parameters in three and two dimensions is known
both for the fractal model and the exponential model, see Section 4, the parameters in
three dimensions can be estimated based on the corresponding estimates in two dimen-
sions. Thus, in cases where the fractal model is favored, the power law exponent in the
displacement distribution in three dimensions is estimated by 63 62 +1=0,+ 1, under
the assumption 7 = 1, see Expression (23). In the exponential model the d1str1but1on of
displacement has the same parameter in all dimensions, with estimate A =0,

When a proper model is chosen for the distribution of displacement in three dimensions, the
final goal is to predict the number of faults in a three dimensional reservoir. The procedure
is described in Section 6.2. To illustrate the consequence of the model choice on the
predicted number of faults in three dimensions, the estimates of the model parameters ©,,
in Table 2b are used, with w; = wy = 720. This situation gives no conclusion to the model
choice problem. The estimates of model parameters and fault numbers in two dimensions
are 0 = 0.780, ki, = 570, 0, = 0.0370 and ky5 = 329. The constant term in Expression
(50) depends on the constants ¢; and ¢y from Expression (1) and the distribution of the dip.
A typical dip of 60° is assumed, and ¢; and ¢y are chosen inspired by the work of Walsh and
Watterson (1989) and Dawers et al. (1993). The result is a constant term of value 0.035.
By the use of Expression (50), the frequencies of faults in three dimensions of displacement
above dyp3 = 2m, vertically through the reservoir, are found to be 1%1,3 = 4370 km ! and
/;:2,3 = 397 km ™! under model 1 and 2 respectively. Thus in this case the estimates under
the two models differ by a factor 11, illustrating the possible consequences of choosing a
wrong model. No boundary effects are accounted for in these calculations.

7.4 Most favorable model based on well information

Hesthammer and Fossen (1997) studied fault intensities in wells in the Gullfaks fields, and
found an estimate of 4.4 faults per km in the east-west direction, perpendicular to the
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Figure 14: (a) Histograms of realizations of the model parameter §; in model 1 from f (60 |z, my),
obtained from McMC simulations. The solid lines show the prior pdf fi(0;|my). (b) Similar
histograms of realizations of 6, from f (622, ms), comparing with fy(62|mse). The values of the
prior means wy and we are given below each figure, and 3 = 20m and p; = 0.1.
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dominating strike direction. This number only includes faults of displacement larger than
approximately 10m and gives a lower limit of fault intensity, since also well observations
can suffer from missing observations. This fault intensity can be converted into a number
of faults in the two dimensional observation area, which can serve as a prior mean number.
The procedure is described in Section 4.5. The simulations above show that the model
parameters ©; and O, typically lies in the intervals ©; € [0.8,0.9] and ©, € [0.025, 0.04].
Since O seems to be less than 1, the mean value E, [D|m;] needed in Expression (37)
does not exist. To deal with this problem, E,[D|m] is replaced by Es [D|m, D < dpayl,
where dp,.x is chosen larger than the maximum observed displacement value. Assuming
a value ¢; = 75 of the constant involved in Expressions (1) and (37), and using a rough
approximation of 8km x 12.8km for the observation area, see Fossen and Rgrnes (1996),
the number of faults of displacement above 2m are found to be 450-600 under model 1 and
150-250 under model 2. These numbers give an indication of how large the prior mean
number of faults under the two models at least should be chosen.

The sensitivity analysis presented above mainly concentrate on prior mean values w; and
ws equal to or larger than the values found based on well information. Tables 2-4 show
that the fractal model is only considered best in cases where the prior mean values are
Wy > 700 for both m. Such a large value can be realistic for w, but is clearly too large for
w9 based on the well information. Among the simulations presented above, the ones with
prior mean values w; = 600 and wy = 400 are more realistic. In this case the exponential
model is clearly most favorable, regardless of the likelihood parameters included in the
simulation study.

8 Example: Outcrop Data

Figure 15 shows log-log plots of faults observed in outcrops. Figure 15a shows n = 23
throw values obtained in a line sample in western Sinai, see Knott et al. (1996) and Beach
et al. (1999). Throw is measured as the vertical component of displacement. Figure 15b
shows n = 2565 fracture trace lengths observed in a two dimensional observation area in
Hornelen, Norway, see Odling (1997). In contrast to faults, fractures have no displacement
of rock.

The two models in Expression (48) are used as competing models for the dataset from
western Sinai, where 0; and 0y are now the parameters of the distributions of displacements
in one dimension, see Expressions (17) and (33). The common lower limit y, is chosen
equal to the minimum observation. If the line sample observations from western Sinai
are assumed to be exact, with no measurement errors or missing observations, maximum
likelihood estimates of the parameters under the two models are given as 0, = 0.151 and
65 = 0.00105. Using these estimates as prior means in gamma distributions with shape
parameters «,, = 4, gives a Bayes factor of Bj(x) = 3.04 - 10°. Other reasonable choices
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of prior mean values also give a large value of Bayes factor, and the fractal model is
undoubtedly favored compared to the exponential model.

The observed fracture trace lengths from Hornelen are also assumed to be exact. The
distributions of fault width in two dimensions are compared for this dataset, given in Ex-
pression (20) for the fractal model and in Expression (30) or (34) under the exponential
model. Neither of the distributions from the exponential model give analytically tractable
expressions of Bayes factor. If a first order approximation of the modified Bessel function
of order 0 is used, see Expression (58), the distribution in Expression (30) can be approxi-
mated by a gamma distribution [Yj|ms, 65] ~ Gamma(1.5,6,). In this case Bayes factor is
analytically tractable, and reasonable choices of hyper-parameters in the prior pdfs of the
model parameters give Bio(x) ~ 0. Thus in this case the exponential model is far better
than the fractal model. Maximum likelihood parameter estimation gives 0, = 0.236 and
05 = 0.815. The dataset is one of several datasets gathered at different scales, and Odling
(1997) concludes with a log-normal distribution for each single dataset, while a fractal
model is found to describe the coalescent fault population. The log-normal distribution
is not considered as an alternative distribution in the model choice problem described in
the current work, but the same approach as illustrated in this work could be applied to
compare this distribution with either the exponential or the fractal model.
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Figure 15: (a) Fault displacements observed in one dimension in western Sinai. (b) Fracture
trace lengths observed in two dimensions in Hornelen, Norway.

9 Conclusion

A proper model should be chosen and the model parameters estimated, in order to make
inference about a fault population in three dimensions. The estimated number of faults
and their sizes depend on which model is used to obtain the estimates. Observation
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errors should be accounted for in the model choice, and the relationship between the three
dimensional fault population and the observations obtained in lower dimensions must be
known.

Forward calculations are performed to derive the relationship between the distributions of
maximum displacement in three, two and one dimensions, starting with both a fractal and
an exponential distribution in three dimensions. Corresponding distributions of fault width
are obtained using the relationship W oc D'/7. Using some basic assumptions on fault
geometry and spatial distribution, it is shown that if the distribution of displacement in
three dimensions is fractal, then so is the distribution of fault width and the corresponding
distributions in two and one dimensions. The decrease in the power law exponent for the
displacement both from three to two dimensions and from two to one is 1/7, while for
fault width the power law exponent decreases by 1 from three to two dimensions. The
relationships found between power law exponents of displacement or fault width in one,
two and three dimensions correspond to previously published results, see Heffer and Bevan
(1990), Marrett and Allmendinger (1991), Piggott (1997) and Berkowitz and Adler (1998).

When an exponential distribution of displacement in three dimensions is assumed, the
derived expressions of the other distributions are less analytically tractable than the cor-
responding ones under the fractal model. The expressions simplifies if 7 = v =1, where a
linear relationship between width and displacement is assumed and a linear displacement
function is applied, see Expressions (1) and (5). In this case the displacement follows an ex-
ponential distribution with the same parameter in three, two and one dimensions, thus ob-
servations of exponentially distributed displacements do not suffer from over-representation
of large faults in lower dimensions. Under the assumption 7 = 1 the distribution of the
width in three dimensions is also exponential, while in two dimensions the distribution is
not exponential.

Section 6 describes a statistical approach for choosing between two suggested models for
fault size distributions. The example in Section 7 shows how the conclusion of the model
choice depends on the parameters both in the prior distribution of the number of faults and
on the likelihood function. Parts of the parameter space is spanned to illustrate how the
conclusion varies as the prior model or the assumptions on the sampling errors change. The
prior distribution and likelihood function thus have great influence on the model choice,
and in order to get the right conclusion the parameters of the prior pdf and the likelihood
model should be chosen based on general geological experience and knowledge about the
reservoir and the data collection.

If there is a strong belief in a negative power law distribution of fault sizes, based solely on
prior experience, it can be tempting to define the prior and likelihood parameters based
on the observations. For example, 1, can be chosen as a break in the log-log curve and w,
can be chosen by extrapolating a line fitted to data with d > 1, to find the total number
of faults. This may lead to an optimal choice of parameter values, in the sense that the
fractal model is more likely to be favored. However, this procedure uses the observations to
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define both the prior distribution and the likelihood function, thus reducing the reliability
of the statistical analysis.

The prior mean numbers of faults under the two models should be related to the lithology
and the tectonic history of the reservoir under study, and can also be calibrated with fault
observations from wells. The likelihood functions should be related to the data acquisition.
For example, for seismic data the likelihood parameters are related to the seismic resolution,
and thus the seismic wavelength. The interpretation process can also have influence on the
likelihood parameters, as the detection of small faults can depend both on the interpreter
and on the time spent on the interpretation. If specific values for the likelihood parameters
are hard to define, then alternatively the parameters can be assigned prior distributions.
The statistical analysis presented illustrates the importance of choosing the prior and
likelihood parameters correctly. For a given dataset from the Gullfaks field, it is shown
how the fault intensity observed in wells is used to determine realistic prior mean number
of faults in the observation area under both competing models, and based on these values
the exponential model is found to describe the fault displacements displacements better
than the fractal model.
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A Approximation of Fault Heights

The height of a fault ellipsoid can be expressed as a function h(z) = Kz 'v/1 + ax?,
omitting the dependence on the dip #, with

2
K =sinfc,!, a= (tCQC?’a) ,or=w = (de) V7. (53)
an

The function h(z) can further be expressed as h(zr) = Kx~'g(z), where g(x) = V1 + ax?.
A Taylor expansion of g(x) gives

2

9(w) =1+ 5 —

ST ey = LR, forsome € €[0,2).

Since a&? > 0 it follows that R(z) < az?/2. Let

~

h(r) = Kz~ ' = sinf(zey) .

Substituting w or (de;)"/" for x, Expressions (2) and (3) are obtained respectively. The
error term of the approximation is h(x) — h(z) = Kz7'g(z) — Kz=' = Kz~ 'R(x), and the

absolute error has an upper bound

h(z) — h(x) _ Ko7' R(x) < ar’ ( CaC3 )2 z? 14 ( C2C3 )2332 T
h(z) Kz='g(z) — 2¢/1 + az? tanf/ 2 tan 0 '

This function can be shown to be monotonely increasing, thus substituting w or d from
Expression (53), the relative error decreases monotonely for increasing fault size.
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B Fault Distributions

B.1 Fractal distributions: displacement

The pdf of the maximum displacement D in three dimensions given in Expression (14) is:

dﬁs
f3(d) = %, d > dos.

Let D’ be the displacement obtained in two dimensions. Using the approximation of
the height of the fault ellipsoid given in (3) and the displacement function (5), the pdfs
corresponding to Expressions (7) and (8) are found to be:

(B — 1/7)dos /"

fn = B
(d/)l/y—l
f(dd,1) = PP 0<d <d (54)
sy = @ (G Yndg T
& fydl/’Y dBs—1/7+1
By —1/7 dB=

- ' 4 > dys.
v(Bs—1/7)+1 (d’)ﬁ3—1/7+1’ Z Qo3

The last expression is equal to the pdf in Expression (15), omitting conditioning on I = 1.

B.2 Fractal distributions: width

The pdf of the width W in three dimensions given in Expression (18) is

u3
H3Wys
fs(w) = st w 2> Wog.

Let W' be the fault width obtained in two dimensions. Using the approximation of the
height of the fault ellipsoid given in (2) and the relationship (4) between w' and w at a
given position of intersection, the pdfs corresponding to Expressions (7) and (8) are found
to be:

(u3 — Dwhs ™!

ffy = L=
) = (59
fw'l) = /oo w\/w;”iiw.(“?’ _11)13;”53 dw. (56)
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The latter integral can be solved using the substitution w = w’/ cos u, which gives:

w'(ps — Dufy™ /“/Q(Cosu)m,du:wﬁs—%ug—n C((us+1)/2) V7
0

(wr)rs+t (wyes T((ms+2)/2) 2

f(w'1) =

This is the pdf in Expression (19), omitting conditioning on I = 1.

B.3 Exponential distributions: displacement

The pdf of the maximum displacement D in three dimensions given in Expression (24) is
fd) = Aexp(=Ad),  d >0,

Let D" be the displacement obtained in two dimensions. Using the approximation of the
height of the fault ellipsoid given in (3), the pdf corresponding to Expression (7) is found
to be:

)\1—1—1/7’

fldl) = = dM7 exp(—Ad).

(14+1/7)
This is the pdf of a gamma distribution. The function f(d’|d,1) is the same as in the
fractal case, given in Expression (54). The integral in Expression (8) gives the pdf of the
displacement in two dimensions:

11 L(/T=1/7+ 1, Ad) T

f(dl|1) = 771)‘1/7(61,) F(l + 1/7_) ) Y > H‘—T

Substituting D' by D and f(d') by f2(d) and omitting conditioning on I = 1, Expression
(25) is obtained.

B.4 Exponential distributions: width

The pdf of the width W in three dimensions given in Expression (28) is
f3(w) = prw™ exp(—pw7), w > 0.

Let W' be the width obtained in two dimensions. Using the approximation of the height
of the fault ellipsoid given in (2), the pdf corresponding to Expression (7) is found to be:

1+1/7

flwl) = -

WWT exp(—pw"),
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while f(w'|w,1) is the same as in the fractal case, Expression (55). The integral in Ex-
pression (8) gives the pdf of the width in two dimensions:

11 Tp1+1/T . 00 wT—l " g -
f(w|)—mw/w, WGXP(—PW) w, (57)
which is the pdf given in (29). For 7 =1 the integral becomes

o 1

w'|1) / w ex w) dw = 2w'/ S —
1) - F? pPw exp(—pw) e Wy vy o

Using the substitution w = w’z the integral can be written as

exp(—pu'z) dz = pru' Ko(pu),

o 1
w/ 1 — Zw//
where Kj(-) is the Bessel function described in Appendix C. Substituting W' by W and
f(w') by fo(w) and omitting conditioning on I = 1, Expression (30) is obtained.

C Special Functions

The gamma function, incomplete gamma function and the modified Bessel function are
described below, see for example Abramowitz and Stegun (1965).

C.1 Gamma function and incomplete gamma function

The gamma function I'(-) and the incomplete gamma function T'(-,-) is given by the inte-
grals

['(n) :/ t" e tdt, ['(n,a) :/ t" et dt.
0 a

C.2 DModified Bessel function

The modified Bessel function of order v, K, (), is the solution of the differential equation

d*w dw
Pt t— — (P + 1) =0
o i (t* +v*)w =0,
and can be expressed by the integral

Kl,(t) — \/7_r(t/2)y) /100(22 _ 1)1/—1/26—152 dz.

I'(v+1/2
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For v = 0,1 the expression simplifies to

o 1
Ky(t) = /1 m-e’” dz,

K (t) = t/ V22 —1-e“dz.
1

For large |t|, the modified Bessel function of order 0 can be approximated as

Cfm o (-1 (4-1)(A-9) (A—1)d-9)(4-25)
Ko(t) ) 57¢ <1 T T T e 31(81)°

see Abramowitz and Stegun (1965).
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Sampling algorithm for estimating Bayes factor

Hilde G. Borgos

Abstract

Bayes factor can be used to choose between two specified models, based on avail-
able observations, without any requirement of nested models. In the case of equal
prior probabilities of the two models, Bayes factor is given as the posterior odds ratio
of the models. Evaluation of Bayes factor includes solving of integrals, which in most
cases can only be solved numerically. This work presents an McMC algorithm con-
structed to estimate Bayes factor when the available observations contain sampling
errors. The McMC algorithm allows simultaneous sampling of the model parameters.
The posterior distribution of the unknown, high-dimensional, underlying variables is
assumed to be of a form where the bulk of the variables are analytically tractable,
while only a low-dimensional subset needs to be sampled from by the use of McMC.
The performance of the algorithm is studied by considering a special case of exact
observations where Bayes factor is analytically tractable, thus the estimates can be
compared to the corresponding analytical values.

1 Introduction

In the work presented by Borgos (2000), two possible distributions of the size of geological
faults are studied, where the size is represented as either maximum displacement or hori-
zontal extent of the fault. It is of interest to decide which distribution is most likely to be
the correct one, based on available observations. Observations of faults are often non-exact,
and knowledge of the sampling procedure should be incorporated when defining the model
choice problem. In addition to the model choice, it is of interest to make inference about
the underlying fault population. This inference is based on the posterior distribution of
the model parameters and the fault sizes.

Bayes factor can be used as a criterion for model choice, see Kass and Raftery (1995) for
an overview. In many problems encountered, Bayes factor can not be found analytically,
but must be approximated using numerical integration techniques, see Evans and Swartz
(1995). Among the techniques available for numerical approximations, Markov chain Monte
Carlo (McMC) sampling is well suited for dealing with complex, high-dimensional distri-
butions, see for instance Besag et al. (1995), Han and Carlin (2000). McMC techniques



can be used to estimate Bayes factor, for example by including a model indicator in the
sampling, as described by Carlin and Chib (1995).

The current paper presents an McMC algorithm constructed with the aim of solving the
model choice problem encountered by Borgos (2000). The unknown quantities involved in
this work consist of a stochastic variable, and model parameters describing the distribution
of the variable under each model. The dimension of the unknown stochastic variable is
high, and possibly unknown. The dimensions of the model parameters are low under both
competing models, and in general need not coincide. The posterior distribution of the
high-dimensional variable is assumed to be analytically tractable, and under both compet-
ing models inference about the model parameters can be based on posterior distributions
obtained by an analytical integration over the high-dimensional variable. Thus the high-
dimensional variable need not be included in the sample space of the McMC algorithm.
General model choice problems of this kind are considered.

A Metropolis-Hastings algorithm is presented, where the target distribution is defined
inspired by the target distribution of the Gibbs algorithm presented by Carlin and Chib
(1995), including a model indicator as a parameter. The target distribution is constructed
with the aim of estimating Bayes factor and the model parameters of the preferred model.
The target distribution is not uniquely defined however, but leaves some freedom of choice
that will affect neither the value of Bayes factor nor the posterior distribution of the
model parameter under the preferred model. The freedom of choice in the definition of the
target distribution is exploited to optimize the performance of the McMC algorithm. The
estimator of Bayes factor is expressed through a statistic of the realizations from the McMC
algorithm. Minimization of uncertainty of the estimator of Bayes factor is complicated,
but instead minimization of the uncertainty of the statistic involved in the estimator is
used as a criterion for optimality.

The general model choice problem is presented in Section 2, and Section 3 gives a discus-
sion on estimation of Bayes factor based on McMC sampling. The model choice problem
encountered by Borgos (2000) is summarized in Section 4, and in Section 5 the general
behavior of Bayes factor and the performance of the McMC algorithm on this particular
problem is evaluated.

2 Model Choice Problem

A high-dimensional stochastic variable Y is believed to originate from one of two possible
models, where the stochastic variable M € Q,,, = {my, m2} = {1, 2} indicates which model
is the true one, model 1 or 2 respectively. Under model m, the probability density function
(pdf) of Y is defined as f(y|m,y,), where ¥,, € Q, is a low-dimensional stochastic
vector of model parameters under model m. The dimensions of the parameters ¥; and W,



under the two models need not coincide. The model parameter of model m is assumed to
have a proper prior f(t,,|m), thus the joint distribution of ¥ and ¥, is

FY hmlm) = f(ylm, ¥m) f (m|m). (1)

The aim of this work is to decide which model is most likely, and to make inference about
the model parameter ¥,, corresponding to the favored model m and the variable Y.

The parameter V¥, is unknown and the variables Y are not observed exactly, but inference
can be made based on observations X. The observations can include different types of er-
rors, like precision errors, bias and censoring. After a model choice has been made, the pos-
terior pdfs of interest are the conditional pdfs f(y, Y|z, m) = f(ylx, m, ) f(Vn|2, m),
where m is the preferred model. The observations X are described by a likelihood func-
tion h(x|y, m, ) under model m, depending on both the high-dimensional variable Y
and the low-dimensional model parameter ¥,,. However, the likelihood function and prior
distributions are assumed to be of a form where

h(@lm, ) = / W@y, m, ) f (ylm, ) dy @)

is analytically tractable. Thus the likelihood function can be reduced to only depending
on a small set of variables. The posterior distribution of ¥,, under model m can now be
expressed as

fWmla, m) = const x h(|m, m) f (¢m|m), (3)

and inference about ¥, can be made based on an analytical randomization over Y. The
posterior distribution of Y under model m, conditioned on ¥,,, is given by

h(w|y7 m, wm)f(y|m, wm)
h(z|m, ) '

Bayes factor can be used as a criterion for model choice when two or more alternative
models are suggested, without any requirement of nested models. See Kass and Raftery
(1995) for an overview of Bayes factor. In the case of two competing models, the two
outcomes m; = 1 and my = 2 of the indicator variable M are assigned prior probabilities
f(my) and f(msy), which are assumed to be known. Bayes factor is defined as the ratio
between the posterior odds ratio and the prior odds ratio:

fmilz) f(my) _ f(almy)
flmolz)  flma)  f(z|ms)
If there is no prior reason to prefer one model to the other, the prior distributions are

chosen as f(m;) = f(ms) and Bayes factor equals the posterior odds ratio. If Bis(x) > 1
the observations favor model 1, while if Bj(x) < 1 the observations support model 2. The

f(yle,m,n) = (4)

Bis(z) = (5)



marginal density function f(x|m) under model m is defined as

f(zlm) = / / By, 1m0 ) £ (1m0, o) f (o) iy iy
_ / B |, o) f () i (6)

From Expressions (5) and (6) it is observed that the value of Bayes factor does not depend
on the choice of prior probabilities f(m). Bayes factor can be interpreted as the ratio
between two normalizing constants, since f(a|m) is given as the normalizing constant in
the relationship in Expression (3):

f(z[m)

The marginal distribution in Expression (6) is analytically tractable only in specific cases.
In general, Bayes factor can not be analytically obtained, but must instead be estimated.
Estimation of Bayes factor is the main topic of this report.

f(Wm|z,m) = : (7)

The value of Bayes factor may depend strongly on the values of the hyper-parameters in
the prior distributions of ¥; and W,y. As discussed by Kass and Raftery (1995), the choice
of hyper-parameters can be critical to the result of the model choice. Thus strong prior
information about the parameters are desirable to give a reliable conclusion of the model
choice. Furthermore, only proper priors should be used. If improper priors are specified for
the model parameters, Bayes factor is only found up to an unknown constant. Alternative
analytical definitions of Bayes factors are suggested, giving factors less sensitive to the
choice of prior distribution. Some examples are the posterior Bayes factor (Aitkin, 1991),
partial Bayes factor and fractional Bayes factor (O'Hagan, 1991, 1995) and the intrinsic
Bayes factor (Berger and Pericchi, 1996). A common feature of these alternative Bayes
factors is that they combine an initial prior, which may be improper, with some or all of
the observations to obtain a proper prior for the parameter ¥,,. In this work the priors
f (¥ |m) are assumed to be well specified proper priors, and the original definition of Bayes
factor in Expression (5) is used.

3 Estimating Bayes Factor

The integrals in Expression (6), involved in the expression of Bayes factor, are in general
not analytically tractable. If no analytical solution is found, Bayes factor can be calcu-
lated by numerical integration, using for example asymptotic approximations or sampling
approaches like simple Monte Carlo, importance sampling or McMC sampling. Evans and
Swartz (1995) and Kass and Raftery (1995) discuss different estimation techniques. In this
work the focus is on estimation techniques based on McMC sampling. See, for example,



Besag et al. (1995) and references therein for an introduction to McMC theory. Han and
Carlin (2000) gives an overview of McMC algorithms constructed to estimate Bayes factor.

The aim of the current work is to calculate Bayes factor in order to choose between two
proposed models, and to make inference about the model parameter ¥,, and the unknown
variable Y under the favored model m, see Expressions (3) and (4). McMC techniques
enable simultaneous sampling of both the model indicator M and the model parameters
¥, and W¥,. The variable Y is not included in the McMC algorithm, but samples of the
variable Y can be generated from the posterior distribution in Expression (4) after the
model choice is performed and the corresponding model parameter is estimated.

Realizations from the posterior distribution of one specific model can be used to estimate
Bayes factor, see Kass and Raftery (1995) for an overview. Chib (1995) and DiCiccio et al.
(1997) use the fact that Bayes factor is given as a ratio between normalizing constants in
posterior distributions, see Expressions (5) and (7). The normalizing constant under the
specified model can be estimated based on the realizations, and by doing this for both
models under consideration an estimate of Bayes factor can be obtained. Other algorithms
constructed to estimate normalizing constants or ratios between normalizing constants can
also be used to estimate Bayes factor, see Gelman and Meng (1998) for an overview.

Instead of considering one model at a time, the model indicator M can be included as
a variable in the McMC algorithm. The Reversible Jump McMC algorithm suggested
by Green (1995) generate realizations of (M, U,,) from f(m,p|x). The sample space
of the algorithm is defined as €, x (€, U €y,). Carlin and Chib (1995) described a
Gibbs sampler on the sample space €, x Qy, X Q,, giving realizations of (M, ¥y, U,)
from the posterior pdf f(m,v1,1s]x). In order for this pdf to be completely defined,
pdfs w(¢p,.|m), m. # m, must be specified. Carlin and Chib (1995) denote these pdfs
pseudopriors or linking densities, which are defined under the assumption that W, is
independent of ¥, and X, given M = m. Dellaportas et al. (1998) suggested combining
the two above mentioned algorithms. In the Gibbs algorithm of Carlin and Chib (1995),
update steps of the model indicator are replaced by an acceptance/rejection step based on
the Reversible Jump algorithm of Green (1995). Other sampling algorithms based on the
idea of including M as a variable are presented by Carlin and Polson (1991) and George
and McCulloch (1993).

3.1 McMC algorithm

In this work Bayes factor is estimated by the use of an McMC algorithm where the model
indicator M is included in the sampling scheme. A target distribution 7(m, ¥, ¥m.|T),
m, # m, is defined, adopting the concept of pseudopriors. This pdf is defined with the
aim of estimating Bayes factor and the model parameter of the favored model, and it is
shown below that all pseudopriors can be chosen arbitrary without altering the quantities



of interest. The target distribution is defined as

Tr(madjmad}me) = ﬂ-(m)_lh’(m|ma¢ma¢m*)f(¢m|m)7r(¢m*|m)7r(m)
= w(®) " h(@|m, Pm) f(Ym]m) T (Ym, [m)m (m). (8)

Throughout this work the notation 7(-) is used do denote pseudopriors or to stress that a
pdf is defined with respect to the pseudopriors. In the likelihood function h(x|m, ¥, ¥m. ),
M is an indicator of which W,, applies to the observations, and the likelihood function
is assumed to be independent of ¥,, . Furthermore, ¥,, and ¥, are assumed to be
independent given M. Since Bayes factor is independent of the actual value of the prior
pdf f(m), see Expression (5), any proper discrete pdf with 7(m) > 0 for all m € €, can
be used as a pseudoprior for M in the target distribution (8). As pointed out by Carlin
and Chib (1995), the pseudoprior m(t,,.|m), m, # m, can be chosen as any proper pdf
with 7(¢y,. |m) > 0 for all ¢,,. € Q. This is illustrated through the expression

r(elm) = [ xm) txm, v i
= [ [ bl ) 7 . 10) i i,

x)m(x) di)yy, A,

_ / (@11, ) f (| 2) Ao
= f(z|m) (9)

showing that 7(x|m,)/7(x|ms) gives the correct value of Bayes factor regardless of the
form of the pseudopriors, see Expression (5). Furthermore, the posterior pdf

(|, m) = / (m|2) =7 (1, Y, o, |2) i,

= [l (@) bl v Gl o, ) m)

- / (@ lm) (@l Yom) f W) (o, |2) i,
= Falm) " B, dm) f ($lm)
= F(dmle.m) (10)

is also correct, using Expression (9), and inference about W, is not affected by the pseu-
dopriors. Finally, the posterior distribution of ¥ under model m, Expression (4), is also
independent of the choice of pseudopriors.

Although all marginal distributions involved in the expression of Bayes factor and the
posterior distributions of interest are independent of the pseudopriors, some of the other
marginal pdfs may depend on them. Some examples are:

m(mlz) = w(z) ‘w(xlm)r(m) = w(z) ' f(zm)(m)

T(Yml®) = f(m|@, m)m(m|z) + 7 (Ym|m.)m(m.|z).
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The introduction of pseudopriors 7(¢,|m,) and 7(¢y,.|m) on the model parameters is
required for the posterior distribution of (M, ¥,,, ¥,,.) to be completely specified. Fur-
thermore, Expression (5) implies the possibility of introducing a pseudoprior 7(m) also for
the model indicator, without altering the results. These pseudopriors constitute a free-
dom of choice in the specification of the target distribution (8), which will be exploited to
minimize the uncertainty in the estimate of Bayes factor. The uncertainty of the estimate
depends on the behavior of the McMC algorithm. Before optimal choices of pseudopriors
can be discussed, the McMC algorithm is presented and an estimator of Bayes factor is
suggested.

A Metropolis-Hastings algorithm is constructed to sample from the target distribution
in Expression (8), see Hastings (1970). The algorithm involves sampling of the model
indicator M and the model parameters ¥; and W5, conditioned on observations X . Three
transition steps are defined within one iteration of the algorithm, one for each variable. The
McMC algorithm for estimating Bayes factor based on observations X can be expressed
as follows:

Algorithm 1

Let Q = Qp, x Qy,, x Q.. be the sample space of (M,¥,,, ¥, ) and assume the target
distribution in Ezpression (8) satisfies m(m, Pm, U, |2) > 0;Y(m, Y, Ym.) € Q.

o Initiate

— Arbitrary (m(0), 1, (0), ¥, (0)) € Q.
e [terate, t=1,2,...

— Step 1:
x Denote m(t —1) =m, Py, (t — 1) = ¥y, and Py, (t — 1) = Yy, .
x Propose m' from q(m'|m).
x Calculate
form' =m, # m:

m(m.)g(m|m.)

= (m)q(m.m) (1)

% h(a:|m*,7,/)m*)f(1/)m* m*) % 7T('¢)m|m*) }
T (V. M) h(x|m, m) f(Ymlm) )’

a(m,|m) = min {1,

form' =m: a(m|m) =1
x Let: m(t) = m' with probability a(m'|m),
m(t) = m else.



— Step 2:
Denote m(t) = m and Y, (t — 1) = p,.

Propose ¥ from q(i|tm, m).
* Calculate

*

*

a(z/);nw)m,m) = min {1’ h(:c|m, %z)f(T/}Mm)Q(T/)mW;mm) } ) (12)

h@|m, ¥ f (U |m)q (¥, vm, m)

Let: i (t) = !, with probability o), |Vm, m),
U (t) = Yy, else.

*

— Step 3:
x Denote m(t) = m and p,, (t — 1) = ¢y, where m, # m.
s« Propose 1,  from q(), |, m).
x Calculate

(i,

7 (Y1, [m) 4 (Y. [ 14, ) } (13)

wm*am) = min{l’ﬂ-(’g/)me)Q( :n* ¢m*am)

Let: by, () = oy, with probability a(Yy, |V¥m., m),
Um. (1) = . else.

*

The variables (M(t), ¥,,(t), ¥,,.(t)) at iteration ¢ of the algorithm have marginal pdf
7t (M, Yy Y, |2) where limy o0 7 (M, Yy Y, |2) = 7(M, Y, Y, |2). The systematic scan
of the three steps of the algorithm does not imply a time-reversible Markov chain, but the
chain is both aperiodic and irreducible. Lack of time-reversibility has no effect on the
estimates presented below. Time-reversibility can be obtained by drawing at random the
order of the steps at each iteration. Note that if the pseudoprior is used as transition
density for W, , ¢(¢l,. |Ym.,m) = w(¢], |m), the acceptance probability (13) becomes
(), |m.,m) =1 and the change is always accepted.

Both Bayes factor Bia(x) and the model parameters ¥; and ¥, can be estimated based
on realizations obtained from McMC simulations. Suppose that n subsequent samples
{m? ] ;5 = 1,...,n} are gathered after convergence of the algorithm is reached. Es-
timation of Bjs(x) is essentially the same as estimating the posterior pdf w(m;|x), and a
natural estimator of the latter is given by the relative number of outcomes of model 1:

n

i (ma|e) = % SO 1M = my]. (14)

i=1

The marginal distribution of M/ is 7(m|x), thus the mean and variance of the estimator



are given as

B[ (ma|e)] = %ZE[I[MJ —my]] = m(mife)
Var[#(mi|z)] = % S Var [1[067 = m]] + % ZiCov[l[Mﬂ ] 1M = ]
— %ﬁ(m1|m)(l—ﬂ(m1|m))+% ’ ; v(k), (15)

where (k) = Cov[1[M7 = m,], 1[M7** = m,]] is the autocovariance at lag k. A natural
estimator of Bjy(x), see Expression (5), is given as
Bolw) = Lomile) (i) (16

1 —A(my|z) 7(m)

Recall that from the definition of Bis(x), its true value is independent of the pseudoprior
m(m). However, the distribution of the estimator Bjs(x) depends on the choice of m(m).
Note that the mean and variance of Bys(x)

B [Bu(@)] = ﬂmz)E[ (i |x) }

m(my) 1 —7(my|x)

Var [Bu(m)] - (”(mZ) ) Var {M} (17)

m(my) 1 —7(my|x)
need not be finite, since 7 (mq|x) may equal 1.

An estimator of the parameter value in model m is given by the empirical posterior mean

Z;’L:I \I/{nl[Mj = m]
ST ARG =m]

U, = E[U,,|z,m] = (18)
The subset {1 |m? = m} of realizations from the McMC algorithm can also be used
to describe the complete posterior pdf f(¢p,|z, m). Finally, realizations of Y under the
favored model m can be obtained by sampling from the conditional posterior distribution
f(ylz, m,1,,) given in Expression (4). An example is given in Section 4.2, where it is
explained how f(y|x, m,¢y,) can be sampled from by the use of rejection sampling.

3.2 Pseudopriors

The pseudopriors (1 |ms), m(12|m1) and 7(m) can be chosen as any proper pdfs satisfying
T(VYm|ms) > 0,y € Qy,., m = my, mq, and 7(m) > 0;Vm € Q. In search for good
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pseudopriors, the major goal is to reduce uncertainty in the estimator of Bayes factor.
The pseudopriors are chosen focusing on the behavior of M in the McMC algorithm. In
addition, the transition densities ¢(¢;,|¥m, m) and q(¢), |¥m., m) in Algorithm 1 should
be chosen to span the sample space of the model parameters ¥; and ¥, adequately.

The estimator (16) of Bayes factor need not have a finite mean and variance, see Expression
(17), and this complicates evaluation of the properties of the estimator. The precision of
Biy() is influenced by the properties of the estimator 7 (m,|z), see Expression (14), and
minimization of the uncertainty of the latter estimator is considered. If the variables M7 are
independent, (k) = 0 for k # 0 in Expression (15), and Var [7(m,|z)] = n tx(my|x)(1 —
mw(my|x)). However, the variance of of 7(m;|x) is further reduced if the autocovariance at
lag 1 is negative, y(1) < 0, giving a negative correlation between succeeding realizations
of M. The extreme case is y(1) = —Var [1{M = m]] = —n(m|z)(1 — 7(m;|x)), where M
alternates periodically between m; and ms, a situation that arises if the probability of a
move from m to m’ in one step of Algorithm 1 satisfies:

0, m"'=m
1, m'=m, #m.

P{M(t) = m'|M(t — 1) = m} = q(m'|m)a(m'|m) = { (19)
If this extreme case should actually be obtained, the periodicity of the Markov chain can be
removed through minor adjustments of ¢(m'|m). However, in practice the requirement will
never be exactly reached, and periodicity is no problem. Although probably never obtained,

this extreme case still serves as a target for optimal achievement. The requirement (19)
can only be fulfilled if

0, m"=m

a(mafm) =1, q(m'|m) = 1[m' # m] = { L om' =m. #m.

Thus the acceptance probability in Expression (11) should satisfy

m(ms) . h(x|mu, Y. ) f (Y. M) ) 7 (tm M) } =1, (20)
m(m) (. |m) h(@|m, Ym) f (m|m) ’
while a(m|m) = 1 always holds in Algorithm 1. The two last ratios in a(m.|m) are

independent of the model parameters if their pseudopriors are chosen equal to the posterior
pdfs,

a(ms|m) = min {1,

T(ilme) = f(ile,ma),  7w(Wolmu) = f(el@, ma). (21)
The two ratios are then given as

helm, Ym ) f(Gmma) [ @mle,m) — f(®]m.)
f (. |22, m.) h@|m, ) f (Ym|m) — f(2|m)

resulting in the requirement

- Bm*m(m)a (22)

a(m,|m) = min {1,

Bm*m(a:)} =1, (23)



which is fulfilled if the pseudoprior of M is chosen as
m(m1) = (1+ Bua(z)) . (24)

Thus the requirement in Expression (19) is obtained if the transition density is chosen as
q(m/|m) = 1[m’ # m] and the pseudopriors are chosen as given in Expressions (21) and
(24). In this case the variance of the estimator 7(m;|x) is minimized. The fulfillment of
the requirement in Expression (23) implies 7(m|x) = w(m.|x) = 0.5, which coincides with
the estimate 7(m|x) = 0.5 obtained when M alternates periodically between m and m,.

The optimal choice of pseudopriors is expressed through Bayes factor and the posterior pdfs
of the model parameters, which are the unknown quantities the algorithm is constructed
to estimate. Thus an optimal algorithm can only be constructed if the answers are known
beforehand, in which case there would be no need for the McMC sampling. However, the
knowledge of the optimal choice can serve as a guideline for how to choose the pseudopriors,
by choosing pdfs sufficiently close to the optimal solution. One way of doing this is to run
an McMC algorithm sampling independently from f(¢1|z, m1) and f(o]x, ms), and use
the realizations of ¥y and ¥y to estimate normalized posterior pdfs and to give a rough
estimate of Bayes factor. This sampling can be performed by Algorithm 1, using only
the transition kernel (¢! |t,,, m). If r realizations W/ j = 1,...,r are generated, the
pseudoprior of ¥, can be chosen as a kernel density estimator

T(Wmlne) = Hmle,m) = 3 gl ), (25)
j=1

where the kernel g(¢,,[%! , h,,) is a proper pdf parameterized by 1/ and h,,, see Silverman
(1986). By including the observations 1, in the parameterization, the kernel densities can
be scaled to give normalized densities on 2, and the pseudoprior is defined as a proper
pdf conditioned on ¥, € €, . The pseudoprior of M in Expression (24) is based on a
preliminary estimate of Bayes factor, given by

312(:1;) =

lz h(@|ma, 1) f (ilma) m(h3|m1) (26)

L4 (9 [ms) h(@|ma, 3) f (Y3 ma)”

where J}{n are arbitrary values of ¥,,, picked from the set of realizations. This is a similar
approach as used by Chib (1995), who emphasize that normalizing constants can be es-
timated by evaluating the likelihood function, prior pdf and estimated posterior pdf only
for one parameter value. From Expression (22) it is observed that if the optimal choices of
pseudopriors 7(1,,|m.) are used, Expression (21), the estimate Byy(2) will give an exact
solution regardless of the values of 17 . If the pseudopriors 7 (¢, |m.) are sufficiently close
to the posterior pdfs, the rough estimate (26) can be based on a single value U, €.,
L = 1. In this case, when the pseudopriors from Expression (25) are used the estimate
of the posterior pdf is assumed to be best near the mode of 7 (¢,,|m.), and ¥m should be
chosen from this area.
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The choice of pseudopriors aims at obtaining negatively correlated realizations of M, to
minimize the uncertainty in the estimator 7 (my|x). Since the optimal choice of pseudopri-
ors can not be reached, the extreme case with ¢(m'|m) = 1[m' # m| and a(m'|m) = 1 is not
fulfilled. The transition density ¢(m'|m) is left unchanged, but the acceptance probability
for a change of model will in practice depend on both the model M and the parameter
values v,,, and 1,,,,. Note that the negative correlation obtained when using optimal pseu-
dopriors only applies to M, and not the model parameters ¥,, and ¥, . The correlation
structure for the model parameters depend on the transition kernels ¢(¢! |¢,, m) and
q(¢,. |¥m., m) in Algorithm 1, which are left unspecified in the discussion above.

The McMC algorithm is run twice, first to adjust pseudopriors, next to estimate Bayes
factor and the model parameter of the favored model. Note, however, that although both
runs of the algorithm use the same observations, the limiting distributions of interest in
the model choice problem are not influenced by this repeated use of the data. The first
McMC algorithm sampling from the posterior distributions is only used to improve the
performance of the algorithm by adjusting the pseudopriors and exploiting the freedom
in choosing these pdfs. In the second and final run of the McMC algorithm, the limiting
distributions involved in the expression of Bayes factor and the posterior pdfs of the model
parameters are unaffected by the pseudopriors, see Expressions (9) and (10).

3.3 Uncertainty in estimated Bayes factor

In general the acceptance probability a(m/|m) is influenced by the parameter values 1,
and 1, , thus it is not straightforward to quantify the uncertainty in the estimated Bayes
factor. In the case of {M7;j =1,...,n} being independent realizations from the posterior
pdf 7(m|z), an approximate confidence interval for Byy(x) can be obtained. Then P{M7 =
my} = w(my|x) = p and nw(mq|x) follows a binomial distribution n7w(m;|x) ~ bin(n,p),
see Expression (14), which for large n can be approximated by a normal distribution
ni(my|z) ~ N(np,np(1 — p)). From Expression (5) p can be expressed as a function of
Bis(x), and combined with the normal approximation this is used to find an approximate
(1 — @)100% confidence interval for Bs(x):

5 . . 1/2
5 () o T(M2) Va2 Ang (ma ) (1 — 7 (mi|z))
Biy(x) + w(my) (1 = 7 (my]a))? 1+ (1 + Ui/z ) . (27)

where w2 is a critical value of the standard normal distribution. The interval is not
centered at Bi(x), but it is easily shown that the estimator is covered by the interval.

If the pseudopriors are sufficiently well adapted so that negatively correlated samples of
M are generated, the approximate confidence interval will be a conservative interval with
too wide confidence limits. If on the other hand samples of M are positively correlated,
the estimated confidence interval obtained under the assumption of independent samples is

12



likely to give too narrow confidence limits. In order to reduce the correlation, realizations
used in the interval estimation should be separated by a number of iterations, on the
expense of having fewer samples. The separation length depends on the mixing of the
algorithm. Although not all samples are used to find a confidence interval for Bayes factor,
the best point estimate Blg(a:) is still obtained by using all samples.

4 Example: Geological Faults

In the work by Borgos (2000) two models are suggested for the distribution of the size of
geological faults. The fault sizes of k faults are represented by a vector Y = (Y7, Y5, ..., Y%)
of iid stochastic variables, where size is measured as maximum displacement, and under
model m the pdf of Y is given by

k
f(ylm, k,00) = T [ f(yilm. b (28)
j=1

The number of faults, K, is treated as a stochastic variable in cases where also the dimen-
sion of Y is unknown. A power law, or fractal, distribution is frequently used to model
fault displacements, see for example JSG (1996, Vol. 18). This fractal model corresponds
to the Pareto distribution,

f(y|m1701) = y91+17 Yy 2 Yo, 91 > 07 (29)

which is suggested as the distribution of Y under model 1. The pareto distribution is
described by two parameters, ©; and y,, where the lower limit yy > 0 must be defined in
order for the pdf f(y|m, ) oc y~ "+ of the power law distribution to be a proper pdf.
The sample space of ©; is €y, = (0, 00), while the lower limit y, is assumed to be known.
As a competing model, a truncated exponential distribution is suggested:

f(ylma, 03) = 05 exp(—02(y — yo)), y > yo, 0> > 0. (30)

The exponential distribution is described by the parameter ©,, with sample space {2y, =
(0, 00). Exponential distributions of fault displacements have been observed, for example,
on mid-ocean ridges, see Cowie et al. (1994), and in clay models, see Spyropoulos et al.
(1999) and Ackermann et al. (1999). A common lower bound yy > 0 is used for the two
competing distributions. This enables calculation of Bayes factor based on observations
where the limit of resolution has imposed a lower bound on observable values.

It is of interest to estimate true fault sizes Y based on observations X, including estimation
of K if the dimension of Y is unknown. Two alternative sampling regimes are considered.
In Section 4.1 the case of exact observations is discussed, while the more general case of
non-exact observations is discussed in Section 4.2. In Section 4.3, Algorithm 1 is adapted
to the model choice problem for fault size distribution.

13



4.1 Exact observations

The simplest sampling situation is the case of exact observations X = Y, where all k&
variables are observed without any measurement errors. The likelihood function is defined
through a Dirac delta function 4(-):

k
Wy, m, 0,) = | [6(y; — =), (31)
j=1
thus with ¥, = ©,,, the likelihood function in Expression (2) becomes

k

h(@|m, 0,) = [ [ f(ajlm, 0,). (32)

j=1
Under the two suggested models in Expressions (29) and (30), this likelihood function can
be expressed as follows:

k

k
h(x|my,0;) = (H z;)7" - 0F exp{—6, Z(lnxj —Inmzg)},
j=1

j=1
k

h,(a:|m2, 92) = 9’26 exp{—92 Z(l'] — IL'O)},

j=1
where xy = yo. Both densities belong to an exponential family, and are given on the form
h(x|m, 0,,) = cp () 0 exp{ =0t ()}, (33)

where the functions ¢, (x) and t,,(x) are given as ¢;(x) = (H?:1 i)t e(x) =1, th(x) =

Z?Zl(ln z; —Inxg) and ty(x) = Z?Zl(xj — xp). From Expression (6) the marginal pdf of

X under model m is given as

f(xlm) = cp(x) /an exp{—bOmtm(x)} f (O |m) dbp,. (34)

This pdf can be found analytically if conjugate priors of the exponential family are chosen,
for example gamma distributions with hyper-parameters a,, and 3,,, with pdf

f(Omlm) = T(am) ™ 800  exp(—b0m/Bm);  bm >0, amy By >0 (35)

and mean and variance E [©,,|m] = a,, 3, Var [0,,|m] = a,,32,. The marginal pdf in (34)
is then found to be

Falm) = en(@)Cam) o5 [ 0 exp =037 + b ()} 0,

= (@)D (o) " T + k) B2 (B! + ti (@) (@m0, (36)
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and Bayes factor is given as

52 (6, + (@ — 20)™ ™ D(an)T(on + k)
(Bt + Z?Zl(lnxj —Inazg))utk T(a)T(ag + k)

Bis(x) = (H ) — (37)

The posterior distribution of ©,, under model m is a gamma distribution with parameters

(am + k) and (8,,' + t,n(2)) ™", and mean and variance

B (0t + k)
1+ Btm(z)’

Ba (am + k)
(1 + Bntm(z))?

Similar calculations can be executed using an ordinary exponential distribution with no

lower bound, replacing the function ty(x) with to(x) = Z?Zl ;.

E[0,,|®, m] = Var [0,,|x, m| =

(38)

4.2 Non-exact observations

Observations of fault sizes are in general often contaminated with measurement errors.
Furthermore, only a limited number N < K of the faults are observed. For each variable
Y there is a probability p(Y;) of observing the fault. The vector S = (5;,55,...,Sk) of
indicator variables describes which variables that are observed, where S; = 1 if variable Y}
is observed and S; = 0 otherwise. The number of observed variables is thus N = ZJKZ1 S;.
If a variable Y} is observed, the likelihood of the measured value, denoted Z;, is described
by the function h(z;|y;). The complete set of observations is denoted X = (S, Z).

The unknown variable K has the same interpretation under both models, being the total
number of faults. However, the posterior pdfs of K can differ significantly between the two
models, and instead of handling a problem of bimodality of K in the posterior, auxiliary
variables K and K5 are introduced to represent the number of faults under the two models.
The unknown dimension K, of Y under model m is thus included in the model parameter
U, = (K, ©n). Furthermore, depending on how prior knowledge about K, has been
obtained, the prior pdfs of K,, may be chosen differently under the two models. This is
discussed by Borgos (2000). The sample spaces of K; and K, are given as €, = Q, =
{0,1,2,...}. However, since both K; and K> must satisfy K,, > N, given the observations,
the likelihood function h(x|y,m,,,) has value zero for K,, < N. For K,, > N, the
likelihood function of the observations X is given as

ety m. ) = [T oo (1= ()= T] Al (39)
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The reduced likelihood function in Expression (2) is found to be

h(xlm, ¢m) = ][ /h(zj|yj)p(yj)f(yjlm,9m)dyj 11 /(1—p(yj))f(yjlm,9m)dyj

Jisi=1 J38;=0

=1

where
p(m, Op,) Z/p(y)f(ylm,ﬂm) dy,  h(zlm,0n) Z/h(ZIy)p(y)f(ylm, Om) dy.  (41)

For simplicity, the observed values z are renumbered from {j;s; = 1} toi = 1,...,n, where
n= le s;. In the work by Borgos (2000) the probability p(y) is an monotonely increas-
ing, piecewise linear function and h(z|y) is a uniform pdf on a closed interval determined
by y, thus the integrals in Expression (41) are analytically tractable.

The model choice problem is solved using the McMC algorithm described below. When a
model m has been chosen and the corresponding model parameters ¥, = (K,,, ©,,) esti-
mated, realizations of Y from f(y|x, m,¢,,), Expression (4), can be obtained by rejection
sampling. The posterior pdf of Y can be expressed as

_ h(2ily)p(y;) f (yslm, 0m) (1 —p(y;)) f (y;lm, 0,)
flyle.m, vm) = ] Wyl ) 11 o b

Jisj=1 J355=0

see Expression (40). The pdf f(y;|m,0,) can be used as a proposal distribution for all j,
and the sample y; is accepted with probability h(z;|y;)p(y;)/ max,{h(z;|y)p(y)} if s; =1
and with probability (1—p(y,))/ max,{1—p(y)}if s; = 0. For the piecewise linear function
p(y) and the uniform pdf hA(z|y) used by Borgos (2000), the maximum values are easily
obtained.

4.3 McMC algorithm

Algorithm 1 is used to solve the model choice problem for fault size distributions, and
to estimate the parameters of the preferred model. The algorithm is constructed for the
general case of non-exact observations. The target distribution in Expression (8) is now
given as

7T(m, (L |m) =

const X (1 - p(m7 Hm))kmin H h(zz|m7 Hm)f(kma 9m|m)ﬂ—(km*7 Hm*

=1

m)m(m), (42)
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where X = (S,Z) and ¥,, = (K,;,0,,). The pseudoprior of ¥,,, based on realizations

{i}, j = .,r from the posterior pdf f(¢y,|e, m), is given by the kernel density
estimate
1 < , ,
T(mm) = = > gk (bl i, Am) 9o (O |05, o). (43)
j=1

A truncated Gaussian kernel with variance o2, is used for ©,,, conditioned on ©,, € Q, .
A Poisson distribution with parameter \,, is used for the absolute value of K, — kJ ,
with equal probability of positive and negative difference. If k,, < kJ , conditioning on
K,, € Q. is included in the kernel density. The parameters o, and )\, are chosen as

Om = (4/3)75td(0,) 175, A = (4/3)Y/5 std(Kp) 75,

see Silverman (1986), where the standard deviations of ©,, and K, are estimated based
on the realizations {¢7 }, 7 =1,...,7.

There are three update steps within one iteration of Algorithm 1, updating M, ¥,,, and ¥,,,
separately. When M is updated, the transition density is chosen as g(m'|m) = 1[m’ # m)],
thus m' = m, is always suggested. The acceptance probability is given in Expression
(11), where g(m.|m) = q(m|m,) = 1 cancels. New values of ©,, and K,, are suggested
independently, using a transition kernel

A(Vra|om, m) = q(0,10m, m)q(ky, | km, m). (44)

A new value ¢ is suggested from a Gaussian distribution with mean 6, and variance 7, =
0.05E [0,,|m], truncated at 6, £ 57,,. Thus ¢(0,|0,,, m) = q(0,,]0,,,m). If 6/ <0, i.e.,
0, & Qy,., the acceptance probability in Expression (12) is replaced by a(¢], |tm.,m) =0

and the suggested values ¢/, = (0!, k! ) are not accepted, regardless of k,, and k..

The current number k£, is suggested changed to either k,, + 1 or k,, — 1, choosing the first
alternative with probability 3(k,,), the second with probability 1 — 3(k,,). Since K,, > n,
the function value 3(n) is chosen as 3(n) = 1. An increase from k,, to k,, + 1 corresponds
to adding a new element to the vector Y of faults, where the new element has k,, + 1
possible index numbers. A decrease from £k, to k,, — 1 corresponds to removing one of the
unobserved faults, that is, removing a Y; where S; = 0. There are then k,, — n possible
indexes 7 to choose from. The two alternative transition kernels of K, are thus given as

ﬁ(km) . 1-— ﬁ(km)
PRSTEE Q(km—1|km,m)—m-

q(kpm + 1kp,m) =

When 6/, > 0, the acceptance probability for the suggested change in ¥, is given in
Expression (12). The pseudoprior (43) can easily be sampled from, and is used as transi-
tion kernel for W,,, .. Thus ¢(¢/, |tm.,m) = (¢, |m) and the acceptance probability in
Expression (13) is a(¢), |t ,m) = 1.
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The McMC algorithm can easily be simplified to deal with the case of exact observations.
The likelihood function from Expression (40) is replaced by the function in Expression
(32), and the number of faults, K, is no longer treated as a stochastic variable. This has
implications on the pseudoprior and the transition kernels of ¥, and ¥, , where all terms
involving K are removed.

5 Evaluation of the McMC Algorithm

The behavior of Bayes factor and the performance of Algorithm 1 are examined by consid-
ering the special case of a Pareto distribution and an exponential distribution as competing
models, see Section 4. Bayes factor can be found analytically in the case of exact observa-
tions, which permits a comparison of the estimated Bayes factor with the analytical value
in Expression (37). The posterior means of the model parameters can be estimated based
on samples from the McMC algorithm, see Expression (18), and can be compared to the
exact posterior means in Expression (38).

Consider the case of exact observations. In some of the simulation studies presented below a
true model m is chosen, with a corresponding model parameter ,,,, and a set of observations
X = (X1, Xy, ..., Xg) is generated from f(x|m,#,,) using the distributions presented in
Section 4. Bayes factor is then calculated for a selection of values of the hyper-parameters
in the prior pdf of ©,,,, m, # m. Gamma priors are used, Expression (35), with a common
constant shape parameter a; = ap = 4 for both parameters ©; and ©,. For the true model
the scale parameter is chosen as 3, = 6,,/a,,, thus the chosen parameter value coincides
with the prior mean E [©,,|m] = a,,3,,. For the other model the scale parameter is given
as fm. = E [O,.|m.] /am., where a number of values of the prior mean E [©,,.|m.] is used
to explore Bayes factor. Before the simulation study is carried out, the range of values of
E [0,,.|m.] to be used was determined by a preliminary simulation study.

To study the convergence of Algorithm 1, both the convergence of ¥,, and and the mixing
of M should be explored. The convergence of the algorithm can be examined by plotting
different functions of the variables for realizations from the simulations. Several runs of
the algorithm should be compared, using different initial states, to reveal any dependence
on the starting point. The burn-in period of the algorithm is used to secure convergence
of ¥, to the posterior distribution under model m, and M is of no interest. During these
iterations independent simulations of ¥,, and ¥,, are performed with their respective
posterior distributions as target distributions, using transition kernels ¢(¢! |1, m) and
q(l, |tm., my). After the burn-in a continued sampling of ¥,, and ¥, from their respec-
tive posterior distributions is performed, giving realizations from which the pseudopriors
can be defined. Finally, the McMC algorithm is run with initial states ,,(0) chosen as the
final realizations of the preliminary runs and m(0) uniformly drawn from €,,,. The mixing
properties of the Markov chain is then examined based on the realizations of the model
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indicator M.

In Section 5.1 the behavior of Bayes factor is studied through randomization of X, while
in Section 5.2 the performance of Algorithm 1 is explored in the case of exact observations,
using a single dataset X generated from f(x|m,#,,). In Section 5.3 an example with
non-exact observations is presented.

5.1 Behavior of analytical Bayes factor for exact observations

The behavior of the analytical Bayes factor in the case of exact observations, see Expression
(37), is studied by generating 25 000 realizations of the vector X = (X1, X5, ..., X}) from
the Pareto distribution with parameter ©; = 1.0 and lower limit zy = 2. For each set
of observations, Bayes factor is calculated for a selection of prior mean values E [Oq]ma].
Model 1 is known to be the correct model, thus Bayes factor should be Bys > 1. However,
due to natural variations in the generated samples, the wrong model, model 2, in some
cases fits the data better than the true model. Table 1 reports the results for sample
sizes of k = 10 and k£ = 100, listing the mean values of Bayes factor based on the 25 000
samples. The geometric mean and the median are also reported. The empirical probability
P (B2 < 1) gives the proportion of samples where model 2 is favored. Within the range
of prior mean values of ©, reported in Table 1, Bayes factor can be By < 1 for as much
as 25% — 30% of the realizations for sample sizes of k& = 10. As the size of the dataset
increases, the proportion of wrong conclusions decreases, and for £ = 100 Bayes factor
favors model 1 in allmost all simulations.

Table 2 lists the result of a similar simulation study, where 25 000 samples of size £ = 10
and £ = 100 are generated from the exponential distribution with parameter @, = 0.2
and lower limit xy = 2. Bayes factor is evaluated for different values of the prior mean

E [0©1|m].

The results of Tables 1 and 2 show that for exact observations from either the Pareto or the
exponential distribution, there is usually no doubt which model is the right one, even for
fairly small datasets. In the case of non-exact observations however, there may be greater
uncertainties about which model is most likely to be the correct one.

5.2 Performance of the algorithm for exact observations

The performance of Algorithm 1 in the case of exact observations is studied by generating
a dataset X consisting of £ = 10 observations from model 1, a Pareto distribution with
parameter ©; = 1.0 and lower limit xy = 2. For this particular dataset, the posterior mean
of ©1 is E[O|x, m;] = 0.732, see Expression (38), while the prior mean is E [©|ms] =
1.0. Inference is based on realizations from the algorithm, repeating the procedure using
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E [O;]m;]
0.05 0.10 0.20 0.30 0.40
arithmetic mean ~ O(10*")  O(10*?) O(10") O(10™) O(10%)
B,y geometric mean 564.36 100.52 69.80 97.61 151.76

median 200.77 18.26 5.67 6.04 9.12

P(Bi < 1) 0.037 0120 0248 0282 0.268
E [©3]my]

0.05 0.10 0.15 0.20 0.25

arithmetic mean O(10%%) O(10%°")  O(10%°%) O(10%%%) O(10%%)
Bis geometric mean  O(10%7)  O(10%")  O(10%7)  O(10%) O(10%7)
median O(10%°)  O(10%)  O(10%%) O(10%°) O(10%%)
p(Blz <1) 0 0.00012  0.00020  0.00024  0.00024

Table 1: Variation in Bayes factor for 25 000 realizations generated from the Pareto distribution
with parameter ©1 = 1.0, using different prior means of the parameter O, in the competing
exponential distribution. In the upper table k& = 10, in the lower table £ = 100. Arithmetic
mean, geometric mean and median of the exact values of Bayes factor are reported, together with
the proportions of Bayes factors of values below 1. O(x) gives the order of magnitude.

E [©:]m]
0.5 0.75 1.00 1.25 1.50

arithmetic mean  0.176 0.376 0.488 0.516 0.494
Byy geometric mean 0.067 0.120 0.133 0.123 0.105

median 0.061 0.112 0.125 0.116 0.098

]5(312 <1) 0.978 0.939 0.917 0.915 0.920
E [@1|m1]

0.85 0.95 1.00 1.05 1.10

arithmetic mean 0.00538 0.00622 0.00651 0.00672  0.00687
By, geometric mean O(107%) O(107%) O(107%) O(1078) O(1078)
median O(1078) O(107%) O(107%) O(107%) O(1078)
]S(Blg <1) 0.9998 0.9998 0.9998 0.9998 0.9998

Table 2: Variation in Bayes factor for 25 000 realizations generated from the exponential distribu-
tion with parameter ®9 = 0.2, using different prior means of the parameter ©; in the competing
Pareto distribution. In the upper table & = 10, in the lower table & = 100. Arithmetic mean,
geometric mean and median of the exact values of Bayes factor are reported, together with the
proportions of Bayes factors of values below 1. O(z) gives the order of magnitude.
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different values of E [©y]ms]. The algorithm is first run to generate realizations of ©,,,
m = 1,2, from their respective posterior distributions f(6,,|, m). These realizations are
used to define pseudopriors, and each realization is separated by 10 iterations, after a burn-
in of 5000 iterations. The last realizations of ©; and ©, are used as initial states ¢ (0) and
6(0) in the final run of Algorithm 1, while an initial state m(0) is chosen uniformly on
Q. The number of iterations is 50 000. All realizations of M are used to estimate Bayes
factor and to find a confidence interval, while inference about the model parameters are
based on every 10th realization of (©1, ©,).

The convergence of ©; and ©, during a burn-in period is illustrated in Figure 1, using
E [©3]msy] = 0.1. The figure shows realizations of O,, and the logarithmic values of the
pdfs f(x|m,6,,) from 5000 iterations. Four different starting points for each parameter
are used, chosen as 107 °E [0,,|m], E[©,,|m], 10E [0,,|m] and 25 E[0,,|m]. The posterior
mean is close to the prior mean for both model parameters in the case studied in Figure 1,
thus with the prior means as initial states convergence is soon established. Starting close
to zero, the McMC algorithm also converges rapidly. With a starting point an order of
magnitude larger than the posterior mean, a larger number of iterations is required before
the chain converges, but in both examples convergence is clearly reached within 5000
iterations. The plots of log f(x|m, 6,,,) support the interpretation of the convergence. The
speed of convergence in the case of exact observations depend on the size of the update
steps, defined through the transition kernel ¢(@.,|0,,, m), see Section 4.3.

Figure 2 shows an output from the algorithm, based on 50 000 iterations, with E [@y|ms] =
0.1. 5000 burn-in iterations are used, and the pseudopriors are based on 5000 realizations
of ©; and O, separated by 10 iterations. The numerical values of the estimates from this
run of the algorithm are reported below, in Table 3. The plots of 7(m, 0y, 65|x), 6; and 6,
all seem stable without any trends, see Figure 2a—c. Based on the plot of the convergence
of the estimate of Bayes factor, Figure 2d, it seems that in this case 50 000 iterations is
sufficient to give a reliable estimate. The samples of M are not plotted, but from the
acceptance rate and autocorrelation given in Table 3 it is clear that the mixing of M is
satisfactory. The histograms of ©,, in Figure 2e,f show that in this example the posterior
pdfs are narrower than the prior pdfs, but the posterior pdfs are not considerably skewed
compared to the priors. Figures 2g,h show the function

S(xlm,0,,) = P{X > z|m,0,,} = /oof(a:|m, 0n) dz, (45)

using the posterior mean estimates as model parameters, together with the empirical esti-
mate

k
“ 1
S(xz|m, 0,,) Ez::

Under model 1 the transformation (logz,log S(z|m,#6,,)) gives a linear plot, while under
model 2 linearity is obtained for (z,logS(x|m, 6 )) The comparisons of the parametric
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Figure 1: Realizations of ©; and ©y and the corresponding log f(x|m,0,,) from 5000 burn-in
iterations of Algorithm 1. Solid lines correspond to runs with initial values 6,,(0) = E [©,,|m)].
Dotted lines have initial values close to zero and are hardly distinguishable from the solid lines.
For the dashed lines and dashed/dotted lines the initial values are 10 E [0©,,|m] and 25 E [0,,|m]
respectively.

estimates of S(x|m,#6,,) and the empirical estimates give a visual illustration of how well
the observations are fitted by each of the two models.

Repeated simulations are run with a varying value of E [O9|ms], and the results are listed
in Table 3. The preliminary estimate Bjy(z) in Expression (26) based on L = 1 parameter
value, the final estimate Bj,(z) from Expression (16), and an approximate 95% confidence
interval, Expression (27), are compared with the analytical value of Bayes factor. The ac-
ceptance rate of proposed changes of model and the estimated autocorrelation p(1) at lag 1
are also reported. Estimated posterior mean values E [O,n]x, m] of the model parameters,
Expression (18), are compared to the true posterior means. The estimated standard devia-
tion of the estimator E [©,,|2, m] is given in brackets, obtained as (Var [0, |, m] /nm,)"/?,
where n,, is the number of realizations from model m, {67 |m? = m}.

For the dataset used in this simulations study, Bayes factor obtains a minimum as a func-
tion of By = E[O3|ms] /ay when E [©3]ms] ~ 0.10. When E [©y|ms] is close to this value
Bayes factor is By, < 1, which means that model 2 actually fits the data better. From the
results in Table 1, it is clear that this is not a rare event for small sample sizes. As E [Oq]|ms]
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Figure 2: Output from a run of Algorithm 1 with exact observations. 5000 samples of (M, 6, 65)
are generated from m(m,61,0s|x), separated by 10 iterations. The first plots are trace plots of
(a) log m(m,0y,0:|z), (b) 01, (c) 0, and (d) Biao(). Histograms of (e) {#1|m = m;} and (f)
{f2]m = my} are plotted, comparing with the corresponding prior pdfs (solid lines). The last
two figures shows S(z|m, 6,,) (solid lines), see Expression (45), together with empirical estimates.
The functions are plotted on log-log scale under model 1, figure (g), and with logarithmic vertical
axis under model 2, figure (h).
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Figure 3: Histograms of 5000 samples from the posterior distribution of [©2|ms], compared with
the posterior pdf (solid line) and prior pdf (dashed lines).

deviates from 0.1, the analytical value of Bayes factor increases and eventually By, > 1 and
the correct model is favored. The estimate of Bayes factor captures this increase both for
increasing and decreasing values of E [O4|ms], and the analytical Bayes factor is covered
by the estimated confidence interval in all simulations reported in Table 3. The estimated
autocorrelation shows a clear negative correlation between succeeding realizations of M,
thus the estimated confidence intervals are likely to be too conservative. The estimated
posterior mean values of the parameters lie within two estimated standard deviations from
the exact posterior mean in most cases, and Figure 3 shows how the histograms of realiza-
tions of [©y]ms] coincide with the posterior pdf. A comparison with the prior pdf is also
included in the figure.

A similar simulation study is run by generating a sample of size £ = 10 from model 2, an
exponential distribution with parameter ©, = 0.1 and lower limit zy, = 2. Bayes factor
for this dataset is found, varying the prior mean E[©;|m;], and the results are listed in
Table 4. Once more the algorithm seems to give satisfactory results of both estimated
Bayes factor and model parameters.

The results reported in Tables 3 and 4 illustrate the performance of the algorithm in the
simplest case of exact observations and a single model parameter. Only two datasets are
presented in the simulation study above, one from each distribution (29) and (30), but
repeated simulations are expected to give similar results. Small datasets are chosen to
illustrate the performance of the algorithm, since Bayes factor is then likely to have a
value not too far from 1, see Tables 1 and 2. In this situation it is important to be able to
estimate Bayes factor accurately, to give the right conclusion of the model choice problem.
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E [@2|m2] Blg(w) Blg(m) Blg(w) 95% CI rate [3(].)

0.010 249.222 290.983 248.174 (243.848,252.577) 0.895 -0.80
0.016 12.609 13.930 12.652  (12.432,12.876) 0.929 -0.86
0.025 1.358 1.311 1.356 (1.332,1.380) 0.945 -0.89
0.040 0.268 0.263 0.268 (0.263,0.272) 0.954 -0.91
0.063 0.116 0.112 0.115 (0.113,0.118) 0.971 -0.94
0.10 0.097 0.093 0.097 (0.095,0.098) 0.964 -0.93
0.16 0.147 0.151 0.148 (0.145,0.150) 0.970 -0.94
0.25 0.336 0.339 0.335 (0.329,0.341) 0.970 -0.94
0.40 1.120 1.122 1.119 (1.100,1.139) 0.976 -0.95
0.63 4.489 4.197 4.499 (4.421,4.579) 0.961 -0.92
1.0 21.475 20.396  21.465  (21.092,21.844)  0.967 -0.93
1.6 117.124 125.897 117.438 (115.396,119.517) 0.961 -0.92
E [O2ms] E[Oz]x, my] E [O|x, my] E 0|z, m]
0.010 0.0274 0.0274 (0.0001) 0.723 (0.004)
0.016 0.0388 0.0386 (0.0002)  0.731 (0.004)
0.025 0.0516 0.0515 (0.0003)  0.744 (0.004)
0.040 0.0663 0.0666 (0.0004)  0.731 (0.004)
0.063 0.0802 0.0803 (0.0004) 0.733 (0.004)
0.10 0.0927 0.0919 (0.0005) 0.727 (0.004)
0.16 0.1029 0.1025 (0.0005)  0.739 (0.004)
0.25 0.1102 0.1102 (0.0006)  0.731 (0.004)
0.40 0.1156 0.1149 (0.0006)  0.730 (0.004)
0.63 0.1192 0.1192 (0.0007)  0.733 (0.004)
1.0 0.1216 0.1222 (0.0007)  0.728 (0.004)
1.6 0.1233 0.1236 (0.0006)  0.724 (0.004)

Table 3: McMC results for a dataset of size k = 10 generated from the Pareto distribution with
parameter ©1 = 1.0, varying the prior mean of ©. The exact value of Bis(x) from Expression
(37) is compared to the preliminary estimate Bjy(x), Expression (26), the final estimate By (x),
Expression (16), and the confidence interval in Expression (27). The acceptance rate of suggested
changes of model and the estimated autocorrelation p(1) at lag 1 is reported. Estimates of model
parameters are given with standard deviation of the estimates in brackets. In all simulations the
prior and posterior mean of ©; are E[0©1|m;] = 1.0 and E [0 |z, m;] = 0.732.
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E [®1|m1] Blg(CL') Blg(w) Blg(w) 95% ClI rate [3(].)

0.10 0.000147  0.000139 0.000148 (0.000145,0.000151) 0.883 -0.77
0.16 0.00347 0.00361  0.00346 (0.00340,0.00352)  0.899 -0.80
0.25 0.0395 0.0430 0.0394 (0.0387,0.0401) 0.917 -0.84
0.40 0.253 0.309 0.252 (0.248,0.257) 0.888 -0.80
0.63 0.734 0.758 0.734 (0.721,0.747) 0.940 -0.88
1.00 1.075 1.032 1.074 (1.055,1.093) 0.948 -0.90
1.60 0.841 0.863 0.842 (0.827,0.857) 0.909 -0.82
2.50 0.416 0.398 0.417 (0.409,0.424) 0.952 -0.91
4.00 0.137 0.143 0.137 (0.135,0.139) 0.966 -0.93
6.30 0.0364 0.0355 0.0364 (0.0358,0.0371) 0.951 -0.90
10.00 0.00793 0.00763  0.00792 (0.00778,0.00806)  0.950 -0.90
16.00 0.00149 0.00141  0.00150 (0.00147,0.00152)  0.949 -0.90
E[©:lmi] E[©|z,m] E [O:|z, m] E [O|x, my]
0.10 0.282 0.280 (0.002) 0.1618 (0.0009)
0.16 0.405 0.403 (0.002) 0.1631 (0.0008)
0.25 0.547 0.550 (0.003) 0.1628 (0.0009)
0.40 0.714 0.713 (0.004) 0.1620 (0.0008)
0.63 0.877 0.874 (0.005) 0.1613 (0.0009)
1.00 1.029 1.027 (0.006) 0.1625 (0.0009)
1.60 1.156 1.151 (0.006) 0.1622 (0.0009)
2.50 1.249 1.252 (0.006) 0.1626 (0.0009)
4.00 1.319 1.321 (0.007) 0.1627 (0.0008)
6.30 1.366 1.373 (0.007) 0.1627 (0.0009)
10.00 1.398 1.398 (0.008) 0.1611 (0.0008)
16.00 1.420 1.426 (0.008) 0.1628 (0.0009)

Table 4: McMC results for a dataset of size k = 10 generated from the exponential distribution
with parameter ©, = 0.1, varying the prior mean of . The exact value of Bis(x) from Ex-
pression (37) is compared to the preliminary estimate Bjo (), Expression (26), the final estimate
Bia(x), Expression (16), and the confidence interval in Expression (27). The acceptance rate of
suggested changes of model and the estimated autocorrelation p(1) at lag 1 is reported. Esti-
mates of model parameters are given with standard deviation of the estimates in brackets. In all
simulations the prior and posterior mean of ©2 are E [©2|mg] = 0.1 and E [O3]z, mg] = 0.1626.
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5.3 Performance of the algorithm for non-exact observations

When observations of fault sizes contain sampling errors, and the dimension K of the
variable Y is unknown, K is included in the McMC sampling. Borgos (2000) analyze a
fault size dataset from the Gullfaks field, see Fossen and Rgrnes (1996), and Algorithm 1
is used to estimate Bayes factor to decide if the data is best fitted by a Pareto or an
exponential distribution. The observed number of faults is n = 169, while the total number
is unknown. The convergence during burn-in iterations is first studied, and Figure 4 shows
a convergence plot for the total number of faults under the two competing models, using
four different initial states k,,(0). Under both models, convergence is reached within 10 000
iterations. In this example the dimensions K, under the two models are assigned equal
prior distributions, Poisson distributions with mean 720. It is observed from Figure 4 that
the two Markov chains stabilizes at different values, thus the posterior pdfs of K, differ.
Convergence plots for the model parameters are not included for these simulations, but
also these parameters are found to reach convergence within 10 000 iterations.

Figure 5 shows an output from the McMC algorithm, based on 50 000 iterations. The nu-
merical results of this and similar runs for the same dataset are presented by Borgos (2000).
A burn-in of 10 000 iterations is used, and pseudopriors are based on 5000 realizations of
U, and ¥y, separated by 10 iterations. In this case the preliminary and final estimate of
Bayes factor, Expressions (26) and (16), are Byy(x) = 0.01423 and Bj,(x) = 0.00538, the
acceptance rate for suggested changes of M is 0.0136 and the estimated autocorrelation at
lag 1 is p(1) = 0.966. The rough estimate is based on L = 100 values 1/ .

Based on the difference between the final estimate of Bayes factor and the rough estimate,
it seems that the rough estimate is not as good as the case was for exact observations
with only one unknown model parameter for each model. This also means that the pseu-
dopriors 7(t,,|m,) deviates to some extent from the corresponding posterior pdfs. This
is not surprising, since 5000 realizations of ¥,, is now used to estimate a two-dimensional

ki
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Figure 4: Realizations of K1 and K5 from 10 000 burn-in iterations of Algorithm 1, starting with
different initial states k;(0) and k2(0).
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Figure 5: Output from a run of Algorithm 1 with non-exact observations. 5000 samples of
(M, 1)1,19) are generated from m(m, 1, 12|x), separated by 10 iterations. The first plots are
trace plots of (a) m, (b) logm(m,1,e|2), (c) logh(x|m, ), (d) 01, (e) ki, (f) 62 and (g) ko
and (h) Bio(x). Histograms of (i) {#;|m = m1} and (j) {f2|m = ms} are plotted, comparing with
the corresponding prior pdfs (solid lines). The last two figures shows &y, S(y|m, 6,,) (solid lines),
see Expression (45), where I%m is the mean value of the dimension K, obtained in the simulations.
The function is compared to empirical estimates based on observations x and a realization y from
f(y|@,m, ). The functions are plotted on log-log scale under model 1, figure (k), and with
logarithmic vertical axis under model 2, figure (1).
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joint distribution, while in the case of exact observations a univariate pdf was estimated
based on the same number of samples. The mismatch between Byy(z) and Biy(x) gives
an acceptance probability a(m'|m) far from 1, and instead of a negative autocorrelation
a strong positive autocorrelation is obtained. The quality of the estimate BIQ(fB) and the
pseudopriors 7 (¢, |m.) could possibly be improved by generating a larger number of sam-
ples of ¥ and W, in the initial run of the McMC algorithm. However, this would require
longer time for each iteration in the final run of the algorithm, since the time consumption
for evaluating the pseudoprior in Expression (25) increases with the number of samples 97,
from the initial run.

Although no negative autocorrelation in M is obtained, Figure 5a shows that the Markov
chain still alternates satisfactorily between m; and msy. The value of the target pdf in
Expression (42), Figure 5b, the likelihood function (40), Figure 5¢, and the samples of
the parameters ¥; and W¥,, Figure 5d-g, all indicate that convergence of the Markov
chain is reached. From Figure 5h it seems that 50 000 iterations is sufficient to give a
reliable estimate of Bayes factor. Figure 5k,1 shows realizations of Y from the posterior
pdfs f(y|:c,m,1/3m), comparing the estimated function S(y|m, ém), Expression (45), with
the empirical estimates obtained based on observations & and samples y. The empirical
functions are multiplied by the number of faults, n and k,, for = and y respectively, to
illustrate at what scales the unobserved variables Y; are sampled.

6 Conclusion

A model choice problem is considered, where inference is made based on observations
affected by sampling errors. The underlying unknown variables can be divided into a
high-dimensional part with an analytically tractable posterior distribution and a low-
dimensional model parameter with an analytically non-tractable posterior. An McMC
algorithm is constructed to estimate Bayes factor and make inference about the low-
dimensional model parameters simultaneously. The unknown high-dimensional variable
can afterwards be sampled from its posterior distribution. In order to obtain a completely
specified target distribution of the McMC algorithm, the concept of pseudopriors intro-
duced by Carlin and Chib (1995) is adopted. The freedom of choice for these pseudopriors
is explored, under the major goal of reducing uncertainty in the estimated Bayes factor.

The performance of the algorithm is studied for a situation where Bayes factor is ana-
lytically tractable, and all estimates can be compared to the corresponding true, known
values. The algorithm is observed to give good results in this case, where the observa-
tions are assumed to be exact and the model parameter is one dimensional. In this case a
strong negative correlation between succeeding realizations of the model indicator can be
produced, reducing the uncertainty in the estimated Bayes factor.
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An example of non-exact data is provided. It is observed that as the dimension of the
unknown parameters included in the McMC algorithm increases, it becomes more difficult
to find good pseudopriors based on a relatively small number of samples of the parameters.
This results in a slower mixing of M, and no negative autocorrelation is obtained. However,
the model indicator M still changes relatively often throughout the simulations, and the
algorithm seems to perform satisfactory also in this case.

If the posterior distribution of the unobserved high-dimensional parameter, or parts of it,
were not analytically tractable, this variable could also have been included in the sampling
algorithm. However, this expansion of the sample space is assumed to reduce the efficiency
of the algorithm considerably.
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Abstract

Previously published theory, which extrapolates fault and fracture population
statistics observed in a one dimensional sample to two and three dimensional popu-
lations, is found to be of limited value in practical applications. We demonstrate here
how significant the discrepancies may be and how they arise. There are two main
sources for the discrepancies: (1) deviations from ideal spatial uniformity (spatial
Poisson process) of a fault or fracture pattern, and (2) non-power law scaling of the
size frequency distributions of the population. We show that even small fluctuations
in spatial density, combined with variance in the estimator of population statistics,
can lead to considerable deviations from the theoretical predictions. Ambiguity about
power law scaling or otherwise of the underlying population is a typical characteris-
tic of natural data sets and we demonstrate how this can affect the extrapolation of
one-dimensional data to higher dimensions. In addition, we present new theoretical
approaches to the problem of extrapolation when clustering of faults and fractures is
explicitly considered. Clustering is commonly observed in the field as en echelon ar-
rays of fault or fracture segments and we show how this property of natural patterns
can be quantified and included in the theory. These results are relevant to building
more realistic three dimensional models of the physical properties of fractured rocks,
such as fracture permeability and seismic anisotropy.

!'Now at: Department of Geology, Tulane University, New Orleans, LA 70118, USA



1 Introduction

It has previously been recognized that the observed size-frequency distribution of natural
fault and fracture patterns depends on the sampling method used (e.g., Marrett & All-
mendinger, 1991). For example, if the underlying population forms a three dimensional
structural network, but only a two dimensional sample (e.g., a map) is analyzed, then
many faults and fractures will be unrepresented in the resulting size-frequency distribu-
tion. Similarly, if the sample comes from a one dimensional traverse (e.g., a borehole) then
under-sampling will be even more pronounced. It is only when the dimension of the sample
equals the dimension of the underlying fault or fracture pattern that a true estimate of the
distribution can be determined.

A standard way of making a correction for under-sampled distributions is to assume
that faults and fractures are independently, uniformly distributed in space with a constant
spatial intensity (Heffer & Bevan, 1990; Marrett & Allmendinger, 1991; Piggott, 1997;
Berkowitz & Adler, 1998). This means that the probability of sampling a fault or fracture
depends only on its size (e.g., length) and not on its spatial position. Moreover it implies
that the size of a particular structure and its position relative to other structures within
the overall pattern are unrelated. There are many field observations that indicate that
these assumptions are unrealistic (e.g., Bour & Davy, 1999), as we review in more detail
below.

The reason that the assumption of zero spatial correlation has proved so persistent in
the literature is that it leads to a very simple result: for a self-similar fault or fracture
population following a power law size-frequency distribution, as is commonly observed,
the difference between the true power law exponent and that of a sample is an integer
(Marrett & Allmendinger, 1991). The value of the integer is given by the dimension of
the underlying fault network minus the dimension of the sample that is considered. Thus
the integer takes the value zero if the pattern is fully sampled; the maximum integer value
is 2.0, which corresponds to a 1D sample (i.e., a traverse) of a 3D pattern. In practical
applications this simple result is potentially very useful: for example, borehole data on
fault or fracture density may be extrapolated to construct a 3D structural network within
a rock volume for which bulk properties such as permeability, brittle strain, or seismic
velocity and anisotropy are required (Marrett, 1996; Berkowitz & Adler, 1998).

To our knowledge Malinverno (1997), in his work on the spatial distribution of tur-
bidites, presents the only published attempt to improve or modify the assumptions on
which the theory is based. In this paper we address this issue, building on the work of
Malinverno (1997), but focusing specifically on sampling of fault and fracture populations.
In the theoretical sections below we confine our analysis to faults in particular, using infor-
mation on fault scaling properties from the literature. Faults are structural discontinuities
across which there is significant shear displacement. However, in the discussion (Section 6)
we show how our results are generally applicable to dilitant cracks, such as joints and veins,
as well as to shear fractures.

The parameters which are usually used to describe the geometry of a fault population
include: (1) fault size, which may be the length and /or the displacement across each fault,



(2) the orientation of each fault, and (3) the position of the center point (or barycenter) of
each fault plane. It is these three properties, how they are related and how they scale within
a particular fault population, that are the subject of this paper. Other information that
may be used, concerns the nature of fault intersections, i.e., the cross-cutting relationships
which may indicate the relative timing of formation of faults of differing orientation. The
term fault population is used to describe a network of faults that is known to have developed
within the same tectonic regime, and/or a single tectonic episode.

Previous authors have looked at the correlations within fault populations, for example
between the spatial distribution of fault center points and the size-frequency distribution
of fault lengths. Davy et al. (1992) and Bour & Davy (1999) have argued that the center
points of natural fault patterns follow a fractal distribution and that there is a simple
relationship between the fractal dimension of the spatial distribution and the power law
exponent of the size-frequency distribution. We have found problems with applying their
methodology to our data sets. The most significant problem is that an analysis of the fault
center points alone suggests that the spatial distribution of some natural patterns is space
filling (i.e., non-fractal) even though the faults are evidently arranged in en echelon arrays.
En echelon geometry is a typical feature of natural fault and fracture systems and reflects
the mechanics of growth of these structures. In an en echelon array the distance between
neighboring fault tips is relatively small while the distance between the center points can
be very large. Thus, a similar approach to that of Davy et al. (1992) could only be used to
resolve en echelon alignments if additional information about the faults that make up the
arrays is included, relating together the length, sub-parallel orientation and the relative
position of faults in the arrays. The other problem with their method arises because the
value of the scaling exponent of the size-frequency distribution, and indeed whether it is
power law or not, can be difficult to determine unambiguously for many data sets.

In this paper we have developed a new approach for taking into consideration en eche-
lon geometry as a specific example of spatial clustering, and have also explored the effects
of non-power law scaling of the size-frequency distribution on sample statistics. We show
that, although an integer difference between a sample and the underlying population distri-
bution can be theoretically derived for a reasonable model (Marrett & Allmendinger, 1991),
in practice the difference is non-integer. We find that significant deviations from the ideal
case can be attributed to these two sources: i.e., a non-uniform spatial pattern (clustering)
and/or a non-power law size-frequency distribution. The paper is designed with practi-
cal implementation in mind, in that we have chosen to address the issues that commonly
confront a geologist/geophysicist when natural data sets are analyzed. Our results have
important implications for extrapolating these data because of the power law scaling prop-
erties. This is because even moderate changes in the value of the power law exponent
can result in order of magnitude variations in the numbers of fault or fractures which are
predicted.



2 Uniform Spatial Distribution of Faults

A number of field studies of fault populations conclude that the size-frequency distribution
of faults is best represented by a power law distribution (e.g., Special Issue of Journal of
Structural Geology, Vol. 18, No. 2/3, 1996, and references therein). Let X represent the
size of a fault, measured for example as the length L or the maximum displacement D,,.
The probability density function (pdf) of a power law (or fractal) distribution is given as
the pdf of a Pareto distribution (Johnson et al., 1994)

B
f) =2 s 0,80 (1)

where x( is the minimum fault size. The size-frequency distribution of a fault population
is characterized by the power law exponent (3, and this exponent can be estimated based
on observed fault patterns. Faults are geometric objects embedded in three dimensions.
However, observations are usually obtained from a lower dimension. For fault sizes observed
in different dimensions, the value of the power law exponent ( differs. Let C;, Cy and
C3 denote the values of the power law exponent ( of the length distributions obtained
in one, two and three dimensions respectively. Observations of faults in one dimension
generally consist of single displacement measurements with no measurable length. In this
case the length distribution is obtained from the displacement distribution of the faults
being intersected by the traverse, as displacement and length are related (Watterson, 1986).
Due to the under-representation of smaller faults in lower dimensions, the exponents differ
according to C < Cy < (.

Fault patterns can be represented as marked point processes (Stoyan et al., 1995) where
the fault positions form the point process and the marks are given as the fault sizes. In a
Poisson point process with independent marks the fault positions are independently, uni-
formly distributed in space and fault size is independent of position. Under this assumption
the following relationships between power law exponents in one, two and three dimensions
are found:

Cy=0C5—1
Ch=0C3—-2=0Cy—1 (2)

(Heffer & Bevan, 1990; Marrett & Allmendinger, 1991; Piggott, 1997; Berkowitz & Adler,
1998, see also Appendix A, where the relationship between 1D and 2D is derived for a
generalized size frequency distribution.). If Cy or Cy is estimated from observations, the
power law exponent in a higher dimension is easily obtained by inversion of Eq. (2) as
long as the assumption of spatial uniformity holds. If a relationship Dy, o< L™ is assumed
between length and maximum displacement of faults (Cowie & Scholz, 1992a, b), the power
law exponents of fault displacements are given as C] = C;/n. The relationships between
the power law exponents C{, C and C} for displacements in one, two and three dimensions



are then given as

! ! ]‘
! ! 2 / 1

In uniform rock types and tectonic settings the relationship between L and D, is found
to be linear; n = 1 (Cowie & Scholz, 1992a, b; Dawers et al., 1993). Schlische et al. (1996)
find that the “global” dataset is also best fit by n = 1, although some authors earlier argued
that n > 1 (e.g., Walsh & Watterson, 1988). In the case n = 1 the power law exponents of
the displacement distributions equal the exponents of the length distributions, and Eq. (3)
coincides with Eq. (2). For a general n, we use the relationship Dy, o< L™ to derive length
distributions from displacements measured along 1D traverses.

Using Eq. (2) or (3) to extrapolate from one to two dimensions, or from two to three,
can give unreliable results of the power law exponent in higher dimensions. Obviously, if
the assumptions leading to the results are not fulfilled then the theoretical relationships
will change. However, when power law exponents are estimated, the uncertainty lies not
only in the fulfillment of the requirements behind Eq. (2) and (3), but also in the validity
of the estimate. The variance of the estimator is a source of uncertainty, regardless of the
spatial distribution of fault positions. This is illustrated through a simulation example.
A 2D fault pattern consisting of 25,000 faults is simulated. A small section of the fault
pattern is given in Figure 1la. The fault pattern is generated by first drawing fault center
points from a uniform distribution on a two dimensional square of size 250, 000 m?. Next,
orientations are drawn uniformly on the interval [0°,360°] and fault lengths are drawn
from a power law distribution with exponent Cy = 1.6 and minimum fault size xo = 1m.
Although the pattern does not appear comparable to many field examples, it is typical of
patterns generated under the assumption of uniform spatial distribution of fault locations.
To study the length distribution obtained in 1D, data is collected along 1000 horizontal
traverses at randomly chosen positions. For each traverse the power law exponent of
the length distribution is estimated for those fault traces that are intersected, using a
maximum likelihood estimator. The maximum likelihood estimator is known to be biased,
even though it is commonly used (Clark et al., 1999). Figure 1b shows a histogram of the
estimated exponents C'.

The assumptions behind the result in Eq. (2) are fulfilled, and the theoretically pre-
dicted value of the power law exponent for lengths observed along the traverses is C; = 0.6.
The estimated exponents are centered around the theoretical value, although slightly bi-
ased with an average of 0.62. However, the important point shown in Fig. 1b is that the
standard deviation is 0.07 and that the bulk of the estimates lies in the range 0.5-0.75,
giving a difference between Cy (=1.6) and C; of 0.85-1.1. Thus in these examples the
natural variations in the estimator can give a deviation of 15-25% between the estimated
exponent and the theoretically predicted value. Repeated sampling studies give similar
results, and similar conclusions are also reached if other fault orientations are considered,
from uniformly distributed orientations over the interval [0°, 360°] to all faults being paral-
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Figure 1: (a) Simulated fault pattern with a uniform spatial distribution and a power law
length distribution with exponent Cy = 1.6. (b) Histogram of estimated exponents C from 1000
traverses. The solid line marks the theoretical value Ci1 = Cy — 1 = 0.6.

lel. The key issue here is the number of faults intersected by the traverse. In the simulation
example, the number of faults intersected by the traverse lines varies considerably from 60
to 105 with a mean of 82. For traverse datasets containing a larger number of faults the
bias and standard deviation will be lower, while for a decreased number of observations
the uncertainty increases.

Clark et al. (1999) compare estimators for the power law exponents, and discuss inef-
ficiencies in the geoscientists’ traditional estimator. The standard way of estimating the
power law exponent is by fitting a straight line to the plot of log N(z) versus logz, where
N(z) is the number of faults larger than x. The estimates presented in Fig. 1b are obtained
using a maximum likelihood estimator, which has known mean and variance (Clark et al.,
1999). For C; = 0.6 and a number of observations ranging from 60 to 100, the standard
deviation of the maximum likelihood estimator ranges from 0.08 to 0.06, in agreement with
the empirical standard deviation of 0.07, found above. If the number of observations was
increased to ~ 1000, the standard deviation of the maximum likelihood estimator would
decrease to 0.02, reducing the error in the estimated power law exponent to < 5%. But
such large samples are unusual in natural data sets; samples sizes of tens to hundreds are
much more typical.

3 Deviations from a Uniform Spatial Distribution

Two main assumptions behind the results in Eq. (2) and (3) are uniform spatial distri-
bution of fault positions and power law size-frequency distribution. In this section the
effect of deviations from a uniform spatial distribution is studied. Sub-parallel faults are
considered, sampled along a traverse oriented perpendicular to the direction of fault strike
(Fig. 2). The relationship C| = C, — 1/n observed in a traverse through a two dimensional



fault pattern should be independent of the position of the traverse if the assumption of
independently, uniformly distributed fault positions holds. Deviations from the uniform
spatial distribution parallel to fault strike will alter the relationship between C] and C¥%.
The spatial distribution is assumed to be uniform perpendicular to strike, i.e., along the
the direction of the traverse, thus the length of the traverse is of no importance.

We use a similar approach to Malinverno (1997), who studied the statistical distribution
of turbidite beds, and the relationship between the bed thickness distribution observed
along a 1D traverse (a borehole) and the overall bed extent in 3D. Malinverno (1997)
idealized turbidite beds as conical 3D bodies with a maximum thickness in the center,
decreasing to zero thickness laterally. In this work we assume that turbidite bed thickness is
analogous to variations in displacement over a fault plane, where the displacement typically
is decreasing from a maximum near the center to zero at the fault boundaries (Walsh
& Watterson, 1988). Malinverno (1997) considers vertical boreholes through horizontal
sedimentary layers, while the fault data studied in this work are 1D transects across a
map (Fig. 2). The geometric representation of turbidite bed thickness used by Malinverno
(1997) is used here to represent the displacement profile along a fault trace in 2D. When
the traverse intersects a fault, it intersects at an arbitrary distance r from the center point.
The displacement observed in the traverse is then given by d(r; Dpax), where Dy,,, denotes
the maximum displacement. We can write the relationship between length and maximum
displacement as Dp,.x = vL". The profile is then given as (Malinverno, 1997)

1/n\ ¢ 1/n
y 1 [ Duax
 Dax) = Dmax (1 — | 2 ) <r<s; 4
d(r, " ) { ( ' (Dmax) ) } V= 2 < v ) ( )

where the parameter o > 0 controls the shape of the displacement profile. For o < 1
the displacement profile is peaked at the center, for @ = 1 the profile is triangular while
for a > 1 the displacement increases rapidly near the end points and flattens out in the
center part; see also (Malinverno, 1997). As a — oo the profile becomes rectangular. The
displacement is assumed to be at its maximum at the center point of the fault, and all
faults are assumed to be approximately parallel with an orientation perpendicular to the
traverse.

We now consider a non-uniform spatial distribution of faults, where the location of
the traverse has influence on the observed power law exponent C]. Malinverno (1997)
introduces a distribution f(r) oc 7°=!, § > 0, for the distance from a sampling line to the
center point of a turbidite bed. A similar distribution can be used for the distance from
the traverse to a fault center point, measured perpendicular to the traverse. If § = 1 the
fault positions are independently, uniformly distributed. If § < 1 the spatial distribution
relative to the traverse deviates from the uniform distribution, and the faults are clustered
in a self-similar fashion in the direction of the strike. The distribution f(r) represents a
decreased intensity of fault positions away from the traverse when § < 1, which can be
interpreted as the traverse being located in a high intensity area of faults compared to
the overall fault density. Reformulating the results of Malinverno (1997), the power law
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Figure 2: Tllustration of 1D traverse line through a 2D fault pattern. The shaded area indicates
the fault displacement profile of a fault of length L, Eq. (4). The displacement is at a maximum
Dynax at the fault center point, and the distance from the traverse line to the center point of an
intersected fault is 7.

exponent of displacements observed along the traverse is found to be

li ! 6
CI :CQ— ﬁ (5)

The corresponding result for power law exponents C; = nC! of fault lengths is
Cy=Cy— 4. (6)

This result shows that if the spatial distribution perpendicular to the traverse line is not
uniform, but scales in a self-similar fashion, the difference between power law exponents in
two and one dimension differs from the theoretically obtained value in Eq. (2) and (3). For
a non-uniform spatial distribution with 0 < 1, the difference between Cy and C will be less
than the expected value 1. For § = 1 Eq. (6) and (5) reduces to Eq. (2) and (3) as expected.
The relationships in Eq. (6) and (5) are independent of the shape parameter a, thus the
choice of « is not critical, although if n = 1 then the fault population is self-similar with a
constant value of o. For interacting and linked faults « is no longer a constant (Willemse
et al., 1996), but the effect of this variation may be of secondary importance.

4 Deviations From Power Law Size-Frequency
Distribution

We now examine the second major assumption that underlies Eq. (2) and (3), that of the
power law size-frequency distribution. Many field data sets, in continental regions at least,
have been interpreted as showing power law size scaling (see Special Issue of Journal of
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Structural Geology, Vol. 18, No. 2/3, 1996). However, any natural data set is affected to
a greater or lesser degree by the effects of limited resolution and censoring. The former
leads to under-sampling of small faults while the latter leads to inadequate sampling of
faults that are comparable in size to the dimensions of the sampling domain (e.g., a map
or cross-section). Although various corrections have been proposed to minimize and quan-
tify these effects (e.g., Pickering et al., 1995, 1996), the corrections assume that the true
distribution is power law. However, some fault populations, such as those formed at mid-
ocean ridges (Cowie et al., 1994) are better described by an exponential distribution and
Ackermann et al. (1997) and Spyropoulos et al. (1999) have documented both power law
and exponential distributions in analog experiments of fault growth (see also Ackermann,
Withjack & Schlische, The effects of mechanical layer thickness on the systematics of an
evolving population of normal faults in experimental models, manuscript submitted to J.
Struct. Geol., September 1999).

A general case of deviations from a power law distribution of fault size will not be
considered, but the special case of fitting a power law exponent to data that is in fact
exponentially distributed is discussed, as this is a common ambiguity in interpreting fault
population data (Ackermann et al., 1997; Cowie, 1998). The relationship between the
length distributions in two dimensions and along a 1D traverse is studied, to quantify the
under-representation of small faults for exponentially distributed data. Note that if fault
displacements were to be analyzed instead, the displacement profile must also be included
in the calculations, giving analytically non-tractable expressions.

Let N(z) be the cumulative number of observed faults with length larger than x. If the
fault length follows a power law distribution, Eq. (1), a plot of log N(x) versus log x gives
a straight line with slope —(. If the fault length follows an exponential distribution with
intensity A = (mean of )~' =<z >~' and probability density function

fo(r) = Aexp(=Az), 220 (7)

the log-log plot produces a concave shape to the curve. However, a similar type of concave
curve can be the result of plotting poorly sampled data from a power law distribution,
where truncation, censoring and finite range effects have led to a flattening of the curve
for small z and a steep fall off for large x (Pickering et al., 1995). Thus data from a truly
exponential distribution can mistakenly be assumed to follow a power law, using the center
part of the log-log plot to fit a power law exponent to the data. Note that the value of A
depends on the scale of the observations (in contrast to the power law exponent).
Suppose the fault lengths in two dimensions follow an exponential distribution, but a
power law exponent () is fitted to the data. This exponent is then compared to a power
law exponent (' fitted to data along a one dimensional traverse through the observation
area. Since a plot of log N (z) versus log z for exponentially distributed data does not give
a straight line, the slope of a local line-fit will vary depending on x. When a power law
exponent is calculated, a straight line is fitted to the center part of the data, assuming
this part to be approximately straight. The fitted power law exponent will be close to the
absolute value of the slope of the true curve for this part of the data. At length x the



theoretical absolute value of the slope is
Cy(x) = Ax. (8)

If the fault length in two dimensions follows an exponential distribution, Eq. (7), the length
of faults intersected by a one dimensional traverse follows a gamma distribution (Johnson
et al., 1994) with pdf

fa(w) = Nwexp(=Az), = >0, (9)
see Appendix A. The absolute value of the slope of the curve log N(z) versus log x at length
T 18
_ (Ax)?
YRS

as shown Appendix B. The resulting difference in exponents for the 2D and 1D population
at length x is then

Cy(z) — Cy(z) = A;i - <1, (11)

independent of the value of A. One of the assumptions leading to the result in Eq. (2) is no
longer valid and consequently Cy — C' differs from 1. We can demonstrate how important
the difference may be by considering what happens when these power law exponents are
derived by fitting straight lines at the mean values <z >= 1/A (in 2D) or <z >= 2/A
(in 1D) in the exponential distribution in 2D, Eq. (7), and the corresponding distribution
in 1D, Eq. (9), respectively. These choices of = give Cy(z) — Cy(z) values of 1/2 and 2/3
respectively, regardless of the value of \. Thus for typical values of fault lengths of the
given distributions, the difference in slopes between one and two dimensions is significantly
smaller than 1.

Ortega & Marrett (2000) show a good example of this situation in their analysis of
natural fracture patterns in sandstones. Their Figure 13 compares the size frequency
distribution of a two dimensional fracture population with that of a one dimensional sample
of the same population. They fit both distributions with a power law even though they
show that an exponential fit to the 2D data is equally good. The power law exponents that
they calculate for the distributions are 0.98 and 1.25 in 1D and 2D respectively. Thus, in
this real example the difference Cy — C} is only 0.28.

Based on the result in Eq. (11) it can also be concluded that if the distribution of
fault length is neither power law nor exponential, but a mixture of the two distributions
(Ackermann et al., 1997; Spyropoulos et al., 1999), the difference in fitted exponents in
two and one dimension will be less than 1.

5 Interacting and Linked Fault Structures

In two dimensions faults are observed either as relatively isolated structures, or as segments
forming en echelon arrays. Gupta & Scholz (2000) show how the displacement profile
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along a segment becomes gradually distorted compared to that of an isolated fault as
the ratio of overlap (O) to separation (S) between fault tips increases and the degree of
elastic interaction increases (see also Peacock & Sanderson, 1991; Willemse et al., 1996).
Eventually the ratio O/S is limited by the inability of segments to grow into regions of
stress reduction around the interacting segments and the highly distorted displacement
profiles, when summed together, approach that of a relatively isolated fault (Willemse
et al., 1996; Gupta & Scholz, 2000). En echelon arrays are thus easily detected in 2D
observations, partly because of profile shape of individual segments, but also because some
overlapping segments may be physically linked in places by smaller connecting faults and
fractures. When faults are observed along a 1D traverse however, it is more difficult to
determine whether two structures occurring close in space are two isolated faults or are
segments of the same fault structure along strike. Wojtal (1996) showed how criteria used
for defining linked fault segments in a 1D data set of thrust faults from the Cumberland
Plateau in Tennessee, has an important influence on the estimated power law exponent in
an analysis of fault size-frequency distributions.

Figure 3 illustrates the ambiguity in the interpretation of fault linkage on a 1D traverse.
Fig. 3a shows the throw profile along a fault array modified from Dawers & Anders (1995),
and Fig. 3b gives a map view of the fault array showing the location of two traverses x — '’
and y — ¢y where the total throw is comparable. Fig. 3¢ compares the two 1D traverses
across the fault. Along x — 2’ four separate structures are seen across a zone ~ 500m wide,
whereas along y — ' a single fault plane is observed. Without 2D information it is not
possible to judge from traverse x — x’ alone whether the four separate faults are linked
along strike, even though it is clear from the summed displacement profile that they do
form part of a single larger structure.

One of the main assumptions behind the results in Eq. (2) and (3) is not satisfied
for fault segments in en echelon arrays, since these represent a type of clustering of fault
segments. In this section we consider a fault pattern that consists of a mixture of fault
arrays and isolated faults. For simplicity it is assumed that the results in Eq. (2) and (3)
hold for isolated faults or fault arrays separately, and also for the individual segments of
the arrays, but not for the overall pattern.

An en echelon array is composed of a number of shorter fault segments. We separately
define the lengths of the individual segments and the length of each fault array. If the
length distribution of arrays is compared to the length distribution of the individual fault
segments, it is obvious that the length distribution of the segments will have a greater
proportion of small faults than that of the arrays. Suppose both length distributions are
power law distributions, with exponent s for the segments and 34 for the arrays. Since the
value of the power law exponent decreases as the proportion of large faults increases, this
implies that 85 > 4. The same argument applies for the displacement. The displacement
of a fault array is a sum of displacements on the smaller fault segments, thus the linked
structures tend to have larger displacements than the shorter segments of which the array
is composed (see Fig. 3).

In this work we distinguish between isolated faults, fault arrays and fault segments
which comprise the arrays. As we have already discussed, the segments making up an
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Figure 3: (a) Throw profile along a linking fault array from the Volcanic Tableland in eastern
California modified from Dawers & Anders (1995). Solid lines show throw variations along indi-
vidual segments of the array, dashed line shows the total throw along the entire array obtained
by summing together the throws of the separate segments. (b) Map view of fault array showing
the location of two traverses z — z’ and y — ¢’ shown in (c¢). (c¢) Comparison of the two 1D
traverses x — z' and y — 3 across the fault where the total throw is comparable. See text for
further discussion.
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array may have displacement profiles differing from the typical profile of an isolated fault,
while the shape of the overall (summed) displacement profile of the array is comparable to
that of isolated faults (e.g. Peacock & Sanderson, 1991; Dawers & Anders, 1995; Willemse
et al., 1996). For simplicity it is assumed in this work that isolated faults and segments
comprising arrays have the same size-frequency distribution, whether we compare length
or displacement. Consequently we are also making the assumption that the maximum size
of the isolated faults are smaller than that of the fault arrays, and that the populations of
isolated faults and segments that comprise arrays are comparable.

Let X represent the maximum displacement of a fault observed in two dimensions, and
suppose X follows a power law distribution. The power law exponent depends on whether
X represents an isolated fault or an en echelon array. If X represents an isolated fault
the power law exponent is (g, and the pdf of X is denoted f(z;fs). If X represents an
array, the power law exponent is 34 and the pdf is f(z;(4). The overall size-frequency
distribution of fault displacements observed in two dimensions is a combination of the two
distributions:

Bs Ba
Fla) = (L= 0)7(x;35) +0F () = (1 - 0) - 504 g P00 g < ag)

where 6 is the proportion of arrays in the fault pattern, given as the number of arrays
divided by the total number of faults. The parameter # is determined by imposing a
criterion on the 2D fault observations which separates isolated structures from those that
are interacting and/or linked segments within an array. Here we use a simple criterion for
classifying two faults as strongly interacting, and hence effectively linked, based only on
the value of the O/S ratio (Fig. 4). The observed values of O/S of fault arrays typically lie
in the interval 1-10 (Aydin & Schultz, 1990; Huggins et al., 1995; Gupta & Scholz, 2000;
Schultz, 2000). A more rigorous criterion would include information on the relative sizes
of the segments (e.g., Gupta & Scholz, 2000; Schultz, 2000), but for the purposes of this
paper the O/S ratio provides a convenient first approach to this problem.

Let N; be the number of isolated faults at a given data resolution, and let N4 be the
number of fault arrays. The value of # is then given as

Ny

= —= . 13
N TN, (13)

Note that the value of # will depend on the linkage criterion used to interpret the fault
pattern, and also on the resolution of the data because both of these factors will influence
the ratio calculated in Eq. (13). Figure 5 gives an illustration of three fault patterns with
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Figure 4: Definition of overlap O and separation S.
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Figure 5: Three fault patterns with different proportion € of linked fault structures. The thick
solid lines represent linked faults with O/S ratios in the range 3-8.

a varying value of #. For a normal fault population in the Volcanic Tableland of eastern
California (Dawers et al., 1993; Dawers & Anders, 1995), the proportion # is thought to
be less than 0.5. For this field data, the values of O/S in our linkage criterion lie in the
interval 3-10 (Dawers, 1996), as indicated by the asymmetry of the displacement profiles
of strongly interacting faults and/or physically linked faults.

Figures 6, 7 and 8 give an illustration of the combined distribution function (12) and
the appearance of data originating from this distribution. The observations in Figures 6
and 7 are generated using statistical sampling techniques. Figures 6 and 7 show log-
log plots of relative cumulative number N(x)/Nr versus size x, where Nr is the total
number of faults. The expression N(z)/Nr is an estimate of the cumulative distribution
function S(z) = Prob{X > z}, see Appendix B. Figure 8 shows the cumulative distribution
functions S(z) for different values of 6.

The combined distribution is only a power law distribution in the extremes § = 0
or § = 1, where it equals one of the two separate distributions f(x;fs) or f(x;34). For
intermediate values, 0 < 6 < 1, Eq. (12) does not give a new power law distribution. Thus a
plot of log N (z) versus log x does not give a straight line according to the theory. However,
as Figure 6 shows, data from the distribution f(x) appear to be approximated quite well
by a straight line on log-log plot. Figure 6 shows a log-log plot of an increasing number of
observations generated from the distribution f(z), using power law exponents 35 = 1.8 and
fa = 1.3 that are within the range typical for two dimensional fault patterns (e.g., Special
Issue of Journal of Structural Geology, Vol. 18, No. 2/3, 1996, and references therein).
If these were real observations, with the theoretical expression in Eq. (12) unknown, most
geologists would conclude that the data originate from a power law distribution (Scholz
et al., 1993).

Figure 7 compares the combined dataset in Fig. 6b with two datasets generated from
the original power law distributions with exponents (s and (4. On a cumulative log-
log plot, the combined distribution is located between the two distributions of which it is
composed. Figure 8 shows a log-log plot of the theoretical cumulative distribution function
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S(x) for the combined distribution, together with the corresponding curves for f(z;3s)
and f(x;34), for an increasing value of the proportion #. The curve of log S(z) for the
combined distribution is slightly convex. If however the data are assumed to follow a power
law distribution, it is observed from Figs. 7 and 8 that an apparent power law exponent
fc of the combined distribution f(z) lies between (4 and (s, thus 4 < fc < (s. The
estimated exponents of the observations in Fig. 6 are plotted as straight lines, together with
the curved theoretical line. The curve of log S(x) in Fig 8b, using # = 0.25, corresponds
to the samples shown in Figs. 6 and 7. As a result of the slightly convex form of the curve
given by Eq. (12), the straight line fitted to the observations fall below the theoretical line
as the fault size increases (Fig. 6). When the sample size increases, the fitted power law
tends to under-estimate the number of large faults (Fig. 6d).

Table 1 gives estimated power law exponents (- for an increasing number of observa-
tions and a varying proportion # of fault arrays. Each estimate is based on 10,000 samples
generated from the combined distribution (12), using s = 1.8 and 4 = 1.3, and the
mean and standard deviation of the estimates are listed in the table. It is observed from
the table that §- approaches (B¢ for small ratios #, and approaches (34 as 6 increases, in
agreement with the results shown in Figure 8. It is also observed from Table 1 that as the
number of observations decreases, the estimated power law exponent (- increases. This is
due to the fact that the theoretical line of log N(z) is steepest for small fault sizes (Fig. 8).
This region of the curve dominates the small datasets, which do not span more than one
order of magnitude (Fig. 6). Figure 9 summarizes the results from Table 1, for observations
consisting of 500 faults. The error bars show the uncertainty in the estimate of the power
law exponent (. A larger number of observations would produce similar plots, only with
shorter error bars, while a smaller number of observations would give a wider range of
uncertainty. Note that the exponent (o appears to decrease approximately linearly with
0, but the relationship is not exactly linear. Our theoretical work shows that, in general,
the relationship between (- and # is not expected to be linear.

As pointed out above, the distribution f(x) in Eq. (12) is not strictly a power law
distribution. Assume however that the deviations from a power law is small enough to give

Sample Ratio # of linked fault structures, Eq. (13)
size 0.10 0.25 0.50 0.75 0.90
100 1.751 (0.180) 1.657 (0.173) 1.525 (0.160) L1.412 (0.146) 1.354 (0.139)
200 1.736 (0.078) 1.646 (0.075) 1.513 (0.070) 1.399 (0.063) 1.340 (0.061)
1000 1.734 (0.055) 1.643 (0.054) 1.511 (0.049) 1.399 (0.045) 1.339 (0.043)
10,000 1.734 (0.018) 1.642 (0.017) 1.510 (0.016) 1.397 (0.014) 1.337 (0.014)

Table 1: Estimated power law exponents B¢ based on 10,000 generated samples of increasing
sample size from the combined distribution in Eq. (12). Different values of the proportion 6 of
linked fault structures are used. The table gives the mean value and standard deviation of the
estimates, calculated from the 10,000 samples. The power law exponents Sg = 1.8 and 54 = 1.3
are used for isolated faults and fault arrays.
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Figure 6: Samples generated from the combined distribution f(z) in Eq. (12), with g = 1.8,
Ba = 1.3 and # = 0.25. The number of observations in each sample is (a) 100, (b) 500, (c) 1000
and (d) 10,000 and the estimated power law exponents are (a) Sc = 1.66, (b) Sc = 1.66, (c)
Bc = 1.62 and (d) B = 1.64. The estimated exponents are plotted as straight dashed lines, and
the theoretical lines, obtained from Eq. 12, are plotted as solid lines.

C} ~ C}—1/n for the apparent power law exponents. The fault pattern in 2D, consisting of
a mixture of isolated faults and en echelon arrays, has an apparent power law exponent of
Bc. The corresponding exponent for observations along a traverse should then be 3o —1/n,
according to Eq. (3). However, if no linkage criterion is used along the traverse, and all
observations are treated as single faults, the predicted power law exponent is 35 — 1/n,
since isolated faults and single fault segments in 2D have exponent (5. Comparing the
2D data with exponent C} = (¢ and 1D data with exponent C] = (s — 1/n thus gives a
difference of

Oy~ =% (s~ fc) < (14)

since s > fc. In Section 3 clustering along strike was considered, and a new theoretical
expression for the difference CY, — C] was obtained. A comparable expression based on
Eq. (14) can not be derived, since the exponent (¢ is only an apparent exponent, not
given by an analytical expression. An estimate of Sc will depend on the situation: on all
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Figure 7: Comparison of the combined dataset in Fig. 6b (plotted as ¢) with two datasets
generated from the distributions f(z;fs) (plotted as +) and f(z;/54) (plotted as x). The power
law exponent of single faults is Sg = 1.8 and for fault arrays S4 = 1.3. The estimated power law
exponent of the combined distribution is B¢ = 1.66.

parameter values, the ratio § and the number of observations (Tab. 1). Thus in order to
estimate the difference between C} and C, an objectively measured 1D sample needs to be
re-interpreted using some linkage criterion in an attempt to obtain 1D data corresponding
to the distribution in Eq. (12).

There are two possible ways to do this: (1) by taking a purely statistical approach to
linkage probability, as outlined in Appendix C, or (2) by re-evaluating the 1D data from
known or potential linkages (e.g., Dawers, 1996; Wojtal, 1996; Schultz, 2000). Concerning
the latter approach it is worth noting that for many published examples of 1D fault pop-
ulation data, the size-frequency distribution is obtained for a single stratigraphic horizon
within a cross-section (e.g., Walsh et al., 1991, Marrett & Allmendinger, 1992). Thus,
there is potentially some two dimensional information that may be extracted by examining
the upper and lower tips of the faults which have been measured to assess how many are
en echelon with other faults higher or lower within the section (e.g., Wojtal, 1996). Then
using an overlap-separation criterion for linkage in the plane of the cross-section, and as-
suming that this applies in plan view, those faults belonging to arrays can be separated
from those that are isolated to obtain a value for #. The key assumption here is that evi-
dence for dip-linkage in the cross-sectional view indicates potential linkage also occurring
in plan view; a reasonable starting assumption but one which has not been independently
verified.
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Figure 8: Log-log plot of cumulative distribution function S(x) for the two distributions f(xz; 8s)
(dashed lines) and f(z;84) (dotted lines) with Sg¢ = 1.8 and 84 = 1.3, and for the combined
distribution f(z) in Eq. (12) (solid lines). The lines are plotted using the ratios (a) # = 0.1, (b)
6 =0.25, (¢c) # =0.5 and (d) 8 = 0.75.
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Figure 9: Variations in the estimated power law exponent B¢ as a function of the ratio 6 of
linked fault structures (Tab. 1). The error bars show one standard deviation of the estimator for

datasets of size 500 faults. The horizontal dashed line shows the value of the power law exponent
Bs = 1.8, the dotted line the exponent 54 = 1.3.

6 Discussion

We have shown that there are several practical situations in which the addition or subtrac-
tion of an integer value from the power law scaling exponent does not provide an adequate
representation of how fault populations in 1D, 2D and 3D are related. In the preceding
theoretical sections we have been concerned with fault populations specifically. However,
our results are generally applicable to joints, veins and shear fractures because these show
similar scaling properties, and present similar difficulties in analysis and interpretation.
Vermilye & Scholz (1995) show, for example, that tensile fractures and veins exhibit a
similar relationship between aperture and length as we have used for fault displacement
and length. Segall & Pollard (1983), in their analysis of joint patterns, found length-
frequency distributions very similar to those found for fault populations. Their maps also
clearly show the en echelon arrangement of joints, and they discuss some of the criteria for
defining which joints are linked arrays (see also Ortega & Marrett, 2000).

The theory we have presented focuses on the extrapolation of 1D data to 2D and in
particular the effects of spatial variations in fault density and en echelon clustering. These
effects lead to a difference between C5 and C that is < 1.0. The implication of this is that
if 1D data are extrapolated to 2D without considering clustering then the relative numbers
of small scale faults and fractures are overestimated in the 2D distribution, the relative
number of large scale structures is underestimated, and the size of the largest fault is also
underestimated. Moreover, not only are the numbers of small fractures overestimated, the
absence of spatial correlation information means that these small fractures are randomly
positioned in the extrapolation to a 2D pattern, whereas in natural patterns they tend to
be aligned in arrays.
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Even though 2D data allows some evaluation of en echelon clustering and linkage, the
same problems arise in going from 2D to 3D if the morphology of the fault surfaces and
the network of faults are three dimensional. Thus the same effects will be seen as we have
demonstrated here. Berkowitz & Adler (1998) generated 3D joint networks from 2D field
observations using the established relationships given in Eq. (2). They then compared
2D slices through the model 3D volume with the original field maps, in terms of both
the predicted 2D exponent and the visual appearance of the patterns. The original field
measurements of joint length do take into consideration 2D linkage between closely spaced
en echelon joints (Segall & Pollard, 1983). However, in the extrapolation to 3D the spatial
locations of the joints are assumed to be independently, uniformly distributed, although
this assumption is not tested (Berkowitz & Adler, 1998). For several cases the calculated
exponents agree quite well, and discrepancies can largely be attributed to having small
numbers of joints in the data sets which make the statistics less reliable. This agreement is
expected since their 3D simulated joint patterns fulfill the requirements behind the result
C3 — Cy = 1. However visual comparison of the real and modeled patterns shows two
interesting features: Firstly, the real pattern exhibits zones of more concentrated jointing
in the 2D plane separated (perpendicular to strike) by zones that are devoid of joints, and
secondly, strike-parallel alignment and segmentation of the natural joints is very common.
Neither of these properties is captured by the simulations. However, these are exactly the
properties which will strongly influence the porosity structure, permeability and seismic
velocity of fractured rock volumes.

Marrett (1996) discusses the impact of power law scaling of fault or fracture popula-
tions on “aggregate” properties, such as total fracture porosity, permeability, total fracture
surface area, total fault strain, and shear-wave anisotropy. He concludes that, except for
fracture surface area, larger fractures/faults contribute more to aggregate properties than
do the smaller ones for most values of the scaling exponents. However, these conclusions
depend on the value assumed for the power law exponents in 3D and on the assumption
that the spatial pattern of the fracture or fault population originate from a uniform dis-
tribution. The present work has shown that the conclusions of Marrett (1996) may need
to be re-evaluated in the light of spatial correlation information which has previously been
ignored.

Hatton et al. (1993) derived an empirical relationship between 2D and 3D scaling
exponents of the form C3 = a;Cy + as where a; and as are constants. According to
their empirical analysis a; = 1.3 and ay = —0.2, whereas comparison with the present
work would suggest a; = 1.0 and 0 < ay < 1.0. Hatton et al. (1993) obtained this
relationship from rock deformation experiments conducted under a variety of dry, damp and
wet conditions which were designed to examine the differences in sub-critical crack growth
processes in the presence/absence of a fluid. Estimates of C5 were calculated from the size
frequency distribution of acoustic emissions produced during the experiments whereas Cs
was obtained from populations of cracks observed in 2D slices of the deformed samples.
Values of these exponents from both wet and dry experiments were combined together
to obtain the relationship between C; and Cj, even though the morphology of the crack
populations differed significantly. For the dry experiments the deformation was localized
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onto longer more continuous cracks, whereas the wet experiments showed a distributed
pattern of shorter cracks. Therefore, the values that they obtained for a; and ay may
be due to combining the results of the different types of experiments. If instead the
wet and dry experiments had been analyzed separately then, according to our theory,
as(dry) < ag(wet) < 1.0 due to the differing degree of localization in the two types of
experiments, whereas a; should equal 1.0 for both.

7 Summary and Conclusions

The two key assumptions of the published theory (Heffer & Bevan, 1990; Marrett & All-
mendinger, 1991; Piggott, 1997; Berkowitz & Adler, 1998), are that (1) the spatial distri-
bution of faults and fractures can be modeled as a Poisson process where the locations of
the individual structures are independently, uniformly distributed with a constant spatial
intensity, and (2) that the size frequency distribution is a power law distribution. We
find that, even when assumptions (1) and (2) are fulfilled, the difference of the estimated
exponents from one and two dimensional samples of simulated fault patterns can deviate
by 10-15% from the theoretically predicted difference for datasets consisting of 50-100
faults, using a maximum likelihood estimator for the exponent. For datasets consisting
of ~ 1000 faults, the error is reduced to < 5%. This deviation is due to the variance in
the estimator which is used to calculate the exponent, and due to local fluctuations in
fault density which arise naturally even for a spatial pattern that is statistically uniform.
We show further that ambiguity concerning assumption (2), due to the effects of limited
resolution and censoring on natural fault patterns, can lead to even larger deviations from
the results theoretically predicted by previous workers. Specifically, we have studied the
effect of fitting a power law exponent to data originating from an exponential distribution,
to illustrate how an incorrect assumption of power law scaling can lead to deviations from
the results in Eq. (2) and (3). The deviation could be as large as 50%.

An important aspect of this paper concerns the effect of fault clustering on the relation-
ship between fault populations sampled in one, two or three dimensions. In other words,
we have studied in detail the impact of violating the assumption of spatial uniformity (as-
sumption (1) above). In the first case we follow the approach of Malinverno (1997), and
consider fault clustering perpendicular to a 1D traverse line which crosses a sub-parallel
pattern of faults perpendicular to fault strike. If the distribution of fault centre points
perpendicular to the traverse line is uniform, then Cy — C; = 1 as previous theory predicts.
However, when the fault centre points cluster in a self-similar fashion, the scaling param-
eter describing the spatial distribution modifies the relationship such that Cy — C < 1,
depending on the degree of clustering. In the second case we consider the effect of fault
clustering in a direction parallel to the 1D traverse line. This type of clustering is widely
recognised in the field as en echelon arrays of fault segments which link as the faults grow
during progressive deformation. We study the effect of en echelon clustering theoretically,
and show how lack of information on linkage in 1D leads to problems when relating power
law exponents obtained from 1D data to the corresponding exponent in 2D. The problem
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of relating 1D power law exponents to 2D exponents is that without any linkage criterion
in 1D all faults are assumed to be isolated, while in 2D parameters such as the ratio of
fault tip separation to overlap are often used to link fault segments together into longer
structures.

To show how this affects the statistics we represent the overall fault population as
a combination of isolated faults and en echelon fault arrays. En echelon arrays are those
comprised of segments with overlap-to-separation ratios between their tips that have values
within a specified interval (Aydin & Schultz, 1990; Huggins et al., 1995; Gupta & Scholz,
2000). Separately, these two populations have different size-frequency distributions, with
a higher proportion of small faults in the population of isolated faults. If the two separate
populations are assumed to be power law distributions, represented by two different power
law exponents, the combined distribution can be approximated by a third power law dis-
tribution. The combined distribution can be fitted by a power law exponent smaller than
the exponent of the population of isolated faults, but larger than the exponent of the fault
arrays. The relationship between these power law exponents is not found analytically, but
is found via simulated fault patterns to depend on the ratio between the number of en
echelon fault arrays and the total number of faults (), and thus on the linkage criterion
and the resolution of the data.

The appearance of the combined distribution is illustrated through simulation examples
and theoretically predicted graphs (Figures 6, 7 and 8). For reasonably sized datasets, the
deviations from a power law size-frequency distribution is not detectable visually. Using a
range of values for # from 0.25 — 0.5, we find that the approximate power law exponent of
the combined distribution in 2D differs by 0.15 to 0.3 from that obtained when clustering
and linkage are not taken into consideration. Consequently, we find that the difference
between the 2D and 1D exponents is only 0.7-0.85 (i.e., < 1.0) for a fault population that
contains en echelon clusters and obeys linear displacement-length scaling. If en echelon
fault arrays dominate the fault pattern (i.e., @ > 0.5) then the difference Cy — C; could
be as low as 0.5 according to our simulations. These results show that if clustering and
linkage of fault segments is ignored when analysing 1D data, predictions concerning the
2D and full 3D pattern, and/or the number of faults below the resolution of the data,
will be meaningless. These results also apply to joint, vein and shear fracture populations
even though in our theoretical development we have focused on faults with significant
displacements.

Appendix A: Length Distribution of a 1D Sample From
a Generalized 2D Population — Assuming Spatial
Uniformity

Marrett & Allmendinger (1991) showed the relationship between samples in different di-
mensions for the specific case of power law size-frequency distributions. Here we derive
the analogous results for a general size-frequency distribution. For a given fault length
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distribution in 2D, it is of interest to determine the corresponding distribution for faults
intersected by a 1D traverse. Let (X,®) be a pair of stochastic variables representing
respectively the fault length in 2D and the angle between the fault strike and the traverse
line. The pdf of (X, ®) is denoted f(z,¢), and the event of a fault being intersected by a
1D traverse is denoted I. The pdf of lengths of faults intersected by the traverse differs
from the marginal pdf f(x), since small faults are under-sampled in lower dimensions. Let
f(z|i) be the pdf of fault lengths for the intersected faults, where we condition on the event
I of intersection. The pdf f(z]i) is given by

f(i, ) 1 :

i = g [ HGle )@ 0)do, (15)
where f(i|z, ¢) is the probability of intersection conditioned on fault length and orienta-
tion and f(i) is the unconditional probability of intersection. Under the assumption of
independently, uniformly distributed fault positions, and fault sizes independent of the
positions, the probability of a fault being intersected by the traverse is proportional to the
fault length perpendicular to the direction of the traverse. This length is given as X sin ®.
Thus the probability of intersection, conditioned on fault length and orientation, is given
as

f(xli) =

f(i|x, ¢) = kxsin ¢,

where k is a normalization constant. Assuming independence between fault length and
orientation the joint pdf can be expressed as f(z,¢) = f(x)f(¢). The numerator in
Eq. (15) is then given as

firz) = / F(ile, )1 (@) 1(6) db = ke f () / sing f(6) dp = kaf(z) <sing>,  (16)

and the unconditional probability of intersection is

f(i):/f(i,x)dx:k<sin¢>/xf(x)dx:k<x><sin¢>. (17)

Substituting (16) and (17) in Eq. (15), we obtain

_ kaf(z) <sing> _ xf(z)

= i 18
k <x><sin¢> <r> (18)

£ (x]i)

Thus the length distribution of intersected faults is independent of the distribution of fault
orientation, under the assumption of independence between fault length and orientation.
For the power law distribution in 2D, Eq. (1), we have

(8—1)zg "'

By Ba .
=L 0 f(l"|l):T,

f@) = 5, <e>= 71
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thus the length distribution in 1D is a power law distribution with exponent 5 — 1. The
minimum fault length xy is the same both in 2D and 1D. For the exponential distribution
in 2D, Eq. (7), we have

fe(z) = Aexp(—Az), <z>=\" = fe(z]i) = Nxexp(—Ax),

thus the corresponding length distribution in 1D is a gamma distribution fe(z) = fr(z|i).

Appendix B: Generalized Derivation of Slope on
Bilogarithmic Plots of Fault Number Versus Size

Let N(x) be the number of faults larger than z. This function is typically illustrated by
plotting log N(z) versus logxz. The relative cumulative number N(x)/Nr, where Nr is
the total number of faults, gives an estimate of the cumulative distribution function S(z)
defined as

S(x) = /;o (@) da

where f(x) is the pdf of the length X. For a small number of observed faults, the un-
certainty in the estimate N(z)/Nr can be large, as illustrated in Section 1. However, for
sufficiently large datasets, the slope of N(x) on log-log plot is approximately equal to the
slope of log S(x) plotted versus log z. This slope is negative, with an absolute value given

_dlogS(x)  dlogS(z) du r dS(z) _ xf(x)

Cla) = dlogz dv  dlogz  S(z) dz  Sz)’

For the power law distribution, Eq. (1), the function S(x) and the slope C'(z) are given as

s~ (=)

X

where z is the minimum fault size. Thus the slope C(z) = [ is constant for all values of
x. For the exponential distribution with intensity A =<z >~! Eq. (7), the function S(x)
and the absolute value C'(z) of the slope are given as

S(x) = exp(—Azx)
C(z) = x - Aexp(—=Az) - exp(Ax) = Az,
and for the gamma distribution, Eq. (9), the following results are obtained:
S(x) = (Az + 1) exp(—Azx)

exp(Az)  (Az)?
A+1 4+l

C(z) =z - Nzexp(—Az) -
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Appendix C: Random Linkage Criterion for Faults in
1D

The overlap-to-separation ratio, O/S (Fig. 4), can be used as a linkage criterion for faults in
2D, as discussed in Section 5. However, if there is only 1D data available the separation S
is measured, but not the overlap O. Moreover, only the displacements and not the lengths
can be measured along a 1D traverse line. Using the relationship Dy,.x = vL" between
length and maximum displacement, and a model for the displacement profile (e.g., Eq. (4)),
information from the observed displacements along a traverse can be used to constrain the
lengths and thus decide if two faults closely located on the traverse may be classified as
linked. The O/S ratio can still not be found exactly, but a statistical approach can be
used in the linkage classification. A random linking of faults can be applied, based on
the probability of the O/S ratio falling in the specified interval; Prob{M; < O/S < Ms}.
This probability can then be conditioned on the observed separation; Prob{M; < O/S <
M2|S = 8}.

Consider two neighboring faults with the same dip and dip direction along the traverse,
with lengths following a power law distribution with exponent b and lower limit of fault
length [y. Assume the intersection points with the traverse are uniformly distributed along
the fault traces. The distribution of the overlap O is then found to be

2
b V2 0<o0<lI,
foy =4 6 (19)
o) =
2b
1 W,

(b+1)2 o2t -

The distribution of the overlap has a power law tail with exponent 2b for overlaps larger
than the minimum fault length ;. The conditional probability of M; < O/S < M, given
S = s can be reformulated as Prob{M; < O/S < M,|S = s} = Prob{sM; < O < sM,},
which is found to be

SMQ
robisM; < 0O < sMy} = o)do =
Prob{sM O M. flo)d
sMy
( b \°(s\* ., 9 o
v 1) o (M3 — M), Oss<7,
b \’(s\° s 20+1 (s - o o lo
N _ _ - - [ = - — < s < —
%1 <b+1> <zo> My (b+1)2 <10> My™ 3 == 20)
2+1 s\ 9% 9% lo
T - (= —20 - > —
(b—|—1)2 <ZO> (Ml M2 )7 S_Ml
\

Hence, if all parameters M;, M,, b and [y are known, or estimated, the probability
Prob{sM; < O < sM,} can be found for a given separation S = s. The power law expo-
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nent of displacements observed along the traverse is C] = (s — 1/n, see Section 5. The
power law exponent of the corresponding lengths is then given by b = C} = nC] = nfs — 1.
Thus if n is known (e.g., n = 1), the exponent b can be found based on the observations.
If the constant 7 in the expression D, = L™ is known, the lower limit [, of fault length
can be obtained from a lower limit d, of displacements along the traverse.

A random linking criterion can be chosen as “Classify two faults with the same dip
and dip direction, separated by a distance s, as linked with probability Prob{sM; < O <
sMs}”. This can be done by generating a random number u from the uniform distribution
on the unit interval [0,1]. If u < Prob{sM; < O < sM,}, which occurs with probability
Prob{sM; < O < sM,}, the faults are classified as linked. If u > Prob{sM; < O < sM,},
the two observations are treated as isolated faults. Note that this procedure does not give
a unique linkage of the faults, only one statistical realization.

The probability Prob{M; < O/S < M,} can not be related directly to the parameter
0 given in Eq. (13). However, based on 2D observations, Prob{M; < O/S < M,} can
empirically be found as

N

PI'Ob{Ml S O/S S Mg} = m
I S

(21)
where Ny, as before, is the number of isolated faults and Ng is the total number of single

fault segments included in linked fault structures. Each linked fault system contains several
single fault segments, thus Ng > N4, resulting in Prob{M; < O/S < M,} > 0.
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Stochastic model for fault geometry conditioned to
seismic data and well observations

Hilde G. Borgos

Abstract

A Bayesian framework is used to define a stochastic model of fault patterns condi-
tioned to seismic data and well data. Faults above seismic resolution are considered,
enabling assessment of uncertainty for faults detectable from seismic data. The fault
pattern is represented through a faulted horizon, with a prior distribution model-
ing characteristics of fault traces, fault intersections and offset profiles. A likelihood
function is defined under the assumption that reflection coefficients of a non-faulted,
layered sedimentary reservoir can be modeled as a Gaussian random field with a
strong horizontal correlation. Uncertainty in fault patterns is studied through re-
peated sampling from the posterior distribution.

1 Introduction

Geological faults above seismic resolution can be interpreted from seismic reflection data.
Sedimentary rocks tend to form horizontally layered sequences. This layered structure is
often observed in the seismic data, where lateral discontinuities visible across succeeding
horizontal layers are interpreted as faults. However, the interpretations of faults from seis-
mic data contain uncertainties, both due to the seismic data quality, seismic resolution and
the judgment of the interpreter. Furthermore, the subjective human interpretations are not
always guaranteed to give geologically realistic fault patterns, especially if the interpreter
is poorly trained or has a particular bias. Another problem related to interpreting seismic
maps, is the problem of matching faults interpreted from succeeding two dimensional maps
to create a three dimensional fault pattern. Badley et al. (1990) discuss a methodology for
interpreting faults from three dimensional seismic data.

Attempts have been made to create algorithms for detecting faults from three dimensional
(3D) seismic data. Bahorich and Farmer (1995) introduce a successful technique (the
Coherence Cube) for tracking/highlighting faults from 3D seismic data. The method is
essentially a moving window correlation algorithm, and is patented, see Bahorich and



Farmer (1996). Further developments based on the idea behind the Coherence Cube are
presented by Marfurt et al. (1998) and Marfurt et al. (1999). Two alternative techniques
for detecting faults and stratigraphic boundaries from 3D seismic data are described by Luo
et al. (1996). The techniques presented in the cited papers are deterministic procedures
used at an early stage in the interpretation process, and thus making the interpretation
easier and faster. The techniques give indications of fault positions, lengths, connectivity
and orientations. Experience and use of these techniques have shown that they neither
improve fault resolution, nor do they significantly reduce uncertainty. They also tend to
be prone to seismic noise and only have a real benefit if used at an early stage.

In this work, the problem of detecting faults from 3D seismic data is considered from a
statistical point of view. The method is both novel and clearly different from the previously
mentioned correlation techniques. A stochastic model for post-sedimentary fault patterns
is defined, conditioned to 3D seismic data and well observations. The layered structure
observed in seismic data is incorporated in the model, and the aim is to locate faults based
on discontinuities in the lateral consistency. Additional information about the reservoir
obtained from wells are also included in the model. Furthermore, general geological knowl-
edge of faults and fault patterns are incorporated in the model in an attempt to produce
geologically realistic fault patterns.

Previous work on stochastic modeling of faults and fractures include both pixel or grid
based approaches, see for example Gringarten (1996, 1998), object based models, e.g.,
Chiles (1988), Brand and Haldorsen (1988), Gauthier and Lake (1993), Munthe et al.
(1993), Munthe et al. (1994), Wen and Sinding-Larsen (1997), and one dimensional models
where faults or fractures only appear as points, see Belfield (1998). Some of the cited
papers include information from observations. Fault or fracture observations in wells are
conditioned to in some cases, while often data is only used to estimate parameters related
to characteristics of faults and fault patterns. For example, seismic data or outcrop data
are used to estimate distributions of fault size or orientation, and spatial fault densities.
Previous stochastic modeling of faults based on seismic observations mainly use inter-
preted seismic data to model sub-seismic fault patterns. In contrast, the stochastic model
described here is defined for faults at seismic scales, and is used to assess uncertainty in
the fault pattern at these scales.

A Bayesian framework is used to present the stochastic model for fault patterns, and to
condition to available information like seismic data and well observations. For previous
work using a Bayesian framework in reservoir modeling, see for example Lia et al. (1997),
Omre and Tjelmeland (1997), Eide et al. (1997a), Eide et al. (1997b), Eide (1999). In
this work the focus is on the network of faults in the reservoir. The relationship between
specific reservoir characteristics and the available observations is integrated in the model,
enabling conditioning of fault patterns to the observations. General geological knowledge is
incorporated in a prior distribution, while the available observations are integrated in the
model through the likelihood function. The posterior distribution combines the general



knowledge and the observations. Assessment of uncertainty of fault geometries can be
based on repeated sampling from the posterior model.

Both the prior model and the likelihood function presented in this work are defined using
random fields: Markov Random Fields and Gaussian Random Fields, see Cressie (1993),
Tjelmeland (1996), Abrahamsen (1997).

2 Bayesian Framework

A stochastic model is defined for a faulted horizon H, a topographic surface embedded in
three dimensions. Faults, their positions, orientations and displacements, are visible as dis-
continuities in the surface. Let O denote available observations obtained from the reservoir
under study, consisting of seismic data and well observations. The aim of this work is to
generate geological fault patterns, represented by faulted horizons H, conditioned on the
available observations O. A Bayesian framework is used to define the relationship between
the faulted horizon and the observations. A prior model f(h) of the faulted horizon includes
general geological knowledge about faults and fault patterns, and is discussed in Section 3.
The relationship between the faulted horizon and the observations is defined through the
likelihood function f(ol|h), discussed in Section 4. Combining the prior distribution and
the likelihood function, the posterior distribution is obtained:

f(hlo) = const x f(h)f(o|h). (1)

The posterior distribution combines general geological knowledge and reservoir specific
observations and is discussed in Section 5. Sampling from the posterior distribution is
described in Section 6.

Some basic model assumptions are made. The vertical extents of the faults are assumed to
be large compared to the vertical extent of the region under study, thus vertically all faults
penetrate completely through the region. Furthermore a crude approximation is made,
assuming that faults within the region has a vertical dip and a constant offset vertically.

3 Prior Model of Geological Fault Patterns

Post sedimentary faults are studied in this work. Consider a layered rock where all layers
originally are horizontal, as is often the case for sedimentary rocks. This corresponds to
the fundamental geological principle that sedimentary rocks are deposited horizontally, see
Monroe and Wicander (1994, chap. 17). When post sedimentary faults emerge through
the rock volume, rock in different parts of a layer are displaced with different offsets, and



an originally horizontal surface is deformed into a topographic surface embedded in three
dimensions, denoted a horizon.

Faults form brittle, discrete deformation in sedimentary strata. Other types of deformation,
like ductile deformation, folding and tilting, are in this work assumed to be relatively small
and are modeled as natural variations in the topographic surface. Thus the variations in
the horizon are composed of displacements caused by faulting and other natural variations.

When numerous faults are present in an area, a fault pattern is created. A fault pattern is
usually best observed by examining a single horizon from above, i.e., a topographic map.
However, the total three dimensional extent of the faults can not be obtained from the
surface, and only the pattern of fault traces on the horizon can be mapped. Fault traces
are the intersections of fault planes with the horizon. The fault pattern can be represented
through the number of faults, their position, geometry, displacement and displacement
direction.

Under the model assumptions outlined in Section 2, a series of overlying horizons will
have similar topographies, and the fault pattern can be represented through a single rep-
resentative horizon H. The prior model of the geological fault pattern is defined through
the probability density function (pdf) f(h) of the faulted horizon H, and should contain
general geological knowledge about faults and fault patterns. In Section 3.1 the faulted
horizon is parameterized by an image, and in Section 3.2 a prior model of the image is
defined.

3.1 Faulted horizon

A fault pattern is represented by the topography of a faulted horizon H, where faults are
recognized as discontinuities in the surface. The number of faults, their position and the
offsets are found from these discontinuities. The faulted horizon is parameterized by an
image, where both pixels, edges and vertices are included in the model. Figure 1 gives an
illustration of two types of pixels and the corresponding edges and vertices.

(a) (b)

Figure 1: (a) Square pixel and (b) hexagonal pixel. The pixels are colored gray, the edges around
the pixel are marked with solid lines and the vertices with circles.



Edges form an image of fault traces on a horizon. Each edge E is assigned a value in the
set Q. = {0,1}, and fault traces are composed of connected edges of values E = 1.

Vertices represent the offsets along fault traces. Vertices V' along connected edges of
values F = 1 are assigned a value corresponding to the offset of the fault at the
point of the vertex. A vertex takes a value in the set €2, C R, where the sign of the
offset indicates the offset direction. Vertices connecting only edges of value F = 0 is
assigned zero offset V = 0.

Pixels represent the topography of the faulted horizon, consisting of displacements caused
by faulting and other natural variations. The value of a pixel P determines the
altitude of the surface in the center point of the pixel. Each pixel is assigned a value
from the set 2, C R.

Let £, V and P denote the index sets of edges, vertices and pixels respectively, and let
ne = €], ny = |V| and n, = |P| be the number of edges, vertices and pixels. The edge
values are given by the vector E = {FE;; i € £}, the vertices by V = {V; i € V} and the
pixels by P = {P;; i € P}. All edges E;, vertices V; and pixels P; are treated as stochastic
variables, and the sample space of the image (E, V', P) is given by Q = Q% x Q™ x (,".

A hexagonal grid is used to represent the image, as was used by Besag (1989) and Tjelme-
land and Besag (1998). An example of a hexagonal grid is given in Figure 2. The main
advantage of a hexagonal grid, compared to a square grid, is that it gives a greater flexibility
in drawing angles of different sizes between fault traces.

The number of pixels, edges and vertices are easily found in the hexagonal grid. Let r be
the number of pixels along one side of the hexagonal grid. This is equal to the number
of concentric hexagonal bands of pixels included in the grid, starting with the center
pixel as band number one. The total number of pixels, edges and vertices in the grid is
n, =3r(r—1)+1, n, = 3r(3r — 1) and n, = 6r respectively.

Figure 2: The image (E,V, P) is represented by a hexagonal grid.



The image composed of the variables (E, V', P) gives a discrete parameterization of the
topography of the faulted horizon. A continuous representation of the horizon is ob-
tained by triangulation between pixels, where faults are represented as discontinuities in
the triangulation surface. The triangulation is uniquely determined by the stochastic
variables (E, V', P). The resulting topographic surface is also stochastic, and is denoted
H = H(E,V,P). The altitude of the surface H at a point (z,y) is given by H(x,y). At
the center point (z,y) of any pixel, with value P = p, the altitude of the surface equals
the value of the pixel, H(z,y) = p.

The first step in the triangulation is to draw triangles between the center points of the
pixels, as shown in Figure 3. Each side of a triangle crosses an edge in the image. If one
or more of the edges have value ' = 1, a fault intersects the triangle. The triangle is then
divided into smaller triangles in order to obtain a discontinuity along the fault trace, as
shown in Figure 4. In this way the image is covered by triangles, where the surface H(x,y)
is continuous within each triangle, and discontinuities in the surface are all located along
triangle sides. An example of a topographic surface, found by triangulation from an image
(E,V, P), is shown in perspective in Figure 5.
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Figure 3: As a first step in the triangulation, triangles are drawn between the center points of
the pixels.
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Figure 4: Subdivisions of the triangles shown in Figure 3. The pixels are shown to the left in
each figure, and edges of value £ = 1 are marked with thick solid lines. The subdivisions of
the triangle are illustrated to the right. (a) If no faults intersect the triangle, no subdivision
is made. (b) The end of a fault trace intersects the triangle, and the triangle is divided into 4
smaller triangles. (c) If a fault trace crosses the triangle, 5 sub-triangles are constructed. (d) The
triangle contains an intersection of fault traces, and is divided into 6 smaller triangles.



Figure 5: Perspective plot of the topography of the horizon H, constructed by triangulation of
the pixels in an image (E,V, P). The fault planes, which are all vertical, are colored dark.

3.2 Prior model

The prior model of a faulted horizon should contain general geological knowledge about
faults and fault patterns. The prior model of the edges E should thus contain information
on typical fault patterns in a horizon, the prior model of the vertices V' should reflect
characteristics of fault offsets, and the prior model of the pixels P should produce a satis-
factory topography of the faulted horizon. Combining the prior distributions of the edges,
vertices and pixels, a prior model of the faulted horizon H is obtained. The pdf f(h) of H
can be expressed as follows:

f(h) = f(e,v,p) = f(ple,v)f(v]e)f(e). (2)

3.2.1 Fault traces

The edges E form an image of fault traces on a horizon, and the prior model of fault traces
is based on the work by Tjelmeland and Besag (1998). They consider Markov random
fields containing higher order interactions, where a Markov random field is defined on
the pixels in the image. In this work a corresponding model is used for the edges. The
aim is to include higher order interactions between edges in the image, and to control, to
some extent, the pattern of fault traces. The image is represented by a hexagonal grid, as
described in Section 3.1. Typical angles of intersection between two fault traces are angles
of approximately 60°, which are easily modeled in the hexagonal grid, but angles of around
90° are also common and can be modeled using this grid. Edge effects are accounted for
by using circular boundary conditions.

A neighborhood system must be chosen to define the Markov random field used to model



(a) (b)

Figure 6: (a) The neighborhood of the edge in the center, drawn with a thick line, is composed
of the edges drawn with thin lines. (b) The maximum clique of the neighborhood in (a). The
edges drawn with thick lines form the inner edges, and the edges drawn with thin lines form the
outer edges.

the fault traces. The neighborhood illustrated in Figure 6a is used, and the corresponding
maximum clique is shown in Figure 6b. The maximum clique consists of the largest set of
edges where all pairs of edges are neighbors. The edges contained in the maximum clique
are classified as inner and outer edges, where inner edges are drawn with thick lines in
Figure 6b, and outer edges with thin lines.

According to the Hammersley-Clifford theorem, see for example Winkler (1995), the distri-
bution of any Markov random field E can be expressed as a Gibbs distribution, see Geman
and Geman (1984). The pdf of the Gibbs distribution is given as

f(e) = const x exp{~ 3" wile.)}, (3)

ceC

where C is the set of all cliques and w,(e,) is the potential function of the edges e, contained
in the clique c¢. The sum ) _.w.(e.) is called the energy function. Using the neighborhood
shown in Figure 6a, possible cliques are the maximum clique shown in Figure 6b and all
subsets of the maximum clique. Only the maximum cliques are assigned non-zero potentials
in this work. Thus the pdf of the edges E can be expressed as

f(e) = const x exp{~ 3 wile.)}, (4)

cecm

where C™ C C is the set of all maximum cliques. The maximum clique e, contains 12 edges,
where each edge takes a value in the set , = {0,1}. Thus there are 2'? = 4096 different
clique configurations, with a corresponding number of function values w.(e.). In order to
reduce the number of potentials that needs to be specified, the clique configurations are
classified into a limited number of classes and all members of a class are assigned equal
potentials. A possible classification is shown in Figure 7. Rotations and reflections of the
configurations belong to the same class, and are omitted in the figure. The clique config-
urations in the figure are classified as background, point, end, short-line, line, two-lines,
angle, single-cross, double-cross or edge-background. The latter is the class of configura-
tions where all inner edges have value 0, but at least one of the outer edges has a value



of 1. All configurations not shown in Figure 7, or not being a rotation or reflection of a
configuration in the figure, are classified as other.

The pdf in Expression (4) is defined by specifying potentials w.(e.) = ~; for the 11 classes
of clique configurations. The potentials are given in Table 1. Since any constant can be
added or subtracted in the exponent in Expression (4) without changing the prior pdf
f(e), the critical choice is not the actual potential values, but the differences between the
potentials. Thus one class can be assigned a zero potential, and all other potentials are
defined relative to this class. The class of edge-background is chosen as a zero potential
reference class.

The classification of cliques shown in Figure 7, with the potentials given in Table 1, defines
an isotropic distribution of the orientation of fault traces. The configuration classes can
be subdivided to produce anisotropic distributions of fault orientation, assigning different
potentials to fault traces depending on the direction of the trace. An example of a sub-
dividing of the configuration class line is shown in Figure 8. Directions 1, 3 and 5 are
rotations and reflections of the configuration in Figure 7g, while directions 2, 4 and 6 are
reflection and rotations of the configuration in Figure 7h.

Subdividing of the configuration classes end, short-line and two-lines can also be applied,
based on reflections and rotations of the configurations in Figures 7c-d, 7e-f and T7i-j re-
spectively. The configuration classes angle, single-cross and double-cross contain two or
more fault traces of different orientations, and subdividing according to directions is not
applied to these classes. Furthermore, neither the configuration classes point, other nor
edge-background are subdivided. The total number of potentials are listed in Table 2.
The potentials of the subdivided classes are donated v;;, j = 1,...,6, where j gives the
direction of the fault trace.

Configuration name  Configuration e. w.(e.)

Background Fig. 7Ta "
Point Fig. 7b Y2
End Fig. 7c, d Y3
Short-line Fig. 7e, f V4
Line Fig. 7g, h s
Two-lines Fig. 71, j Y6
Angle Fig. 7k Y7
Single-cross Fig. 71 Vs
Double-cross Fig. Tm Yo
Other Not illustrated Y10
Edge-background Fig. Tn 0.0

Table 1: Potentials w.(e.) = ~; for the configuration classes shown in Figure 7.
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Figure 7: Classes of clique configurations, up to rotation and reflection. Thick solid edges have
value E' = 1, others have value F = 0. The clique configurations are classified as (a) background,
(b) point, (¢c)—(d) end, (e)—(f) short-line, (g)—(h) line, (i)—(j) two-lines, (k) angle, (1) single-cross,
(m) double-cross and (n) edge-background.
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Figure 8: Subdividing of the configuration class line into 6 classes of different orientations.
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Configuration name  Configuration e, we(ee)

Background Fig. 7a "
Point Fig. b Y2
End Fig. 7c 3,15 V3,35 V3,5
Fig. 7d V3,2, V3,4, V3,6
Short-line Flg Te V4,15 V4,35 V4,5
Fig. 7t Va2, Va4, Va6
Line Fig. 7g V5,15 V5,35 V5,5
Fig. 7h V5,2, V5.4, V5,6
Two-lines Flg 7i V6,15 V6,35 V6,5
Fig. 7] 76,2, V6,45 V6,6
Angle Fig. 7k Y7
Single-cross Fig. 71 Vs
Double-cross Fig. Tm Yo
Other Not illustrated Y10
Edge-background Fig. Tn 0.0

Table 2: Potentials w.(e.) when some classes are subdivided to define potentials depending on
the orientation of the fault traces. The subscript j of 7; ; indicates the direction of the fault trace.

Figures 9 and 10 show independently generated realizations from f(e), using the different
potentials listed in Table 3. Simulation from the distribution f(e) is described in Ap-
pendix A, Algorithm 2. Several simulations are run using different potential values, to
study the variations in the prior distribution. The number of concentric bands of pixels
are 9, resulting in 217 pixels, 702 edges and 486 vertices. Examples 1-4, Figure 9, use
isotropic prior distributions of E. In examples 5-8, Figure 10, fault traces with orientation
in direction NW-SE are favored, which is direction 2 in Figure 8.

In example 1 angles and single-crosses are assigned low potentials, creating fault patterns
with a number of bending and intersecting faults. In examples 2—4 the potentials of angles
and single-crosses are increased, resulting in fault patterns of isolated, straight fault traces.
The pdf used in example 3 has a lower potential for points and short-lines than in example
2, and the fault traces tend to be shorter. In example 4 the potential of points and short-
lines is decreased even further. The result is a fault pattern containing a relatively large
number of short fault traces.

The realizations in examples 5-8 are generated from anisotropic prior distributions. In
examples 6 and 7 the fault patterns are dominated by a number of long fault traces in
direction NW-SE. This characteristic is hardly detectable in example 5 where the potentials
of direction NW-SE are slightly lower than potentials of the other directions, but angles and
single-crosses are assigned low potentials. Direction NW-SE dominates in the realizations
of example 8, as it does in examples 6 and 7. However, due to a higher potential for lines,

11



(a) Example Potentials
No. T Y Yo
1-8 -0.1 1.1 34

(b) Example Potentials
No. V2 V3 Va Y5 Yo Vi
1 1.6 -0.1 1.4 -0.2 1.025 0.0 0.1
2 1.8 -0.1 1.6 -0.2 1.025 0.2 0.9
3 1.6 -0.1 1.4 -0.2 1.025 0.5 0.9
4 1.2 -0.1 1.0 -0.2 1.025 0.5 0.9
(c) Example Potentials
No. Y2 Y32 V35 Va2 Vag 75,2 V55 6,2 76,5 YN8
5 1.6 -02 -0.1 1.3 14 -0.25 -0.2 0.925 1.025 0.0 0.1
6 1.6 -02 -0.1 1.3 14 -0.275 -0.2 0.925 1.025 0.0 0.1
7 16 -02 -0.1 1.3 14 -0.3 -0.2 0925 1.025 0.0 0.1
8 1.6 -02 -01 1.3 14 -0.2 -0.1 0.925 1.025 0.5 0.9

Table 3: Potentials used in the prior pdf f(e). The potentials in (a) are kept constant in all
examples. The potentials in (b) give an isotropic prior distribution while the potentials in (c)
give an anisotropic prior pdf which favors fault orientations in direction 2, see Figure 8. In the
potentials v; ;, 2 = 3,...,6, j takes the values 7 =1,3,...,6.

angles and single-crosses in example 8, the faults are shorter and few intersections are
observed.

3.2.2 Fault offsets

The vertices V represent the offsets along fault traces, where the offset tends to vary along
a trace. The maximum offset depends on the horizontal extent, or length, of the fault trace,
and is typically located near the center point of the trace. Faults with long trace lengths
tend to have a larger maximum offset than faults with short trace lengths. A number of
geological studies suggest a relationship D oc L* between maximum displacement D and
length L, see for example Walsh and Watterson (1987, 1988), Gauthier and Lake (1993),
Dawers et al. (1993).

Fault traces are represented as connected edges of value £ = 1. A fault trace can have an
isolated fault tip, where one end of an edge of value £ = 1 is only connected to edges of
value E = 0, as in the clique configurations in Figure 7c-d. Alternatively, the fault trace
can terminate in another fault trace, producing a single-cross as in the configurations in
Figure 71, or a double-cross as shown in Figure 7m. The number of faults and their traces

12



Example 1 Example 2 Example 3 Example 4

Figure 9: Realizations of E from f(e), using different potentials with isotropic distribution of
orientation. The potentials are given in Table 3.
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Figure 10: Realizations of E from f(e), using different potentials with anisotropic distribution
of orientation. Direction NW-SE is favored. The potentials are given in Table 3.
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are determined by the realization of the edges. The circular boundary conditions used in
the prior model of E are adopted.

Let b C V be an index set consisting of all vertices along a fault trace, and let B, =
{b1,bs,...,b,} be the set of all fault traces produced by the edge values E = e. Each
vertex is defined as belonging to a maximum of one fault trace, thus b; N by = 0 for any
b;, b, € Be. At intersection points of two traces it is not uniquely defined which two edges
belong to the same trace, while the third edge is part of the intersecting trace. Thus for
each realization e of edges there is a number, n;(e), of possible ways of defining the set B,.
All these partitionings are assigned equal probability n,(e)'. The index set of all vertices
not included in any fault trace is denoted by = V \ {Uy,ep.b;}, where for any vertex V,
i € by, the common value of all edges connected to the vertex is E = 0.

Consider a fault trace b € B, composed of n connected edges of value £ = 1. The fault
trace is classified according to the number of isolated fault tips, ¢ € {0, 1,2}, and is assigned
a standardized offset profile g;(x,n), = € [0,1]. The offset profile has a maximum at the
center point of the fault trace, descending to zero at isolated fault tips. The offset profiles
are shown in Figure 11 and are defined as

go(z,n) = p(n)
B dp(n)z(l —x), = <0.5

gi(@,n) = { w(n), x> 0.5

go(z,n) = du(n)z(l —x),
where the function p(n) is used to model the relationship between the maximum offset
and the length n of the fault trace, and is chosen as p(n) = pu,n where p, is a constant.
A discrete representation of the offset profile g;(x,n) is given by the vector g, ,, with one
component for each vertex along b. The offset values of vertices along the trace are given
as V' = Dyg,; ,,, where the stochastic variable Dy is the offset direction of fault b, with two
possible values D, € {—1,1}. The pdf of the vertex values V), conditioned on the offset
direction Dy is given by f(wvy|dy) = 6(vy — dbg;,,), where 0(t) is the Dirac delta function.
The prior distribution of D, is chosen as f(1) = 6, f(—1) = 1 — 6, where 0 < 0 < 1,
resulting in the following pdf of V:

floo) = Y f(wsldy)f(dy) = 05(vy —g) + (1= 0)5(vs +gi). (6)

dye{-1,1}

(5)

When the offset direction Dy is known, the vertex values V', are deterministically given.
Thus the distribution of the offset along the fault trace b is uniquely defined through the
dip parameter 6, the length n of the trace and the size parameter f,,.

The vertices in by represent points not included in any fault traces. These points have
zero offset, implying vertex values of V; = 0, ¢« € by. The vertices in by are denoted
Vi, = {Vi;i € by}, and have pdf

f(vyy) = 0(wy). (7)
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Figure 11: Functions g;(z,n) representing the standardized offset profiles along a fault trace of
1 isolated fault tips.

The pdf of all vertices V', conditioned on the edges E, is obtained by combining the pdfs
(6) and (7):

f(vle) = ny(e) " f(ws) [ ] f(ws), (8)

beB.

where vertices V', and V' are assumed to be independent for any two fault traces b, 0" € B,.
The number of terms in the product depends on the dimension |B,| of the set B., which is
determined by the edge values e. The non-zero values of the pdf can be expressed as

f(vle) = ny(e)~'0" (1 — 0)F=F, 0 <k <|B, (9)

where k is the number of faults b € B, offset in direction D, = 1.

3.2.3 Topography of faulted surface

The pixels P represent the topography of the faulted horizon. The pattern of fault traces
on the horizon and the offsets along the traces are represented by the edges E and vertices
V respectively. The pixel values P should produce an image of a surface, reproducing the
discontinuities and offsets along the fault traces. Note that absolute depth is not defined,
but the pixel values give relative altitudes of the topography of the faulted surface. Edge
effects are accounted for by using free boundary conditions.

A multivariate Gaussian distribution is used as a prior model for pixel values. The mean
value p should depend on the edge values E = e and vertex values V' = v, thus p = p(e, v),
while the covariance matrix ¥, is defined independently of e and v. The prior pdf of P is
then given as the pdf ¢(-) of the multivariate Gaussian distribution:

f(ple,v) = ¢(p;ple,v), %)
= (2m) P, exp{~(p — u(e,v))'S, (P — ple,v))/2}.  (10)
The mean values p(e,v) should reflect the discontinuities along fault traces, with the

correct offset values across the discontinuities. Consider two adjacent pixels P; and P;,
where E;; is the edge between the pixels and Vj;; and Vjjo the vertices at the ends of the
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edge, see Figure 12. Let V;; be the average of the two vertex values. For a given realization
(E,V) = (e,v), denote by pu(e,v) = (u1, 2, .. ., itn,) the mean values of the pixels. If an
edge Ej; is not included in any fault trace, E;; = 0, the difference between the mean values
of P; and P; should be y; — p1; = 0. If there is a fault trace including the edge, Ej; = 1,
the difference should be approximately p; — 11; = ;5. Generally the requirement is thus

pi — pi = €i;0i; V(i ~j), (11)

where ¢ ~ 7 denotes adjacent pixels. The equation system is in general singular and has
no solution. To overcome this problem the offset values of the vertices are not considered
to give the final offsets along the fault traces. Instead the surface of mean values p(e, v) is
approximated according to some optimization criterion. The pixel values only give relative
heights of the surface, so without loss of generality the mean value of pixel 1 can be
assigned a value y; = 0. The remaining mean values s, . . ., fi,, are found as a least square
solution of the linear equation system (11). The equation system can be expressed as a
regression problem Y (e, v) = Z 3 where the components of Y (e, v) are given as e;;v0;;, and
B = (pa, 13, - - -, fin,). The design matrix Z is independent of e and v, and has component
values Z;; € {—1,0,1}. The least square fit 3 is given by 3§ = (Z'Z)~'Z'Y (e,v), and this
fit, together with p; = 0, is used as mean values of the pixels P. Thus

ple,v) =(0,(Z2'Z2) 'Z'Y (e, v)). (12)
The entries of the covariance matrix X, is given as
Cov(P;, Pj) = o, p(x;, z5), (13)
where z; denotes the position of pixel ¢. The exponential correlation function is used,
p(z,z") = p(a’ —x) = exp{=3(|2' — x|/a)"}, a>0,0<v<2, (14)

where the parameter a is called the correlation range.

Figure 12: The figure illustrates the notation of adjacent pixels P; and P;, the edge E;; between
the pixels, and the vertices V;;1 and V;;s at the ends of the edge.

3.2.4 Faulted horizon

The image (E,V, P) gives a discrete parameterization of the topography of a faulted
horizon. A continuous representation H is created by triangulation between the pixel
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centers, as described in Section 3.1. The topographic surface H is a deterministic function
of the image (E,V, P), and the pdf of H is given in Expression (2). Inserting Expressions
(4), (8) and (10), the following expression of the pdf of H is obtained:

f(h) = constx ¢(p; ple,v), Ty) - my(e)™ f(vae) [ [ £(vs) - exp{=) wele)}

= constx exp{—(p — (e, v))', " (p — ple,v))/2 = Y _wele)} (15)

cecm
x ny(€) 0¥ (1 — g)/Bel =k,
where k is the number of faults b € B, offset in direction D, = 1. The number n,(e)™!,
the dimension |B,| of the set B, the sets b contained in B, and the set by depend on the
edge values E. Thus the number of terms in the product [], 5 f(vs) will vary, and also
the dimensions of the variables V.

Figure 13 shows a realization of h from the prior pdf f(h). The sampling procedure
used to generate this realizations is described in Section 6. The figure shows edges e,
Figure 13a, vertices v, Figure 13b, and pixels p, Figure 13c. Figure 13d gives a perspective
plot of the continuous surface h = h(e,v,p), and the surface is represented as a gray
scale image in Figure 13f. Figure 13e shows the final offsets, being the magnitudes of
the discontinuities along fault traces in the surface. The figure should be compared with
Figure 13b. Away from fault intersections the two figures appear to be quite similar, with
only minor differences. Close to fault trace intersections the two figures differ to some
extent, indicating that the mean values E[P|E, V] = pu(e,v), Expression (12), are not
able to match the vertex values exactly in these regions.

4 Likelihood Model of Reservoir Specific
Observations

Faults alter the geometric structure of a reservoir, and thus influence on the structure of
reservoir characteristics. Available observations of the characteristics of subsurface reser-
voirs are discussed in Section 4.1. The relationship between the observations and the fault
pattern is defined through the likelihood function, and is described in Section 4.2.

4.1 Observations

Available observations from a subsurface reservoir consist of three dimensional seismic data
and well observations. Observations from seismic surveys give a good spatial covering of
the reservoir. However, only faults with displacement above 15-20 meters can be resolved
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from seismic data, and the observations contain measurement errors. See for example
Sheriff and Geldart (1995) for an introduction to seismic theory. Fine scale observations of
reservoir characteristics can be obtained from well logs. Such observations are however few
and sparse. Under the assumption of vertical faults, macroscopic faults are not observable
in wells. Seismic travel time is used as the vertical scale, while the conversion from time
to depth is beyond the scope of this work.

4.1.1 Seismic data

When a seismic wave travels downwards and hits an acoustic impedance discontinuity,
a part of the wave is reflected, and the reflected signal is registered at the surface. For
P-waves, also denoted longitudinal or compressional waves, the acoustic impedance Z is
given as the product of the P-wave velocity a and the density p of the medium, Z = ap.
Discontinuities in acoustic impedance are called reflectors, and the most common reflectors
are unconformities and significant changes in lithology, see Sheriff and Geldart (1995).
Consider a reflector where the P-wave velocity, density and acoustic impedance on one
side is oy, p; and Z; = ayp; respectively, and on the opposite side as, po and Zy = ayp,.
The reflection coefficient at the discontinuity is defined as

Ly — 24

C=——.
Zy+ 2y

(16)
For a fixed point (x,y) in a horizontal grid of observations, the seismic amplitudes obtained
from reflection points along a vertical axis in (z,y) are denoted S°(z,y,t). The seismic
data can be expressed as a convolution of the reflection coefficients C'(x, y, ) with a seismic
wavelet w(t) = w(t; 1), where 15 is a wavelet parameter. The scale of the vertical axis
is travel time ¢, and the superscript o denotes observations throughout this work. A
simplification is used, assuming all ray-paths of the seismic wave are vertical, and that all
reflectors are horizontal. The seismic data are given by

o
S°(, 1) = w(t) * O,y £) + Uz, g, 1) = / W(r)C(a,yt — 1) dr + Ulz,y,t),  (17)
where U(z,y,t) ~ N(0,0?) is a random noise term including both modeling error and
measurement error, see Eide (1999). An approximation to (17) is given by a discrete
representation. Assume seismic observations are available for times tq,1%s,...,%,, and let
Sp = S°(x,y,tx) be the seismic observation at the point (z,y,?;). The discrete represen-
tation of the seismic observation is as follows:

L
SZ == Z wick_iét + Uk, (].8)
1=—L

where U, = U(x,y,t) is the noise term, w; = w(¢;) is the seismic wavelet evaluated at
time t;, ¢_; = C(z,y,t,_;) is the reflection coefficient at time ¢,_; and 6t = ¢, — t; is

20



the time step. Corresponding to Expression (18), an expression of all seismic observations,
denoted S°, is given as

§° = A(y,)C + U, (19)

where C is a matrix of reflection coefficients, A(t);) is a matrix with entries corresponding
to the product w;0t and U a matrix of independent random noise. A commonly used
wavelet is the Ricker wavelet, expressed as

w(t) = (1 — 2(wvpt)?) exp(—(wvart)?), (20)

where the wavelet parameter 1); = v, is the peak frequency, see Sheriff and Geldart (1995).
The Ricker wavelet is symmetric with a maximum at ¢t = 0, see Figure 14.

0.03~

0.02r

-0.01¢
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Figure 14: The Ricker wavelet (20) with peak frequency vy = 40H z.

4.1.2 Well observations

From well logs velocity o and density p can be derived. The acoustic impedance Z = ap can
then be calculated, and for vertical wells Expression (16) can be used to obtain reflection
coefficients C'(x,y,t) in a well located at (z,y). Denote the vector of observed reflection
coefficients C°. The observations of reflection coefficients from wells are a subset of the
reflection coefficients C. Throughout this work well observations are assumed to be exact
observations.

4.2 Likelihood model

Two types of observations are discussed in Section 4.1, seismic data and observations
of reflection coefficients from well logs. The likelihood model of the seismic data and
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reflection coefficients is based on the work by Eide (1999). See also Eide et al. (1997a),
Eide et al. (1997b). The likelihood function of the reflection coefficients C and C” is
discussed first. The likelihood function of the seismic data S° and the joint likelihood
function of all observations O = (S8°, C?) are obtained from Expression (17) or (19), based
on the likelihood function of the reflection coefficients.

4.2.1 Reflection coefficients

A likelihood function of reflection coefficients in a non-faulted reservoir is first defined.
Adjustments are then made to find the likelihood function of the reflection coefficients in
the faulted reservoir.

Consider a sedimentary reservoir prior to faulting. Due to the sedimentation process the
rock tends to have a layered structure, with a relatively strong lateral homogeneity. Ver-
tically the layered rock is non-homogeneous. Prior to faulting, reflection coefficients of a
layered rock can in some cases be modeled as a Gaussian random field, see Todoeschuck
et al. (1990) and Eide (1999). Let C, denote reflection coefficients of a non-faulted reser-
voir, with a Gaussian distribution

Cu ~ N(Ncua Ecu)a (21)

where pi., is a vector of mean values and X, is the covariance matrix of C',. The covariance
between reflection coefficients in the points (z;, y;, t) and (z;, Ym, t,) is given as

COV{Ou(xia yja tk); Ou(xla Ym, tn)} - Uzupcu((xia yja tk); (xla Ym, tn))a (22)

where p, (+) is the correlation function of the reflection coefficients and o7, the variance.
The lateral homogeneity of the rock is accounted for by defining a strong horizontal cor-
relation in the likelihood model. A correlation function with negative correlation at short
vertical ranges is used, suggested by Eide (1999). The horizontal and vertical correlations
are assumed to be separable, and are defined based on the exponential correlation func-
tion (14). Let py(-) and py(-) denote exponential correlation function with range a = ay
and a = ay respectively. The correlation between C,(x;,y;,t) and Cy(z, ym,t,) can be
expressed as

Pe, (T Yy th), (X1, Ymy tn)) = pr (i, ¥5), (T1, Ym)) ¥
{2(1 = py (66))} " {2pv (ts tn) — pv (tesr, tn) — pv (ts tagr) } (23)

where py((z;,y;j), (21, ym)) is the horizontal correlation and the expression on the last line
is the vertical correlation. A regular grid with vertical spacing ¢;,; — t; = 0t is used. A
strong horizontal correlation is obtained by assigning a large value to the correlation range
ag. The vertical correlation, corresponding to (i,7) = (I,m) in the correlation function
(23), is illustrated in Figure 15.
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5 10 15 20

Figure 15: The vertical correlation in the correlation function (23), with parameters v = 1.2 and
ay = 15 in the exponential correlation function py(-) involved in Expression (23). The scale of
the horizontal axis is milliseconds.

After faulting the original structure of the rock is altered. The fault pattern is represented
by the horizon H(z,y). Under the basic model assumptions discussed in Section 2, the
reflection coefficients originally located in (z, y, t) is displaced to the point (z,y,t—H (z,y)),
see Figures 16a and 16b. If the faulted horizon H(z,y) is known, the reflection coefficients
can be transformed back to their original location, as illustrated in Figure 16c.

Let C(z,y,t) denote the reflection coefficient at a point (z,y,t) in the faulted reservoir.
The value of this reflection coefficient is

C(z,y,t) = Cylz,y,t + H(z,y)), (24)

obtained by a vertical transformation of the original reflection coefficients C',. The marginal
distributions of the reflection coefficients are unchanged, but due to the spatial rearrange-
ment the mean vector p., and covariance matrix ., are no longer valid. Consider two
points (z,y,t) and (z',y',t') prior to faulting, with reflection coefficients C, and C}. The
covariance between the reflection coefficients prior to faulting is given in Expression (22).

_____________

______________

(a) (b) (c)

Figure 16: (a) The structure of the rock before faulting. (b) After faulting the structure is
altered. (c) If the faulted horizon H is known, a transformation back to the original structure
can be performed.
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After faulting the covariance between the two reflection coefficients is unchanged, since the
values of the reflection coefficients are not altered by the faulting. However, the positions
are changed, and the reflection coefficients considered are now located at (z,y,t — H(x,y))
and (z',y',t'— H(2,y")) respectively. The transformations due to faulting can be expressed
as a permutation of the elements of the vector C, of reflection coefficients, and a corre-
sponding rearrangement of the order of the elements in the mean vector p., and covariance
matrix ., . The overall distribution of reflection coefficients in a faulted reservoir is then
a Gaussian distribution, expressed as

[CH = h] ~ N(pe(h), Zc(h)), (25)

where p.(h) and ¥.(h) are obtained from p., and ¥., by rearranging the positions of
the elements according to the transformations dictated by the faulted horizon H = h.
Reflection coefficients C° observed in wells are a subset of the reflection coefficients C.
The observed reflection coefficients follow a Gaussian distribution

[C°|H = h] ~ N(pteo(h), Xeo(h)), (26)
where pi.0(h) and X.0(h) are subsets of p.(h) and X.(h) respectively.

4.2.2 Seismic data

The likelihood function of seismic data S° is obtained by using the relationship between
seismic observations and reflection coefficients given in Expression (17) or (19), and the
likelihood model of the reflection coefficients given in Expression (25). The seismic data are
linear combinations of the reflection coefficients and a random noise term, both Gaussian
random fields, thus the seismic observations are also modeled as a Gaussian random field.
The mean and variance functions of the seismic data are found from the mean and variance
functions of the reflection coefficients and the random noise term.

Similar to the reflection coefficients, the seismic data can be expressed as a transformation:
S%(x,y,t) = Sy(z,y,t+ H(z,y)). (27)

Using the same notation as in Expression (24), S? denotes the seismic observation that
would be obtained if seismic data were gathered prior to faulting of the reservoir. The
mean value of S2(z,y,t) is found from Expression (17):

B{S2(x,y.1)} = / V(9. ¢ — 1) dr. (25)

The covariance between seismic observations S9(z;, y;, tx) and SS(x;, Ym, t,) is found to be

Cov{S2(xs, Yj» 1), SUTt, Ymy tn)} = 021[(i,5,k) = (I, m,n)] +
2 [ e (@t - 1), st~ (29
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where 1[-] is the indicator function. The covariance function (22) and the correlation
function (23) of the reflection coefficients are used. Using the discrete matrix representation
(19), the mean values and covariance matrix of the seismic data S, are found to be

psoe = E{S7} = A(Yy) e, and Yo = Var{S7} = A(¢s) 3., A(¢s) + oI,  (30)

where [ is the identity matrix. As for the reflection coefficients, the seismic observations
of the faulted reservoir can be modeled as a Gaussian random field with mean vector and
covariance matrix depending on the faulted horizon H. The distribution of the seismic
data is the Gaussian distribution

[SO|H = h] ~ N(,U’s" (h)7 Es"(h)) (31)

where /150 (h) and X (h) are obtained by rearranging the elements of /15, and ¥, according
to the faulted horizon H = h.

4.2.3 Joint likelihood model of observations

Reflection coefficients [C'|H| are Gaussian distributed, see Expression (25). From Expres-
sion (19) it is clear that the joint distribution of [(S?, C')|H] is also Gaussian, and conse-
quently, so is the distribution of the subset [O|H]| of observations, where O = (S°, C°).
By the same arguments as above, the mean vector and covariance matrix of [O|H] can be
found by first deriving the corresponding mean and covariance in a non-faulted reservoir,
using Expressions (17) or (19), and then rearranging the elements according to the faulted
horizon H = h. Thus [O|H = h] ~ N(u.(h),%,(h)), and the joint likelihood function
f(o|lh) = f(s° ¢€°|h) of the observations O = (S°, C’), given H, is the pdf of the Gaussian
distribution:

f(olh) = é(0; p1o(h), o (h)), (32)

see Expression (10). The single elements of the covariance matrix 3,(h) are defined by the
covariance function (22) and the matrix A(1);) involved in the convolution (19), while the
order of the elements are determined by the faulted horizon H.

5 Posterior Model of Geological Fault Patterns
Conditioned to Reservoir Specific Observations

Observations O of the reservoir contain seismic data and observations of reflection coeffi-
cients obtained from well logs. The observations carry information about the structure of
the reservoir, and how the originally horizontal layers of the reservoir have been altered due
to faulting. The aim of this work is to generate realizations of the underlying geological
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fault pattern, by sampling the faulted horizon H conditioned to the observations. The
prior distribution from Section 3 and the likelihood function from Section 4 are combined
to form a posterior distribution. Samples from the posterior distribution can be obtained
using the methodology presented in Section 6.

The prior pdf f(h) contains general geological knowledge about the fault pattern and the
faulted horizon H. The likelihood function f(o|h) gives the likelihood of observing O, if
the true faulted horizon is H. The posterior distribution

f(hlo) = const x f(h)f(o|h) (33)

combines the general geological knowledge with the reservoir specific observations, and
gives the distribution of the faulted horizon H conditioned to the observations O. The
prior pdf and the likelihood function are given in Expressions (15) and (32) respectively.
Inserting the functions into Expression (33), the following posterior pdf is obtained:

f(hlo) = constx ¢(p; (e, v),S,) - no(€) ™ f(vs) [ [ F(vs) - exp{~ ) welec)}

beBe ceCcm

X (05 po(h), Lo (h)). (34)

The posterior model contains a number of parameters, which are listed in Table 4.

Prior distribution f(h) = f(ple,v)f(v]e)f(e):

f(e): Potential function w.(e.): vi, vij, i =1,...,10, j=1,...,6
f(v|e): Dip parameter
Size parameter i,
f(ple,v): Variance o
Correlation function p(-): v,a

Likelihood function f(o|h) = f(s°|e’, h)f(c°|h):

f(e’|h): Mean p,
Variance o2
Correlation function p.(-): v,ay,ay
f(s°|e’, h):  Variance o2
Ricker wavelet w(t): vy
Time step 0t

Table 4: Parameters in the posterior distribution f(h|o).
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6 Sampling From the Posterior Distribution

Expression (34) gives the posterior pdf of the faulted horizon H(E, V', P), conditioned to
the observations O. Fault patterns and corresponding faulted horizons can be generated by
sampling from the posterior distribution. The posterior distribution is high dimensional,
and due to the complexity of the distribution no procedure for exact simulation exists.
Instead, Markov chain Monte Carlo (McMC) techniques are used, see Besag et al. (1995)
for an introduction to McMC methodology and for further references.

A Metropolis-Hastings algorithm is used to generate samples from the posterior distribu-
tion f(h|o) in (34), see Hastings (1970). A detailed description is given in Algorithm 1,
Appendix A. In each step of the algorithm, one of three possible transition types is chosen.
Suppose at one step the edge, vertex and pixel values are E = e, V = v and P = p, and
the faulted horizon is H(E,V, P) = h(e,v,p). New values €', v' and p’ are suggested
using one of the transition types. The three alternative transition types have different
transition kernels, and are given as follows:

(i) Edge values €', vertex values v’ and pixel values p' are generated from the prior
distribution, with the transition kernel

q(b'|h) = f(e', v, p') = f(e) f(v'|e) f(p'|e’,v).

(ii) Edge values €' = e are fixed while vertex values v’ and pixel values p' are generated
from their respective prior distributions. The transition kernel is in this case

q(W'h) = f(v',p'le) = f(v'|e) f(p']e, V).

(iii) Edge values € = e and vertex values v' = v are fixed while pixel values p' are

generated from the prior distribution. In this case the transition kernel is

q(h'|h) = f(p'le, v).

In alternative (i) and (ii) the prior density function f(wv|e) cancels in the acceptance prob-
ability, while in alternative (iii) the vertex values V are constant. Thus the dependence of
B. on E causes no problems in the McMC algorithm, and the number n,(e)~! need not be
evaluated. For all suggested transitions, the probability of accepting the proposed horizon
h' = h'(e',v',p) is given by

a(l'|h) = min {1, J;((ZYZ)) } . (35)

A sample from the pdf f(h) is generated in a stepwise procedure, and Figure 13 illustrates
the realizations obtained at different steps of the procedure. First, all edge values E are
generated from the prior pdf f(e). Next, vertex values V are generated from the prior pdf
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f(v|e) conditioned on the edge values. The pixel values P are then generated from the
prior pdf f(p|e,v) conditioned on both edge and vertex values.

A Metropolis-Hastings algorithm is used to generate realizations from the prior pdf f(e),
while exact sampling of the offsets and pixels from f(v|e) and f(ple,v) are easily per-
formed. Algorithms for drawing samples of E, V' and P from their respective prior distri-
butions are given in Appendix A.

The sample space Q = Q% x Q™ x Q,” of H is a high dimensional space, and a large number
of iterations must be run in order to span the space adequately. Thus the algorithm is
rather time consuming and as n., n, and n, increase, the number of iterations required
increases drastically. In alternative (i) of the transition steps, one further McMC simulation
is run within a step of the original McMC algorithm. Thus realizations from the posterior
distribution is generated using a double McMC algorithm. However, the McMC algorithm
used to sample from the prior pdf f(e) is not very time consuming and seems to converge
relatively fast, see Section 7.

The simplicity of the likelihood function is an advantage of the described algorithm. All
acceptance probabilities are given as a likelihood ratio, where the likelihood function (32) is
the pdf of a multivariate Gaussian distribution. Thus the algorithm is capable of handling
densely scattered seismic observations, although evaluation of the likelihood function in the
case of a large number of observations can be time consuming. Still, the major influence
on the time consumption of the algorithm is from the large number of iterations required
to span the sample space of H through generation of samples from the prior pdf.

For small datasets the Gaussian likelihood function can be evaluated exactly. As the
dimension increases however, the likelihood can in practice not be obtained analytically
for general Gaussian fields, and an approximation to the likelihood function must be found.
The likelihood function of the observations O can be approximated by a pseudo-likelihood
function (Besag, 1974)

f(olh) = Hf(0i|07z'7 h) ~ Hf(0i|08i7 h), (36)

where O); is chosen as a vertical column through the observations and O_; is the set of all
other observations. The conditional distributions of O; are approximated by distributions
depending only on observations Ojy; in a neighborhood 0i of O;. A neighborhood of 5 x 5
vertical columns is used in the simulations presented below.

7 Sampling From the Prior Model of Fault Traces

The McMC algorithm presented in Section 6 includes sampling from the prior distribution
of H, where McMC techniques are also applied to sample from f(e). Realizations from
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f(e) are shown in Figures 9 and 10, and are generated using the McMC algorithm described
in Appendix A, Algorithm 2. The convergence of this McMC algorithm is studied in this
section.

Figure 17 shows convergence plots for realizations from the prior pdf f(e), using the
potentials from example 1 in Table 3. The McMC algorithm is run for 20 000 iterations.
Each iteration consists of n, update steps, where at each step an edge is drawn at random, a
change of value is suggested, and the new value is accepted with the appropriate probability.
The plots in Figure 17 show the relative number of configurations belonging to some of
the configuration classes from Table 1, plotted for every 10th iteration. All plots indicate
a fast convergence of the algorithm. The Markov chain in Figure 17 has an initial state
where each edge value is drawn at random from €, = {0,1}. In Figure 18 some of the
plots are compared to Markov chains starting at extreme initial states, one where all edge
values are £ = 0 and one where all are £ = 1. The first 1000 iterations from the McMC
algorithm are plotted. Within these iterations, the Markov chains seem to have reached
the same stationary state. Figure 19 shows convergence plots for realizations from the
prior pdf f(e), using the anisotropic potentials from Simulation 8. Configurations of the
favored direction are observed to be more frequently represented in the Markov chain. Also
Figure 19 gives an indication of fast convergence.
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Figure 17: Plots of the relative number of configurations belonging to some of the classes listed
in Table 1. The potentials of example 1 in Table 3 are used. The number of iterations is 20 000
and every 10th iteration is plotted. The scale of the horizontal axis is 1000.
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Figure 18: Plots of the relative number of configurations belonging to some of the classes listed
in Table 1, using various initial states of the Markov chain. The potentials of example 1 in
Table 3 are used. The first 1000 iterations from the prior pdf f(e) are plotted, and the scale of
the horizontal axis is 1000. Solid lines correspond to initial states where each edge value is drawn
at random. Dotted lines show simulations where all edges have initial value £ = 0, for dashed

lines all initial values are F = 1.
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Figure 19: Plots of the relative number of configurations belonging to some of the classes listed
in Table 2. The potentials of example 8 in Table 3 are used. The number of iterations is 20 000
and every 10th iteration is plotted. The scale of the horizontal axis is 1000. Solid lines represent
configurations belonging to direction 2, the favored direction, while the other are plotted with

dashed lines.
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8 Simulation Examples using Synthetic Observations

The aim of this work is to generate faulted horizons H conditioned to observations O, using
the sampling technique described in Section 6. In this section synthetic data is used to
study the model and the proposed algorithm. In Section 8.1 the synthetic data is presented,
and in Section 8.2 simulation examples from the posterior distribution are studied. In the
examples in Section 8.2 a small number of edges, vertices and pixels is chosen, to reduce
the dimension of the sample space of the prior distribution.

8.1 Synthetic observations

To generate synthetic observations, data from a non-faulted reservoir is first generated.
Reflection coefficients C, ~ N (fic,, X¢,) of a non-faulted reservoir are drawn from a Gaus-
sian distribution with mean p., and covariance matrix Y., , see Expression (21), using the
covariance and correlation function given in Expressions (22) and (23) respectively. The
size of the data set is 50 x 50 x 20, and cross sections through the reflection coefficients
are shown in Figure 20. The choice of parameter values are inspired by the work of Eide
(1999), and are given in Table 5a. Seismic data S; = A(¢;)C, + U of the non-faulted
reservoir are obtained by convolution of the reflection coefficients with the Ricker wavelet
(20), adding Gaussian noise of mean 0 and variance o2, see Expression (19). The param-
eter 1, of the Ricker wavelet, the variance and the time step 0t are given in Table 5b.
Cross sections through the generated seismic data are shown in Figure 21. The generated
reflection coefficients C\,, and seismic data S; represent the reservoir prior to faulting in
the examples below.

A synthetic faulted horizon H is sampled from the prior pdf f(h) in Expression (15), using
Algorithm 1, Appendix A. The number of concentric bands of pixels in the hexagonal image
is 5. The parameter values used in the prior pdf are given in Table 5c. The the horizon
covers a hexagonal area, while the seismic observations are generated over a square area.
The square area is placed inside the hexagonal area, and only the part of the horizon where
observations are available is illustrated in Figure 22. Seismic data of the faulted reservoir
are obtained using Expression (27), S°(z,y,t) = S2(z,y,t + H(x,y)), where t + H(x,y)
is rounded off to the closest observation point ;. The faulted horizon in Figure 22 gives
the seismic data shown in Figure 23. Reflection coefficients in four wells are found using
Expression (24), C°(z,y,t) = Cy(x,y,t + H(z,y)), and are shown in Figure 24. The well
positions are picked at random, and are marked in Figure 23. The complete set of synthetic
observations O consists of the seismic data S° and the reflection coefficients C°.

When the seismic amplitudes S% in Figure 21 are transformed according to Expression (27),
columns of the images in Figure 21b-c are shifted up or down, depending on the values of
H(z,y). The result of the transformations is a non-rectangular area of observations. To
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(c)

Figure 20: Synthetic reflection coefficients C,, in an unfaulted reservoir. (a) Top horizontal layer.
(b) Vertical N-S oriented cross section through the reservoir at position z = 25. (¢) E-W oriented

cross section at y = 25. Different horizontal scales are used.

Lhe o? v ag ay o? Unr ot

0.0 0.035* 1.2 40 15 0.0015% 40 0.002

(a) (b)

f(e)

71 V2 V3 V4 V5 Ve V7 8 Yo 710

-1.0 0.7 -1.0 05 -1.1 0.125 -09 -0.8 0.2 2.5

(c)

Table 5: Parameters involved in (a) the Gaussian distribution of reflection coefficients C,, prior
to faulting, (b) the relationship between reflection coefficients C,, and seismic data SY and (c)
the prior distribution f(h) = f(e)f(v|e)f(ple,v) of the fault pattern H.
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Figure 21: Seismic data S¢, resulting from a convolution of the reflection coefficients in Figure 20
with the Ricker wavelet, and Gaussian noise added. (a) Top horizontal layer. (b) Vertical N-S
oriented cross section through the reservoir at position z = 25. (c) E-W oriented cross section at
y = 25. Different horizontal scales are used.

overcome this problem, only the 8 middle layers of the data set is used, and all shifts are
restricted to having maximum size 6. Thus the 8 layers in the middle will always contain
data after the transformations, and only these data are used as seismic observations S°.
The size of the seismic dataset is thus 50 x 50 x 8. Similar restrictions are used for the
observed reflection coefficients from wells. Note that the observation points lying inside
this rectangular area after transformation will differ according to the faulted horizon H.
In visual representations of the seismic data or well data, all data are included, and the
part of a data column that is transformed below the boundary of the image is added on
the top, see Figure 23. Similar for data transformed above the image boundary.

Realizations H generated from the posterior distribution of the faulted horizon conditioned
to synthetic observations can be compared to the true horizon. Furthermore, given the
fault pattern H the observations can be transformed back to their original positions by
inverting Expressions (24) and (27). For a given realization of H the transformed seismic
data can be compared to the true non-faulted reservoir S illustrated in Figure 21.
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Figure 22: (a) Faulted horizon h from f(h) and (b) corresponding pattern of fault traces e.

Figure 23: Seismic data S° after faulting, corresponding to the data in Figure 21. (a) Top
horizontal layer, where the circles mark the well positions. (b) Vertical N-S oriented cross section
at position z = 25. (c) E-W oriented cross section at y = 25. Different horizontal scales are used.
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Figure 24: Reflection coefficients ¢ obtained in four vertical wells.

8.2 Sampling from the posterior model

The synthetic data from Section 8.1 are used as observations of a faulted reservoir. Fig-
ure 25 shows an E-W oriented vertical cross section through the seismic data at position
y = 40. Based on the observations o = (8, ¢°), four realizations of the fault pattern in the
reservoir are generated from the posterior pdf f(h|o), Expression (34). Each realization
is generated by restarting the McMC algorithm, thus all samples are independent. 50 000
iterations are run, using an initial burn-in of 5000 for the sampling from f(e). In Figure 26
the generated horizons are compared with the true, known faulted horizon. Only the part
of the horizons where observations are available is included in the plots. Figure 27 gives a
comparison of the true and sampled fault trace pattern on the horizon. One of the main
features of the faulted horizon is a N-S striking fault with a relatively large offset in the
upper part of the image, see Figure 26. This fault is present in all four realizations. A NW-
SE striking fault gives a low altitude of the horizon in the lower left corner of the image.
This low-altitude area is also recognized in the realizations, but there is some uncertainty
about the orientation of the fault. The lower part of the N-S striking fault and the inter-
secting fault segment to the right have small offsets, and the realizations of edge images
in Figure 27 reveal uncertainties in these areas. However, from Figure 26 the variation of
altitude in these areas is observed to be relatively small both for the true faulted horizon
and the realizations from the posterior.

In Figure 28 the seismic observations s° from Figure 25 are transformed back to their

E = = e
Figure 25: E-W oriented cross section through the seismic observations s° at position y = 40.
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True faulted horizon Realizations of the faulted horizon

Figure 26: True faulted horizon h compared to four realizations from the posterior pdf f(h|o)

in Expression (34).
\
\ /"
\

True edge image Realizations of the edge image

Figure 27: True edge image e, representing the pattern of fault traces on the horizon h, compared
to the edge images of the realizations shown in Figure 26.
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original structure according to the realizations of the faulted horizon in Figure 26, as
illustrated in Figure 16. The cross-sections intersect the upper part of the N-S striking
fault. This fault can be observed in Figure 25, while it is no longer visible in the transformed
observations in Figure 28.

Figure 29a illustrates the variation in sampled offsets along fault traces. For each fault
trace falling inside the observation area, the offset is measured at vertices and edge center
points along the trace. The offsets of the true faulted horizon are compared to the offsets of
the realizations, using different symbols for each realization. Absolute values of the offsets
are reported. Fault traces that are present only in the true fault pattern or in a realization
appears as points along the axes. The mismatches in Figure 29a mainly originate from
the uncertainty around the position and orientation of the NW-SE striking fault in the
bottom left corner of the true faulted horizon in Figure 26. This fault has a relatively large
offset. Apart from offsets along these fault traces, the bulk of the points in Figure 29a
are scattered around the diagonal, indicating a relatively good agreement between offsets
along fault traces in the true faulted horizon and the realizations. Figure 29b shows a
histogram of offset values in cases where the edge value differs between the true image
e and a realization e;, see Figure 27. The figure shows that the amount of misclassified
edges decreases as the offset increases, and edges that differ between the true image and a
realization have mainly small offsets.

The convergence of the McMC sampling is studied by considering the energy of the likeli-
hood function:

U(olh) = (0 — 11(h))'So(h) (0 — 116(h)) /2, (37)

where a relatively low energy gives a relatively high likelihood, and vice versa. Figure 30
shows a plot of U(ol|h) for the four runs, with accepted proposals of H indicated. It is
observed from the figure that the acceptance ratio is very low. This can partly be related
to the proposal distribution, which is chosen as the prior pdf. The prior pdf of this high
dimensional variable will typically be much more spread out than the posterior pdf, and
the proportion of proposals located in the high density area of the posterior is low. For all
runs of the algorithm, the plot shows an initial decrease in the energy U(o|h) during the
first 20 000 iterations. Later, few new proposals are accepted, and the energy remains low.

Each realization reported above required 1-2 days of simulation, where the McMC algo-
rithm is implemented in the C programming language and was run on a Solaris 2 UNIX
work station. As mentioned above, the time consumption of the algorithm is influenced
by the time required to span the sample space of H and the time it takes to evaluate the
likelihood function at each step of the algorithm. The potential for a speed up of the algo-
rithm lies mainly within the choice of updates in the McMC algorithm and the evaluation
of the approximated likelihood function at each step of the algorithm.
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Figure 28: Seismic observations s° from Figure 25 transformed back to the original structure, ac-
cording to the realizations of the faulted horizon in Figure 26. The concept of this transformation
is illustrated in Figure 16.
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Figure 29: (a) Comparison of offset at vertices and edges for the true faulted horizon and the
realizations in Figure 26. Different symbols are used for the four realizations. (b) Histogram of
offset values at edges that are misclassified.

38



1 1 1 1 1 1
0 2 4 6 8 10

x 10

Figure 30: Plots of the energy function U(o|h) in the likelihood function f(o|h), see Expression
(37), for the simulations from the posterior pdf. Different symbols (0, <, 0,v/) are used to mark
accepted proposals in each run of the McMC algorithm.

9 Real Data

In this section the stochastic model for fault patterns and the McMC sampling algorithm
are applied to a dataset of real seismic observations. Only seismic data are included, since
no well observations are available. The location of the seismic survey is confidential. An
E-W oriented vertical cross section through the three dimensional seismic cube is presented
in Figure 31a, where faults of approximately vertical dip directions are visible. Figure 31b
shows a horizontal cross section through the seismic cube. The dataset is considered by
geologists to be of good quality.

When the model and the McMC algorithm were first applied to large sections of this
dataset, problems were encountered and no satisfactory results were obtained. To be
able to investigate the nature of the problems and the limitations of the model and the
algorithm, smaller sections of the dataset are studied.

A section of size 8 x 8 x 20 is extracted from the data, see Figure 32, and is used in
the stochastic model. The location of the extracted data is indicated in Figure 31, and
the dataset is observed to contain at least one fault. Figure 33 shows realizations of the
horizon H and the corresponding pattern of fault traces, E, sampled from the posterior
pdf in Expression (34). The number of concentric bands of pixels in the hexagonal image
is 5. The parameter /i, of the prior pdf f(v|e) is chosen as j, = 0.0025, the potentials v,
in the prior pdf f(e) are chosen equal to the potentials of example 3 in Table 3, and the
remaining variables are chosen as reported in Table 5. The number of iterations is 100 000,
using 5000 initial burn-in iterations in the McMC sampling from f(e).

All realizations in Figure 33 show a N-S striking fault, with rock on the east side of the
fault offset downwards. The realizations reveal some uncertainty in the northern part of the
major fault trace and in the pattern of smaller fault traces east and west of the major fault.
Figure 34 shows the original structure of the cross section in Figure 32a, obtained based
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Figure 31: (a) E-W oriented vertical cross section and (b) horizontal cross section through a
three dimensional seismic cube of size 151 x 226 x 100. The arrows mark the positions of the cross
sections. The white rectangles mark smaller sections which are extracted and further examined,
one of size 8 x 8 x 20 (solid lines) and one of size 20 x 20 x 20 (dashed lines).

(a) (b)

Figure 32: (a) E-W oriented vertical cross section and (b) horizontal cross section through a three
dimensional seismic cube of size 8 x 8 x 20. The location of the dataset is marked in Figure 31.
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Figure 33: Realizations of H and corresponding E, conditioned to a seismic cube of size 8 x 8 x 20.

Figure 34: The vertical cross section from Figure 32a after transformation back to the original
structure according to one of the realizations in Figure 33.

on one of the realizations of H in Figure 33. The vertically dipping fault in Figure 32a is
no longer detectable in Figure 34. The other realizations of H give similar results. Based
on the results in Figures 33 and 34, the model and the sampling algorithm are considered
to work properly when applied to a small section of seismic data.

The extracted dataset is enlarged horizontally, obtaining a dataset of size 20 x 20 x 20,
while the hexagonal image is expanded to 11 bands of pixels. The location of the dataset
is marked in Figure 31. Figure 35 shows two realizations of H and the corresponding E,
using the same model parameters as above and running 50 000 and 500 000 iterations of
the McMC algorithm. The time consumption of the latter run was 2-3 days. No common
fault traces are observed in the two realizations in Figure 35, and based on the knowledge
about the true fault pattern the results of neither run seem reliable. Repeated runs with
50 000 iterations gave similar results, with no common major features in the resulting fault
patterns. In general it can be concluded for this dataset that either the model assumptions
are not able to reflect the reality, or that 500 000 iterations is not sufficient to give a
satisfactory convergence of the McMC algorithm.

Other datasets of sizes ranging from 20 x 20 x 20 to 50 x 50 x 20 were extracted from the
seismic cube and used in the stochastic model, and also these gave disappointing results.
Most of the McMC runs resulted in horizontal, non-faulted realizations of H, although the
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datasets were extracted from regions where faults are visible in the seismic data. Relatively
coarse grids of 5-7 bands of pixels were used for the hexagonal image.

The examples above show satisfactory results when only a small seismic cube is used
in the model, while problems arise when the dataset is enlarged. The main sources of
the problems encountered are believed to be restrictive model assumptions and the time
consumption of the sampling algorithm. The time consumption of each iteration of the
McMC algorithm depends on the grid sizes of both the hexagonal image and the seismic
cube, which determines the time required to sample from the prior and to evaluate the
likelihood. The model assumptions that are considered to be potential sources of difficulties
are:

(i) Faults are vertical with constant offset vertically.
(ii) Fault planes are infinitely thin.

(iii) Offsets are small compared to the thickness of the formation.
(iv) All fault traces follow the edges of the hexagonal grid.

(v) Reflection coefficients and seismic data follow Gaussian distributions.

The mean and variance of the seismic data of a faulted reservoir are obtained under the
assumption of vertical fault planes. If this model is applied to datasets with non-vertical
fault planes, the mean and variance will not be obtained correctly as the transformation
of rock due to faulting is not perfectly modeled. It is observed in Figure 31a that the

faults are only approximately vertical and the offset seems to vary somewhat vertically,
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Figure 36: E-W oriented vertical cross section of size 20 (horizontally) x 40 extracted from the
cross section shown in Figure 31a. The cross section covers an enlarged area around the data in
Figure 32a.

thus assumption (i) is not completely fulfilled. However, within the extracted dataset
in Figure 32a the fault plane is vertical and the offset is constant vertically. Figure 36
shows 20 x 40 seismic datapoints, where the cross section in Figure 32a is enlarged both
horizontally and vertically. From this cross section it is observed that the fault plane
does not appear as a vertical, well defined discontinuity, but rather as a dipping band
of deformations covering 5-6 observation points horizontally. Thus the figure indicates
violations also of assumption (ii). Furthermore, the seismic data close to the fault seem to
be somewhat blurred, which may cause slight violations of assumption (v). The blurring
is related to the Fresnel zones of the seismic signal, see Sheriff and Geldart (1995). The
seismic signal is in practice not reflected from a single point on a reflector, but from a
larger area. Close to a fault plane the Fresnel zone will cover areas on both sides of the
fault, and the seismic signal from a specific reflector is weakened.

Seismic datasets consisting of 20 datapoints vertically have been used in the examples
reported above, corresponding to a thickness of the formation of 40ms. This vertical
thickness enables modeling of faults with vertical offsets up to approximately 20ms. In
the real dataset studied, offset values range from about 4ms to beyond 60ms, thus with
seismic cubes of thickness 40ms assumption (iii) is not fulfilled by all faults. An example
of large offset faults is given in Figure 37. To be able to model the largest fault offsets,
seismic cubes of vertical thickness 120 — 150ms, or 60-75 datapoints, should be used. This
magnifies the seismic cube by a factor 3-4 compared to the previous examples, increasing
the time required to evaluate the likelihood. Furthermore, the deviations from vertical
fault planes become more pronounced when thicker seismic cubes are used.

Figure 37: N-S oriented vertical cross section through the three dimensional seismic dataset
presented in Figure 31. The two largest faults have offsets of 30 — 50ms.
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Figure 38: Seismic datapoints (crosses), combined with hexagonal images of gradually finer grids.

Assumption (iv) is obviously not fulfilled by the real dataset. The flexibility in modeling
the positions of fault traces relative to the seismic observations depends on the resolution
of the hexagonal grid. This is illustrated in Figure 38. The coarse grid in Figure 38a results
in large blocks of seismic data inside each hexagonal pixel, with zero probability of any
fault traces dividing these seismic datapoints. Figures 38b and 38c show how finer grids
can be used to improve the flexibility in the modeling of fault traces. However, refinement
of the hexagonal grid implies an enlargement of the sample space of (E, V', P), increasing
the number of McMC iterations required to span the sample space properly.

A small test is performed aiming at exposing problems related to assumption (v), by in-
vestigating the performance of the model and algorithm when assumptions (i)—(iv) are
fulfilled. A seismic cube of size 30 x 30 x 20 with no visible faults is used. Two simulation
cases are performed, one with the original data and one with a fault pattern sampled from
the prior model artificially enforced on the dataset. A hexagonal grid with 5 concentric
bands of pixels is used. Simulations based on the original data gave approximately hor-
izontal realizations of H with no faults at seismic scales. When a N-S striking fault was
artificially enforced, see Figure 39a, all realizations from the posterior pdf reproduced the
fault, see Figure 39b. Based on these examples, no major problems with the Gaussian
assumption are apparent.

(a) (b)

Figure 39: (a) Fault trace artificially enforced on a seismic cube. (b) Realizations from the
posterior pdf.

44



Based on the experience with the real data, it is clear that with the computer power cur-
rently available, the performance of the model and the McMC algorithm is of limited value
for large real datasets. Model assumptions (iii) and (iv) are related to the time consump-
tion of the McMC algorithm, and problems related to these assumptions could be improved
on by increased computer power or more efficient implementation, for example by the use
of parallel implementation to evaluate the likelihood function. Violations of assumptions
(i) and (ii) can be corrected for by redefining the model to increase flexibility in the mod-
eling of the faults, while assumption (v) is not found to cause any major problems. A
possible application for large datasets could be to apply the model to a smaller section
within a gliding window. By moving the window across the larger dataset and modeling
the fault pattern within a number of smaller sections, the overall fault pattern could be
modeled. This could be done either by modeling the fault pattern within each section
independently or by including dependencies between the sections, for example modeled
through boundary conditions. An alternative approach to dealing with large datasets is to
apply a thinning of the seismic data in the horizontal direction. This could improve the
fulfillment of assumptions (i) and (ii), and would reduce the size of the seismic cube and
thus the time consumption of each McMC iteration. Furthermore, the thinning would have
a similar effect on assumption (iv) as the refinement of the grid illustrated in Figure 38.
However, the thinning will reduce the seismic resolution horizontally, and can cause prob-
lems in distinguishing between fault discontinuities and continuous changes in elevation of
comparable magnitude.

10 Conclusion

The paper presents a stochastic model for patterns of faults above seismic resolution, con-
ditioned to three dimensional seismic data and well observations. Based on the typically
strong horizontal correlation found in reflection coefficients, and also in seismic data aris-
ing from a linear convolution of the reflection coefficients, faults can be recognized as
discontinuities in the data.

Due to the complexity of the model, McMC techniques are required to sample from the
posterior distribution of fault patterns. The performance of the model and the constructed
McMC algorithm is illustrated using a synthetic dataset. In this case the samples from the
posterior distribution successfully reproduce the main features of the underlying, known
fault pattern.

Problems are encountered when the model and the sampling algorithm are applied to a
real seismic dataset, and possible sources of difficulties are discussed. Some of the model
assumptions are found not to be completely satisfied. The flexibility of the model is
influenced by the resolution of the model, however refinement of the grid is obtained on
the expense of the time consumption. Redefinition of the model, increased computer
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power and more efficient implementation are suggested as improvements of the problems
with the model assumptions and resolution. Alternatively, the model and the algorithm
can be applied to smaller sections of the data, for example by the use of a gliding window
or by thinning of the seismic data.
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A Sampling Algorithms

A Metropolis-Hastings algorithm is used to sample from the posterior pdf f(h|o) of the
faulted horizon H conditioned to the observations O of the reservoir. Several alternative
transition steps are used, resulting in different transition kernels. The algorithm is given
as follows:
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Algorithm 1 — Sampling from f(h|o)

Let ne, n, and n, be the number of edges E, vertices V' and pizels P respectively, and let
Qre, Q™ and Q" be the sample spaces of E, V and P. Furthermore, let Z?:l m =1,
where 0 < m; < 1.

e Initiate arbitrary e(0) € Q7, v(0) € Q™ and p(0) € Q",
let h(0) = h(e(0),v(0),p(0)).

o [teratet =1,2,...

— Lete=e(t—1),v=v(t—1),p=p(t—1) and h = h(t —1).
— Generate €, v' and p' in one of the following ways:
(i)  With probability m: € ~ f(€)
v~ f(v']€)
p/ ~ f(p,|6,, vl)
hence — q(W'|h) =f(€')f(v'|e') f(p']€/, V")
(i1) ~ With probability mp: € =e
v~ f(v']e)
p' ~ f(p'le,v)
hence  q(W'|h) =f(v'|e) f(p'|e, v)
(ii1)  With probability m3: € =e
v'=vw
p'~ f(P'le,v)
hence  q(W'[h) =f(p'le, v)
_ h/ — h/(e/,vl,p/)-
— With acceptance probability a(h'|h)
: f(OW)}
a(h'|h) = min {1,
o F(ol)

let h(t) = h,,, e(t) = 617 ’v(t) =o' and p(t) = p"
Otherwise let h(t) = h, e(t) = e, v(t) = v and p(t) = p.

The variable H(t) has pdf f*(h|o) where lim; ., f*(h|o) = f(h|o).

Algorithm 1 includes steps where realizations are generated from the prior pdfs f(e),
f(v|e) and f(p|e,v). Exact samples can be drawn from the prior distributions of V' and
P, while McMC techniques are used to generate samples from the prior distribution of E.
Algorithms 2—4 below describe how samples can be generated from the prior distributions.
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The edges E are modeled as a Markov random field, see Section 3.2.1. A sample from the
prior pdf f(e) of the edges is generated using the following Metropolis-Hastings algorithm:

Algorithm 2 — Sampling from f(e)

Let n, be the number of edges in E and €2 the sample space of E.

e Initiate arbitrary e(0) € Ql.
o Jteratet =1,2,...

—e=e(t—1).
— Fork=1,2,...,n,
- i~ Unif{1,...,n.}.
- e; ~ Unif{Q, \ {e;}}, €} = ¢; for j #1i.
- Hence q(€'le) = n, ' (|Q] — 1) 1.
- With acceptance probability

a(€'|e) = min {1, exp{— Z (we(el) — wc(ec))}} ,

ceCiice

let e; = €;, otherwise retain e;.

— e(t) =e.

The edge values E(t) has pdf f!(e) where lim; ., f'(e) = f(e).

When Algorithm 2 is used within Algorithm 1, burn-in iterations of Algorithm 2 is run
before Algorithm 1 is started. When a realization from f(e) is needed in update step
(i) of Algorithm 1, a limited number of iterations of Algorithm 2 is performed. These
iterations of Algorithm 2 are performed to reduce dependency between the samples from
f(e). Typically, 5-10 000 burn-in iterations of Algorithm 2 are run, while realizations from
f(e) used in Algorithm 1 are separated by 50 iterations of Algorithm 2.

The prior distribution of the vertices V', conditioned on the edges FE, is a combination of
a stochastic offset direction along each fault trace and a deterministic offset profile given
the offset direction, see Section 3.2.2. A sample from the prior pdf f(v|e) is generated by
exact drawing of the offset directions and evaluation of the corresponding offset profiles.
The algorithm is given as follows:
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Algorithm 3 — Sampling from f(v|e)

Suppose ijeBe bj| + |bo| = ny, where n, is the number of vertices in V', b; is the index
set of vertices along fault trace 7 and B, is a partitioning of edges in the realization e into
fault traces. The sample space of V' is given as (2 C R™.

e Fori € by
V=0
e Forbe B,

— Dy ~ f(dy), where f(1) =0, f(-1)=1-90.
—n = length of fault trace b

— 1 = number of isolated fault tips of b

-V =Dwg;,

A sample of V' from the prior pdf f(v|e) is thus obtained. The vectors g, ,, ¢ = 0, 1,2, are
defined in Section 3.2.2. If there are several possible partitionings of e into fault traces,
the set B, is picked at random among the n;(e) possibilities. This is done by randomly
partitioning each intersection point into a fault tip and an intersected fault trace.

The pixels P are modeled as a multivariate Gaussian distribution conditioned on edges
E and vertices V, see Section 3.2.3. An exact sample from the prior distribution of the
pixels, conditioned on the edges and vertices, is generated in the following way:
Algorithm 4 — Sampling from f(pl|e,v)

Let n, be the number of pizels in P. The prior pdf of pixels, conditioned on edges and
vertices, is f(ple,v) = ¢(p; (e, v),%,), and the sample space of P is Q" C R™.

e Find the matriz A using a Cholesky decomposition of ¥,: ¥, = AA'.
e Fori=1,2,...,n, generate Y; ~ N(0,1).

o Let Y= (y17y27 . '7ynp) (mdp = :u’(evv) + Ay

The pixel values p form a sample from the prior pdf f(ple,v). Inversion sampling is used
to sample from the standard Gaussian distribution N(0,1), see Ripley (1987).
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Partitioning of a line segment

Hilde G. Borgos

Abstract

Different procedures for the partitioning of a line segment is studied. An interval
on the real line is partitioned according to a breakage procedure, resulting in a
number of smaller segments. Conditioned on the number of resulting segments the
different procedures give different length distributions of the segments. The length
distributions are studied analytically.

1 Introduction

In a discussion on geological faults and fault patterns, a question turned up concerning
the resulting length distribution of smaller segments, when a line segment is partitioned
according to different partitioning processes. The aim of this report is to answer some of
these questions, by studying some possible partitioning processes analytically.

In Section 2 the partitioning of a line segment is expressed as a partitioning of an interval
on the real line. In Sections 3 through 7 different partitioning procedures are studied. The
resulting distributions of the lengths of the smaller segments are found, using the notation
of Section 2. In Section 8 some of the different distributions are compared graphically.

2 Partitioning of a Line Segment

A line segment of length L can be represented by an interval of length L on the real line
R. The interval is partitioned into n intervals Y; whose lengths sum up to L. Depending
on the partitioning process, the resulting intervals Y; will follow different distributions. If
n — 1 points X, are distributed along the line, these points, together with the endpoints of
the line, define the endpoints of the intervals Y;. Placing the line on the real line R, with
one end at the origin and the other at L, the partitioning can be expressed as follows:



Let the line be represented by the interval [0, L].

e Distribute the points X, Xo,..., X,, 1 in the interval.

Order the points; X(l), X(z), e 7X(n—1)-

The ordered points, together with the endpoints of the line, define n intervals of
lengths Y1,Y5,...,Y,, where > | Y; = L. These lengths are given by ¥; = X(y),
Y'i :X(i) —X(i,l),i: 2,3,...,71— 1 and Yn :L—X(n,l).

3 Equidistant Partitioning Points

Let the points X; be placed equidistantly in the interval [0, L], as in Figure 1. The positions
of the points are then

Ll
Xl:X(l):;a l:1,2,...,n—1,

where the ordered points X(;) are equal to the unordered points X;. Denote the endpoints
of the interval X () = 0 and X,y = L. This yields intervals ¥; with lengths

Li  L(i—1 L
K:X(i)—X(i_l):ZZ—%:ﬁ, i:1,2,...,n.

All intervals have the same length, determined by the length of the line and the number
of intervals, and the density function of an interval length Y is given by the Dirac’s delta

function,
L
fry) =0 <y - 5) ,

where §(¢) = 0 for ¢ # 0 and [0 d(t)dt = 1.

Figure 1: The n — 1 points X; are placed equidistantly in the interval [0, L].

4 Independent Uniformly Distributed Partitioning
Points

Consider a stationary Poisson point process in R, with intensity A (Stoyan, Kendall and
Mecke, 1995). The distance between two succeeding points is then exponentially distributed
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with the same parameter A. Now, consider the finite interval [0, L]. Conditioned on the
number of points falling in this interval, we want to find the distribution of the lengths
between the points. This distribution will no longer be exponential, as all intervals have an
upper bound of L. Given the number of points in the interval, the positions of the points
are independent identically uniformly distributed on the interval, forming a binomial point
process (Stoyan and Stoyan, 1994). Let the points X, Xs, ..., X,,_1 be iid with a uniform
distribution X; ~ UJ[0, L]. An example is shown in Figure 2. The density function of an
interval length Y is then given by
n—1

) =" (1-4)"7 osyst )

For a proof, see Appendix A.1. The density function corresponds to the scaled length
W =Y/L following a beta distribution, W ~ Beta(1,n — 1), which is a well known result.
The mean and variance of an interval length Y are

L n—1
E [Y] = E, Var [Y] = Lzm

(2)
The mean is equivalent to the lengths of the intervals when the points X; are equidistantly
distributed. If we let L — oo and n — oo while n/L = X remains constant, the limiting dis-
tribution is the exponential distribution with parameter A. For a proof, see Appendix B.1.
The limiting distribution corresponds to the X’s being a stationary Poisson process on the
real line.

Figure 2: The n — 1 points X; are iid random variables with a uniform distribution U|0, L].

5 Repulsion Between the Partitioning Points

Repulsion between the points X; can be created by thinning of another point process. Let
Z be a set of points Z = {Z;}%_,, s > n, distributed on the interval [0, L], and let the set of
points X be a subset of Z, that is X C Z. Let Z(;), j = 1,2,...,s, be the ordered points. If
the points X; are given by X; = Z(), | = 1,2,...,n—1, where p is a positive integer, there
are p—1 points Zy41), . . ., Zpi+p—1) located between every neighbor pair of ordered points
X(y. These p — 1 points “force” the two points away from each other, creating repulsion.
An example is shown in Figure 3. Let the endpoints of the interval be the points Xy = 0
and X(,) = L. To get p — 1 points between every X, [ = 0,1,...,n, a total number
of s = pn — 1 points Z; have to be distributed along the line. If the s points Z; are
independent uniformly distributed on [0, L], forming a binomial point process (Stoyan and
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Stoyan, 1994), the density function of an interval length Y; = Xy —X(i—1) = Zpiy— Zp(i-1))
is

frly) =2 <p”p_ 1) (%)p_1 (1- %)p(n_l)_l, 0<y<L. 3)

This is shown by Mouland (1997), and an alternative proof is given in Appendix A.2. The
density function corresponds to the scaled length W = Y/ L following a beta distribution,
W ~ Beta(p,p(n — 1)). Substituting p = 1 in Expression (3) we return to Expression (1),
as expected, since p = 1 corresponds to the X;’s being independent uniformly distributed.
The mean and variance of the interval lengths in this case are

n—1

E[Y]= — Var [Y] = Lzm.

As in the previous cases, the mean equals the lengths of the intervals when the X;’s are
distributed equidistantly. Substituting p = 1 in the expression for the variance, gives
the variance obtained in Expression (2). The limiting distribution of ¥ when L — oo,
n — oo and n/L = X remains constant, is the gamma distribution with shape parameter
p and scale parameter 1/pA. A proof is given in Appendix B.2. The limiting distribution
corresponds to the Z’s being a stationary Poisson process on the real line, implying that
the distance between every pth point follows a gamma distribution.

I ] L]
Il T IR

Figure 3: On the top line the 3n — 1 points are iid random variables with a uniform distribution
U0, L]. On the bottom line, only each 3rd ordered point is kept, giving n— 1 points with repulsion
between them.

6 Successive Partitioning of All Existing Intervals

The partitioning described in this section consists of successive partitioning of all existing
intervals. The partitioning of the line is done in a stepwise procedure, where in each step
all existing intervals are partitioned once. Thus, after k£ steps the number of intervals is
n = 2%. The position of the partitioning point on an existing interval is drawn uniformly
on the interval. A partitioning of the interval [0, L] is illustrated in Figure 4. The stepwise
procedure is described in the following way:



Step 1 Let X; ~ U0, L], giving the interval lengths V") = X, ") = L — X;, both
having the distribution ;") ~ U0, L.

Step 2 The two intervals with lengths Y1 and Y are partitioned by placing a point
Z; in each of them, where the points Z; are un1formly distributed on the existing
intervals:

o Let Z|y\" ~ U0, y\"], giving the interval lengths Y, = 7z, Y = vV — 7,
both havmg the distribution Y |y ~ UJ0, yil)], i=1,2.

o Let Zy|ytV ~ U0, 15", giving the 1nterval lengths Y22 = Z,, V* = vV — 7,
both having the distribution Y |y ~ U0, yél)] i=3,4.

e The points X5 and X3 are given by X, = Z; and X3 = X + Z,.

Step 3 In the same way as in step 2, partition the existln(g mtervals by drawing a point
Z; uniformly in each of the intervals. This yields Y; K |y] [O,y]( )], where i =
25 — 1,25 and j = 1,2,3,4. The points X;, [ = 4,...,7 can be found based on Xl,
[=1,2,3 and Y,

Step k After k — 1 steps there are 28! 1ntervals Partition each of the intervals to get

new intervals with length distributions Y |yJ b ~ U0, yﬁk 1)], where i =25 —1,2j

and j =1,2,...,2"71. As above, the points X; can be found.

Suppose the interval [0, L] is partitioned into n = 2* intervals by the above procedure. The
density function of an interval length Y*) after k steps is then given by

fy(k)(y):ﬁ' <—1n%>kl, 0<y<L. (4)

The proof is given in Appendix A.3. The density function corresponds to the variable

W® = —In(Y® /L) following a gamma distribution, W*) ~ Gamma(k,1). The mean
and variance of an interval length Y*) are

L L 11 1 1
k) __ _ k)] _ 12 _ 12
EVPl=g=— Var[y®] =1 <§_ﬁ>_l’ (m‘y)

Once again the mean equals the lengths of the intervals when the points X, are equidistantly
distributed.

7 Successive Partitioning of One Existing Interval

Siegel and Sugihara (1983) describe a sequential breakage procedure where at each stage
in the procedure one of the existing intervals is further partitioned into two intervals. This
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Figure 4: The 2! existing intervals are partitioned into 2¥ intervals. The partition points are
drawn uniformly on each of the 2¢~! existing intervals.

partitioning is called a Kolmogorov breakage process. Suppose there are n — 1 intervals
at one stage. A move to the next stage is done by choosing one of the n intervals at
random, with equal probability of each interval, and partitioning the interval according to
a breakage distribution F'. The resulting number of intervals is then n. Figure 5 shows a
line partitioned in this way. For a partitioning following this procedure, the distribution of
the resulting interval lengths will differ from the distribution described in Section 6, where
all intervals are partitioned simultaneously.

Let U™ = logY™ where Y™ is the length of an interval when the total number of
intervals is n. Siegel and Sugihara (1983) study the first two moments of the logarithm
U™ . Using a uniform breakage distribution F', their results can be compared to the density
function discussed in Section 6, where all intervals were partitioned in each stage. When
F is the uniform distribution, the mean and variance of U™ are

—1
N

T S R e
=2 =2

where the variance of U™ is independent of the length L. The density function of Y'*)
in Expression (4) corresponds to the variable W®*) = InL — InY® following a gamma

| | 1] | L
| T ]
Figure 5: At each stage one interval is chosen at random and partitioned, with the partition

point drawn uniformly on the chosen interval. All existing intervals have equal probability of
being chosen.



distribution, W®*) ~ Gamma(k,1). Let U® = InY® = InL — W® such that (InL —
U®)) ~ Gamma(k, 1). The mean and variance of U*) in this case are

E[UM]=InL—k and Var[U®] =k, (6)

which can be compared to the mean and variance given in (5), where n = 2. Figure 6
shows plots of the different means and variances for n € [1,100] and L = 1. The mean and
variance given in (6) are both smaller in absolute value than the mean and variance given

in (5).

Siegel and Sugihara (1983) study the two first moments of the logarithm U = InY", but not
the density functions of U or Y. Consider a uniform breakage distribution F'. Theoretically,
the density function of the interval lengths Y can be found, based on the results in Section 6.
When there are n intervals, each interval length Y will have a length distribution with the
density function given in (4), but the number £ will differ for each interval, taking values in
the set {1,...,n — 1}. Thus, conditioned on k the distribution of Y, fyx(y|k), is known.
Let k; be the number of k£ corresponding to the interval Y;. All possible combinations of
(k1, ..., ky) can be found, and from the combinations the density function of K, fx(k), can
be found. The conditional distribution of Y is then given by fy(y) = >, fyv ik (y|k) fx(k),
and thus the density function of an interval length Y can be found. This is a simple task
when n is small, but can be tedious work for large n, since there are (n — 1)! possible
combinations of (ki,...,k,). Some of these combinations may be equal, but they result
from different partitioning sequences. For n = 4 there are 3! = 6 possible combinations of
(k1,...,ks), and the density function of Y, expressed by the density functions fyu) (y) in
Expression (4), is

Fro) = 3 (yonl) + 3y (6) + 20 (1) = 5 (1 =3Iy + (0y)?), 0<y<1L

For n = 8 there are 7! = 5040 possible combinations of (ki,...,kg), and the density
function of Y is a linear combination of fyu)(y), k=1,...,7.

Figure 6: To the left is the mean of U plotted as a function of n, and to the right the variance
of U. The dotted lines are the mean and variance given in Expression (5) and the solid lines are
the mean and variance given in (6), where k = Inn/In2.



8 Comparisons of Length Distributions

Figures 7, 8 and 9 show the density functions for the interval lengths Y with different
ways of partitioning. The density functions are shown for partitionings into 2, 4, 8, 16,
32 and 64 intervals, using original intervals of length L = 1. In Figure 7 the points
X, are independent uniformly distributed on [0, L], in Figure 8 the intervals are created
with repulsion between the interval endpoints, and in Figure 9 the intervals are created
by successive partitioning of all existing intervals. In the case of independent uniformly
distributed points the density function is monotonely decreasing, with fy(0) = (n —1)/L.
The density function of the interval lengths produced by the successive partitioning of all
existing intervals is also monotonely decreasing, but with fy(y) — oo as y — 0. When
there is repulsion between the points, the density function is a unimodal function starting
in fy(0) = 0. The mode of the function is at the point v, = L(p — 1)/(pn — 2), which
approaches zero as n — c0.

2 3
2
1
1
0 0
0 0.5 1 0 0.5 1
10 15
10
5
5
0 0
0 0.5 1 0 0.5 1
40 100
20 50 K
0 0
0 0.5 1 0 0.5 1

Figure 7: Density function of length distributions when the points X; are independent uniformly
distributed. The number of intervals is 2,4 (top), 8,16 (middle) and 32 and 64 (bottom).
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Figure 8: Density function of length distributions when the points X; are given by X; = Z(3),
where the points Z; are independent uniformly distributed. The number of intervals is 2,4 (top),
8,16 (middle) and 32 and 64 (bottom).
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Figure 9: Density function of length distributions when the intervals are created by successive
partitioning of all existing intervals. The number of intervals is 2,4 (top), 8,16 (middle) and 32
and 64 (bottom), which corresponds to k =1,...,6.



9 Conclusions

Different models for partitioning of line segments have been discussed. In Section 3 the
partitioning points are regularly spaced, resulting in equal lengths of all smaller intervals.

In Section 4 the partitioning points are independent identically uniformly distributed on
the line. This is a special case of the model presented in Section 5, where points are inde-
pendent identically uniformly distributed, but only every pth point is kept as a partitioning
point, where p is a positive integer. The model in Section 5 enforce repulsion between the
partitioning points when p > 1. The partitioning schemes in Section 4 and 5 results in
beta distributions of the shorter line segments, when scaled by the length of the initial
segment. The limiting distributions are studied, as the length of the initial interval and
the number of partitionings approach infinity, while the relation between the length and
number remains constant. The limiting distributions correspond to the initial points being
a stationary Poisson process on the real line (Stoyan et al., 1995).

In Sections 6 and 7 sequential breakage processes are discussed. In Section 6 all existing
intervals are partitioned simultaneously, while in Section 7 only one existing interval is
partitioned in each step. The two sequential procedures lead to different distributions of
the resulting intervals. The density function of the partitioning procedure described in
Section 7 can, under certain conditions, be found based on the density functions found in
Section 6.
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A Computation of Length Distributions

A.1 Independent uniformly distributed partitioning points

This proof is a special case of the proof given in Appendix A.2. Let X = 0 and X,y = L.
The interval lengths are then Y; = X — X(;_1), ¢ = 1,2,...,n. When the points X; are
independent uniformly distributed on the interval [0, L], the density function of the [th
ordered point X is

1 — 1)1 }
fﬁﬂm”:Lnllpqg@—%—nrﬁﬁ

(L — )", (7)

and the joint density of the neighbor points X;_;y and X is
1 (n—1)! -2

Fron o @a20) = G gy SenE T
for [ = 2,...,n—1. The distribution of Y; can be found by a bivariate transformation. Let
Yi=Xu — Xy, 05Y; <[,
W= Xq, Y, <W<IL,
implying
Xiny=W-=-Y;,, 0<X;)<L,
Xy =W, Xi-n =X < L,
with the Jacobian
J— 0x(;i-1)/0y; Ox;i-1)/0w ‘ _ ‘ -1 1 ‘ _ 1

6:1:(,») /8yi 6:1:(,») /8’LU
The joint density of Y; and W is then

friw(y,w) = fX(i,l),X(i)(W—y,w)|J|

1 (n—1)! . s
= T Gy Y AL—w)"' 7 i=2,3,...,n -1,

and the marginal density of Y;, 1 = 2,3,...,n — 1, is found by

L

f}@(y) = / in,W(y,w)dw
Yy
L

1 n—1)! -, L
N /y L1 (i—Q()!(n—)l—Z‘)! (w—y)" (L —w) dw

_ ”;1.(1_%)"‘2. (8)

Since Y1 = X(;y and Y,, = L — X(;,_y), the density functions of ¥; and Y, are found from
Expression (7), and are easily shown to equal the density function (8).
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A.2 Repulsion between the partitioning points

This proof is similar to the proof in Appendix A.1, where the special case p = 1 is consid-
ered. We now find the distribution for general p. Let Z( ) = 0 and Z(,,) = L. The interval
lengths are then Y; = X4 — Xi_1) = Zpi) — Z(p@i-1)), ¢ = 1,2,...,n. When the points
7, are independent uniformly distributed on the interval [0, L], the density function of the
plth ordered point Z, is

! (pn —1)! -1 n—1)—1
oo G00) = Lot G iton - - 1 o0 B0 O)

and the joint density of the neighbor points Z(,;_1)) and Z, is

fZ(p(l—n),Z(pt)(Z (1-1)) Z(pl))
1)—-1
1

(p )
= C(0) - 2y (o0 = Zpu-1)" ™ (L= 207, 1=2,3,.. n—1L.
where
1 (pn — 1)!
Lt (p(l—1) = D (p— Dl(p(n —1) = 1)’

The distribution of Y; can be found by a bivariate transformation. Let
Yi=Zupiy — Zipii-1)), 0Y; <L,

c(l) =

W = Z, Vi <W< L,
implying
Zp-1) =W =Y, 0= Zgy <L,
Zpy =W, Za-1 < 2@ < L,
with the Jacobian
J=-1

The joint density of Y; and W is then

frow(y,w) = fZ(p(ifl))aZ(pi)(w —y,w)|J|
= O@i)- (w—y)P Dy YL —w)P 7t =23, n—1,

and the marginal density of Y;, i = 2,3,...,n — 1, is found by

L
frly) = /th%wm)

— / C ) i—1)— lypfl(L_w)p(nfi)fldw

3 (p“;l) By -y 0

Since Y1 = Z,) and Y,, = L — Z((,—1)), the density functions of ¥; and Y,, are found from
Expression (9), and are easily shown to equal the density function (10).
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A.3 Successive partitioning of all existing intervals

A partitioning of the line into n = 2* intervals is done by successive partitioning of all
existing intervals. After the first partitioning the number of intervals is 2, after the second
the number is 22 = 4, and after k¥ — 1 steps the number of intervals is 2¥~'. The length
distributions of the intervals created in step k, conditioned on the intervals after £ — 1
steps, are

yPRED U0,y V), i=2j-1,2j, j=1.2,...,25"

The density function of the length of the interval YZ(J@ in the final partitioning is then given
by the integral

v / / / g fY'(kil)(yl) /
fy;p(y) = / fy2<;>|yj<k—1>(y|y)fij—n(y)dy = / JTdy- (11)
Yy Yy

The density function of Yz(ﬁl equals that of Y;f). Since Yj(l) ~ U[0,L], j =1,2, fyj(l)(y)

is known, and f o (y), k =2,3,..., j =1,2,...,2% can be found. The density function is
J

identical for all j = 1,2,...,2* and is given by

fyo(y) = ﬁ : (— In g>k_1, 0<y<L. (12)

This is shown by induction on k. If k& = 1, the interval length Y'(! is uniformly distributed
on the interval [0, L], giving

1

fro(y) = 7’

which equals Expression (12) with & = 1. If £ = 2 the integral in (11) can be solved to

give
L L
fY(l)(y,) ! / 1 / 1 Y
2 = 761 == —d —_ _]. e
fren(y) /y y ) y=7 ( HL>,

which equals Expression (12) with & = 2. Thus Expression (12) is valid for k£ = 1,2.
Suppose (12) holds for £ — 1. Using the integral in (11) the density function fy ) (y) is

found to be
. o Ly . )
/Mdy':/—-i- ~mZ)  ay
y y' y y L(k—2)! L
1

o (g

fym (y)



B Limiting Distributions

B.1 Independent uniformly distributed partitioning points

The density function of Y, given in Expression (1), corresponds to W = Y/L following a
beta distribution, W ~ Beta(1,n—1). The moment generating function of Y can be found
through the moment generating function of W:

My (t) = E [exp(tY)] = E [exp(tLW)] = My (tL).

Using the moment generating function of the beta distribution, we get

00 k—1 00
L+r | (tL)* k! (tL)k
r(t) +Z{Hn+r} k! +k n-n+1)---(n+k-=1) k!
(tL)* - tk
Z (it 1)k =1) ;;z (t+1) - (F+5)
+k
= l—i- 13
In the last step we let n/L = \. Fort < ), takmg limits of the sum in (13) gives
00 k
t 1 A
Jim My (1) = +Z<> -3 (5) e

which is the moment generating function of the exponential distribution with parameter
A

B.2 Repulsion between the partitioning points

The density function of Y, given in Expression (3), corresponds to W = Y/L following a
beta distribution, W ~ Beta(p,p(n — 1)). As in Appendix B.1, the moment generating
function of the beta distribution can be used to find the limiting distribution of Y as
L — o0, n — oo and n/L = A. The proof is similar to the proof in Appendix B.1, where
the special case p =1 is considered. For general p we find

0o k—1
p+r (tL)k
Myv(t) = 1 .
v(t) +;{r:0pn+r} k!

= (p+k—1)! "
= 1+ .
kzl (p— 1)kt PR (B g Iy (om K1)
+k—-1 e
- (1)
; " pA- (PA+ 1) - (A +5)



For t < A, taking limits of the sum in (14) gives
00 k o0 k

: - p+k—1\[1t\ _ ptk—1\ (1
oo = 13 (77 ) R 0 Gy

- (ﬁ)p B (mpit)p’

which is the moment generating function of the gamma distribution with shape parameter
p and scale parameter 1/pA.
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Model choice for fault distribution
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Department of mathematical sciences, Norwegian University of Science and Technology (NTNU),
N-7034 Trondheim, Norway. Email: hgh@stat.ntnu.no, omre@stat.ntnu.no.
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Abstract

The objective of the presentation is to check the validity of the power law model for fault size. The
approach is to establish a plausible competing model, and to compare the two. The comparison
is done according to statistical tradition by using Bayes factors.

Geologists often use a power law to express the relationship between fault size and cumulative
number:
n=nbr"*¢

where z is either the maximum displacement or the length of the fault, and n is the cumulative
number of faults larger than z. To define a fault density function for x corresponding to this power
law, a lower limit of the fault size must be chosen, in order for the density function to exist. If
the fault sizes follow the power law, a plot of cumulative number versus fault size on log-log scale
should produce a straight line of negative slope a.

However, real data usually give a log-log plot of cumulative number versus fault size with a concave
shape. We will suggest another density function for the fault distribution. This distribution does
not follow the power law, but will give a relation between size and cumulative number producing
a concave curve plotted on log-log scale. Furthermore, the density function will be defined for any
x larger than zero, hence there is no need for a lower limit on the fault size.

We will compare the fit of the two models on a given data set. To do so, we estimate the parameters
in each model, and the Bayes factor. The Bayes factor gives an indication of which model fits the
data best.

The approach can be done as: Let #; denote the parameters under model 7, ¢ = 1,2, and let x be
the observed fault sizes. The likelihood of z under model i, given the parameters 6; is expressed
through the likelihood function f;(z|6;). If we specify prior distributions f;(6;) for the model
parameters, the posterior distributions for the parameters are

fi(0i]z) o< fi(6:) fi(x]6;).

This can be used for estimating the model parameters by use of MCMC sampling. The Bayes
factor is the ratio between the marginal densities of z under model 1 and model 2, defined as:

_ h(@)
fa(z)’

B(x)

where
i) = [ 1:69)5i(al61) .
The Bayes factor can also be estimated in the MCMC sampling procedure.

Hilde G. Borgos will present the paper.
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Stochastic Simulation of Fault Patterns Conditioned on Seismic Data
and Well Data

Hilde Borgos
Norwegian University of Science and Technology, Department of Mathematical Sciences, NTNU, Trondheim, N-7034,
Norway

Sedimentary rocks tend to be rather homogeneous laterally, and have a non-homogeneous
vertically layered structure. This heterogeneity structure is reflected in the seismic observations,
where lateral discontinuities visible offsetting the vertical layers are interpreted as geological faults.
However, the interpretation of faults from seismic maps contain uncertainties, both due to the
quality of the seismic data and to the judgment of the interpreter.

In this work the problem of detecting faults from 3D seismic data is considered from a sta-
tistical point of view. Stochastic modeling is used in an attempt to detect faults which displace
sedimentary layering from 3D seismic observations and well observations. The lateral coherence
observed in seismic data is incorporated in the model, and discontinuities in this coherency are
used to locate faults. Observations from wells are also integrated in the model, and constitute
additional information about the reservoir.

A Bayesian framework is used to present a stochastic model for fault patterns, and to condition
on available information like seismic data and well observations. Let A be a stochastic variable
representing the fault pattern. General geological knowledge about faults and fault patterns is
described by a prior distribution f(d) of the variable A. Let R denote the available observations of
the reservoir. The observations are integrated in the model through the likelihood function f(r|d),
giving the likelihood of observing R if the true fault pattern is A. Combining the prior distribution
and the likelihood function, the posterior distribution is obtained according to Bayes rule:

f(0]r) = const x f(d)f(r|)

The posterior distribution of the fault pattern A, conditioned on the observations R, contain both
general geological knowledge and reservoir specific observations. By sampling from the posterior
distribution f(d|r), realizations of the fault pattern A are obtained. These realizations should
reflect the discontinuities present in the observations. A number of realizations of fault patterns
are generated to study the variability of the posterior distribution. Markov chain Monte Carlo
techniques are used to sample from the posterior distribution.

The fault pattern A is represented by a hexagonal grid image. The pixel values P give the
topography of a horizon resulting from the faulting of originally horizontal layers. The fault planes
are assumed to be vertical, and all faults are assumed to penetrate completely through the vertical
extent of the region under study. Thus the vertical displacements of the faults are large compared
to the vertical range of the observations. The edges F are used to draw fault traces on the horizon,
and thus define the fault planes. Fault traces are composed by connecting adjacent grid points.
The vertices V' (the grid points) represent the vertical displacement along the fault traces, and
vertical displacement values are assigned to all vertices along a trace. The sets E, V and P are
treated as stochastic variables, and the fault pattern A is given as a function of these variables;
A = A(E,V, P). The prior distribution of A is factorized as f(0) = f(e,v,p) = f(e)f(v]e) f (ple,v).
Most focus will be put on the prior distribution f(e) of the edges F, representing the pattern of
fault traces. The prior distribution is based on the work by Tjelmeland and Besag (1998), and is
represented by a Markov Random Field (MRF):

f(e) = const x exp{—U(e)}



where U(e) is an energy function. A low energy U(e) corresponds to a high probability of the
pattern of fault traces produced by e. The energy function is defined through a sum of potentials,
where different configurations of edge values are assigned different potentials. Thus the appearance
of the fault traces can be controlled through the definitions of the different potentials, making
some characteristics of the traces more likely than others. For example, certain fault directions or
intersection angles can be favored. Two examples of realizations of E, using different potentials,
are shown in Figure 1. The vertical displacement values along a fault trace are modeled as a 1D
Gaussian Random Field, and a MRF conditioned on edge and vertex values is used to model the
pixel values and thus the topography of the faulted horizon.

Figure 1: Realizations from the prior distribution of fault traces.

The likelihood function f(r|d) is based on the work by Eide et al. (1997). Available observations
R consist of seismic data and well observations. Based on well logs, the reflection coefficients in
the wells are obtained. In some situations the reflection coefficients of a sedimentary rock, before
faulting, can be modeled as a 3D Gaussian Random Field (GRF). Furthermore, the relationship
between reflection coefficients and seismic amplitudes can be modeled as a linear convolution, thus
the joint distribution of seismic amplitudes and reflection coefficients are represented also by a
GRF. After faulting the original structure of the rock is altered. However, if all displacements
due to faulting are known, the observations of the reservoir can be transformed back to obtain
the original structure. After this transformation is done, the transformed observations can be
modeled as a GRF. The likelihood function f(r|d) is given as the probability density function of
a multivariate Gaussian distribution, where the observations R are transformed according to the
fault pattern A. The Gaussian likelihood function is analytically tractable and is easily calculated
even for relatively large datasets.

In the presentation further details of the model will be described. Examples of realizations
sampled from the posterior distribution will be shown, to illustrate how fault patterns can be
generated via conditioning on seismic data and well data.
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Abstract

A stochastic model of fault geometries is constructed, enabling fault patterns to be condi-
tioned on available observations from a petroleum reservoir, consisting of three dimensional
stacked seismic observations and reflection coefficients obtained from well logs. A Gaussian
model is used for the observations, where fault geometries are visible as irregularities in the
Gaussian field. The model for fault geometries is defined in a Bayesian framework, where
the likelihood model of observations is incorporated together with prior general geological
knowledge about fault patterns. Repeated sampling from the model is used to study the

uncertainty in fault geometries.

INTRODUCTION

Stochastic modeling of petroleum reservoirs can be used to forecast production, and to assess the
associated uncertainty. A model for reservoir characteristics is first defined, based on available
observations. A forecast of production is then obtained through a numerical simulation of fluid
flow, using the specified recovery procedure. The aim of this work is to define a stochastic
model for the fault pattern in a reservoir. The number of faults, their sizes and locations have
influence on fluid flow and on the connectivity of the reservoir, and thus on the production

forecast.

Two types of information about the fault pattern in a reservoir are available. General geological
information about fault characteristics is included in the model. Reservoir specific information
provide data on the presence and locations of faults. For example, from seismic observations
large faults are detected as discontinuities in the lateral continuity in seismic amplitudes, where
the discontinuities are visible throughout a number of subsequent horizontal layers. The stochas-
tic model of fault patterns is constructed in a Bayesian framework, enabling fault patterns to be
conditioned on available observations like seismic observations and observations from wells. The
uncertainty in fault geometries can be studied through repeated sampling from the posterior

stochastic model.



Earlier work on stochastic modeling of faults or fractures include object based techniques, see
for example Chiles (1988), and pixel or grid based approaches, e.g., Gringarten (1996). The
cited papers present models where observations are used to estimate parameters related to
characteristics of fault geometries, while no likelihood function is defined to describe the rela-
tionship between fault realizations and available observations. Construction of non-stochastic
algorithms for tracking faults from seismic observations was presented by Bahorich and Farmer
(1995, 1996), introducing the coherence cube. The coherence cube is a moving window algorithm
calculating the correlation between neighbor traces of seismic signals, using local information
to reveal discontinuities. The current approach is significantly different from the mentioned
publications. A formal stochastic model conditioning on a larger set of seismic traces and well

observations is used to assess the uncertainty in the fault pattern.

BAYESIAN FRAMEWORK AND BASIC ASSUMPTIONS

A stochastic model is defined for a faulted horizon H, where the fault pattern is visible as
discontinuities in the surface. The aim of this work is to generate geological fault patterns by
sampling of the faulted horizon H, conditioned on the available observations, O. A Bayesian
framework is used to define the relationship between the faulted horizon and the observations.
A prior model f(h) of the horizon includes general geological knowledge about faults and fault
patterns. The relationship between the faulted horizon and the observations are defined through
the likelihood function f(o|h). Combining the prior distribution and the likelihood function,

the posterior distribution is obtained,

f(hlo) = const x f(ol|h) f(h). (1)

The posterior distribution combines general geological knowledge and reservoir specific obser-
vations. Assessment of uncertainty in fault geometries is obtained by repeated sampling from

the posterior distribution.

In the construction of the stochastic model, some basic assumptions are made. The vertical
extents of the faults are assumed to be large compared to the region under study, thus all
faults penetrate completely through the vertical extent of the region. Furthermore a crude

approximation is made, assuming vertical faults with constant offset within this region.



PRIOR MODEL OF GEOLOGICAL FAULT PATTERNS

In this work post sedimentary faults are considered, and the sedimentary layers of rock are
assumed to be originally horizontal. Due to faulting rock is displaced, with a spatial variation
in the magnitude of the displacement. As a result, an originally horizontal surface is deformed
into a topographic surface in three dimensions, referred to as a horizon. Faults are identified
as discontinuities in the horizon. Other natural variations like ductile deformation, folding and
tilting are assumed to produce small displacements of the rock compared to the faulting, and
result in continuous variations in the altitude of the horizon. Under the assumption of faults
penetrating completely through the region under study, the topography of subsequent horizons
are comparable. The fault pattern can then be represented by a single horizon H which is given
as a topographic map of altitudes H = H(z,y), where the faults, their locations, orientations

and offsets, are recognized from the deformations on the surface caused by faulting.

The prior model f(h) of the faulted horizon H includes information of typical characteristics
observed in geological fault patterns. For example, information of intersection angles, which
are typically close to 60° or 30°, anisotropies in fault orientations and displacement profiles
along fault traces are incorporated in the prior model. The faulted horizon is represented by
a stochastic gray-scale image based on a hexagonal grid, where both edges, vertices and pixels
contain information about the surface, see Figure 1. The hexagonal grid is preferred since it
simplifies modeling of intersection angles of 60°. The quantities included in the prior model of
a faulted horizon are fault traces on the horizon, offset profiles along the fault traces and the

overall topography of the surface.

Pizel
Vertex

Edge

(b)

Figure 1: (a) Hexagonal grid used in the image representation of a faulted horizon. (b) Illustration of
an edge (E), vertex (V) and pixel (P) in the hexagonal grid.

The edges E = (E1, Eo, ..., E,_) are binary variables with values F; € {0,1}, and by connecting
edges of value E; = 1 fault traces on the horizon are obtained. Vertices V' = (V1,Va,...,V,,)

are used to model the offsets along the fault traces, their magnitudes and directions, while



vertices off the fault traces are assigned zero value. The pixels P = (P, P,...,P,,) give the
altitude of the horizon H at the center point of each pixel. Altitudes are given in relative
coordinates, and does not give an absolute depth. Based on the discrete image representation,
the continuous surface H = H(E, V', P) is found deterministically by triangulation, accounting
for the discontinuities along fault traces. The prior model of the faulted horizon H can be

factorized as

f(h) = f(ple,v) f(v]e) f(e) (2)

where f(e), f(v]e) and f(p|e,v) are prior distributions of edges, vertices and pixels.

A Markov random field is used as a prior distribution of edges, f(e). According to the
Hammersley-Clifford theorem, see for example Winkler (1995), the distribution of any Markov
random field E can be expressed as a Gibbs distribution (Geman and Geman, 1984) with a

density function of the form

f(e) = const x exp{— Z we(ee)} (3)

ceC
The set C is the set of all cliques, where a clique is defined as a set of neighboring edges, and
we(e,) is the potential function of the edges e, contained in the clique ¢. The choice of potential
functions are inspired by the work of Tjelmeland and Besag (1998). All possible configurations
of edges within cliques of size 12 are sorted into specified classes. Figure 2 shows some examples:
background, end points, lines, angles and intersections. By assigning different potentials to each
class, specific configurations of fault traces are favored. The configurations can also be sorted

by direction, giving higher probability to some orientations of fault traces.

(2) (b) (c) (d) (e) (f) (8)

Figure 2: The figure shows some of the classes of clique configurations defined in the prior distribution
of edges. (a) A clique where all edges have value E; = 0 is classified as background. Other classes are
(b) end point, (c)—(d) lines, (e) angle and (f)—(g) single and double intersection.

The prior model of vertices given edges, f(v|e), is a simple model where deterministic offset
profiles are assigned to each fault trace. Symmetric offset profiles with a maximum offset near
the center of the trace and zero offset at the fault tips are used for isolated fault traces, see
for example Dawers, Anders and Scholz (1993). For non-isolated fault traces with fault tips
terminating in other fault traces, modifications of the offset profile are made. The number of

fault traces and their lengths are determined by the edge values E. In our model, only the



direction of the offset is modeled as a stochastic variable, with two possible directions for each

fault trace.

A multivariate Gaussian distribution is used as a prior model for the pixels given edges and
vertices, f(p|e,v). The mean vector p accounts for discontinuities along fault traces. The
positions of the fault traces and the magnitude of the offsets depend on the values of E and
V', thus the mean value p is given as a function of the edge and vertex values. The prior

distribution of pixels is

f(ple,v) = ¢(p; u(e, v),Xp) (4)

where ¢(p; i, X) is the pdf of the multivariate Gaussian distribution with mean vector p and
covariance matrix ¥. Note that the final offset values along fault traces may differ slightly from
the vertex values V', and are determined by the difference in pixel values at opposite sides of

the fault traces.

LIKELIHOOD MODEL OF RESERVOIR SPECIFIC OBSERVATIONS

Available observations O are included in the model through the likelihood function f(ol|h),
giving the likelihood of the observations conditioned on the faulted horizon H. Available obser-
vations from the reservoir consist of three dimensional seismic data and well logs. An underlying
model is defined for reflection coefficients C' in three dimensions, and a convolution model is
used to model the relationship between reflection coefficients and seismic amplitudes. The ob-
served seismic signals S§° can be expressed as a linear combination of reflection coefficients C

and independent Gaussian noise U ~ N (0, 021),
S°=A(s)C +U (5)

where A(1)) is a convolution matrix defined by the seismic wavelet with wavelet parameter ;.
Based on the well logs, exact observations of reflection coefficients C° can be obtained at a

limited number of locations.

Consider first a sedimentary reservoir prior to any faulting. Reflection coefficients of the reser-
voir can then be modeled as a Gaussian random field (Eide, Ursin and Omre, 1997; Eide, 1999).
From Expression (5) it follows that the seismic signals will then be a Gaussian random field,
and the joint distribution of seismic signals and reflection coefficients obtained from well logs

can be expressed as a multivariate Gaussian distribution

O' ~ N (110, 35 (6)



where O are the observations that would be obtained if gathered prior to faulting. After
faulting the original structure of the rock is altered. Recall the model assumptions discussed
above, of vertical faults with constant offset and penetrating completely through the vertical
extent of the region under study. The fault pattern is represented through the faulted horizon
H(z,y). At a point (z,y) the reflection coefficients originally located in (z,y, t) is then displaced
to the point (z,y,t + H(z,y)), see Figures 3a and 3b. If the faulted horizon H (z,y) is known,
observations obtained from the reservoir can be transformed back to their original location,

reproducing the initial structure. This is illustrated in Figure 3c.

_____________

______________

(a) (b) (c)

Figure 3: Figure (a) illustrates the structure of the rock prior to faulting. After faulting the structure
is altered, as in figure (b). If the faulted horizon H is known, a transformation of observations back to
the original structure can be performed, as shown in figure (c).

The position of an observation C° or S° gathered from a faulted reservoir does not coincide
with the original position prior to faulting. The marginal distributions of the observations are
unchanged, but due to the spatial rearrangement the mean vector p, and covariance matrix %!
are no longer valid. The transformation of locations can be expressed as a permutation of the
elements of the vector O', giving the observations O of the faulted reservoir, and a corresponding
rearrangement of the order of the elements in the mean vector and covariance matrix. The

overall distribution of the observations O = (S°,C?) is then a Gaussian distribution,
[O|H = h] ~ N(po(h), Xo(h)) (7)

where p,(h) and X, (h) are obtained from ! and ¥/ by rearranging the positions of the elements
according to the transformation dictated by the faulted horizon H = h. The likelihood function

of the observations O is thus the pdf of a multivariate Gaussian distribution:

flo|h) = ¢(0; p1o(h), Eo(h)). (8)

SAMPLING FROM THE POSTERIOR MODEL

A posterior distribution f(h|o) of the faulted horizon conditioned on available observations is
obtained by combining the prior model and the likelihood function. Markov chain Monte Carlo

(McMC) techniques are used to generate realizations from the posterior model, see Besag et al.



(1995) and references therein for an introduction to McMC theory. The realizations from the
posterior distribution should reflect the discontinuities present in the observations. Not only
the position of the discontinuities are located, but also the offsets of the faults. By generating
numerous realizations from the posterior model, the uncertainty of the fault pattern in the

posterior model can be studied.

The McMC algorithm used to sample from the posterior distribution involves evaluation of the
Gaussian likelihood function in Expression (8). The theoretical expression of the likelihood
is well known, and can be calculated if the dimension of the observations is small. As the
dimension increases however, the likelihood can in practice not be obtained analytically for
general Gaussian fields. An approximation to the likelihood function must be found, which in
this work consists of two approximations. First, the likelihood function of the observations O

is approximated by a pseudo-likelihood function
f(olh) = ] f(oilo—i,h) (9)

where O); is chosen as a vertical column through the observations, and O _; is the set of all other

observations. Next, the conditional distribution is approximated as
floilo—i, h) = f(oi]0si, h) (10)

where only observations Ogy; in a neighborhood 0i of observations O; are included in the con-

ditioning.

SIMULATION EXAMPLES

The performance of the model presented above is illustrated through simulation examples based
on synthetic observations. A three dimensional Gaussian field on a rectangular grid of size
50 x 50 x 20 is first generated, representing the reflection coefficients of the reservoir prior
to faulting. Corresponding seismic observations are obtained using the convolution model in
Expression (5). Next, a fault pattern and a corresponding faulted horizon are generated from the
prior model in Expression (2), see Figure 4, and the resulting structure of the faulted reservoir
is found by a rearrangement of the seismic observations, see Figure 5. Hence observations
O = S° of a faulted reservoir are obtained, and samples of the faulted horizon can be generated
conditioned on the observations. For these synthetic observations, the true fault pattern and
faulted horizon are known, see Figure 4, thus a comparison can be made with the conditional

samples.



The hexagonal image representation of the fault pattern covers the lateral extent of the obser-
vations, and only the square part of the image where observations are available is illustrated in
Figure 4. The image of edges in Figure 4a represents the pattern of fault traces on the surface.
The horizon in Figure 4b is discontinuous along the fault traces, with a smooth variation in
altitude between faults. The main feature of the fault pattern is two parallel north-west striking
faults of opposite dip directions. Figure 4c shows a horizontal cross section through the seismic
observations at vertical position ¢ = 13, where the faults can be detected as discontinuities in
the seismic signals. Figure 5 shows a north-south oriented vertical cross section through the
seismic observations at position z = 25. Thus the cross section is obtained through the center

part of the observations, and crosses the two major faults.

I

T
(a) (b)

Figure 4: (a) Pattern of fault traces E and (b) faulted horizon H in the square area of observations.
The two north-west striking faults are regarded as straight lines, the jagged appearance is an artifact of
the hexagonal grid. Figure (c) shows a horizontal cross section through the seismic observations S°, at
vertical position ¢t = 13, see Figure 5. The arrows mark the position x = 25 of the vertical cross section
illustrated in Figure 5.

<_

Figure 5: North-south oriented vertical cross section through the seismic observations S° at position
x = 25, see Figure 4. The arrows mark the position ¢ = 13 of the horizontal cross section in figure 4c.

Figure 6 shows three realizations of the faulted horizon H from the posterior distribution
f(hlo), based on the synthetic observations described above. The realizations are obtained
by performing 50,000 iterations of the McMC sampling algorithm. The algorithm is restarted
each time, thus there is no dependency between the realizations. All realizations reproduce the
main features of the two dominating faults, while the region near the fault tips differ between

the realizations.



Figure 7 shows cross sections of observations corresponding to the cross section in Figure 5,
but with observations transformed back to original positions according to the generated faulted
horizons in Figure 6. The concept of this transformation is illustrated in Figure 3. After the
transformation, the discontinuities produced by the faults should be removed and the original
strong horizontal coherence should be retrieved. The fault with the largest offset, to the right
in Figure 5, is no longer detectable in the transformed observations based on the two first

realizations. In the third realization the offset of this fault is slightly under-represented.

> o

A

Realization 1 Realization 2 Realization 3

NN

Figure 6: Realizations of pattern of fault traces E (top) and faulted horizon H (bottom) generated
from the posterior distribution f(h|o) of fault patterns.

CLOSING REMARKS

The paper presents a consistent stochastic model for fault geometries, conditioned to seismic
data and well observations, and defined in a Bayesian framework. Through a synthetic data
example, it is demonstrated how the stochastic model can be used to assess uncertainties in

fault geometry at seismic scales.
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