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Summary

This thesis addresses the problem of finding background models yielding depth consistent
migrated PP and PS images, i.e. geologically equivalent reflectors should be imaged at
the same depth in the two images. The tomographic approach in search of a background
medium, is performed as a combination of migration velocity analysis by differential sem-
blance in angle and map migration. A practical strategy for obtaining estimates of all
parameter values in a transversely isotropic medium with a known symmetry axis is pre-
sented. The approach combines the search of a background medium yielding optimum
focusing ablility by differential semblance and the matching of PP and PS key reflectors in
depth by means of map migration. This can also be used to match the imaged reflectors
with known depths e.g. from well markers.

For the purpose of fast and computationally inexpensive imaging and tomography in angle,
a complete review and analysis for the 2.5-D case is performed. The theory is also extended
to anisotropic media under necessary and sufficient assumptions. An analysis is performed
with regards to parameter issues in 2.5-D in anisotropic media. All inversion and migration
results are derived in the natural coordinate system, namely scattering/reflection angle at
the imaging point by means of the generalized Radon transform.
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Chapter 1

Thesis introduction

This introduction is intended for the reader unfamiliar with seismic problems and seismic
jargon, but familiar with physics and mathematics. A brief review is given of the field of
seismic processing while putting the current thesis in context of existing seismic methods.
I suggest the reader familiar with seismics start reading from section 1.5. The thesis is
a collection of papers either accepted or submitted for publication or in process to be
submitted. Each paper is thus self contained with individual introductions describing its
contribution in view of existing methods. Details pertaining to this are thus omitted in
this thesis introduction.

1.1 A description of the problem

Seismic exploration is focused on studying the first few kilometers of the Earth’s crust by
means of indirect measurements. This is performed by a so-called seismic experiment. An
artificial source creates a sound wave in the Earth which is subsequently recorded after
passing through the crust. The recorded wavefield has the insignia of the medium through
which it has travelled. Obtaining information of the medium from the recorded data has
the form of a classical inverse problem (Tarantola, 1987). With this information structural
images of the subsurface can be created and information on medium properties can be
obtained. Creating such structural images is also called migration.

Migration is a process of moving or organizing the data to obtain structural information.
E.g. depth migration sums or moves all the data back to the subsurface reflector in physical
depth coordinates where the backscattered data originated. Migration requires knowledge
of how the wavefield has travelled between the source and the receiver and is based upon
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Figure 1.1: An incoming P-wave is reflected both as a P-wave and a S-wave in an isotropic

medium.

some knowledge of the background medium. l.e. the medium in which the wavefield travels
before and after reflection. The background medium can be a highly complex structure
with large velocity differences. This is contrary to other indirect measurement situations
such as medical imaging using e.g. ultra sound. In addition, the nature of the measurement
forces us to illuminate by sound the medium and receive from mostly one direction, the
surface. This limited acquisition aperture, band-limitations of the source amongst other
reasons contributes to the so-called velocity-depth ambiguity (Stork & Clayton, 1986; Bube,
1995). This means that a whole range of different structural images, with different depths,
can be created based upon different background models and independent information in
our data.

In a seismic experiment the artificial source is usually a pressure source. The wavefield
generated travels through the medium as a pressure wave, or P-wave. In an elastic medium,
a reflection causes the wavefield to split into several wave modes such as shear wave, or
S-wave, in addition to a reflected P-wave see Figure 1.1. The reflected P- and S-waves due
to an incoming P-wave, so-called PP and PS reflection events, are recorded at the acquisi-
tion surface by directionally discriminating receivers forming a multi component data set.
The Earth itself is a highly effective filter separating these events into distinct directional
components before they arrive at the acquisition surface. From this data set we may cre-
ate PP and PS migrated structural images of the subsurface based on the two different
reflection events.

As they are based on two different physical wave phenomena the two different images
contain different and complementary structural and medium parameter information. Tra-
ditionally the PP events were used in migration, but recently the ability to exploit the
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migration of PS events have gained much attention. E.g. the S-waves are less sensitive to
low velocity zones and attenuation in the medium compared to P-waves. Hence PS-events
have been used to image beneath such regions (e.g. gas clouds), further the PS images
in junction with PP images are used in fluid prediction. As indicated in Figure 1.1 the
S-wave of a PS event has a different emergence angle from the reflecting surface than the
P-wave from a PP event. As the P- and S-wave modes behave differently with respect to
the medium properties, the aforementioned velocity-depth ambiguity applies separately to
both the PP and PS migrated images. The purpose of this thesis is to limit this ambi-
guity by the additional demand of depth consistency between geologically equivalent key
reflectors in PP and PS images. We consider elastic medium which is heterogeneous and
anisotropic. This means that a wave is subjected to different medium properties both from
point to point and with a directional dependence on how it passes through a point.

1.2 Migration: obtaining structural images

There exists a multitude of methods defined as migrations. Common to all is the creation
of a structural image, also called imaging. The most obvious subdivisions of these methods
are:

i. Depth migration: Structural image in physical coordinates.

ii. Time migration: Structural image where the ‘depth’-coordinate is traveltime. This
traveltime is usually the two-way traveltime of the imaged structure to the acquisition
surface. Based upon idealized situations such as a locally layered 1-D Earth, but is
used extensively in the industry.

Depth migration is the preferred migration technique in situations with a high degree of
complexity in the subsurface. The literature usually further split migration in two cate-
gories namely; wave equation method and Kirchhoff-based methods. An instructive review
and introduction is given by (Gazdag & Sguazzero, 1984). The categories are artificial as
the Kirchhoff methods are also based on the wave equation. Similar to all wave equation
methods (Claerbout, 1971) is the use of the full wavefield in the data which is propagated
backwards in time to the reflecting surface. Finite difference is one such method by direct
numerical computation solving the wave equation, while Fourier transform based meth-
ods or phase-shift methods uses a solution of the wave equation. This thesis considers
Kirchhoff-type migration in depth only (Beylkin, 1984; Bleistein, 1987), we thus continue
considering all references to ‘Kirchhoff-type depth migration’ as migration if not otherwise
stated.

In the Kirchhoff-type methods, discussed in the following, we assume that the medium
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through which the waves travel is elastic and can be split into a smooth term and a per-
turbation
medium = smooth term + perturbation. (1.1)

The wavefield travels in the smooth part of the medium, the background medium. The
reflections are generated at a perturbation in the medium only. The smooth part of the
medium is the object of so-called wvelocity analysis, discussed in the next section. Un-
der the above assumption a representation formulation can be deduced directly from the
wave equation called the Lippmann-Schwinger (Wapenaar, 1996) equation, well known in
physics. It models the observed wavefield at an acquisition surface surrounding the medium
generated by a source and scattered at one or many locations within the enclosed region.
This is also referred to as the forward modelling formula. The work presented is based on
the so-called Born approrimation which is a linearization of Lippmann-Schwinger, i.e. a
single wave is reflected by a single perturbation. This means that only primaries consid-
ered in this approximation and not multiples. Multiples are events that have reflected more
than once. We assume that the wavefield generated by the source travels in the background
medium until it reaches a reflector, the perturbation. This reflector acts as a secondary
source. The reflected wavefield travels to the acquisition surface and is recorded as data,
see Figure 1.2. This happens for all subsurface points. The Green’s function describing
the movement of the wavefield uses an approximation assuming high frequency called the
geometrical ray approximation (GRA) (Cerveny, 2001). However, the Born linearization
is valid only if the characteristics strength of the reflector is smaller than the wavelenght
(Beydoun & Mendes, 1989).

Information on subsurface reflectors is obtained by minimizing the difference between the
observed data and the predicted data based on the forward modeling operator as a classical
inverse problem formulation (Tarantola, 1987). The solution of this minimization prob-
lem yields estimates of the medium perturbations (1.1) is called inversion, while obtaining
estimates of reflectivity we continue to call migration. Both inversion and migration, or
structural reconstruction, at a single subsurface point is performed by stack/summing over
traveltime curves in the data modelled by the forward modelling formula as the reflected
contribution from the particular subsurface point.

1.3 Velocity analysis

The purpose of velocity analysis is to find the smooth background model equation (1.1);
a prerequisite in both depth migration and inversion. All methods are based on the re-
dundancy in the data. A typical seismic experiment is performed with multiple receivers
and at least one source. Classical methods such as normal moveout (NMO) methods for
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Figure 1.2: Born approximation, where the waves travel from the source to the subsurface

points via the scattering point.

isotropic pure mode events uses traveltime curve fitting under simple assumptions such as
a 1-D medium. The traveltime curves, shaped like hyperbolas, are fitted to the observed
data in a common-shot gather, i.e. the collection of recorded results at multiple receiver
location due to one shot. Each hyperbola represents an average velocity. The interval
velocities of the 1-D model are found from these by the so-called Diz equations. This
procedure can be extended to dipping plane layers and to anisotropic media (Alkhalifah
& Tsvankin, 1995). Migration velocity analysis (Al-Yahya, 1989) uses the focusing ability
in the migration procedure allowing for more complex traveltime curves. The quality of
the focusing of the migration, and hence the sharpness of the structural image, is based
on the stacking/summation curves in the data calculated by ray tracing in the background
medium. The focusing ability can be measured by the moveout behavior of a so-called
common tmage-point gathers. Other velocity analysis approaches exists such as stereoto-
mography (Billette & Lambaré, 1998) which considers the traveltime and slope information
of the reflection events directly in the data.

The problem of velocity analysis based on converted modes, such as PS events, has only re-
cently been addressed. Due to the nature of the PS reflection, see Figure 1.1, the methods
based on fitting hyperbolas do not work directly. Gretchka and Tsvankin (2002) suggested
using PP and PS reflection data to obtain pure mode SS (Shear-Shear reflections) data be-
fore performing S-wave velocity analysis in such a way. Stereotomography has also recently
been extended to PS events (Alerini et al., 2002). Sollid (2000) used migration velocity
analysis on PP and PS events. A similar approach is followed in this thesis.

1.4 A seismic survey; processing steps

As all field data examples in this thesis are based upon ocean bottom seismic (OBS) ac-
quisition data, we give a brief review of this survey geometry. The first seismic survey
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Figure 1.3: Acquisition setup of a OBS survey. Full drawn lines indicate the P-wave mode

while the dotted lines indicate the S-wave mode.

with OBS acquisition geometry was performed by (Berg et al., 1994). Usually with OBS,
a source is towed by a boat while receivers are placed on the ocean bottom, see Figure
1.3. Indicated are both a PP and PS event with the same source and receiver. The full
drawn lines indicate the P-wave mode, while the dotted line indicate the S-wave mode.
This is a cost demanding and time consuming survey geometry, but it allows for very gen-
eral acquisition geometry, high acquisition coverage and improved data quality compared
to other marine acquisition geometries such as the use of towed streamers of receivers.
Also, as S-waves do not travel in water, only P-waves, PS data need to be collected on
the ocean bottom. The latest generation of ocean bottom receiver equipment constitutes a
hydrophone, for recording the P-wave, and in addition a three-component geophone which
is a directionally discriminating receiver.

The following steps are the main processing steps of the acquired seismic data:

i. Preprocessing: In order to obtain a sharper data wavelet the source signature
is removed by deconvolution. As mentioned earlier, the usual migration/inversion
schemes assume that there are no multiples in the data, only primaries. Several
approaches for removal or attenuation of such events exists (Yilmaz, 1987; Dragoset
& Jericevié, 1998; Amundsen, 1999). In order to remove unwanted signal and noise
a band-pass filter is employed.

ii. Velocity analysis
iii. Migration/inversion
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iv. Interpretation: After having obtained structural images, an interpretor can per-
form lithological analysis and so-called amplitude-versus-angle (AVA) analysis (Hilter-
man, 2001) to obtain information on medium properties or to perform fluid predic-
tion. Usually the interpretor is involved in all of the above steps.

1.5 Outline of the thesis

The thesis is written as a collection of papers submitted to different scientific journals.
Due to this the first uses one notation while the rest of the papers share one slightly dif-
ferent notation. However, lists of symbols have been included in the first and second paper.

The papers are grouped into two different parts. The first part is a theoretical part on
2.5-D migration which sets the stage for part two. 2.5-D is a simplification of studying only
the waves having travelled in a plane yet exhibiting 3-D wave propagation effects. If the
Earth varies in mostly two directions a representative slice through the Earth can be used
to investigate the subsurface. We consider modelling and migration/inversion under this
simplification. This allows for fast migration/inversion and velocity analysis. The second
part of the thesis is devoted to velocity analysis. The field data example uses the 2.5-D
framework of the first part, while the appendix contains supplementary information. All
papers are referenced throughout the paper according to their status as submitted papers
in the reference list in the back. The thesis consists of the following papers :

i) Linearized 2.5-D parameter imaging-inversion in anisotropic elastic media with M.V.
de Hoop and B. Ursin. Submitted for publication in Geophysical Journal Interna-
tional 2003.

ii) 2.5-D modeling, inversion and angle migration in anisotropic elastic media with B.
Ursin. Accepted for publication in Geophysical Prospecting 2004.

iii) Depth consistent PP and PS seismic angle tomography with B. Ursin and M.V. de
Hoop, in process 2004.

iv) Appendix: A practical approach to PP angle tomography with B. Ursin and A. Sollid.
Submitted to Geophysical Prospecting 2004. Originally presented at the EAGE/SEG
Summer Research Workshop in Trieste, Italy 2003.

‘Linearized 2.5-D parameter imaging-inversion in anisotropic elastic media’: This paper in
chapter 2 is a fundamental paper on 2.5-D linearized migration in anisotropic media. The
theory of 2.5-D migration, which is 3-D wave propagation in a plane was deduced by Bleis-
tein (1986) for the acoustic wave equation case. Here, we introduce the 2.5-D framework
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under necessary and sufficient conditions in an anisotropic medium. The paper presents a
detailed derivation from Born modelling to least-squares inversion of medium parameters
in 2.5-D. A restricted generalized Radon transform (GRT) is derived in order to compute
common image-point gathers with a least-squares removal of the AVA-signature for the
purpose of velocity analysis.

‘2.5-D modeling, inversion and angle migration in anisotropic elastic media’ is a com-
plete review of modelling, migration and inversion in anisotropic elastic media for the case
of 2.5-D. Also, we perform an analysis of parameter aspects under the 2.5-D assumption
for the purpose of migration, inversion and velocity analysis.

‘Depth consistent PP and PS angle tomography’: This is the main paper of this thesis.
It deals with the construction of background models yielding depth consistent PP and PS
images. These background models are constructed by a combination of angle tomography
to obtain uniform PP and PS common image-point gathers and map migration to match
PP and PS key reflectors. Uniform gathers have a constant amplitude behavior at a given
depth for all angles. The common image-point gathers, for the purpose of velocity anal-
ysis, are computed by the AVA-compensated migration formula derived in paper ii) for
2.5-D, the 3-D formulation is found in (Ursin, 2003). P-wave and S-wave normal incidence
point (NIP) ray time information of key reflectors is obtained by a zero-reflection angle
approximation of Gretchka and Tsvankin’s (2002) ‘PP+PS=SS’-approach. By map migra-
tion of the pure mode PP and SS time information in a given model the reflectors can be
reconstructed in depth based solely on the P-wave and the S-wave velocity, respectively.
The SS traveltime map migration reconstructs approximately the depth of the PS reflector
based on the S-wave velocity. This enables a matching of the reflectors in depth without
a costly retracing of the interfaces given a new background model. The matching of PP
and PS images in depth usually requires anisotropy to be taken into account. A strategy is
presented, similar to (Sollid & Ettrich, 1999), to obtain estimates of parameter values of a
transversely isotropic medium using the aforementioned tools. The procedure is illustrated

on an OBS data example from the North Sea using the 2.5-D formalism derived in papers
i) and ii).

Appendix ‘A practical approach to automated PP angle tomography’ presents all formulas
for isotropic PP angle tomography under the 2.5-D formalism. The tomography procedure
is regularized by a two-step optimization first optimizing for parameters of a layer based
model with linear gradients and then optimizing for coefficients of a 2-D B-spline. The
interfaces of the layerbased model are automatically updated in the optimization to always
match the two-way traveltime of the reflectors, equivalent to the interfaces, observed in
the data similar to (Gjgystdal & Ursin, 1981).
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Part 1

2.5-D modeling, inversion / migration
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Chapter 2

Linearized 2.5-D parameter
imaging-inversion in anisotropic

elastic media

S.-K. Foss, M.V. de Hoop and B. Ursin
Submitted for publication to Geophysical Journal International

Summary

In this paper we derive 2.5-D high frequency modelling and imaging-inversion formulas of
seismic reflection data in the Born approximation in anisotropic elastic media. The 2.5-D
approach encompasses 3-D wave scattering measured in a common azimuth acquisition
geometry subject to 2-D dimensional computations under appropriate assumptions. The
lowest possible symmetry of the medium in this approach in principle, is monoclinic, while
the medium must be translationally invariant in the normal direction to the associated
symmetry plane. In the presence of caustics artifacts may be generated by the imaging-
inversion procedures. We show that in the 2.5-D approach the analysis of artifacts in the
2-D symmetry plane implies the corresponding analysis in 3-D in the framework of the
common azimuth acquisition geometry. An interesting aspect of our results is the occur-
rence of out-of-plane geometrical spreading in the least-squares removal of the contrast
source radiation patterns on the data. We finally introduce the 2.5-D transform that gen-
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erates common image-point gathers. This transform yields an efficient, though in general,
approximate tool for migration velocity analysis in anisotropic media. A real ocean bottom
seismic data example from the North Sea, using the derived formulas, is given.

20



Symbols and notation

Symbols

t

w

x = (x1,23)(= (71, 22, 73))
Gin(",w, x%)

z’, "

Az, z°)

h = (h17 h2a h3)
T(x,x®)

det Qa(x, x?®)

Q) (z, z°)
Qy (xz, °)
((h, 612)

p= (pl,pmps)
p’,p

V= (V1,V2,V3)

Description

time

angular frequency

position vector (before redefinition in main text)
Green’s function in the
frequency domain

source and receiver positions
amplitude for a ray at «*
from

polarization vector
traveltime for a ray
between & and x*

KMAH index for a ray
between x and x*

phase velocity

density as a sum of a
smoothly varying term and
a perturbation

elastic stiffness tensor as

a sum of smooth
background parameters and
a perturbation

relative geometrical spreading
in local surface coordinates
on the wavefront

in-plane relative
geometrical spreading
out-of-plane relative
geometrical spreading

local wavefront coordinates
slowness vector

slowness vector at

at scattering point of

the ray from the source and
the receiver, respectively
group velocity vector
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normal to slowness surface

scattered field in time

scattered field in frequency

modelling operator

open subset in plane of consideration

acquisition lines

acquisition manifold

open subset per branch in case of triclicated wavefields
two-way traveltime

GRA amplitude with only

in-plane geometrical spreading

total out-of-plane

geometrical spreading

radiation patterns ‘vector’

medium parameter perturbation ‘vector’

local average phase velocities

2.5-D canonical relation

take-off directions at scattering point

wave vector

wave vector for source and receiver rays, respectively
common azimuth (CA) canonical relation

imaging operator

pseudodifferential cutoff

normal operator

kernel of normal operator

extended Jacobian

migration dip covector

scaled extended Jacobian

scattering angle

matrix used in inversion

band-limited delta function

angle transform

kernel of angle transform

phase function

collection of parameterized slices of background medium
misfit functional

matrix used in reflection tomography by differential semblance

background medium parameters
statistical regularization parameter
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L2

Figure 2.1: Cylindrical reflectors and the plane of consideration; (z1,z3)-plane.

]

Figure 2.2: Parallell slices of the medium in the direction of the most dominant change.

Superscripts s and r indicate source and receiver respectively.

2.1 Introduction

In this paper we derive general single scattering 2.5-D modelling and imaging-inversion
formulas in anisotropic elastic media under precise assumptions. The lowest possible sym-
metry of the medium in this approach, in principle, is monoclinic, while the medium must
be translationally invariant in the direction normal to the associated symmetry plane. All
results are put in the context of common azimuth (CA) migration as discussed, for exam-
ple, by de Hoop et al (2003a). If the Earth varies in mostly two directions, a representative
plane containing these directions will suffice in describing the subsurface; the 2.5-D frame-
work applies approximately (it is exact if there are only two directions of change). This
enables a fast computational way, through a slicewise approach, to reflection tomography.
Further, it simplifies the ability to monitor the regularization of this kind of tomography.
Figure 2.1 shows a representative slice in the direction of the dominant change while Figure
2.2 shows several parallel such slices in a medium with a smooth out-of-plane behavior.

Goldin (1986) and Cerveny (1981) considered the notion of 3-D wave propagation in 2-D
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media, the 2-D medium being contained in the mentioned plane. Bleistein (1986) intro-
duced the notion of 2.5-D in seismic applications when restricting the attention to waves
that travel and scatter in this plane alone consistent with the CA acquisition geometry if
such geometry is aligned with the plane, but exhibit 3-D geometrical spreading. He con-
sidered the acoustic wave equation and derived modelling and Kirchoff migration formulas
for this case. Several authors have since considered 2.5-D Kirchhoff migration in isotropic
elastic media (Tygel et al., 1998; Dellinger et al., 2000). Geoltrain (1989) extended the ap-
proach to Kirchhoff migration in transversely isotropic media with a vertical symmetry axis.

The imaging-inversion results in this paper are derived using the inverse generalized Radon
transform (GRT) (Miller et al., 1987) using natural coordinates at each subsurface point
to be imaged, namely scattering angle and migration dip. Sollid and Ursin (2003) de-
rived a 2.5-D migration formula, using the GRT, in transversely isotropic media. A review
of 2-D and 2.5-D inversion and migration is found in (Foss & Ursin, 2004). Using the
aforementioned choice of coordinates removes the use of a Beylkin determinant (de Hoop
et al., 1999). Additionally, this choice unravels caustics that may occur in an inhomoge-
neous medium giving rise to multivalued travel time functions. In the presence of caustics,
strictly speaking, the GRT should be developed with Maslov Green’s functions. However,
de Hoop and Brandsberg-Dahl (2000) carried out an analysis that showed that as long as
there are no caustics occurring at the source or receiver positions, through a stationary
phase argument, the Maslov formulation reduces to a GRT based upon the geometrical ray
approximation (GRA) for the Green’s functions. Following this observation, we employ
the GRA Green’s function in our development. The formulas derived in this paper are
applicable in the presence of multipathing and caustics under assumptions that will be
clarified.

The high frequency linearized inversion, given a smooth background medium, yields the
most singular part of the unknown medium contrast and is developed in the framework
of pseudodifferential and Fourier integral operators (FIOs), see e.g. Duistermaat (1996).
This was done in the acoustic case by Rakesh (1988), Hansen (1991) and in the anisotropic
elastic case by Stolk and de Hoop (2002). We derive a new 2.5-D linearized inversion
formula, using the GRT, for anisotropic media under appropriate assumptions. These as-
sumptions are extensions of those by Bleistein (1986) necessitated by the introduction of
anisotropy and give rise to certain restrictions on the types of media possible in the 2.5-D
framework. The inversion procedure, based upon the 2.5-D Born modelling integral, is an
analogue to the one based on least squares. The 2.5-D Born modelling integral is obtained
by recognizing the out-of-plane variable as a phase variable. Following Bleistein (1986)
the out-of-plane integral in the 3-D Born modelling integral is approximated using the
method of stationary phase. This is not defined in the presence of out-of-plane caustics
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(however, the 3-D integral is still defined (de Hoop & Brandsberg-Dahl, 2000)). Using
the inversion result we derive a new least-squares AVA-compensated (amplitude-vs-angle)
formula for the creation of common-image point gathers used in reflection tomography
(Brandsberg-Dahl et al., 2003b). Implicitly our formulas yield FIOs in 3-D subject to a
2-D computation. The application and development of the 2-D approximation in global
seismology can be found in Bostock et al. (2001).

In the presence of caustics, in the CA geometry, imaging artifacts may occur; for the
acoustic case, see Nolan and Symes (1997). An artifact is defined as a false event in
the image that is not contained in the medium contrast, i.e. an image reflector that is
not there. The inversion is artifact-free under the so-called Bolker condition (Guillemin,
1985). When this condition is violated, the image resulting from the inversion procedure
will contain artifacts we have coined artifacts of type 1. The transformation of seismic data
into common-image point gathers, based upon the GRT, can be viewed as introducing a
restriction to a fixed scattering angle in the inversion formula (Brandsberg-Dahl et al.,
2003a). This restriction will in the presence of caustics give rise to artifacts of type 2 (for
an exhaustive analysis of these, see Stolk (2002)). Brandsberg-Dahl et al (2003a) sup-
pressed such artifacts by a procedure called focusing in dip by selecting contributions to
the imaging-inversion integral from isochrones by an isochrone filter.

The outline of the paper is as follows. In section 2.2, we introduce the notation and
the fundamental assumptions pertaining to 2.5-D. We also show by an example that, due
to the anisotropy, an additional assumption is required to restrict the rays to travel in-
plane, compared to Bleistein (1986). A detailed description of all aspects of the 2.5-D Born
single scattering modelling formula is given. The derivation of this formula can be found
in the Appendix 2.A; it is based on approximating the out-of-plane integral of the 3-D
Born modelling formula by the method of stationary phase (Bleistein, 1986) given that
there are no out-of-plane caustics. We give a description of which elastic parameters can
be determined in the 2.5-D framework of CA data. A more detailed description of the
parametrization and resolution of the smooth and perturbed parts of the medium in this
context is given by Foss and Ursin (2004). Additionally, we give the precise assumptions
subject to which our 2.5-D modelling is well defined and show how it pertains to the CA
acquisition geometry. Section 2.3 contains the detailed guide through our inversion proce-
dure which is an analogue to least squares inversion. The inversion follows closely that of
de Hoop and Brandsberg-Dahl (2000). We show that the 2-D Bolker condition pertaining
to the symmetry plane implies the likewise condition in 3-D subject to the restriction to
CA. First, we construct the adjoint (imaging) operator of the 2.5-D modelling operator.
Second, we evaluate the normal operator and identify its ‘inverse’ up to leading order.
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Third, we compose this ‘inverse’ with mentioned adjoint to find the 2.5-D inversion oper-
ator. (For ‘inverse’, one should read parametrix which is the inverse modulo smoothing
operators.) The actual inversion result, for the most singular part of the medium contrast,
is given in subsection 2.3.2 as an inverse by GRT in natural coordinates. In section 2.4
we present the 2.5-D transformation of the data to common-image point gathers. Section
2.5 shows results using the formulas derived in this paper applied to real ocean bottom
cable (OBC) seismic data from the North Sea. We conclude with a discussion on future
applications.

2.2 Modelling

2.2.1 Green’s functions in a smoothly varying medium

The geometrical ray approximation (GRA) to the Green’s functions is a causal, short
period approximate solution to the elastic wave equation, in the frequency domain given
by

p(x) W Gin + 0 (cijir(®)01Grn) = —0ind(x — &) 0,4,k l,n=1,2,3, (2.1)

where w is angular frequency and the position vector is denoted by & = (x1, 9, 23), p(x)
and c;jr(x) are density and the stiffness tensor, respectively. The Kronecker delta, d;y,
gives the source term on the right-hand side in the canonical directions, operative at the
source point, °  through the delta function §. The summation convention applies here
and in the following. The Green’s function is a sum over the different wave modes, where
each term is of the form

G, w, x°) = A(x, £°)h (x)hy (x°) T @ 2 ) (2.2)

in which T'(x,2°) is the travel time along the ray connecting @ with x*. (We do not
explicitly indicate the mode of propagation; we treat the modes of propagation separately.)
hi and h, are components of the unit polarization vectors at the endpoints of the ray,
where the superscript s indicates that this polarization vector is associated with the ray
originating at x°. This convention will be used in the following; superscripts s and r
indicate the association of a variable with either a source or a receiver point, * and x",
respectively. A(x,x*) is the amplitude, which becomes complex in the presence of caustics,
and can be written in the form (Cerveny, 2001)

e—ign(w L %)

~ dnfp(@)ve (z)p(x*) ()] /2] det Qu(, 2°)[1/2”

Az, z°) (2.3)
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Here, v* and v are the phase velocities at  and x*, respectively, in the direction of the
ray connecting these points. | det Qg (x, 2*)|*/? is the relative geometrical spreading factor
given by

0’T (z, x*)

. 1,7 =1,2, (2.4)
9q; g,

[Q2]i_jl (ma ws) =
where ¢; and ¢ are local surface coordinates on the wave front at the points  and x?,
respectively. k(x,z®) is the KMAH index and counts the caustics that the ray encounters
between x® and x; it accounts for the phase shifts this causes. The subtleties concerning
the computation of this index in the presence of anisotropy for the quasi shear waves are
elucidated in (Klimes, 1997).

We are concerned with 2.5-D modelling, and imaging-inversion of elastic waves in anisotropic
media in the Born approximation. To justify the 2.5-D approach we need to invoke appro-
priate assumptions. Two of the assumptions pertains to restricting the ray geometry to
the (z1, z3)-plane in the modelling, the first being:

Assumption 1 (Symmetries)
a) The medium is invariant in the out-of-plane direction (xs).

b) The (x1,x3)-plane of propagation is a plane of mirror symmetry.

The translational invariance of assumption 1 a) guarantees that the out-of-plane wave
slowness is constant. Assumption 1 b) ensures that the wave front is symmetric about the
symmetry plane. The lowest possible anisotropic symmetry is then monoclinic which has
only one plane of mirror symmetry.

Due to the symmetry we may choose one of the wave front coordinates to coincide with

the out-of-plane direction, say ¢o = x5. The first wave front coordinate, say ¢, is chosen
oT(x ,x °) nd T (x @ °)
ag; @ o

= 0. In those wave front co-

in-plane. Thus, in the 2.5-D approach (due to assumption 1 b)),
*I(x ;x ¢) _ 8*T(xT ,x °)
8¢5 0z - 8r50q1
ordinates, the relative geometrical spreading matrix in equation (2.4) becomes a diagonal

are equal functions in x5 and hence

matrix,
- 1 . -
0T (z, ) H
sy — _ 0qi0q; — Qs (x, ) 0
QQ(ma r ) 0 1 0 Qé_(a:; :133) ’ (25)
op2
L 8362 i
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where Ql(z,z*) and QX (x,z*) are the in-plane and out-of-plane relative geometrical
spreading factors, respectively. This structure implies that the relative geometrical spread-
ing in equation (2.3) factors into an in-plane and an out-of-plane component,

| det Qo(, 2°)|"? = |Qy (=, 2°) Q5 (x, 2°) |2, (2.6)

Note that the argument in equation (2.5) for the splitting of the in-plane and out-of-plane
spreading is not dependent on the actual constant value of p,.

2.2.2 Scattering in the Born approximation

The 2.5-D Born modelling formula is derived from the 3-D Born modelling formula by a
stationary phase argument integrating out the out-of-plane coordinate, following Bleistein
(1986). The domain in the symmetry plane in which the 2-D scattering takes place is
denoted by X C IR%.. From now on, let = (21, 23) € X.

The stationary phase argument involves the stationarity condition (Appendix 2.A, equation
(2.A-3))
O, (T(x°, ) + T(x,2")) = p5 + p5 =0, (2.7)

where p? = (p§,ps,p3) and p" = (p}, py, py) are the slowness vectors associated with the
source ray and the receiver ray, respectively. We wish to restrict our attention to rays that
only travel in-plane. However, the stationary phase argument in equation (2.7) admits
out-of-plane contributions. A simple example that satisfies equation (2.7), using pj equal
a constant, for qSV-qSV scattering (‘q’ stands for ‘quasi’ in the following) is illustrated
in Figure 2.3. The medium is transversely isotropic with a vertical symmetry axis (z3-
axis). By controlling the Thomsen parameters, ¢ and § (Thomsen, 1986), we may change
the shape of the slowness surface smoothly as shown on the right of the figure for three
different depths in the model used in the ray tracing on the left. All axes are given in
meters. The group velocity vector, V, is perpendicular to the slowness surface and governs
the direction of the ray. This is indicated with the surface normal to the slowness surface,
n. As suggested in the figure, we may change smoothly the direction of the energy velocity,
sending the rays out of the plane and back again while keeping po fixed (implication of
assumption 1 a)). Two rays are shot at a small positive and negative angle with the x3-axis
in the out-of-plane direction (p{ = p} = 0) from (1, 9, x3) = (0,0,200). They travel in the
(x2,z3)-plane and intersect at the point (0, 0,2800) with incoming angles following Snell’s
law and satisfying equation (2.7). We note that the anisotropy in this example allows
triplications on the symmetry axis, which is unusual in a sedimentary sequence setting.

We admit in-plane scattering events only, by imposing:
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Figure 2.3: Example of rays travelling out-of-plane that are in the stationary point set

equation (2.7)
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Assumption 2 (Seismic phase restriction) Only seismic events with at least one ray,

or leg, associated with a wave type that pertains to a conver slowness surface are considered.

If one of the ray legs is associated with a convex slowness surface, the only solution to
equation (2.7) is ph, = p§ = 0. Due to the symmetry in assumption 1 b) this also means
that V7 = VJ = 0. This follows because pi, = —p35 # 0 on a convex slowness surface will
induce group velocity vectors pointing out of the plane (the middle slowness surface on
the right of Figure 2.3 illustrates this). The group vectors send seismic energy away from
the plane never to return. In particular, P waves always have a convex slowness surface
(Musgrave, 1970); hence, qP-qP and qP-qSV scattering events always satisfy assumption 2.

The medium parameters are represented by a sum of a smooth part, p(® and cZ kl, and a

singular perturbation, p(*) and c”kl

p(x) = p ) + pV(z), ciml@) = cop(@) + iy (). (2.8)

Note that both the smooth part and the perturbation are restricted in accordance with
assumption la) and b) making the reflectors parts of the cylindrical surfaces (see Figure
2.1). In the Born approximation, the waves travel in the smooth part of the medium
and are scattered off the perturbation once. In the imaging-inversion problem the smooth
medium is assumed to be known. It is the medium perturbation we will invert for. The
multicomponent data collected in a seismic experiment, ,,,, will, under the condition
of a smooth background, in this approximation be the asymptotic part of the modelling
formula. The subscripts indicate that u,,, is the m-component of the recorded wave field
due to a body force in the n-direction. The data (scattered wave field) can be modelled
by an operator L acting on the medium perturbation (see Appendix 2.A for a detailed
derivation, where Uy, is the time-Fourier transform of the data )

U (2°, 27, 1) = LM (2, 27, t)
~ /1 250 (. Al(z?, 2) All(, ")
Z / / () L (xr, x, z°)

wl (2", z,z°)cW (z)eTO@ 2,20 (29 dwdz. (2.9)

Here, T® is the two-way travel time given by
TO(x", &, 2*) = T(x*, ) + T(x, z"). (2.10)
(Note that the modelling equation is valid up to leading order since we inserted the GRA
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Figure 2.4: Triplications of the recorded wave field with travel time functions per branch

denoted 7™M, T and T®). Dotted plane indicates a common shot gather.

amplitudes in the oscillatory integral representations for the Green’s functions.) We con-
sider *, " € X. Restricting x*, " further to smooth source and receiver lines forming
the manifold ¥ C 0X x 0X, we introduce the 2-D acquisition manifold Y = X x IR >
(x*,x",t), where t is time. The significance of the superscript (i) on T is in the case
of multivaluedness of two-way travel time in the presence of caustics. In that case i € [
labels the branches of the two-way travel time and I is the collection of them. The set
{T®};cr describes the two-way travel times for all branches. Each 7" is defined on a sub-
set D@ of ¥ x X, i.e. a particular subset of acquisition and scattering points (x°, ", ).
In a generic inhomogeneous medium, caustics will form. Figure 2.4 shows an example
of multivaluedness: a triplication in the recorded wave field, the dotted plane indicating
how this is recorded for a single source. The branches are assigned a number to separate
them indicated on the travel time functions 7!, T7®) T®) We will omit this indexing of
the branches for clarity of notation until the distinction becomes important again (see the
discussion on artifacts). The sum over the different travel time branches in equation (2.9)
will thus be suppressed and assumed implicit in the following.

The amplitudes, All(x*,2) and A'(z, "), are the GRA amplitudes (see equation (2.5))
with only the in-plane geometrical spreading factor Q, for example
e—i%n(m L *)sgnw

47T[P(-’B)Us(w)p(ms)v(mS)]lﬂ|QQ (, ) |1/ )
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The two-way out-of-plane geometrical spreading is given by
L@ @, 2°) = |Qy (2°, ) + Q (2, 2)|'/%. (2.12)

The out-of-plane geometrical spreading Q5 for the source ray, for example, can be expressed
as

Qs (zf,x) = / Edz&, (2.13)

ray b2

where the integral is along the ray parametrized by travel time ¢ connecting x* with .
The integrand V5/ps tends to a value as both V5, ps tend to zero (in accordance with
the 2.5-D approach, where p, = 0, V5 = 0). Closed form expressions for the integrand
for isotropic, transversely isotropic and orthorhombic media can be found in Ettrich et al.
(2002), equations (15), (19) and (22), respectively. The medium perturbations are collected
in the matrix ¢ (z) and the radiation patterns equivalently in w(z", 2, *). They will be
defined in the next subsection.

Remark 1 We restrict our analysis to the part of phase space where out-of-plane caustics
do not occur. Thus we mute events associated with rays forming out-of-plane caustics (see

Remark 4 in the appendiz).

2.2.2.1 Medium perturbations and radiation patterns

Since by assumption 1, the medium is restricted to monoclinic or higher symmetry, there
are at most 13 stiffness parameters plus density as independent unknown distributions.
The stiffness tensor is given by (if the (x1, z3)-plane is the symmetry plane):

Ci111  Ci1122 C1133 0 C1113 0
Ci122 C2222 (2233 0 C2213 0
] = | G113 Coma Canma 0 cz O (2.14)
“GRIZ 1 o0 0 0 0 ‘ '
C2323 C2312
C1113 C2213 (3313 0 C1313 0
| 0 0 0 C1223 0 C1212 |

The medium perturbations are collected in the 14 x 1 matrix for monoclinic anisotropy
(Burridge et al., 1998)

[0
@ {p<°><w>’p(OMm)vg(m)vg(m) ’ (2:19)

where v¢ and v? are local phase velocities averaged over all phase angles. These are intro-
duced for computational purposes so that the matrix has components of similar magnitude
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(Burridge et al., 1998). We restrict the indices of cl(-Jl-,)cl to the 13 independent components of
the stiffness tensor (cf. (12)). With higher symmetry, such as isotropy, the matrix reduces
accordingly (Beylkin & Burridge, 1990). The radiation pattern matrix is defined similarly
as the 14 x 1 matrix (Burridge et al., 1998)

w(a’, z, &%) = {hy,(2)h], (@), [b; ()p; () b ()p] () v (2)vg (@) } (2.16)

where the indices follow those of the stiffness matrix in the ordering defined by the matrix
or inner product w’(z", &, *)cV)(z) in the modelling equation (2.9). Since the out-of-
plane slowness will be zero, p§ = p} = 0, we see from equation (2.16) that the contribution
vanishes if j,/ = 2 in cg;,)cl In view of assumptions 1 and 2, having p5 = p; = 0, the
polarizations of qP and qSV waves satisfy Ao = 0. Thus the parameters we can invert for
from qP-qP and qP-qSV scattering are the 7 parameters out of the 14 independent ones in
a monoclinic medium, cﬁ)u, 0511)33, c§13§3, 0511)13, c:%)m, 6%)13 and density p(!) (hy = 0, and hence
the contributions for 72,k = 2 in cl(-Jl-,)cl are zero). The kinematic aspects for a monoclinic
background medium are governed by the same partitioning of parameters (Chapman &

Pratt, 1992; Foss & Ursin, 2004).

Remark 2 In imaging, the smooth background medium is given, and hence the relevant
amplitudes can be computed in the lowest possible symmetry admitted by the 2.5-D frame-
work: monoclinic. However, for inversion and reflection tomography, having observations
restricted to the plane under consideration, only parameters associated with this plane can
be estimated. Hence the lowest possible symmetry is transversely isotropic with a symme-
try azis in the plane. Due to the rotational symmetry of the medium, parameters needed
in out-of-plane amplitude calculations are found from in-plane propagation (Ettrich et al.,

2002, ; equation (19)).

2.2.3 The modelling operator in common azimuth

The 3-D Born modelling operator has been shown to be a Fourier integral operator (FIO)
under the mild conditions that there are no direct rays between the source and the receiver
reaching the medium perturbation (i.e. rays that have scattered off a subsurface point over
an angle 7) and no grazing rays (i.e. rays that reach the acquisition surface tangentially
to the surface) (Rakesh, 1988; Hansen, 1991). The 3-D modelling operator with common
azimuth (CA) acquisition geometry (Biondi & Palacharla, 1996) is also an FIO under
similar conditions (Nolan & Symes, 1997; de Hoop et al., 2003b). 2.5-D implies CA (but
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not the other way) aligning our symmetry plane with the acquisition geometry, i.e. x5 = x%.
We conclude that the 2.5-D modelling operator (2.9) has the properties of a FIO, and has
the following canonical relation (superscript S indicates that this is a canonical relation in
two space dimensions coinciding with the symmetry plane)

A ={(z*(z, o), 2" (x, "), T(z*(x, o), x, " (x, ")), k*(x, o, ), k" (x, o, w), w;

z,—k(z’(z,a’),z,z"(x,a"),w))|(z,a’,a”") € K,w e R\ 0}. (2.17)
The canonical relation is a table that describes how reflectors induce reflections geometri-
cally. The canonical relation is intimately connected to ray tracing in phase space (Billette
& Lambaré, 1998). a®(x) and a”(x) are the take-off directions of the rays originating at the
scattering point @ € X and are given by the unit phase vectors o(z) = p*(x)/|p*(x)| and
a’(z) = p"(z)/|p" (x)| (see Figure 2.5). K is an appropriately chosen subset of X x S* x S*
(S is the unit circle). On the canonical relation (2.17) k(z*(z, o), z, 2" (z, "),w) =
wVg T(x°(z,a®), z, " (x, ")) has the interpretation of wave vector (the Fourier dual of
x). Given a take-off direction (a® or ") at a scattering point x, rays are traced to an
acquisition line giving unique intersection points (z°* = x°(x,a®) or " = z"(z,a")) as
well as slowness vectors; these slowness vectors are projected onto the aforementioned ac-
quisition line resulting into k°/w, k" /w, from which k°(x, o, w), k" (2, a",w) are derived.

Remark 3 The 3-D CA Born scattering operator yields the following canonical relation

(compare with the 2.5-D Born modelling operator above in equation (2.17))
AGA = {(af, x5, a7, t, kS, kS + k5, kT, w: xy, 2o, 23, —k1, —ka, —k3)}, (2.18)

where (25, x5, x5, x5, t, k3, kS, kT, kY, w; 1, T2, T3, —k1, —ko, —k3) are contained in the Born
modelling 3-D canonical relation A3P which is the counterpart of A3 in three space di-
mensions (e.g. Stolk and de Hoop (2002)). Note that t is here a general two-way travel
time function in order to separate it from the one in equation (2.10) which is limited to a
plane. Due to the translational invariance of the medium, assumption 1a), the individual
k3 and ki are preserved. Hence at the scattering point ko = k5 + k5, in which k3 and kj
attain their values at the source and the receiver, respectively. This equality can also be
written as ko = w(ps + ph). In view, again, of the invariance in the out-of-plane direction
the 2-component of any reflector dips must vanish. Hence, given a source and a receiver

ray such that k3 + k% # 0, no specular reflection will return to the acquisition manifold.
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Figure 2.5: Coordinate systems.

This is also confirmed by the stationary phase argument underlying the 2.5-D analysis, see

equation (2.7).
The modelling operator maps the medium perturbation to the data

L:c® = up,. (2.19)

2.3 2.5-D imaging - inversion

In this section, we develop the inversion for the medium parameters collected in the matrix
¢ in equation (2.15). The inversion can be viewed as an analogue to matrix least-squares
inversion. In this context, we introduce the adjoint, L*, of the forward operator the so-
called imaging operator, and apply it to equation (2.9),

L*(yLcW) = L*u, (2.20)

where u is shorthand for the data (indices are suppressed, see the discussion below). The
composition of the imaging with the forward operator gives us the normal operator, N =
L*yL. The operator L* images reflectors properly if L*yL is a pseudodifferential operator
(Stolk & de Hoop, 2002). Here 1 is a pseudodifferential cutoff (‘tapered mute’) to ensure
that the mild conditions of subsection 2.2.3, making the modelling operator an FIO, are
satisfied. In the following we will refer to L*yL as the normal operator N where 9 is
assumed implicitly.
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Assumption 3 The projection of the canonical relation A3 of the 2.5-D modelling oper-

ator on the acquisition variables (x®, ", t,k° k", w) is one-to-one.

This assumption is consistent with a 2-D Bolker condition (Guillemin, 1985), for the acous-
tic case see Ten Kroode et al. (1998). It means that (x®, x", ¢, k*, k", w) determine a scat-
tering point & € X and associated wave vector k, uniquely and smoothly. This condition
ensures that the normal operator is an elliptic pseudodifferential operator. Hence the pro-
cedure of imaging the modelled data, equation (2.20), does not generate reflectors that
were not there to begin with, i.e. that are not present in c().

Since N is elliptic and pseudodifferential we can construct its parametrix, denoted by
(N—1). The brackets indicate that this is a pseudo inverse. Following the analogue of
least-squares inversion, an estimate of the medium perturbation in equation (2.15) can be
recovered from the composition

¢ ~ (N"HL*u, (2.21)

where u is the data. If assumption 3 is violated we generate artifacts (discussed in the
introduction). A less restrictive condition and a discussion of the implied artifacts can be
found in de Hoop and Brandsberg-Dahl (2000) and Stolk (2000).

In view of Remark 3, assumption 3 (or the 2-D Bolker condition) in the symmetry plane

implies the 3-D CA Bolker condition. This condition encompasses that for any point in

A%4, i.e., for an intersecting pair of source and receiver rays, given (%, 3, o7, 23, t, k3, kS +
7, kT, w), there is only one (¢, k3) that explains the reflection.

2.3.1 The adjoint scattering (imaging) and the normal operators

In this subsection, we evaluate the adjoint L* of the modelling operator L and deduce the
leading order contribution to the normal operator N for which we can derive a parametrix.
We will write the action of the normal operator as a pseudodifferential operator, i.e. as
integrals over  and its Fourier dual k, the wave vector. The inverse of the integrand thus
obtained (the integrand yields the so-called symbol of the normal operator) generates the
‘inverse’ of the normal operator up to leading order.

We let the acquisition coordinates be defined on the two acquisition lines in the symmetry
plane, dS and OR for sources and receivers, respectively. By the reciprocity theorem of
the time-correlation type found in de Hoop and de Hoop (1997) the adjoint or imaging
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operator L* can be written

% i Lo [

W(z", ', 2°) A (273 TVt (2, 27, ) P (23 ') e T@EH LT )0 q4q 0 dzsda”, (2.22)

where w' is the frequency and * indicates the adjoint as well as complex conjugation. The
polarization vectors associated with the scattering off the point &' are denoted by h,,(z"; ')
and h,(x®; x') to distinguish them from the polarization vectors due to the scattering off
x as in equation (2.9). Note that there is a summation over the different indices of the
data u,,, in the integrand of the adjoint, following the summation convention. Hence the
notation of L* acting on all the data denoted by u. Note also that w = (wT)*.

Composing the imaging operator with the modelling operator (having used a pseudod-
ifferential cutoff for when it fails to satisfy assumption 3) gives us the normal operator.
The u,, from the modelling equation (2.9) is inserted into the above expression to yield

L*yLc®)

/ / / / / 13/2 3/2 )( )p( )( ) (AH(;I;S’ w,)AH(wlv wr))* AH(wS’ :I:)AH(CB, wr)
dSXOR R>0 Lt(zr, ', z*)* Lt(z", x', z*)
lw(T(@", 2, &%) =0) -1/ (1@ 2%, 2° )~1) Q1 ddw'dedz’dz”.  (2.23)

If assumption 3 is satisfied it is indeed an elliptic pseudodifferential operator. The integral
over t yields a delta function d(w — w') so we can collapse the integral over w’ and set
w = «'. Invoking a Taylor expansion about &' for the two-way travel time T'(x", z, *)
yields, due to the fact that higher order derivatives give smoother contributions to the
amplitude (Hérmander, 1983) through expansion of the exponential,

wT(z" z,z°) —T(z", 2, 2°)] =w[(Vy T)(z", z',2°) - (x — )| +.... (2.24)

Inserting (2.24) in the phase function of the normal operator yields
Ne® (2 / / / 350 (') 5O () (Al(z®, 2 ) Al (@', 27))* Al (z°, 2)All(z, z")
0SxOR ‘CL(mr’mljms)* ‘CL(mTamlams)
w(e', o', 2" )W (@7, @, @ )c< (@) (Vo (& 2 o () ()
Ve T@ 252 )@ 2 ) gdpdade’. (2.25)

The most dominant contribution to the oscillatory integral (2.25) occurs when z and
x' are near one another making up a small neighbourhood of support (Beylkin, 1985).
Additionally, the amplitudes, polarization vectors and the radiation patterns vary slowly
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compared to any other part of the integrand. We may then assume that they are constant
in a small neighbourhood of ’. Since the polarization vectors are normalized we obtain

Nc(l) / // 3 (0) 2|AH(1’ :v)A”(w x’))|?
ISXOR |‘CJ_(:BT’ T ’ms)|2

w(z”, 2, z°)wT (2", &', z°)cV (z)e“ Ve T@ T 2° )@ T )qdpdesde”. (2.26)

2.3.1.1 Subsurface coordinates

We choose to work with coordinates directly at the imaging point ' and introduce the
change of variables
(', z°, ") + (z',a®, "), (2.27)

where a® and o' are the phase directions associated with the rays connecting the image
point and the source and receiver, respectively (see Figure 2.5). The right implication is
also true, but in the case of multipathing per branch only (see subsection 2.2.2). This
transformation removes the use of the Beylkin determinant (de Hoop et al., 1999). It also
unfolds caustics (de Hoop & Brandsberg-Dahl, 2000) through well-defined mappings from
the scattering point to the acquisition manifold. The domains of integration then become

0S x OR «— S° x §" for given x'. (2.28)

Here S* and S™ are two unit circles in the symmetry plane for the sources and receivers,
respectively. We introduce the extended Jacobian

0(x®, x")

J(ara wla as) = ‘IO(O) (wl)AH(ws’ mI)AH(wl’ wr)|2a(as ar) ?

(2.29)
and change the coordinates through the mapping in equation (2.27) in all relevant places
in the following. The in-plane geometrical spreading of A' and the Jacobian cancel each
other up to projection factors. Using the expression for the extended Jacobian in equation
(2.26) yields

Ne® (z /S . // o a5)| w(a', 2, a’)w’ (o', 2, &)
SX T
(z)e Ve T@ @ @)@ -2 7(q" ¢/ o )dwdeda’da’. (2.30)

In accordance with the reasoning in subsection 2.3.1 we write equation (2.30) as an in-
tegral over x and its Fourier dual k = wV T, i.e. in the form of a pseudodifferential
operator. We introduce a new frequency @ = w|V, T|. Then wV T = wv™, where
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V"™ =V T/|V, T| is the migration dip and is a function of ", &', &®*. With the appro-
priate substitution this yields

Vo T —?
Nc(l) /S S / | |£J_ Zr Z Zs))‘ 2 = W(a"" wla as)wT(ar’ mla as)
SX T

|
-c(l)(w)el“’” (@rzla @ -2 7o ¢ of)dodeda’da’. (2.31)

Defining 7 o)
oz a
IV, ,T(a z', o)t

prs(al, @', o) = (2.32)

results in the simplified expression

1 5 prs(a, @', af) . N ,
N /s// C(ar, @, anp V@@ atwi(e, @ o)
W (g)e” (@72 @ -2 ) qoqpdacda’. (2.33)

2.3.1.2 Migration dip, scattering angle and the leading order contribution

We change variables again, from the phase angles to scattering angle €, which is the angle
between a® and a', and the migration dip »™ (see Figure 2.5). The scattering angle
follows to be

0=0(a",z,a’) = arccos (a’ - a’). (2.34)

To be able to integrate over the migration dip, there is assumed to be no scattering over
§ = m so that VT # 0 and v™ is defined. We have

(', e, a") S (2, v™,0). (2.35)

In 2.5-D this mapping exists both ways; there is no integration over the azimuth (de Hoop
& Brandsberg-Dahl, 2000). The domains of integration can now be written as

S* x ST —» Eya x Ey for given '. (2.36)

Changing all relevant coordinates under the mapping in equation (2.35) and collecting the
integration over the scattering angle 6 yields

oL #E2h

J(a®, a)
a(v™,0)

w(z', v™, 0wl (z' v™,0) d0} c® ()" @ T ) qedwdr™. (2.37)
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We introduce the square matrix (of the dimensionality of w)

1 ,LLLs(J}’,V ,0)
! m i m T (! m
I(m’y )_—2/0| ( ,’ ,0)|2W(£13,V ,0)W (.’L‘,u ,0)

o(a®, )
o(v™,0)
+ (.. (=, —v™), (2.38)

where the second term is the same as the first but with ™ replaced by —v™. This enables
us to rewrite equation (2.37) with positive @ only as

Nc® () / / / o287 (2, ™) W (2)e®" @ 2 Npdadodr™. (2.39)
27T Vo IR>0

This has now explicitly the form of a pseudodifferential operator with integration over x
and its dual k through the identification k = wr™. We recognize here the leading order
symbol, @*87?T'(z’,v™), of N. Note the differences when compared with the 3-D case
found in de Hoop and Brandsberg-Dahl (2000): the out-of-plane geometrical spreading
L+ naturally appears in the leading order symbol of the normal operator in equation
(2.38) combined with the radiation patterns. Also the power of (27) has been modified in
accordance with the stationary phase calculation in 2.5-D.

2.3.2 Least-squares inversion

To leading order, the inverse normal operator composed with the normal operator from
the last subsection should yield the identity. The departure from the identitity is due to
taking the generalized inverse of and smoother contributions to the normal operator. We
denote the generalized inverse of N by (N~!). The resolution is controlled by (N~!)N.
General analysis of the resolution is given by de Hoop et al (1999) and for the 2.5-D case
by Foss and Ursin (2004).

Note that .
W/ / oV @ 2 gdumdn = 6(x — o). (2.40)
R>0J S

In view of limited illuminations, the support of @ will be bounded while v™ € E,« C S.
Equation (2.40) becomes a band-limited delta function, dpr(x) (Bleistein, 1984). The
kernel of the parametrix of N (we denote the kernel of N as N) is found to be

N D / / 2872 (&, ™)) e @ T pdumde.  (2.41)
27T R>0

Note that one of the @ variables is placed with the integration variables since (v, v™) yield
polar coordinates in k-space. The composition of this kernel and the kernel of the normal
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operator then becomes
/(N1>(m', yY)N (y,z)dy ~ dpr(x' — ) + lower order terms. (2.42)

We replace ¢’ with « in the imaging operator (2.22). The real part of the composition
is symmetric in w’ while the imaginary part is odd and disappears. The integration over
w' then becomes one-sided by taking the real part and multiplying by 2 (de Hoop &
Brandsberg-Dahl, 2000). Using equation (2.21) the least-squares estimate of the medium
perturbation becomes

¢W(z') = (N"HL u(z)
-1 1

~ Q—Re{ /d:c/ w‘ldw/ dum/ de’de” dw'(87*T(z', ™))
(2m)> X R>0 Ea dSxdR R>0

'\/Q_W(iw')3/2p(0) (z) (AH (x*, il:')AH (z',z"))*

EJ_(wr’ CU’, ws)*

w(z', z, %) hy (2" 2" U (2°, 27, ') by (2% )

) eia_ﬂ/a (m - l)_iw’T(mT,m;iEs) } X (243)

We have introduced the time-Fourier transform U,,, (x*, ", w') of the data, u,,(*, ",t').
We proceed by Taylor expanding T'(x*, 2, ") about @’ as in equation (2.24). By the same
argument as around equation (2.26), =’ is assumed to be close to & as this yields the largest
contribution to the oscillatory integral. The amplitude factors and the radiation patterns
are slowly varying and can be considered constant in a small neighbourhood of #’. This
means that we may substitute x’ for & for slowly varying components,

eW(z') ~

—1
———Re /d:c/ a;—lda;/ dum/ d:csda:’/ dw'(872T(z', ™))~ (iw')?/?
(27)3/27T { X R>0 Ea dSxOR R>0 < ( ) )
All(zs, 2 All (2!, 7))
o A ) A )
L (z, ', z*)

. e_iw'T(a:",:l:', 8 )ei(b_JVa —w’Vw/ T(m""m’,ms ))((B - ’) } A (2_44)

w(z', €', ) hp (" ) Upp (2°, ", ') iy (27 )

We observe that the integration over & now becomes a delta function,
/ dpel@V" —w'Vyy T(X 2’y 2% ))-(x —x ')
X

= 4% (wv™ — W'V T(2", &', x°)) = dn?6(wv™ — W'Vv™|V i T(z", x', z°)]), (2.45)
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since V" = V1 T/|V T|. Using that w = w|V T'| and the result in equation (2.44),
the integration over @ and v™ collapses to

2m dw'
Re / dmsdmr/ 87T2F wl, v o 3/2
d { OSXOR R>0 (w’|Vw/ T(aﬁ" ', a;$)|)2< ( )) ( )
(All(z*, &) All (', 27))*
L (z, ', x5)*

eW(z) ~

- p© (') w(z’, ', 2" ) hp (2" 2" ) Up (2°, 27, ') by (27 )

.e—iw’T(a:T,:z:',:cs ) } ‘ (2.46)

Taking 87 out of the generalized inverse and making the appropriate changes yields
dw’
Wz Re{ / dwsdw’/ , (2, ™))™
( ) (27)5/2 8SxOR R>0 (w’1)1/2|Vw/ T(mTaw'a$5)|2< ( )
. p(O) (wl) (AH (ms’ mI)AH (wlv mr))*
,CJ‘(CCT, wl’ CCS)*

w(z", &', 2 ) hy (2" 2" ) Up (2°, 27, ') by (27 )
.e—iw’T(m",m’,a:") } (2-47)

(Equation (2.47) is in fact a direct manifestation of the composition of a pseudodifferential
operator with a FIO (Treves, 1980, , Section 6.1. Chapter VIII)). The surface coordinates
" and x*® are changed to the phase directions at the scattering point as in relation (2.27).
Using equation (2.29) and (2.32), the appropriate Jacobian can be expressed as

Oz, x")  pps(a’, @', 0f)|Vy T(x", o', z)|*
o ar) |0 (@) Al (@, ) All(2', ") |2

Inserting the result in equation (2.47) yields the estimate of the medium perturbation

1 . dw’ , s A —
eW(a) ~ (2w)5/2Re{ /SWST de’der /IR>0 WMLS(O‘ y&', o) (L(a',v™)) ™
Ve T(a, &', o) Pw(a, &', &) (275 &) Ui (2%, 2", ") (2% ') im0 o) }
20 () All(as, ) Al (&', o)LL (o, &, ) € :

(2.48)

(2.49)

We observe in the denominator the out-of-plane geometrical spreading, which also exists
in the expression for I' (equation (2.38)). Changing the variables from phase angles to
scattering angle # and migration dip ¥™ as in (2.35) yields

1 a(as ar) dw’ B
¢ mO\&, &) ' om b1
@)~ kel [ 0G0 [ G 00 )

14
9 107 0w (. )72 U .07 V232 i)
pO (2 All(as, ") Al (2!, ") L (2!, v, 0)* ’

(2.50)
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where we have left the phase directions in the argument of the in-plane amplitudes to
distinguish them. The Jacobian inside the integral can be found in (Burridge et al., 1998).
The integral over migration dip makes this an inverse by generalized Radon transform
(GRT).

2.4 Transformation into angle gathers

When constructing angle gathers we fix the scattering angle, 6, and integrate over the
migration dip, ¥™. The restriction can introduce artifacts in the angle gathers when the
medium is inhomogeneous (i.e. in the presence of caustics) due to multipathing in the
recorded wave-field. These artifacts are different from the artifacts due to the failure of
assumption 3. These artifacts are not present in the inversion by equation (2.50) since
they stack destructively (Stolk & de Hoop, 2002).

Since the restriction to a fixed scattering angle means that we no longer stack over all
the data, but rather over subsets of the data that change with image point and scattering
angle, we reintroduce x* and x" as the variables of integration. This requires the notion of
branches of the two-way travel time (see equation (2.10)). We define 8% as f(a’, z', a*)
(cf. (2.34)-(2.35)) composed with the inverse of map (2.27), associating the scattering angle
with the acquisition coordinates x*®, z". We define the ‘angle’ transform K (the GRT) via
a restriction of the imaging operator L* in equation (2.22) to fixed angle §%) = ¢, where
1 € I indexes the travel time branch. We reintroduce the sum over the different travel time
branches suppressed since equation (2.9). Thus we multiply the kernel of L* in equation
(2.22) by a delta function, 6(#®) — ). The kernel of K, denoted by K., can be written
as an oscillatory integral (after a change of &' to x)

Kon (2,0, 2°, 2", t) = Z(Qw\/i)lfw'if/?p(o)(w)
el
|| ° H "))* 1 7 7 s YA
. (A (w 7w)A (waw )) W(mr’m’ms)hm(mr;w)hn(ws;m)e—@()(m LT 50w ’E)dw'ds.
»CL(ZDT,CB,J:S)*
(2.51)

Here ¢ is the Fourier dual of the scattering angle 6 (Stolk & de Hoop, 2002) and
OO (z, " x*, 1,0, W) = [T (2", z, ) — t] + [0 — 09D (z", z, z*)]. (2.52)

The artifacts of the restriction can be evaluated by considering the composition KL, a
¢'-family of operators each member of which resembles the normal operator. The artifacts
in the angle gathers can be recognized by their ‘move-out’ in angle. A multi-dimensional
filter in the Fourier domain (see equation (2.51)) can be applied to remove the artifacts
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associated with |¢| > ¢q > 0. Brandsberg-Dahl et al. (2003a) suppressed the artifacts by
so-called focusing in dip.

By proceeding as suggested above using the appropriate changes of variables leading up
to equation (2.50), the angle dependent parameter estimates (used to construct common-
image point gathers) are given by

. 1 mo(a’, a” dw’ m iy
eW(a';0) ~ WRG{/E dv W/ﬂbo W,MLS(CC';V L)', v™) ™!
v m ’ 2

Vg T(z',v™, 0 2w (z', ™, 0" h (75 ") U (2%, 7, ') i (2% ) o T(@ ' ™ 01
p(O) (wl)AH(as’ ZD’)AH((B’, a'r)EL(wI’ v 0!)* :

(2.53)

Note that we again have suppressed the summation of the travel time branches. The
factor I'(z’, ™) is an average in 6 of the radiation patterns. (I'(z’,»™))~! then acts as a
least-squares (LS) removal of the radiation patterns. This is hence a LS-AVA-compensated
parameter estimate. Since, upon filtering, ¢ (z'; ') should only depend smoothly on '
if the correct background medium is used, the detection of smoothness can be used as
a criterion for velocity analysis. Brandsberg-Dahl et al. (2003b) followed such an angle
tomographic approach to determine the background medium.

2.5 Example

Here we give an example using real data from the North Sea. The data set is acquired
using ocean bottom cable (OBC) acquisition. We use data from a single ocean bottom
cable making the intersection of a presumed symmetry plane and the ocean bottom.

Using equation (2.50) we perform an isotropic inversion considering PP-scattering events
and an isotropic background medium. This yields information on the three independent
parameter perturbations p(*), cgll)ll and 0511)33 in equation (2.15). An image is created as a
linear combination of these parameters given in Figure 2.6. The geology varies mostly in
the imaging plane making this an accurate 2.5-D problem under our assumptions 1 and
2. However, at depths greater than 3000 meters, the 2.5-D framework deteriorates. By
this we mean that the geology also varies significantly in the out-of-plane direction sending
energy out of the computational plane. Hence, sufficient information on the reflectors here
is simply not contained in our data (the single acquisition cable data set). Top part of
Figure 2.7 is a high resolution detail from Figure 2.6, with surface position from 3000 to
4000 m and depth from 1850 to 2150 m. The V-shape in lower part of the image is a

distinct geological feature believed to be either a slump fault or an erosive channel deposit.

44



surface position [m]
0 2000 4000 6000

2000

4000
depth [m]

Figure 2.6: Image created as a linear combination of inverted parameters from equation

(2.50) using PP-scattering event of the North Sea (OBC) data set.
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Figure 2.7: Top figure is a high resolution image of detail from Figure 2.6. The image shows
a possible slump fault or erosive channel deposit. Their dominant features are captured in
this 2-D slice. The bottom figure is a schematic drawing of the image as an erosive channel

deposit.

As a slump fault the left part of the V-shape has dropped and new layers have deposited
on the slope created. Lower part of the figure is a schematic drawing of the feature as
an erosive channel, where water has dug into the horizontal layer and new material has
deposited later leaving a slight curve in the layer, the V-shape. Both of these geological
features have a slowly varying behavior in one direction. Given that our computational
plane is intersecting at the right angle, the main features are described by this slice and the
smoothly varying behavior are in the out-of-plane direction. Hence the 2.5-D framework
applies with decent accuracy.

Figure 2.8 shows LS-AVA-compensated common-image point gathers for PP- and PS-
scattering events, respectively, created as a combination of the parameters from equation
(2.53) at surface position x; = 1500 m. The combinations are chosen as the appropriate
acoustic impedances; i.e. P-wave impedance for the PP-gather and S-wave impedance for
the PS-gather. The vertical scale is from 800 m to 3200 m in depth. Following convention,
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Figure 2.8:

scattering, respectively at surface position 1500 m in Figure 2.6 created using equation

(2.53).

The depth range is from 800 to 3200 m. Both common-image point gathers are

plotted as functions of incoming P-wave angle, from 0 to 35 degrees.
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both common-image point gathers are plotted as functions of incoming P-wave angle,
ranging from 0 to 35 degrees. Note that the zero angle contribution of the PS-gather is set to
zero as this is not defined. Only a subset of the reflectors are comparable in depth between
PP and PS gathers, yet with very different strength in amplitudes. As mentioned, the
imaging is done in an isotropic smooth background medium, yet the medium is anisotropic.
The anisotropy has a strong effect on the travel times and thus the depths. This can
explain why certain reflectors, when comparing the two common-image point gathers,
seem to be at different depths. Note that the amplitude behavior is close to constant with
angle. Hence, for this range of scattering angles, the LS-AVA-compensation in equation
(2.53) suppresses the amplitude behavior. This is important in angle tomography through
the use of ‘differential semblance’ (Brandsberg-Dahl et al., 2003b). It is clear from this
example, that a joint treatment of (q)P and (q)S velocities becomes necessary in reflection
tomography.

2.6 Discussion

This paper presents the general form of 2.5-D modeling, imaging-inversion and AVA-
compensated angle transform formulas in anisotropic elastic media under necessary and
sufficient assumptions. The results extend those of Bleistein (1986) to the cases of mul-
tipathing and anisotropic elasticity. Assumption 1 restricts us to a monoclinic medium
as the lowest possible symmetry. However, under the addition of assumption 2, the wave
propagation is restricted to the plane. Any symmetries lower than a transversely isotropic
medium with the symmetry axis contained in the plane of consideration have to be ex-
cluded for the purpose of inversion and reflection tomography.

In the presence of caustics, artifacts may be generated by the imaging-inversion procedures.
Subject to the Bolker condition such artifacts are avoided. We have made the observation
that the 2-D Bolker condition in the symmetry plane implies the Bolker condition in three
dimensions in the framework of the common azimuth acquisition geometry. Artifacts in
the common image-point gathers are also controlled by the ray geometry in the symmetry
plane only and can thus be filtered out by 2-D considerations. An interesting aspect of
our results is the appearance of out-of-plane contributions, by the geometrical spreading,
contained naturally in the least-squares removal of the radiation patterns. Intuitively this
can be understood as the removal of the stationary contribution to the radiation patterns
from the out-of-plane geometrical spreading.

The primary applications of our 2.5-D formulation are a slicewise approach to (i) time-
lapse seismics, and (ii) reflection tomography. We elaborate on the second application. The
new least-squares AVA-compensated transform of seismic data into common-image point
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gathers in anisotropic media enables a slicewise approach to migration velocity analysis.
This is a better compensation of the AVA-effects than by a pointwise removal as found in
(Brandsberg-Dahl et al., 2003b). Given a medium that has its dominant change in two
directions we may invoke the 2.5-D assumptions approximatively to slices in the smoothly
varying direction as done in the example, section 2.5. We parametrize the medium in
a finite dimensional subspace of possible smooth background models by a collection of
slices m = {m(z,)}, for all values of 2, under consideration, where each m(zs) is the 2-D
parametrization of a slice at z5. Angle tomography (Brandsberg-Dahl et al., 2003b) can be
done per slice by differential semblance (Symes & Carazzone, 1991) on AVA-compensated
common-image point gathers generated by equation (2.53). We extend this by applying
the appropriate out-of-plane ‘annihilator’ as a Tikhonov regularizer to the misfit functional

J[m] = %/{ // |[0s — (0sZ(, 0, 22))E(x, 0, 72) ] ¢W[m](x; 0, xg)‘Qd:cdH
+)\/| O(m](e, zo ‘ dx }dfvg, (2.54)

where (cf. equation (2.38))

prs(z,v™ 0) 0(a®, a”)
|LE(z, 0™, 6)12 O(v™, 6)

E(x,0,19) = (D(x,v™)) 'w(x,v™ O)w’ (z,v™,0). (2.55)
All relevant parameters of equation (2.55) are calculated for v™ in the wavefront set of c(!).
cO[m](x, zy) is a vector of the parameters of the background medium given the current
parametrization m. A in equation (2.54) is a statistical quantity controlling the trade-off
between in-plane and out-of-plane fit (Tenorio, 2001) and & = (x1,23). 0p and 0,, are
the partial derivatives with respect to the scattering angle and out-of-plane coordinate,
respectively. The LS-AVA-compensated inversion result from equation (2.53) is denoted
¢W[m](x; 6, 25) to emphasize that it is generated using the current parametrization of the
smooth background model, m, for the slice at out-of-plane coordinate x5. The minimum
of this function indicates a smooth background model such that the data are in the range
of the 2.5-D modelling operator. In this way the 2.5-D framework provides a fast compu-
tational tool for 3-D tomography and an increased ability to monitor the regularization of
the search for a fitting model.
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Appendix 2.A. The 2.5-D Born modelling formula

The 3-D Born formula is a high frequency approximation to the field scattered off the
medium perturbation at & € IR?, collected at the receiver position " generated by a source
at . This field is calculated by substituting the appropriate GRA Green’s functions (2.2)
in the Born approximation. It gives that, under assumption 1 on the medium, the m-
direction of the scattered field at the receiver position " due to a n-component source at
x® written as a Fourier integral operator is

Unn (2", 2°,w) =

/{/ thm(m’")p(O)(w)A(ws,cc)A(m,m’")wT(cc’",:13,ms)ei“’T(wr’w’ws)hn(ws)dxg}
x Ur
-c(l)(xl,xg)dxldxg. (2.A-1)

The medium perturbation ¢(!) and the radiation patterns w are, for the lowest possible
symmetry (triclinic), 22 x 1-matrices of the form as in equations (2.15) and (2.16), respec-
tively. The domain of integration of the (z1,z3)-coordinates, X, is defined in subsection
2.2.2

Upon scaling, 5 = Z9/|w|, we recognize the phase variables (Z,,w). We proceed as in
Bleistein (1986) and use the method of stationary phase to integrate out the out-of-plane
variable zo in (2.A-1). The one-dimensional stationary phase formula approximates inte-
grals of the type

2w 3 3 2
f le(a ~ f o ele(ao)+1(7r/4)sgn(w)sgn(80T(ao))’ 2. A-2
f 1o PEAACAAR A2
for sufficiently large |w| and 02T (0p) # 0, where op is the stationary point, such that
05T (0)|s=0, = 0. In the mentioned integral, the stationary point is given by

O, T(x", 2, 2°) = p5 + py, = 0. (2.A-3)

Due to assumptions 1 and 2, the only solution to (2.A-3) is p§ = p§, = 0 which implies that
the stationary point is zo = 0. A discussion on this is given in the main text. Observe that
the sum of the slownesses in equation (2.A-3) also occurs in the common azimuth case,
equation (2.18). The second derivative of the phase function at the stationary point is

1 1
+ 5
Qz (z,@%) @y (w,z)
where Q5 (x, °) and Q5 (x,x") are the out-of-plane geometrical spreading factors defined
in equation (2.5) for the rays connecting the imaging point x with the source x* and

(2.A-4)

0, 1@ @, @), 0,0 = (OnaPh + OeaP5) o000 =

receiver ', respectively.
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Remark 4

In points, in phase space, where either Qy (x, ) or Qy (x, x") tends to zero the travel time
function is not smooth. We observe this in equation (2.A-4) where the Hessian of the travel
time function will tend towards infinity and will not be defined. This essentially means
that the stationary phase argument does not hold. The integral over x4 in equation (2.A-1)
remains. Qut-of-plane caustics are thus not allowed for the stationary phase formula to be

applicable. We restrict the analysis in the following to rays with no out-of-plane caustics.

From this it follows that sgn(92 T(z", ¢, €*)|s,—0) = 1 since the out-of-plane geometrical
spreading is positive. The stationary phase formula (2.A-2) then yields for the x, integral
(in view of Remark 4)

/ [wQ/ B (27) pO () A2, ) A, " )W (2", &, 2°) D ()T @ &) (2°)day | dzydas
X R

Lx. 290+ (2. 27 1/2
VI [ o) O (A 2

cwl(z", @, 2°) D ()T @ BT (29 dzidzs. (2.A-5)
z2=0,p2=0

Using equation (2.6) this equation reduces to the 2.5-D modelling formula (2.9) in the main
text (here in the frequency domain),

Ui (2°, 2", W)

All(z® z)All(z, ") (a3
— /271 3/2/ (") O ) 1 T s\ (1) W@, 2,2°) (29 dg,
V2w Xh (") p"™ () N~ w (z", x, 2°)c" (x)e hn(x®)dx

(2.A-6)
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Chapter 3

2.5-D modeling, inversion and angle

migration in anisotropic elastic media

S.-K. Foss and B. Ursin
Accepted for publication in Geophysical Prospecting 2004

Summary

2.5-D modeling approximates 3-D wave propagation in the dip-direction of a 2-D geological
model. Attention is restricted to ray paths for waves propagating in a plane. In this way
fast inversion or migration can be performed. For velocity analysis this reduction of the
problem is particularly useful.

We review 2.5-D modeling for Born volume scattering and Born-Helmholtz surface scat-
tering. The amplitudes are corrected for 3-D wave propagation, taking into account both
in-plane and out-of-plane geometrical spreading. We also derive some new inversion /
migration results. An AVA-compensated migration routine is presented that is simplified
compared to earlier results. This formula can be used to create common-image gathers
for use in velocity analysis by studying the residual moveout. We also give a migration
formula for the energy-flux-normalized plane-wave reflection coefficient that models large
contrast in the medium parameters not treated by the Born and the Born-Helmholtz equa-
tion results. All results are derived using the generalized Radon transform (GRT) directly
in the natural coordinate system characterized by scattering angle and migration dip. Con-
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sequently, no Jacobians are needed in their calculation.

Inversion and migration in an orthorhombic medium or a transversely isotropic (TI) medium
with tilted symmetry axis are the lowest symmetries for practical purposes (symmetry axis
is in the plane). We give an analysis by the derived methods of the parameters for these
two types of media used in velocity analysis, inversion and migration. The kinematics of
the two media involve the same parameters, hence there is no distinction when doing veloc-
ity analysis. The in-plane scattering coefficient, used in the inversion and migration, also
depends on the same parameters for both media. The out-of-plane geometrical spreading,
necessary for amplitude-preserving computations, for the TI medium is dependent on the
same parameters that govern in-plane kinematics. For orthorhombic media information
on additional parameters is required that is not needed for in-plane kinematics and the
scattering coefficients.

Resolution analysis of the scattering coefficient suggests that direct inversion by GRT

yields unreliable parameter estimates. A more practical approach to inversion is amplitude-
preserving migration followed by AVA-analysis.
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Symbols and notation

Symbols

t

w

x = (21,2, %3)
Y = (Y1, Y2, Y3)
Gin (X", w, x*)

S T

x%,x

v(x)

V(%)

det Qa(x,x*)
T(x,x*)

(g1, 92)

P = (p1, P2, P3)
p’,p"

h = (h’la h’?a h3)
A(x,x%)

K(x,x%)
Q5 (x,x°)
Qz (x,x°)

0 1
Cijki(X) = Cz('jl)cl(x) + Cz(jl)cl(x)

p(x) = p (x) + oV (x)

Description

time

frequency

position vector

image point

Green’s function in the
frequency domain

source and receiver positions
phase velocity

group velocity

relative geometrical spreading
in local surface coordinates
on the wavefront

traveltime for a ray
between x and x°*

local wavefront coordinates
slowness vector

slowness vector at

at scattering point of

the ray from the source and
the receiver, respectively
polarization vector
amplitude for a ray at x°
from x

KMAH index for a ray
between x and x°*

in-plane relative
geometrical spreading
out-of-plane relative
geometrical spreading
elastic stiffness tensor as

a sum of smooth
background parameters and
a perturbation

density as a sum of a
smoothly varying term and
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U,g)l(xr, w,x%)
T(x",x,x°)
S(x)

All(x, x?%)

L7 (x",x,x%)
r(x", x,x°%)

cM(x)
o = (01,09)

3

AN

m pm/|pm|

<

V¢

0
A(v™y)
Eu; EB

Ch

(x", w,x%y),

( ( r’y’xs)ﬂxs;y.)
ﬁgn%( ,T(x",y, x),x°%)
p"

o, o

:1

8

R(p"v"(y))
h = ph/ph

p" = |p"|

w(t)

p?|

a perturbation

scattered field

two-way traveltime

scattering coefficient

GRA amplitude with only
in-plane geometrical spreading
total out-of-plane

geometrical spreading

M x 1 radiation patterns vector

M % 1 medium parameter perturbation vector

surface coordinates

migration slowness

migration dip vector

migration dip angle

geological dip vector

scattering angle

M x M matrix used in inversion
domain of migration dip and
scattering angle, respectively
preconditioned data in frequency and
time domain

phase-corrected data

horizontal slowness vector

angles of group velocities

from the surface normal
reflection coefficient

horizontal unit slowness
magnitude of horizontal slowness
wavelet

stretch factor

Superscripts s and r indicate source and receiver respectively.
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3.1 Introduction

2.5-D modeling and inversion/migration considers 3-D wave propagation with source and
receivers in a vertical plane or along a single line and a subsurface that is constant in
the horizontal direction perpendicular to that plane. This allows one to work with data
from a reduced data set in a computationally efficient way. This is especially important in
velocity analysis, which gives initial estimates of the subsurface medium. As the problems
often become too large to handle effectively in the full 3-D case, one often considers slices
in the Earth using the 2.5-D framework. Velocity analysis and amplitude-versus-angle
analysis can be done by studying common-image gathers created with formulas derived by
Brandsberg-Dahl, De Hoop and Ursin (1999; 2003a) and Brandsberg-Dahl, Ursin and De
Hoop (2003b).

The notion of 2.5-D modeling was introduced in seismic applications by Bleistein (1986)
who considered modeling and Kirchhoff migration for the scalar wave equation. Several
authors had earlier addressed the problem as 3-D wave propagation in a 2-D medium
(Cerveny, 1981; Goldin, 1986). The technique considers 3-D data generated and collected
for source and receivers in a vertical plane or along a line that is the intersection with
the plane in a seismic experiment. It is assumed that the parameters of the subsurface
medium vary only in this plane, and for anisotropic medium this is additionally a symmetry
plane. For example it can be chosen to be one of the symmetry planes of an orthorhombic
medium (Schoenberg & Helbig, 1997). The medium is assumed unchanging in the orthog-
onal out-of-plane direction. We therefore confine our attention to wave propagation for
which slowness and hence group velocity (due to the symmetry) are considered to be zero
in this direction. This restricts the rays to remain in this plane. The kinematics of the
wave propagation is therefore 2-D (Ettrich et al., 2002). The waves still travel in a 3-D
medium and exhibit in-plane and out-of-plane geometrical spreading (Wang & Houseman,
1994; Wang, 2003).

We review 2.5-D modeling in a compact way and derive some new linearized 2.5-D inver-
sion/migration formulas in elastic anisotropic media. The subsurface medium parameters
are divided into known background parameters, such as density and stiffness parameters
(from velocity analysis) and the unknown medium perturbations. Linearized inversion in-
verts for the most singular part of the unknown medium perturbations. This was done by
Beylkin and Burridge (1990) for isotropic media using the generalized Radon transform
(GRT). De Hoop et al. (1994) expanded this to the anisotropic case. De Hoop and Bleis-
tein (1997) considered the inversion of surface reflection data. A review of 3-D parameter
inversion and angle migration is given by Ursin (2003). Most 2.5-D formulas published
are valid for fluids and isotropic solids; see Stockwell (1995) for references and Dellinger
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et al. (2000) and Tygel et al. (1998). Geoltrain (1989) did 2.5-D Kirchhoff migration
in transversely isotropic media (TI) with a vertical symmetry axis, and Sollid (2000) did
2.5-D angle migration for TI media. We use inverse GRT here to derive all results in gen-
eral anisotropic media under the restrictions mentioned above. Introducing a 2-D inverse
GRT, we derive inversion formulas for the medium perturbations and migration formulas
for both 2.5-D Born and Born-Helmholtz scattering, i.e., line scattering and cylindrical
surface reflection, respectively. These are valid for only small contrasts in the medium
perturbations. We give equivalent results for 2-D problems, found in Appendix 3.C, for
comparison with the 2.5-D results. 2-D versions of formulas are also needed when testing
the formulas on synthetic data generated with a finite-difference modeling code, which is
usually 2-D. We also introduce an inversion formula for the reflection coefficient, where
parameter contrasts are large (Ursin, 2003).

The first section of the paper starts by introducing the notation used in the rest of the
paper. There, we also show that, for 2.5-D, the geometrical spreading of the wave propa-
gation factors into an in-plane and an out-of-plane part, as shown by Ettrich et al. (2002).
Starting with the single-scattering 3-D Born modeling formula (Ursin & Tygel, 1997), we
proceed as in Bleistein (1986) to approximate the integral in the out-of-plane direction by
the method of stationary phase. This reduces to the 2.5-D Born modeling equation, which
models field data collected by receivers in a vertical plane. The wavefield is generated by
a point source; and receivers in the same plane observe the back-scattered waves gener-
ated by perturbations in the subsurface. The derived inversion and migration formulas
benefit from a preconditioning of the data and the use of the 2-D inverse GRT (Appendix
3.A). The entire inversion procedure is done in detail in Appendix 3.B for this case. In
the text, we also present a migration procedure (Sollid & Ursin, 2003) that can be used
for amplitude-versus-angle (AVA) analysis and an AVA-compensated migration formula
(the so-called restricted GRT result) for the purpose of velocity analysis (Brandsberg-Dahl
et al., 1999; Brandsberg-Dahl et al., 2003a).

We proceed by considering Born-Helmholtz modeling and inversion formulas. The Born-
Helmholtz modeling equation is a surface-scattering equation that models the reflected
wavefield from a surface reflection (de Hoop & Bleistein, 1997; Ursin & Tygel, 1997). A
geological interface can be seen as a localized unknown medium perturbation along that
interface superimposed on the smooth background. By applying this in the 2.5-D Born
modeling formula, we get the 2.5-D Born-Helmholtz modeling equation. The inversion
result is the medium perturbation restricted to the geological interface (Stolk & de Hoop,
2002). All inversion results are done assuming a delta-function-like source wavelet. Seismic
field data are generated by a band-limited wavelet. When using such data in our formulas
the inversion /migration results become blurred (de Hoop et al., 1999) resulting in erroneous
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amplitude behavior. For surface-reflected data with a band-limited wavelet the inversion
result is scaled and convolved with a stretched version of the wavelet (Tygel et al., 1994).
We correct for the scaling factor (Jaramillo & Bleistein, 1999; Sollid & Ursin, 2003; Ursin,
2003) to derive inversion, migration and AVA-compensated migration formulas where this
has been taken into account. Additionally, we introduce a new reciprocal surface scatter-
ing modeling equation and migration formula, which yields the reflection result for large
contrast of the medium at the interface (Ursin, 2003).

The final section discusses the estimation of the stiffness and density parameters in 2.5-D
for velocity analysis and inversion/migration. The discussion is limited to orthorhombic
media and TT media with vertical symmetry axis because these are the lowest symmetries
for practical purposes. The analysis extends to TT and orthorhombic media with a known
dipping symmetry axis within the plane of consideration, which is equivalent through the
Bond transformation (Carcione, 2001). Under the assumptions of 2.5-D, all kinematic as-
pects of wave propagation and the inversion of parameters will be the same for both media.
For amplitude computations, however, while the parameters that govern the out-of-plane
geometrical spreading are the same as those that govern the in-plane kinematics for trans-
versely isotropic media, for orthorhombic media all independent stiffness parameters are
required some of which cannot be obtained from 2.5-D inversion. We show by resolution
analysis (de Hoop et al., 1999) the inability for direct inversion of all parameters in an
orthorombic medium.

3.2 2.5-D geometrical ray approximation

In the frequency domain, the Green’s function G, for 3-D wave propagation in an anisotropic
elastic inhomogenous medium satisfies

/J(X)WQGm + aj(cijkl(x)alen) = —5m5(x - Xs)a i, 5,k l,n=1,2,3, (3-1)

where p is density and c;ji; is the stiffness tensor. The function d;, is the Kronecker delta,
which gives the source term in the canonical directions, w is frequency, x = (z1, 9, z3) is
the position vector, and x° is the position of the source. We use J; to indicate the derivative
0/0z;, and the summation convention is assumed if not otherwise is stated. The Green’s
function is defined in some domain D with homogeneous boundary conditions and thus
satisfies the reciprocity relation (Aki & Richards, 1980)

Gin(x,w,x%) = Gpi(x°, w, x). (3.2)

In anisotropic elastic media there can exist three wave modes qP, qS1 and qS2. The
geometrical ray approximation (GRA) is a high-frequency, leading-order approximation of
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the Green’s function in equation (3.1). Higher-order terms are smoother. The GRA gives
a sum over these wave modes for rays between x° and x, where each term is of the form
(Cerveny, 2001)

Gip(x,w,x°) = hi(x)A(x, xs)ei“T(x’xs)hp(xs), (3.3)

where T'(x,x®) is the traveltime along the ray between x® and x. hj(x) and h,(x®) are
components of the unit polarization vectors at each end of the ray connecting x and x°.
The superscript s is to associate the polarization vector with this ray. A(x,x?) is a complex
amplitude function for the different wave modes at x after having traveled from x®. The
amplitude, which becomes complex in the presence of caustics, is given by

e—i(ﬂ'/Z)n(x,x““)sgn w
~ An[p(x)ve (x) p(x* v (x2)]/2|det Qa (3, x5)[1/?

A(x, x%) (3.4)
where v® and v are the phase velocities at x and x°, respectively. The KMAH-index,
k(x,x?%), takes into account the phase shifts due to caustics the ray passes through from x*
to x (Cerveny, 2001; Klimes, 1997). |det Qa(x, x°)|*/? is the relative geometrical spreading
factor determined from

_ 0T (x,x°)

Q235 (x,%%) = , 14,j=1,2, (3.5)
Y 9¢; 9q;
where ¢; and ¢ are local surface coordinates on the wavefront at the points x and x°

respectively.

All factors of the GRA Green’s function are calculated by ray tracing. The kinematic
ray tracing system can be written (Cerveny, 1972)

dﬂ?i
Vi= ar = agjkiprhghy, (3.6)
d_T = _§awi(a'mjkl)pmplhjhka Za]akalam = 1a273: (37)

where V = (11, V5,V5) is the group velocity, p = (p1, p2,ps) is the slowness and a;j1; =
Cijki/ p are the density normalized stiffnesses. The polarization vectors are associated with
the wave mode considered. In 2.5-D (Ettrich et al., 2002), we wish to restrict the wave
propagation to a plane, here the (1, z3)-plane. Under the assumption of no change in the
medium in the zo-direction, i.e. out-of-plane, dps/0T = 0, which yields py = constant.
The rays in the plane will stay in the (x1,z3)-plane, which happens for rays that have
slowness constant equal to zero in the out-of-plane direction; po = 0. The group velocity
then is also zero in the out-of-plane direction as long as the (1, z3)-plane is an anisotropic
symmetry plane. This yields the solution zo = constant in equation (3.6). We shall con-
sider the plane with x5 = 0 in particular.
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Considering equation (3.5) for 2.5-D modeling, we choose ¢; to be in the (z1,z3)-plane
and ¢o to be in the ws-direction, normal to the plane. From the discussion above, py =
0T (x,x°)/0xs is constant along a given ray, since the medium parameters do not depend
on xo. In particular, p, = 0 in the (x1, z3)-plane. From this it follows that

0T (x,x°%) _ ops(x)
943 0g; 9qi

=0, (3.8)
and
T (x,x°)  Opa(x®)
945001 Oq
p® = (p,p5,p5) and p” = (p},ph, p}) denote the slowness vectors at the point x for the

= 0. (3.9)

rays from the source x° and receiver x”, respectively. The matrix in equation (3.5) thus
becomes diagonal. The resulting relative geometrical spreading is

1
0T (x,x°) 0 H
EA 8qf8q1 — QZ(X,XS) 0 3.10
x,x%) = = o | .
Qo) o L 0 Qixx) (310
op
| 8.732 |

where QQ (x,x°) and Q5 (x,x*) are defined as the in-plane and out-of-plane relative geomet-
rical spreading factors, respectively. This means that the relative geometrical spreading
factor of the GRA amplitudes (3.4) splits into an out-of-plane and an in-plane factor

[det Qa(x, x%)| /2 = Q) (x, x*)Qz (x, x°)| /2. (3.11)

The inverse of the out-of-plane factor is
Opa(x®) _ Op3(x)

81'2 61'2 ’

since py is constant for a given ray. Note that derivatives of the slowness, polarization

(3.12)

vector, or amplitude give higher-order, thus smoother, terms (de Hoop & Brandsberg-
Dahl, 2000). This will become important in the derivations of high-frequency formulas in
the following.

3.3 2.5-D Born modeling integral

The medium parameters can be described as a sum of a smooth part, p(©0 and cgj?;l, and a

perturbation, p) and cgjl-,)cl:
p(x) = pPOx) + pV(x),  cijr(x) = ciop(x) + iy (x). (3.13)
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Source surface

Receiver surface

.. Interface

S o(x) =0

Figure 3.1: Single scattering with Green’s functions connecting the scattering point x with

the source and the receiver, x* and x", respectively. Scattering point on the interface

#(x) = 0.

The 3-D Born modeling formula is a single-scattering approximation to a seismic experi-
ment wherein a source at x° generates a wavefield that travels through the smooth part
of the medium until it is scattered off a contrast in the medium (the perturbation) and
again travels in the smooth medium to the receiver at x". The wavefield is assumed not to
scatter at any part of the medium apart from the scattering point. We let the GRA Green’s
functions in equation (3.3) describe the wave propagation in the smoothly varying part of
the medium in equation (3.13) (see Figure 3.1). The 3-D Born formula gives the scattered
field u,,, observed at x". This would be the equivalent to data collected in a seismic field
experiment. We assume that we know the smoothly varying part of the medium and wish
to find the medium perturbations. In the frequency domain this becomes the m-direction
of the scattered field at receiver position x” due to a n-directional source at x* is (see Ursin
& Tygel (1997) for a detailed derivation)

U (X7, w0, X°) = w2/hm(xT)p(O)(x)A(xs,x)A(x,x’)S(x)eiWT(xT’x’xs)hn(xs)dx, (3.14)
D

where the two-way traveltime is
T(x",x,x°) =T(x*,x) + T(x,x"), (3.15)
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and the scattering coefficient is
S(x) = r'(x", x,x*)cM (x). (3.16)

We define the medium perturbations by the M-component column vector (Burridge et al.,

1998)
D (x) = P (x) z(jll?cl(x)
> {p<°>(x)’,o<°><>o<x)vg(x> | (317)

where v and v] are local phase velocities averaged over all phase angles (Burridge et al.,

1998). These are introduced for numerical purposes so that the matrix has components of
similar size (see discussion around equation (3.51) in a later section). The indices of cz(-Jl.,)cl
cover all the 21 independent indices of the stiffness tensor in general anisotropic media
(Tsvankin, 2001), i.e. M = 22. With higher symmetry, such as isotropy, the size of the
matrix reduces accordingly. For example for isotropy M = 3 for PP scattering events, and
M = 2 for PS scattering events (Beylkin & Burridge, 1990). The radiation patterns are

defined similarly as a M-component column vector by

r(x",%,x°) = {hy, (x)hp, (x), [h7 ()05 (%) B, (x)p] () oz (x) v (x) } (3.18)
The indices correspond to those of the stiffness tensor in the medium perturbation ¢(). All
parts of the Born integral except the unknown medium perturbations are obtained from
the respective GRA Green’s functions and are thus calculated in the background medium.
The angle between the rays from the source and the receiver (given by the slowness vectors)
is called the scattering angle, 6 € [0, 7), defined by
p’-p’
pellpr|
The domain of the scattering angle is denoted Ey. We also define the migration slowness

cosf = (3.19)

as the sum of the two slowness vectors at the scattering point; p™ = p® 4+ p”. The unit
vector v™ = p™/|p™| is called the migration dip. We can parametrize this unit vector by
the migration dip angle, v, since ¥™ = (cosv,sinv), where v € E, (see Figure 3.1), the
domain of the migration dip angle.

We reduce the 3-D Born modeling formula to 2.5-D by restricting the rays to the vertical
(x1,z3)-plane, with o = 0 and ps = 0, as explained in the previous section. The waves
still travel in a 3-D medium so the ray amplitudes exhibit 3-D geometrical spreading. We
proceed as in Bleistein (1986) to use the method of stationary phase to approximate the
integral in the out-of-plane variable z5. The 1-D stationary phase formula approximates,
for some function f(o), the integral

. 2 . ) 2
sz(a)d ~ twT (o0)~+i(m/4)sgn(w)sgn(d2 T(oo)) 3.20
[ r@ o | e EENCEY
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for sufficiently large |w| and 02T (o) # 0, where oy is the stationary point, such that
05T (0)|g=0, = 0 (Bleistein, 1984).

We apply the stationary phase formula to the Born integral in equation (3.14) and in-
tegrate with respect to xo. The stationary point is at
O0p, T(X",x,x°) = p5(x) + ph(x) =0, (3.21)

which gives p§ = p§ = 0 for zo = 0. From equation (3.10) and (3.12) it follows that

1 1
Q) | Qrox)

where Q5 (x,x°) and Q41 (x,x") are the out-of-plane relative geometrical spreading fac-

2T (x",x, Xs)‘x2:0,p2:0 = (Oz,P5 + 02305) | 5p—0.pp=0 = (3.22)

tors for the rays from the source x* and receiver x", respectively, to the scattering point
x. Furthermore, sgn(9Z T(x",x, xs)|x2:0) = 1, since the out-of-plane relative geometrical
spreading is positive from (3.22). Inside the Born integral will be a division by

Qe (%", %)Qz (x,x" )2, T(x",x,x*)] "/ = [QF(x", %) + Qs (x,x°)] "/ = Lix(x",x,%°),
(3.23)

which is the total out-of-plane relative geometrical spreading factor given by the integral
along the ray (Ettrich et al., 2002),

Lrr s\ __ E 1/2
Lz(x",x,x°) = ar| (3.24)

ay D2

where V5 is the zo-component of the group velocity and 7 denotes traveltime.

Defining an in-plane amplitude factor

e—i(ﬂ/Z)n(x,xs )sgn w

Am[p(x)vs () p(x* o (x*)]1/2| Qb (x, %) /2

we obtain the 2.5-D Born integral for line scattering

All(x,x*) = (3.25)

umn(xr’ w, Xs) — \/%|w|3/26i(7r/4)sgnw

[ ey A 0 )
D(z2=0)

L5(x7,x,x5)

- S (x)e T XX b (x%)daydas.  (3.26)

The 2.5-D Born integral corresponds to the response of line scatterers a point source and
measured at a point receiver. The point source will induce a wavefield that has 3-D geomet-
rical spreading accounted for by out-of-plane and in-plane geometrical spreading computed
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along the rays from the source and the receivers to the scattering line. In addition, the
integral has been multiplied by a factor y/2mi/w (a half-integration in the time-domain),
attributable to scattering from the line. All kinematic aspects of the ray tracing are re-
stricted to the plane.

The 3-D wave propagation with a point source, line scatterer, and point receiver can
be reduced to the 2.5-D case, as we have seen, by approximating the out-of-plane integral
by the method of stationary phase, equation (3.26). Going from the 2.5-D formulas for
2-D propagation, however, is not possible in a similar manner (see Appendix 3.C). Ad hoc
methods have been suggested such as multiplying by the appropriate phase factor /27i/w
and setting the out-of-plane geometrical spreading, L3, to 1, see Stockwell (1995). Physi-
cally, the inability to deduce 2-D behavior from 2.5-D in any rigoreous mathematical way is
because the 2-D problem has a line source and line receivers, as opposed to a point source
and point receivers.

3.4 Line-scattering inversion/migration

Data collected in a seismic experiment with a point source, under the approximations
in the Born modeling integral (3.26), carry contributions from two-way travel (such as
amplitude change, traveltime and phase-shifts), the radiation patterns due to the scattering
and the medium perturbations. Intuitively, inversion would then remove all effects of the
wave propagation on the data apart from the change in the wavefield due to the medium
perturbation. The inversion formula is given in Appendix 3.A as an inverse GRT derived
from a Fourier transform identity. An estimate of the medium perturbation at the imaging
point, y, then becomes (a detailed derivation is given in Appendix 3.B)

eW(y) = / (A y))~" / r(x, y, )i, Ty, x°), x5 y) ™ (y) 2dfdv,  (3.27)
v E9
where the M x M-matrix A is given by
Aw™y) = / rw™, 6, y)" (™, 6 y)do, (3.28)
Eq

and (A(v™;y))~! indicates a pseudo-inverse. This factor removes the amplitude variations
attributable to the radiation patterns. A discussion on practical issues in an implemen-
tation, concerning the choice of the domains Fy and F,, can be found in De Hoop et al.
(1999). The data corrected, for amplitude, phase and traveltime, are (see Appendix 3.B)
a(x", T(x",y,x%),x%y) =
B (X" y) 4 (x7, T(x", 3, %%), X*) b (X°; y) 2V27 L5 (X7, y, X°)
Yo (1) ()0 (6o ()2 |QUK ) QY . ) 2. (3.29)
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The different terms in the correction of the data in equation (3.29) are found by the GRA
Green’s function of the source and receiver rays, equation (3.3). To account for possible
caustics in the wave field, the phase-corrected data @it (x7, T'(x", ¥, x*), x°) can have a sign
change, a Hilbert transform, or both depending on the KMAH-index x(x",y) + «(y, x*).
Additionally, a multiplication with (—iw)~'/2 is done when taking the inverse Fourier trans-
form. This works as a half integration and is a result of the stationary phase approximation
in the derivation of the 2.5-D modeling formula (3.26). ) is given explicitly in Appendix

3.B, equation (3.B-11).

2.5-D amplitude-preserving migration may be defined as a process that produces reflectiv-
ity as a function of scattering angle. These angle gathers may be analyzed directly, used
as input to angle stacks, or as input to an inversion algorithm, (amplitude-versus-angle
(AVA) analysis). Sollid and Ursin (2003) derived the following simple migration algorithm
which gives an estimate of the scattering coefficient

S@w:/aW¢Wmeﬁwwwww (3.30)

v

3.5 2.5-D Born-Helmholtz modeling integral

A geological interface defines a surface across which there exists a jump in the medium
parameters. The medium parameters vary smoothly above and beneath such an interface
defined by the function ¢(x) = 0. The medium perturbation can then be expressed by

ct (X) = ¢ (X) ‘qﬁ(x):o H((b(X)), (3'31)

where H(¢(x)) is a unit step function at the interface:

H(o0) = {

1 x is below the interface

0 x is above the interface, (3.32)

and ¢ (x) | o(x)=0 TIOW I the jump in the medium parameters across the interface. Applying
the divergence theorem to the 2.5-D Born line-scattering integral in equation (3.26) and
neglecting a smoothly varying part, gives (Ursin & Tygel, 1997; de Hoop & Bleistein, 1997)

Umn(xra w, Xs) — \/%|w|1/2ei(37r/4)sgnw
[ 008004 b
D(z2=0) L (Xr’ X, Xs)
Ve (x) - Vo T (x", x,x°)
|V T (x7,x,x5)|?
-ei‘”T(xr’x’xs)hn(xs)dX. (3.33)

-l (x", x, x%)
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The gradient of ¢ (x) is given by

Ve (x) = € ()] o 5(6()) Vb (), (3.34)

where §(p(x)) is a spatial delta function at the reflecting surface. The surface is cylindrical
under assumptions of 2.5-D, i.e., no variations in the out-of-plane direction. Equation
(3.34) can be written

VycW(x) = c(l)(x)|¢(x):0 y(x)v?, (3.35)

where (x) = §(¢(x))| V<o (x)| is the so-called singular function (Bleistein, 1984), and v? is
the unit normal to the interface pointing downwards, corresponding to the local geological
dip

v? = |Vid| Vi (3.36)
We insert equation (3.35) in equation (3.33) and get the 2.5-D Born-Helmholtz modeling
integral (see Figure 3.1)

umn(XT; w, Xs) — \/%|w|1/26i(37r/4)sgn w

y ) 2209416 x) 4 G, x)
D(z2=0)

L+(x7,x,x%)

: rT(XTa X, Xs) ¢t (X) ‘¢(x):0 'Y(X)

¢ .pm
- (|)1(>)m(l:<)|(X) eI by (). (3.37)
The delta function 6(¢(x)), in the singular function y(x), can be viewed as making this
integral over D(z, = 0) into an integral over the scattering surface. The factor |V4¢(x)| in
v(x) is a Jacobian between x and the line coordinate o along the scattering surface. Note
that we now have new factors of w in front of the integrals relative to those for the Born
modeling expression in equation (3.26). The Born-Helmholtz modeling integral then is

Umn(XT,w,Xs) — \/ﬁ|w|1/26i(37r/4)sgnw
./hm(xr)p(O)(X)AJ_'(XraX)AH(Xaxs)
5 L+(x7,x,x%)
v?(x) - V™ (x)
P (x)]

-S(x) T XX p (x%)do, (3.38)

which is a line integral in the (z1, x3)-plane along the reflecting cylindrical surface denoted

3. Note that ¢ (x)| is used in formula (3.16) for the scattering coefficient.

P(x)=0
3.6 Cylindrical surface-scattering inversion/migration
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For the Born-Helmholtz surface-scattering modeling formula (3.37), the medium pertur-
bation is restricted to that surface. We solve for the medium perturbation localized by
the delta function in the singular function making up the surface (Bleistein, 1984; Stolk,
2000). By comparing the Born-Helmholtz integral (3.38) with the Born integral (3.26) we
observe that in order to invert in the same way, the corrected data should be multiplied
by a factor |p™(y)|/v?(y) - v™(¥), and, in the Fourier domain, by —iw, which serves as
a differentiation in the time domain. Inversion at the imaging point for the perturbation
multiplied by the singular function, using the inversion formula in Appendix 3.A, then
yields

3)]12076) = [ (A3

m 3
/ r(xr’y’xs)at@(XT,T(XT,y,Xs),xs;y)w
Eg

3] oy O (3.39)

where A is defined in equation (3.28). The corrected data are the time derivative of that
used for the line-scattering inversion in equation (3.29). The time derivative makes the
half integration of the data in equation (3.29) (see Appendix 3.B) into a half derivative.
Note that we use equation (3.29), but the only time dependency is given by the data .
The derivative hence works on this function only given explicitly in Appendix 3.B, equation
(3.B-12). The dominant contributions to the integral above come from specular reflections.
For specular reflection, the migration dip and the surface normal coincide. One therefore
usually uses only the stationary value and sets v?(y) - v™(y) = 1 (de Hoop & Bleistein,

1997).

The results derived so far in this paper assume the source to be a delta function. In seismic
field data, the source is a band-limited wavelet w(t), which blurs the inversion/migration
(de Hoop et al., 1999). The smearing of the inversion/migration result in space can be
accounted for in the surface scattering results in this paper (Jaramillo & Bleistein, 1999;
Sollid & Ursin, 2003; Ursin, 2003). The singular function y(x) in equation (3.39) is replaced
by

p?(x?) [w(|p?(x*) v - (y — x?)), (3.40)

with x? defined from ¢(x?) = 0. Performing the suggested substitution of (3.40) in (3.39)
compensates for the blurring and yields the correct amplitude behavior. Using |p™(y)| ~

|p?| and v?(y) - v™(y) = 1 at a specular reflection, yields (see Ursin (2003) for a detailed
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derivation)

(3000 (D7) 0 (3 = x%) = [ (AG7i3)

v

/ r(x",y,x*)0a(x", T(x", y,x*), x% y)|p"(y) *dfdv. (3.41)
Eq

Note that the order of [p™(y)| has now changed in the integrand. Using phase velocities
normal to the surface, the so-called stretch factor (Tygel et al., 1994) is given by
1 1
Pl ==+ (3.42)
where v* and v" are the phase velocities of the rays from the source and receiver in the
direction of the interface normal, v®. We proceed similarily for migration and get

A

S5(6;y) Sy w(|p?(x?)[v? - (y —x?)) =/ da(x", T(x",y,x"),x"y)|[p" (y)[*dv. (3.43)

(y)=0 »

Here, the factor |p?| evaluated at the stationary point is

1 1 2cos 0 1/2
+ + :

¢ =
|p ‘ |:(/Us)2 (UT‘)Q vSyT (344)

where the phase velocities v* and v" are in the directions calculated from Snell’s law using
that v™ = v?.

For velocity estimation and estimation of the geological dip, a pointwise correction for the
radiation patterns (for each scattering angle) can be applied in this migration procedure.
This AVA-compensated migration was introduced by Brandberg-Dahl et al (1999; 2003b)
under the name restricted inverse GRT. The result is an estimate of the perturbations in
model parameters, which are functions of scattering angle (Ursin, 2003):

(0 y)] g0 w(IP? ()7 - (y = x?)) =

rxr’ 7XS ~ (T r s s m
/ TOLYX) g Ty, %), x5 y)[p™ () v, (3.45)
E

L r(x7,y, %) 2

assuming |r(x",y,x*)| # 0. The factor r(x",y,x*)/|r(x",y,x*)|? is a simplified pseudo-
inverse of the radiation patterns for each scattering angle compared to the one by Brandsberg-
Dahl et al (2003a). Velocity analysis can be performed by studying the residual moveout

of the common-image gathers created as a linear combination of the inversion results in
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equation (3.45). We use the linear combination corresponding to the normalized radia-
tion patterns e(x", x,x*) = r(x", x,x°)/|r(x", x, x°)| evaluated for specular reflection and
simply denoted e(#;y). This yields the image

I(6;y) = e(6;y) - €V(8;y)] , w([P*(x?) W’ - (v —x%)). (3.46)

For a heterogeneous isotropic background medium, the radiation patterns r(x",y,x*) do
not depend on the migration dip. Then

1 N
(0;y) °® v, Py =), (3.47)

¢(y)=0
where |r(#;y)| is the norm of the radiation patterns for scattering angle # evaluated at the

Z(0;y) =

image point y.
3.7 Large parameter-contrast modeling and migration

The cylindrical surface-scattering inversion/migration formula derived in the previous sec-
tion corresponds to using a linearized plane-wave reflection coefficient. This is valid only
for small contrasts in the medium perturbations and for pre-critical reflection angles at the
reflecting surface. Ursin (2003) extended this to large angles and large parameter contrasts
by introducing the horizontal slowness component p” = p"v", where v" is the in-plane unit
vector orthogonal to ™ and p" is the magnitude of p”. The component associated with
the source is defined from p*(x) = p”(x) +v™(x)(p*-v™)(x), where (p*-v™)(x) is the pro-
jection of p* onto v™ (see Figure 3.1). Also we have p"(x) = —p”(x) + v™(x)(p® - v™)(x),
by Snell’s law. Interchanging the source and the receiver and keeping the wave modes in
the different parts of the medium the same, results in the same modeling integral. This
gives us the condition for reciprocity (Chapman, 1994). We let R be the reciprocal reflec-
tion coefficient normalized by the vertical energy flux at the scattering surface with the
horizontal slowness as the argument. The surface modeling formula in 2.5-D is then

U]S(P (Xr’w’xs) — /27T‘w‘1/26i(37r/4)sgnw
All(x™ x)Al(x, x*
[ gy B2 L )20
b

L (x7,x,%%)
V" (x) cos " (x)V?(x) cos a (x)] /2

- eI (12 (x) - ™ (%)) he(x*)do.  (3.48)

Here, V? and V" are the group velocities associated with the rays connecting the scattering
point with the source and receiver, respectively, and o’ and o" are the angles the group
velocity vectors of the rays from the source and receiver make with the surface normal at
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the reflection point.

By comparing equation (3.48) with the Born-Helmholtz integral (3.38), we proceed as
in the last section and multiply by the appropriate factors. The inversion result for band-
limited source then becomes

R(p""(y)) w([p?(x?)[v? - (y — x%)) =

#(y)=0
‘/ 0,(x, T(x',y,%°), x*;y) [p"(¥)|
, 2[V"(y) cosar(y)Ve(y) cos as(y)]*/2

The time derivative of the corrected data (3.29) acts on the phase-corrected data only as

dv (3.49)

in the previous section given explicitly in Appendix 3.B, equation (3.B-12). The factor
|p?| is found from equation (3.44).

3.8 Orthorhombic and TI media

Under the assumptions of 2.5-D (out-of-plane slowness zero and anisotropic symmetry
plane) the Christoffel-matrix splits into qP-qSV-waves with polarization vectors h; and h;3
(he = 0) in the plane and a pure SH-wave, still traveling in the plane but with polarization
vector hy (hy = hy = 0). The SH-wave cannot be generated by an incoming qP- or qSV-
wave, so in effect we are only considering the in-plane qP-qSV-waves for PP, SVSV and PSV
scattering (we disregard SVP scattering as it gives the same result as does PSV scattering
in the following) and SH-waves for SHSH scattering. In the following, we consider an
orthorhombic medium (the (zi,z3)-plane is assumed to be one of the symmetry planes)
and a transversely isotropic medium with the symmetry axis within the (x;, z3)-plane. In
the natural coordinate system of the medium (the crystal system) the media share the
following Christoffel matrix (Riiger, 1996):

cupi + cssp3 — pv? 0 (€13 + €55)p1p3 hy
0 CosPy + Caapl — pv° 0 hy | =0, (3.50)
(c13 + ¢55)P1p3 0 Cs5D7 + C3p; — pv? h3

but for TT media, c¢44 = cs5 (in the Voigt-notation). v is the phase velocity of the cor-
responding wave mode. It can be shown, using a Bond transformation (Carcione, 2001)
projecting the natural coordinate system onto the global one in the plane of consideration,
that the matrix (3.50) still splits and has the same parameters p, ¢11, ¢13, ¢33 and cs5 gov-
erning the qP- and qSV-waves, and p, c44 and cgs governing the pure SH-wave, but with
a different mixture than the one above. The following discussion is then directly applica-
ble to tilted symmetries, but we restrict our attention to orthorhombic media where the
intersection of the two symmetry-planes is parallel to the z3-axis, and to TI media with
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the z3-axis as the vertical symmetry axis (TIV). The expressions used in the following
calculations are found in Riiger (1996), Carcione (2001), Tsvankin (2001) and Ettrich et
al. (2002).

3.8.1 The qP- and qSV-wave system

Using ray-tracing equations (3.6) and (3.7) (or matrix (3.50)) we observe that by using
either of the two media as a background medium, all in-plane kinematic aspects of qP- and
qSV-waves are governed by the same five parameters, cgq), cgg), cé%), cg%) and p® (in Voigt
notation). This means that velocity analysis in 2.5-D (Brandsberg-Dahl et al., 1999), based
on study of common-image gathers of PP, PSV or SVSV scattering created from equation
(3.46), can be based only on these parameters in both TIV and orthorhomic media. That
the two media are kinematically the same in the symmetry plane was also observed by
Riiger (1996). The amplitudes, however, are different for the two media due to the differ-
ence in the out-of-plane geometrical spreading in equation (3.24). While for TIV media
all parameters needed to calculate the geometrical spreading are the same as those that
govern the in-plane kinematics, for qP- and qSV-waves in orthorhombic media one needs
information on all independent parameters except ¢5y (see Ettrich et al (2002) for expres-
sions). This means that one needs information on more parameters than can be obtained

from 2.5-D velocity analysis of PP, PSV and SVSV scattering.

Scattering coefficient (3.16) is a vector product of the radiation patterns (3.18) and the
medium perturbations (3.17). Since p, = 0 and hy = 0 in the radiation patterns for the
qP/qSV-system, the medium perturbation with either 7, j, k,{ = 2 in the cg,)cl will not con-
tribute to the scattering coefficient. This means that the only medium perturbations that

give any contribution are the five parameters c§11)11, c§11)33, c%)?,:,), 0%)13 (i.e., cgll), c%), c:%) and

cg? in Voigt notation) and p*). These are the same parameters that we need to calculate
kinematic aspects in the two background media. This particularity is restricted to the
2.5-D inversion, but is not true for 3-D inversion (Brandsberg-Dahl et al., 2003a). These
parameters are the only parameters one can invert for in TIV or orthorhombic medium,
e.g., using equations (3.27) or (3.41). Since the out-of-plane geometrical spreading differs
for these two types of media, the appropriate background medium has to be used to get

the correct amplitude behavior.

For both types of media, we remove the radiation patterns by a pseudo-inverse to get the
medium perturbations. Resolution analysis in the sense of De Hoop et al. (1999) gives
estimates on the ability to recover the parameters by removing the radiation patterns in
this way. This is done by studying the so-called resolution matriz,

(A(v™;y)) A (™ y), (3.51)
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Eigenvalue

. 3.
Eigenvalue index

Figure 3.2: The eigenvalues of the A-matrix (3.28) for PP and PS scattering. Horizontal
line indicates 102 of the largest eigenvalue. The large difference in the eigenvalues indicate

an instability in the inversion.

Figure 3.3: The resolution matrix for PP scattering. The non-zero elements off the diagonal
indicate the inability to remove the radiation pattterns in direct inversion. The axes

indicate the connection to the different parameters through equation (3.16).
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ideally considered to be the identity in the derivation of the inversion formulas (see the
discussion of equations (3.B-6) to (3.B-7) in Appendix 3.B). Choosing, e.g., an orthorhom-
bic background medium with density-normalized stiffness parameters (in MPa): a;; =
9, a13 = 2.25, azgg = 5.9275 and ass = 1.6 (Schoenberg & Helbig, 1997) and letting the
range of scattering angles be Ey = (0,7/2) for a given migration dip, we construct the
A-matrices for PP, PSV and SVSV scattering. Figure 3.2 shows the five eigenvalues for
the three types of scattering, in a singular value decomposition (SVD) (the multiplication
of the averaged phase velocities in equation (3.18) is vital in order to stabilize the nu-
merical calculation here). Note that the ratio of the largest to the smallest eigenvalue is
large. Thus the inverse by SVD, using all eigenvalues, is unstable in the sense that the
small eigenvalues lead to large contributions in the inversion. Indicated in the figure is a
suggested threshold for PP, PSV and SVSV at 1072 of the largest eigenvalue for all cases.
Eigenvalues below this value are disregarded in order to stabilize the procedure. Figures
3.3, 3.4, and 3.5 shows the resulting matrix (3.51) for PP, PSV and SVSV scattering,
respectively. In the figures, we consider only how far from zero (i.e., from white) are the
values off the diagonal. Because the matrices are not identity matrices, the radiation pat-
terns are not completely removed as is assumed in the deriviation of the inversion results,
equations (3.27) and (3.41), giving poor resolution of the parameters. For PP scattering,
the main diagonal contains large values, but also sizable values exists off the diagonal. For
PSV and SVSV scattering, only the density and cs5 have strong values on the diagonal,
with some modest amplitudes off the diagonal. In all cases, parameters involved in ver-
tical acoustic impedances are well resolved, i.e., p and c33 for PP, and p and c¢55 for PSV
and SVSV, the parameters that we usually observe best (Debski & Tarantola, 1995). The
radiation patterns are not well removed for the other parameters. The results deteriorate
further when using a smaller range of scattering angles Ejy.

3.8.2 The SH-wave system

All kinematic aspects of SH-waves in the background medium are governed by cE&) and cé%-)
for both orthorhombic and TIV media, but as remarked earlier, for TIV media cgi) = cg%).
These parameters are the only ones that can be found from velocity analysis studying SHSH
scattering by equation (3.46). They are also the only parameters needed to calculate the
out-of-plane geometrical spreading for a TIV medium. For an orthorhombic medium we
need information on all independent parameters. Thus, just as in the previous section,
information on more parameters are needed than one actually can get from 2.5-D velocity

analysis by equation (3.46) using PP, PSV, SVSV and SHSH scattering .

Since the in-plane polarization vectors are zero for SH-waves, the only parameters we

can invert for (by the same argument as in the previous section) are p, 0%)23 and cglz)lz (or
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Figure 3.4: The resolution matrix for PSV scattering. Low values on the diagonal indicate

low resolution of parameters ci; and ci3.
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Figure 3.5: The resolution matrix for the SVSV scattering.
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Figure 3.6: The resolution matrix for the SHSH scattering.

P, cﬁjﬁ and cét.) in the Voigt notation) for both TIV and orthorhombic media. We calcu-

late the resolution matrix (3.51) in the orthorhombic medium of the previous section for
SHSH scattering with additional density-normalized parameters (in M Pa): a4y = 2 and
ags = 2.182, and we use the same range of scattering angles. Only the eigenvalues of A
that are larger than 10=2 of the largest eigenvalue are used when constructing the inverse
by SVD (as in the previous section). The result, given in Figure 3.6, is again far from
being an identity matrix.

The above result suggests that direct inversion yields unreliable parameter estimates. A
true-amplitude migration, e.g. using equation (3.30) or (3.49), followed by amplitude-
versus-angle analysis (Hilterman, 2001) to invert for the parameters, is much better con-
strained (Sollid, 2000).

3.9 Conclusions

We have reviewed 2.5-D modeling and derived formulas for true-amplitude inversion, and
migration and AVA-compensated migration in anisotropic media, using the inverse GRT.
The formulas use natural integration variables at the imaging point and require no calcu-
lation of a Jacobian.

Analysis of orthorhombic media and tilted TT media have been done based on the for-
mulas derived in this paper. The use of either form of anisotropy for the background
medium yields no kinematic distinction. For example, velocity analysis for both types of
media is the same. Amplitudes, however, depend on particular parameters, through the
out-of-plane geometrical spreading, which are different for the two types. While for a TTV
medium the parameters are the same as those involved in the in-plane considerations, in
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orthorhombic media the out-of-plane geometrical spreading depend on additional param-
eters that one cannot find through either velocity analysis, as suggested in this paper, or
inversion/migration in 2.5-D.

The inversion formula relies on the ability to separate the radiation patterns from the
medium perturbations in the scattering coefficient. This, however, cannot be done suf-
ficiently in an orthorhombic media. Hence the inversion result will be a mixture of the
actual medium perturbations and remnants of the radiation patterns.
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Appendix 3.A. The 2-D inversion formula

For a real and causal function f(x,t), with x,k € R?, we use the Fourier transform (Aki
& Richards, 1980, Box 5.2)

F(k,w) = / / f(x, 1)@ .X) gxdt, (3.A-1)
o JR?
with inverse transform
1
t) = — e~ {WI=kX)gkq 3.A-2
focty = tre [ [ PG " (3.4-2)
k is usually referred to as the wavenumber. The following identity will give the inversion
formula ]
— kY dk = §(x —y). 3.A-3
5 e (x~¥) (3.A3)

We introduce the equivalent of polar coordinates, where we let the radius be k = \/k? + k2
and the angle v be such that

k = k(cosv,sinv) = (k1, k)

3.A-4
= kv™. ( )
Using this parametrization in integral (3.A-3) we get
00 2w
/ k / e*" Y qudk = 4n%5(x — y). (3.A-5)
0 0

In the framework of wave propagation, the wavenumber is k = wp™(y). We substitute
this into equation (3.A-5) and take the real part on both sides to get

Re {/ wdw/ Ip™(y)|2dye’P™" &) (x= Y)} =47%5(x — y). (3.A-6)

After a preconditioning of the data given in the main text, we use Taylor expansions
(Beylkin, 1984) of amplitudes, polarization vectors, and phase functions around x (as done
in detail in Appendix 3.B). The first term in the expansion has the form of the inversion
formula in equation (3.A-3). The result is the inversion formula

lRe {/ wdw—/ Ip™( 2dy[l + (’)(|X—y‘)]e“" P (¥)-(x—y)+O(jx—y] )]}
0

m
= §(x — y) + smoother terms. (3.A-7)

Integration of the other terms of the Taylor expansion yields smoother amplitude terms by
the Bolker conditions (Guillemin, 1985) or the equivalent traveltime injectivity conditions
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(Stolk, 2000). They are discarded in inversion for the most singular term. E,, is the domain
of v here considered to be E, = [0,27). In practise one uses a smaller range of migration
dip angles, v, which makes the delta function in equation (3.A-5) a band-limited delta
function (Bleistein, 1984). This follows over to the inversion formula (3.A-7).
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Appendix 3.B. 2.5-D inversion of the Born modeling equation

By the following inversion we get the most singular part of the medium perturbations c¢(!)
(de Hoop et al., 1999). This means that we disregard the smoother terms. The inversion
makes use of the inversion formula (3.A-7). The imaging point, y, is the spatial point in
the subsurface at which we invert for the rock parameters. In order to get our modeling
formula into the appropriate form, we precondition our data ., in equation (3.26) with
factors evaluated at the imaging point and the polarization vectors at the source and
receiver given in equation (3.29)

U(X’",w,xs;y) =

1 e—i%sgnw EJ_(XT y Xs) ) ., .
B (X U( ) h (x5 R\ 1 I —wT(x",y,x%)
2(2m)%?  |w|'/? O3 Una (X7, X0 ’Y)p‘o)(Y)A”(X’”,y)A”(y,xs)e

(3.B-1)

After this preconditioning, we perform a Taylor expansion of the resulting amplitude terms,

phase function and polarization vectors in the integral around the imaging point y,

W, %,x") = T(x',y,x") =wVT(x",y,x") - (x —y) + O(|x = y[),

All(xm, x) All(x, x*) L (x", ¥, x°)

All(x7, y)All(y, x3) L1 (x7, x, x9) =1+ 0(x -yl (3.B-2)
hm( )hm(x 1Y) 1+0(|X—y|),
ho(x*) b (%% y) = 1+ O(|x — ¥]),

where we have used that the polarization vectors are normalized. This means that, after a
multiplication with |p™(y)|? and 1/m on both sides, equation (3.26) preconditioned using

equation (3.B-1), becomes

1~ r s m
—U(w, x5 y) [P (v)

m 2
_ wlp™ (};)| / [1+0(jx — y )" (x", x,x%)c) (x) eIV +00yPlgx - (3.B-3)
(27T) D(z2=0)

We wish to remove the amplitude variation of the radiation patterns in order to invert for
the medium perturbation only. Multiplying both sides with the radiation patterns (3.18)

at the image point, r(x",y,x*), and using the Taylor expansion

r(x",y, xs)rT(xT, x,x°) =r(x",y, xs)rT(XT, v, x")+ O(]x —y]), (3.B-4)
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we can write

1 .
—r(x",y, x*)U(X",w,x";y)[p"(¥)[”
T

w|p™(y)[? / " v Ve (%" v %
= I'X,y,X T X’Y’X 1+0 X_y
G o ( ) ( i (1 )]
- e (x) VTN +O(x—y P gy (3.B-5)

The radiation patterns are dependent on the scattering angle 6 (see equation (3.18) and
Figure 3.1), so we integrate over # spanning the domain Fy (see equation equation (3.19))

1 -
1 / P, v, %) 0 (" w0, " ) D™ () 28
™ E,

m 2
_ w|p (y2)| / AW™y)[1+O(x — y|)]c(1)(X)eiw[VT-(fo)+0(\x7y|2)]dx’ (3.B-6)
(2m) D(x2=0)

where the M x M matrix A is defined in equation (3.28) in the main text. Introducing

the pseudo-inverse (A(v™;y)) !

remove the radiation patterns. This yields

and multiplying by this factor on both sides we in effect

1 -
LAWY [y O ) ()
Ey

wlp™ 2 : (x— x—
~ |I()27r()};)| /D( 0)[1 + O(x — y|)]e® (x)eVI- =) +O(x=y gy (3.B-7)
ro—

Now integrate both sides over the domains of w and v € E, as indicated in the inversion
formula (3.A-7)

1 = — r S\TT(~T s m
s [ avaemi) [ ey )06 k)T ) P
0 3 Ey
1 [ 1 , 2
— [ s [Cwda [ e)dvln + O(x -y eSOy
D(z2=0) ™ Jo AT Jp,

(3.B-8)

After taking the real part here, the last part of the integrals on the right hand side now has
the form of inversion formula (3.A-7). We can write them this way because of the particular
terms we multiplied with in the preconditioning. We disregard the smoother terms because
we are interested in the most singular term only. The resulting delta function collapses the
integral over x and leaves the estimate of c(!) evaluated at the imaging point

1 o0 ~
e“)(y):;Re{ / / A W™ y) / r(xr,y,XS)W,M,XS;y)|pm(y)|2d9d,,dw},
0 v E
’ (3.B-9)
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where U is found in equation (3.B-1). This is the inversion result for the 2.5-D Born model-
ing formula in the Fourier domain. Note that the only factor that depends on the frequency
integration is the corrected data U(x",w,x®;y). Because of the factor e “T("¥x") i the
corrected data (3.B-1), the integration has the form of an inverse Fourier transform

1 > .
u(x", T(x",y,x%),x%y) = ;Re {/ U(X’,w,xs;y)dw}
0

= b (X7 y) 50 (X7, T(X", ¥, %), X* ) 1 (X°; )2V 20 L (X7, y, %)
[0 (Yo ()0 (1) (7)o )] 21Qb )@y, X2 (3.B-10)

Here we have written the amplitude factors of the 2.5-D GRA Green’s function (3.25)
explicitly. Due to the half integration in the corrected data (through the e=*(/4)ssnw /|¢,|1/2.
factor), in equation (3.B-1), and the possible values of the KMAH-index accounting for
caustics, we find the phase-corrected data by computing

&S}%(X’", Tx",y,x°%),x%)

1 o - - .
— W (xr 5\ i/ 4 [im /2(k(X",y ) +h(y,x*))] p—iw T (X" ,y ,%?)
= 7rRe{/o wl/zUmn(x yw,x”)e " 2el! YTy )le™ y dw}. (3.B-11)
The inversion result in equation (3.B-9), using equation (3.B-11), is then given in equation
(3.27) in the main text. When the inversion/migration is done for a surface, equation (3.41),
the time derivative of the data is used (which in the Fourier domain is a multiplication by
—iw = we~/?), which yields

31:71(1)

mn

", Ty, x°),x%)

Re {/oo w1/2U7(TLl7)L (Xr, w, Xs)67i37r/4e[i7r/2(n(x’“ ,y)—}—fe(y,xs))]ein(xT,y,xs)dw} ) (3.B-12)
0

1
s
All inversion, migration and AVA-compensated migration results in this paper are derived
in the same way as above.
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Appendix 3.C. 2-D modeling and inversion

2-D modeling is done with a line source in a 2-D model; the response will therefore not vary
along a receiver line. We derive the 2-D GRA Green’s function from the 3-D GRA Green’s
function by summing the contributions from all point sources along the source line. This
gives the response
o0
Upg(x, w,x*) = / Gpq(x,w,x%)dzs, (3.C-1)
—0oQ
where Gp,(x,w,x®) is the 3-D GRA Green’s function defined in equation (3.3). Using the
same arguments as in the main text, the stationary point of the integral is found to be at
T4 = T, SO

‘w (3.C-2)

1
ax% ;1:2:0 B ‘Qé_(xi Xs) .
Approximating the integral in equation (3.C-1) by the method of stationary phase then
yields the reciprocal 2-D Green’s function

Gf,é)(x,w,xs) — |w‘71/2€i§Sgnwh;(x)A2D(x’ Xs)ein(x,xs)hq(xs), (3.C—3)

where the 2-D amplitude function is

—15 K(%,x°)sgn w
A?P(x, x°) = e 1 , (3.C-4)
2(2m) /2 [p(x)v° () p(x* o (x2)]1/2| Qs (x, x°) 112

and QQ is defined in equation (3.10). The indices p, ¢ take on values 1 and 3, and all vectors
also have components only in the z; and z3 directions.

The 2-D Born single-scattering integral can be derived from the 2-D equations exactly
as in the 3-D case. A line source at x® will excite a line scatterer at x, which acts as a
secondary line source producing the response as x". Taking into account the reciprocity of
the GRA Green’s function, the 2-D Born integral can be written

U (X7, w, X°) = iw/ AT (x7) AP (x7, x) A% (x, x°) pl0 (%) S (x) T XX pS () dx.
D(z2=0)

(3.C-5)
For inversion and migration, we proceed as in the main text and create data corrected for
amplitude, phase and traveltime

u(x", T(x",y,x%),x%y) =
o (XT3 y) A0 (X7, T (X7, y, X*), X* ) i (X°; )
2[00 (x")w(x ) "(3)* (7) 0 (x*)u (x*)]V2[Qy (X, ¥) Q) (v, x*) V2. (3.C-6)
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Here the phase-corrected data t,,, are given by

H{%%L«xct, x*)} an
o) (x" ¢ x5 = Umn (X", %°) if k(X" v) + k(y,x%) = dn+1 3.C-7
umn(x 0, X ) —H{U%%(XT, t, Xs)} ( ,Y) (Ya ) 4n + ) ( )
(1) 4dn + 3

— U (X7, T, X°)

with n being an integer, and H{} denotes the Hilbert transform (Aki & Richards, 1980,
Box 5.6). With this the inversion and migration results are given by inserting the corrected
data in equations (3.27) and (3.30) in the main text. The inversion is done equivalently to
the derivation in Appendix 3.B using the 2-D inverse GRT in equation (3.A-7).

The derivation of the 2-D Born-Helmholtz surface modeling integral is similar to that
in the main text, equation (3.38), and is given by

e / o (7)) (30) AP (x", ) A2 (3, x°)
D(z2=0)

v?(x) - v™(x
] I_T(Xr, x, x°) c(l)(x) ‘¢(x):0 M¢(XD|VX¢(X)‘W

The inversion is done by comparing the two 2-D modeling integrals (3.C-5) and (3.C-8) and

W T XX p (x%)dx. (3.C-8)

multiplying with the appropriate factors. The inversions are done assuming a band-limited
source wavelet. Using the time derivative of the corrected data (3.C-6) (i.e. of (3.C-7) since
this is the only time dependent term), the inversion result is given by equation (3.41) with
the factor |p?| calculated from equation (3.42) in the main text. The migration and AVA-
compensated migration formulas are given by equations (3.43) and (3.46), respectively with
|p?| from equation (3.44).
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Part 11

Tomography
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Chapter 4

Depth consistent PP and PS seismic
angle tomography

S.-K. Foss, B. Ursin and M.V de Hoop
In progress

Summary

The velocity-depth ambiguity in depth migration is a well known problem stemming from
several factors such as, limited aperture, band-limited source and the interplay between
parameters of the background medium contributing to the non-uniqueness of the prob-
lem. In addition, the isotropic assumption can cause severe depth errors in the presence
of anisotropy. These are severe issues when considering PP and PS images from depth mi-
gration where geologically equivalent horizons should be mapped to the same depths. The
present method is based upon the differential semblance misfit function in angle to find
fitting background models. This requires amplitude-compensated angle-domain common
image-point gathers to be uniform. Depth consistency between the PP and PS depth image
is enforced through a regularization approach penalizing mistie between key reflectors in
addition to the differential semblance misfit function.

By migration / map demigration time information is obtained on the key reflectors of
the PP and PS image. This time information, which is independent of any velocity model,
can be map migrated to reconstruct the reflectors in depth for a given background model
enabling an automatic way to quantify the depth discrepancy in the tomographic approach.
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An approximative simplification uses the normal incidence point rays in the map migration.
The method is presented in a general 3-D framework allowing for the use of true depth
information such as well markers and the inclusion of anisotropy. A strategy is presented
to retrieve all parameters of a transversly isotropic medium with a known symmetry axis
depending on the available information. This is employed on an ocean bottom seismic field
data set from the North Sea.
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4.1 Introduction

In this paper we show the use of differential semblance (Symes & Carazzone, 1991) misfit
function to perform angle tomography on PP and PS reflection events. The misfit func-
tion associated with this approach is unique in that it depends smoothly on the velocity
model. As is common in migration velocity analysis (MVA) we model the reflection data
in the single scattering approximation, yielding a forward scattering operator that, given
a velocity model, maps reflectors to reflections. By a gradient-based search of the model
space, the range of the forward scattering operator is adapted to contain the data. Data
are in the range if they can be predicted by the operator.

The differential semblance misfit function detect whether the data are in the range of
the forward scattering operator (Stolk & de Hoop, 2002). They have their counterpart in
the image domain: The data are in the range if the common image-point gathers (cigs)
obtained from the data — parametrized by scattering angle and azimuth — are uniform, i.e.
flat and show angle independent amplitude.

As MVA, typically, is based on a small collection of reflections, one expects an inher-
ent non-uniqueness in the inverse problem of determining the velocity model. We consider
a velocity model to be acceptable if the reflections are in the range of the forward scattering
operator. In this paper, we combine PP and PS reflection data and search in the class of
acceptable velocity models for a model that not only predicts the PP and PS reflections
in time, but also ties the PP and PS images of corresponding reflectors in depth. In this
so-called co-depthing process, one needs to ensure that the PP and PS images indeed have
these reflectors in common, which requires a degree of seismic interpretation. Co-depthing
can also be carried out with well data.

Classical migration velocity analysis exploits the redundancy in the data by studying the
residual moveout on common image-point gathers (Al-Yahya, 1989). Flat gathers indicate
a model giving sharp images. The differential semblance misfit function is a way to mea-
sure this moveout and to quantify the degree of fit by a local derivative in the redundancy
parameters. These can e.g. be the offset parameter as done by Plessix et al. (2000) and
Chauris and Noble (2001) amongst others, or the angle parameter as done by Brandsberg-
Dahl et al (1999) and Foss et al. (2003b). The differential semblance measure is believed
to have desirable convexity properties in a large part of the model space (Symes, 1991).
This means that we can be far from the true model and still be able to obtain an optimal
model. This stems from the fact that it is a local measure. Numerical results by Plessix et
al. (2000) suggested using differential semblance to ensure global convergence and then to
switch optimization procedure, when the model is sufficiently close to the true model, to a
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semblance type method (Taner & Koehler, 1969). Close to the true model the semblance
type method will have a shaper peak in the topology of the misfit function more apt in
locating the optimal estimate.

The common image-point gathers in the angle domain for the purpose of velocity anal-
ysis are computed by the restricted GRT (de Hoop et al., 1994; de Hoop et al., 1999;
Brandsberg-Dahl et al., 2003b) or amplitude-compensated migration (Ursin, 2003). The
local derivative of the differential semblance misfit function is sensitive to amplitude vari-
ations. Amplitude-compensated migration uses a point-wise partial compensation of the
amplitude-versus-angle (AVA) behavior. This becomes a amplitude-preserving migration
scaled by the radiation patterns. The calculation of the radiation patterns is separable
from knowledge of the medium perturbations due to the linear relationship between the
smooth and perturbed part of the medium in the Born approximation on which the mi-
gration procedure is based. Instead of the point-wise removal of the AVA-effects of the
amplitude-compensated migration, a removal in the least-squares sense was formulated by
de Hoop et al. (1994; 1999) in 3-D and in 2.5-D by Foss et al. (2003a). The restriction
to scattering angle and azimuth creates artifacts (false reflectors) in the common image-
point gathers in the angle domain. See (Stolk, 2000) for a thorough analysis of these.
Brandsberg-Dahl et al. (2003a) suppressed such artifacts by a procedure called focusing
in dip using only the contributions to the migration integral that are close to the specular
reflections.

Several authors have recently approached the problem of joint PP and PS velocity analysis
(Sollid, 2000; Stopin & Ehinger, 2001; Alerini et al., 2002; Grechka & Tsvankin, 2002;
Broto et al., 2003), see (Herrenschmidt et al., 2001) for a review. The diodic nature of
PS reflections (Thomsen, 1999) demands a treatment of MVA different from the one with
PP reflections. The diodic nature is a consequence of the fact that PS reflections are non-
reciprocal in source and receiver; indeed, the reciprocal of PS is SP. It is also a well-known
problem that images of a common geological reflector from PP and PS reflections often
do not match in depth. There are several reasons for this. The velocity-depth ambiguity
(Stork & Clayton, 1986; Bube, 1995; Bube et al., 2002) is a well known problem intimately
connected to ray coverage and acquisition aperture. In addition, anisotropy has to be in-
cluded in order to compute depth consistent PP and PS images as an isotropic assumption
can cause severe depth errors in the presence of anisotropy (Artola et al., 2003). This
applies especially to converted waves such as with PS events. With an anisotropic medium
there is an added ambiguity in the interplay between the different elastic parameters (Bube
& Meadows, 1999). Versteeg (1993) showed how continuously smoothing a correct model
would recreate the image kinematically yet blurring it. All this contributes to the size of
the range of the forward modeling operator; the space of possible models that recreates
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the data intimately connected to the null space. However, the additional demand of tying
the PP and PS events in depth constrains the space of possible solution.

PP angle tomography by means of the differential semblance misfit function in angle is
here extended to PS reflection events compared to Brandsberg-Dahl et al. (2003b). We
perform tying of PP and PS in depth between chosen key reflectors that geologically are
the same reflectors. To perform the tying in depth of the PP and PS event we use time
information, or time horizons, obtained from paired and picked events in depth which are
map demigrated to time. Using map migration (Kleyn, 1977; Gjgystdal & Ursin, 1981)
of the time horizons for every suggested velocity model we are able to quantify the depth
mismatch in an automatic way. Notice that the time horizons need only be picked once.
Map migration can be used in complex media, see Douma and de Hoop (2003) for details
and references. For the converted wave events the ability to perform PS map migration is
highly dependent on how close we are to the true model when starting, hence we suggest
applying Gretchka and Tsvankin’s ‘PP+PS=SS’-approach (2002) to compute pure mode
SS data for this purpose. However, in this paper we use a zero-offset restriction by map
demigrating normal incidence point (NIP) rays (Hubral & Krey, 1980) as suggested by
Whitcombe (1994). For the mode converted waves we employ a simplified version of the
‘PP+PS=SS’-approach using NIP rays to compute approximate zero-offset SS data.

The outline of the paper is as follows. In section 2, we introduce notation and show
how to compute common image-point gathers for the purpose of velocity analysis. The
formulation here is in 3-D and follows the presentation of Ursin (2003); the 2.5-D formula-
tion and its subtleties are presented in (Foss & Ursin, 2004; Foss et al., 2003a). In section
3 we give a brief review of PP angle tomography (Brandsberg-Dahl et al., 2003b) and its
extension to PS waves. In the next section, we introduce our co-depthing methodology in
the framework of the differential semblance in angle optimization by adding a penalizing
term to the misfit function. Then we present a step-wise strategy, similar to (Sollid & Et-
trich, 1999), using the aforementioned tomography tools to obtain values of a transversely
isotropic (TT) medium with a known symmetry axis. Although the strategy is presented
for a 3-D medium, we disregard the presence of azimuthal anisotropy. Such a medium
is equivalent to a TI medium with a vertical symmetry axis through the Bond transfor-
mations (Carcione, 2001). It can be parameterized by vpg, vsy, € and & which are the
vertical P- and S-wave velocities and the Thomsen (1986) parameters, respectively. The
optimization strategy is split into the following steps:

(i) isotropic P-wave velocity analysis on PP cigs using differential semblance in angle;

(i) isotropic S-wave velocity analysis on PS cigs using differential semblance in angle,
making use of the P-wave velocity model obtained in (i);
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(iii) seismic interpretation of the PP and PS images for key reflectors; map demigration
of these reflectors yielding time horizons;

(iv) co-depthing of PP and PS images of key reflectors to obtain an optimal isotropic
S-wave velocity model, using the differential semblance in angle of the PP and PS
cigs as regularizer;

(v) differential semblance in angle and semblance optimization of PP and PS cigs jointly
admitting the model to become anisotropic, enforcing the depth consistency.

Several authors have discussed that in order to obtain information on the § parameter one
either needs information of the true depth of a reflector through well logs or traveltimes
from rays that have traveled at an oblique angle e.g. from strongly dipping reflectors or
from large offset data (Audebert et al., 2001; Iversen et al., 2000). We present approaches
for these cases. In the absence of such information several approaches have been suggested
(Alkhalifah & Tsvankin, 1995; Grechka & Tsvankin, 2002). Here, we make the convenient
choice of setting ¢ equal to zero considering a quasi-VTI medium. The remaining € pa-
rameter is not the true anisotropy parameter but an effective one.

Finally, we employ the above methodology on a North Sea ocean bottom seismic (OBS)
field data set to obtain first a quasi-V'TT velocity model and then estimates of all parameters
of a V'TT velocity model.

4.2 Seismic angle migration

We consider migration in a 3-D heterogeneous anisotropic elastic medium. The geometry
is shown in Figure 4.1 where the imaging point is denoted y = (y1,¥2,v3). The source
is at x® and receiver x" (bold fonts indicate vectors). The superscripts s and 7 indicate
association with a ray from the source and receiver, respectively. The slowness vector
pi(y) = (p§,p5,p5) is thus the slowness of the ray connecting the source point x° and
the image point y evaluated at this latter point. p(x®) indicates the slowness of the
same ray evaluated at the source. A similar notation is used for the receiver, namely,
P’ (y) = (p], 5, p%) and p(x"). The polarization vector h is defined in the same manner
as the slowness vectors at the source, receiver and imaging point. The scattering angle is
defined by

P’ -p’
cosf = ——— aty. (4.1)

p°[p|
The scattering azimuth 1 is the angle the (p”, p®)-plane makes with a given reference direc-
tion around the migration slowness vector p™, which is defined by p™(y) = p*(y) + p" ().

The migration dip »™(y) is the unit vector of the migration slowness vector v™(y) =
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Source point Receiver point

Imaging
point

Figure 4.1: Geometry of rays connecting the imaging point with the source and the receiver.

P"(¥)/IP"(¥)!-

The medium is described by its stiffness tensor ¢, (4,7, k,1 € {1,..,3}) and density
p- These parameters are decomposed as a sum of a smooth part (with superscript (0)) and
a perturbation (with superscript (1)):

p(x) = pO(x) + pM(x),  eiu(x) = o (x) + ey (x). (4.2)

The estimation of the smooth part is the object of velocity analysis while the medium
perturbations are found by inversion. We assume that the perturbations are jumps in
the parameters along an interface defined by a function ¢(x) = 0 (de Hoop & Bleistein,
1997). Amplitude-preserving migration results in an estimate of the reflectivity at the the
interface which, with a band-limited wavelet, w(t), is given by (Ursin, 2003)

Sul,03y) = SOO.0:%)| | w(pv? - (y —x?))

= ouu(x", T(x",y,x*),x*; y)|pm(y)|3dum, (4.3)

Eym

in which x* = x*(y,v™,0,) and x" = x"(y,v™, 0,v) (see Figure 4.1). v™ € E,m C S? is
the integration domain of the migration dip (S? is the unit sphere). p? is the stretch factor
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(Ursin, 2003; Tygel et al., 1994) which evaluated at the stationary point x? is given by

6 1 1 2cosf]?

p (’US)Q (/UT')Z VST ’ (44)

with phase velocities, v* and v" for the source and receiver ray. v? is the surface normal
at the point x? on the interface, projected from the image point y. The data corrected for
amplitude, phase and traveltime are
a(xr, T(Xra Yy Xs)a Xs; y) = hp(xr)ag(i]) (XT, T(xra Yy, Xs)a Xs)h’q(xs)
2[p O () (x")0" (v)v° () ' (x°)v (x*)]/?[det Qo (X", y) det Qo(y, x°)]'/2,  (4.5)

with ,, being the data corrected for a possible phase-shift due to caustics

U;S;}])(())(r, t, Xs) 4n

1 r S

() (ur g sy — J T HA{upg (X7 EXT)} o) An+1

U x,t,x - lf/"{,X, + K , X7) = 4.6

Pg ( ) _U’SI) (X", 1, x°) (x",y) (y,x°) An + 2 (4.6)
H{ul) (x7, t,x%)} An+3

Here, k(x",y) + k(y, x°) is the accumulated KMAH-index for the rays between the x" and
the imaging point and from the imaging point to x°, respectively, with n being an inte-
ger, and H{} denoting the Hilbert transform. 7'(x",y,x®) is the two-way traveltime from
source to receiver via the imaging point y, and Qy(x",y) and Q2(y,x°) are the relative
geometrical spreading for the receiver and source ray, respectively (Cerveny, 2001). All
factors that enter in the amplitude-preserving migration formula (4.3) are calculated by
kinematic and dynamic ray tracing (Cerveny, 2001).

In the migration formula (4.3), 5’,,,(0,¢;y) is a band-limited estimate of the linearized
scattering coefficient defined by

SO, v;y) =" (x",y,x")cW (y). (4.7)

The relative jumps in the medium parameters are formally defined by the vector

O ()T = {p“)(y) ) } ws)

pO(y)” pO (y)vs(y)vi(y)

Its dimensionality depends on the symmetry of the elastic medium. For the PP and PS
reflection problem in a VTT medium, which will be treated in the field data example, it is
of dimension 5. The radiation pattern vector is of the same dimension, and it is formally
given by

o (x7,y,x°) = {hy,(y) (), [P (¥)25 () hie ()7 ()]0 (3 ) w5 () } - (4.9)
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Here, v$ and v! are the averaged phase velocity for the rays connecting the imaging point
with the source and receiver, respectively. These are introduced for numerical purposes
(Burridge et al., 1998; Foss & Ursin, 2004). The indices of equation (4.9) are defined from
the vector product (4.7) using the Einstein summation convention.

For the estimation of the smoothly varying parameters in the background medium (veloc-
ity analysis) we use common image-point gathers computed from amplitude-compensated
migration (Ursin, 2003) given by

Su(6,%3y)
ORI (4.10)

Here, |r(6,1;y)| is the Euclidean norm of the radiation pattern vector computed for spec-
ular reflection. The band-limited estimate of the scattering coefficient is given by (4.3).

Z(0,4;y) =

For interpretation and data comparisons we shall use the structural image

- //I(o,¢;y)d9d¢. (4.11)

Subscripts are used to indicate if a current common image-point gather (4.10) or structural
image (4.11) is computed from a PP- or a PS-event, Zpp and Zpg, respectively.

4.3 Angle tomography

Tomography is performed to estimate the parameters describing the smooth part of the
medium in equation (4.2) in which kinematic and dynamic ray tracing is performed, to
compute the different factors in (4.10). These are the density at the source and receiver
and the elastic stiffness tensor. For an isotropic background medium, only the P-wave
velocity is required for a P-wave mode and only the S-wave velocity for an S-wave mode.
Each parameter is given a parametrization with a finite number of coefficients. We assume
that n coefficients, denoted m = (my, ..., m,), are sufficient to describe the background
medium. Common image-point angle gathers, computed using a particular set of back-
ground model parameters m, are denoted Z(6,;y, m).

The differential semblance misfit function (Symes & Carazzone, 1991; Brandsberg-Dahl
et al., 2003b) for PP reflections is given by

Top(m / / / B0 Top (0, 0y, m) [ dodydy. (1.12)

A minimum of this function is found for uniform gathers indicating an optimum model
and yielding sharp images. The differential semblance misfit function can be minimized
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Figure 4.2: The differential semblance misfit function in angle is differentiated keeping
the image point, scattering angle, azimuth and migration dip fixed. Dotted lines indicate

perturbed rays.

by a gradient-based search of the model space such as a quasi-Newton method (Gill et al.,
1981). A component of the gradient of the misfit function (4.12), fixing the scattering
angle, migration dip and scattering point, is given by (Brandsberg-Dahl et al., 2003b)

P 1 0094 Lpp(0,1;
7‘713]3(11'1) = 5/// (80,¢IPP(9,¢§y,m)) 2 PP( ’,w’y’ m)dOdz/;dy. (4'13)

8mz~ amz

This means that, due to a change in the medium we get different source and receiver
points, slownesses and two-way traveltime as indicated with dotted line in Figure 4.2. The
derivative of the image in the integrand involves a derivative of the phase corrected data
(4.5) found in (Brandsberg-Dahl et al., 2003b). All parts of the gradient (4.13) can be
calculated from imaging and paraxial ray tracing (Farra & Madariaga, 1987; Cerveny,
2001). Motivated by a study of Symes (2000) it is conjectured that the minimum of our
misfit functions can be obtained by optimization even with poor starting values for the
background medium parameters.

4.3.1 PS angle tomography

Due to the diodic nature (Thomsen, 1999) of the PS reflections we split the contributing
events to the misfit function into a positive and negative constituent, denoted by Z;}¢ and
I, as an analogy to positive and negative offsets in surface coordinates. We will in the
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Figure 4.3: Positive and negative PS cigs, Z}s and Zpg. Arrows indicate the wavefield
directions in the two reflection events. The solid and dashed curves are the P- and S-wave

legs, respectively, of the different events.

following refer to Z}¢ and Zp4 as the positive and negative common image-point angle
gathers, respectively. The Z}4-cigs are computed with seismic events where the source
and receiver rays intersect at the imaging point in the order of Figure 4.3 relative to the
scattering angle and vice versa (opposite order of the rays) for Z54. This splitting is
necessary in a tomographic procedure as the rays, for the two cases, travel in different
parts of the background model. This is contrary to the PP reflection events which are
symmetric in the sense that the positive and negative PP images are computed from rays
that have traveled along the same paths in the medium, but in reverse order. The complete
misfit function is given by

1
Tos(m) = 5 [ [ 100T3s(0, 053, m) + 00 Tol0, 055, mP} doitvdy. (114

4.4 Co-depthing the PP and PS images

Since the GRT approach is based upon a high-frequency approximation and decouples S-
from P-wave propagation, we need to consider possible inconsistency in depth of reflectors
common in PP and PS images. In reflection tomography we therefore incorporate a term in
the misfit function that penalizes mismatch in depth of a small collection of key reflectors.
A key reflector in the structural images is chosen on the basis of the following criteria: (i)
coherency, and (ii) well-focusing. Then a key reflector is easily picked. We emphasize that
finding the key reflectors requires a degree of seismic interpretation.
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P-wave NIP ray S-wave NIP ray

Figure 4.4: Indicated are two normal incidence point (NIP) rays for the P- and S-wave

from the subsurface point y.

Let the j’th pair of interpreted key reflectors on depth migrated PP and PS images be
given by the graphs

{(W1, Y2, 2 p (Y1, y2; M), (Y1, Yo, 2hs (Y1, Yo; m)) }; (4.15)

to obtain the images, the velocity model m was used. Matching these interfaces in depth
can be performed by velocity model updating, each time carrying out the migration on
PP and PS data, and performing the interpretation. The key reflectors on the PP and PS
images can also be matched to their depths {27 (v}, y3)} derived from well logs at different
well locations (y1, y5)-

To include the co-depthing in our MVA procedure without performing full (GRT) migra-
tions repeatedly in the scanning procedure above, we suggest following a map migration
approach instead. The small collection of picked key reflectors, yielding position of and
normal to each of them, from migrated images (4.15) are map demigrated into PP and PS
reflection time surfaces (Kleyn, 1977). This information is now ‘data’.

As an approximation, here, we restrict the above mentioned matching procedure to zero
scattering angle, i.e. exploding reflector model data; then only normal incidence point
(NIP) rays to the surface (Hubral & Krey, 1980) are to be accounted for. The converted
wave case with its diodic nature demands special considerations that we expose below.

4.4.1 Pure mode events

Map demigration. Indicated in Figure 4.4 are two NIP rays for the reflector point y for
two different wave modes, namely P waves and S waves. The NIP ray for the PP reflection
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Figure 4.5: Mapping of the NIP reflection traveltime function to reflector depths given a

velocity model m and m’'.

connects x and y, and for the SS reflection x’' and y; the two-way NIP ray traveltimes
are Tpp(x) and T55(x’), respectively. Even though the rays of the two wave modes take
off normal to the interface, they usually follow different paths to the surface, as indicated.
The PP and SS NIP rays coincide only when the vp/vg-ratio is constant throughout the
velocity model.

Map migration. Using map migration in a given background medium m, the time
horizons are mapped to depth horizons. A particular imaged reflector point is written as
(Y1, Y2, 2% (Y1, Y23 77 (x), m)), see Figure 4.5. Also indicated in the figure is the imaged key
reflector point given a different model m’. The arrow indicates the movement of image
points along the velocity ray (Fomel, 1997). Note that, in principle, the process of repeated
map migrations does not require that the images of a key reflector have to be picked again
after each velocity model update.

4.4.2 Converted mode events

We shall employ a simplification of and approximation to Grechka and Tsvankin’s ‘PP+PS=SS’
approach (2002). The amplitude of a PS event at zero scattering angle vanishes. However,
in the PS angle gathers we can extrapolate the singular supports to zero angle.

In an acceptable velocity model, for the PS event, the NIP P ray connects y to x and
the NIP S-ray connects y to x’ as in Figure 4.4. The two-way traveltime is then given by,

Tps(X, XI) :TPP(X)/2+T55(X,)/2, (416)

with reflection point y. Notice the use of two arguments in the traveltime function for con-
verted modes as there are two emerging points at the acquisition surface: Zero scattering
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PP image
PS image

Figure 4.6: The reflector point imaged at y and y’' from PP and PS reflection data,
respectively, due to an inconsistent background model. Indicated are NIP rays from the

two reflector points to the acquisition surface.

angle does not necessarily imply zero offset.

In an unacceptable velocity model, let us assume that we have successfully identified an
interface on both a PP image and a PS image that is geologically the same but is imaged
at different depths. This situation is sketched in Figure 4.6, where both the PP and PS
images of the key reflector are indicated. The dotted lines indicate the S-wave rays while
the solid lines indicate the P-wave rays. In the unacceptable model, the PS event is im-
aged at y’, while the PP event is imaged at y, assuming the same x position for the NIP
P-ray through map demigration; the PS event tied to the PS image has two-way traveltime
Tps(x,x") (x' # x" as the model is unacceptable). The zero scattering angle PP and PS
two-way traveltimes are ‘data’ obtained from map demigration, and are considered to be
correct. If we assume that x"” &~ x', we can use (4.16) to compute 755(x"),

755 (X") & 27pg(x,X") — Tpp(X). (4.17)

We have obtained pure S-wave NIP two-way traveltimes that we will exploit as ‘data’ from
now on. The techniques of the previous subsection apply to these data, see Figure 4.5.

4.4.3 Misfit functional for co-depthing

The initial interpretations in (4.15) yield (x,7%p(x)) and (x, 74(x)) by map demigration
and the ‘PP+PS=SS’-approximation (4.17). We are then able to compute the depth of
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the key reflectors,

(yby?a’zg?P(ylayQ;T]jDPam))a (ylayZaZ‘;S(ylayQ;TgSam))a (418)

in an automatic way through map migration based on the medium parameters, m, govern-
ing the P-wave and the S-wave propagation in a discriminate fashion. For example, we can
define a misfit functional for co-depthing penalizing the mistie between the picked PP re-
flector in depth (4.15) and the map migrated SS reflector based on the medium parameters
governing the S-wave propagation, viz.

1 . . . )
Jp(m) = 3 Z// \Zés(ybya;Tég,m)) - Z%P(ybyz)‘ dy1dyo. (4.19)
J

The reason to use the depths of interfaces picked on PP images as a reference is that they
are usually much better determined in view of the PP ray coverage versus PS. Poorer
ray coverage implies an increased ambiguity in reflector depth (Bube, 1995). The misfit
functional can also be formulated to penalize the mistie between PP and SS interfaces and
well log markers (y1, y2, 22, (y1,42)) at discrete (y1,y2) points.

A misfit functional like (4.19) allows for a gradient based search in model space for an

optimum model choice. The gradient of (4.19) involves the derivative of the depth of the
reflectors with respect to the medium,

0J, 02! ;
0 m) = 3 [ [ 55 s )
(3 ] 7

(ng(yb Y2; Tés, m) — 25 (Y1, Yo))dyrdyz.  (4.20)

This derivative is defined in the framework of ray perturbation theory and coincides with
a tangent to the velocity ray (Iversen, 2001). It seems, however, that we have introduced
an ambiguity: The computation of the gradient of the differential semblance misfit func-
tion (4.13) is based upon keeping the imaging point, migration dip, scattering angle and
azimuth fixed changing the data, while the gradient of the co-depthing function (4.20) is
based on keeping the input variables to map migration, data, fixed. We come back to this
in the next section on strategy.

We arrive at a joint angle tomography and co-depthing misfit functional,

J(m) = M\ Jpp(m) + Ao Tps(m) + uJp(m), (4.21)

where A1, Ay and p are regularization parameters governing the trade-off between uniform
cigs and depth consistency. By setting u = 0 the search aims at matching the range of the
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PP and PS forward scattering operators to the relevant data constituents. The co-depthing
is accomplished by setting p > A, A2 > 0 and aims at a search in model space without
changing the range of the forward scattering operators.

4.5 Strategy for depth consistent PP and PS angle tomography in a TI

medium

We consider a transversely isotropic (TI) medium with a known direction of the symmetry
axis in 3-D, but disregard any azimuthal anisotropy. The medium is equivalent to a TI
medium with a vertical symmetry axis (VTI) through the Bond transformation (Carcione,
2001). Thus the medium is described by 4 parameters, for example the vertical P- and
S-wave velocities vpg, vgo and Thomsen’s (1986) 6 and . We approach the problem of
estimating a velocity model in the framework of T media by performing the model updates
in a step-wise manner, using the following steps reflecting a hierarchy of model complexity;
the misfit functional is given in (4.21):

(i) We first carry out isotropic P-wave velocity analysis on PP cigs using differential
semblance in angle (A =1, Ay = 0, u = 0).

(ii) Keeping the P-wave velocity model obtained in (i) fixed, we carry out isotropic S-wave
velocity analysis on PS cigs using differential semblance in angle (A\; = 0, Ay = 1,

pu=0).

(iii) We carry out seismic interpretation of the PP and PS images for key reflectors, and
pick them. The reflector picked on the PP image will yield the ‘reference’ in the
misfit functional Jp. We map demigrate the results making use of the P- and S-
wave velocity models obtained in (i) and (ii) — we derive SS time horizons, which
play the role of ‘data’.

(iv) We carry out co-depthing keeping the P-wave velocity model from (i) fixed making
use of map migration of the data obtained in (iii). The differential semblance in angle
contribution to misfit plays the role of regularization (A\; = 0, u > Ay > 0).

(v) Finally, we carry out differential semblance in angle and semblance optimization of
PP and PS cigs jointly admitting the model to become anisotropic (VTI); the co-
depthing misfit plays the role of regularization (A = 0, Ay > u > 0).

(i) Isotropic PP angle tomography
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The only parameter entering this step, the P-wave velocity, is parameterized following
Billette and Lambaré (1998) as

vp(x) = Z(Upk + grrs) I (x) + Za] (4.22)
k

Equation (4.22) shows a decomposition of the parametrization into a linear trend within
layers and a 3-D B-spline representation. The linear trend is described by a vertical velocity
gradient g, a constant vpg and an indicator function I which is equal to one in layer £ and
zero outside. The second summation in equation (4.22) is a 3-D cubic B-spline expansion
with 3-D splines, Bj(x), and coefficients a; (de Boor, 1978). The complete parameter
vector is then the collection of coefficients

mp = ({Vpk, G}k {a5};) - (4.23)

The interface geometry implied by {I} is updated automatically in the search proce-
dure (Foss et al., 2003b): From the initial PP image, interfaces/reflectors are picked (in
depth) which are then map demigrated along the NIP rays to compute zero-offset time
horizons/reflections. For the current velocity model these time horizons are map migrated
to generate the new interface geometry. A gradient computation does not account for an
update in geometry. As the new interface geometry needs the new model and not the
current one, a few iterations are needed to stabilize this procedure.

The P-wave velocity optimization itself follows a step-wise approach: First we optimize
with respect to the parameters in the layer-based description of equation (4.22), and then
we add the B-splines and optimize with respect to their coefficients to capture features of
the velocity function not described by the layer-based model. One iteration, using a quasi-
Newton method (Gill et al., 1981), constitutes the calculation of a gradient, equivalent to
equation (4.13) and a linesearch in the gradient direction for the minimum of the misfit
function (4.12).

(ii) Isotropic PS angle tomography
We keep the P-wave velocity (obtained in the previous step) fixed and parameterize the
S-wave velocity in a manner similar to equation (4.22),

Us(X) = Z(U‘Sk + hkxg Ik + Z b B (424)
k
which yields
mg = ({vsk, he e, {b;}5) - (4.25)
The interface geometry {I;} is kept fixed and is given by the P-wave velocity model repre-

sentation. We carry out differential semblance in angle optimization of PS data and obtain
an isotropic S-wave velocity model.
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(iii) Generating the data for co-depthing

We generate a PS image using the isotropic P- and S-wave velocity models obtained in
the previous two steps. On this image we find and trace key reflectors that we are able to
recognize in and pair with the PP image. In practice, these form a subset of the interfaces
already found in the estimation of the PP layer geometry. The paired key reflectors are
map demigrated and SS traveltimes are computed using equation (4.17).

(iv) Co-depthing PP and PS images

We use the picked PP reflectors in depth from the isotropic processing and update the
isotropic S-wave velocity to obtain depth consistent PP and PS key reflectors by (4.19).
This is done with a gradient-based optimization where the data are the SS traveltimes
obtained in the previous step. The search is constrained to the range of the forward
scattering operators in isotropic velocity models. In the presence of anisotropy the PS cigs
will now exhibit residual moveout again as prior to step (ii).

(v) Anisotropic PP and PS angle tomography
The € and 6 parameters are represented in a similar manner to the P- and S-wave velocities
within the interface geometry of the P-wave velocity model, viz.

e(x) =Y ep(x) + Z ¢;Bj(x), 6(x) =Y li(x) + Z d; B;(x), (4.26)

which yields
m. 5 = ({ex, Ok}, {¢;, d;};) - (4.27)

In seismic velocity models, the anisotropy parameters typically vary slowly over large re-
gions. We hence use constant values within layers, but with a B-splines contribution we
capture other spatial variations.

We assume weak anisotropy. The P- and S-wave (interval) NMO velocities (Thomsen,
1986) are then given by

VpNMO = UpoV 1+ 20 (428)

and )

v
VsNMO = UsoV 1+ 20’, o = (U—PO> (8 — 5) (429)
50

The S-wave NMO velocity depends on the relationship (¢ — §) which is scaled by the
squared vpy/vso ratio through the o parameter. It is well known that due to this, the
processing of PS events is much more sensitive to the presence of anisotropy than that of
PP events. Estimating the § parameter requires well logs, large offset PP data or other
information concerning depths of reflectors, as discussed by Audebert et al. (2001). If well
log information is present the true depth of the reflectors can be obtained where the wells
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penetrate them. The true depth of a reflector — in the absence of too strong lateral het-
erogeneity — is governed by the vpy parameter, the vertical P-wave velocity, which can be
obtained by matching the PP reflectors to well markers by map migration, similar to (4.19).

We denote the estimate for the P-wave velocity function obtained in (i) by 0p and the
estimate for the S-wave velocity function obtained in (iv) (after (ii)) by 0s. In the absence
of too strong lateral heterogeneity, the P-wave velocity obtained in (i) is approximately an
interval NMO velocity,

’ﬁp ~ UPNMO- (430)

The § parameter can readily be identified as a parameter causing the ambiguity between
vpnmo and vpy through equation (4.28). In order to maintain the depth consistency while
admitting anisotropy, the ratio of the vertical interval P- and S-wave velocities need to be
fixed,

vp M = constant, (4.31)
Us Us

which motivates the introduction of a scaled S-wave velocity,

A ~

v v
5 subject to —~ = constant. (4.32)

Ugp = ———
50 V1420 V50

The e-parameter can subsequently be found from anisotropic PS angle tomography using
(4.14).

A~

If large offset PP data are available a joint PP and PS angle tomography can be per-
formed by (4.21) (A = 1 and p = 0). The same considerations pertaining to the depth
consistency given a ¢ value applies here as well. Due to (4.30), given a §-value the vertical

P-wave velocity becomes

) _ bp(x)
’Upo(X) = T 25(}{), (433)

and by equation (4.31) the vertical S-wave velocity is given by (4.32).

In the absence of information needed to resolve the J-parameter we make the convenient
choice of setting it to zero, 6 = 0, considering a quasi-V'TI medium. Then an update is per-
formed to compute uniform PS cigs from the previous section by updating the e-parameter.
The parameter is not the true e-parameter, but an effective anisotropy parameter. This
yields focused depth consistent PP and PS images yet at unphysical depths (due to § = 0).
It can also be used to estimate an initial starting model in the aforementioned approaches
including 4.
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4.6 Field data example

Our procedure has been tested on an OBS line from the North Sea. This assumes the use
of a 2.5-D formalism found in Foss and Ursin (2004) considering 3-D wave propagation in
a 2-D model where all calculations are done in the plane. The data have been subjected to
standard processing such as static corrections, designatur and multiple removal (Yilmaz,
1987).

(i) For isotropic PP angle tomography we use the P-wave parametrization in (4.22), but in
2-D. Thus the B-spline is 2-D and x = (z1, z3) in the following. The 2-D B-spline nodes are
sampled every 250 m in the horizontal direction and every 100 m in depth. The relatively
dense sampling in depth was deemed necessary due to the sharp velocity increases observed
during the optimization. The image resulting from a simple 1-D optimization is used to
identify the layering of the velocity model. The time horizons of the interface geometry
in (4.22) are found from map demigration as described in previous sections. These time
horizons, a total of 13 of them, are used in the subsequent velocity estimation steps to
control the interface geometry in (4.22). The starting values of the constant velocity and
velocity gradient within each layer are taken from well information from close to the 2-D
slice in the medium under consideration here. The initial model and the corresponding PP
image are given in Figures 4.7 (top left) and 4.9.

To construct a ‘well-behaved’ misfit function (4.13) and guarantee a numerically stable
computation of the gradient (4.13), we bandpass filter the data between 3 and 15 Hz.
The derivatives in angle inside the misfit function are tapered at small and large angles to
remove truncation effects. We normalize the misfit function (4.13) following Chauris and
Noble (2001) to reduce the influence of erroneous amplitude calculations and noise in the
data (this could have been circumvented by making the GRT of the data to cigs unitary).
The gradient contributions are tapered as we approach the boundaries of the model or in
places with low ray coverage. Before calculating both the gradient and the misfit function,
the cigs are smoothed by a simple {1/4,1/2,1/4}-convolution filter in angle and depth; in
addition, a 2-D Fourier ‘dip’ filter (in depth and angle) is applied to suppress imaging arti-
facts and noise (Yilmaz, 1987). The filter is applied adaptively, allowing for less ‘dipping’
events as we approach uniform gathers. This is done in a conservative manner to avoid
destroying the moveout behavior of the primary events. These considerations are taken
into account in all subsequent calculations.

The 14 cigs are sampled every 250 m from 1250 m onwards. They are sampled every
0.5 degrees up to 45 degrees in incoming P-wave reflection angle. Figure 4.8 shows the
a) starting, b) after 4 iterations and c) after 7 iterations (final) collection of cigs in the
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Figure 4.7: Initial (top left) and final (top right) P-wave velocity model from isotropic
angle tomography with the final interface geometry (bottom).
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Figure 4.8: The common-image point gathers of the isotropic P-wave velocity optimization
after 0, 4 and 7 iterations.
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Figure 4.9: The PP image using the initial isotropic P-wave velocity model in Figure 4.7

(top left).
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Figure 4.10: The PP image using the final isotropic P-wave velocity model in Figure 4.7

(top right). Indicated with arrows are a selection of interfaces of particular interest denoted

1 2 3
by z2pp, 2pp and zpp.



optimization. The resulting velocity model and corresponding PP image are given in Fig-
ures 4.7 (top right) and 4.10, respectively. The optimization for the B-spline coefficients
was carried out in the final couple of iterations, but this showed little improvement in the
misfit function. Notice in particular the movement of the interface geometry in the final
velocity model Figure 4.7 (top right) as compared with the initial one (top left).

(ii) The initial S-wave velocity model is chosen naively by a fixed vg/vp ratio in the
entire model based on the final P-wave velocity, and is given in Figure 4.11 (left). The
corresponding PS image is given in Figure 4.13. The P-wave velocity model is considered
reliable up to 45 degrees incoming P-wave angle (which was the range of angles used in
the isotropic P-wave velocity analysis). We apply a tapered mute on the outgoing S-wave
angles that through Snell’s law are tied to incoming P-wave angles larger than 45 degrees.
We use 8 positive and negative cigs, Z;b¢ and Zpg, from surface position 1750 m onwards
with a 300 m horizontal spacing. The initial cigs and the ones after the third and fifth
iteration are shown in Figure 4.12 a), b) and c), respectively. The cigs are displayed pair-
wise for the same horizontal position with the positive image on the left and the negative
image on the right, as explained in Figure 4.3. They are plotted as functions of out-going
S-wave angle (contrary to convention) running from the indicated axis separating them, in
the positive and negative directions. The S-wave angle ranges from 0.4 to 25 degrees.

(iii) The PS image resulting from the isotropic velocity analysis is given in Figure 4.14.
Superimposed are the arrows and tracing of the main reflector (z3p) as found on the PP
image, Figure 4.10. In the shallow part we see that equivalent reflector 25, of the PP
image occurs slightly deeper in the PS image. The depth discrepancy cannot be explained
by the cigs in Figure 4.12¢), which are uniform and indicate a fitting model according to
our differential semblance in angle misfit measure. In the deeper parts the superimposed
PP reflector 2%, seems to match a PS reflector. However, the geologically equivalent re-
flector on the PS image is indicated with the dotted line z35. We observe that under the
isotropic assumption the migrated, equivalent reflectors are several hundred meters apart
by comparing the PP and PS images.

To compute pure mode SS traveltimes we identify and pair several interfaces on both the
PP and the PS images, which are then map demigrated along the NIP rays to obtain the
approximative SS traveltimes from equation (4.17). The key interfaces used are zhp, 25p
and 235 in the PP image, see Figure 4.14.

(iv) In the process of co-depthing, the S-wave velocity is parameterized as in (4.24). The
resulting depth consistent PS image is given in Figure 4.17 and is computed with the ve-
locity model given in Figure 4.11 (right). The key reflectors in the PP and PS images are
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Figure 4.11: Initial (left) and final (right) S-wave velocity model obtained with isotropic
angle tomography.

now at matching depths, but due to the isotropic assumption the PS cigs show residual
moveout behavior, again, as illustrated in Figure 4.16a). This concludes the isotropic pro-
cessing procedure.

(v) For the anisotropic processing we parameterize € as (4.26) assuming the medium is
VTI. There is no well log information from wells intersecting our plane of consideration. In
addition, the data has to be muted so that there are no large offset data for PP reflections
from the shallow part of the model. Hence, we set 6 = 0, as mentioned before. The starting
value for the optimization is € = 0 in the entire model. The cigs are now sampled every
550 m in the horizontal direction starting at 1750 m; there are still 8 pairs of positive and
negative cigs.

The gradient in the optimization is tapered at 700 m (and above) and 2700 m (and below)
because of ray coverage. All parameters except ¢ are kept fixed at their values obtained
from isotropic velocity analysis. Figure 4.16 shows two sets of cigs. The first set, a), is the
outcome of co-depthing (iv). We observe that the shallow reflecting events are still quite
uniform in these cigs. We observe in Figure 4.17 that they have, in fact, moved in the
co-depthing step. This means that the velocity update in (iv) was not detectable by the
differential semblance in angle misfit function, as we have stayed in the range of the for-
ward scattering operator. The final set of cigs, Figure 4.16b), are optimized gathers after 2
iterations with €. We observe that most of the change applies to the middle depth interval
between 1500 m and 2500 m. The resulting € function and the corresponding image are
given in Figure 4.15 (left) and 4.18, respectively, where the indicators from the PP image
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Figure 4.12: The common-image point gathers of the isotropic S-wave velocity optimization

after 0, 2 and 5 iterations.
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Figure 4.13: PS image using the initial S-wave velocity model in Figure 4.11 (left) and

using the P-wave velocity model from the isotropic P-wave angle tomography.
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Figure 4.14: PS image after isotropic S-wave angle tomography on PS cigs.
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Figure 4.15: The & model after the final anisotropic update (§ = 0) (left) and the 5

anisotropic layers used in the layer stripping approach (right).

(Figure 4.10) are superimposed. The geologically equivalent reflectors on the PP and PS
images appear to match in depth. However, below the reflector equivalent to z3p, the PS
image misses some of the structure observable in the PP image. By investigating the set
of cigs in Figure 4.16b) in this region, we observe misalignment or alignment along lines
with steep angles. Since the formation of caustics is unlikely here, we attribute these to
wave constituents not modeled by our 2.5D scattering operator, such as multiples.

In Figure 4.19 we summarize the results by extracting a single trace, at 3200 m hori-
zontal distance, from the images in Figures 4.10 (step (i)), 4.14 (step (ii)), 4.17 (step (iv))
and 4.18 (step (v)). One can clearly observe the mistie in depth between the first two
traces, the shift in depth from the second to the third trace, and the improved focusing
from the third trace to the fourth trace.

Depth fidelity. In order to examine how the §-parameter function affects the analysis
proposed and carried out above, we perform a joint PP and PS angle tomography, in a
layer stripping manner. We use the layering structure only, in the parametrization of § and
¢, and omit the contribution from the splines. In addition, we limit the number of layers
used to 5 as indicated in Figure 4.15 (right). Note that the interfaces in this geometry
form a subset of the set of interfaces in the geometry in Figure 4.7 (bottom). The top
layer (water) and the bottom layer below approximately 2700 m are assumed isotropic.
Isotropic parameters are taken from (i)-(ii)-(iv); the sampling of cigs is the same as in step

(v).
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Figure 4.16: The common-image point gathers of the angle tomography in ¢ after a) 0 and
b) 2 iterations.

115



Figure 4.18: PS image after quasi-VTI parameter update (§ = 0).
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Figure 4.19: A single trace, at 3200 m horizontal distance, from the images in Figures 4.10

(step (i)), 4.14 (step (ii)), 4.17 (step (iv)) and 4.18 (step (v)).

In addition to the differential semblance in angle misfit function we also include the sensi-
tive semblance measure. We introduce the PP semblance-based misfit as

I / J1J] Zer(y, m; 0, )dody|” dys
N9,¢Ny1,y2 fff ‘IPP(Y: m; 0, '@b) ‘2 dfdipdys
where the division in the integrand is a normalization of each cig with its ‘energy’ (Chauris

& Noble, 2001). Upon discretizing the integrals, Np, becomes the number of § and ¢
values used, and N, ,, becomes the total number of cigs used. Semblance optimization

Spp(m) =1 dyldyg, (434)

is here formulated as a minimization problem. We introduce in a similar manner the PS
semblance-based misfit,

1 1 Tt (y, m; 0, ) ddi|” d
Sps(m) =1— 5 (N+ T / J Uf fs(y ¢)2 ¢| l/sd s
0," Yy1,y2 fff ‘IPS(me; 977/1)| dfdidys
1 Too(y, mb,)dody|” d
+N_ = / f‘ff _PS(y V) 2 w y3dy1dy2), (4.35)
056 Nwe S [[[ | Zps(y, m;0,4)|" dodypdys

where Naf » and N, ,, are defined as in (4.34) for the positive cigs and Ny, and N for

the negative cigs.
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Figure 4.20 illustrates the shapes of the misfit for the five different layers in a layer strip-
ping approach as function of £ and §. In the layer stripping approach, we use the optimal
(¢,6) values obtained in the layers above the layer in which the parameters are under in-
vestigation. The illustrations in a row are the semblance misfits for PS, PP (equations
(4.35) and (4.34)), their normalized sum, and our joint PP, PS differential semblance in
angle misfit (A\; = Ay =1, 4 = 0). The PP and PS semblance functions are plotted on the
same scale. We observe that in the PS semblance plot the apparent valley at a 45 degree
angle is governed by (¢ —¢) as in equation (4.29). This indicates the feasibility of detecting
anisotropy in the PS cigs, without discriminating between the two parameters. In the
PP semblance plot we are unable to observe significant change in the value of the misfit
function with changing anisotropy. This is expected as the data offsets are not sufficiently
large for the shallow part of the model due to the aforementioned mute.

In the joint PP, PS semblance and joint PP, PS differential semblance in angle misfit
plots, the lines § = 0 and

e—£=26—0, (4.36)
are drawn, where & and § are optimal values for € and ¢ in each layer, and can be found
in Table 4.1. In the first three layers the values are chosen using the PS semblance plot
only, with 0 = 0, since there is not enough resolution in 4. In layers 4 and 5 we use the
joint PP, PS semblance plots. In these layers values for € and § can be resolved by locating
the semblance misfit minimum after analyzing the joint PP, PS differential semblance in
angle misfit function first. In the deepest layer, the differential semblance in angle misfit
function limits the region where the semblance misfit minimum is to be found, and thus en-
ables us to discriminate between the two apparent minima in the semblance misfit function.

In the calculations we use a fixed depth window of the cigs. This implies, for exam-
ple, that if ) becomes too negative, an event can move out of this depth window and hence
no longer contributes to the misfit.

The final PP and PS cigs for the ¢ and § values in Table 4.1 are shown in Figure 4.21. The
corresponding images are given in Figures 4.22 and 4.23 in depth and in two-way PP time
(obtained by depth-to-time conversion using the P-wave velocities from (i)) in Figures 4.24
and 4.25. For comparison, the initial PP image obtained in (i) is also converted to two-way
PP time in Figure 4.26.

4.7 Discussion and conclusion
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layer € 6

1 0.035 | 0.0
2 0.0 0.0
3 0.02 | 0.0
4 0.09 | -0.04
5 -0.02 | -0.02

Table 4.1: Anisotropic parameter values resulting from layer stripping.

Semblance - PS

0.02

0.04

275

Figure 4.20: Contour plots for anisotropic layers 1-5 (vertical direction) and misfit plots for

PS, PP and PP+PS semblance, and differential semblance in angle for PP4PS. Notice that

the semblance plots are given by equations (4.34) and (4.35) formulated as minimization

problems for comparison with the differential semblance misfit function.
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Figure 4.21: Final PP and PS cigs after anisotropic model update obtained following a
layer stripping approach.
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Figure 4.22: PP image using the anisotropic parameters obtained from the layer stripping.
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Figure 4.23: PS image using the anisotropic parameters obtained from the layer stripping.
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Figure 4.24: PP image using the anisotropic parameters obtained from the layer stripping,

in two-way PP time.
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Figure 4.25: PS image using the anisotropic parameters obtained from the layer stripping,

in two-way PP time.
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Figure 4.26: The initial PP image obtained in (i) (same as in Figure 4.9), in two-way PP

time.
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We have presented a tomographic approach to obtain depth consistent PP and PS images
by a combination of differential semblance in angle and map migration enabling automatic
measurement of the mistie in depth. This involves an extension of differential semblance
in angle to converted waves. In addition, a way has been presented to perform PS map
migration by approximatively resolving the S-wave leg of the PS event. The approximation
uses NIP rays from the scattering surfaces and removes the P-wave leg of the PS event by
using the PP traveltimes. This is similar to a zero scattering angle case of Gretchka and
Tsvankin’s ‘PP + PS = SS’-concept (2002). When the suggested medium is far from the
true model, or there is a huge inconsistency between the models governing the P-wave leg
and the S-wave leg of the PS scattering event, the approximation deteriorates accordingly.
For these cases and very complex media, the method can be extended by using the afore-
mentioned ‘PP 4+ PS = SS’-approach by Grechka and Tsvankin (2002) to compute prestack
SS traveltimes and not only the NIP rays of our approximation. Also, the uniqueness of
the map demigration / migration does not apply even for simple caustics in the zero-offset
case. However, in practice the map migration of the NIP ray traveltime information can
be regularized into a surface smoothing smaller errors of the approximation. In addition,
the approximative SS traveltimes can be updated during the optimization.

Perhaps one would expect that by first estimating a P-wave velocity model from PP reflec-
tions and then an S-wave velocity model from PS reflections would guarantee consistency
in depth between PP and PS images, since the mode converted wave is tied to the P wave.
The field data example illustrates that this is not the case: The difference in depths can
be several hundred meters even if the differential semblance in angle measure, through
uniform cigs, indicate a model fitting both the PP and PS scattering events.

The tying of the PP and PS events forces us to take anisotropy into account — this has
been observed by several authors, see for example (Artola et al., 2003). We developed an
approach derived from joint PP and PS angle tomography, consisting of 5 steps, for car-
rying out MVA. We estimated a compressional and shear wave velocity model based on a
quasi-VTI medium (Thomsen’s § = 0 (1986)) assumption. We also succeeded in estimating
0 separately from e, with a degree of uncertainty, in part of the model; in this estimation
we made additional use of a semblance measure applied to the PP and PS cigs. As to be
expected, the best resolved parameter combination from PS angle tomography is € — §.

The €, § parameter estimation was carried out in a layer stripping manner. The estimates
for ¢ are significantly different from the ones obtained by the automatic global search for a
quasi-VTI medium. This shows that our procedure and strategy cannot lead to uniqueness
of the reflection tomography problem.
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Our method shows the potential to achieve depth consistency and uniform cigs at the
same time. It relies heavily on the ability to identify, interpret, and pair interfaces on the
PP and PS images. The success of this depends on whether PS images of sufficient quality
can be generated to begin with. It can be argued that the current field data example could
have been solved by a less sophisticated method such as one based on the generalized Dix
approach. However, our method extends far beyond the cases where the generalized Dix
equation applies.

One of the potential applications of reflection tomography is pore pressure prediction (Say-
ers et al., 2004). Our method will not only provide P-wave velocity models at a higher
spatial resolution than can be obtained by hyperbolic moveout or other conventional ve-
locity analyses, but will also yield an improved estimate of the local ‘vp/vg’ ratio.
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Chapter 5

Appendix: A practical approach to

PP seismic angle tomography

S.-K. Foss, B. Ursin and A. Sollid

Submitted, Geophysical Prospecting 200/

Summary

The use of the differential semblance misfit function on common image-point gathers in
the angle domain, lends itself to an automated tomographic approach through a gradient
based search of the model space. The common image-point gathers are created by the
AVA-compensated or restricted generalized Radon transform. We present the complete
description of all 2.5-D formulas for the purpose of isotropic velocity analysis of PP scat-
tering events on a field ocean bottom seismic data example. In addition an approach is
presented to regularize the optimization by only considering velocity models that respect

geological features obtained from time information.
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5.1 Introduction

Migration velocity analysis exploits the redundancy in the data to estimate a smooth
velocity model. This is done by studying the residual moveout on migrated gathers (Al-
Yahya, 1989). Symes and Carazzone (1991) proposed to measure this moveout by means
of the differential semblance (DS) misfit functional. The DS misfit functional has been
successfully applied to a number of problems using offset as the redundancy parameter
(Plessix et al., 2000; Chauris & Noble, 2001). Brandsberg-Dahl et al. (2003b) derived the
framework for DS to work in a more natural coordinate system, namely scattering angle
and azimuth at the imaging point. The misfit functional measures the residual move-
out and amplitude behavior on common image-point gathers computed by a restricted
inverse generalized Radon transform (GRT) (de Hoop et al., 1999; Brandsberg-Dahl et al.,
1999; Brandsberg-Dahl et al., 2003b) or amplitude-compensated migration (Ursin, 2003).
The local derivative of the DS misfit functional makes it sensitive to amplitude varia-
tions. Amplitude-compensated migration uses a point-wise partial compensation of the
amplitude-versus-angle (AVA) behavior. The minimum of the misfit functional is obtained
for so-called uniform angle gathers where the amplitude and depth is constant for every
angle in the common image-point gather. Brandsberg-Dahl et al. (2003b) showed the

feasibility of PP angle tomography on a synthetic data example.

We present a practical approach by regularizing the optimization procedure with time
information of the interface geometry of a layer-based velocity model. The method is a
generalization of Gjgystdal and Ursin’s (1981) scheme for building velocity models that are
consistent with the zero-offset traveltimes. The zero-offset traveltime horizons enable the
interface geometry to be updated in an automatic fashion through map migration (Kleyn,

1977). The interfaces are recognized on initial PP depth images and map demigrated along
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normal incidence point (NIP) rays (Hubral & Krey, 1980) into time horizons which are un-
related to any velocity model. For every velocity parameter set in the optimization, the
interface geometry of the velocity model is map migrated to depth. In this way we only
search amongst velocity models that are consistent with the zero-offset time information

of the seismic data.

We proceed considering a 2.5-D formalism, that is 3-D wave propagation in a 2-D model
where all calculations are done in a plane (Bleistein, 1986). However, the methods pre-
sented are fully applicable to 3-D data, but for clarity and adaption to the single line of
the ocean bottom seismic (OBS) field data example, we limit ourself to 2.5-D. Formulas for
the 3-D case are found in the review by Ursin (2003). Here, we present the expressions for
the creation of PP common image-point gathers assuming an isotropic medium. Complete

description of the 2.5-D formulas for anisotropic media is given by Foss et al. (2004).

The outline of the paper is as follows. The first section introduces notation and gives a
complete description of how to create isotropic PP amplitude-compensated common image-
point gathers for the purpose of velocity analysis for OBS data in a 2.5-D formalism. The
next section introduces the DS misfit functional and explains how time information on the
interface geometry is incorporated in the tomographic optimization. Then we present a

field data example from the North Sea to illustrate our procedure.

5.2 Isotropic PP common image-point gathers

We consider a heterogeneous isotropic elastic medium. The procedure is presented in a 2-D
model with the (1, z3)-plane as the plane of consideration. The geometry is given in Figure
5.1 where the imaging point is denoted y = (y1,ys3). The source is at x* and the receiver

is at x" (boldfonts indicate vectors). The superscripts s and r indicate association with a
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ray from the source and receiver, respectively. The slowness vector p*(y) = (p5, p$) is thus
the slowness of the ray connecting the source point x* and the image point y evaluated
at this latter point. p(x®) indicates the slowness of the same ray evaluated at the source.
A similar notation is used for the receiver, namely, p"(y) = (p},p3) and p(x”"). Observe
that the out-of-plane slowness p, is zero in 2.5-D (Bleistein, 1986; Foss & Ursin, 2004). In
an isotropic medium, the P-wave polarization vectors are the unit vectors of the slowness
vectors, denoted h(x®) = (hi(x®), h3(x®)) and h(x") = (hi(x"), h3(x")) for the polarization
vectors at the source and receiver, respectively. The scattering angle # is define by the
angle between the slowness vectors of the rays from the source and receiver at the imaging

point

S

p°-p
p*|[p7|

r

cosf) = at y. (5.1)

The migration slowness vector is defined by p™(y) = p*(y) + p"(y) with unit vector

: (5-2)

which is the migration dip.

Elastic, isotropic media can be described by the Lamé parameters A(x) and p(x), and
density p(x). These parameters are given as a sum of a smooth part (with superscript (0))

and a perturbation (with superscript (1)):
p(x) = pO(x) + pP(x)
Ax) = AO(x) + AV (x). (5.3)
() = 1 (x) + 1 (x)

The estimation of the smooth part is the object of velocity analysis, while the medium

perturbations are found by inversion. We assume that the perturbations are jumps in the

parameters along an interface defined by a function ¢(x) = 0 (de Hoop & Bleistein, 1997).
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Figure 5.1: Geometry of rays connecting the imaging point with the source and the receiver.

Amplitude-preserving migration results in an estimate of the reflectivity at the interface

which, with a band-limited wavelet w(t), is given by (Ursin, 2003)

A

Sw(;y) = )‘ w(p?v? - (y —x?)),

#(y)

S(0;x?
(5.4)
/ atﬂ(xrvT(xr7Y7xs):Xs;y)|pm(Y)|2dl/7
El/

Q

where x° = x°(y,v,0) and X" = x"(y,v,0) (see Figure 5.1). The migration dip v™(y)
is parameterized by the migration dip angle v such that v™(y) = (cosv,sinv) where
v € E, C [0,27) is the integration domain. »? is the surface normal at the point x?
on the interface, projected from the image point y. The stretch factor p? (Ursin, 2003;
Tygel et al., 1994) is equal to the length of the migration slowness vector evaluated at the
stationary point x?. For PP scattering in an isotropic medium the length of the migration

slowness vector is given by
_ 2cos (0/2)

o) (5:5)

p"(y)l

where v(y) is the P-wave velocity. The data corrected for amplitude, phase and traveltime
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are

atﬂ(XT, T(Xra Yy, Xs)a Xs; Y) -
hm(x") 6751]&) (x", T(x",y,x*),x%) 2V 2r ,CIL{(XT, y,x°)

ot [P2EDCN T i i
0 G| e el 6

where QQ is the in-plane relative geometrical spreading calculated from dynamical ray

tracing (Cerveny, 2001). The total out-of-plane relative geometrical spreading is given by

1/2
choeyo) = | [ o@pa [ wopal o 6)
source ray receiver ray

where both integrals are path integrals of the squared P-wave velocity using time ¢ as the
ray parameter along the indicated rays. x(t) is the spatial position of the ray at time t.

The differentiated data corrected for a possible phase-shift due to caustics are given by

8t11$,ll) (x", T(x",y,x°),x%)

_'pe { / U (x7 g X))+l X)) T O ) dw} . (5.8)

™ 0

Here, T'(x",y,x®) is the two-way traveltime from source to receiver via the imaging point
y. k(X",y) + k(y,x*) is the accumulated KMAH-index for the rays connecting the scat-
tering point and receiver and source, respectively. Ut )(x’",w,xs) is the m-component of
the Fourier transformed data received at x" due to a source at x°. OBS data are usually
created by means of a pressure source, hence there is no directivity of the source.

In the migration formula (5.4), S,(;y) is a band-limited estimate of the isotropic lin-

earized PP scattering coefficient defined by

S(;y) =r(0)"cW(y), (5.9)
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where the medium parameter vector is given by (Beylkin & Burridge, 1990)

W (y)T = MO 24 (5.10)
X0+ 2,00 507 XO) 2,00 '

and the radiation pattern vector by
r(#) = {1, cos, cos® H}T . (5.11)

Note that € is the scattering angle (see Figure 5.1) which is twice the angle of incidence.
For the estimation of the smoothly varying parameters in the background medium (veloc-
ity analysis) we use common image-point gathers computed from amplitude-compensated

migration

Sw(0;y)
r(0)]

Using equations (5.4) and (5.11) this equation gives the formula for a common image-point

I(0;y) = (5.12)

gather

4 cos? (6/2)

Z(0;y) =
(6;y) v2(y)(1 + cos? 6 + cos* 6

E / ou(x", T(x",y,x%),x% y)dv. (5.13)
E,

A structural image is computed by (Ursin, 2003)

I(y) = / 7(0: y)do. (5.14)

5.3 Angle tomographic procedure

The differential semblance misfit functional (Symes & Carazzone, 1991) measures the resid-
ual moveout on common image-point gathers indicating the fit of a given velocity model
used to migrate the current gathers. In the scattering angle domain this is given by

(Brandsberg-Dahl et al., 2003b)

I(m) = ¢ / / 9yZ(6, y: m)|*dody. (5.15)
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Here, m = (myq,...,my,) is the current value of n model parameters needed for a finite
dimensional description of the smooth background medium (i.e. some P-wave velocity
parametrization), y = (y1,ys) is the image point in spatial coordinates and 6 is the scat-
tering angle at the image point. Z(6, y; m) is the common image-point gather at position
y, with angle # and computed with the current model m using equation (5.13). 0y is the
partial derivative with respect to the scattering angle. Equation (5.15) should in addition
be normalized with the energy of each common image-point gather making the misfit func-
tion less sensitive to noise in the data and erroneous amplitude calculations (Chauris &

Noble, 2001).

The DS misfit functional lends itself to an automated tomographic approach through a
gradient-based search in the model parameter space. Numerical evidence (Plessix et al.,
2000; Chauris & Noble, 2001) suggests that the misfit function has, for a large region in the
model space, desirable convexity properties for an automated search procedure. We use
a quasi-Newton method in search of the minimum taking the gradient of equation (5.15)

with respect to the model parameters m. The i-th component of the gradient is given by

Oy, T (m) = / / (0,7 (6, y; m)] 049, (6, y; m) dbdy. (5.16)

To calculate this gradient it is necessary to compute the gradient of the image with respect
to the model parameters. All expressions for this gradient are given by Brandsberg-Dahl
et al. (2003b). The calculations are based on imaging and paraxial ray theory (Farra &
Madariaga, 1987).

Following Billette and Lambaré (1998), we let the complete velocity field be described
by the superposition of a layered model with linear velocity profiles in each layer and a

sparsely sampled 2-D B-spline function. The P-wave velocity at a given point x = (1, x3)
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given by

v(x) = Z(ak + brxs) Ix(x) + dv(x). (5.17)

Here, (ax+bxxs) is the linear velocity profile in layer k, with a constant ay, in each layer with
velocity gradient bg. I is an indicator function which is equal to one in layer k£ and zero
outside. For a given velocity model, the interface geometry is found by map migration of
the zero-offset two-way traveltimes for the different interfaces, as done in the inverse scheme
of Gjgystdal and Ursin (1981). As the interface geometry of the new model needs the new
model itself, a few iterations is needed to stabilize the velocity field and interface geometry.
The zero-offset two-way traveltimes for the key reflectors may be obtained from a stacked
section or by map demigration of an initial migrated section. This procedure ensures that
the interfaces between the layers always give the correct zero-offset traveltimes. dv(x) is
a 2-D B-spline function with coefficients dv;. The complete finite dimensional parameter
model vector is then the collection of the velocity parameters of the layers and coefficients
of the 2-D B-spline, given by

m = {ak,bk,évj}. (518)

The velocity estimation procedure starts by finding an optimal solution using only the first
part of the model description. In order to avoid parts of the problem of the velocity-depth
ambiguity, we may fix the velocity gradients, by, using information from well logs. After
finding reasonable estimates of the parameters ax, we proceed by optimizing with respect
to the coefficients of the 2-D B-spline representation, using dv; as our model parameters.
This last step is designed to capture inhomogeneities not explained by the simple layered

model.

5.4 Field data example

Our procedure has been tested on an OBS line taken from the North Sea. Prior to the
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tomographic procedure (and not for the subsequent imaging shown below) the data have
been passed through a bandpass filter between 3 and 15 Hz. The common image-point
gathers are calculated sparsely; every 250 meters with a total of 12 gathers starting at 1250
meters. The gathers are sampled at every 10 meters in depth and a 0.5 degree sampling
in angle up to 45 degrees incoming P-wave reflection angle. Both the gradients and the
common image-point gathers are smoothed by a simple {1/4,1/2,1/4}-convolution filter
in angle and depth, and, in addition, a 2-D Fourier dip filter in angle and depth is applied
as suggested by Chauris and Noble (2001). The B-spline nodes are placed with 250 meter
intervals in the horizontal direction and 100 meter intervals in the depth direction. This
relatively fine sampling in the depth domain is necessary due to a sharp velocity increase
over a very small region in the velocity model (at 2500-3000 meters in depth). In order
to avoid oscillatory behavior of the optimization due to this oversampling, we employ a
Tikhonov regularizer in depth of the medium parameters (Tenorio, 2001; Brandsberg-Dahl

et al., 2003b).

An initial image was created using a model from a simple 1-D optimization. From this
image the time horizons were constructed by map demigration along the NIP rays from
chosen key reflectors as described above with a total of 14 interfaces. These time horizons
were used in the consecutive velocity estimation steps to govern the interface geometry in
equation (5.17). The velocity gradients and starting constant velocities within each layer
were chosen from a well log close by. The velocity gradients were kept fixed in all subse-
quent velocity updates. This initial velocity model and the corresponding image are shown
in Figure 5.2 (top left) and 5.4. Figure 5.3 a) shows the common image-point gathers
using the starting model in Figure 5.2 (top left). The common image-point gathers shown
in Figure 5.3 b) are after 4 iterations. The two last iterations (of 7 in total) were done

with respect to the 2-D B-spline parameters given in equation (5.17). This gave little im-
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Figure 5.2: Initial (top left) and final (top right) P-wave velocity with the final interface
geometry in depth (bottom).
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Figure 5.3: The common image-point gathers in the optimization after 0 iterations a), 4

iterations b) and after 7 iterations c).
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Figure 5.4: Starting PP image computed with the initial velocity model in Figure 5.2 (top
left).

[km] £

Figure 5.5: Final PP image after 7 iterations corresponding to the final velocity model in

Figure 5.2 (top right). 151



provement in the value of the misfit functional. The common image-point gathers shown in
Figure 5.3 c) are after 7 iterations and show reasonable convergence. Notice the apparent
internal multiples below main reflector at 2700 meters with strongly overmigrated moveout
behavior. These multiples made it very difficult to estimate a correct velocity model as the

method tends to flatten primaries and multiples which have conflicting moveout behavior.

The final velocity model from the optimization is found in Figure 5.2 (top right) with
the final interface geometry in depth (bottom). Notice the change in the interface geome-
try between the starting and the final velocity model in the figure. From starting model to
final model the misfit functional dropped by 14%. The focused image created by the opti-
mized model is given in Figure 5.5. Notice the deeper interface (at roughly 3700 meters)

becoming more focused compared to the starting image Figure 5.4.

5.5 Conclusion

We have presented an approach to PP seismic angle tomography based on an iterative dif-
ferential semblance optimization scheme. The P-wave velocity model consists of a number
of layers with constant velocity gradients plus a 2-D bicubic spline function to take into
account lateral velocity changes. For each iteration the layer boundaries were constructed
by map migration of the zero-offset traveltime maps. In this way, the zero-offset traveltimes
from the main reflectors in the model are always correct. The OBS data example indi-
cates that the sensitivity to multiple reflections is the main problem in migration velocity

analysis.
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