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INTRODUCTION

Macroscopic models for traffic flow, which are based on nonlinear hyperbolic
conservation laws, have received a lot of attention and been investigated inten-
sively during the last years. In these models cars are considered as small particles
and the main quantity to model is the density of the cars on the roadway. The
topic of this thesis is one such model, namely the so-called Aw–Rascle model
proposed by Aw and Rascle in 2000.

Macroscopic models of traffic flow: an overview

Modeling of traffic flow by macroscopic models started back in the 1950s by
Lighthill and Whitham [36] and independently Richards [42] proposing to apply
fluid dynamics concepts to traffic flow. The Lighthill–Whitham–Richards (LWR)
model describes car traffic on a one-dimensional unidirectional single roadway.
It is a so-called first order model, i.e. a scalar conservation law, expressing
conservation of mass,

ρt +
(
ρV (ρ)

)
x

= 0,

where x ∈ R is the position on the roadway, t ∈ R+ denotes time and ρ =
ρ(x, y) is the density of cars on the roadway. The velocity of the cars, V (ρ),
is nonincreasing and nonnegative for ρ ∈ [0, ρmax], where ρmax denotes some
maximal density. Despite the simplicity of the LWR model it correctly models
important features like formation, propagation and dissolution of traffic flow.
The model still receives a lot of attention, both from a mathematical modeling,
an analytical and a numerical point of view.

Many different features have been included in the model giving rise to analyti-
cal studies. In [30] the model is extended to include merging and diverging traffic,
and also a mixed type of vehicles is taken into account. This is done by including
a time independent inhomogeneity factor a(x) in the flux function. A study of
the model with inhomogeneous road conditions is given in [38]. Furthermore,
the model is generalized to multi-class flow, see [5]. More precisely, the density
of each class i is described by the LWR model, and the equations are coupled
through the velocity functions Vi, which depends on the density of all classes. In
[11] and [12] multilane flow is modeled by n inhomogeneous scalar LWR equa-
tions, one for each lane, and the equations are coupled through the source terms,
which describe the intra-lane dynamics. Furthermore, in [14] the LWR model is
studied with a variable unilateral constraint modeling for instance a toll gate at
the roadway. Also, as considered in [15], the phenomena of phase transition is
included in the model. The velocity V (ρ) consists of two disconnected functions,
which are defined on disjoint intervals representing the free and congested phase,
respectively.
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2 INTRODUCTION

The model is also extended to describe traffic flow on a network, that is a
collection of unidirectional roads connected by junctions. This was first done by
Holden and Risebro in [29]. On each single road the traffic is given by the LWR
model. The system is underdetermined at the junctions, and so-called coupling
conditions for the junctions have to be given. There are different approaches
for treating the traffic distributions at the junctions, and another set of coupling
conditions is given in [7]. A different point of view for junctions is presented in
[37], which takes into account the interactions of the cars at a junctions. The
networks are extended to include traffic lights, bottlenecks and traffic circles, see
Piccoli and Garavello [19]. Furthermore, there is also a network model which
includes sources and destinations, that are areas from which the cars start and
end their travels. This model is actually a multi-class model on a road network
and is discussed in [17] and [24]. In [26] highway networks with junctions are
described as merging and dispersing roadways.

The models on networks are used in numerical simulation, see for instance
[6]. The goal is modeling of large highways and complex road networks in big
cities. This may help predicting the traffic behavior so that road networks can
be planned to for instance avoid congestion and maximize traffic flow.

In the LWR model the velocity of cars depends on the density only, which
is not always a realistic model. Trying to overcome this drawback and include
other effects such as the time lag of the response of the drivers and the cars gave
rise to the so-called second order models, that is models of two equations. The
prototype of these models was until recently the Payne–Whitham (PW) model
from the early 1970s, see [40] and [46]. This model is inspired by fluid flow and
includes, in addition to the density, also the velocity v = v(x, t) of cars on the
roadway. In non conservative form the model is

ρt +
(
ρv

)
x

= 0,

vt + vvx +
1
ρ
p(ρ)x =

1
ε

(
V (ρ)− v

)
,

where p(ρ) is a so-called pressure function, V (ρ) denotes an equilibrium velocity
and ε denotes the relaxation time.

However, there are some differences between gas and traffic flow, as pointed
out by Daganzo in [16]. For instance, in contrast to gas, traffic flow does not
respond to stimuli from behind, so vehicles should not influence the behavior of
the vehicles in front of them. Daganzo shows that the second-order models give
some unphysical effects and concludes by rejecting these models. The drawbacks
of these models are clearly explained in [2]. First, under some conditions the
models predict negative flows and negative speed, that is the cars drive back-
wards. Next, the characteristic speed of the second wave family is larger than
the velocity of the cars, so some information travels faster than the cars, which
is clearly unsatisfactory. Furthermore, unlike gas, a driver with dense and fast
traffic in front of him or her will accelerate instead of braking.
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In 2000 Aw and Rascle [2] proposed a new second order model for traffic flow.
Motivated by the drawbacks of the PW model, they simply replaced the time
derivative in the second equation in the homogeneous model by a convective de-
rivative. It turned out that by this modification they resolved the inconsistencies
of the PW model. In [47] Zhang independently proposed the same model. How-
ever, in this thesis the model is considered in the framework by Aw and Rascle.
The model is given as

ρt + (ρv)x = 0

(ρw)t + (ρwv)x = 0

}
where w = v + p(ρ). (1)

The function w can be viewed as the preferred velocity of the drivers, while the
“density” function p slows down the traffic. We will assume that the function
p(ρ) is smooth, strictly increasing and Lipschitz continuous in its argument and
satisfies p(0) = 0 and p′(0) = 0. The prototype of this function is p(ρ) ∝ ργ where
γ > 1. The eigenvalues of the model are λ1 = v−ρp′(ρ) and λ2 = v, so the waves
do not travel faster than the traffic, and vehicles will not be influenced by what
happens behind. Furthermore, as discussed in [2] the model predicts instabilities
near vacuum, which might be reasonable in traffic with very few drivers.

An improved version of the model includes a relaxation term in the second
equation, which accounts for drivers’ attempt to drive at some ideal speed and
the time lag in the response of the driver and the car. The model is

ρt + (ρv)x = 0

(ρw)t + (ρwv)x =
1
ε
ρ
(
V (ρ)− v

)
 where w = v + p(ρ), (2)

and the relaxation time ε corresponds to the average acceleration time. The
equilibrium velocity V (ρ) is smooth and satisfies the subcharacteristic condition,
that is −p′(ρ) ≤ V ′(ρ) ≤ 0. This model is discussed in for instance [41].

A two lane extension of the Aw–Rascle model is proposed in [23] . It gives
(ρ, v), taken over both lanes, on a multilane roadway by incorporating two equi-
librium functions V1(ρ) and V2(ρ) and a switching mechanism in the model. In
[3] the model is extended to include a source term that models a highway entry.
For this model, in order to achieve a meaningful invariant domain, the pressure
function has to be negative, for instance p(ρ) = C ln ρ

ρmax
. Furthermore, in [44]

another source term to the second equation of the model is introduced, motivated
by experimental data. Thus, the system yields an unstable regime for intermedi-
ate densities, as observed in real traffic dynamics and discussed in [32]. Another
approach for modeling this instability is given in [20], where the Aw–Rascle model
and the LWR model are coupled together as a phase transition model. Like the
LWR model, the Aw–Rascle model is also extended to networks. On each road
in the network the traffic flow is modeled by this second order model. Different
sets of coupling conditions are given in [18], [27] and [28]. In [35] the Zhang-
version of the model (2) is extended to include time dependent effects such as
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weather conditions, traffic jams and traffic congestion managements by allowing
the functions corresponding to p and V to depend on time.

In Lagrangian coordinates the Aw–Rascle system is

τt − vy = 0

wt = R(τ, w)

}
where w = v + Q(τ), (3)

τ(y, t) is the inverse density of cars on the roadway, and y ∈ R and t ∈ R+ are the
Lagrangian mass and time variable, respectively. Note that we abuse the notation
such that v and w depend on (y, t) or (x, t) depending on whether we consider
the Lagrangian or Eulerian form of the system. The function Q(τ) = p(ρ) and
the assumptions on Q corresponds to the assumptions on p. Furthermore, the
function R denotes the relaxation term. For further discussions of the model and
different choices of R, see [21] and [22]. Due to the results by Wagner in [45] the
Eulerian and Lagrangian form of the Aw–Rascle system are equivalent.

In [4] the homogenoues model is used to describe multi-class traffic flow by
introducing a class variable a. The behavior of different types of vehicles or
drivers is accounted for in the model by setting w = v + Q̃(τ, a) where, for
instance, Q̃(a, τ) = aQ(τ). Since the model is in Lagrangian form, a is constant
in time and thus given by at = 0. An extension of this multi-class model to road
networks is proposed in [25].

The Aw–Rascle model has been rigorously derived from a microscopic car-
following model,

τ̇ δ
k (t) =

1
δ

(
vδ

k+1(t)− vδ
k(t)

)
ẇδ

k(t) = R
(
τ δ
k (t), wδ

k(t)
)

 where wδ
k = vδ

k + Q(τ δ
k ). (4)

The functions τ δ
k (t) and vδ

k(t) are the inverse density (the distance to car k + 1)
and velocity of car k, respectively. The Lagrangian position of car k on the
roadway is y = kδ for some δ > 0. This semi-discrete car-following model was
proposed by Aw, Klar, Materne and Rascle in [1], and they show a connection
between this microscopic model and a semi-discretization of the macroscopic Aw–
Rascle model. Furthermore, for the homogeneous model without vacuum they
establish that the semi-discretization of the macroscopic model is the limit of the
time discretization of the microscopic model. In Paper II the Aw–Rascle model
is derived directly from this microscopic model.

Recently a fully discrete hybrid model, which combines a macroscopic descrip-
tion based on the Aw–Rascle model away from obstacles as for instance traffic
lights and a microscopic view near the obstacles, is proposed in [39].

Inspired by the Aw–Rascle model, Colombo proposed in [8] another new second
order model. This model predicts the density of cars and an auxiliary variable
motivated by the linear momentum in gas dynamics, and the velocity of the cars
is given as a function of these two variables. In [3] the model is extended to
include entries and exists and changes in the traffic speed due to inhomogeneities
of the roadway. All these features are introduced in the model as different choices



INTRODUCTION 5

of source terms. Furthermore, in order to describe phase transitions in traffic flow
the model is combined with the LWR-model, see [9] and [15]. In [13] this phase
transition model is extended to comprehend junctions.

Weak solutions of the Aw–Rascle model

In this thesis we study global weak solutions of the Aw–Rascle model and
address questions concerning existence, entropy admissibility, uniqueness and
stability of such solutions. The main difficulty is the appearance of vacuum
in the initial data and in the solutions.

The Aw–Rascle model, as given in (1), is a system of hyperbolic conservation
laws. The eigenvalues of the model is,

λ1 = v − ρp′(ρ), λ2 = v.

Away from vacuum the system is strictly hyperbolic, and, under the assumption
that ρp′′(ρ) + 2p′(ρ) > 0, the first wave family is genuinely nonlinear and the
second wave family is linearly degenerate. Furthermore, the system is of Temple
class, that is the wave curves of the shock and rarefaction waves coincide. The
Riemann invariants are w and v, and combining the above properties yields that
the wave curves are given by w = const. and v = const. We will denote the
conservative variables (ρ, ρw) by u.

Weak solutions away from vacuum. In general, a solution of the Riemann
problem without vacuum is given by a rarefaction wave or a shock connecting the
left state to some middle state and then the middle state connects to the right
state by a contact discontinuity. Vacuum appear in the solution of a Riemann
problem if wL < vR, where L and R denote the left and right state, respectively.
Furthermore, as discussed in Paper I, for initial data consisting of several Rie-
mann problems vacuum may appear in the weak solution even though it is not
present in the initial data or appears immediately. Thus, in order to stay away
from vacuum invariant domains for the Riemann problem are of the form

D = {u ∈ R2 : wmin ≤ w(u) ≤ wmax, 0 ≤ vmin ≤ v(u) ≤ vmax}, (5)

where wmin > vmax. The domain D and a general solution of the Riemann
problem in the (w, v)-plane are shown in figure 1(a). Note however that these
invariant domains are severely restricted.

Existence of weak solutions u ∈ BV(R)2 for system (1) with initial data ū in
D and initial Riemann invariants (w̄, v̄) ∈ BV(R)2 follows by the Glimm scheme,
see for instance [43, Theorem 5.4.1]. Since the wave curves are given by the
Riemann invariants, the approximate solution defined by the Glimm scheme has
Riemann invariants with nonincreasing total variation. Away from vacuum (p−1)′

is bounded, which yields a bound on the total variation of the conservative vari-
ables of the Glimm approximation. Convergence of a subsequence of approximate
solutions follows by Helly’s theorem. The limit is a weak solution which satisfies
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the following entropy inequality,∫
R+

∫
R

(
η(u)φt + q(u) φx

)
dx dt +

∫
R

η(ū)φ(x, 0) dx ≥ 0, (6)

for all nonnegative test functions φ(x, t) in C∞
0 (R × R+) and all strictly convex

entropies η(u) with flux q(u).
This existence result is extended to the Aw–Rascle model with source terms,

like the system with relaxation (2), by operator splitting assuming the domain D
is invariant for the system of ordinary differential equations generated by the right
hand side, see Paper I. Furthermore, these inhomogeneous systems, with initial
data in D, often satisfy the assumptions made by Colombo and Corli in [10].
They show well-posedness for strictly hyperbolic Temple systems with source,
assuming the eigenvalues are separated on every compact subset of this domain.
In particular, away from vacuum this last assumption is satisfied for the case
p(ρ) = ργ where γ > 1, which yields maxu∈U λ1 < 0 < minu∈U λ2. Furthermore,
in [3] well-posedness is proved with p(ρ) = P ln ρ

ρmax
, where P is some positive

constant, and the source terms modeling highway entries.
The Zhang version of the Aw–Rascle model with relaxation is studied in [33]

and [34]. Weak entropy solutions are constructed and uniqueness is proved by
means of a finite difference approximation.

In Paper II we construct a weak solution by considering the Lagrangian
form of the Aw–Rascle system (3). Our approach is to carefully study the semi-
discrete car-following model given by (4). For initial data of bounded variation
taking values in D the solution (τ δ, wδ) of the semi-discrete car-following model
converges in L1

loc(R× R+)2 to a weak solution of (3). Furthermore, the solution
satisfies an entropy inequality corresponding to the one given in (6). In particular,
this approach yields a direct derivation of the Aw–Rascle model with relaxation.

For the homogeneous system, that is for R = 0, we show monotonicity of τ δ(t)
with respect to the initial data, that is if

τ̄1
k ≤ τ̄2

k , w1
k+1 − w1

k ≤ w2
k+1 − w2

k for all k,

then
τ1
k (t) ≤ τ2

k (t) for all k.

By using this monotonicity property, we prove that the constructed solution
τ(y, t) is stable with respect to the initial data,

‖τ1(t)− τ2(s)‖ ≤
∥∥τ̄1 − τ̄2

∥∥ + (t ∧ s) TV(w1 − w2) + C|t− s|, (7)

where C = TV(v̄1) ∧ TV(v̄2).
In [31] Karlsen, Risebro and Towers give, as a special case, uniqueness criteria

for scalar hyperbolic equations with discontinuous flux. Since w is constant in
time, the Lagrangian form of the homogeneous Aw–Rascle model rewrites as

τt +
(
Q(τ)− w

)
y

= 0.

By the results in Paper III we obtain that the weak entropy solution constructed
satisfies the conditions needed for uniqueness, and in particular a Kružkov-type
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R

L

wmax

vmin
v

w

w = v
ρ = 0D

vmax

wmin

(a)

L

wmax

vmax

R

w

v

DV

w = v
ρ = 0

(b)

Figure 1. The invariant domains (a) D and (b) DV and general
solutions of the Riemann problem.

entropy condition. Furthermore, the Kružkov-type entropy condition is trans-
lated into Eulerian coordinates and we show that it is satisfied for the Eulerian
solution constructed in Paper I. Thus, by Wagner [45], the two constructed
solutions correspond and are unique.

Weak solutions with vacuum. At vacuum the eigenvalues coincide so the
hyperbolic Aw–Rascle system is not strictly hyperbolic. A Riemann problem
which yields vacuum consists of a rarefaction wave connecting the left state to
vacuum, and then vacuum is connected to the right state by a discontinuity with
speed vR. We describe the vacuum as the state w = v = wL. This definition of
vacuum and solution of the Riemann problem is entropy admissible as shown in
Paper III. Even though entropy inequalities as (6) do put restrictions on the
values of w at a vacuum, these are not strong enough to specify w. However, in
conservative variables (ρ, ρw) these solutions are equal.

When vacuum is included in the solution, invariant domains for the Riemann
problem are of the form

DV =
{
u ∈ R2 : 0 ≤ v(u) ≤ w(u) ≤ vmax

}
.

We can now include any nonnegative value of the density ρ and the velocity v
by just increasing the choice of the maximal velocity vmax. The domain DV and
a general solution of the Riemann problem including vacuum in the (w, v)-plane
are shown in figure 1(b).

In the solution of the Riemann problem, both w and v changes over the wave
connecting vacuum to some right state. However, the total variation of the Rie-
mann invariants is still nonincreasing. But the derivative of the inverse of p(ρ) is
unbounded so we do not get a bound on the total variation of the conservative
variables from TV(w, v). Thus, we can not use the Glimm scheme to obtain
existence of weak solutions as is the case when we stay away from vacuum.
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In Paper I we consider the Eulerian form of the model with initial data
in DV and initial Riemann invariants (w̄, v̄) ∈ BV(R)2 and show existence of
weak entropy solutions in L1

loc(R × R+)2. Our strategy is to consider slightly
modified systems for which we can control the total variation of the conservative
variables and thus get existence of weak entropy solutions by the Glimm scheme.
By introducing a cut-off function and using a compactness argument we achieve
convergence of a subsequence of approximate weak solutions. The limit turns
out to be a weak solution satisfying an entropy inequality as given in (6), for all
nonnegative test functions φ(x, t) in C∞

0 (R×R+) and all entropies η(u), which is
strictly convex in ρ, with corresponding flux q(u). When vacuum is included there
exists no strictly convex entropy η(u). However, it turns out that there exists an
entropy as introduced above and, away from vacuum, this entropy function makes
the entropy inequality fail for inadmissible discontinuities. Operator splitting and
the same technique as used to obtain convergence of the approximate solutions
extends the existence result to the inhomogeneous model (2).

For the Lagrangian form of the homogeneous system the construction of weak
solutions, which are stable in the L1-norm, as the limit of the semi-discrete car-
following model is extended to Cauchy problems with initial data in DV , see
Paper II. However, when vacuum is included in the model, the inverse density
τ(y, t) does not belong to L∞(R× R+), so convergence of τ δ has to be obtained
by a different approach. The idea is now to study the Eulerian space variable
x = x(y, t) as given by

τ =
∂x

∂y
, v =

∂x

∂t
a.e.

Consider the semi-discrete car-following model (4). For a fixed t the piecewise
linear xδ(y, t) is strictly increasing and bounded and it is Lipschitz continuous in
time as a function into L1

loc(R). Furthermore, if there is no vacuum in the initial
data it is also continuous. So, by Helly’s theorem xδ → xδ in L1

loc(R×R+), which
implies weak convergence of τ δ to a limit τ̂ .

However, the problem is to show that the relation w = v + Q(τ) holds for
the limit and to handle vacuum in the initial data. We restrict to functions w
in BV(R) that have positive jumps only in a discrete set V and satisfy a one-
sided Lipschitz condition limiting the rate of growth between the points of V .
Furthermore, the solution τ δ is monotonicity preserving, that is if

τ̄k ≤ τ̄k+1 and wk+1 − wk ≤ wk+2 − wk+1 for all k,

then
τk(t) ≤ τk+1(t) for all k.

It follows, by using this property, that vacuum only appears at the set V . Thus,
in the solution a vacuum is represented as a stationary delta-shock,

dτ̂ = h(y) dδ(y),

where h(y) ≥ 0 is the size of the vacuum, that is the length of an empty road
section.
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We show that the strictly increasing initial x̄ with jumps in V can be approx-
imated by a strictly increasing function x̄δ which converges to x̄ in L1

loc(R). For
fixed t the limit x(y, t) is monotone and piecewise continuous, so τ̂ is a locally
bounded measure of the form

dτ̂ = τ(y, t) dy +
∑

ym∈V

h(y, t) dδ(y − ym), (8)

where τ(y, t) ∈ L1
loc(R×R+). It follows that τ δ → τ in L1

loc(R \V ×R+), and we
show Q(τ δ) ⇀ Q(τ) and thus τ̂ is a weak solution. Furthermore, τ̂ satisfies an
entropy inequality of the form in (6) with a flux function given as the measure

dη̂ = η dy + dηs,

where η dy and dηs is the absolutely continuous and singular part of the measure,
respectively. The function η(τ, w) corresponds to the Eulerian entropy function
and is strictly convex in τ away from vacuum.

By the same approach as without vacuum it follows that the constructed so-
lution is stable with respect to the initial data, that is τ̂ satisfies the estimate
given for τ in (7).

In Paper III we consider uniqueness of weak solutions. The Lagrangian form
of the Aw-Rascle model rewrites as a scalar conservation law with a singular
source,

τt + Q(τ)y = wy.

Vacuum will only appear at points at which w makes positive jumps. We make
the same assumptions on w as we made in Paper II, and assume in addition that
all the jumps in w, which are the singularities of the source, are located in the
discrete set V . Clearly the inverse density does not belong to L∞ when vacuum
is included. Furthermore, it follows by an entropy condition that vacuum only
will appear in the discrete set V . We consider weak solutions of the form

dτ̂ = τ dy + h d∆,

where (τ, w) ∈ DV , τ ∈ L1
loc(R+ × R) and d∆ is the counting measure over V .

In order to obtain a uniqueness result we follow the method by Karlsen, Risebro
and Towers in [31], where uniqueness is obtained from a Kružkov-type entropy
condition. Our entropy condition has an additional term due to the delta-shocks,
and is given as∫

R+

∫
R

[(
|τ − c|+

∑
ym∈V

h(y, t)δ(y − ym)
)
φt − |Q(τ)−Q(c)|φy

]
dy dt

+
∫

R+

∫
R\V

sign(τ − c)w′(y) φ(y, t) dt dy

+
∫

R+

∑
ym∈V

|w(y+
m)− w(y−m)|φ(ym, t) dt ≥ 0,

(9)
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for all c in R and all test functions 0 ≤ φ ∈ C∞
0 (R × R+). The above entropy

condition allows discontinuities directly to vacuum, and so does the entropy con-
dition in (6) with entropy fluxes convex in ρ. By physical considerations a solution
should approach vacuum continuously from the left. For instance, if a driver has
no cars in front, he or she will speed up. So, in order to avoid unphysical vacuum
states, we require explicitly that for t > 0 and ym ∈ V such that h(ym, t) > 0,

lim
y→y−m

τ(y, t) = τ(ym, t) = ∞. (10)

We show that a weak solution of the Cauchy problem with initial data given
by (8) satisfying the entropy conditions (9) and (10) is unique. Furthermore,
by considering the semi-discrete model we show that the solution constructed
in Paper II satisfies both the Kružkov-type entropy inequality and approaches
vacuum continuously from the left. Hence it is unique and the Cauchy problem
for the Lagrangian form of the Aw–Rascle model is well-posed.

By Wagner we know that the weak solution of the system in Lagrangian form
corresponds to a weak solution of the Eulerian form of the system. The Kružkov-
type entropy condition (9) is translated into Eulerian coordinates and we show
that the weak solution constructed in Paper I satisfies this condition. As for
the Lagrangian solution, the entropy inequality (6) and the Eulerian form of (9)
both allow some weak solutions which connect to vacuum by a discontinuity.
The uniqueness of the Eulerian solution constructed is an open question since we
do not know whether the solution always approaches vacuum continuously from
the left or sometimes makes jumps directly to vacuum. However, the Cauchy
problem for the Eulerian system with vacuum is not well-posed. In [2] several
examples of Riemann problems are given in which small perturbations of the
initial conservative variables (ρ, ρw) totally change to solution, and hence, weak
solutions do not depend continuously on the initial data when vacuum is included.
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EXISTENCE OF SOLUTIONS FOR THE AW–RASCLE
TRAFFIC FLOW MODEL WITH VACUUM

MARTE GODVIK AND HARALD HANCHE-OLSEN

Abstract. We consider the macroscopic model for traffic flow proposed
by Aw and Rascle in 2000. The model is a 2 × 2 system of hyperbolic
conservation laws, or, when the model includes a relaxation term, a 2 ×
2 system of hyperbolic balance laws. The main difficulty is the presence
of vacuum, which makes control of the total variation of the conservative
variables impossible. We allow vacuum to appear and prove existence of a
weak entropy solution to the Cauchy problem.

1. Introduction

In [2] Aw and Rascle introduced a new macroscopic model for traffic flow,

ρt + (ρv)x = 0

(ρw)t + (ρwv)x = 0

}
where w = v + p(ρ), (1)

the functions ρ(x, t) and v(x, t) are the density and the velocity of cars on the
roadway and x ∈ R and t ∈ R+ are the Eulerian space and time variable, respec-
tively. For simplicity we write the system as

ut + f(u)x = 0,

where u = (ρ, y) = (ρ, ρw) ∈ U ⊂ R2. The function p(ρ) is smooth and strictly
increasing and it satisfies

p(0) = 0, lim
ρ→0

ρp′(ρ) = 0 and ρ p′′(ρ) + 2 p′(ρ) > 0 for ρ > 0. (2)

The last assumption ensures strict hyperbolicity for ρ > 0. The prototype of the
function p(ρ) is

p(ρ) ∝ ργ , γ > 0. (3)
The eigenvalues of the system are

λ1 = v − ρp′(ρ) and λ2 = v.

For ρ > 0 the first wave family is genuinely nonlinear and the second family is
linearly degenerate. Moreover, for ρ = 0 the eigenvalues coincide and the system
is only hyperbolic. In [2] Aw and Rascle solve the Riemann problem for this

2000 Mathematics Subject Classification. 35L80, 35L45, 35L65, 35L67, 90B20.
Key words and phrases. Road traffic; Temple system; non–strictly hyperbolic system;

vacuum.
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model and they include the vacuum state. For a discussion of the model, see also
[1], [5], [6], [8], [9], [10], [11], [12] and [15].

The model is of Temple class, i.e., the shock and rarefaction curves coincide.
The Riemann invariants are w and v, and the wave curves are given by w = const.
and v = const., respectively. A solution of the Riemann problem that does not
include vacuum consists of at most two waves, one of each family. Thus, any
subdomain D ⊂ U defined by

D = {u ∈ U : w− ≤ w(u) ≤ w+, 0 ≤ v− ≤ v(u) ≤ v+} , (4)

where w− > v+, is invariant for the Riemann problem. Further, for a solution of
the Riemann problem with initial data in D, the total variation of the Riemann
invariants is nonincreasing. The domain D is shown in figure 1(a). If we pick
initial values u0(x) in D, vacuum will not appear in the solution of the Cauchy
problem. Thus the function (p−1)′ is bounded, and it is possible to obtain a
bound on the total variation of (ρ, y) from the total variation of the Riemann
invariants. By using this property and the Glimm scheme [7], it can be shown
that the Cauchy problem, with u(x, 0) = u0(x) ∈ BV(R)2, has a weak entropy
solution. This argument is given in Serre [16, Chapter 5].

As long as we must exclude the vacuum state, our choice of an invariant
domain is severely limited. If we, for example, want to increase the maximal
velocity v+, we also have to increase w− in order to stay away from vacuum.
When including the vacuum state, the available invariant domains are given by
(4) requiring w(u) ≥ v(u) instead of w− > v+. All these regions are subdomains
of

DV = {u ∈ U : 0 ≤ v(u) ≤ w(u) ≤ v+} . (5)
The domain DV is depicted in figure 1(b)–1(c). Note that we now can include
any nonnegative value of the car density ρ0 and velocity v0 in DV by choosing a
larger value of v+.

A Riemann problem with left state uL and right state uR produces a vacuum
state at time t = 0+ if and only if

vR ≥ wL. (6)

When the Riemann data satisfies this condition, the solution consists of a rar-
efaction wave that connects uL to a vacuum state given by w = v = wL, and a
contact wave that connects the vacuum state given by v = w = vR to the right
state uR. Hence the total variation of the Riemann invariants is still nonincreas-
ing. So, if p′(ρ) > ε > 0, it is in general possible to obtain a bound on the total
variation of (ρ, y) from the total variation of the Riemann invariants, and the
Glimm scheme yields existence of a weak entropy solution.

In [19] it is shown for the p-system that, unless vacuum is present initially or
appears immediately, the solution will not reach a vacuum state in finite time.
This is not the case for the Aw–Rascle model. In order to show this, assume
initial Cauchy data consisting of three constant states denoted by uL, uM and uR

such that vL = vM , wM = wR and wL ≤ vR. Further, assume that the Cauchy
data does not include vacuum. Thus, at time t = 0+ the solution consists of
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w = v
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w+

w−

w

v+v−

(a)

DV
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w = v
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w+
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ρ

v

ρ+

v+

DV
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Figure 1. The domains (a) D and (b)-(c) DV .

uV

0

t1

t2

t3

x

t
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uR

uM

(a)

u∗

uL

w

w = v

v

uRuM

(b)

Figure 2. A contact discontinuity and a rarefaction wave col-
lide and a vacuum state uV appears in the solution. The state
along the dashed characteristic in figure (a) is the state denoted
by u∗ in figure (b).

a contact discontinuity separating the leftmost state uL and the middle state
uM , and a rarefaction wave connecting uM and the rightmost state uR. The
solution, as a function of time and space, is shown in figure 2(a), and figure
2(b) gives the states in the (w, v)-plane. The contact travels faster than the
rarefaction, and the two waves will collide at time t1. Since wL ≤ vR, the
resultant state once the incoming waves have passed through each other includes
vacuum. Across the incoming rarefaction wave the velocity v increases. Thus, as
the contact discontinuity transverses the rarefaction, the velocity of the contact
increases. Since the velocity of the rightmost part of the incoming rarefaction is
λ1(uR) < λ2(uR), the contact travels through the rarefaction in finite time and
leaves the rarefaction at time t = t3. Thus, vacuum will appear in the solution at
some time t2. Further, several waves can collide at the same time. Then vacuum
appears if and only if (6) is satisfied for L denoting the leftmost wave and R the
rightmost wave.
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We want to show existence of a weak entropy solution of the Cauchy problem
for system (1), with initial data u0(x) taking values in DV . Assume

p′(0) = 0, p′(ρ) > 0 for ρ > 0, and |p(ρ1)− p(ρ2)| ≤ L |ρ1 − ρ2| , (7)

for some constant L, which is satisfied for the prototype function given by (3) with
γ > 1. Since we allow vacuum states and p′(0) = 0, we are unable to control the
total variation of the conservative variables, and thus we can not use the Glimm
scheme to show existence. However, we consider slightly modified systems for
which we can control the total variation and show existence of weak entropy
solutions. The Riemann invariants have nonincreasing total variation and they
are Lipschitz continuous in time as functions into L1

loc(R). Thus, by introducing
a cut-off function and using a compactness argument, we show convergence of
a sequence of weak entropy solutions of the slightly modified systems. It turns
out that the limit is a weak solution of the original system. However, when
we include vacuum the system has no strictly convex entropy η(ρ, y). We relax
the assumptions on the entropy function and assume only that η(ρ, y) is strictly
convex in ρ. For this choice of entropy functions we show that admissible, in the
sense of Lax, discontinuous solutions of the Riemann problem for (1) satisfy the
entropy inequality, and that it fails for inadmissible discontinuities. Finally, we
show that the weak solution obtained for the Cauchy problem for (1) satisfies the
entropy inequality. In Section 2 we prove the following theorem:

Theorem 1. Let the initial Riemann invariants (w0(x), v0(x)) be in BV(R)2

and take values in DV . Assume p(ρ) satisfies (2) and (7). Then there exists a
weak entropy solution u(x, t) in L1

loc(R × R+)2 of system (1) with initial data
u0(x). Further, the total variation of the Riemann invariants w(x, t) and v(x, t)
is nonincreasing.

We expect our proof technique to work also for the network model [5], [12],
provided that the junctions do not cause the total variation of v and w to blow
up. It should also prove useful in overcoming any difficulty arising from loss of
control of the total variation of ρ near vacuum for related traffic models.

An improved version of the model (1) includes a relaxation term in the second
equation,

ρt + (ρv)x = 0

yt + (yv)x = ρR(ρ, y).
(8)

We assume the relaxation term satisfies

R(ρ, y)

{
≥ 0 for v = 0, w ≤ w+,

≤ 0, for v ≤ v+, w = w+,
(9)

and is Lipschitz in v and w,

|R(ρ1, y1)−R(ρ2, y2)| < L (|v1 − v2|+ |w1 − w2|) . (10)

By using operator splitting and Theorem 1 we obtain approximate solutions of the
above system. The approximate Riemann invariants have bounded total variation
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and are Lipschitz continuous in time. Thus, by using the same technique as used
to achieve Theorem 1, we prove, see Section 3, the following theorem:

Theorem 2. Assume the conditions of Theorem 1 are satisfied. Furthermore, as-
sume R(ρ, y) satisfies (9)–(10). Then there exists a weak entropy solution u(x, t)
in L1

loc(R×R+)2 of system (8) with initial data u0(x). Further, the total variation
of the Riemann invariants w(x, t) and v(x, t) is bounded.

Remark. The operator splitting technique, as used in the proof of Theorem
2, also yields existence of a weak entropy solution of the Cauchy problem for
strictly hyperbolic Temple systems with a source term. Consider the strictly
hyperbolic Temple system ut + f(u)x = g(u), where u, f and g are vectors in Rn

and (x, t) ∈ R × R+. Assume the initial Riemann invariants, r0(x) ∈ Rn, have
bounded total variation. We split the system into a homogenoues hyperbolic
part, ut + f(u)x = 0, and a system of ordinary differential equations, ut =
g(u). Consider the homogeneous hyperbolic system. From the theory of Temple
systems there exists a bounded invariant domain D, and the Riemann invariants,
r ∈ Rn, have nonincreasing total variation and are Lipschitz continuous in time
as function into L1

loc(R)n. If the map r 7→ u(r) is a diffeomorphism, there exists a
weak entropy solution of the Cauchy problem for the system. Consider the system
of ordinary differential equations, and assume that the domain D is an invariant
domain for the system. Denote r = R(u) and u = U(r). Thus, by a change
of variables the system transforms to rt = dR(U(r))g(U(r)). If g, U and dR
are Lipschitz, Grönwall’s inequality yields TV(r(t)) ≤ eCt TV(r0), for a constant
C, and Lipschitz continuity in time of r. Finally, the same operator splitting
technique as used to prove Theorem 2, yields existence of a weak entropy solution
u(x, t) of the inhomogeneous hyperbolic system, and the solution has bounded
total variation. In [4] Colombo and Corli prove well-posedness for a class of
strictly hyperbolic Temple systems with a source, assuming the eigenvalues of
the system are separated on every compact subset of D. The above proof holds
for more general systems, but we only obtain existence of a weak entropy solution.
In particular, the eigenvalues of the Aw–Rascle model are not separated on DV

(5), so [4] is not directly applicable.

A specific choice of the relaxation term, as given in [15], is

R(ρ, v) =
1
τ

(V (ρ)− v) = R̃(w, v) =
1
τ

(
V ◦ p−1(w − v)− v

)
, (11)

where the constant τ is the relaxation time and the smooth function V (ρ) is an
equilibrium velocity. Further, assume the subcharacteristic condition, see [15],

−p′(ρ) ≤ V ′(ρ) ≤ 0 (12)

is satisfied.
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v = V (ρ)

w = v

v
v+

w

w+

DV

Figure 3. The curve v = V (ρ) and the domain DV .

We want to show that (9)–(10) are satisfied with this particular choice of
R(ρ, v) under these extra conditions: There is some density ρ0 > 0 so that

w+ ≥ p(ρ0) and V (ρ)

{
> 0, 0 ≤ ρ < ρ0,

= 0, ρ > ρ0.
(13)

The top half of (9) is trivially satisfied. As to the bottom half, note that (12)
implies R̃v ≤ 0 and w+ ≥ p(ρ0) implies p−1(w+) ≥ ρ0. Thus R̃(v, w+) ≤
R̃(0, w+) = τ−1V ◦ p−1(w+) = 0. The domain DV and a curve V (ρ) are shown
in figure 3.

The Lipschitz condition (10) follows too, since (12) implies −τ−1 ≤ R̃v ≤ 0
and −τ−1 ≤ R̃w ≤ 0, and (10) is satisfied with L = τ−1. In conclusion, if we
assume (12)–(13), the assumptions in Theorem 2 hold for R(ρ, v) given by (11).
Thus there exists a weak entropy solution including vacuum for system (8) with
this specific choice of relaxation term.

In [17] Siebel and Mauser introduce another source term ρR(ρ, v) to the second
equation in the Aw–Rascle model. Their function R(ρ, v) satisfies (9)–(10), and
by Theorem 2 there exits a weak entropy solution of the system. The source term
is motivated by experimental data and the system gives an unstable regime for
intermediate densities. For the unstable region the equilibrium density curves in
the fundamental diagram is shifted towards an inverse-λ shape. This feature is
observed in traffic dynamics, as discussed in [14]. Another approach for modeling
this instability using the Aw–Rascle model is given in [8].

Before proving the theorems we introduce some notation. Let Ω denote any
bounded subset of R. The purpose is to compute in L1(Ω) and tacitly draw
conclusions about L1

loc(R). The norm on L1(Ω) is denoted by ‖ · ‖. Further,
we will usually omit subscripts on subsequences and let any subsequence of the
sequence uδ be denoted by uδ. In particular, whenever speaking of convergence
of uδ, we really mean convergence of some subsequence. For simplicity, we write
u(t) instead of u(·, t). Finally, let a ∨ b denote max(a, b).
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2. Proof of Theorem 1.

In order to prove Theorem 1, we first define an appropriate approximation of
(1). For δ > 0, consider

ρt + (ρv)x = 0[
ρ

(
v + pδ(ρ)

)]
t
+

[
ρv

(
ρ + pδ(ρ)

)]
x

= 0,
(14)

where

pδ(ρ) =


p(δ)
δ

ρ, ρ ≤ δ

p(ρ), ρ > δ,
(15)

and w = v+pδ(ρ). The initial Riemann invariants v0(x) and w0(x) are in BV (R)
and take values in DV . Further, we take them to be independent of δ. The
initial data uδ

0(x) depends on δ since w0 = v0 + pδ(ρδ). Assume δ < ρ+, where
ρ+ = (pδ)−1(w+) = p−1(w+) is the maximal density. We denote the solution
of the conservative problem by (ρδ, yδ) and the Riemann invariants by (vδ, wδ).
The modified system is also of Temple class. As discussed in the previous section,
the total variation of the Riemann invariants, even when including the vacuum
state, is nonincreasing,

TV
(
wδ(t), vδ(t)

)
≤ TV (w0, v0) ≤ C, (16)

where C is a constant. For δ > 0 the function pδ(ρ) satisfies

Cδ

∣∣pδ(ρ1)− pδ(ρ2)
∣∣ ≥ |ρ1 − ρ2| , (17)

where Cδ =
∥∥1/(pδ)′

∥∥
∞. >From pδ(ρδ) = wδ − vδ we find

TV
(
ρδ(t)

)
≤ Cδ TV

(
wδ(t), vδ(t)

)
≤ Cδ C, (18)

which implies

TV
(
yδ(t)

)
≤ ρ+ TV

(
wδ(t)

)
+ w+ TV

(
ρδ(t)

)
≤ ρ+C + w+Cδ C.

Thus, for some constant Mδ depending on δ, we have

TV
(
ρδ(t), yδ(t)

)
≤ Mδ. (19)

Notice that Mδ increases without bound as δ → 0, because the same is true for
Cδ.

For initial Riemann data taking values in DV , there exists a solution to the
Riemann problem for (14)–(15) with δ > 0, see [2]. The domain DV is an
invariant region in the sense that if the initial data lies in DV , then so does
the solution. Consider the Cauchy problem for (14)–(15) with initial Riemann
invariants (v0(x), w0(x)) in BV (R)2 taking values in DV and initial Cauchy data
uδ

0(x). Since DV is bounded, the Glimm approximate solutions can be defined
for all times t, and they are bounded. Further, the total variation of the Glimm
approximations are bounded. Thus, by Serre [16, Theorem 5.4.1], the Glimm
scheme yields existence of a weak entropy solution uδ(x, t) of the Cauchy problem.
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The solution is bounded in L∞(R × [0, T ])2 and the total variation is given by
(19). Further, the solution is Lipschitz continuous in time,

‖uδ(t)− uδ(s)‖ ≤ 2 TV
(
uδ(t)

)
|t− s| ≤ Mδ|t− s|,

for s ≤ t ≤ T .
In order to show that the Riemann invariants are Lipschitz in time indepen-

dently of δ, we consider the Glimm scheme as given in [16, Chapter 5]. We
denote by uδ

h(t) and
(
wδ

h(t), vδ
h(t)

)
the approximate solution and the approxi-

mate Riemann invariants of (14) given by the Glimm scheme at time t. Let
h = ∆x = c∆t, where ∆x and ∆t are the space and time step, respectively, and
c is some constant. For a fixed t in [0, T ], it is shown that uδ

h(t) converges to
uδ(t) in L1

loc(R)2 as h → 0. Further, since the Riemann invariants are bounded
in L∞(R) and have bounded total variation independently of h, Helly’s theorem
yields the existence of a subsequence converging to some limit (wδ(t), vδ(t)) in
L1

loc(R)2. The limits should satisfy wδ = vδ + pδ(ρδ) and yδ = ρδwδ. Since pδ

is Lipschitz in its argument and wδ
h = vδ

h + pδ(ρδ
h), the first equality is satisfied.

Further, since yδ
h = ρδ

hwδ
h, the second equality is satisfied.

A diagonal argument gives us a subsequence (wδ
h(t), vδ

h(t)) converging for all t
in S, where S is a countable and dense subset of [0, T ]. By the same technique
as used in [16, Chapter 5.4] when proving that uδ

h(t) is Lipschitz continuous in
time, it can be shown, for any s ≤ t in [0, T ], that∥∥wδ

h(t)− wδ
h(s)

∥∥ +
∥∥vδ

h(t)− vδ
h(s)

∥∥ ≤ 2 TV
(
wδ

h(t), vδ
h(t)

)
(|t− s|+ h)

≤ C (|t− s|+ h).
(20)

Notice by (16) that the constant C is independent of δ. Assume t ∈ [0, T ] and
t /∈ S. Let tk be a sequence in S such that tk → t as k →∞. Finally,∥∥vδ

hm
(t)− vδ

hn
(t)

∥∥ ≤ ∥∥vδ
hm

(t)− vδ
hm

(tk)
∥∥ +

∥∥vδ
hm

(tk)− vδ
hn

(tk)
∥∥

+
∥∥vδ

hn
(tk)− vδ

hn
(t)

∥∥ .

By the Lipschitz continuity of vδ
h in time, the first and last terms can be made

arbitrary small by choosing k large. Fixing such a k, if m and n are large, the
middle term is small. Thus, the sequence vδ

h is Cauchy in L1
loc(R×R+). Further,∥∥vδ(t)− vδ(s)

∥∥ ≤
∥∥vδ(t)− vδ

h(t)
∥∥ +

∥∥vδ
h(t)− vδ

h(s)
∥∥ +

∥∥vδ
h(s)− vδ(s)

∥∥ .

Apply (20) to the middle term and let h → 0. The same arguments hold for wδ

and therefore the Riemann invariants are Lipschitz in time,∥∥wδ(t)− wδ(s)
∥∥ +

∥∥vδ(t)− vδ(s)
∥∥ ≤ C |t− s|. (21)

Since the Riemann invariants wδ(t) and vδ(t) are bounded in L∞(R) and have
bounded total variation independently of δ, Helly’s theorem yields the existence
of a subsequence (wδ, vδ) converging to some limit in L1

loc(R)2. Using the same
argument as for the convergence when h → 0, we end the above discussion by
the following conclusion:
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Lemma 1. (wδ, vδ) converges to some limit (w, v) in L1
loc(R × R+)2 as δ → 0

and the limit (v, w) satisfies

TV
(
w(t), v(t)

)
≤ TV (w0, v0) ≤ C, (22)

and
‖w(t)− w(s)‖+ ‖v(t)− v(s)‖ ≤ C |t− s|. (23)

The above properties of the limit (w, v) follows directly from (16) and (21).
We are going to prove convergence of a subsequence uδ(t) to some limit in

L1
loc(R) by using the following result:

Lemma 2. Let K be a set of nonnegative functions uniformly bounded in L∞(R).
If, for any ε > 0, there is a constant Mε so that TV(u ∨ ε) ≤ Mε for all u ∈ K,
then the set K is precompact in L1

loc(R).

Proof. For a fixed ε > 0, let Kε = {u ∨ ε : u ∈ K}. We have u ∨ ε bounded in
L∞(R) and TV(u∨ ε) ≤ Mε. Thus, by Helly’s theorem, the set Kε is precompact
in L1

loc(R). Since u is bounded in L∞(R), we have K ⊂ L1
loc(R). Further, since

‖u − u ∨ ε ‖ < ε |Ω| for all u ∈ K, we find dist(u, Kε) < ε |Ω| for all u in K. By
[13, Lemma A.4], K is precompact in L1

loc(R). �

Fix t ∈ [0, T ] and define the set K =
{
ρδ(t)

}
δ>0

. The solution ρδ(t) takes
values in DV , and hence K ⊂ L∞(R). Consider the total variation of ρδ ∨ ε.
Since

1
(pδ)′ (ρ ∨ ε)

≤

{
1/p′(ε), δ ≤ ε

1/ (pε)′ (ε), δ > ε,
(24)

where pε is defined by (15) replacing δ by ε, the constant Cδ given in inequality
(17) now depends on ε instead of δ. Thus, the same argument as used to obtain
(18) yields

TV(ρδ ∨ ε) ≤ Mε, for all δ ≥ 0. (25)
By Lemma 2 the set K is precompact in L1

loc(R). Thus ρδ(t) converges in L1
loc(R)

to some limit as δ → 0. A diagonal argument gives us a subsequence ρδ(t)
converging for all t ∈ S.

Lemma 3. (ρδ, yδ) converges to some limit (ρ, y) in L1
loc(R× R+) as δ → 0.

Proof. It remains to show convergence of uδ(t) for all t in [0, T ]. Let

ρδ
ε = ε ∨ ρδ, yδ

ε =
(
ε ∨ ρδ

)
wδ, for all ε > 0. (26)

Denote uδ
ε = (ρδ

ε , y
δ
ε ). Notice that uδ

ε converges uniformly to uδ as ε → 0. From
the previous paragraph we have ρδ

ε(t) converging to some limit ρε(t) for all t in S.
Then, yδ

ε → yε = ρεw, as the factors converge in L1
loc and are uniformly bounded

in L∞. Hence we can conclude that the sequence uδ
ε(t) converges to some limit

uε(t) in L1
loc(R)2 for all t ∈ S. The Lipschitz continuity in time of wδ and vδ

yields Lipschitz continuity in time for pδ(ρδ) = wδ − vδ,∥∥pδ
(
ρδ(t)

)
− pδ

(
ρδ(s)

)∥∥ ≤ C |t− s|. (27)
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By using (17), (24) and the above inequality we can show that ρδ
ε(t) is Lipschitz

continuous in time for all t, s in [0, T ],∥∥ρδ
ε(t)− ρδ

ε(s)
∥∥ ≤ ∥∥∥∥ 1

(pδ)′ (ρδ
ε)

∥∥∥∥
∞

∥∥pδ
(
ρδ

ε(t)
)
− pδ

(
ρδ

ε(s)
)∥∥

≤ Cε |t− s|,
(28)

where the constant Cε depends on ε. Also, yδ
ε (t) is Lipschitz continuous in time,∥∥yδ

ε (t)− yδ
ε (s)

∥∥ ≤ ∥∥ρδ
ε(t)

(
wδ(t)− wδ(s)

)∥∥ +
∥∥(

ρδ(t)− ρδ
ε(s)

)
wδ(s)

∥∥
≤ (ρ+C + w+Cε) |t− s|.

(29)

Now, assume t ∈ [0, T ] and t /∈ S and let tk be a sequence in S such that tk → t
as k →∞. Consider∥∥uδm

ε (t)− uδn
ε (t)

∥∥ ≤ ∥∥uδm
ε (t)− uδm

ε (tk)
∥∥ +

∥∥uδm
ε (tk)− uδn

ε (tk)
∥∥

+
∥∥uδn

ε (tk)− uδn
ε (t)

∥∥ . (30)

Since uδ
ε is Lipschitz continuous in time with a Lipschitz constant independent of

δ, the first and third term can be made small by choosing k large, i.e. the term
|t− tk| is small. For a fixed k, the middle term is small for m and n large. Hence
the sequence is Cauchy in L1

loc(R)2, and uδ
ε(t) converges to uε(t) for all t ∈ [0, T ].

Finally, consider the sequence uδ(t) and some t in [0, T ]. We have∥∥uδm(t)− uδn(t)
∥∥ ≤ ∥∥uδm(t)− uδm

ε (t)
∥∥ +

∥∥uδm
ε (t)− uδn

ε (t)
∥∥

+
∥∥uδn

ε (t)− uδn(t)
∥∥ . (31)

Since ε is arbitrary, the first and third term can be made small by choosing ε
small. Then, by choosing m and n large, the middle term is small. Hence the
sequence is Cauchy in L1

loc(R)2, and there exists a sequence uδ(t) converging to
some limit u(t) in L1

loc(R)2 as δ → 0. �

The function uδ(x, t) is a weak solution of the approximate problem (14) with
initial data uδ

0(x). Thus, for all test functions φ(x, t) ∈ C∞0 (R× R+),∫
R

∫
R+

(
uδφt + fδ(uδ) φx

)
dt dx +

∫
R

uδ
0 φ(x, 0) dx = 0

where
fδ(u) =

(
y − ρpδ(ρ), y(w − pδ(ρ))

)
.

The function fδ converges uniformly to f . Since uδ and (wδ, vδ) are bounded,
fδ(uδ) converges in L1

loc to f(u) as δ → 0. Thus Lebesgue’s dominated conver-
gence theorem yields∫

R

∫
R+

(u φt + f(u) φx) dt dx +
∫

R
u0(x)φ(x, 0) dx = 0.

For all t ∈ [0, T ], the weak solution uδ(t) of system (14) converges in L1
loc(R) to a

weak solution u(t) of system (1). Further, the convergence is in C([0, T ];L1
loc(R)2).
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The limits satisfy w = v + p(ρ) and y = ρw and thus w(x, t) and v(x, t) are the
Riemann invariants of system (1).

It remains to prove that the limit u(x, t) is a weak entropy solution of (1) with
initial data u0. An entropy/entropy flux pair (η, q) for a hyperbolic system is an
entropy η : U → R and a flux q : U → R satisfying

∇uq = ∇uη df,

where df is the Jacobian matrix of f(u). By [16] we know that uδ is a weak
entropy solution of (14),∫

R

∫
R+

(
ηδ(uδ)φt + qδ(uδ) φx

)
dt dx +

∫
R

ηδ(uδ
0)φ(x, 0) dx ≥ 0, (32)

for all nonnegative test functions φ(x, t) ∈ C∞0 (R × R) and all convex entropies
ηδ with corresponding flux qδ. Consider system (1). Using the transformation
given by Wagner [18, Theorem 1],

∂X

∂x
= ρ,

∂y

∂t
= −ρv,

where X(x, t) is the Lagrangian mass coordinate, we rewrite system (1) as

τt + (p̃(τ)− w)X = 0
wt = 0,

(33)

where τ = 1/ρ and p̃(τ) = p(ρ). For 0 < ρ ≤ ρ+, system (1) is equivalent to the
above system and the relation between the entropy/entropy flux pairs (η, q), in
Eulerian coordinates, and (η̃, q̃), in Lagrangian coordinates, is

η̃(τ, w) =
1
ρ
η(ρ, y)

q̃(τ, w) = q(ρ, y)− ρv η̃(τ, w).
(34)

Moreover, the entropy η is convex if and only if η̃ is convex.
Any entropy/entropy flux pair (η, q) of (33) must satisfy

q̃τ − p̃′(τ) η̃τ = 0
η̃τ + q̃w = 0.

Solving this system yields

q̃(τ, w) = g (v) ,

η̃(τ, w) = h(w)−
∫ τ

τ0

g′
(
w − p̃(ξ)

)
dξ,

where τ0 is a constant value and h = h(w) and g = g(v) are smooth functions
in L∞(R) having continuous second and third order derivatives, respectively. In
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order to obtain strict convexity of η we compute

η̃ττ = g′′ (v) p̃′(τ),

η̃τw = η̃wτ = −g′′ (v) ,

η̃ww = h′′(w)−
∫ τ

τ0

g′′′
(
w − p̃(ξ)

)
dξ.

The Hessian matrix of η̃ is positive definite if η̃ττ > 0 and η̃ττ η̃ww > (η̃τw)2.
Since (p̃)′ < 0, we require g′′ < 0 and

p̃′(τ)
(

h′′(w)−
∫ τ

τ0

g′′′
(
w − p̃(ξ)

)
dξ

)
< g′′ (v) . (35)

For fixed τ and w, the above inequality is satisfied for h′′ big enough. However,
when w is fixed and τ →∞ the left hand side of inequality (35) is asymptotically
equal to −p̃′(τ)τg′′′(w), which goes to 0 as τ → ∞. Thus we have to require
g′′ = 0, and we conclude that there are no strictly convex entropies when vacuum
is included.

We now define a semiconvex entropy η with corresponding flux q as a an
entropy satisfying ηρρ > 0 for ρ > 0. Further, an entropy solution is a weak
solution which satisfies an entropy inequality for all such entropy/entropy flux
pairs. The relation between η and η̃ yields ηρρ = τ3η̃ττ . Thus, for ρ > 0 we
have ηρρ > 0 if and only if η̃ττ > 0. Since h(w)t = h′(w)wt = 0 in Lagrangian
coordinates and we now have a weaker assumption on η, we can, for simplicity,
choose h(w) = 0. Thus the semiconvex entropy/entropy flux pairs of system (33)
are

q̃(τ, w) = g (w − p̃(τ)) , η̃(τ, w) = −
∫ τ

τ0

g′
(
w − p̃(ξ)

)
dξ, (36)

where g(v) is a smooth function such that g′′(v) < 0. A calculation of the above
entropy/entropy flux pairs is also done in [3].

Lemma 4. The admissible discontinuities satisfy the entropy inequality for all
semiconvex entropies with corresponding entropy fluxes and the entropy inequality
fails for the inadmissible discontinuities.

Proof. Discontinuous solutions u satisfy the Rankine–Hugionot condition,

s(uR − uL) = f(uR)− f(uL),

where s is the speed of the discontinuity and L and R denote the left and right
state, respectively. Further, by Lax’ admissibility condition a shock of the first
family is admissible if

λ1(uR) ≤ s ≤ λ1(uL).

Consider the Riemann problem for system (33) in Lagrangian coordinates. The
eigenvalues are

λ̃1 = p̃′(τ) and λ̃2 = 0.
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For τ < ∞ the first family is genuinely nonlinear and the second family is linearly
degenerate. Moreover, at the vacuum state λ̃1 = λ̃2 = 0. The wave curves are
given by w = const. and v = const., respectively. Then, consider a point on an
isolated discontinuity and a test function φ(x, t) whose support lies entirely inside
a small neighborhood of this point. By Green’s theorem an entropy inequality as
given in (32) is satisfied for ũ if

s
(
η̃(ũR)− η(ũL)

)
≥ q̃(ũR)− q̃(ũL).

Across contact discontinuities of the second wave family the velocity v is preserved
and s equals 0. Thus, for contact discontinuities the above inequality is satisfied
with equality. Consider admissible shock solutions. Since w is constant across a
shock, both τ and v should decrease across the jump, i.e. vL > vR and τL > τR.
In order to show that the admissible shocks do satisfy the entropy inequality, we
insert the expressions of η̃ and q̃ into the above inequality, with the result,

s

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ ≥ g(vR)− g(vL),

where w = wL = wR. Further, inserting the expressions of s given by the
Rankine–Hugionot condition into the above inequality yields

1
τL − τR

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ


≤ g(vR)− g(vL)

v
R
− vL

, vL > vR,

≥
g(vR)− g(vL)

vR − vL
, vL < vR,

where w = wL = wR. Consider the left hand side in the above inequality. By
the substitution ξ = tτL + (1 − t)τR and using the strict convexity of p̃ and the
fact that g′ is decreasing, we get

1
τL − τR

∫ τL

τR

g′
(
w − p̃(ξ)

)
dξ =

∫ 1

0

g′
(
w − p̃ (tτL + (1− t)τR)

)
dt

<

∫ 1

0

g′
(
w − tp̃(τL) + (1− t)p̃(τR)

)
dt

=
∫ 1

0

g′ (tvL + (1− t)vR) dt

=
g(vR)− g(vL)

vR − vL
.

Thus, the admissible shocks will satisfy, and the inadmissible shocks will violate,
the entropy inequality (32) for all semiconvex entropies η̃ and corresponding
entropy fluxes q̃. �

By the previous lemma the solution of the Riemann problem for (14) satisfies
(32) for all semiconvex entropy/entropy flux pairs (ηδ, qδ), and then so does the
solution uδ(x, t) of the Cauchy problem, see [16, Chapter 5.4].
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By equation (34) and (36) the entropy/entropy flux pair (ηδ, qδ) of system (14)
for ρ > 0 is

ηδ(ρ, y) =
1
τ

η̃δ(τ, w) =
1
τ

∫ τ

τ0

g′
(
w − p̃δ(ξ)

)
dξ,

qδ(ρ, y) = q̃δ(τ, w) +
w − p̃δ(τ)

τ
η̃δ(τ, w)

= g
(
w − p̃δ(τ)

)
−

(
w − p̃δ(τ)

) 1
τ

∫ τ

τ0

g′
(
w − p̃δ(ξ)

)
dξ.

Thus, ηδ(ρ, y) → g′(w) and qδ(ρ, y) → g(w) − wg′(w) as ρ → 0. The Lipschitz
continuity of g(v) and g′(v) with respect to v yields uniform convergence of
(ηδ, qδ) to some limit (η, q) as δ → 0. Further, since dfδ → df , the limit (η, q)
satisfies ∇q = df · ∇η.

Consider inequality (32). Let δ → 0 and use Lebesgue’s dominated conver-
gence theorem and the Lipschitz properties. Thus, we finally conclude that for all
nonnegative test functions φ(x, t) in C∞0 (R × R+) and all semiconvex entropies
η with corresponding entropy fluxes q,∫

R

∫
R+

(
η(u)φt + q(u) φx

)
dt dx +

∫
R

η(u0)φ(x, 0) dx ≥ 0,

and u(x, t) is a weak entropy solution of (1).

3. Proof of Theorem 2.

Consider system (8) with initial Riemann invariants (v0(x), w0(x)) in BV (R)2

taking values in DV and initial Cauchy data u0(x). In order to show existence of
a weak entropy solution, we split the system into a hyperbolic part, given by (1),
and a pair of ordinary differential equations in time, ρt = 0 and [ρ (v + p(ρ))]t =
ρR(ρ, v). More conveniently we write

ρt = 0

wt = vt = R(ρ, v),
(37)

where vt = wt follows from ρ(x, t) being constant in time. The hyperbolic system
is treated in the previous section. For initial data given by u0(x), we denote a
weak entropy solution of the hyperbolic part at time t as H(t)u0(x). The domain
DV is an invariant domain for the system. Further, the total variation of the
Riemann invariants is nonincreasing and they are Lipschitz continuous in time
as functions into L1

loc(R). Moreover, by Theorem 1 there exists a weak entropy
solution in L1

loc(R× R+)2.
Consider the system of ordinary differential equations (37) with initial data

u0(x). Denote the solution at time t by S(t)u0(x). For simplicity, we abuse this
notation and write the variables w, v and y at time t as S(t)w0(x), S(t)v0(x) and
S(t)y0(x), respectively. However, bear in mind that S(t)w0 in fact depends on
v0 as well as w0, and similarly for the other variables.
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First, we want to show that if the initial data lies in the domain DV given by
(5), then so does the solution S(t)u0(x). Consider the boundary of the domain
DV . When w = w+ we want wt ≤ 0, and thus we require R(ρ, y) ≤ 0. On the
part of the boundary where v = 0 we want vt ≥ 0, which is satisfied if R(ρ, y) ≥ 0.
For w = v we have S(t)w = S(t)v, and the solution is still the vacuum state.
Thus, requiring (9) yields invariance of DV with respect to the system of ordinary
differential equations (37).

We now want to consider the total variation of the solution. From equation
(37) we have(

S(t)v1 − S(t)v2

)
t
= R

(
S(t)ρ1, S(t)v1

)
−R

(
S(t)ρ2, S(t)v2

)
.

Multiplying the equality by sign (S(t)v1 − S(t)v2) yields∣∣S(t)v1 − S(t)v2

∣∣
t
≤

∣∣R(
S(t)ρ1, S(t)v1

)
−R

(
S(t)ρ2, S(t)v2

)∣∣
≤ L

(∣∣S(t)w1 − S(t)w2

∣∣ +
∣∣S(t)v1 − S(t)v2

∣∣).

The same argument is true for S(t)w. Thus, by Grönwall’s inequality,

|S(t)w1 − S(t)w2|+ |S(t)v1 − S(t)v2| ≤ eLt (|w1 − w2|+ |v1 − v2|) ,

and this implies
TV

(
S(t)w,S(t)v

)
≤ eLt TV(w, v). (38)

Since R(ρ, v) is bounded, S(t)w and S(t)v are Lipschitz continuous in time,∫
Ω

|S(t)w − S(s)w| dx +
∫

Ω

|S(t)v − S(s)v| dx ≤ C̃|t− s|, (39)

where C̃ = 2‖R‖∞|Ω|.
We define an approximate solution of system (8) at time tn = n∆t, where

∆t = T/N , by
un = [H(∆t)S(∆t)]nu0(x).

Since DV is invariant for both the hyperbolic part and the system of differential
equations, the approximate solution un takes values in DV . Further, by (22),
(38) and induction the total variation of wn and vn is bounded,

TV (wn, vn) ≤ CeLT .

By (23) and (39) we obtain Lipschitz continuity in time for vn,

‖vn − vn+m‖ ≤
m−1∑
i=n

‖vi − vi+1‖

≤
m−1∑
i=n

(
‖vi − S(∆t)vi‖+ ‖S(∆t)vi −H(∆t)S(∆t)vi‖

)
≤

m−1∑
i=n

(C̃ + CeLT )∆t = Ĉ|tn − tn+m|.

(40)

The same argument holds for wn.
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We now consider an approximate solution that is defined for all times t in
[0, T ],

u∆t(x, t) =

{
H

(
2(t− tn)

)
un(x), t ∈ [tn, tn+1/2)

S
(
2(t− tn+1/2)

)
un+1/2(x), t ∈ [tn+1/2, tn+1),

where un+1/2(x) = H(∆t)un. >From the above results, u∆t takes values in the
invariant domain DV . Further, w∆t and v∆t have bounded total variation,

TV (w∆t, v∆t) ≤ CeLT , (41)

and they are Lipschitz continuous in time for tn, n in N. By (23), (39) and (40),
w∆t and v∆t are Lipschitz continuous in time,

‖w∆t(s)− w∆t(t)‖+ ‖v∆t(s)− v∆t(t)‖ ≤ C̄|s− t|, (42)

for all s and t in [0, T ] and a constant C̄ independent of ∆t.
In order to prove convergence of a subsequence u∆t(x, t) to some limit in

L1
loc(R × R+), we use Lemma 2 and the same technique as we used to prove

convergence of uδ(x, t) in the previous section. Since p′(ρ∆t ∨ ε) is bounded,
equation (41) and w∆t = v∆t + p(ρ∆t) give

TV(ρ∆t ∨ ε) ≤ Mε for all ∆t ≥ 0.

Thus, replacing uδ by u∆t in equation (24)–(25) and (26)–(31) yields convergence
of u∆t(x, t) to some limit u(x, t) in L1

loc(R×R+)2 as ∆t → 0. Further, the limits
w and v also have bounded total variation (41) and they are Lipschitz continuous
in time (42).

It remains to show that the limit u(x, t) is a weak solution of system (8).
For simplicity, introduce the vector r(u) = (0, R(ρ, v)). Since u∆t(x, t) is a weak
solution of the hyperbolic system for t ∈ [tn, tn+1/2), we have for all test functions
φ(x, t) ∈ C∞0 (R× R+),∫

R

∫ tn+1/2

tn

(
u∆tφt + 2f(u∆t)φx

)
dt dx

−
∫

R
u∆t(x, tn+1/2)φ(x, tn+1/2) dx +

∫
R

u∆t(x, tn)φ(x, tn) dx = 0.

Further, u∆t(x, t) is a solution of the system of ordinary differential equations for
t ∈ [tn+1/2, tn+1). After multiplying with a test function φ and partial integra-
tion,∫

R

∫ tn+1

tn+1/2

u∆tφt dt dx +
∫

R

∫ tn+1

tn+1/2

2r(u∆t)φdt dx

−
∫

R
u∆t(x, tn+1)φ(x, tn+1) dx +

∫
R

u∆t(x, tn+1/2)φ(x, tn+1/2) dx = 0.
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Adding the two equations and summing over n = 0, 1, ..., N − 1 yields∫
R

∫ T

0

u∆tφt dx dt + 2χ∆t

∫
R

∫ T

0

f(u∆t)φx dt dx

+ 2χ̃∆t

∫
R

∫ T

0

r(u∆t)φdt dx +
∫

R
u∆t(x, t0)φ(x, t0) dx

−
∫

R
u∆t(x, T )φ(x, T ) dx = 0,

where χ∆t = χ∪[tn,tn+1/2) and χ̃∆t = χ∪[tn+1/2,tn+1). Notice that χ∆t converges
weakly to 1

2 as ∆t → 0. Remember that u∆t is bounded and Lipschitz continuous
in time. Thus, letting ∆t → 0 in the above equation, Lebesgue’s dominated
convergence theorem yields∫

R

∫ T

0

(u(x, t)φt(x, t) + f(u(x, t)φx) dt dx +
∫

R
u0(x)φ(x, 0) dx

−
∫

R

∫ T

0

r(u(x, t)) dtφ(x, t) dx = 0 (43)

i.e. the limit u(x, t) is a weak solution of system (8).
In the proof of Theorem 1 we show existence of semiconvex entropy/entropy

flux pairs (η, q) of the flux f , where we assume that ηρρ > 0. By definition, u∆t

is a weak entropy solution of the hyperbolic part for t in [tn, tn+1/2). Further,
we multiply system (37) with ∇u ηφ and integrate over t in [tn+1/2, tn+1). Thus,
the same arguments as used to achieve (43) yields∫

R

∫ T

0

(
η(u)φt + q(u)φx

)
dx dt +

∫
R

u0(x)φ(x, 0) dx

+
∫

R

∫ T

0

∇uη(u)r(u) φdt dx ≥ 0.

For all t ∈ [0, T ], u∆t(t) converges in L1
loc(R)2 to a weak entropy solution u(t)

of system (8) and the convergence is in C([0, T ];L1
loc(R)2). Further, the limits

w(x, t) and v(x, t) are the Riemann invariants of system (8).

Acknowledgments. The authors greatfully acknowledge the hospitality of
the Mittag-Leffler Institute, Sweden (fall 2005, Nonlinear Waves program). The
authors also acknowledge Denis Serre for valuable discussions during the stay at
the Mittag-Leffler Institute.

References
[1] A. Aw, A. Klar, T. Materne, and M. Rascle. Derivation of continuum traffic flow models

from microscopic follow-the-leader models. SIAM J. Appl. Math., 63(1):259–278 (elec-
tronic), 2002.

[2] A. Aw and M. Rascle. Resurrection of “second order” models of traffic flow. SIAM J. Appl.
Math., 60(3):916–938 (electronic), 2000.



18 M. GODVIK AND H. HANCHE-OLSEN

[3] P. Bagnerini and M. Rascle. A multiclass homogenized hyperbolic model of traffic flow.
SIAM J. Math. Anal., 35(4):949–973 (electronic), 2003.

[4] R. M. Colombo and A. Corli. On a class of hyperbolic balance laws. J. Hyperbolic Differ.
Equ., 1(4):725–745, 2004.

[5] M. Garavello and B. Piccoli. Traffic flow on a road network using the Aw-Rascle model.
Comm. Partial Differential Equations, 31(1-3):243–275, 2006.

[6] M. Garavello and B. Piccoli. Traffic Flow on Networks. AIMS on Applied Math. American
Series of Mathematical Sciences, 2006.

[7] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm.
Pure Appl. Math., 18:697–715, 1965.

[8] P. Goatin. The Aw-Rascle vehicular traffic flow model with phase transitions. Math. Com-
put. Modelling, 44(3-4):287–303, 2006.

[9] J. M. Greenberg. Extensions and amplifications of a traffic model of Aw and Rascle. SIAM
J. Appl. Math., 62(3):729–745 (electronic), 2001/02.

[10] J. M. Greenberg. Congestion redux. SIAM J. Appl. Math., 64(4):1175–1185 (electronic),
2004.

[11] J. M. Greenberg, A. Klar, and M. Rascle. Congestion on multilane highways. SIAM J.
Appl. Math., 63(3):818–833 (electronic), 2003.

[12] M. Herty and M. Rascle. Coupling conditions for a class of second-order models for traffic
flow. SIAM J. Math. Anal., 38(2):595–616 (electronic), 2006.

[13] H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152
of Applied Mathematical Sciences. Springer-Verlag, New York, 2002.

[14] B. S. Kerner and H. Rehborn. Experimental Properties of Phase Transitions in Traffic
Flow. Physical Review Letters, 79(20):4030–4033, 1997.

[15] M. Rascle. An improved macroscopic model of traffic flow: derivation and links with the
Lighthill–Whitham model. Math. Comput. Modelling, 35(5-6):581–590, 2002. Traffic flow—
modelling and simulation.

[16] D. Serre. Systems of conservation laws. 1. Cambridge University Press, Cambridge, 1999.
Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N.
Sneddon.

[17] F. Siebel and W. Mauser. On the fundamental diagram of traffic flow. SIAM J. Appl.
Math., 66(4):1150–1162 (electronic), 2006.

[18] D. H. Wagner. Equivalence of the Euler and Lagrangian equations of gas dynamics for
weak solutions. J. Differential Equations, 68(1):118–136, 1987.

[19] R. Young. The p-system. II. The vacuum. In Evolution equations (Warsaw, 2001), vol-
ume 60 of Banach Center Publ., pages 237–252. Polish Acad. Sci., Warsaw, 2003.

Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology, NO-7491 Trondheim, Norway

E-mail address: godvik@math.ntnu.no
URL: www.math.ntnu.no/~godvik/

Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology, NO-7491 Trondheim, Norway

E-mail address: hanche@math.ntnu.no
URL: www.math.ntnu.no/~hanche/



ERRATA AND COMMENTS TO PAPER I

In this note we point out some errors in Paper I, Existence of Solutions for
the Aw–Rascle Traffic Flow Model with Vacuum, and add a few comments.

(i) The last assumption in (2) ensures genuinely nonlinearity of the first wave
family and not strict hyperbolicity as stated in the paper.

(ii) In equation (24) we have assumed that p(ρ) is convex for small densities
ρ > 0. This assumption should have been stated in the paper.

(iii) Lemma 4 does only hold away from vacuum. It should have been shown that
it also holds for a discontinuity connecting vacuum to a right state, as shown in
Paper III.

(iv) An admissble weak solution should approach vacuum continuously from the
left, that is limx→x̄− ρ(x, t) = ρ(x̄, t) = 0 if there is a vacuum at x = x̄ at time
t. In Paper III it is shown that the entropy inequality considered in Lemma 4
holds for such a vacuum. However, in addition it also holds for some inadmissible
vacuum, more specific vacuum which are the right state for a contact discontinu-
ity.

(v) In this paper approximate weak solutions are constructed by the Glimm
scheme, and a description of the general solution of a Riemann problem which
yields vacuum is given. We do not show that this weak solution and the definition
of the vacuum state is entropy admissible. However, this is discussed in Paper
III.

(vi) If there is a vacuum in the initial Riemann data we would have to give
v0 = w0 at vacuum the value of w to the left of the vacuum state. Otherwise
our solutions of the Riemann problem will not make sense and our solution ma-
chinery will not work. However, since the conservative variables (ρ, ρw) = (0, 0)
at vacuum, the values of v and w at vacuum are artificial and do not change
the conservative weak solutions. Furthermore, when ρ = 0 the velocity is not
physically defined.
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