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Introduction
Fluid flows with moving boundaries are encountered in a large number of real life situations,
with two such types being fluid-structure interaction and free-surface flows. Fluid-structure
phenomena are for instance apparent in many hydrodynamic applications; wave effects on
offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dy-
namic response. Free-surface flows can be considered as a special case of a fluid-fluid inter-
action where one of the fluids are practically inviscid, such as air. This type of flows arise in
many disciplines such as marine hydrodynamics, chemical engineering, material processing,
and geophysics. The driving forces for free-surface flows may be of large scale such as gravity
or inertial forces, or forces due to surface tension which operate on a much smaller scale.
Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and
droplets, and the evolution of capillary waves.

In this work we consider incompressible fluid flow, which are governed by the incompressible
Navier-Stokes equations. There are several challenges when simulating moving boundary
problems numerically, and these include

• Spatial discretization

• Temporal discretization

• Imposition of boundary conditions

• Solution strategy for the linear equations

These are some of the issues which will be addressed in this introduction. We will first
formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the
weak formulation of the problem. Next, we discuss the spatial and temporal discretization
before we move to the imposition of surface tension boundary conditions. In the final section
we discuss the solution of the resulting linear system of equations.

1 The Navier-Stokes equations

The incompressible Navier-Stokes equations in strong form are given by

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj
+ ρfi, in Ω(t)

∂uj

∂xj
= 0, in Ω(t) (1)

+ boundary conditions, on ∂Ω(t)
+ initial conditions,

where

σij =
(
−pδij + μ

(
∂ui

∂xj
+

∂uj

∂xi

))
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is the stress tensor. Here, Ω(t) is our time-dependent computational domain, ρ is the fluid
density, ui is the i’th component of the fluid velocity, xi is the i’th cartesian co-ordinate
direction, p is the pressure, μ is the dynamic viscocity and fi is the i’th component of the
body force. Summation over repeated indices is assumed.

1.1 ALE framework

One important aspect in a numerical simulation of moving boundary problems is the choice of
framework in which to formulate the problem. The two extremeties here are the pure Eulerian
and Lagrangian formulations. With an Eulerian approach, the grid is fixed which obviously
has the advantage that we do not need to worry about grid distortion. However, tracking a
moving boundary in this framework is not straightforward, and this issue is generally dealt
with by using marker methods or volume of fluid methods [52]. In a Lagrangian framework the
grid nodes move with the fluid particles, and the interface or boundary is naturally tracked.
However, a disadvantage with such an approach is that large surface motions may soon lead
to poor grid quality. The obvious advantages and disadvantages of the pure Eulerian and
Lagrangian description lead to the advent of the arbitrary Lagrangian-Eulerian(ALE) formu-
lation, which represents a mix between the two.

An essential feature in an ALE formulation of the Navier-Stokes equations is that the
time derivative is represented with respect to a fixed reference configuration, Ω0. From the
reference configuration there exists a map A(t) : Ω0 → Ω(t) which at any time, t, associates
this reference configuration with the physical domain, Ω(t) [22].

n

A(t)

x̂
Ω0

x

Ω(t)

A(t)−1

Figure 1: A mapping, A(t), from a fixed reference domain, Ω0, to the physical domain, Ω(t).

Then,

ŵ =
(

∂A(t)
∂t

) ∣∣∣∣∣
x̂

is the domain velocity represented on the reference configuration, and

w = ŵ ◦ A(t)−1.

The non-conservative ALE formulation of the Navier-Stokes equations in strong form now
reads,
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ρ

(
Dui

Dt
+ (uj − wj)

∂ui

∂xj

)
=

∂

∂xj

(
−pδij + μ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ ρfi, in Ω(t)

∂uj

∂xj
= 0, in Ω(t) (2)

+ boundary conditions on ∂Ω(t)
+ initial conditions

where
D
Dt

=
∂

∂t
+ wj

∂

∂xj

is the time derivative in the ALE frame. With no loss in generality, we will assume that ρ = 1.
The ALE framework was first proposed in the context of finite difference methods in the

mid sixties [45, 23, 29], and has been subject to a lot of research activity since then. In the
eighties the ALE formulation was used with finite element discretizations [32, 15].

In the nineties special attention was devoted to the geometric conservation law. A numer-
ical scheme which satisfies the discrete geometric conservation law (DGCL) should be able
to exactly reproduce the constant solution (under the assumtion that this is consistent with
initial and boundary conditions.) The satisfaction of the DGCL is related to how the geomet-
ric factors are chosen during the time integration of an ALE scheme. Much effort has been
devoted to analyze stability and accuracy properties when moving time-advancing schemes
from a fixed grid to a moving grid. In a series of papers, Farhat and co-workers investigated
this [37, 17, 16], and found that the satisfaction of the DGCL is advantageous for some cases.
Formaggia and Nobile [21, 22] concluded that although it certainly does no harm satisfying
the DGCL, its importance in the general case remains uncertain.

In the late eighties the ALE framework was first used with a spectral element discretization
by Ho and Patera [30]. A spectral element discretization relies on a regular mapping from
the reference domain to the physical domain in order to maintain good interpolation and
quadrature properties. In order to achieve this, it is very important to have a satisfying grid
on the boundary of the domain. Interior grid points may for instance be obtained by using
the Gordon-Hall algorithm [25].

Upon discretization, w will be associated with specific grid-points and will in that context
represent the mesh-velocity. For w on the boundary, Γ(t) = ∂Ω(t), we have the kinematic
requirement that,

w · n = u · n on Γ(t).

However, there is significant freedom in the choice of the tangential component of w on the
surface, as well as the mesh velocity in the interior of the domain. Once w is obtained, the
grid position is updated by integrating

dx
dt

= w.

In Figure 2 we illustrate the difference between the three frameworks mentioned above.
We assume that we solve a two-dimensional moving boundary problem using these frame-
works, and that the front depicted in Figure 2 is part of the boundary of the two-dimensional
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computational domain. The indicated velocity field will here be the solution to the underlying
problem. Using an Eulerian framework, the initial front is located at the grid points, but this
is clearly not the case at t = T . Hence, the location of the boundary is not explicitly tracked,
as mentioned before. For the Lagrangian and ALE approaches we only focus on the boundary
grid. For both these cases, the point distribution at t = 0 is good, but while both approaches
are able to explicitly track the front, the Lagrangian mesh at t = T doesn’t have an “optimal”
distribution compared to the initial mesh. For the ALE situation, a clever choice of w has
made sure that the grid points both follow the front and maintain a good distribution.

t = T

t = 0

(a) Eulerian

t = T

t = 0

(b) Lagrangian

t = T

t = 0

(c) ALE

Figure 2: The motion of a front and the underlying grid using an Eulerian, Lagrangian and ALE
description.

A traditional way to update the grid on the boundary is to satisfy the kinematic require-
ment w ·n = u ·n at the grid nodes in the normal direction and apply homogeneous Dirichlet
or Neumann conditions in the tangential direction, and then at regular intervals perform a
remeshing strategy. In this manner the grid maintains a satisfactory quality at all times,
however, remeshing is computationally demanding and requires interpolation of all relevant
field variables from the old distorted grid to the new grid. In a spectral element simulation of
smooth transient flow where you have spectral convergence in space, it may also be desirable
to get more than first order convergence in time. However, a scheme with more than first
order convergence in time for fixed geometry will probably not maintain its temporal rate of
convergence during the transient phase when subjected to a remeshing strategy. Hence, it
would be desirable to be able to update the boundary in a manner that maintains more than
first order convergence in time and at all times maintains a good point distribution without
the need for a remeshing strategy; see Figure 2c.

A common choice to extend the mesh velocity to the interior of the computational domain
is by solving an elliptic equation. In [51, 13] this is done by modelling the mesh as an elastic
solid body by solving an elasticity equation. In [5] Bouffanais and Deville propose to compute
the grid-velocity in the interior of each domain by solving a steady Stokes problem such that
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the DGCL was automatically satisfied, and this technique was applied to moving boundary
problems in [4].

1.2 Weak formulation

We will in this work consider discretizations based on a weak formulation of the problem (2).
The main reasons for this choice is that the weak formulation of the problem yields a lower
regularity requirement on u and p compared to the strong formulation, as well as convenient
imposition of natural boundary conditions. The weak form offers a starting point for finite
element based discretizations, which are well suited for problems in complex geometries.

We now assume that the boundary of Ω(t) is divided into two parts; Γd(t) = ∂Ωd(t) which
has prescribed Dirichlet boundary conditions and Γγ(t) = ∂Ωγ(t) where Neumann (or stress)
boundary conditions are imposed. Hence we have, Γ(t) = Γd(t) ∪ Γγ(t). We now introduce
the function spaces:

X = {v(t) ∈ H1(Ω(t)), v(t) = 0 on Γd(t)},
Xb = {v(t) ∈ H1(Ω(t)), v(t) = vb(t) on Γd(t)},
Y = {q(t) ∈ L2(Ω(t))},

where vb(t) are given Dirichlet boundary conditions.
We multiply (2) with test functions vi and q, and assume that the test functions, vi, are

not time-dependent on the reference domain, Ω0,

Dvi

Dt
= 0.

Next, we define J to be the Jacobian matrix associated with the mapping A(t) from Ω0 to
Ω(t), with matrix elements

Jij =
∂xi

∂x̂j
,

and apply Euler’s expansion formula [1]

DJ

Dt
= J

∂wj

∂xj
,

where J is the determinant of J.
We arrive at the conservative ALE formulation: Find: ui ∈ Xb and p ∈ Y such that

d
dt

∫
Ω(t)

viui dV +
∫

Ω(t)

vi(uj − wj)
∂ui

∂xj
dV −

∫
Ω(t)

viui
∂wj

∂xj
dV

=
∫

Ω(t)

(
− ∂vi

∂xj
σij + vifi

)
dV +

∫
Γγ(t)

viσijnj dS, ∀vi ∈ X,∫
Ω(t)

q
∂uj

∂xj
dV = 0, ∀q ∈ Y.

(3)

We observe that we get a surface integral from integration by parts on the viscous term, and
it is through this integral natural boundary conditions will be imposed.
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1.3 Spatial treatment

The appropriate choice of spatial discretization for the Navier-Stokes equations is highly de-
pendent on the problem at hand. For regular geometries a finite difference scheme may be
suitable, not the least for its ease of implementation. For problems with a complex geometry, a
finite element discretization may be most reasonable, while a finite volume discretization may
be chosen for its conservation properties. Here, we will focus on the spectral element method.
This method was first introduced by Patera in [46], and it exploits the accuracy properties of
the spectral method [26] and the flexibility of the finite element method. Important analysis
and convergence results for the spectral element method were presented in [40]. An essential
feature of spectral element methods is that the exponential convergence of the pure spectral
method is maintained as long as the solution and the geometry is infinitely smooth inside each
element, and the geometry and the solution is C0-continuous on the element boundaries.

We will use a spectral element method to discretize (3) in space. This involves decomposing
Ω(t) into suitable elements, and on each element the unknowns are projected to polynomial
spaces. We will here use an isoparametric approach where we approximate the geometry in a
similar way as the unknowns.

1.3.1 The reference domain, Ω̂

In a spectral element setting all computations are performed on a reference domain Ω̂ =
(−1, 1)d. We assume that the reference variables are given by ri, i = 1, . . . , d, and an invertible
mapping Fk(t) exists such that a point in the reference domain is mapped to a unique point
in element k in the physical domain, Ω(t); see Figure 3.

F−1
k (t)

Ω̂Ωk(t)

r2

x2

x1

r1

Fk(t)

Figure 3: The reference domain, Ω̂, and a spectral element, Ωk, for a two-dimensional case.

At any time t, the mapping Fk(t) has an associated Jacobian matrix with elements

Jij =
∂xi

∂rj
.

As a nodal basis for PN ((−1, 1)) we use

PN ((−1, 1)) = span{�i(r1)}N
i=0, (4)

where �i(r1) is an N ’th degree polynomial with the property that
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�j(ξi) = δij ,

with ξi being the i’th Gauss-Lobatto-Legendre quadrature point. In d dimensions we use a
tensor-product basis such that

PN (Ω̂) = span ⊗d
i=1 {�j(ri)}N

j=0.

Hence, a two-dimensional variable expressed as an N ’th order polynomial in each direction on
the reference domain is expressed as

ϕN (r1, r2) =
N∑

i=0

N∑
j=0

ϕij�i(r1)�j(r2),

where ϕij represent the nodal values.
We will use a staggered grid approach in the discretization of (3). This is motivated by

[3, 42] where Maday and co-workers in the context of simple geometries showed that a method
based on approximating the velocity components, ui, by polynomials of degree N and the
pressure, p, by polynomials of degree N − 2 leads to a stable discretization (i.e., no spurious
pressure modes). As a basis for PN−2((−1, 1)) we choose

PN−2((−1, 1)) = span{�̃i(r1)}N−2
i=0 , (5)

where �̃i(r1) is an (N − 2)’th degree polynomial with the property that

�̃j(ζi) = δij ,

with ζi being the i’th Gauss-Legendre quadrature point. In d dimensions a tensor-product
basis is given by

PN−2(Ω̂) = span ⊗d
i=1 {�̃j(ri)}N−2

j=0 .

A two-dimensional variable expressed as an (N −2)’th degree polynomial in each direction on
the GL-grid, i.e. the pressure, is then expressed as

θN (r1, r2) =
N−2∑
i=0

N−2∑
j=0

θij �̃i(r1)�̃j(r2).

1.3.2 Discrete formulation

A discrete formulation of (3) is: Find (uN )i ∈ XNb
and pN ∈ YN such that

d
dt

∫
Ω(t)

vi(uN )i dV +
∫

Ω(t)

vi((uN )j − wj)
∂(uN )i

∂xj
dV −

∫
Ω(t)

vi(uN )i
∂wj

∂xj
dV

=
∫

Ω(t)

(
− ∂vi

∂xj
σij + vifi

)
dV +

∫
Γγ(t)

viσijnj dS, ∀vi ∈ XN ,∫
Ω(t)

q
∂(uN )j

∂xj
dV = 0, ∀q ∈ YN .

(6)
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We have here introduced the polynomial spaces,

XN = {v ∈ X
∣∣ v
∣∣
Ωk◦Fk(t) ∈ PN (Ω̂), k = 1, . . . ,K},

XNb
= {v ∈ Xb

∣∣ v
∣∣
Ωk◦Fk(t) ∈ PN (Ω̂), k = 1, . . . ,K},

YN = {v ∈ Y
∣∣ v
∣∣
Ωk◦Fk(t) ∈ PN−2(Ω̂), k = 1, . . . ,K}.

We now transform all the integrals in (6) to the reference domain by using the mapping
Fk(t) and the Jacobian, J, express (uN )i, i = 1, . . . , d, as N ’th order polynomials and pN

as an (N − 2)’th order polynomial on each element, and finally replace the integrals with
GLL/GL-quadrature. This leads us to the semi-discrete equations [14],

d(Bu)
dt

+ C(u,w)u = −Au + DT p + E(w)u + F.

−Du = 0.
(7)

Here, B is the mass matrix, C(u,w) is a convection operator, A is the Laplacian, D is the
divergence operator, DT is the gradient operator, E(w) is the “expansion” operator involving
the divergence of the grid velocity, F includes all volumetric and surface forces, ui represents
the nodal values of the i’th velocity component, and p is a vector representing the nodal values
of the pressure.

1.4 Temporal treatment

1.4.1 Convection/Stokes-splitting

We will now focus on the temporal discretization of the semi-discrete Navier-Stokes equa-
tions (7). One major feature of the Navier-Stokes equations is the combination of non-
linear(convection) and linear(Stokes) operators, and it is desirable to treat these operators
differently. Due to the severe stability restriction the viscous term would impose on an ex-
plicit scheme, we want to treat the Stokes operator implicitly, while we wish to treat the
convection term explicitly due to its nonlinear nature. In [33] a scheme was proposed which
combined a backward difference scheme for the viscous term with an explicit treatment of the
convection term of the Navier-Stokes equations. In [56, 24] the temporal discretization of the
Navier-Stokes equations are treated in a semi-Lagrangian manner in which the convective term
is incorporated in a “total derivative”. These algorithms include spatial interpolation in order
to find the departure points of particles such that the total derivative can be approximated.

In [41] a general framework for generating splitting schemes was proposed. Here, an
operator-integration-factor(OIF) strategy was used to decouple the general initial-value prob-
lem

du
dt

= M(t)u + N(t)u + f , 0 < t < T,

u(t = 0) = u0,

into two subproblems, where each subproblem may be solved using different discretizations.
For instance, if we choose to treat N(t) implicitly using a first order backward difference
scheme, the OIF-method yields,
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un+1 − ũn+1

Δt
= N(tn+1)un+1, (8)

where

dũ
dτ

= M(t)ũ, (9)

ũ(τ = 0) = un,

and

ũn+1 = ũ(τ = Δt). (10)

This approach may be extended to other types of discretizations of higher order. One advan-
tage with this strategy is that we may choose different time-steps for the solution of (8) and
(9). If we consider the Navier-Stokes equations, it would seem natural to apply this technique
where the operator N(t) plays the role of the Stokes operator, while M(t) is the convection
operator. We know that the eigenvalues of the convection operator have a large imaginary
part, so a good choice for an explicit scheme to solve the subproblem (9) is one with a sta-
bility region which includes as much of the imaginary axis as possible. One such choice may
be the explicit classical fourth-order Runge-Kutta scheme, which also has the advantage of
not requiring initial data from more than one temporal configuration. Another feature when
M(t) is chosen to be the convection operator is that the values ũn+1 in (10) have a physical
interpretation. These are the velocities that the particles which at time tn+1 are located at
the grid points had at time tn. Thus, un+1−ũn+1

Δt will for this case approximate the material
derivative in a Lagrangian framework, and in this setting the OIF-method can be interpreted
as a semi-Lagrangian scheme. The OIF method has previously been applied to the Navier-
Stokes equations and other problems in fixed geometries, but has to our knowledge not been
used with moving boundary problems.

1.4.2 Velocity/pressure-splitting

If we treat the convection term explicitly and the Stokes term implicitly, (7) gives rise to the
system [

H −DT

−D 0

] [
un+1

pn+1

]
=

[
F̃

n+1

0

]
,

where H is the Helmholtz operator and F̃
n+1

includes all external forces and the explicitly
treated terms. Using a Uzawa procedure [2, 39] to decouple this problem, we get

DH−1DT pn+1 = −DH−1F̃
n+1

,

Hun+1 = DT pn+1 + F̃
n+1

.
(11)

We see that the solution of the pressure term involves nested iterations, which may be
computationally expensive. This motivates a splitting of the Stokes operator, in addition to
the convection/Stokes-splitting discussed above.
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Two classes for decoupling the treatment of the velocity and the pressure in the Navier-
Stokes equations, (1), are pressure-correction methods and velocity-correction methods [27].
The first type involves solving a Helmholtz problem for an intermediate velocity field, and
next computing a pressure-correction such that the final velocity field is incompressible. Such
methods were first proposed in [10, 53] and also used in [34, 55]. In velocity-correction meth-
ods [50, 33] an intermediate incompressible velocity field is first computed by treating the
viscous term explicitly, and next this velocity field is incremented by treating the viscous
term implicitly, leading to a Helmholtz equation. Hence, the final velocity field is not incom-
pressible. A problem for such splitting schemes which has been subject to much research is
the imposition of the correct boundary conditions for the pressure. A third class of splitting
schemes are so-called consistent splitting schemes [28]. These are based on a weak form of the
pressure Poisson equation and requires the solution of Helmholtz problems for the velocity
and a Poisson equation for the pressure.

One may also use the discretized system (11) as a starting point for generating splitting
schemes. Here, the velocity boundary conditions are already incorporated in the discrete
operators, and no additional boundary conditions for the pressure is needed. Analysis of such
splitting schemes is reported in [47, 11, 18].

1.5 Free surface boundary conditions

If we assume that we have two immiscible incompressible fluids in contact with each other at
some part of the boundary, Γγ , and that surface tension effects are negligible, the boundary
conditions are given by [36]

(σ2
ij − σ1

ij)nj = 0, on Γγ ,

where σk
ij , k = 1, 2, is the stress tensor of the two fluids and n is the unit normal directed

into medium 1. This represents a balance of viscous forces along the intersection of the two
fluids. We will however focus on situations where surface tension forces are significant. The
boundary conditions for fluid-fluid interaction for such cases take the form [36]

ni(σ2
ij − σ1

ij)nj = γκ, on Γγ , (12)

ti(σ2
ij − σ1

ij)nj = tk(∇sγ)k, on Γγ . (13)

Here, t is any tangent vector and κ is twice the mean curvature. (12) expresses that the
normal viscous forces exerted by the two media is balanced by the product of the surface
tension and the curvature, while (13) states that the tangential forces from the two media is
balanced by the surface tension gradient.

Free surface boundary conditions are found by treating one of the fluids(fluid 1) as inviscid,
such as air,

niσijnj = γκ − pa, on Γγ , (14)
tiσijnj = tk(∇sγ)k, on Γγ . (15)

Here, pa is the atmospheric pressure. We observe that the total stress forces on the boundary
are given by

10



σijnj = γκni + (∇sγ)i, i = 1, 2, 3, (16)

and this is what we need to impose through the surface integral in (3).
Many articles for both two and three dimensions have been written on numerical simu-

lation of free surface flows where the surface tension plays a significant role. However, most
simulations which have used a fully deformable free surface have considered the situation with
a constant surface tension, which results in only normal surface forces. Such simulations are
for example reported in [30, 6, 44] for two dimensions and in [57, 13] for three dimensions.
In two dimensions, the incorporation of free surface boundary conditions is quite straightfor-
ward, but in three dimensions this may be a little more cumbersome. We see from (16) that
we need to be able to evaluate κ, ni, and the surface gradient ∇s on Γγ . Depending on how
we represent our free surface, this may not be straightforward.

A class of phenomena where surface tension forces are significant are so-called Marangoni
flows, which are flows driven by surface tension gradients [35]. Such flows can occur by heating
a thin layer of fluid from below (in the presence of gravity). Temperature differences on the
surface will lead to surface tension gradients, and under special conditions these tangential
surface forces will induce cellular convection; see Figure 4. For such situations it is obvious
that a numerical simulation needs to include tangential stress boundary conditions as this is
the main driving force for the flow. There have been several numerical studies of such flows
[54, 43, 7, 48], but what is common for all of them is the assumption of no normal stress
forces, which is a good assumption for most purposes. If we assume a cartesian grid and a
“free-surface” (free in the tangential plane) at x3 = const and u3 = 0, the boundary conditions
(15) are reduced to the simpler form

μ
∂u1

∂x3
=

∂γ

∂x1
, on Γγ ,

μ
∂u2

∂x3
=

∂γ

∂x2
, on Γγ ,

u3 = 0, on Γγ ,

and these are the boundary conditions mostly used in numerical simulations. Nevertheless, in
experiments of such flows, a small surface movement has been observed in which the surface
is elevated and depressed at cold and hot regions, respectively. This feature is obviously
not captured by numerical simulations which assume a fixed “free surface” with no normal
stress forces. There are probably three reasons why these simplifications are usually made
in numerical experiments; (i) the boundary conditions take the simple form described above;
(ii) there is no need to worry about a moving boundary which complicates the numerical
simulations; (iii) the surface deformation is typically very small for such flows.

We will next discuss an alternative way to impose (16) which was proposed by Ho and
Patera [31].

1.5.1 Imposition of normal and tangential stress forces: two dimensions

Accounting for surface tension effects, the boundary conditions in two dimensions for fluid-fluid
interaction are similar to the three-dimensional case

11



Figure 4: Hexagonal cells (top view) formed due to Bénard-Marangoni convection (taken from [35]).

ni(σ2
ij − σ1

ij)nj = γκc, on Γγ , (17)

ti(σ2
ij − σ1

ij)nj =
dγ

ds
, on Γγ . (18)

where κc is the curvature of the free surface, γ is the surface tension coefficient, s is an arc-
parameter, and ti = dxi

ds is the i’th component of the unit tangent vector t. The boundary
conditions along a free surface become

niσijnj = γκc − pa, on Γγ , (19)

tiσijnj =
dγ

ds
, on Γγ . (20)

Using the fact that κcni = dti
ds , we observe that

∫
Γγ

viσijnj ds =
∫

Γγ

vi

(
γκcni − pani +

dγ

ds
ti

)
ds

=
∫

Γγ

vi

(
γ

dti
ds

+
dγ

ds
ti

)
ds −

∫
Γγ

pavini ds

=
∫

Γγ

vi
d(γti)

ds
ds −

∫
Γγ

pavini ds

= [γviti]ba −
∫

Γγ

γ
dvi

ds

dxi

ds
ds −

∫
Γγ

pavini ds. (21)
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Here, a and b denote the start and end of the free surface. The first term can be used for
imposing contact angles, but will vanish if Γγ represents a closed surface or if we have periodic
boundary conditions, while the last term is zero for pa = 0. For such cases we have one single
surface integral for imposition of both normal and tangential stress forces. We also observe
that although (19) includes the curvature, which is related to the second derivative of x, the
resulting boundary integral only includes the first derivative of the position, x.

1.5.2 Imposition of normal and tangential stress forces: three dimensions

It would be appealing to be able to derive a similar expression as (21) for the three-dimensional
case. This becomes much more complicated, but in their article [31] Ho and Patera proposed
a linear form for imposition of both tangential and normal stresses. Results from differential
geometry is used, and the alternative form can be written as∫

Γγ

viσijnj dS =
∮

∂Γγ

γvig
α
i dnα −

∫
Γγ

vi,αγgα
i dS −

∫
Γγ

vinipa dS.

Here, gα, α = 1, 2, are contravariant tangential vectors [20] and dnα is an outer normal to ∂Γ.
Similar to the two-dimensional case, the first integral will vanish if ∂Γγ represents a closed
surface or if we have periodic boundary conditions, while the last term has a contribution for
pa 	= 0.

1.6 Solution of the linear system of equations

There are two main strategies for solving the linear systems of equations in Section 1.4.2,
namely by the use of direct or iterative solvers. High-order methods based on polynomial
approximations typically results in large systems on the form

A x = b, (22)

where A is a dense matrix. Hence, a direct method based on Gaussian elimination of such a
system would be very expensive. Also, for problems in time-dependent domains, the matrix
A will be time-dependent so a new inversion would need to take place at each time-level.
Hence, in the general case, using a direct solver on (22) in this setting is not a good idea,
however, for special cases it is possible to construct very efficient tensor-product solvers [38].
These are solvers based on diagonalizing the operators, and they are typically applicable
for solving discretized problems with constant coefficients in simple geometries where the
operators are tensorizable. Despite their limited applicability such methods can also often be
used successfully as preconditioners in combination with iterative solvers.

In the general case, the most common way of solving (22) will be by the use of an iterative
approach, and then in particular projection based methods such as the conjugate gradient
method(CG) for cases when A is symmetric positive definite. The most time-consuming part
of such iterative methods are matrix-vector operations, and one feature of the tensor-product
nature of the bases (4) and (5) is that matrix-vector products where the matrix originates from
discretization of a two- or three-dimensional operator can be performed efficiently. Due to the
tensor-product nature of the bases (4) and (5), using a local data representation yields the
opportunity to perform such matrix operations as a series of “one-dimensional” matrix-vector
products. Such an approach is often referred to as operator evaluation using sum-factorization
since the full matrix is not explicitly constructed. The computational complexity for a single
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operator evaluation (matrix-vector product) is typically O(Nd+1) in R
d, d = 1, 2, 3. For

iterative methods the number of iterations is typically a function of the condition number, κ,
and in particular for CG we have Niter ∼ O(

√
κ). For many systems the condition number is

very large. However, this problem can be alleviated by the use of preconditioners.
In (11) we need to solve problems of the type

DH−1DT p = F ,

Hu = G.

The first problem involving the Uzawa operator, S = DH−1DT , results in nested iterations,
as mentioned before, and solving such problems is obviously costly. In [39] it was shown that
B̃ is a good preconditioner for S for small Reynold’s numbers. Here, B̃ is the mass matrix
defined on the Gauss-Legendre grid. This is a diagonal preconditioner which is obviously
very easy to invert. For large Reynold’s numbers S is spectrally close to E = DB−1DT [39],
with E often being denoted as the consistent pressure Poisson operator due to its similarities
with the standard Poisson operator. We may also encounter this operator when using the
splitting schemes from Section 1.4.2. Several preconditioners for S and E where proposed in
[8, 49, 12, 19].

A simple preconditioner for H would be to use its diagonal, since H in many cases will be
diagonal dominant. Other preconditioners for H and A are found in [9].
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2 Summary of papers

2.1 Paper I: A high order splitting method for time-dependent domains

We present a high order convection/Stokes splitting method for the Navier-Stokes equations
in time-dependent domains, which is based on the OIF-method [41] and can be interpreted
as a semi-Lagrangian method. The splitting method is based on an arbitrary Lagrangian-
Eulerian formulation, and first, second, and third order temporal convergence and spectral
spatial convergence is verified for a model problem in a fixed domain with artificially imposed
grid velocity in the interior of the domain. Our method is compared with other methods in
the literature, and the spatial regularity requirement on the grid velocity is addressed.

2.2 Paper II: Imposing free-surface boundary conditions using surface in-
trinsic coordinates

We consider the surface integral proposed in [31] for weak imposition of both normal and
tangential surface tension boundary conditions in three dimensions. Basic concepts from
differential geometry is introduced which is used to derive quantities such as surface gradient
and the divergence operator using surface intrinsic coordinates, while concepts such as the
mean curvature is illuminated. In the final section we start from the strong form of the free
surface boundary conditions in the normal and tangential direction and by the use of the
results from differential geometry we arrive at the proposed integral.

2.3 Paper III: Simulation of three-dimensional Bénard-Marangoni flows
including deformed surfaces

In this paper we present three-dimensional simulations of Bénard-Marangoni flows using a
coupled thermal-fluid model. The governing equations are discretized using spectral elements
in space and the operator splitting approach in time which was proposed in Paper I. Compared
to previous simulations, we do not assume a fixed “free surface”, and the boundary conditions
are imposed by the use of surface intrinsic coordinates as proposed in [31] and derived in Paper
II. We report results which are in agreement with previous experimental data and numerical
simulations. In addition, we present a numerical prediction of the surface deflection, which to
our knowledge is new.

2.4 Paper IV: High order methods for incompressible fluid flow: Applica-
tion to free surface problems

In this paper the splitting approach proposed in Paper I is used with three different problems.
First, we solve the Navier-Stokes equations in a fixed two-dimensional domain with artificially
imposed grid velocity in the interior. For this problem we demonstrate first, second, and third
order temporal convergence and spectral spatial convergence. Second, we revisit the simulation
of Bénard-Marangoni convection with free surface boundary conditions which were discussed
in Paper III. Third, we consider a two-dimensional simulation which models transportation
of fresh water in a fabric container. Here, a flexible container with a fluid of density ρin

is immersed in a fluid with density ρo > ρin. The dynamic response of this container is
modelled by the Navier-Stokes equations with free surface boundary conditions. Compared
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to the Bénard-Marangoni simulations, this problem involves large motions on the boundary,
and the necessity for good ways to track the boundary is apparent.

2.5 Paper V: Accurate interface-tracking for arbitrary Lagrangian-Eulerian
schemes

When solving moving boundary problems using an ALE approach, the boundary is explicitly
tracked through the kinematic condition. In this paper we focus on surfaces of two-dimensional
domains and propose a new framework for tracking interfaces which is able to follow the
interface to second and third order accuracy and maintain a good mesh quality without the
need for remeshing. The method relies on the solution of several convection problems along
the interface and no spatial interpolation is needed. We have proposed two different point
distribution strategies, and we have verified first, second and third order temporal accuracy
for selected two-dimensional model problems with known analytical solutions. Comparisons
with common approaches are reported.

2.6 Paper VI: Fast tensor-product solvers. Part I: Partially deformed
three-dimensional domains

A fast tensor-product solver is proposed for solving partial differential equations in three-
dimensional domains which are deformed in a plane and invariant in the third direction. We
choose the xy-plane to be deformed, and the solution algorithm then exploits the tensor-
product feature between the xy-plane and the z-direction. It is applicable for problems with
variable coefficients as long as these can be expressed as a separable function with respect to
the variation in the xy-plane and the z-direction. Compared to previous work exploiting this
tensor-product feature, we are here not restricted to periodic boundary conditions in the z-
direction or a tensorizable xy-plane. This solver can also be used as an efficient preconditioner
for Helmholtz and Poisson operators for problems which have domains which are “close” to
being tensorizable between a plane and a third direction. Such a case is the simulation of
Bénard-Marangoni flows, where very small deformations is observed along a free surface. This
solver may for instance be very suitable to use as a preconditioner for large scale Bénard-
Marangoni simulations.
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Abstract

We present a temporal splitting scheme for the semi-discrete convection-diffusion
equation and the semi-discrete incompressible Navier-Stokes equations in time-depedent
geometries. The proposed splitting scheme can be considered as an extension of
the OIF-method proposed in [22] in the sense that it can be interpreted as a semi-
Lagrangian method for time-dependent domains. The semi-discrete equations are
derived from an arbitrary Lagrangian-Eulerian (ALE) formulation of the governing
equations, and are discretized in space using high order spectral elements. The pro-
posed splitting scheme has been tested numerically on model problems with known
analytical solutions, and first, second, and third order convergence in time has been
obtained. We also show that it is not necessary for the interior mesh velocity to be
obtained through the use of an elliptic solver. Numerical tests show that it is sufficient
that the mesh velocity is regular within each spectral element and only C0-continuous
across element boundaries; this is consistent with the theoretical results presented in
[9]. In addition, the mesh velocity should be regular in the time direction.

Keywords: Time-dependent domains; ALE-formulation; operator splitting; spectral
elements

1 Introduction

Numerical solution of the Navier-Stokes equations in time-dependent geometries has found
wide-spread use in science and engineering, both in the context of basic understanding
of fluid flow phenomena, as well as for predictive purposes in engineering. A powerful
framework is provided by the arbitrary Lagrangian-Eulerian (ALE) formulation [13, 16, 6,
15]. Even though this framework is quite mature and is currently used in many commercial
codes, it is still a subject of active research; e.g., see [15].

Part of the current research in ALE methods is related to time integration. One issue
is the importance of satisfying the so-called geometric conservation law [18, 12, 10, 7]. The
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conclusion is not quite clear for general Navier-Stokes problems. One complicating factor
in all this effort is the fact that it is not easy to measure and verify the overall temporal
accuracy during a transient simulation. This is partially due to the lack of analytical
solutions for moving boundary problems, in particular, for general free surface problems
where both normal and tangential stress boundary conditions are imposed.

The evolution of the surface of a time-dependent domain is typically determined via
a kinematic condition which says that the normal domain velocity must coincide with
the normal fluid velocity along the surface. Assuming that this surface evolution can be
tracked in an accurate and efficient way, it still remains to extend the surface deformation
to the interior of the domain. A smooth extension of the mesh velocity to the interior is
most commonly used, e.g., using an harmonic extension, a Stokes solver, or an elasticity
solver. However, other possible choices do not seem to have been fully explored; see [9] for
a theoretical discussion of this issue.

The purpose of this paper is to present recent results on developing high order splitting
methods for problems in time-dependent domains. Our long term goal is to be able to
study large-scale free surface applications like three-dimensional Bénard-Marangoni con-
vection including deformed surfaces [3], or problems involving fluids enclosed in flexible
membranes on much larger length scales than typically associated with surface-tension-
dominated effects. The latter problem is motivated by the transportation of fresh water
using elastic fabric containers; see [19, 2].

In Section 2, we first present the governing equations for incompressible fluid flow and
heat transfer problem in time-dependent domains. The ALE-formulation presented in
Section 3 is the natural point of departure for the spatial discretization. In Section 4, we
present a set of semi-discrete equations based on the spectral element method, however,
any finite element method can in principle be used for the spatial discretization.

In Section 5, we present an operator splitting method for the temporal treatment of the
convection-diffusion problem. The approach represents an extension of the OIF-method
proposed in [22] to time-dependent domains. We conclude this section by showing numer-
ical results for a two-dimensional test problem involving a moving front.

In Section 6, we discuss the proposed splitting scheme in the context of solving incom-
pressible fluid flow problems. The splitting scheme represents a convection-Stokes splitting,
which can also be interpreted as a semi-Lagrangian scheme. We present numerical evidence
of first, second, and third order convergence in time for a three-dimensional ALE test prob-
lem with a known analytical solution. The issue of global regularity requirement for the
mesh velocity is also illuminated.

In Section 7, we conclude our study and comment on future extensions.
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2 Governing equations: strong form

In the following we consider the numerical solution of unsteady fluid flow and heat transfer
problems in time-dependent domains. Specifically, we consider the incompressible Navier-
Stokes equations and the convection-diffusion equation in a domain Ω(t),

∂uj

∂xj
= 0, in Ω(t), (1)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj
+ fi, in Ω(t), i = 1, 2, 3, (2)

ρ cp

(
∂Θ
∂t

+ uj
∂Θ
∂xj

)
= k

∂2Θ
∂xj∂xj

+ g, in Ω(t). (3)

In (1) and (2), ui is the i-th component of the fluid velocity in an inertial reference frame,
xj is the j-th coordinate, fi is the i-th component of a volumetric body force, and ρ is the
density of the fluid. Summation over repeated indices is assumed. The stress tensor σij is
here given as

σij = −pδij + μ

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3, (4)

where p is the pressure, μ is the dynamic viscosity, and δij is the Kronecker delta symbol.
In (3), Θ is the temperature, cp is the specific heat capacity, k is the thermal conductivity,
and g is a volumetric heat source.

We consider here the stress formulation for incompressible fluid flow because our in-
tended use of the proposed splitting scheme is to be able to accurately simulate time-
dependent free surface flows with very general boundary conditions (including thermo-
capillary effects). The particular boundary conditions used in the numerical tests in this
paper will be discussed later.

3 ALE-formulation

In this section we briefly discuss the governing equations for fluid flow and heat transfer in
time-dependent domains. In particular, we follow the arbitrary Lagrangian-Eulerian (ALE)
framework which represents a powerful starting point for the numerical approximation of
such problems [13, 16, 6, 15].

One of the key ingredients in the ALE-framework is the introduction of a domain
velocity w. Following closely the notation of [10] and [5], we can regard the time-dependent
domain Ω(t) as a mapping A of a reference configuration Ω(t0), e.g., the domain at an earlier
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Ω(t0)

A−1

Ω(t)

xx̂

A
n

Figure 1: The time-dependent domain Ω(t) can be regarded as a one-to-one mapping A of
a reference configuration Ω(t0). The outward unit normal vector along ∂Ω(t) is denoted as
n.

time t0; see Figure 1. We assume that A is a continuous and one-to-one mapping, i.e., a
unique point x̂ in Ω(t0) maps to a unique point x in Ω(t),

A ∈ C0(Ω(t0), t),
x = A(x̂, t).

In particular,

∂Ω(t) = A(∂Ω(t0), t).

The domain velocity w at a point x, corresponding to a particular location x̂ in the
reference configuration, can then be defined as

w =
(

∂A
∂t

) ∣∣∣∣
x̂

◦ A−1(x, t).

If u represents the fluid velocity in Ω(t), it follows from the continuum hypothesis that

w · n = u · n along ∂Ω(t). (5)

The condition (5) is called the kinematic condition.
The ALE-formulation can be derived from the weak form of the governing equations

using an Eulerian framework, and then apply the Reynolds’ transport theorem and Euler’s
expansion formula [1]. Following this approach, the ALE-formulation of the heat transfer
problem can be expressed as: Find Θ (the temperature) ∈ X ⊂ H1(Ω) such that

d
dt

(v,Θ) + c(v,Θ) − e(v,Θ) = −aΘ(v,Θ) + (v, g) + �Θ(v), ∀v ∈ X, (6)
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where we have defined the following bilinear forms,

(v, φ) =
∫

Ω(t)
vφ dV, (7)

c(v, φ) =
∫

Ω(t)
v(uj − wj)

∂φ

∂xj
dV, (8)

e(v, φ) =
∫

Ω(t)
vφ

∂wj

∂xj
dV, (9)

aΘ(v, φ) =
∫

Ω(t)
k

∂v

∂xj

∂φ

∂xj
dV, (10)

as well as the linear form

�Θ(v) =
∫

∂Ω(t)
v
∂Θ
∂n

dS. (11)

With no loss in generality, we have set ρcp equal to unity, and we have assumed homoge-
neous Dirichlet boundary conditions for Θ along part of, or all of, the boundary ∂Ω(t).

One advantage with the form (6) is that the time-derivative appears outside the integral
over Ω(t); this will prove very useful for the subsequent numerical treatment. Second, the
contribution from convection appears in two terms: a standard convection term where
a relative convection velocity (u − w) appears (see (8)), as well as an ”expansion” term
involving the divergence of the domain velocity (see (9)). The first term on the right
hand side represents the standard diffusion term resulting from integration by parts, while
the third term represents the associated surface term allowing for a convenient imposition
of flux boundary conditions; as usual, this term vanishes wherever essential boundary
conditions are prescribed. The second term on the right hand side represents a prescribed
heat source (which we assume is square integrable).

A similar procedure for the fluid problem yields the ALE-formulation of the incom-
pressible Navier-Stokes equations: find u ∈ X ⊂ (H1(Ω))3 and p ∈ Y ⊂ L2(Ω) such
that

d
dt

(v,u) + c(v,u) − e(v,u) = −aσ(v,u) + d(p,v) + (v, f) + �σ(v), ∀v ∈ X, (12)

d(q,u) = 0, ∀q ∈ Y, (13)
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where we have introduced the bilinear forms

(v,u) =
∫

Ω(t)
viui dV, (14)

c(v,u) =
∫

Ω(t)
vi(uj − wj)

∂ui

∂xj
dV, (15)

e(v,u) =
∫

Ω(t)
viui

∂wj

∂xj
dV, (16)

aσ(v,u) =
∫

Ω(t)
μ

∂vi

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
dV, (17)

d(q,u) =
∫

Ω(t)
q
∂uj

∂xj
dV, (18)

as well as the linear form

�σ(v) =
∫

∂Ω(t)
viσijnj dS. (19)

With no loss in generality, we have here set ρ equal to unity. In the above definitions of
the bilinear and linear forms, summation over repeated indices is assumed. Similar to the
heat transfer problem, we have assumed homogeneous Dirichlet boundary conditions for
the velocity u along part of, or all of, the boundary ∂Ω(t).

The linear form (19) follows from integration by parts of the term
∫
Ω(t) vi

∂σij

∂xj
dV ; this

surface term allows for a convenient imposition of stress boundary conditons (both nor-
mal and tangential), while the surface term vanishes wherever essential velocity boundary
conditions are prescribed.

4 Semi-discrete problem

The weak form presented above will be our point of departure for the spatial and temporal
discretization. Our goal is to achieve high order accuracy both in the space and time. We
start with a brief discussion of the spatial discretization which will be based on spectral
elements [21]. Following this approach, we decompose the domain into disjoint elements
and approximate all the field variables as high-order polynomials within each element. Ap-
propriate C0-continuity conditions are imposed across interelement boundaries for second-
order problems as considered here. We assume that a high-order, tensor-product nodal
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basis is used. Following this approach, we arrive at a system of semi-discrete equations for
the heat transfer problem (6) on the form

d
dt

(BΘ) + CΘ = −AΘ + EΘ + b, (20)

dx
dt

= w. (21)

Equation (20) represents the semi-discrete convection-diffusion equation derived from the
ALE-formulation, while equation (21) represents the system of ordinary differential equa-
tions governing the mesh evolution. All the lower case symbols represent vectors of nodal
values at a particular time: Θ represents the temperature, x represents the coordinates
of the grid points, u and w represent the fluid velocity and mesh velocity, respectively,
and b represents the known data (source term and boundary conditions). Furthermore, B
represents the time-dependent mass matrix derived from (7), which in our case is diagonal
because of the fact that the quadrature points and nodal points that we use within each
spectral element coincide [21]. The matrix A represents the discrete Laplacian derived
from (10), which is time-dependent because the computational domain is time-dependent.
The matrix C represents the convection operator derived from (8); this will again depend
on time through the time-dependent computational domain, but also via the fluid velocity
u and the mesh velocity w. Finally, the matrix E represents the discrete ”expansion” term
associated with the bilinear form (9).

In a similar way we can derive a set of semi-discrete equations for the incompressible
fluid flow problem (12)-(13); these equations can be expressed as

d
dt

(Bu) + Cu = −Aσ u + DT p + Eu + b, (22)

Du = 0, (23)
dx
dt

= w. (24)

Here, B represents the time-dependent mass matrix derived from (14) (i.e., for the vector
case), C represents the time-dependent convection operator derived from (15) (which is now
nonlinear and couples all the velocity components), Aσ represents the symmetric, viscous
operator derived from (17) (which couples all the velocity components), D represents the
discrete divergence operator derived from (18), while DT is the corresponding discrete
gradient operator, E represents the discrete ”expansion” operator derived from (16) (i.e.,
for the vector case), and b is a known right hand side derived from (14) and (19).

We remark that other finite-element-based discretization methods could also have been
used for the spatial discretization; the resulting semi-discrete equations could still be ex-
pressed on the form (20)-(21), or (22)-(24), and thus the following discussion regarding the
temporal treatment also applies to such discretizations.
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5 A convection-diffusion splitting scheme

Our goal is here to propose a high order temporal splitting scheme for (20)-(21); with
high order we shall here mean higher than first order, in particular, second and third order
convergence in time. Our point of departure will be the Operator-Integration-Factor (OIF)
procedure proposed in [22]. The computational approach we propose in this paper can be
viewed as an extension of the OIF-method to time-dependent domains.

5.1 Fixed domain

Before we discuss the details of the new scheme, let us first revisit some aspects of the
original OIF-approach applied to the convection-diffusion problem. First, we assume a
fixed domain Ω. Following a standard Eulerian description, the semi-discrete equations for
the convection-diffusion problem can be expressed as

B
dΘ
dt

+ CΘ = −AΘ + b, (25)

where now all the discrete spatial operators are time-independent. Although the OIF-
method presented in [22] offers a quite general framework for deriving temporal splitting
methods, this method applied to the particular convection-diffusion problem (25) can also
be interpreted as a particular semi-Lagrangian method. Specifically, a first order splitting
scheme reads

B
(

Θn+1 − Θ̃
n+1

Δt

)
= −AΘn+1 + bn+1, (26)

where the expression inside the parentheses on the left hand side represents a first order
approximation to the total derivative DΘ/Dt at time tn+1. With this interpretation Θ̃

n+1

represents the values of Θ at time tn for those fluid particles which at time tn+1 coincide
with the fixed grid points used in a pure Eulerian formulation; note that the position these
fluid particles had at time tn do not coincide with the grid points.

An attractive aspect with the OIF-method is the fact that it is possible to find the
values Θ̃

n+1
only by using information at the fixed grid points. This is in contrast to other

semi-Lagrangian schemes where the positions of the fluid particles at earlier times first have
to be computed by following the characteristics backwards in time, and then the solution
at an earlier time needs to be interpolated at these points; see [23, 11]. In the OIF-method
[22], however, the values Θ̃

n+1
are found by solving the following pure convection problem

defined in the interval tn to tn+1,

B
dΘ̃
dt

= −C Θ̃, Θ̃
n

= Θn, tn ≤ t ≤ tn+1. (27)
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t
tn+1tntn−1

un

un−1

Figure 2: The convecting velocity field is approximated linearly in time in the interval
[tn−1, tn+1] for a second order OIF-scheme. In particular, the convecting velocity field is
constructed as the linear interpolant between tn−1 and tn, and as the linear extrapolant
between tn and tn+1.

In essence, the values Θ̃
n+1

we are interested in are being convected to the fixed grid points
through the solution of (27).

The extension to second order in time is quite natural. We now use a second-order
(Backward Differentiation) approximation of the total derivative DΘ/Dt at time tn+1,

B
( 3

2Θn+1 − 2Θ̃
n+1

+ 1
2
˜̃Θn+1

Δt

)
= −AΘn+1 + bn+1. (28)

The values of Θ at times tn and tn−1 for those fluid particles which at time tn+1 coincide
with the fixed grid points are now found by solving the two pure convection problems

B
dΘ̃
dt

= −C Θ̃, Θ̃
n

= Θn, tn ≤ t ≤ tn+1, (29)

B
d ˜̃Θ
dt

= −C ˜̃Θ,
˜̃Θn−1

= Θn−1, tn−1 ≤ t ≤ tn+1. (30)

We now discuss the temporal discretization of the pure convection problems defined
above. First, the discrete convection operator C depends on the given convection velocity.
In practice, this velocity field is typically coming from a Navier-Stokes solver and is only
known at discrete times tn, tn−1, etc. We therefore approximate the convection velocity in
time by using a polynomial interpolant/extrapolant. Specifically, for a first order approx-
imation, see (26) and (27), the convection velocity is set equal to un for the entire time
interval tn ≤ t ≤ tn+1 in (27). For a second order approximation, the convection velocity
used in (29) and (30) is approximated linearly between tn−1 and tn+1; see Figure 2.

In order to solve the single initial value problem (27), or the two initial value problems
(29) and (30), we use the classical fourth order explicit Runge-Kutta scheme (ERK4).
An explicit scheme avoids the need to solve non-symmetric (and in the case of solving
the Navier-Stokes equations, nonlinear) equation systems. Second, the ERK4 scheme is
attractive to use since it is accurate and the associated stability region encloses a significant
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part of the imaginary axis. The time step used for these ”inner” convection problems can
be the same as for the ”outer” diffusion problem, however, this is not a requirement. On
the other hand, we are required to honor the Courant stability criterion and we also need
to honor a final integration time equal to tn+1.

Finally, we mention that the OIF-approach presented above may also be extended
to third order in time. In this case, we use a third order Backward Differentiation ap-
proximation of the total derivative, and we need to solve three separate convection prob-
lems. Furthermore, the given convection field is now constructed as a second order inter-
polant/extrapolant in the interval between tn−2 and tn+1.

5.2 Time-dependent domain

We now consider the extension of the OIF-approach to time-dependent domains. In par-
ticular, we consider the solution of (20) and (21). As mentioned earlier, all the discrete
spatial operators are now time-dependent.

In order to more easily apply the OIF formalism to this problem, we first define the
new variable

Φ = BΘ. (31)

The convection-diffusion equation (20) can then be expressed as

dΦ
dt

+ CB−1Φ = −(A − E)B−1Φ + b. (32)

Next, we apply the OIF-method to the system (32). Treating the expansion term as part
of the ”outer” problem, a first order splitting scheme can be expressed as(

Bn+1Θn+1 − Φ̃
n+1

Δt

)
= −(An+1 − En+1) Θn+1 + bn+1. (33)

The values Φ̃
n+1

are obtained through the solution of the following (”inner”) convection
problem,

dΦ̃
dt

= −CB−1 Φ̃, Φ̃
n

= BnΘn, tn ≤ t ≤ tn+1. (34)

Finally, we solve the system (21) using an explicit multi-step scheme; for a first order
approximation in time, we simply use a first order Adams-Bashforth scheme (i.e, Euler
Forward), (

xn+1 − xn

Δt

)
= wn. (35)

We now make a few remarks concerning this splitting scheme. Similar to the standard
OIF-scheme for fixed domains, we use a Backward-Differentiation (BD) scheme for the
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”outer” problem. This is mainly due to the convenience of only having to evaluate all the
associated operators on the right hand side at time level tn+1. The associated ”Operator
Integrating Factor” is defined to be the identity operator at tn+1 [22], and the use of a
BD-scheme thus avoids having to solve additional ”inner” problems.

Second, we note that the introduction of the new variable Φ in (31) necessitates a
modified ”inner” convection problem in (34) compared to the corresponding problem (27)
for time-independent domains. This modification is necessary due to the fact that the mass
matrix is time-dependent.

Third, the discrete operator CB−1 in (34) depends on the convecting velocity field u,
on the mesh velocity w, and on the computational domain Ω. All these quantities are
approximated as constants, and equal to the the corresponding values at time tn for a first
order splitting scheme.

Fourth, similar to the system (27), the system (34) is solved using ERK4. An important
observation here is the following. In the ALE formulation the convection operator C is
derived from the associated bilinear form (8). This form includes an ”effective” convection
velocity u − w. However, using integration-by-parts, we can easily show that this form is
skew-symmetric, i.e.,

c(v, φ) = −c(φ, v). (36)

This follows by noticing that the boundary integral over ∂Ω vanishes either due to essential
boundary conditions or due to the kinematic condition (5). Hence, we are guaranteed that
all the eigenvalues of the matrix CB−1 are pure imaginary, and the ERK4 scheme is thus
appropriate to use.

We now discuss the choice of including the ”expansion” term En+1 Θn+1 in the outer
problem (33). First, this term is derived from the associated bilinear form (9). This bilinear
form is symmetric, but has a ”coefficient” ∇ · w which can be either positive or negative
definite depending on whether the domain is locally expanding or contracting. The matrix
E is therefore symmetric, but the definiteness is not determined. If we include the term EΘ
in the ”inner” problem, the discrete operator in (34) changes from CB−1 to (C−E)B−1.
In this case, we cannot guarantee that all the eigenvalues will remain inside the absolute
stability region of ERK4 (or inside the stability region of other explicit time integration
schemes) since some eigenvalues may end up with positive real parts.

We remark that the ”expansion” term vanishes if we insist on having a divergence
free mesh velocity. Such a constraint has been proposed as a way to honor the so-called
Geometric Conservation Law (GCL); see [12, 7, 10]. For example, the work presented in
[4] honors the GCL condition through the computation of a divergence free mesh velocity,
which can be achieved through the solution of a Stokes problem. However, since the
significance of the GCL condition is not quite clear for general problems, we will here not
assume such a constraint, and we therefore have to treat the additional term appropriately.
Our goal with this study is also to gain more insight into the global regularity requirements
for the mesh velocity.
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From (33) it follows that we need to solve a system of equations for Θn+1 of the form(
An+1 +

1
Δt

Bn+1 − En+1

)
Θn+1 = bn+1, (37)

where bn+1 represents a known right hand side (we assume that we already have solved
the ”inner” problem for Φ̃n+1). The first two terms inside the parentheses represent the
discrete Helmholtz operator. As mentioned earlier, the matrix E is symmetric (and, in
our case, diagonal), but we cannot guarantee the definiteness of this matrix. On the other
hand, by combining the last two terms inside the parantheses in (37), we conclude that we
are guaranteed positive definiteness if

(1 − Δt∇ · w) > 0.

However, from the basic definition of the divergence, this is the same as saying that the
relative change in a small volume element in one single time step should be less than one.
This is typically always true: a local volume element will generally not double in size in
a single time step. Hence, we can assume that the system matrix in (37) is symmetric
and positive definite, and that we can use iterative solvers for such systems, typically, the
conjugate gradient method.

The extension to second and third order in time is quite similar to the corresponding
extension for fixed domains. For example, a second order splitting scheme will read

( 3
2B

n+1Θn+1 − 2Φ̃
n+1

+ 1
2
˜̃Φn+1

Δt

)
= (−An+1 + En+1) Θn+1 + bn+1. (38)

where

dΦ̃
dt

= −CB−1Φ̃, Φ̃
n

= (BΘ)n, tn ≤ t ≤ tn+1, (39)

d˜̃Φ
dt

= −CB−1 ˜̃Φ,
˜̃Φn−1

= (BΘ)n−1, tn−1 ≤ t ≤ tn+1. (40)

In addition, the system (21) is now solved using a second order Adams-Bashforth scheme,(
xn+1 − xn

Δt

)
=

3
2

wn − 1
2

wn−1. (41)

A special remark is required when solving the ”inner” convection problems (39) and
(40). For a fixed geometry, we recall that we need to use a first order polynomial ap-
proximation in time for the convecting velocity field; see Figure 2. For time-dependent
geometries, we need to use a first order approximation in time for the convecting velocity
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x2 = H(t)

x1

Ω(t)

x2

∂Ω4(t)

∂Ω3(t)

∂Ω2(t)

∂Ω1(t)

Figure 3: The rectangular domain used for the moving front problem. The height of the
domain is given as H(t).

field, for the mesh velocity, as well as for the geometry. Again, the approximations are
based on linear interpolations/extrapolations of the values at tn−1 and tn.

Finally, the approach presented above can readily be extended to a third order splitting
scheme. Similar to the fixed geometry case, we need to solve three separate (”inner”)
convection problems. In addition, the convecting velocity field, the mesh velocity, as well
as the geometry are now all constructed as second order interpolants/extrapolants in the
interval between tn−2 and tn+1. The problem (21) is in this case solved using a third order
Adams-Bashforth scheme.

5.3 Numerical results

One difficulty with assessing the accuracy of a discretization scheme in time-dependent
domains is the lack of analytical solutions, especially for problems in general domains. We
now present a two-dimensional convection-diffusion problem we have designed in order to
verify the proposed computational approach in the context of a moving front. Specifically,
we consider the solution of the time-dependent convection-diffusion equation

∂Θ
∂t

+ u · ∇Θ = ∇2Θ + g, in Ω(t),

where Ω(t) = (0, 1)× (0,H(t)) is the rectangular domain depicted in Figure 3. The bound-
ary conditions are

Θ = 0, on ∂Ω1(t), ∂Ω3(t),
∂Θ
∂n

= 0, on ∂Ω2(t), ∂Ω4(t).
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We impose a two-dimensional convecting velocity field u = (u1, u2), with

u1(x1, x2, t) = π sin
(

2πx2

H(t)

)
sin2(πx1) sin(t),

u2(x1, x2, t) = −H(t)π sin(2πx1) sin2

(
πx2

H(t)

)
sin(t),

and we choose the right hand side g(x1, x2, t) such that the exact solution Θ(x1, x2, t) of
the two-dimensional convection-diffusion equation is given as

Θ(x1, x2, t) = sin
(

πx2

H(t)

)
.

In order to mimic a ”melting-front” problem (a Stefan problem), we assume that the speed
of the front is determined through the condition

dH

dt
= − ∂Θ

∂x2

∣∣∣∣
x2=H(t)

. (42)

From the above information we can derive an analytical solution for the front,

H(t) =
√

2πt + H2
0 , (43)

where H0 is the ”height” of the domain at time t = 0.
We first discretize the domain Ω using two spectral elements, Ω1 and Ω2. Next, we solve

the semi-discrete equations using the splitting method proposed in Section 5.2. Note that
we never use our knowledge about the exact solution (43) to advance the front. Instead,
we use (42) to compute the x2-component of the grid velocity, w2, along the front directly
from the numerical solution. This grid velocity is then extended to the interior of the
domain by requiring that: (i) the x1-component of the grid velocity is zero, i.e., w1 = 0 in
Ω; (ii) the x2-component of the grid velocity is extended smoothly from the front to the
interior of the domain; specifically, w2 ∈ P1(Ω), i.e., w2 varies linearly with x2 in Ω.

The linear extension used here can also be regarded as an harmonic extension of the
grid velocity along the boundary to the interior of the domain. Such a regular extension of
the grid velocity is quite common to use in the context of the ALE-formulation. Another
common approach is to use an elasticity solver [14, 8] or a Stokes solver [4].

We now integrate the governing equations until a final time, T , where we compare
the numerical solution with the exact solution. The initial and final domain is depicted in
Figure 4. Note that we start the simulation with two equal-sized spectral elements and that
these will remain equal-sized due to the linearly varying grid velocity in the x2-direction.
In Figure 5 we show the temporal and spatial convergence behavior. The discretization
error is measured in the energy-norm by first mapping the solution back to the initial
configuration, and then performing the error calculation over Ω(t0). When the temporal
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error is dominating, we clearly see first, second, and third order convergence. When the
spatial error is dominating, we obtain exponential convergence until we reach the temporal
error level, at which point increasing degree, N , of the polynomial approximation within
each spectral element does not have any effect.

Let us now revisit this problem, but this time change the global regularity of the mesh
velocity. In particular, let us extend the mesh velocity derived from the numerical solution
along the front to the interior of the domain in the following way: As earlier, we set the
x1-component equal to zero, i.e., w1 = 0. However, this time we extend the x2-component
such that w2 = 0 in Ω1 and w2 ∈ P1(Ω2). Hence, w2 is very regular within each spectral
element (in fact, piecewise linear), but w2 is globally only C0(Ω); see Figure 6. The x2-
component of the grid velocity has a sharp jump in the x2-derivative along the element
boundary. Again, we integrate the equations until a final time T and compare with our
earlier results. We limit our comparison to the second order splitting scheme, and when the
temporal error is dominating. The convergence results are shown in Figure 7. We observe
that it is not necessary to require the ALE mapping to be C∞(Ω), or even C1(Ω); in this
case, C0-continuity of the mesh velocity suffices. These results are in agreement with the
theoretical analysis and comments given in [9].

6 A convection-Stokes splitting scheme

For the case with a fixed domain, the treatment of (22)-(23) is precisely the OIF-method
described in [22]. The extension to time-dependent domains follows a similar approach as
for the convection-diffusion equation. The ”inner” convection problems are treated simi-
larly to the scalar case. However, we remark that the convection problems now represent
nonlinear problems, even in fixed geometries. The ”outer” problem can be expressed as
(e.g., for a second order splitting scheme):( 3

2B
n+1un+1 − 2Ψ̃

n+1
+ 1

2
˜̃Ψn+1

Δt

)
= (−An+1

σ + En+1)un+1 + DT pn+1 + bn+1, (44)

Dun+1 = 0, (45)

where Ψ = Bu corresponds to the transformation (31) for the convection-diffusion case.
The Stokes system (44)-(45) can be solved for the velocity un+1 and pn+1 via a standard
Uzawa decoupling procedure; e.g., see [20]. In the following, we will focus on such a pure
convection-Stokes decoupling approach; the alternative is to also include a pressure-velocity
decoupling in the Stokes operator.

We remark that the operator splitting scheme presented here, i.e., the convection-Stokes
splitting scheme for the semi-discrete Navier-Stokes equations, or the convection-diffusion
splitting scheme presented in the previous section, will include temporal splitting errors at
steady state (for problems where a steady state solution exists). This is similar to the OIF-
method applied to problems in fixed geometries. The reason for this can be understood by
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Figure 4: The initial computational domain (left) and the final computational domain
(right). The two spectral elements used to solve this problem are denoted as Ω1 and Ω2.
The mesh velocity computed along the front is extended linearly to zero in the interior of
the domain.
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Figure 5: Discretization error in the energy-norm for the moving front test problem. The
left plot shows the spatial discretization error as a function of the polynomial degree, N ,
when the spatial error is dominating. The right plot shows the temporal discretization
error as a function of the time step, Δt, when the temporal error is dominating. Results
are reported for the first, second, and third order splitting scheme discussed in Section 5.2.
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Figure 6: The initial computational domain (left) and the final computational domain
(right). The two spectral elements used to solve this problem are denoted as Ω1 and Ω2.
The mesh velocity computed along the front is here extended linearly to zero in the interior
of Ω2, while the mesh velocity in Ω1 is identically zero during the entire simulation.
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Figure 7: Discretization error in the energy-norm at a final time, T , for the moving front
problem. A second order splitting scheme has been used, and the temporal error is dominat-
ing. The convergence results using a globally regular mesh velocity (in fact, w2 ∈ C∞(Ω))
is compared with using a mesh velocity which varies linearly within each spectral element,
but is globally only C0-continuous (with a significant jump in the derivative across the
element boundary).
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interpreting the splitting scheme as a semi-Lagrangian scheme were the total derivative is
approximated along the characteristics in the upwind direction via a first, second, or third
order backward differentiation scheme. In particular, the left-hand side of (38) and the
left hand side of (44) both represent a streamline-upwind approximation to the convective
term.

Note also that, similar to the convection-Stokes splitting presented in [22] for fixed
geometries, no interpolation between the grid points is needed in order to determine the
necessary field values along the characteristics; the solution of the ”inner” convection sub-
problems will give us the necessary information only using values at the current and previ-
ous time steps, and only using the nodal values (i.e., the values at the grid points) at the
current and previous time steps.

6.1 Numerical results

We now verify our discretization approach by solving the three-dimensional Navier-Stokes
equations in a cube. The domain boundary is fixed at all times, however, we specify an
artificial time-periodic mesh velocity in the interior. The mesh velocity is a function of both
space (all the coordinates) and time, and is zero on the domain boundary. We also specify
a forcing function in the momentum equations by requiring that the following analytic
solution satisfies the incompressible Navier-Stokes equations:

u1(x1, x2, x3, t) =
π

5
sin2(πx1) sin(2πx2) sin(2πx3) sin(t), (46)

u2(x1, x2, x3, t) = − π

10
sin(2πx1) sin2(πx2) sin(2πx3) sin(t), (47)

u3(x1, x2, x3, t) = − π

10
sin(2πx1) sin(2πx2) sin2(πx3) sin(t), (48)

p(x1, x2, x3, t) = cos(πx1) sin(πx2) sin(πx3) sin(t). (49)

Note that the prescribed mesh velocity is only C0-continuous in space. Inside each
spectral element, the mesh velocity is analytic in both space and time. However, the
gradient of the mesh velocity is not continuous across element boundaries; in fact, the
mesh velocity is identically zero in one of the spectral elements. On the other hand, we
impose a mesh velocity which is very regular in time; see Figure 8. Finally, we remark
that the mesh velocity is not divergence free. The convergence results in Figure 9 show the
anticipated behavior: first, second, and third order convergence in time, and exponential
convergence in space for problems with analytic solutions and data.

Even though we are using isoparametric spectral elements, the geometry representation
is in this case effectively built upon using a trilinear approximation within each element;
this is due to the fact that all element edges (internal and external) are straight. The
mesh velocity is here constructed in the following way: we first define some non-trivial
motion of the internal element vertices. We then define the mesh velocity in such a way
that a numerical integration of (24) using Adams-Bashforth methods results in straight
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spectral element edges. One reason for doing this is to ensure a perfect distribution of all
the spectral element nodes during the simulation.

The test reported here is obviously a very artificial one; the natural choice is to use
a fixed geometry since the external boundary of the cube is fixed. However, aside from
providing information about the discretization error using the ALE formulation and a
splitting approach, this test also allows us to repeat the numerical experiment using a fixed
geometry and compare the discretization errors. In Figure 10 we compare the temporal and
spatial errors when using a fixed geometry (i.e., w = 0), and when imposing the artificial
mesh velocity depicted in Figure 8. For example, for a fixed Δt, this plot indicates ”the
price” we have to pay for using an ALE-formulation where we could have expressed the
governing equations in a fixed geometry. For the particular test problem we have chosen
here, our numerical results indicate that this ”price” is about one order or magnitude for
a second order scheme and about two orders of magnitude for a third order scheme.

(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 8: The three-dimensional box used in the convergence study of the ALE scheme.
The domain is decomposed into seven spectral elements, one in the middle of the domain
and one connected to each of the six faces of the box. The external boundary of the box is
fixed. However, we specify a mesh velocity in the interior of the cube which is a function
of both space and time (periodic in time). The plot indicates the grid-configuration at a
few time levels for four of the spectral elements during one single period. The exact flow
solution in the domain is given by (46)-(49).
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Figure 9: The left plot depicts the discretization error in the energy norm at time T = 3
as a function of the time step, Δt, for a first, second, and third order temporal splitting
scheme; the spatial error is here subdominant the temporal error. The right plot depicts
the discretization error as a function of the polynomial degree, N , used in each spectral
element; the temporal error is here subdominant the spatial error for N < 12.
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Figure 10: A comparison of the discretization error in the energy norm at time T = 3
with and without imposing an artificial mesh velocity in the interior of the domain; see
Figure 8. The left plot shows the temporal error for the second order OIF splitting scheme,
while the right plot shows the corresponding results for a third order scheme. The spatial
discretization error is here on the order of 10−8.
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6.2 Comparison with other schemes

We now compare the OIF splitting approach for the convection-Stokes splitting with two
other schemes: the scheme discussed in [14] (the HP scheme), and a slightly modified
version of the scheme discussed in [17] (the KIO scheme) and used for moving boundary
problems in [4]. The difference between the KIO scheme and the scheme used in this work
is that we do not split the Stokes operator into a separate pressure step and a separate
viscous step.

Similar to the OIF-scheme, both these schemes treat the convection term explicitly,
while the Stokes operator is treated implicitly using a backward difference scheme. With
reference to the semi-discrete equations (24), these two schemes can be expressed succinctly
as

1
Δt

s∑
k=0

βk(Bu)n+1−k = −(Aσ u)n+1 + (DT p)n+1 +
s∑

k=0

αk((C + E)u)n−k + bn+1. (50)

Here, s is the order of the scheme. The treatment of the divergence constraint and the
mesh evolution is similar to the OIF-scheme.

In [14], αk, k = 0, 1, 2, where chosen to be modified AB-coefficients for a second order
scheme, while in [17], αk, k = 0, 1, were chosen such that they correspond to a linear
extrapolation of the convection term at time tn+1. In Table 1 we also give the corresponding
coefficients for a third order approach.

In Figure 11 we report numerical results showing a comparison of the three methods.
We see that all methods give the correct order, and also give very similar results (with the
OIF scheme proposed in this work giving a marginally better constant).

7 Conclusions

We have presented a temporal splitting scheme for the semi-discrete convection-diffusion
equation and the semi-discrete incompressible Navier-Stokes equations in time-dependent
domains. The proposed splitting scheme can be considered as an extension of the OIF-
method proposed in [22] in the sense that it can be interpreted as a semi-Lagrangian method
for time-dependent domains. The computational approach has been tested numerically
on model problems with known analytical solutions, for which first, second, and third
order convergence has been obtained. Based on the experience so far, the results for the
OIF splitting scheme compares favorably with two alternative approaches proposed in the
literature. The approach has been used successfully in the context of simulating three-
dimensional Bénard-Marangoni flows with a deformable free surface [3].

We remark that all the splitting schemes discussed in this paper for the Navier-Stokes
equations fundamentally focus on two types of splittings: (i) splitting the treatment of the
geometry evolution from the treatment of the interior Navier-Stokes calculation; and (ii)
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First order Second order Third order

BD

β0 1 3
2

11
6

β1 −1 −2 −3
β2 0 1

2
3
2

β3 0 0 −1
3

HP

α0
8
3

15
4

α1 −7
3 −21

4

α2
2
3

13
4

α3 0 −3
4

KIO

α0 2 3
α1 −1 −3
α2 0 1
α3 0 0

Table 1: Backward Differentiation (BD) coefficients βk, together with the coefficients αk;
see (50). The coefficients αk for the HP scheme are taken from [14] (second order scheme
only), while the coefficients for the KIO scheme are taken from [17].

splitting the treatment of the (ALE) convection operator in the fluid problem from the
Stokes operator. We have not considered splitting the Stokes operator itself into a pressure
step and a viscous step; this would have introduced an additional splitting error. Instead,
we have solved the unsteady Stokes problem via a standard Uzawa algorithm, which does
not correspond to a rediscretization of the Stokes operator, but rather a decoupling algo-
rithm.

The numerical results show that the mesh velocity introduced in the ALE-formulation
does not have to be globally smooth in space. In the context of the isoparametric spectral
element discretization used in this study, it is sufficient that the mesh velocity is regular
within each spectral element, and C0-continuous across element boundaries. Hence, the
extension of the mesh velocity from the boundary to the interior does not necessarily have
to be obtained through the use of an elliptic solver which is commonly the case. This
observation is consistent with the theoretical discussion and comments in [9]. This could
allow for the use of faster and more flexible ways of updating the mesh velocity at each time
step; we plan to explore this opportunity in a future study. Note that, in order to obtain
high order temporal accuracy, the mesh velocity should be regular in the time direction.

The proposed splitting method does not appear to satisfy the Geometric Conservation
Law. Based on the tests we have done so far, we have thus not been able to conclude to what
extent the quality of a general Navier-Stokes solution will improve if the GCL condition is
satisfied. We remark that the mesh velocity used in this study is not divergence free.
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Figure 11: A comparison of the temporal error in the energy norm as a function of the time
step, Δt, for the following second order (left plot) and third order (right plot) schemes:
the OIF scheme presented in this paper, the HP splitting scheme discussed in [14] (also
extended to third order in this study), and the KIO splitting scheme discussed in [17] (here
used in a slightly modified form). For all these results, the spatial error is subdominant
the temporal error.

Despite the encouraging results obtained in this study, more quantitative comparisons
still need to be done in the context of free surface problems with larger and more com-
plex deformations (i.e., free surfaces with significant curvature). An obvious challenge
is to derive analytical solutions in more complex time-dependent domains. However, we
believe it is necessary to obtain quantitative results for more complex problems in order
to discriminate the quality of different ALE-solvers used in a more realistic setting. For
example, controlling the accuracy of a moving interface with a varying (mean) curvature
is a non-trivial task which we feel has not yet been treated satisfactorily in the literature;
the interface-tracking issue is currently under investigation in a separate study.
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We consider here the incompressible Navier-Stokes equations in three dimen-
sions subject to free surface boundary conditions along part or all of the domain
boundary. In [2] a surface integral for weak imposition of both normal and tangen-
tial surface tension boundary conditions was proposed. This integral was based
on describing the free surface using surface-intrinsic coordinates. In this paper
we derive the proposed surface integral using results from differential geometry. A
key ingredient in this derivation is an expression for the curvature-normal product,
and most of the paper will be devoted to deriving this expression.

1 Introduction

We consider here the incompressible Navier-Stokes equations in three dimensions subject to
free surface boundary conditions along part or all of the domain boundary. One critical
aspect of the numerical approximation of such problems is the incorporation of these boundary
conditions. This is related to the fact that the shape of the free surface is generally unknown,
and the normal and tangential stresses in the presence of surface tension depend on the local
curvature and possibly the surface gradient of the surface tension. The free surface boundary
conditions can be expressed as

Fn = niσijnj = γκ,

Ft = tiσijnj = tk(∇sγ)k,

where ni, i = 1, 2, 3, are the components of the outward unit normal vector (n), ti, i = 1, 2, 3,
are the components of a tangent vector (t), Fn is the normal component of the stress force,
Ft is a tangential component of the stress force in the direction of t, σij is the stress tensor,
γ is the surface tension and κ is twice the mean curvature. Here, ∇sγ represents the surface
gradient of the surface tension and tk(∇sγ)k represents the component of the surface gradient
in the direction of t. Summation over repeated indices is assumed.

In order to naturally incorporate the free surface boundary conditions, we need to use the
stress formulation of the Navier-Stokes equations. For the numerical treatment we will use
the corresponding weak formulation of the free surface problem. This involves multiplying
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the governing equations with suitable test functions and integrating over our computational
domain, Ω. Integration by parts on the viscous term yields the surface integral∫

Γγ

viσijnj dS, (1.1)

where Γγ = ∂Ωγ is the free surface, vi is a test function, and σijnj are the total stress forces
in the i’th direction; it is through this integral the imposition of the free-surface boundary
conditions will be done. In [2] Ho and Patera proposed an alternative surface integral for weak
imposition of both normal and tangential surface tension boundary conditions by the use of
surface intrinsic coordinates. This alternative form reads,

−
∫

Γγ

γ
∂vi

∂rα
gα
i dS, (1.2)

where r1 and r2 are surface parameters, and g1 and g2 are two vectors spanning the tangent
plane which will be introduced later. To our knowledge a complete derivation of this surface
integral has not been done, and the aim of this paper is to derive in detail all the necessary
steps in order to go from (1.1) to (1.2). We remark that the total stress forces

F = Fn + Ft = γnκ + ∇sγ,

where Fn is the normal force and Ft represents the tangential force. Thus, we see that in
order to derive (1.2) we need to find an expression for the curvature normal product and the
surface gradient in the context of surface intrinsic coordinates.

In Section 2 we will go through some basic concepts in differential geometry. This is by no
means an exhaustive introduction to differential geometry, but more of a preliminary covering
of the necessary tools needed in the later part of this paper. In Section 3 we cover some
necessary quantities that we will need, like surface divergence, surface gradient and the mean
curvature for a general surface, and in Section 4 we start from (1.1) and derive (1.2).



2 Differential geometry: preliminaries

The introduction to differential geometry in this section is mainly influenced by [1], both in
contents and notation.

2.1 Cartesian coordinate system

A vector in the cartesian coordinate system, xi′ , can be written on the form,

V = V1ix1′ + V2ix2′ + V3ix3′ .

Here, ii′ , i = 1, 2, 3, are an orthonormal basis for R
d (Figure 2.1) such that ixm′ ·ixn′ = δm′n′ . As

an example, the inner-product between two vectors written in this notation can be expressed
as,

V · u = V1u1 + V2u2 + V3u3,

since the orthogonality makes the cross-terms zero.

ix3′

ix1′

ix2′

Figure 2.1: Cartesian coordinate system with orthonormal base vectors.

In the following, we will use xi′ for the cartesian coordinate system and xi or xi∗ for a
general coordinate system.

2.2 General coordinate system

If we instead consider another basis for R
d,

R
d = span{gi}d

i=1,

a vector in R
3 can be written

V = V 1g1 + V 2g2 + V 3g3.

For this basis, we have no restriction on orthogonality between the base vectors nor that
they have unit length. The only requirement is that they are linearly independent. The
inner-product between two vectors in R

3, V and u, expressed in this basis reads
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V · u = V 1u1g1 · g1 + V 1u2g1 · g2 + V 1u3g1 · g3

+ V 2u1g2 · g1 + V 2u2g2 · g2 + V 2u3g2 · g3

+ V 3u1g3 · g1 + V 3u2g3 · g2 + V 3u3g3 · g3.

We see that all nine entries are included, since the basis vectors in general are not orthogonal.

2.3 The base-vectors

We will consider a point, P , with an associated position vector, p. A small increment, dp,
may be expressed as

dp =
∂p
∂xi

dxi, (2.1)

where xi (i = 1, . . . , d) denotes the reference frame, see Figure 2.2. However, if we assume
d
x

2

dx
1

x
1

x
2

g1

P

P ′ = P + dp

p

x2′
dp

x1′

g 2

Figure 2.2: A differential expressed in a general coordinate system in two dimensions.

that each base-vector, gi, points in the same directions as xi, we may choose {gi} such that

dp = gidxi, (2.2)

and thus, an expression for the i’th base-vector is

gi =
∂p
∂xi

. (2.3)

We now introduce another basis for R
d,

R
d = span{gi}d

i=1,

with the property that gm · gn = δmn = δm
n , the Kronecker delta. This is displayed in two

dimensions in Figure 2.3.
A vector in R

3 may now be expressed as



P

x2′

x1′

g2

g1

g2

g1

Figure 2.3: Covariant and contravariant basis vectors associated with the point P in two dimensions.

V = V1g1 + V2g2 + V3g3.

If we return to the example of the inner-product of two vectors, u and v, where u is expressed
in the basis {gi} and v is expressed in {gj}, we get the simplified formula,

u · v = u1v1 + u2v2 + u3v3 = uivi.

In literature, gi is often denoted as the i’th covariant base-vector, and gj as the j’th con-
travariant base-vector.

2.3.1 The metric tensor

Since both the covariant and contravariant base-vectors represent a basis for R
d, the covariant

vector, gi, can be expressed in terms of contravariant base-vectors,

gi = gijgj .

Here, gij are the components of the covariant metric tensor. Similarly, we have

gi = gijgj .

By the use of the orthogonality relation, we get

gi · gj = gikgk · gj = gij = gji,

gi · gj = gikgk · gj = gij = gji,

and

δj
i = gi · gj = gikgk · gjlgl = gikg

jlgk · gl = gikg
jk.

Thus, if the covariant components of the metric tensor is known, it is straightforward to find
the contravariant components.
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2.4 Transformation between coordinate systems

We now assume that we have two reference frames, {xi}d
i=1 and {x∗

i }d
i=1, with two correspond-

ing sets of covariant base-vectors, gi and gi∗ (see Figure 2.4). We also have contravariant
vectors which satisfy the relations

gi · gj = δj
i ,

gi∗ · gj∗ = δj∗
i∗ .

x1∗

g2 g1∗

g1
g2∗

x2∗

x2

x1

Figure 2.4: Two sets of base-vectors in two dimensions.

These four sets of base-vectors span the same space, and can therefore be expressed in terms
of each other. Thus, we can write,

gi∗ = βj
i∗gj ,

gi∗ = βi∗
j gj .

Notice that the summation is over the superscript of βj
i for the first case, and the subscript

for the second case. Further,

δk∗
i∗ = gi∗ · gk∗

= βj
i∗gj · βk∗

l gl = βj
i∗β

k∗
l gj · gl = βj

i∗β
k∗
l δl

j

⇓
βj

i∗β
k∗
j = δk∗

i∗ , (2.4)

and in the same manner we have

βj∗
i βk

j∗ = δk
i . (2.5)



2.4.1 The components, βj∗
i

As before, we may write a small vector, ds, in terms of the covariant base-vectors,

ds = gi dxi = βk∗
i gk∗ dxi,

by the use of two reference frames, {xi}d
i=1 and {x∗

i }d
i=1. The same vector may also be

expressed as

ds = gk∗ dxk∗
= gk∗

∂xk∗

∂xi
dxi.

Thus,

βk∗
i gk∗ dxi = gk∗

∂xk∗

∂xi
dxi

should be valid for all ds. By systematically choosing,

dx1 = 1, dx2 = 0, dx3 = 0,

dx1 = 0, dx2 = 1, dx3 = 0,

dx1 = 0, dx2 = 0, dx3 = 1,

we find that

βk∗
i gk∗ = gk∗

∂xk∗

∂xi
.

Taking the inner-product of both sides with gj∗ , we get

βk∗
i gk∗ · gj∗ = gk∗ · gj∗ ∂xk∗

∂xi
,

⇓

βj∗
i =

∂xj∗

∂xi
.

2.5 The permutation tensor

We wish to be able to evaluate cross-products in general coordinates. This is closely related
to a tensor often called the permutation tensor, and in order to derive this tensor we will first
introduce the permutation symbols.

2.5.1 The permutation symbols

The permutation symbols, eijk = eijk, are defined by

eijk = +1, if i, j, k is a cyclic sequence (1, 2, 3; 2, 3, 1 or 3, 1, 2 for the 3 × 3 case.)
eijk = −1, if i, j, k is a anticyclic sequence (3, 2, 1; 2, 1, 3 or 1, 3, 2 for the 3 × 3 case.)
eijk = 0, if i, j, k is acyclic (two or more subscripts are equal.)
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2.5.2 The determinant

We define a2 to be the determinant of a matrix aj
i :

a2 = |aj
i | =

∣∣∣∣∣∣
a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

∣∣∣∣∣∣ .
By the use of the permutation symbols, this can also be written as

a2 = ai
1a

j
2a

k
3eijk,

or

a2 = a1
l a

2
ma3

nelmn.

2.5.3 The permutation tensor

We now define the permutation tensor connected to the cartesian coordinate system, xi′ , as

εi′j′k′ = ei′j′k′ . (2.6)

If we wish to transform this tensor to another coordinate system, xi, we may do this in the
same way as introduced earlier,

εijk = εi′j′k′βi′
i βj′

j βk′
k = ei′j′k′βi′

i βj′
j βk′

k .

However, we recognize this as |βi′
i | if {i, j, k} is a cyclic sequence and −|βi′

i | if {i, j, k} is an
anticyclic sequence,

εijk = |βi′
i |, if i, j, k is cyclic,

εijk = −|βi′
i |, if i, j, k is anticyclic.

(2.7)

From (2.4), we know that

βj
i′β

k′
j = δk′

i′ ,

thus,

|βj
i′β

k′
j | = 1,

⇓
|βj

i′ | = Δ, |βi′
j | =

1
Δ

,

where Δ is currently unknown. We define g2 to be the determinant of the metric tensor,

g2 = |gij | =

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣ .



Since,

gijg
jk = δk

i ,

we have

|gijg
jk| = 1,

⇓
|gij ||gjk| = 1,

⇓
|gjk| =

1
g2

.

We transform the metric tensor to the cartesian reference frame,

gi′j′ = gijβ
i
i′β

j
j′ ,

which leads to

(g′)2 = |gi′j′ | = |gijβ
i
i′ ||βj

j′ | = |gij ||βi
i′ ||βj

j′ | = g2ΔΔ. (2.8)

For the cartesian coordinate system, we know that

g′ = 1,

since the metric tensor is simply the identity matrix, and this leads to

1
Δ

= g.

Thus, we find that the tensor |βi′
i |, which is used for expressing a base vector in a general coor-

dinate system in terms of base vectors in the cartesian coordinate system, has the determinant
g. We arrive at,

εijk = |βi′
i | = g, if i, j, k is cyclic,

εijk = −|βi′
i | = −g, if i, j, k is anticyclic, (2.9)

εijk = 0, if i, j, k is acyclic.

2.6 Representation of a three-dimensional surface

We will use surface intrinsic coordinates for describing three-dimensional surfaces. Such
surfaces will in general be described by two surface parameters and written on the form
xi′ = fi(r1, r2), i = 1, 2, 3. We are free to choose the way we describe the surface in terms
of r1 and r2, but it is natural to choose r1 and r2 as variables on a pre-determined refer-
ence domain, which is connected to the physical surface through a one-to-one mapping. The
covariant base-vectors are then given by
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gi =
∂p
∂ri

.

Note that, independent of the choice of r1 and r2, the covariant base-vector, gi, will at
each point on the surface point in the mapped direction of ri while gi will generally have a
component in both the r1 and r2 direction.

In the following we will use this approach, where r1 and r2 are variables on a reference
domain, Γ̂ (see Figure 2.5.) Here, we see that a line on the reference domain in which r1 varies
and r2 is constant corresponds to a curve on the physical surface, Γ, through the mapping
F . The vector g1 will be a tangent to this curve at all grid points, and similarly g2 will be
the tangent vector along a curve on Γ corresponding to constant r1 and varying r2 on the
reference domain. Thus, {g1,g2} and {g1,g2} will both span the tangent plane at all points
on the surface. For the third direction, we will in the following choose g3 = g3 = n, such that

g1

F

Γ̂

Γ

x3′

x1′

x2′
r2

r1

g2
n

Figure 2.5: Mapping between reference domain and physical domain for a surface in three dimen-
sions.

the third base vector is orthogonal to the tangent vectors as well as normalized,

g3 · gi = 0, i = 1, 2,√
g3 · g3 = 1,

⇓
g3 = n.

Note that for this choice of g3 we get,

g2 =

∣∣∣∣∣∣
g11 g12 0
g21 g22 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣g11 g12

g21 g22

∣∣∣∣ .
2.7 Cross product

2.7.1 Cross product between base vectors

If we choose gi′ as the orthonormal basis in the cartesian coordinate system,

gi′ = ixi′ , i = 1, 2, 3,



we know that for this case

gi′ × gj′ = εi′j′k′gk′
(2.10)

is valid. Here εi′j′k′ is the permutation tensor associated with the cartesian coordinate system,
defined in (2.6) and g3′ = g3′ = ix3′ . For general coordinate directions, we may now write

gi × gj = (βi′
i gi′) × (βj′

j gj′)

= βi′
i βj′

j (gi′ × gj′),

which by the use of (2.10) can be written as

= βi′
i βj′

j εi′j′k′gk′

= βi′
i βj′

j βk′
k εi′j′k′gk

⇓
gi × gj = εijkgk. (2.11)

2.7.2 Area-element on the surface

We now denote s1 and s2 to be surface coordinates pointing in the same directions as r1 and
r2, respectively, such that s1 = s1(r1) and s2 = s2(r2), see Figure 2.6. We are interested
in expressing an area-element, dS, on a general three-dimensional surface in terms of the
reference variables, r1 and r2.

dSg2

ds2

n

g1
ds1

s1

s2

P

Figure 2.6: A surface element.

We assign ds1 to be a vector originating from P associated with a small increment dr1

on the reference domain, and similarily ds2 is the vector associated with the increment dr2.
Thus, ds1 points in the direction of g1 and ds2 points in the direction of g2 and we have the
relation

11



ds1 × ds2 = dSn,

⇓
dS = |ds1 × ds2|. (2.12)

We also have

ds1 =
∂s1

∂r1
dr1 =

∂p
∂r1

dr1 = g1 dr1,

ds2 =
∂s2

∂r2
dr2 =

∂p
∂r2

dr2 = g2 dr2.

Inserted into (2.12), we get

dS = |(g1 dr1 × g2 dr2)|,
= |g1 × g2|dr1 dr2.

From (2.11) and our choice of g3 = n, we get

|g1 × g2| = |ε123n|,
= |ε123||n|,
= ε123,

⇓
dS = g dr1 dr2, (2.13)

by the use of (2.9) and the fact that g is always positive.

2.7.3 Cross-product between two general vectors

The cross product between two general vectors expressed in a covariant basis

a = aigi,

b = bjgj ,

becomes

a × b = aigi × bjgj ,

= aibjgi × gj ,

= aibjεijkgk. (2.14)



2.7.4 Normal vector of a line element

We consider a line element vector, ds, associated with a curve, C, on an arbitrary curved
surface, S. In Figure 2.7 this curve is the boundary of the surface, but in general, C could
be anywhere on S. We will consider a point P on C where ds is a tangent vector, g3 = n is
the normal to S at P and dn is an outer normal to C. We express ds in terms of covariant
base-vectors and dn in terms of contravariant base-vectors,

ds = drαgα,

dn = dnβgβ. (2.15)

Then, the outer normal to C at P may be written

dn = ds × g3

= drα(gα × g3)

= drαεα3βgβ. (2.16)

Comparing (2.15) and (2.16) leads to

dnβ = drαεα3β ,

dnα = εβ3α drβ,

⇓
= ε̃αβ drβ, (2.17)

where ε̃12 = g, ε̃21 = −g and ε̃11 = ε̃22 = 0. Since g3 is of unit length, we observe that
|dn| = |ds|.

ds

dn

nS

P

C

Figure 2.7: Outward normal to the point P on the curve C.
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2.8 Summary

In summary, we have some results and definitions which will be used in the following sections:

gα =
∂p
∂rα

, (2.18)

gα · gβ = gαβ , (2.19)

gαγgγβ = δβ
α, (2.20)

gα = gαβgβ, (2.21)

g =
√

[det(gαβ)], (2.22)

bαβ = n · ∂gα

∂rβ
= −gα · ∂n

∂rβ
(2.23)

The relation between the contravariant and covariant metric tensor is given by

[
g11 g12

g21 g22

] [
g11 g12

g21 g22

]
=
[
1 0
0 1

]
⇓[

g11 g12

g21 g22

]
=

1
g2

[
g22 −g12

−g21 g11

] [
1 0
0 1

]
=

1
g2

[
g22 −g12

−g21 g11

]
⇓

g11 =
1
g2

g22 (2.24)

g12 = − 1
g2

g12 (2.25)

g21 = g12 (2.26)

g22 =
1
g2

g11 (2.27)



3 Mean curvature and related operators

The main objective in this section is to find an expression for the curvature-normal product.
In order to do this we will derive expressions for some important quantities like gradient,
divergence and principal directions related to the mean curvature in the context of a general
coordinate system. The contents of this section is mainly influenced by [4] and [3], while the
notation is mostly the same as used in [1] and [3].

3.1 Surface divergence of a vector in general coordinates

If we have a vector, F = F(r1, r2), expressed in general coordinates, the divergence at a given
point is given by [4]

∇s · F =
1
g2

g1 ·
(

g22
∂F
∂r1

− g12
∂F
∂r2

)
+

1
g2

g2 ·
(

g11
∂F
∂r2

− g12
∂F
∂r1

)
. (3.1)

We now wish to find another expression for ∇s · F. Expressing F in covariant base-vectors,
we may write F = ag1 + bg2 + cn. Thus, the divergence may be written as

∇s · F = ∇s · (ag1) + ∇s · (bg2) + ∇s · (cn).

By the help of (3.1), we get

∇s · (ag1) =
1
g2

g1 ·
[
g22

(
∂a

∂r1
g1 + a

∂g1

∂r1

)
− g12

(
∂a

∂r2
g1 + a

∂g1

∂r2

)]
+

1
g2

g2 ·
[
g11

(
∂a

∂r2
g1 + a

∂g1

∂r2

)
− g12

(
∂a

∂r1
g1 + a

∂g1

∂r1

)]
=

1
g2

[
g22

∂a

∂r1

(
g1 · g1

)
+ g22a

(
g1 · ∂g1

∂r1

)
− g12

∂a

∂r2

(
g1 · g1

)
− g12a

(
g1 · ∂g1

∂r2

)]
+

1
g2

[
g11

∂a

∂r2

(
g2 · g1

)
+ g11a

(
g2 · ∂g1

∂r2

)
− g12

∂a

∂r1

(
g1 · g2

)
− g12a

(
g2 · ∂g1

∂r1

)]
To proceed, we need the following quantities (note that ∂g1

∂r2 = ∂g2

∂r1 ),

g1 · ∂g1

∂r1
=

1
2

∂(g1 · g1)
∂r1

=
1
2

∂g11

∂r1
,

g1 · ∂g1

∂r2
=

1
2

∂(g1 · g1)
∂r2

=
1
2

∂g11

∂r2
,

g2 · ∂g1

∂r2
= g2 · ∂g2

∂r1
=

1
2

∂(g2 · g2)
∂r1

=
1
2

∂g22

∂r1
,

g2 · ∂g1

∂r1
=

∂(g1 · g2)
∂r1

− g1 · ∂g2

∂r1
=

∂g12

∂r1
− 1

2
∂g11

∂r2
.

Thus,
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∇s · (ag1) =
1
g2

[
g22

∂a

∂r1
g11 + g22a

(
1
2

∂g11

∂r1

)
− g12

∂a

∂r2
g11 − g12a

(
1
2

∂g11

∂r2

)]
+

1
g2

[
g11

∂a

∂r2
g12 + g11a

(
1
2

∂g22

∂r1

)
− g12

∂a

∂r1
g12 − g12a

(
∂g12

∂r1
− 1

2
∂g11

∂r2

)]

=
1
g2

g2︷ ︸︸ ︷
(g11g22 − g2

12)
∂a

∂r1
+

a

2g2

(
g11

∂g22

∂r1
+ g22

∂g11

∂r1
− 2g12

∂g12

∂r1

)
,

=
∂a

∂r1
+

a

2g2

(
g11

∂g22

∂r1
+ g22

∂g11

∂r1
− 2g12

∂g12

∂r1

)
,

=
∂a

∂r1
+

a

2g2

∂

∂r1
(g11g22 − g2

12),

=
1
g

∂(ga)
∂r1

,

where g =
√

g11g22 − g2
12. Similarly, we have

∇s · (bg2) =
1
g

∂(gb)
∂r2

,

and we will later show that

∇s · (cn) = −κc,

where κ is twice the mean curvature. This gives us another formula for the divergence of a
vector, F = ag1 + bg2 + cn,

∇s · F =
1
g

[
∂(ga)
∂r1

+
∂(gb)
∂r2

]
− κc. (3.2)

3.1.1 Example

As a simple example we will consider the surface of a sphere with radius r = 1.
We will choose basis vectors

g1 = − sin θix1′ + cos θix2′ + 0ix3′ ,

g2 = cos φ cos θix1′ + cos φ sin θix2′ − sin φix3′ ,

where {ixi′}3
i=1 as usual are the standard basis vectors in the cartesian coordinate system. We

observe that

g12 = g1 · g2 = 0,

g11 = g1 · g1 = 1,

g22 = g2 · g2 = 1,

⇓
g = 1.

(3.3)



x

φ
P (r, φ, θ)

y
θ

z

g1

g2

r

Figure 3.1: Sphere with orthonormal base-vectors.

Inserted into (3.2), we find that the surface divergence to a vector F = ag1 + bg2 for this case
is given by

∇s · F =
∂a

∂r1
+

∂b

∂r2
,

which is what we would expect.

3.2 Surface gradient of a scalar field

P

dp

r2
g1g2

δp

r1(up, vp)

We now consider a scalar function, φ(r1, r2), on a surface, S, parameterized by the reference
variables r1 and r2. We assume that φ(r1, r2) = C is a level curve on the surface and that P
is a point on this curve. If (δr1, δr2) is a small displacement from P such that

δp = g1δr
1 + g2δr

2 (3.4)

is a tangent to this curve, then

φ,1δr
1 + φ,2δr

2 = 0, (3.5)

where φ,1 = ∂φ
∂r1 and φ,2 = ∂φ

∂r2 .
We consider another displacement (dr1, dr2), with associated displacement vector,

dp = g1 dr1 + g2 dr2, (3.6)

and find that the inner-product between δp and dp is given by
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dp · δp =
(
g1 dr1 + g2 dr2

)
·
(
g1δr

1 + g2δr
2

)
= g11 dr1δr1 + g12( dr1δr2 + dr2δr1) + g22 dr2δr2.

We now assume that dp and δp are perpendicular, which leads to the relation

g11
dr1

dr2

δr1

δr2
+ g12

(
dr1

dr2
+

δr1

δr2

)
+ g22 = 0. (3.7)

From (3.5) we see that
δr1

δr2
= −φ,2

φ,1
.

We insert this into (3.7) and find that

dr1

dr2
=

g22φ,1 − g12φ,2

g11φ,2 − g12φ,1
. (3.8)

The displacement vector, δp, is a tangent to the curve φ(r1, r2) = C, and we know that the
surface gradient points in a normal direction to this curve along the surface. Thus, from (3.8)
we see that the vector

V = k(g22φ,1 − g12φ,2)g1 + k(g11φ,2 − g12φ,1)g2

is parallel to ∇sφ. In order to determine k, we require that

V · g1√
g11

=
∂φ

∂r1

∂r1

∂s1
=

1√
g11

φ,1,

where s1 is an arc-length coordinate which runs in the same “direction” as the reference
variable, r1. We find that k = 1

g2 , so the gradient of the scalar function φ(r1, r2) may be
written

∇sφ =
(g22φ,1 − g12φ,2)

g2
g1 +

(g11φ,2 − g12φ,1)
g2

g2, (3.9)

= (g11φ,1 + g12φ,2)g1 + (g12φ,1 + g22φ,2)g2,

= φ,αgα, (3.10)

where we have used (2.21) in the last step, and α = 1, 2.

3.2.1 Example

By using the same example as for the surface divergence, (see Figure 3.1), where the geometric
factors are given by (3.3), we get the simplified formula

∇sφ =
∂φ

∂r1
g1 +

∂φ

∂r2
g2,

which again seems reasonable.



3.3 Curvature of a curve

We will consider a curve, C, spanning three dimensions given by

p(s) =

⎡⎣x1′(s)
x2′(s)
x3′(s)

⎤⎦ ,

where xi′ is the i’th cartesian coordinate and s is an arc-length variable along the curve. Such
a curve is depicted in Figure 3.2. Here, we have used

• Normal plane, N

The plane spanned by all vectors normal to the unit tangent vector t(s) = ṗ = dp
ds at

the point P .

• Osculating plane, O

The plane spanned by t = dp
ds and ṫ = d2p

ds2 .

p(s)

N

P

C

O

Figure 3.2: A curve in three dimensions. N is the normal plane and O is the osculating plane.

We observe that the vector

nc =
ṫ(s)
|ṫ(s)|

is a unit normal to C. This vector lies in both the normal plane, N , and in the osculating
plane, O, and therefore points in the direction of the line of intersection between N and O.
The curvature of the curve C at the point P (s) is given by

κc = |ṫ(s)|,
⇓

κcnc = p̈(s). (3.11)

Figure 3.3 shows a plot of the curve C projected to the osculating plane at the point P . The
point M at a distance ρ = 1

κc
from P in the direction of nc is called the centre of curvature.
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The circle in the osculating plane with centre M and radius ρ is called the circle of curvature
of C at P .

C

t

ρ = 1
κc

P

M

nc

Figure 3.3: The curve, C, projected to the osculating plane at P .

We observe that the circle of curvature is only dependent on ṫ at the point P , such that
any curve through P with the same local behavior will have the same circle of curvature.

3.4 Orthogonal curves on a surface

In Section 3.2 we found that (3.7) must be satisfied for the two directions dr1

dr2 and δr1

δr2 to be
orthogonal. We will later encounter equations on the form

a1

(
dr1

dr2

)2

+ a2

(
dr1

dr2

)
+ a3 = 0, (3.12)

where the solutions represent two directions on a surface associated with a point, P . If we
assume that dr1

dr2 and δr1

δr2 are the two solutions of (3.12), we find that

dr1

dr2
+

δr1

δr2
= −a2

a1
,

dr1

dr2

δr1

δr2
=

a3

a1
.

Combining this with (3.7), we get the required relation for orthogonality,

g11a3 − g12a2 + g22a1 = 0. (3.13)

3.4.1 Example

If we again consider a situation with orthonormal base vectors, for instance the case in Figure
3.1, we get the required relation,



a3 + a1 = 0.

Choosing a1 = −a3 in (3.12), we get the two solutions,

dr1

dr2
= − a2

2a3
+

√
a2

2 + 4a2
3

2a3
,

δr1

δr2
= − a2

2a3
−
√

a2
2 + 4a2

3

2a3
.

Defining the two vectors,

V1 =

(
− a2

2a3
+

√
a2

2 + 4a2
3

2a3

)
g1 + g2,

V2 =

(
− a2

2a3
−
√

a2
2 + 4a2

3

2a3

)
g1 + g2,

we find that

V1 · V2 = 0,

which shows that the two directions are orthogonal.

3.5 Principal directions and mean curvature

We now wish to find an expression for the mean curvature at a point on a surface. In Section 3.3
we showed that the curvature at the point P of a curve C with the parametric representation
p(s) is given by

κcnc = p̈(s),

where nc is the unit normal to C which points in the direction of the intersection of the
osculating plane and the normal plane, and s is an arc-length variable. If we now set nc = n,
where n is the unit normal to a surface S at P , we get the formula

κcn = p̈(s). (3.14)

This formula will give us the curvature for all curves p(s) on S for which the intersection
between the osculating plane and the normal plane points in the same direction as n. This
leads us to a type of curves on S called normal sections:

• Normal section

A normal section is a plane curve associated with a general curve on S which passes
through P . A normal section is defined by the intersection of S and a plane containing
the normal n of S at P and a tangent vector, t, to the curve. The normal section at
P will then automatically have t as a tangent vector and n as a principal normal. For
such a curve (3.14) will be the formula for the curvature. We will denote the curvature
of a normal section by κn.

An example of a normal section is displayed in Figure 3.4.
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t
S

C
P

n

Figure 3.4: A normal section associated with a curve, C, passing through the point, P ..

3.5.1 Curvature of a normal section

We now wish to derive another expression for the curvature of a normal section which involves
tensors. From (3.14) we have

κnn = p̈(s) =
d2p
ds2

=
∂2p

∂rα∂rβ
ṙαṙβ +

∂p
∂rα

r̈α

⇓

κn =
(

∂2p
∂rα∂rβ

· n
)

ṙαṙβ

=
(

∂gα

∂rβ
· n
)

ṙαṙβ. (3.15)

By the use of (2.23), we find that

κn = bαβ ṙαṙβ.

If we now assume that we parameterize the curve C by a parameter t instead of the arc-length,
s, we find,

ṙα =
drα

dt

dt

ds
=

rα′

s′
.

Thus, we may write

κn =
bαβrα′

rβ′

(s′)2
(3.16)

We know that

ds2 = dp · dp = gαβ drα drβ



and thus

(s′)2 = gαβrα′
rβ′

.

(3.16) now becomes

κn =
bαβrα′

rβ′

gαβrα′rβ′

=
bαβ drα drβ

gαβ drα drβ
. (3.17)

Thus, (3.17) gives us an expression for the curvature of a normal section whose tangent
direction is given by (dr1, dr2).

3.5.2 Principal directions

Twice the mean curvature is given by

κ = κnmin + κnmax ,

where κnmin and κnmax are the extremas for κn when we consider all possible curves on S
passing through a point, P . We now wish to find which directions on S for which κn has its
extremas. In (3.17) we have a formula to find the curvature at a point P of the normal section.
In Figure 3.5, we see that for a general vector, v = dr1g1 + dr2g2, the ratio dr1

dr2 defines a
direction on the surface. Thus, we wish to find the directions, dr1

dr2 , such that ∂κn
∂s = 0, where

s is a variable in the angular direction, see Figure 3.6. We see that a vector in the angular
direction may be expressed

δs = δr1g1 + δr2g2.

Thus, if we require that

∂κn

∂l1
= 0,

∂κn

∂l2
= 0,

(3.18)

where lα = drα, we will also have ∂κn
∂s = 0.

(3.17) may be written as

(bαβ − κngαβ)lαlβ = 0. (3.19)

If we set

aαβ = bαβ − κngαβ ,

differentiating (3.19) yields
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r2

P
dr

2 g
2

dr1g1

v r1

g2

g1

Figure 3.5: A vector, v , in a general direction on a surface.

s g1

g2

r1

r2

δr2g2

δr1g1

ds
v

P

Figure 3.6: A vector, ds , in the angular direction on a surface.



∂

∂lγ
(aαβlαlβ) = aαβ

(
∂lα

∂lγ
lβ + lα

∂lβ

∂lγ

)
= aαβ(δα

γ lβ + lαδβ
γ ) = aγβlβ + aαγ lα = (aγα + aαγ)lα, γ = 1, 2.

(Note here that ∂
∂lγ denotes differentiation with respect to the direction drγ on the surface.

Thus, the point P is constant, and therefore ∂bαβ

∂lγ = 0 and ∂gαβ

∂lγ = 0.) aαβ is symmetric, and
we get the two equations

(bα1 − κngα1) drα = 0,

(bα2 − κngα2) drα = 0.
(3.20)

If we eliminate κn from (3.20), we end up with the second order equation

(g11b12 − g12b11)
(

dr1

dr2

)2

+ (g11b22 − g22b11)
(

dr1

dr2

)
+ (g12b22 − g22b12) = 0. (3.21)

We see that (3.21) satisfies (3.13) with

a1 = (g11b12 − g12b11),
a2 = (g11b22 − g22b11),
a3 = (g12b22 − g22b12),

and thus we have shown that the two principal curves are orthogonal.

3.5.3 Mean curvature

From (3.20) we find that

dr1

dr2
=

(κng21 − b21)
(b11 − κng11)

,

dr1

dr2
=

(κng22 − b22)
(b12 − κng12)

.

Eliminating dr1

dr2 leads to the second order equation

(g11g22 − g2
12)κ

2
n + (2g12b12 − b11g22 − g11b22)κn + (b11b22 − b2

12) = 0, (3.22)

from which we obtain κnmax and κnmin . Twice the mean curvature is given by

κ = κnmax + κnmin

=
2(g22b11 − 2g12b12 + g11b22)

2g2

= b11g
11 + 2b12g

12 + b22g
22. (3.23)
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3.5.4 Surface divergence of the unit normal

From (3.1) and (2.23), we find that the divergence of the unit normal may be expressed as

∇s · n =
1
g2

g1 ·
(

g22
∂n
∂r1

− g12
∂n
∂r2

)
+

1
g2

g2 ·
(

g11
∂n
∂r2

− g12
∂n
∂r1

)
=

1
g2

(
g22g1 · ∂n

∂r1
− g12g1 · ∂n

∂r2
+ g11g2 · ∂n

∂r2
− g12g2 · ∂n

∂r1

)
= −(g22b11 − g12b12 + g11b22 − g12b21)

g2

= −(g11b22 − 2g12b12 + g22b11)
g2

= −(b11g
11 + 2b12g

12 + b22g
22)

= −κ.

3.6 The surface Laplacian of the position vector, ∇2
sp

If we use (3.9) with (3.2), we find

∇2
spi = ∇s · ∇spi

=
1
g

∂

∂r1

(
g22

∂pi

∂r1 − g12
∂pi

∂r2

g

)
+

1
g

∂

∂r2

(
g11

∂pi

∂r2 − g12
∂pi

∂r1

g

)

=
1
g

∂

∂r1

(
g22g1i − g12g2i

g

)
+

1
g

∂

∂r2

(
g11g2i − g12g1i

g

)
=

1
g

(
∂

∂r1

(
g22

g

)
g1i +

(
g22

g

)
∂g1i

∂r1
− ∂

∂r1

(
g12

g

)
g2i −

(
g12

g

)
∂g2i

∂r1

)
+

1
g

(
∂

∂r2

(
g11

g

)
g2i +

(
g11

g

)
∂g2i

∂r2
− ∂

∂r2

(
g12

g

)
g1i −

(
g12

g

)
∂g1i

∂r2

)
. (3.24)

Thus, we need other expressions for ∂g1

∂r1 , ∂g2

∂r1 , ∂g1

∂r2 and ∂g2

∂r2 . We may show that



∂g1

∂r1
= a1g1 + b1g2 + c1n

∂g2

∂r1
=

∂g1

∂r2
= a2g1 + b2g2 + c2n

∂g2

∂r2
= a3g1 + b3g2 + c3n

Taking the inner-product of g1, g2 and n with these three equations leads to

a1 =
(g22

∂g11

∂r1 − 2g12
∂g12

∂r1 + g12
∂g11

∂r2 )
2g2

b1 =
(2g11

∂g12

∂r1 − g11
∂g11

∂r2 − g12
∂g11

∂r1 )
2g2

c1 = b11

a2 =
(g22

∂g11

∂r2 − g12
∂g22

∂r1 )
2g2

b2 =
(g11

∂g22

∂r1 − g12
∂g11

∂r2 )
2g2

c2 = b12

a3 =
(2g22

∂g12

∂r2 − g22
∂g22

∂r1 − g12
∂g22

∂r2 )
2g2

b3 =
(g11

∂g22

∂r2 − 2g12
∂g12

∂r2 + g12
∂g22

∂r1 )
2g2

c3 = b22

Inserted into (3.24), we see that all the tangential components cancel, and we end up with

∇2
spi =

(g11b22 − 2g12b12 + g22b11)
g2

ni

= κni.

3.7 Curvature-normal product

From (3.24) we have that

κni =
1
g

∂

∂r1

(
g22

∂pi

∂r1 − g12
∂pi

∂r2

g

)
+

1
g

∂

∂r2

(
g11

∂pi

∂r2 − g12
∂pi

∂r1

g

)
.

Finally, by the use of (2.24)-(2.27) and (2.21)
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κni =
1
g

∂

∂r1

(
g

(
g22g1i − g12g2i

g2

))
+

1
g

∂

∂r2

(
g

(−g12g1i + g11g2i

g2

))
=

1
g

∂

∂r1
(g(g11g1i + g12g2i)) +

1
g

∂

∂r2
(g(g21g1i + g22g2i))

=
1
g
(ggα

i ),α. (3.25)



4 Derivation of the surface integral

We have now obtained all the necessary expressions in order to find another expression for
(1.1) by using surface intrinsic coordinates. By the use of (2.13), (3.25) and (3.10),

∫
Γ

viσijnj dS =
∫

Γ
vi(γniκ + (∇sγ)i) dS

=
∫

Γ̂
vi(γg−1(ggα

i ),α + γ,αgα
i )g dr1 dr2

=
∫

Γ̂
vi(γgα

i,α + γg−1g,αgα
i + γ,αgα

i )g dr1 dr2

=
∫

Γ̂
vi(γggα

i,α + γg,αgα
i + γ,αggα

i ) dr1 dr2

=
∫

Γ̂
vi(γggα

i ),α dr1 dr2

=
∮

∂Γ̂
γvig

α
i dnα −

∫
Γ̂

vi,αγgα
i g dr1 dr2.

where dnα = ε̃αβ drα, and ε̃11 = ε̃22 = 0, ε̃12 = −ε̃21 = g.

For the cases we will consider,
∮
∂Γ̂ γvig

α
i dnα = 0, such that∫

Γ
viσijnj dS = −

∫
Γ̂

vi,αγgα
i g dr1 dr2.

This is the same integral as proposed in [2].
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High order methods for incompressible fluid flow:
Application to free surface problems

Tormod Bjøntegaard and Einar M. Rønquist
Faculty of Information Technology, Mathematics and Electrical Engineering

The Norwegian University of Science and Technology

Summary We present an Arbitrary Lagrangian Eulerian formulation for solving free surface
problems including the effect of both normal and tangential stresses. The discretization is based
on combining spectral elements in space with an operator splitting approach in time. The com-
putational framework gives exponential convergence in space, and first, second, or third order
convergence in time for selected test problems with analytic solutions and data. We present simu-
lation results for two applications. First, we consider a two-dimensional model problem associated
with the transportation of fresh water in flexible containers. Second, we present simulation results
for three-dimensional Bénard-Marangoni convection, incorporating both normal and tangential
stresses along the free surface. The numerical prediction of the free surface deflection for such
problems is completely new, and demonstrates the advantages of the particular weak form used
in this study, as well as the advantages of using surface intrinsic coordinates for the imposition of
free surface boundary conditions.

Introduction
Numerical solution of the Navier-Stokes equations in time-dependent geometries has found

wide-spread use in science and engineering, both in the context of basic understanding of fluid

flow phenomena, as well as for predictive purposes in engineering. A powerful framework is

provided by the Arbitrary Lagrangian Eulerian (ALE) formulation. Even though this framework

is quite mature and is currently used in many commercial codes, it is still a subject of active

research; e.g., see [11].

Part of the current research in ALE methods is related to time integration. One issue is the

importance of satisfying the so-called geometric conservation laws [14, 9, 8, 5]. The conclusion

is still not quite clear for general Navier-Stokes problems. One complicating factor in all this

effort is the fact that it is not easy to measure and verify the overall temporal accuracy during a

transient simulation. This is partially due to the lack of analytical solutions for moving boundary

problems, in particular, for general free surface problems where both normal and tangential

stress boundary conditions are imposed.

Special issues arise when trying to apply high order spectral methods to free surface prob-

lems. Because the free surface is part of the overall time-dependent solution, it is, in general,

nontrivial to update the domain boundary in such a way that the distribution of the surface

points remains optimal from the initial time to the final time. This is due to the fact that the

free surface displacement is fundamentally linked to the normal fluid velocity along the surface

(”front-tracking”), while the tangential displacement of surface points is less well defined and

is often treated in a more ad hoc fashion (e.g., by imposing homogeneous Dirichlet or Neumann

conditions).

Assuming the evolution of the time-dependent free surface can be tracked in an accurate and

efficient way, it still remains to extend the mesh velocity along the free surface to the interior of

the domain. A smooth extension to the interior is most commonly used, e.g., using an harmonic

extension or an elasticity solver. However, a thorough study (both theoretical and numerical) of

the regularity requirements of the mesh velocity appears to be lacking.

Finally, the imposition of general free surface boundary conditions in three dimensions, both

normal and tangential stresses, has not been fully explored. This is particularly true for problems
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involving a variable surface tension, which necessitate an efficient and accurate calculation of

simultaneous curvature and surface gradient effects using surface intrinsic coordinates [10].

The purpose of this paper is to present a few selected results from an ongoing research effort

initiated with the purpose of addressing some of the above-mentioned issues. To this end, we

first present numerical results which demonstrate first, second and third order splitting error in

time, in combination with exponential convergence in space for analytic solution and data. We

then present simulation results for two applications. The first problem is a two-dimensional free

surface model problem which is motivated by the transportation of fresh water using elastic

fabric containers. The second problem involves the simulation of three-dimensional Bénard-

Marangoni convection [2, 3, 19, 12]. Based on the method proposed in [10], we will demon-

strate a very powerful and convenient way to impose both normal and tangential stresses along

general deformed surfaces. The free surface deformation associated with the formation of three-

dimensional hexagonal cells has previously only been studied experimentally [4, 12] or an-

alyzed analytically using linear stability analysis [20]; the numerical simulation of the free

surface deformation presented in this study is new.

Governing equations
Strong formulation

We consider first the governing equations for incompressible fluid flow in two space dimensions;

the extension to three dimensions will be discussed later. The conservation of linear momentum

and the conservation of mass can be expressed as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj

+ fi in Ω, i = 1, 2, (1)

∂uj

∂xj

= 0 in Ω, (2)

where ρ is the density of the fluid, ui is the i-th component of the fluid velocity in an inertial

reference frame, xj is the j-th coordinate, and fi is the i-th component of a given body force.

Summation over repeated indices is assumed. The stress tensor σij for a viscous Newtonian

fluid is given as

σij = −pδij + μ

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2, (3)

where p is the pressure and μ is the dynamic viscosity.

We assume that the boundary ∂Ω can be split into two parts: ∂Ω0 where homogeneous ve-

locity boundary conditions are specified, and ∂Ωγ where free surface boundary conditions are

specified, i.e.,

ui = 0 on ∂Ω0, (4)

niσijnj = γκ − po on ∂Ωγ, (5)

tiσijnj =
dγ

ds
on ∂Ωγ. (6)

Here, γ is the surface tension, κ is the local curvature, po is the external pressure, ni and ti are

the i-th component of the unit normal vector and the unit tangent vector along the free surface,

respectively, and s is the arclength along the free surface.

The domain Ω is, in general, time-dependent, i.e., Ω = Ω(t). We assume that both Ω and ui,

i = 1, 2 are known at the initial time t = 0.
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Weak formulation

We first introduce the function spaces X and Y defined as

X = {v ∈ H1(Ω), v = 0 on ∂Ω0},
Y = q ∈ L2(Ω).

The governing equations can then be expressed as: Find ui ∈ X , i = 1, 2 and p ∈ Y such that

ρ

∫
Ω(t)

(
vi

∂ui

∂t
+ viuj

∂ui

∂xj

)
dΩ =

∫
Ω(t)

(
− ∂vi

∂xj

σij + fivi

)
dΩ + Iγ(vi) ∀vi ∈ X, (7)∫

Ω(t)

q
∂uj

∂xj

= 0 ∀q ∈ Y, (8)

where

Iγ(vi) =

∫
∂Ωγ(t)

viσijnj ds (9)

is the surface integral resulting from integration by parts of the volume term
∫

Ω(t)
vi

∂σij

∂xj
dΩ.

ALE formulation

Let us now briefly recall the main ingredients in deriving the Arbitrary Lagangian Eulerian

formulation from (7) and (8). First, we introduce a mesh velocity with components wi, i = 1, 2,

in order to describe the time-dependent evolution of the domain Ω(t) both in the interior and on

the boundary, i.e.,
dxi

dt
= wi, i = 1, 2. (10)

Second, we can exploit Reynolds transport theorem [1] in order to move the differentiation

with respect to time outside the volume integral; this will prove very useful for the subsequent

numerical treatment since Ω is time-dependent. Finally, we exploit Euler’s expansion formula

[1] to arrive at the following ALE-formulation of the momentum equations (7): Find ui ∈ X ,

i = 1, 2 and p ∈ Y such that

d

dt

∫
Ω(t)

viui dΩ =

∫
Ω(t)

(
− ∂vi

∂xj

σij + vifi

)
dΩ + Iγ(vi)

−
∫

Ω(t)

(
vi[uj − wj]

∂ui

∂xj

− viui
∂wj

∂xj

)
dΩ ∀vi ∈ X. (11)

We remark that the last integral in (11) represents all the convective contributions.

The free surface boundary conditions (5) and (6) are imposed via the surface integral Iγ(vi)
given in (9). Using (5) and (6) and exploiting the fact that

κ ni =
dti

ds
, (12)
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we can derive a particularly convenient form of this surface integral:

Iγ(vi) =

∫
∂Ωγ(t)

viσijnj ds

=

∫
∂Ωγ(t)

vi

(
γκni − poni +

dγ

ds
ti

)
ds

=

∫
∂Ωγ(t)

vi

(
γ

dti

ds
+

dγ

ds
ti

)
ds −

∫
∂Ωγ(t)

povini ds

=

∫
∂Ωγ(t)

vi
d(γti)

ds
ds −

∫
∂Ωγ(t)

povini ds

= [γviti]
b
a −
∫

∂Ωγ(t)

γ
dvi

ds
ti ds −

∫
∂Ωγ(t)

povini ds

= −
∫

∂Ωγ(t)

γ
dvi

ds

dxi

ds
ds −

∫
∂Ωγ(t)

povini ds (13)

Here, a and b denote the start and end of the free surface, i.e., these points represent the surface

of the free surface; we remark that this boundary term comes from another integration-by-parts

and will here vanish due to the boundary conditions (4) (note that this term will also vanish if

the free surface represents a closed surface, or for periodic boundary conditions).

We thus end up with two contributions. The first integral in (13) includes the contribution from

both normal and tangential stresses; the integrand has a form similar to a one-dimensional

Laplacian and allows for a variable surface tension. Another advantage of this form comes

from the fact that the regularity requirement on the geometry representation has been lowered

through integration-by-parts (only the first derivative of xi appears even though this term in-

cludes curvature effects). The second integral in (13) represents the normal stresses due to the

external pressure po.

In addition to the boundary conditions, we must also impose a kinematic condition along ∂Ωγ:

wjnj = ujnj. (14)

This condition says that the normal velocity of the free surface must coincide with the normal

fluid velocity along the free surface (”fronttracking”).

Extension to three dimensions

The ALE formulation for three-dimensional problems can be expressed similar to (11) and (8),

the only difference being that we now have three momentum equations instead of two, i.e.,

i = 1, 2, 3. What is different in the three-dimensional case is the expression for the surface

integral Iγ(vi). This is due to the fact that we now have two tangent vectors associated with

each point along the free surface, and that these tangent vectors are not necessarity orthogonal.

The curvature-normal product (12) now also include two principle curvature directions, from

which we can derive the mean curvature. By using tools from differential geometry [22, 6, 13],

it is possible to derive an expression for Iγ(vi) which is fundamentally similar to (13); see [10].

Discretization
Our starting point for the numerical discretization is the ALE formulation presented above. The

domain Ω(t) is first decomposed into spectral elements [16]; following this spatial discretiza-

tion procedure, the fluid velocity, the mesh velocity, and the geometry are all approximated as
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N th order polynomials in each element (isoparametric representation), while the pressure is

approximated as polynomials of degree N − 2 within each element. This represents a stable

discretization and results in a spatial discretization error which depends on the regularity of the

solution and the data.

For the temporal discretization we have extended the convection-Stokes splitting approach pre-

sented in [17] (the OIF-method) to time-dependent geometries. This will allow us to obtain first,

second or third order convergence in time; the technical details of this approach will be reported

elsewhere.

The boundary conditions are imposed via the surface integrals given in (13), and the kinematic

condition (14) is imposed. The treatment of the tangential mesh velocity along the free surface

is done in a way that will ensure a good point distribution for all times. The mesh velocity along

the free surface can be extended to the interior of the domain using different methods; we will

comment more on the possibilities and restrictions regarding the mesh velocity in a forthcoming

article.

Convergence results for an ALE test problem

We first verify our discretization approach by solving the two-dimensional Navier-Stokes equa-

tions in a circular domain. The domain boundary is fixed at all times, however, we specify an

artificial time-periodic mesh velocity in the interior; the mesh velocity is a function of both

space and time, and is zero on the domain boundary; see Figure 1. We also specify a forcing

function in the momentum equations by requiring that the following analytic solution satisfies

the incompressible Navier-Stokes equations (here expressed in polar coordinates):

ur(r, θ, t) =
1

5
sin2(πr) sin(θ) sin(t), (15)

uθ(r, θ, t) =
1

5
sin(πr)(2πr cos(πr) + sin(πr)) cos(θ) sin(t), (16)

p(r, θ, t) = sin2(πr) sin(t). (17)

The convergence results in Figure 2 show the expected behavior.

Additional numerical convergence results will be reported elsewhere.

Transportation of fresh water in a fabric container
Consider the case where we have a fabric container filled with a fluid of density ρin (e.g., fresh

water). We wish to predict the dynamic and static response of this container when it is put in a

fluid with density ρo > ρin (e.g., salt water). This example is motivated by the potential use of

deformable fabric containers for transportation of fresh water; see [15] as well as Figure 3.

In our simplified model problem, we assume that the container initially has the form of a circle

where half of the container is immersed in the denser fluid and the other half is above; see

Figure 4. The dynamic response is modeled by the Navier-Stokes equations inside the container

subject to free-surface boundary conditions along the flexible membrane; the forces acting on

the membrane is here modeled via standard surface tension effects. In our simplified model, we

set the external pressure po equal to the atmospheric pressure pa if a point on the membrane

is above the denser fluid, and equal to the hydrostatic pressure if a point on the membrane is

adjacent to the denser fluid, i.e.,

po = pa x2 ≥ 0,

po = pa − ρogx2 x2 < 0,
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Figure 1: The boundary of the domain is a circle which is time-independent. However, we specify a

mesh velocity in the interior which is a function of both space and time, and which is zero on the external

boundary. The plot shows the grid-configuration at a few time levels during one single period.
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Figure 2: The left plot depicts the discretization error (energy norm) as a function of the time step, Δt,
for a first, second, and third order temporal splitting scheme; the spatial error is here subdominant the

temporal error. The right plot depicts the discretization error as a function of the polynomial degree, N ,

used in each spectral element; the temporal error is here subdominant the spatial error for N < 15.
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ρo ρin < ρo

Figure 3: Transportation of fresh water using a deformable fabric container.

where g represents gravity (g > 0). Finally, the volumetic body force associated with the mo-

mentum equations inside the container is also due to gravity and given by f1 = 0, f2 = −ρing.

The solution to this problem can be described in terms of two non-dimensional numbers, e.g.,

the Capillary number Ca = ρinν2/γL (viscous forces relative to surface tension forces), and

by the Stokes number St = Bo/Ca (gravitational forces relative to viscous forces). Here,

Bo = ρingL2/γ is the Bond number (gravitational forces relative to surface tension forces),

and L is a characteristic length scale. Note that the non-dimensionalization of this problem is

not unique and depends on which forces are dominating.

We discretize the governing equations and the boundary conditions as described earlier, and

solve for the dynamic behavior of the fabric container. Typically, the container is completely

submerged during part of a single period of a damped oscillating behavior. In Figure 4 we show

the initial and final shape of the fabric container for St = 5 and Ca = 7.

(a) Initial condition

(b) Steady state

Figure 4: Initial and final shape of the fabric container for the case St = 5 and Ca = 7; five spectral

elements are used to solve this problem. The horizontal line corresponds to x2 = 0.
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In Figure 5 we compare the shape of the container at steady state for different Capillary numbers

and for a fixed Stokes number St = 5.

Ca = 0.5

Ca = 3
Ca = 7

Figure 5: The shape of the fabric container at steady state is a strong function of the Capillary number

(i.e., the elastic properties of the membrane). The horizontal line corresponds to x2 = 0.

Simulation of three-dimensional Bénard-Marangoni convection

We now present simulation results which exploit many benefits of the proposed computational

approach. In particular, we consider Bénard-Marangoni convection in a horizontal fluid layer

heated from below and with a free surface on the top. The terms ”top” and ”bottom” here refer to

the case when gravitational forces are present (e.g., on Earth with gravity pointing downwards);

however, we also consider zero-gravity conditions.

Bénard-Marangoni convection has been studied extensively experimentally, theoretically, and

computationally. One of the intriguing features with this problem is the formation of hexagonal

convection cells from random initial conditions. This formation can originate from different

effects: it can be caused by small density variations due to the fact that the density is a function

of the temperature, or it can be due to variations in the surface tension due to the fact that

the surface tension is a function of the temperature, or both effects can be present at the same

time. In all cases, these effects are incorporated into a coupled fluid-thermal model via the

linearizations

ρ(T ) = ρ0(1 − β(T − T0)), (18)

γ(T ) = γ0(1 − τ(T − T0)), (19)

where ρ is the density, γ is the surface tension, T is the temperature, T0 is a characteristic

temperature, and ρ0, β, γ0, and τ are constants.

The governing equations for the fluid problem are the incompressible Navier-Stokes equations

as described earlier. In the case of non-zero gravity, the body forces are the buoyancy forces

due to the small density variations given by (18) (the ”Boussinesq approximation”), while the

effect of surface tension variation is included through the surface integral Iγ with a variable

surface tension given by (19). The behavior of this system is governed by the following non-

dimensional numbers: the Rayleigh number Ra = gβΔTL3/κν, the Marangoni number Ma =
γ0τΔTd/μκ, the capillary number Ca = μκ/γ0L, and the Prandtl number Pr = ν/κ. Here,

L is the thickness of the fluid layer, ΔT is the temperature difference between the top and the
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bottom surface in the purly conductive regime, and ν and κ are the momentum and thermal

diffusivities, respectively.

An issue which has been studied extensively, both experimentally and theoretically, is the small

deformation of the free surface in the presence of hexagonal cells. Depending on whether buoy-

ancy effects or surface tension gradient effects are dominating, the free surface is either elevated

or depressed at the centers of the cells. Previous computational studies of Bénard-Marangoni

convection has been done, however, all these studies assume a fixed and undeformed ”free”

surface. In the present study, we include all the physical effects, combining both normal and

tangential stresses along the free surface via the surface integral Iγ . We are therefore able to

compute the associated surface deflection over each hexagonal cell.

We now report some of the results obtained by our computational approach. The first results

are for the case with an infinite Prandtl number and zero Rayleigh number. In steady state,

this corresponds to the limit of solving the steady Stokes equations in zero gravity conditions.

The computatational domain is a three-dimensional box, with periodic boundary conditions

specified along the ”vertical” sides. The initial condition for the velocity is zero, while the

temperature (or, more precisely, the deviation from a purely conductive temperature profile) is

set to be a random field at time t = 0. This particular case has been studied computationally

in [21] and [18], but then with a fixed and flat ”free” surface. The results in Figure 6 depict the

velocity vectors and temperature distribution over the free surface at steady state (top view); we

clearly see the presence of hexagonal cells. In Figure 7 we also show the deformation of the free

surface over a single cell; the depressed free surface at the center of the cell is consistent with

the fact that there are no buoyancy effects. Figure 8 depicts the same results seen from above;

we clearly see that the results are independent of the particular surface discretization, indicating

the advantages of expressing the surface integral Iγ using surface intrinsic coordinates. Finally,

in Figure 9, we report the maximum surface deflection as a function of the Capillary number;

the results are consistent with earlier theoretical results based on linear stability analysis; see

[20].

Finally, we show the steady state results for a case where both buoyancy effects and surface

gradient effects are present; the particular values of the non-dimensional numbers correspond

to the properties of silicon oil. The domain has the shape of a hexagon (top view). The boundary

conditions for the fluid problem are solid walls on the bottom and along the vertical sides, and

free surface conditions on the top surface. The boundary conditions for the thermal problem

are homogeneus Dirichlet condition on the bottom surface and adiabatic conditions along the

remaining sides. The initial condition for the velocity is zero, while the temperature (or, more

precisely, the deviation from a purely conductive temperature profile) is set to be a random field

at time t = 0. Figure 10 depicts the temperature contours and the free surface deflection at

steady state. The formation of seven cells is in qualitative agreement with the numerical and

experimental results presented in [18] using a flat ”free” surface.
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Figure 6: Numerical results for the three-dimensional Bénard-Marangoni convection problem. The left

plot shows the velocity vectors, while the right plot depicts the temperature distribution over the free

surface at steady state (top view) for the case with Ma = 90, Ra = 0, Pr = ∞, and Ca = 3 · 10−4.

Figure 7: Free surface elevation over a single periodic structure using two different spectral element

grids: a grid with straight sides (left) and a grid with deformed sides (right) inside the periodic structure.

Here, Ma = 90, Ra = 0, Pr = ∞, and Ca = 3 · 10−4.
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Figure 8: Similar results as in Figure 7, but now showing the top view.
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Figure 9: Numerical results for the three-dimensional Bénard-Marangoni convection problem: maximum

surface deflection as a function of the Capillary number for the case with Ma = 90, Ra = 0, and

Pr = ∞. Periodic boundary conditions are specified along the ”vertical” sides.
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(a)

(b)

Figure 10: Three-dimensional simulation results for the Bénard-Marangoni convection problem in a

hexagonal domain for the case Ma = 105, Ra = 48, Pr = 890, and Ca = 3 · 10−4 (correspond-

ing to silicon oil): (a) temperature contours (top view); and (b) free surface deflection.
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Abstract

We present a new method for tracking an interface immersed in a given velocity field.
The method is particularly relevant to the simulation of unsteady free surface prob-
lems using the arbitrary Lagrangian-Eulerian (ALE) framework. The new method
has been constructed with two goals in mind: (i) to be able to accurately follow the
interface; and (ii) to maintain a good point distribution for the grid points along the
interface. The method combines information from a pure Lagrangian approach with
information from an ALE approach. No integration backwards in time is needed;
instead, the new method relies of the solution of several pure convection problems
along the interface in order to obtain the relevant information. The new method
offers flexibility in terms of how an ”optimal” point distribution should be defined.
We have been able to verify first, second, and third order temporal accuracy for the
new method by solving two-dimensional model problems with known solutions.

1 Introduction

The ability to accurately follow time-dependent surfaces is very important
in many areas of computational science and engineering. An important class
of such problems is free surface flows, with the free surface representing the
interface between two fluids, e.g., air and water. Computational methods for
solving such problems can typically be classified into two categories: methods
which explicitly track the free surface (interface-tracking methods; e.g., [16])
and methods where the interface is more implicitly defined (e.g., level set
methods [15,17,14] or volume-of-fluid methods [7]); we will here focus on the
former class.

Interface-tracking methods (or sometimes also referred to as front-tracking
methods) comprise a few essential steps. At any particular point in time,
a velocity field is typically determined from the governing equations within

Preprint submitted to Elsevier 25 April 2008



the fluid(s), e.g., by solving the Navier-Stokes equations. By integrating this
velocity field, it is possible to obtain a new position of the interface.

A pure Lagrangian approach applied to an evolving interface is simply based
on integrating the velocity of the fluid particles along the surface to obtain
the position of the surface at a later point in time. However, in the context of
a numerical approximation (e.g., using finite-element-based methods), a pure
Lagrangian approach is often not a very practical approach since it typically
results in large deformations of the computational domain.

In the context of free surface flows, the arbitrary Lagrangian-Eulerian (ALE)
formulation of the governing equations has been very successful as a point
of departure for a numerical approximation [6,3,10]. A typical approach to
updating the free surface is to enforce a kinematic condition along the surface.
This condition has its origin in a continuum description, and says that the
normal fluid velocity has to be equal to the normal domain velocity at any
point along the surface. An important consequence of this condition is the fact
that a fluid particle which is present somewhere along the free surface at a
particular time will also be present at the free surface at a later time.

While the kinematic condition enforces a normal condition, a tangential do-
main velocity also needs to be specified along the surface; a common choice
is to enforce a homogeneous Dirichlet condition for the tangential component
[18,1]. This choice typically reduces the deformation of the computational
domain compared to a pure Lagrangian approach, however, it offers limited
control over the quality of the grid used to represent the free surface. In partic-
ular, the distribution of the grid points along the free surface may deteriorate
over time, which may ultimately result in severe loss of accuracy (or even
breakdown of the simulation). This latter issue may be dealt with in various
ways, e.g., through remeshing or other mesh update strategies [11,4]. However,
the temporal accuracy will typically suffer using such a strategy.

The issue of a non-optimal evolution of the surface representation is partic-
ularly acute in the context of using high order finite elements or spectral
elements. The reason for this is related to the fact that such methods depend
on locally regular mappings between a reference domain and the correspond-
ing physical element. If the distribution of the surface points along the free
surface becomes very distorted, this mapping may not be so regular anymore,
resulting in a loss of spatial accuracy. This will again affect the calculation of
tangent and normal vectors, as well as the local curvature, since the computa-
tion of these quantities depends on the coupling between many surface points
[9,21].

One could also imagine enforcing the kinematic condition together with a
tangential component of the domain velocity in such a way that the integration
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of the total domain velocity would: (i) result in an accurate representation of
the free surface; and (ii) maintain a good distribution of the grid points along
the surface [4,2]. An obvious challenge with this approach is how to define
the overall domain velocity in such a way that not only good spatial accuracy
is achieved (with no need for remeshing), but in a way that will also ensure
good temporal accuracy (better than first order). The goal of this paper is to
propose a way to achieve these two objectives at the same time.

The paper is organized as follows. We first discuss some key aspects associated
with the two-dimensional problems we will focus on, including the notation we
will use. We will only discuss the evolution of a surface when it is ”immersed”
in a known two-dimensional velocity field; no partial differential equation will
be solved to obtain this velocity field. We will let the surface evolve in time, and
different computational strategies for predicting the surface evolution will be
tested and compared. In particular, we will compare two well-known methods
with the new approach proposed in this work. Numerical tests will illustrate
the similarities and differences between the methods, and conclusions will be
made based on these. This study is part of an ongoing research project on
solving partial differential equations in time-dependent geometries.

2 Two-dimensional interface-tracking

Consider first the front depicted in Figure 1. Assume that we know the front
at time tn. Assume also that a numerical approximation of the front is used,
something which requires a surface parameterization. A typical way to achieve
this is to use piecewise polynomial approximations (e.g., finite-element-based
methods), which typically introduces grid points.

Γ(tn+1)

Γ(tn)

Fig. 1. A front at time tn with an “optimal” point distribution. For example, the
points can be the nodes along an edge of a deformed spectral element. The front is
”immersed” in a velocity field and the particles follow the path of the dashed lines.

Assume now that we have an interface with “optimally” distributed grid points
at time level tn. At each point x along the surface there is an associated velocity
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field u. This velocity field can be explicitly known (as in our study here), or
it can be given as the solution of an underlying partial differential equation
(e.g., the solution of the Navier-Stokes equations in a free surface problem).

We assume that the velocity at a point along the surface represents the velocity
of the corresponding ”fluid particle”. If we integrate the velocity of all the
fluid particles along the surface, we obtain the position of the surface at a
later time. This is what a pure Lagrangian description will give us; the motion
of a particle is simply governed by the equation

dx

dt
= u(x, t). (1)

In a computational setting, we can limit the integration of (1) to the grid
points, and then use the underlying surface parameterization to represent the
entire surface at a later time; see Figure 1. A severe problem with this approach
is obvious: we have no control over the distribution of the grid points at a
later time tn+1. This will again result in a loss of accuracy in the calculation
of surface quantities, e.g., tangent and normal vectors, as well as the local
curvature.

A great advantage with the ALE formulation is that it introduces a separate
domain velocity w (also referred to as the grid velocity in the context of the
discrete problem), which limits the deformation of the computational domain.
In an ALE-framework, the position of the interface is advanced according to

dx

dt
= w(x, t) (2)

instead of the pure Lagrangian approach (1).

A continuum description dictates that w · n = u · n (the kinematic condi-
tion), where n is the unit normal along the interface. However, no particular
condition is required for the tangential component w · t of the domain veloc-
ity (t is unit tangent vector). A common choice is to set w · t = 0 along the
surface, although this is often not an optimal choice; see Figure 2 and Figure 3.

Let us also comment on the issue of temporal accuracy. Integration of (1) and
(2) can be done using an explicit method; often an explicit multi-step method
(e.g., Adams-Bashforth) is used [8,1]. The choice of an explicit method is of-
ten motivated by the wish to compute the velocity field separately from the
treatment of the geometry. If the velocity fields (u and w) are sufficiently reg-
ular, we expect to achieve higher order temporal accuracy (second and third)
in terms of the location of individual points along the front. As mentioned
above, this approach may yield limited control over the distribution of the
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Γ(tn)

Γ(tn+1)

Fig. 2. A front at time tn with an “optimal” point distribution. This interface is
advanced by honoring the kinematic condition, while imposing a zero tangential
grid velocity. The resulting point distribution at a later time tn+1 is obviously no
longer optimal.

points along the front. If the point distribution is non-optimal, the resulting
loss of spatial accuracy will affect the accuracy of surface quantities such as
normal and tangent vectors, local curvature, and length/area, and this again
may affect the accuracy of the interface tracking.

In order to construct a computational approach which will yield both high
order temporal accuracy (e.g., second or third order), as well as good spatial
accuracy in the calculation of surface quantities, we need to solve the problem
of automatically obtaining a good point distribution in a satisfactory way.
This problem is particularly acute in the context of using high order methods.
Despite the importance of this issue, very limited discussion or results appear
to be available in the literature.

We also mention a complicating factor in the development and assessment
of various approaches for interface tracking: the lack of analytic solutions. In
Section 4, we propose a few examples of test problems which we will use for
verification purposes.

Γ(tn+1)

Γ(tn)

Γ(tn−1)

xn+1
i

Fig. 3. The plot depicts the position of a single point along the front at three different
time levels (red circles). The point moves according to (2), with w · n = u · n and
w · t = 0. The position at time level tn+1 is xn+1

i . Note that the corresponding
positions at time levels tn and tn−1 do not correspond to the same fluid particle;
the path of the fluid particle (e.g., a particle which moves according to (1)) ending
up at position xn+1

i at time tn+1 follows the dashed line.
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3 The new approach

We will now propose a method which gives an accurate representation of the
interface (i.e., the individual grid points end up on the correct surface), as well
as the flexibility of specifying a user defined point distribution. This method
will be ”automatic” in the sense of fulfilling both goals in an ”integrated”
fashion, i.e., with no need for remeshing etc.

Our strategy is based on a combination of a pure Lagrangian approach and an
ALE approach, in which both (1) and (2) are integrated in order to find the
new grid points. One major feature of the new algorithm is that we search for
the fluid particle at time tn which ends up along some prescribed direction at
time tn+1. Thus, this will invole an iteration process for each grid point.

In order to make the algorithm concrete, we will limit our discussion to the
case where the entire front Γ(t) corresponds to an edge in a single spectral
element. However, we remark that the ideas behind the proposed method is
equally applicable to the case where the front is composed of a number of low
order finite elements.

Following a standard spectral element discretization [12], the front Γ(t) is
parameterized as follows: for a given ξ ∈ Γ̂ = [−1, 1], the corresponding point
x on Γ(t) is given as x = (x1, x2) = (x1(ξ), x2(ξ)). In general, any field variable
ϕ associated with the front can be represented in terms of the reference variable
ξ. In particular, an Nth order polynomial approximation ϕN of ϕ at time tn

can be expressed in terms of the following nodal basis:

ϕn
N(ξ) =

N∑
j=0

ϕn
j �j(ξ). (3)

Here, ϕn
j represents an approximation of ϕ(ξj, t

n), ξj is the j-th Gauss-Lobatto
Legendre (GLL) point, and �j(ξ) is the Nth order Lagrangian interpolant
through the GLL points; as usual, �j(ξi) = δij.

Without presenting all the details at once, we first discuss the key ingredients
in a second order temporal scheme. We will later return to discuss all the
details, as well as the extension to a third order temporal scheme.

We assume that the following surface variables are known:

xn
1 , x

n
2 , u

n
1 , u

n
2 , u

n−1
1 , un−1

2 .

Here, (xn
i )j is the i’th coordinate of the j’th point at time tn and (un

i )j is
the i’th velocity component of the j’th point at time tn. We use underscore to
denote a vector comprising all the nodal values associated with a field variable,
i.e., j = 0, . . . , N ; see (3).
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In Algorithm 1 we present the first version of the new algorithm. A few com-
ments are required at this stage. First, convergence in this setting is related
to the point distribution. The position computed in Step 4 represents the in-
tegration of (1) using a second order Adams-Bashforth scheme, however, we
don’t know if the computed grid point on Γ(tn+1) (grid point j) is in a good
position relative to its neighbors. Thus, we obtain convergence when we have
chosen the “correct” particle, which amounts to choosing the “correct” ξ at
time tn (which we denote as ξn). However, we need to quantify this and we
will return to this issue shortly.

Second, Step 2 in Algorithm 1 involves finding ξn−1, which is the reference
coordinate at time tn−1 for the particle which at time tn has the reference
coordinate ξn; see also Figure 3. Hence, the computation of ξn−1 appears to
involve integration backwards in time. However, what we actually need is the
velocity the particle in question had at time tn−1, and not necessarily the
position it had at time tn−1. In Section 3.1 we will propose a way to compute
û2

i , i = 1, 2, which does not involve integration backwards in time.

Third, when we have converged to the correct position (xn+1
i )j of a grid point j

on Γ(tn+1), see Step 4, we also compute the corresponding grid velocity (wn
i )j

such that an integration of (2) using a second order Adams-Bashforth method
will result in the same position; this is done in Step 6. Here, (xn

i )j, (xn+1
i )j,

and (wn−1
i )j are known, while (wn

i )j is unknown. The reason for computing the
grid velocity in this way is that: (i) it gives consistency with a pure Lagrangian
approach; (ii) we are indirectly satisfying the kinematic condition; and (iii) we
are indirectly and ”automatically” able to specify a tangential grid velocity
such that we obtain a good point distribution.

Let us now discuss more precisely what we mean by convergence in Algorithm
1. Essentially, convergence is related to quantifying a good point distribution.
We will consider two alternative strategies. The first strategy is illustrated
in Figure 4. Starting from the front at time tn, we move the end points to
time level tn+1. How these points are moved will be problem dependent, but
it may for instance be a pure Lagrangian motion where the two end points
follow the path of the fluid particles from tn to tn+1 (see (1)), or the end
points may move according to a standard ALE-formulation (see (2)). When
this is done, we construct the chord between the two end points, and distribute
grid points along this chord according to the desired distribution (e.g., a GLL
distribution). Next, the normal from the chord is constructed at each of these
points. Thus, using this strategy we search for the particle at time tn which,
when advanced through a pure Lagrangian motion, is located along this normal
up to a given tolerance. The advantage of this approach is that we are in full
control of the inner grid-points at each time-step. The disadvantage is that it
may not be so easy to extend the approach to three dimensions.
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Algorithm 1 First version of a second order temporal scheme

for j = 0 to N do
1. Guess ξn.
repeat

2. Find ξn−1(ξn).
3. Compute

x̂1
i = xn

i (ξn) i = 1, 2,

û1
i = un

i (ξn) i = 1, 2,

û2
i = un−1

i (ξn−1) i = 1, 2.

4. Compute (xn+1
i )j = x̂1

i + Δt
(

3
2
û1

i − 1
2
û2

i

)
, i = 1, 2.

5. Update ξn.
until convergence

6. Compute (wn
i )j from (xn+1

i )j = (xn
i )j +Δt

(
3
2
wn

i − 1
2
wn−1

i

)
j
, i = 1, 2.

end for

Γ(tn)

Γ(tn+1)

Fig. 4. Strategy 1.

The second strategy is illustrated in Figure 5. Again, the end points are first
advanced to tn+1. Next, for each end point, a vector which connects the end
point at tn to the end point at tn+1 is constructed. Then, directional vectors
for the interior nodes are constructed through a linear interpolation on the
reference domain, Γ̂, of the end point vectors. Finally, the requirement is to
find the particle at time tn which, when advanced to tn+1, is located along this
interpolated vector starting at the grid point at time tn. This strategy has the
advantage that it is more easily extended to three dimensions. However, we
have less explicit control over the interior grid points at each time level.

There will probably be other strategies for addressing the issue of grid distri-
bution as well, however, this will only change the convergence condition. The
rest of the algorithm which will be presented in the subsequent sections will
remain the same.
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Γ(tn+1)

Γ(tn)

Fig. 5. Strategy 2.

3.1 Finding a fluid particle’s earlier velocities

The second order scheme presented in Algorithm 1 requires information about
the velocities at time levels tn and tn−1 for those fluid particles along the
interface which end up at the grid points xn+1

j , j = 0, . . . , N , along Γ(tn+1).
We would like to avoid tracking the characteristics backwards in time since
this requires interpolation and can be expensive for high order methods [19,5].
In addition, we need to deal with the fact that the interface Γ changes shape
as a function of time.

Since we assume that the same particles remain on the surface at all time, it
is sufficient to solve a one-dimensional convection problem forward in time.
In order to explain the procedure, consider the following pure time-dependent
convection problem along the interface Γ(τ): Find ϕ(s, τ) such that

∂ϕ

∂τ
+ us

∂ϕ

∂s
= 0, on Γ(τ),

ϕ(s, τ = 0) = ϕ0(s), on Γ(τ = 0).

Here, s is an arc-length variable and us = u · t is the tangential component of
the fluid velocity; in all our model problems us = 0 on ∂Γ(τ). We can easily
derive the ALE formulation of this problem: Find ϕ(s; τ) ∈ X such that

d

dτ

∫
Γ̂
vϕJs dξ +

∫
Γ̂
v(us − ws)

∂ϕ

∂ξ
dξ −

∫
Γ̂
vϕ

∂ws

∂ξ
dξ = 0, ∀v ∈ X,

ϕ(ξ; τ = 0) = ϕ0(ξ).
(4)

Here, X is an appropriate function space, e.g., X = H1/2(Γ) if all the field
variables correspond to the trace of H1-functions in the adjacent fluid domains.

Furthermore, Js =
((

∂x1

∂ξ

)2
+
(

∂x2

∂ξ

)2
)1/2

is the surface Jacobian, and ws = w·t
is the tangential component of the domain velocity; note that both us and ws

are zero on ∂Γ for all the model problems in our study. We also remark that
we have used the same symbol ϕ for a field variable expressed both in the
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arc-length variable and in the reference coordinate.

We discretize the convection problem (4) using a standard spectral method
in space based on high order polynomials, and arrive at the following set of
ordinary differential equations:

d(Bs ϕ)

dτ
= −Cs(u,w) ϕ,

ϕ(τ = 0) = ϕ
0
.

(5)

Here, Bs is the surface mass matrix, Cs is the discrete convection operator
along the surface (including the ”surface divergence” of the domain velocity);
note that both Bs and Cs are time-dependent.

If we integrate (5) from 0 to Δt with ϕ
0

= un−1
i , i = 1, 2, we observe that

ϕ(τ = Δt) will be an approximation to the i’th velocity component at time
tn−1 of the fluid particles which at time tn are located at the grid points along
Γ(tn). This approach is inspired by the ideas presented in [13] in the context
of constructing convection-Stokes splitting schemes.

Note that û2
i in Algorithm 1 generally represents the velocity of a fluid particle

at time tn−1 which does not coincide with a grid point along Γ(tn). However,
by computing the velocities at time tn−1 of the fluid particles which coincide
with the grid points of Γ(tn) (i.e., by solving (5)), we can use the polynomial
expansion (3) to find the velocity at any value of the parameter ξ. Moreover,
one particular value of ξ will now give us information about the velocity of a
fluid particle at two different time levels (tn and tn−1). This is also exactly the
type of information we need in our algorithm; in fact, access to this information
avoids entirely the need to find ξn−1(ξn) in Step 2 of Algorithm 1 and thus
represents a significant simplification.

The approach is readily extended to velocities at earlier time levels as well. For
instance, if we choose ϕ

0
= un−2

i in (5), ϕ(τ = 2Δt) will be an approximation
to the i’th velocity component at time tn−2 of the fluid particles which at time
tn are located at the grid points along Γ(tn).

For the integration of (5) we have chosen the classical explicit fourth order
Runge-Kutta scheme. Similar to the convection subproblem treated in [13],
the convection velocities u and w, as well as the surface geometry x, are each
approximated as a polynomial in time of one order lower than the Adams-
Bashforth scheme used in Step 4 and Step 6 of Algorithm 1. Thus, for a second
order temporal scheme, a first order polynomial interpolation/extrapolation
in time is used for these quantities when solving (5), while the extension to a
third order scheme will use a second order polynomial approximation in time
for u, w and x.
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To summarize this section: in Algorithm 1 we are interested in the velocities
that particular fluid particles had at time level tn and tn−1. We choose ϕ

0
=

un−1
i in (5) and set ũn

i = ϕ(τ = Δt), i = 1, 2. We now have six sets of nodal
values, xn

i , un
i , and ũn

i , i = 1, 2, all associated with the interface Γ(tn). By using
the polynomial expansion (3), we have thus six polynomial approximations,
and all of these are defined along Γ(tn). Hence, one particular value of ξ

corresponds to the same particle. Thus, there is no longer need to compute
ξn−1(ξn) in Step 2 of Algorithm 1. We may now only focus on finding the
appropriate ξn which will allow us to achieve convergence in Step 4.

3.2 Finding the “correct” particle

Assume that we are searching for the position of a fluid particle at time level tn,
as well as its velocities at time levels tn and tn−1, such that we can compute the
position of the fluid particle at time level tn+1 according to Step 4 in Algorithm
1. As explained in the previous section, the problem can be reduced to finding
one particular value of ξ ∈ Γ̂.

Assume that we are currently interested in updating the information about the
grid point in the middle of the reference domain Γ̂ (i.e., this point is associated
with the index j in Algorithm 1), and that we are searching for information
about a particle located somewhere in Γ̂. Finding this particle is certainly
possible, but will be somewhat cumbersome if the interface Γ comprises several
elements (either low order finite elements or high order spectral elements). The
reason for this is that we do not a priori then know which element the particle
belongs to at the different time levels, and some kind of search algorithm needs
to be used.

Instead of finding the coordinate of this fluid particle (or the equivalent value
of ξ), we propose to find a corresponding artificial time τ̃ which convects this
particle to our grid point (index j) using an artificial convecting velocity U ;
see Figure 6. To this end, we consider the one-dimensional convection problem

∂ϕ

∂τ
+ U

∂ϕ

∂ξ
= 0, on Γ̂,

ϕ(τ = 0) = ϕ0.

(6)

We assume that U = 0 on ∂Γ̂ (a similar condition was assumed for us in
the previous section), and we will thus not specify any particular boundary
condition for ϕ. We discretize (6) using a spectral method based on high order
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polynomials and arrive at the following set of ordinary differential equations

B̂
dϕ

dτ
+ Ĉ ϕ = 0,

ϕ(τ = 0) = ϕ
0
.

(7)

In (7) , B̂ and Ĉ are the mass matrix and discrete convection operator, respec-
tively; the hat indicates that both matrices are associated with Γ̂. The idea is
that, instead of finding a suitable ξ in searching for the suitable particle, we
search for a τ̃ such that we obtain the information we need when we integrate
(7) from τ = 0 to τ = τ̃ . Hence, instead of moving along the surface searching
for a particle, we will sit at a fixed point and convect the pertinent information
about the particle to us. Thus, the new procedure requires no backward time
integration, and eliminates the need for a search and interpolation algorithm;
see [20,5] in the context of semi-Lagrangian schemes.

ξjξn 1−1

τ̃

U

Fig. 6. Six sets of nodal values, xn
i , un

i , and ũn
i , i = 1, 2, are associated with the

reference domain Γ̂. By integrating (7) from τ = 0 to τ = τ̃ , we can artificially
convect the information associated with a particular ξ ∈ Γ̂ (i.e., associated with a
particular fluid particle) and check if Step 4 in Algorithm 1 will give us a ”valid”
new position for a grid point along Γ(tn+1).

Note that the particular value of τ̃ is actually of no interest to us; all we need
is ϕ(τ̃). For this reason we only need to consider a fixed domain (in our case,

Γ̂). There is also great flexibility in the choice of the convective velocity, U .
This is because, for a specific particle somewhere along the surface, and for
a reasonable choice of U , there will always be a corresponding τ̃ (perhaps
negative) which convects this particle to the current grid point. An easy and
reasonable choice is U(ξ) = 1 − ξ2 since this velocity is very smooth, it does
not change sign, and it is also compatible with the condition us = 0 at ∂Γ
(which is the case for our numerical examples).

Note that ϕ in (7) is a vector with nodal values from the entire surface (corre-
sponding to a single spectral element as in our study, or perhaps multiple finite
elements). We need to carry the entire vector in the computation in order to
evaluate the spatial derivative. On the other hand, we are only interested in
the information convected to our current grid point. Thus, we need to solve
one problem of the type (7) for each grid point.
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3.3 Final version of a second order temporal scheme

The discussion from the preceding sections leads us to an improved algorithm
for a second order temporal scheme; see Algorithm 2 below. Let us say a few
words about how we achieve convergence in the new grid positions. In Step
1 we guess a τ̃ . For each grid point, we then solve (7) six times. From the
resulting information, we update the new grid position as indicated in Step 3.
We can check how this position compares with a ”valid” position according
to our chosen convergence strategy, see Figure 4 and Figure 5. A Newton-
iteration can then be used to find the correct τ̃ , which again implies the correct
ξ (or choosing the correct fluid particle). In our case, we obtain derivative
information for the Newton iteration from the last stage in the explicit Runge-
Kutta scheme that we use to integrate (7). For the test problems considered
in this study, convergence is achieved in 2 or 3 Newton iterations.

Finally, we remark that the loop j = 0, . . . , N over the grid points includes
the two end points of the interface. These two end points may be treated
differently compared to the inner points; this depends on the particular infor-
mation which is available for the end points. For instance, for our numerical
test problems, the end points are moved in a pure Lagrangian fashion.

Algorithm 2 Final version of a second order temporal scheme

Solve (5) with ϕ
0

= un−1
i and set ũn

i = ϕ(τ = Δt) for i = 1, 2.
for j = 0 to N do

1. Guess τ̃ .
repeat

2. Integrate (7) from 0 to τ̃ six times with ϕ
0

= xn
i , ϕ

0
= un

i , ϕ
0

= ũn
i ,

for i = 1, 2. Define the results as x̂i, û1
i , û2

i , respectively.

3. Compute (xn+1
i )j = (x̂i)j + Δt

(
3
2
û1

i − 1
2
û2

i

)
j

for i = 1, 2.

4. Update τ̃ .
until convergence
5. Compute (wn

i )j from (xn+1
i )j = (xn

i )j +Δt
(

3
2
wn

i − 1
2
wn−1

i

)
j
for i = 1, 2.

end for

3.4 Extension to a third order temporal scheme

Algorithm 3 represents a third order version of this method. We see that
we now have to first solve two problems of the type (5) for each velocity
component. During the integration of these problems, we need to use a second
order polynomial approximation in time of the grid, the fluid velocity, and the
grid velocity in order to maintain a third order temporal convergence rate.
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Algorithm 3 Final version of a third order temporal scheme

Solve (5) with ϕ
0

= un−1
i and set ũn

i = ϕ(τ = Δt), i = 1, 2.

Solve (5) with ϕ
0

= un−2
i and set ˜̃u

n

i = ϕ(τ = 2Δt), i = 1, 2.
for j = 0 to N do

1. Guess τ̃ .
repeat

2. Integrate (7) from 0 to τ̃ eight times with ϕ
0

= xn
i , ϕ

0
= un

i , ϕ
0

=

ũn
i , ϕ

0
= ˜̃u

n

i , i = 1, 2. Define the results as x̂i, û1
i , û2

i , û3
i , respectively.

3. Compute (xn+1
i )j = (x̂i)j + Δt

(
23
12

û1
i − 4

3
û2

i + 5
12

û3
i

)
j
, i = 1, 2.

4. Update τ̃ .
until convergence
5. Compute (wn

i )j from (xn+1
i )j = (xn

i )j + Δt
(

23
12

wn
i − 4

3
wn−1

i + 5
12

wn−2
i

)
j
,

i = 1, 2.
end for

Obviously, the overall integration scheme for integrating (5) must also be at
least of third order in time. As before, we use a fourth order explicit Runge-
Kutta scheme, so this will not cause any problems. The solution of (7) will be
the same as for the second order scheme. In Step 3 and Step 5, we use a third
order Adams-Bashforth scheme for computing the new position and the new
grid velocity of each grid point, respectively.

4 Numerical results

In this section we will perform numerical experiments in order to validate and
compare the different algorithms for tracking the interface. For all the test
problems we will define a two-dimensional, time-dependent velocity field, and
at time t = 0 we will specify an initial interface. With the interface ”immersed”
in this two-dimensional velocity field, we will then monitor:

(1) how accurately we are able to follow the exact interface; and
(2) the quality of the corresponding point distribution.

The velocity fields will be prescribed in such a way that we are able to obtain
analytic solutions for the exact interfaces at all times.

4.1 Error computation

The way we compute the error, E1, in following the interface is illustrated in
Figure 7. We first compute the chord between the end points of our numerical
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solution, and then compute the normal, nc, to this chord. For each grid point,
(xn)j, j = 0, . . . , N , along our numerically approximated interface, we find the
intersection between the analytical front and the line originating from (xn)j

and moving in the nc -direction. We call this intersection (xe)j and compute

ej =
√

((xe
1)j − (xn

1 )j)2 + ((xe
2)j − (xn

2 )j)2.

Finally, we define the error E1 as

E1 =
1

N + 1

N∑
j=0

ej. (8)

The way we will measure the grid quality is by computing the error, E2, in
the length of the interface. For a high order approximation, this measure will
generally give an indication of the quality of the point distribution (although
there are special situations when this is not the case). Thus, we first compute
the length, Sn, of our numerically computed interface. Using GLL quadrature
we compute

Sn =
N∑

α=0

ρα(Jn
s )α =

N∑
α=0

ρα

⎛⎝(∂xn
1

∂ξ

)2

+

(
∂xn

2

∂ξ

)2
⎞⎠1/2

α

, (9)

where Jn
s is the surface Jacobian at time T = tn, and ρα, α = 0, . . . , N are

the GLL quadrature weights. We then define the error

E2 = |Sn − Se|, (10)

where Se is the length of our exact interface.

(xn)j

(xe)j

t = T

Fig. 7. The solid line corresponds to our numerically computed interface at time
T > 0, while the dashed line represents the corresponding exact interface.
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4.2 Convergence tests

In order to more clearly see the strengths and the weaknesses of the different
approaches, we will first consider three examples where the velocity field is
chosen such that the front keeps it shape. For these three tests, we will compare
four different approaches:
(i) the new proposed method using Strategy 1 (see Figure 4);
(ii) the new proposed method using Strategy 2 (see Figure 5);
(iii) enforcing the kinematic condition as well a zero tangential grid velocity
(denoted as the ”Normal” method in the following);
(iv) a pure Lagrangian approach.
The fourth and last test will involve a more complex interface and a more
complex velocity field; in this test we will only compare (i) and (iv).

4.3 Test 1

In the first example, the interface motion is only in the x2-direction. The initial
front given by

x2(x1) =
1

2

(
1 − cos

(
π(x1 − 1)

3

))
, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is given as

u1(x1, t) = 0,

u2(x1, t) = −1

2
+

1

2
et/4(1 + cos(πt)).

Thus, each particle on the initial front will only move in the x2-direction.
Note that, for the Normal approach, we compute the normals analytically
(which we can do since we know the analytical expression of the front at all
times), and not numerically. A numerical computation of the normals will
lead to the Normal algorithm breaking down due to the bad interpolation
properties when the point distribution becomes poor. Figure 8 shows the initial
point distribution and the point distribution at the final time T = 6.2 for
the four different methods. In Figures 9 and 10 we report the errors E1 and
E2, respectively. We observe that all four methods perform well in terms of
“hitting” the front. However, for the Normal approach, the point distribution
is poor at T = 6.2 due to the shape of the front; this again leads to a poor
approximation of the length of the front. For the three other methods, the
error E2 reaches machine precision since u2 does not depend on x1, and we
use a sufficiently large polynomial degree, N .
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Fig. 8. The interface and the point distribution at the initial time t = 0 and at the
final time T = 6.2 for Test 1 using the four different strategies. A polynomial degree
N = 16 is used for the spectral approximation.
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Fig. 9. The error E1 at time T = 6.2 for Test 1 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation.
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Fig. 10. The error E2 at time T = 6.2 for Test 1 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation. The computed
value for the length of the interface, Sn, does not converge for the Normal method
due to an incorrect point distribution.
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4.4 Test 2

Next, we will consider a trivial interface, but a velocity field with a more
substantial tangential contribution. The initial interface is given by

x2(x1) = 0, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is

u1(x1, t) =
2

5
sin

(
π(x1 − 1)

3

)
,

u2(x1, t) = −1

2
+

1

2
et/4(1 + cos(πt)).

Hence, the front has no curvature, and all the normals point in the x2-direction.
Thus, u1(x, t) corresponds to a pure tangential component. Figure 11 shows the
initial point distribution and the point distribution at the final time T = 6.2
for the four different methods. In Figures 12 we report the error E1. In this
example, Strategy 1 and Strategy 2 give identical results. We get first, second
and third order temporal convergence in capturing the interface for all four
methods.

In Figure 11 we see that the pure Lagrangian approach leads to a poor point
distribution. However, this is not reflected in the computation of the length
due to the simplicity of the front. For this simple interface, (9) reduces to

Sn =
N∑

α=0

ρα

(
∂(x1)N

∂ξ

)
α

=
∫ 1

−1

∂(x1)N

∂ξ
dξ,

since ∂(x1)N

∂ξ
is an (N − 1)’th degree polynomial which is integrated exactly

using GLL quadrature. In addition, since∫ 1

−1

∂(x1)N

∂ξ
dξ = (x1)N(1) − (x1)N(−1),

and since the end points are the same for all strategies, we achieve machine
precision for all four methods regardless of the quality of the grid. It should
be emphasized that this is, indeed, a very special case.
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Fig. 11. The interface and the point distribution at the initial time t = 0 and at
the final time T = 6.2 for Test 2 using the four different strategies. A polynomial
degree N = 16 is used for the spectral approximation.
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Fig. 12. The error E1 at time T = 6.2 for Test 2 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation.
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4.5 Test 3

We now consider a combination of the previous two tests. The initial front is
the same as in Test 1, but we prescribe a velocity field with non-zero compo-
nents in both the x1- and the x2-direction. In particular, we choose the same
velocity field as in Test 1, but with the modification that we also add another
tangential component. Hence, the interface will still keep its shape during the
simulation. Our initial interface is then given by

x2(x1) =
1

2

(
1 − cos

(
π(x1 − 1)

3

))
, 1 ≤ x1 ≤ 4,

while the prescribed velocity field is given as

u1(x1, t) = ut
1,

u2(x1, t) = −1

2
+

1

2
et/4(1 + cos(πt)) + ut

2,

with

ut
1 =

2

5
sin

(
π(x1 − 1)

3

)
,

ut
2 =

π

6
sin

(
π(x1 − 1)

3

)
2

5
sin

(
π(x1 − 1)

3

)
.

Here, ut = ut
1e1 + ut

2e2 is a vector which points in the tangential direction
of the interface. Figure 13 shows the initial point distribution and the point
distribution at the final time T = 6.2 for the four different methods.

In Figures 14 and 15 we report the errors E1 and E2, respectively. These results
are in agreement with the two previous numerical experiments. We observe
that all four methods perform well in terms of ”hitting” the front.

Strategy 1 and 2 still perform well with respect to both error measures. The
Normal approach gives the same results as for Test 1 since the only difference
with this example is the addition of a tangential velocity component. The
grid quality for a pure Lagrangian approach is poor, which is what we would
expect.

Another thing we observe is that the error level for E2 (the length compu-
tation) is about a factor 102 − 103 smaller than the error level for E1 (the
interface error). The reason for this is that the interface error is rather uni-
form, which again is due to the simplicity of the problem. This makes the
error in the spatial derivative of the interface substantially smaller than the
interface error, which again leads to a better approximation of the length of
the front.
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Fig. 13. The interface and the point distribution at the initial time t = 0 and at
the final time T = 6.2 for Test 3 using the four different strategies. A polynomial
degree N = 16 is used for the spectral approximation.
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Fig. 14. The error E1 at time T = 6.2 for Test 3 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation.
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Fig. 15. The error E2 at time T = 6.2 for Test 3 using the four different strategies.
A polynomial degree N = 16 is used for the spectral approximation. The computed
value for the length of the interface, Sn, does not converge for the Normal method
and for the Lagrangian method due to an incorrect point distribution.
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4.6 Test 4

The three previous test cases where all constructed to illuminate some of the
strengths and weaknesses of the different methods for tracking an interface;
for this reason they were chosen to be rather simple. We now consider a more
complicated numerical example in order to demonstrate the applicability of
the new strategy to solve more general problems. We still choose a velocity
field which depends on the initial shape of the front, and in such a way that
we are able to derive an analytical expression for the shape of the front at all
times. A major difference from the previous test cases is that we now choose
a time dependent front. In particular, we demand that the shape of the front
is given by

x2(x1, t) =
1

4
cos(πt)

(
cos

(
π(x1 − 1)

3 + 0.4t

)
− cos

(
3π(x1 − 1)

3 + 0.4t

))
. (11)

Hence, the front will have a time-dependent amplitude and a time-dependent
wavelength. We also wish to rotate the front in a circular motion, and in
order to achieve this, the velocity field must be chosen in a careful manner. In
particular, it consists of four contributions:

• an angular velocity which is responsible for a pure rotation of the initial
front. The angle is computed with respect to a circle with center (−4, 0),
and a constant angular velocity uθ = 0.1 is imposed;

• a velocity field which accounts for the time-dependent amplitude in (11);
• a velocity field which “stretches” the front in accordance with the time-

dependent wavelength in (11);
• an additional velocity field which points in the tangential direction on

the front.

By adding these four contributions, we obtain a smooth, two-dimensional,
time-dependent velocity field. Apart from spatial and temporal discretization
errors, the initial front x2(x1, t = 0) will keep the shape given by (11) when
”immersed” in our velocity field; see Figure 16.

In Figure 17 we show the initial point distribution and the point distribution
at the final time T = 5 using Strategy 1 and a Lagrangian approach. In Figures
18 and 19 we report the errors E1 and E2 for the two methods, respectively.
We see that Strategy 1 performs well both in terms of ”capturing” the front
and in terms of giving the correct length. The Lagrangian approach is also able
to ”capture” the front, but the point distribution is poor such that the error
in the length of the front is large. Also, compared with Test 3, the difference
between the error levels for E1 and E2 is now much smaller; this is due to the
time-dependent amplitude in (11), which makes the interface error much less
uniform.
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5 Conclusions

We have presented a new approach for tracking an interface immersed in a
given velocity field. The method is particularly relevant to the simulation
of unsteady free surface problems using the arbitrary Lagrangian-Eulerian
framework. The new method has been constructed with two goals in mind:
(i) to be able to accurately follow the interface; and (ii) to maintain a good
point distribution for the grid points along the interface. The method com-
bines information from a pure Lagrangian approach with information from
an ALE approach. No interpolation of data is needed; instead, we have been
able to obtain the relevant information by solving several pure convection
problems along the interface. In this respect, the new approach represents a
semi-Lagrangian method applied to surface information.

We have been able to construct two-dimensional model problems offering ana-
lytical expressions for both the interface as well as the prescribed velocity field
in which the interface (or front) is ”immersed”. This has allowed us to verify
and compare the temporal accuracy of different methods: the new approach, a
pure Lagrangian approach, and an approach honoring the kinematic condition
in the normal direction, but imposing a homogeneous Dirichlet condition for
the tangential component of the grid velocity (called the Normal approach).

Using the new approach we have been able to achieve both of our primary
objectives; in particular, we have verified first, second, and third order tem-
poral accuracy for all four model problems. The new method is particularly
important in the context of using high order spatial discretization schemes.

Both the Lagrangian approach and the Normal approach generally give a non-
optimal point distribution along the interface, something which again may
result in large errors in the computation of important surface quantities (e.g.,
normal and tangent vectors, local curvature, length etc). Such errors may, in
worst case, result in a complete breakdown of the interface tracking.

The new method should be extended to, and tested in, more general situations,
in particular, by solving real free surface problems using an ALE approach,
and by extending the approach to three dimensions.
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Fig. 16. The front x2(x1, t) in (11) at different times when ”immersed” in the pre-
scribed velocity field.
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Fig. 17. The interface and the point distribution at the initial time t = 0 and at
the final time T = 5 for Test 4 using Strategy 1 and the Lagrangian approach. A
polynomial degree N = 24 is used for the spectral approximation.
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Fig. 18. The error E1 at time T = 5 for Test 4 using Strategy 1 and the Lagrangian
approach. A polynomial degree N = 24 is used for the spectral approximation.
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Fig. 19. The error E2 at time T = 5 for Test 4 using Strategy 1 and the Lagrangian
approach. A polynomial degree N = 24 is used for the spectral approximation.
The computed value for the length of the interface, Sn, does not converge for the
Lagrangian method due to an incorrect point distribution.
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Abstract

We consider the numerical solution of partial differential equations in partially deformed

three-dimensional domains in the sense that a general two-dimensional cross section in the

xy-plane is invariant with respect to the z-direction. Earlier work has exploited such geome-

tries by approximating the solution as a truncated Fourier series in the z-direction. In this

paper we propose a new solution algorithm which also exploits the tensor-product feature

between the xy-plane and the z-direction. However, the new algorithm is not limited to pe-

riodic boundary conditions, but works for general Dirichlet and Neumann type of boundary

conditions. The proposed algorithm also works for problems with variable coefficients as

long as these can be expressed as a separable function with respect to the variation in the

xy-plane and the variation in the z-direction. For most problems where the new method is

applicable, the computational cost is better or at least as good as the best iterative solvers.

The new algorithm is easy to implement, and useful, both in a serial and parallel context.

Numerical results are presented for three-dimensional Poisson and Helmholtz problems using

both low order finite elements and high order spectral element discretizations.

Key words: fast solver, tensor-product, partial differential equation, parallel algorithm.

Suggested running head: Fast tensor-product solvers in space.
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1 Introduction

Fast tensor-product solvers were proposed by Lynch, Rice and Thomas in 1964; see [10]. This

is a very specialized class of solution methods with limited applicability, but they are very

attractive to use whenever they are applicable. They have typically been used in the context of

solving the system of algebraic equations resulting from discretized partial differential equations

with constant coefficients in very simple computational domains (rectangular, hexahedral, or

cylindrical domains). For example, the solution of the Poisson equation or the biharmonic

equation in a cube can be done extremely efficiently using this approach; see [13, 14, 4, 1].

This class of solution methods have also been exploited in the context of constructing efficient

preconditioners for iterative methods; see for example [5, 16].

Recently, the tensor-product approach has also been extended to solve elliptic problems as-

sociated with layered media; see [9]. However, this two- and three-dimensional direct solver still

assumes a fully separable elliptic problem in order to reduce the multi-dimensional problem to a

sequence of one-dimensional problems.

In this work we exploit the tensor-product feature to solve problems in partially tensor-

product domains. In particular, we consider three-dimensional generalized cylinders (meaning

with a possibly nonquadratic cross-section, and even including holes); see Figure 1. The two-

dimensional cross-section may be discretized in an unstructured manner, or may be discretized

in a structured manner but deformed so as to prevent fast tensor-product solvers to be used

directly. The main idea is to exploit the tensor-product feature between the two-dimensional

cross-section (the xy-plane) and the perpendicular z-direction.

We demonstrate the approach by solving the Poisson problem and the Helmholtz problem in

selected three-dimensional domains. The proposed method results in a set of two-dimensional

Helmholtz-type problems, one for each cross-sectional plane, which can be solved completely

independently. The algorithm is therefore highly parallel. The two-dimensional systems can be

solved either iteratively or using a direct method. Each individual two-dimensional system may

also be parallelized, thus allowing for a two level parallelization: a parallelization with respect to

all the two-dimensional planes, and a separate and independent parallelization of each individual

plane.

2



x
y

z

Figure 1: A two-dimensional deformed domain extended in the third direction.

2 The Poisson problem

Let Ω be a three-dimensional domain which can be considered as a “cylinder” in the sense that

a two-dimensional cross section, O, in the xy-plane is invariant with respect to the z-direction;

see Figure 1. Hence, we can write

Ω = O × (0, L), (2.1)

where L is the length of the domain in the z-direction.

We consider now the Poisson problem in such a cylinder,

−∇2u = f in Ω,

u = 0 on ∂O × [0, L].
(2.2)

The boundary conditions on the planes z = 0 and z = L will be discussed below.

Earlier work has exploited domains that can be expressed as (2.1). For example, the work

in [3] and [7] exploit this fact in the numerical solution of the three-dimensional Navier-Stokes

equations by using a spectral element discretization in the xy-plane and a truncated Fourier

expansion in the z-direction. Another example is the stability analysis of three-dimensional free

surface flows; see [2]. Most earlier works trying to exploit the particular structure (2.1) have

been based on models incorporating periodicity in the z-direction, i.e.,

u(x, y, 0) = u(x, y, L).
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The motivation for this work is to generalize this approach, in particular, with respect to

prescribed boundary conditions in the z-direction, but also with respect to more general dis-

cretizations. This is done by using diagonalization techniques between the xy-plane and the

z-direction.

In the following discussion, we assume homogeneous Dirichlet boundary conditions also in

the z-direction. We will return to other types of boundary conditions later.

The weak formulation of the Poisson problem (2.2) is then: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.3)

where the bilinear form a(u, v) is given as

a(u, v) =
∫

Ω

∇u · ∇v dΩ =
∫

Ω

(
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+

∂u

∂z

∂v

∂z

)
dΩ, (2.4)

and the right hand side is given as

(f, v) =
∫

Ω

fv dΩ. (2.5)

We will assume that the given data f is square integrable over Ω.

3 Discretization

We now discuss the numerical solution of (2.3) based on the weak formulation. The particular

structure of our linear differential operator and of our domain Ω allows us to express the discrete

solution space XN as

XN = span {φm(x, y)ψn(z)}, m = 1, . . . , N2, n = 1, . . . , N1. (3.1)

Each basis function can thus be expressed as a product of a two-dimensional function, φm,

defined over O and a one-dimensional function, ψn, defined on the interval (0, L). We note that,

as the resolution is increased (i.e., as the discretization parameters N2 and N1 go to infinity), the
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two-dimensional functions {φm(x, y)}∞m=1 will span H1
0 (O), while the one-dimensional functions

{ψn(z)}∞n=1 will span H1
0 ((0, L)).

The discrete problem can be stated as: Find uN ∈ XN such that

a(uN , v) = (f, v) ∀v ∈ XN . (3.2)

The discrete solution can be expressed in tensor product form as

uN (x, y, z) =
N2∑

m=1

N1∑
n=1

umn φm(x, y)ψn(z), (3.3)

where umn are the basis coefficients. Note that each basis function is a separable function while

uN is not.

Inserting (3.3) into (3.2) and choosing test functions v(x, y, z) = φi(x, y)ψj(z), we get

N2∑
m=1

N1∑
n=1

[
(
∫
O
∇̃φi · ∇̃φm dx dy)(

∫ L

0

ψjψndz) + (
∫
O

φiφm dx dy)(
∫ L

0

ψ′
jψ

′
ndz)

]
umn = gij . (3.4)

Here, ∇̃ denotes the gradient operator in two space dimensions (in the xy-plane), and

gij =
∫ L

0

(∫
O

f(x, y, z)φi(x, y) dx dy

)
ψj(z) dz. (3.5)

In the case of Dirichlet boundary conditions in the z-direction, ψn(0) = ψn(L) = 0 for all

n = 1, . . . , N1. A convenient choice of functions ψn(z) are those functions that satisfy

∫ L

0

ψ′
jψ

′
ndz = λn

∫ L

0

ψjψndz,
∀j = 1, . . . , N1,

∀n = 1, . . . , N1.
(3.6)

where λn is a constant. Inserting (3.6) into (3.4), we arrive at

N2∑
m=1

N1∑
n=1

[(∫
O

(
∇̃φi · ∇̃φm + λnφiφm

)
dx dy

)(∫ L

0

ψjψndz

)]
umn = gij . (3.7)

On a continuous level, (3.6) is equivalent to choosing ψn(z) to be the solution of the symmetric
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eigenvalue problem

−ψ′′
n = λnψn, ψn(0) = ψn(L) = 0,

which is explicitly given as

ψn(z) =
√

2/L sin(nπz/L), (3.8)

λn = n2π2/L2. (3.9)

Note also that these eigenfunctions ψn(z) are orthonormal,

∫ L

0

ψjψndz = δjn, ∀j, n. (3.10)

Using (3.10) with (3.7), we arrive at the systems

N2∑
m=1

[ ∫
O

(
∇̃φi · ∇̃φm + λjφiφm

)
dx dy

]
umj = gij ,

∀i = 1, . . . , N2,

∀j = 1, . . . , N1.
(3.11)

We see that this approach transforms the solution of a single three-dimensional problem into the

solution of N1 two-dimensional Helmholtz-type systems.

However, other choices for ψn(z) are also possible. For example, in the low order finite element

case, we can choose the ψn(z) to be the eigenvectors of the one-dimensional stiffness matrix with

respect to the one-dimensional mass matrix; these eigenvectors are then spanned by the usual

one-dimensional “hat” basis functions. Similarly, in the high order spectral (element) case, we

can choose the functions ψn(z) to be the eigenvectors of the stiffness matrix with respect to the

one-dimensional mass matrix, however, now the eigenvectors would be spanned by (piecewise)

high order polynomials which vanish at the end points z = 0 and z = L.

We remark that, for both the low order finite element case and the high order spectral

(element) case, the discrete eigenvalues λn and the corresponding discrete eigenfunctions ψn are

different from the analytical expressions (3.9) and (3.8). An expansion in the z-direction based

on the analytical eigenfunctions (3.8) represents an approach similar to the Fourier expansion for

periodic problems. The disadvantage with this approach is that we need to find the explicit form
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for the analytical eigenfunctions (and eigenvalues) for each specific type of boundary conditions

specified at z = 0 and z = L, and for each type of operator. This may be cumbersome or difficult,

and the implementation will be different for each specific case. In the following, we will therefore

focus on a finite element or spectral (element) discretization in the z-direction, thus allowing for

a more general and flexible setting.

3.1 Algebraic system of equations

Let us now proceed with the details for arbitrary finite element discretizations, both low order

and high order discretizations. We let φm(x, y) be any two-dimensional basis function, and let

ψn(z) be any one-dimensional basis function. The discrete space XN and the discrete solution

uN are then given by (3.1) and (3.3), respectively. If both φm and ψn are nodal basis functions,

the unknown basis coefficients umn will be the numerical approximation at the nodal points.

It now follows directly from (3.4) that we can express the system of algebraic equations as

N2∑
m=1

N1∑
n=1

(A2D
imB1D

jn + B2D
im A1D

jn ) umn = gij ,
∀i = 1, . . . , N2,

∀j = 1, . . . , N1.
(3.12)

where

A2D
im =

∫
O
∇̃φi · ∇̃φm dx dy,

B2D
im =

∫
O

φiφm dx dy,

are the elements in the two-dimensional stiffness matrix and mass matrix, respectively, and

A1D
jn =

∫ L

0

ψ′
jψ

′
n dz,

B1D
jn =

∫ L

0

ψjψn dz,

are the elements in the one-dimensional stiffness matrix and mass matrix associated with the

z-direction. The right hand side elements gij in (3.12) are given in (3.5).
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In matrix form, we can write (3.12) succinctly as

(B1D ⊗ A2D + A1D ⊗ B2D) u = g, (3.13)

where we have used standard tensor product notation. Note that u is a vector of length N2N1,

and that the unknowns are numbered in such a way that all the nodes in a fixed xy-plane are

numbered before proceeding to the next plane. A similar numbering scheme is used for the right

hand side g.

3.2 Diagonalization

We now consider fast tensor-product techniques to solve the system (3.13). To this end, we

introduce the generalized eigenvalue problem

A1Dq
j

= λj B1Dq
j
, j = 1, . . . , N1,

or

A1DQ = B1DQΛ. (3.14)

Here, q
j

is an eigenvector of the one-dimensional discrete Laplace operator A1D with respect to

the one-dimensional mass matrix B1D, and λj is the corresponding (real and positive) eigenvalue.

The columns of Q contain all the eigenvectors, while Λ is a diagonal matrix containing the

eigenvalues along the diagonal.

Normalizing the eigenvectors with respect to B1D we get

B1D = Q−T Q−1, (3.15)

A1D = Q−T Λ Q−1. (3.16)
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From (3.13) and (3.15)-(3.16) it follows that

B1D ⊗ A2D + A1D ⊗ B2D = Q−T Q−1 ⊗ A2D + Q−T Λ Q−1 ⊗ B2D,

= (Q−T ⊗ I2D)(I1D ⊗ A2D + Λ ⊗ B2D)(Q−1 ⊗ I2D),

where I2D and I1D are identity matrices of the same dimension as the number of degrees-of-

freedom in each xy-plane and in the z-direction, respectively.

By introducing the variables

ũ = (Q−1 ⊗ I2D) u,

g̃ = (QT ⊗ I2D) g,

the algebraic problem can be written as

(I1D ⊗ A2D + Λ ⊗ B2D) ũ = g̃.

In “semi-local” form (global numbering in the xy-plane, but local numbering for the combined

xy-plane and the z-direction), this reduces to

N2∑
m=1

N1∑
n=1

[
(A2D)im(I1D)jn︸ ︷︷ ︸

δjn

+ (B2D)im(Λ)jn︸ ︷︷ ︸
λjδjn

]
ũmn = g̃ij ,

i = 1, . . . , N2,

j = 1, . . . , N1.
(3.17)

or

N2∑
m=1

[
(A2D)im + λj(B2D)im

]
ũmj = g̃ij ,

i = 1, . . . , N2,

j = 1, . . . , N1.
(3.18)

Here, the first index runs over the entire xy-plane, while the second index corresponds to the

z-direction.

Thus, the total algorithm comprises three steps.

9



The first step is to transform the right hand side:

g̃ij =
N2∑

m=1

N1∑
n=1

(I2D)im︸ ︷︷ ︸
δim

QT
jngmn (3.19)

=
N1∑

n=1

QT
jngin =

N1∑
n=1

ginQnj ,
i = 1, . . . , N2,

j = 1, . . . , N1.
(3.20)

or, in matrix form,

G̃ = G Q. (3.21)

Here, G and G̃ are the given data and transformed data, respectively, in a “semi-local” data

representation.

The second step is to solve the systems (3.18). Each system (for a fixed value of j) couples the

degrees-of-freedom within a single xy-plane. Using a global data representation for the unknowns

within each plane, the systems (3.18) can also be expressed as:

(A2D + λj B2D) ũj = g̃
j
, j = 1, . . . , N1. (3.22)

Each two-dimensional solution ũj forms a column in the two-dimensional solution matrix Ũ fol-

lowing a semi-local data representation. Note that these systems represent completely decoupled

two-dimensional systems which can be solved independently of each other.

The third step involves a transformation of Ũ to the final solution U . Again, using a “semi-

local” data representation, we get

uij =
N1∑

n=1

ũinQjn =
N1∑

n=1

ũinQT
nj (3.23)

or, in matrix form,

U = Ũ QT . (3.24)

10



4 Numerical results

We now present numerical results using the proposed solution algorithm to solve the resulting

systems of algebraic equations. All the numerical tests we report have been implemented in

MATLAB R©.

4.1 Finite element discretization

We first consider the solution of the Poisson problem in a wedge-shaped domain as depicted in

Figure 2. The discretization is based on linear finite elements. Each two-dimensional cross section

corresponds to a sector π/4 of the unit circle, which is discretized into triangles with mesh size h.

The grid spacing in the z-direction is h. Hence, our three-dimensional discretization corresponds

to using prismatic linear finite elements of mesh size h.

We derive the right-hand side, f , by using the exact solution

u(x, y, z) = sin
(
2π
(
x2 + y2

))
sin
(
x
(
y − tan

(π

4

)
x
)

π
)

sin
(πz

L

)
.

The domain length in the z-direction is L = 1, and homogeneous Dirichlet boundary conditions

are imposed along the entire domain boundary ∂Ω. Figure 3 shows the convergence results.

As expected, the error between the exact solution and the finite element solution decreases as

O(h2) as the mesh size h decreases; the error is here measured in the discrete L2-norm. Note

that the finest grid used in the convergence study uses 90 elements in the radial direction, in

the angular direction, and in the z-direction. Hence, the resulting algebraic system of equations

corresponds to about 340,000 degrees-of-freedom. All the two-dimensional systems are solved

directly using full LU-factorization. However, even with a simple solver that does not exploit the

sparsity associated with the triangulation of each plane, the solution is readily obtained using

MATLAB R©.

4.2 Spectral discretization

We now demonstrate the proposed method by solving the Poisson problem in a domain Ω as

depicted in Figure 4. The domain is a deformed rectangle in the xy-plane which is extended in
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Figure 2: The finite element grid for a wedge-shaped domain.
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Figure 3: Relative error between the exact solution u and the numerical solution uh of the three-
dimensional Poisson problem using linear finite elements with mesh size h; the error is measured
in the discrete L2 norm. The computational grid is depicted in Figure 2.
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the z-direction. The Poisson problem is discretized using a pure spectral method based on high

order polynomials. Figure 4 indicates both the deformed Gauss-Lobatto Legendre grid in the

xy-plane as well as a Gauss-Lobatto Legendre distribution of the nodes in the z-direction.

For the numerical experiments, we compute the right hand side, f , from the exact solution

u(x, y, z) = sin
(

π(x − a4 sin(πy))
1 + a2 sin(2πy) − a4 sin(πy)

)
sin
(

3π(y + a1 sin(2πx))
1 + a3 sin(πx) + a1 sin(2πx)

)
sin
(

2πz

L

)
,

(4.1)

with a1 = 0.08, a2 = 0.10, a3 = 0.12 and a4 = 0.15.

The set of algebraic equations are solved using (3.21), (3.22), and (3.24). In contrast to

the finite element case, the two-dimensional problems in (3.22) are now solved iteratively using

the conjugate gradient method. For the convergence result of the spectral method, we have

measured the discretization error in the discrete L2-norm. Figure 5 shows the relative error as

a function of the polynomial degree, N , in each spatial direction. We see how the exponential

convergence is influenced by the stopping criterion, ε, used in the conjugate gradient method for

each two-dimensional problem in (3.22).

4.3 Spectral element discretization

Again, we consider the Poisson-problem with homogeneous Dirichlet boundary conditions, but

the three-dimensional domain Ω is now a cylinder; see Figure 6. The two-dimensional cross

section is a circle with radius equal to two. Each cross section is divided into five elements, while

two layers of elements is used in the z-direction; see Figure 6.

The exact solution of the Poisson problem is

u(x, y, z) = sin
(

7π

4

√
(x − 2)2 + (y − 2)2 +

π

2

)
sin
(

2πz

L

)
. (4.2)

In Figure 7, we show the discretization error in the discrete L2-error as a function of the

polynomial degree, N , used to approximate the solution in each in each element. Note that the

finest grid used in this convergence study corresponds to a polynomial degree N = 29; with ten

elements, this corresponds to about 300,000 degrees-of-freedom. Similar to earlier experiments,

the numerical results are obtained using MATLAB R©.
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Figure 4: The domain Ω used in the numerical experiment in Section 4.2.
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Figure 5: Relative error between the exact solution u and the numerical solution uN of the
three-dimensional Poisson problem as a function of the polynomial degree, N , in each spatial
dimension. The error is measured in the discrete L2-norm. The convergence results are shown
for different choices of the stopping criterion, ε, used in the conjugate gradient iteration when
solving the two-dimensional systems (3.22): ε = 10−14, ε = 10−10 and ε = 10−6.
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Figure 6: The computational domain, Ω, and the spectral element discretization. Two layers
of elements are used in the z-direction. Each two-dimensional cross-section is divided into five
spectral elements.
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Figure 7: Relative error between the exact solution u and the numerical solution uN of the three-
dimensional Poisson problem as a function of the polynomial degree, N , in each spatial direction
in each element. The error is measured in the discrete L2-norm. The exact solution is given by
(4.2). Each two-dimensional system in (3.22) is solved using conjugate gradient iteration with a
tolerance ε = 10−12.
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4.4 Extension to solving the Helmholtz problem

We now extend the proposed method to solving the Helmholtz-problem

−∇2u + αu = f in Ω, (4.3)

u = 0 on ∂Ω, (4.4)

where α is a positive constant. The only difference from the solution procedure for the Poisson

problem is that the two-dimensional problems in (3.22) now read

(A2D + (λj + α) B2D) ũj = g̃
j
, j = 1, . . . , N1. (4.5)

The domain Ω and the discretization is the same as described in Section 4.2; see Figure 4.

Again, we use the exact solution (4.1) to derive the right hand side, f . The parameter α is

set equal to one. Figure 8 shows the convergence plot. As expected, we obtain exponential

convergence similar to the Poisson problem.

4.5 Further extensions

We conclude with an example showing the extension of the proposed approach to solving problems

with other types of boundary conditions and nonconstant material properties. The particular

example we consider can be formulated mathematically as

−∇ · κ∇u = f in Ω, (4.6)

u = 0 at z = 0, (4.7)

κ
∂u

∂n
= 0 on ∂O × [0, L], (4.8)

κ
∂u

∂n
= q at z = L. (4.9)

This problem describes steady heat transfer in a domain Ω with the temperature u = 0 prescribed

on the plane z = 0, a heat flux, q, prescribed on the plane z = L, and no heat transfer through

the cylinder wall. A volumetric heat source, f , is assumed given. We choose the domain Ω
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and the discretization to be the same as depicted in Figure 6. The parameter κ is the thermal

conductivity. As long as κ can be expressed as

κ(x, y, z) = κ2(x, y) · κ1(z),

the proposed solution algorithm still applies.

We solve this test problem with f = 0, q = 1, κ = 1 in the lower half of the cylinder, and

κ = 2 in the upper half of the cylinder. This problem has a simple analytical solution which

only depends on z; the exact solution is piecewise linear with a jump in the first derivative at

z = 1/2,

u(x, y, z) = z for 0 ≤ z ≤ 1
2
,

u(x, y, z) =
1
2
z +

1
4

for
1
2
≤ z ≤ 1.

The numerical solution is, indeed, constant in each xy-plane, and the variation in the z-direction is

shown in Figure 9. We remark that using the analytic eigenfunctions (3.8) would be inappropriate

for this problem due to the nonconstant thermal conductivity in the z-direction. In this sense,

the proposed diagonalization procedure offers convenience in terms of handling situations with

variable coefficients and other types of boundary conditions.

5 Computational complexity

We now discuss the computational cost of the proposed procedure. This includes the cost of the

diagonalization step (3.14), and the solution steps (3.21), (3.22), and (3.24).

In the following, we denote the total number of elements (finite elements or spectral elements)

in the domain as K, the number of elements in a two-dimensional cross-section as Kxy, while

the number of layers of elements in the z-direction is denoted as Kz, i.e., K = Kxy · Kz. In the

spectral element case, we denote the polynomial order as N . Note that, in the spectral (element)

case, the polynomial order need not be the same in the z-direction as in the xy-plane. With
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Figure 8: Relative error between the exact solution u and the numerical solution uN of the
three-dimensional Helmholtz problem (4.4) as a function of the polynomial degree, N , in each
spatial direction. The error is measured in the discrete L2-norm.
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Figure 9: A plot of the variation in the numerical solution of (4.6) - (4.9) in the z-direction at
a fixed point in the xy-plane. In this problem, f = 0 and q = 1. As expected, the numerical
solution coincides with the exact solution.
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these parameters, it follows that

N2 ≈ Kxy using linear finite elements,

N2 ≈ Kxy · N2 using spectral elements,

and

N1 ≈ Kz using linear finite elements,

N1 ≈ Kz · N using spectral elements.

The exact numbers N2 and N1 will depend on the prescribed boundary conditions.

In order to provide a “reference” for a cost analysis of the proposed method, we first esti-

mate the cost of performing a single operator evaluation involving the three-dimensional discrete

Laplacian:

72 K using linear finite elements, (5.1)

12 K N4 using spectral elements. (5.2)

In the linear finite element case, this estimate is based on an element-by-element approach, and

assuming an already explicitly contructed element matrix of dimension 6 × 6. In the spectral

element case, this estimate assumes the use of tensor product sum-factorization techniques; see

[12].

We now proceed with a cost analysis of the proposed algorithm; a summary of this cost

analysis is given in Table 1. The cost of solving the one-dimensional eigenvalue problem (3.14)

is approximately equal to N3
1 . This estimate just states the usual fact that the cost of solving

the eigenvalue problem scales like the cube of the dimension of the problem; see [6]. Let us

compare this cost with the cost of performing a single operator evaluation involving the discrete

Laplacian. To this end, let us first assume that Kz ∼√Kxy. The cost of the eigenvalue problem
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Linear Spectral
finite elements elements

N1 Kz KzN
N2 Kxy KxyN2

Operator evaluation w = A3Dv 72K 12KN4

Eigenvalue problem (3.14); Kz ∼√Kxy K KN3

Transformation (3.21) and (3.24) 4KzK 4KzKN4

Solution of (3.22) (M iterations) 18MK 8MKN4

Total cost (proposed solver) (18M + 4Kz)K (8M + 4Kz)KN4

Total cost (PCG, ideal 3D preconditioner) 72MK 12MKN4

Table 1: A table showing the scalings and estimated cost for the various parts of the proposed
algorithm. The total cost is also compared to an iterative solution of the full three-dimensional
system, using an ”ideal” preconditioner in the sense of incuring an insignificant computational
cost, while giving a resolution-independent convergence rate.

is then

N3
1 ∼ K3

z ∼K using linear finite elements,

N3
1 ∼ K3

zN3 ∼KN3 using spectral elements.

In the linear finite element case, the cost of the eigenvalue problem will then be significantly

smaller than the cost of performing a single operator evaluation (assuming we exploit all the

sparsity); see (5.1). In the spectral element case, the cost of the eigenvalue problem will also be

significantly less than the cost of performing a single operator evaluation since the latter scales

like O(K N4); see (5.2). If Kz �√
Kxy, this conclusion will be even more true. If Kz �√

Kxy,

the solution of the eigenvalue problem will become more important. However, the resolution in

the z-direction has to be quite extreme compared to the x- and y-direction before the eigenvalue

problem will play a significant role; see below.

The transformation step (3.21) involves a matrix-matrix product. The number of floating

point operations for this step is

2 N2 · N2
1 ≈ 2 Kxy ·(Kz)2 = 2 Kz·K using linear finite elements, (5.3)

2 N2 · N2
1 ≈ 2 Kxy N2·(KzN)2 = 2 Kz·K N4 using spectral elements. (5.4)

Hence, for Kz < 36 in the linear finite elements case, and for Kz < 6 in the spectral element
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case, the cost of (3.21) is less than the cost of a single iteration using an iterative solver for the

full three-dimensional problem.

Step (3.22) involves solving approximately N1 two-dimensional problems. The cost of these

problems depends on the particular solver used. For an elliptic problem like the Poisson problem,

we can use a preconditioned conjugate gradient method with a domain-decomposition-based

preconditioner. In the optimal case, the cost of each two-dimensional solve will at least be a

fixed number of iterations, M , times the cost of a two-dimensional operator evalution (or matrix-

vector product); see [15]. In the linear finite element case, this lower bound can be estimated to

be 18 M Kxy, while in the spectral element case, this lower bound is equal to 8M Kxy N3. The

total number of floating point operations for (3.22) is then approximately equal to

18 M K using linear finite elements,

8 M K N4 using spectral elements.

For non-optimal preconditioners, this cost will be higher. We have here neglected the cost of the

preconditioner and other aspects of the iterative solver. Note that from an implementation point

of view, implementing “optimal” preconditioners in the two-dimensional case is much easier than

in the three-dimensional case. Finally, note that solving two-dimensional problems has eliminated

potential difficult aspect ratio problems associated with domains with a small/large length scale

in the z-direction compared to a typical length scale in the xy-plane.

The above analysis only considers an iterative solution strategy for the two-dimensional prob-

lems in (3.22). This is the most practical strategy for large problems. However, it may also be

possible to use a direct solution method for these two-dimensional systems even though this may

not be practical for the full three-dimensional problem. We refer to the numerical test using linear

finite elements in Section 4.1 as an example. If a direct method is used for the two-dimensional

systems, the entire proposed solution procedure can be classified as a direct solution method.

The final transformation step (3.24) involves a matrix-matrix product at a similar cost as

(3.21); see (5.3)-(5.4).

In summary, if we can neglect the cost of solving the one-dimensional eigenvalue problem,
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the total cost of the proposed algorithm is then

(18 M + 4Kz) · K using linear finite elements,

(8 M + 4Kz) · K N4 using spectral elements.

We have here assumed iterative solution of the two-dimensional systems using optimal (ideal)

preconditioners, and each system taking M iterations to converge.

Consider now the cost of using an iterative solver for the full three-dimensional problem with

an optimal (ideal) preconditioner that also takes M iterations to converge. From (5.1) and (5.2)

this cost is at least

(72 M) · K using linear finite elements,

(12 M) · K N4 using spectral elements.

The proposed method should therefore (conservatively) be competitive with the best (ideal)

iterative solution methods if

Kz < 13 M using linear finite elements,

Kz < M using spectral elements.

For example, if M = 20, we can have up to Kz = 260 layers of linear finite elements, and

KzN = 200 nodes in the z-direction in the spectral element case (assuming N = 10).

Again, this is a conservative estimate. For most problems where the proposed algorithm is

applicable, the computational complexity will be smaller than the best iterative solution method

for the full three-dimensional problem. Additional issues in favor of the proposed approach are:

elimination of the aspect ratio problem discussed earlier; the number of iterations, M , is typically

larger for a full three-dimensional problem compared to solving a problem in a two-dimensional

cross section; the number of iterations, M , is not a constant, but a function of the polynomial

degree N in the case of using spectral elements; easier implementation (two-dimensional versus

three-dimensional solvers); easier parallelization (see the next section).
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6 Parallel processing

The solution step (3.22) suggests a natural way to parallelize this algorithm. One way is to

simply solve one (or more) two-dimensional problem(s) on a single processor. This will imply

that all the two-dimensional problems can be solved in parallel without any communication. The

implementation of this step will be unchanged from a serial version.

If we assume that the eigenvector matrix Q is stored on all the processors, step (3.21) can

be done by first storing the right hand side gij for some values of i in the xy-plane, and for all

values of j along the z-direction. The transformation of the given data as given by (3.20) or

(3.21) can then be done in parallel without any communication.

The transformed data G̃ can now be “transposed” so that g̃ij will be available on each

processor for all values of the index i in the xy-plane, and for one or more values of j. This

“transpose” operation will require global communication.

The two-dimensional systems (3.22) can now be solved in parallel in a completely decoupled

fashion, and the solution Ũ will be distributed so that ũij will be available on each processor

for all values of the index i in the xy-plane, and for one or more values of j. This distribution

is again “transposed” so that ũij will be available on each processor for some values of i in the

xy-plane, and for all values of j along the z-direction. The final solution U is then obtained from

(3.24) by performing the matrix-matrix product in parallel without any communication.

Hence, the total communication cost for the algorithm is limited to the two “transpose” oper-

ations which imply an all-to-all-type of communication pattern. The parallel implementation as

described above should be compared with a more standard domain decomposition approach which

typically implies a parallel implementation of the preconditioned conjugate gradient method ap-

plied to the full three-dimensional system. The advantage with the proposed method is that it

is has low computational complexity and it is easy to implement both in a serial and a parallel

context.

It is interesting to notice that an iterative solution of the independent two-dimensional systems

will enjoy both the convergence rate and ease of implementation associated with two-dimensional

systems. As explained above, we can solve each two-dimensional system on a single processor.

However, in the case that each two-dimensional system is also very large, we can parallelize
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the solution of each two-dimensional system as well (in addition to the parallelization across

two-dimensional planes). For such large problems, the proposed algorithm would offer a way to

exploit computer platforms with many processors.

7 Conclusions

We have presented a new solution algorithm for problems in computational domains which can

be expressed as a tensor-product between a general two-dimensional domain in the xy-plane and

the z-direction. The new algorithm allows general boundary conditions to be specified in the

z-direction. It can also be used to solve problems with variable coefficients as long as these can be

expressed as a separable function with respect to the variation in the xy-plane and the variation

in the z-direction.

For most problems where the proposed method is applicable, the computational complexity

is better or at least as good as the best available iterative solvers. An attractive feature with the

proposed method is that it eliminates the aspect ratio problem associated with domains which

have a small length scale in the z-direction compared to a typical length scale in the xy-plane.

The method also allows for an easy implementation, both in a serial and a parallel context.

We have demonstrated the new algorithm by solving selected Poisson- and Helmholtz-type

problems. However, we remark that the method is equally applicable for three-dimnensional

geometries with other two-dimensional topologies, e.g., a planar region with a certain number of

holes, and for solving other partial differential equations.

8 Future work

Future work will include the application of the method presented here to simulate three-dimensional

Bénard-Marangoni convection [8]. Previous numerical results for this problem have assumed a

fixed and undeformed free surface [11]. However, it is known that the (unknown) free surface

will be slightly deformed for this type of problems. In the context of solving the governing equa-

tions (the incompressible Navier-Stokes equations and the energy equation) numerically using a

splitting approach, the computational problem is reduced to solving a Helmholtz-type equation
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for the velocity and a Poisson-type equation for the pressure at each time step. The fast tensor-

product solver presented here could function as a perfect preconditioner for these elliptic solves;

for small free surface deformations, the convergence should be very rapid. The solver should also

be insensitive to the potentially large aspect ratios associated with the computational domains

for this class of problems. Note that the two-dimensional cross-sections may be quite general

and may not be possible to express in tensor-product form [11].

Future work will also extend the approach presented here to include fast tensor-product

solvers for a combined space-time treatment. In a second paper (Part II), we will discuss a tensor-

product solver for the pure spectral case. This is part of an ongoing research effort to extend the

possibilities for parallel processing in the time direction, thus allowing for an overall increased

speedup for the simulation of evolution problems described by partial differential equations.

Finally, we mention an open area for the possible application of fast tensor-product solvers,

namely, the approximate solution of the Boltzmann equation. For this type of problems, we have

6 independent variables in three physical space dimensions: 3 velocity directions and 3 physical

coordinate directions. A ”cross-section” in the xyz-”plane” is here invariant with respect to all

the velocity directions. This could potentially be exploited in the construction of tensor-product

bases and fast solvers.
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