
IE502414	1	Masteroppgave	i	Simulering	og	Visualisering Candidate	6

1/2

IE502414Emnekode

OppgaveVurderingsform

01.06.2018	12:00Starttid

29.06.2018	12:00Sluttid

29.09.2018	02:00Sensurfrist

05.11.2018	09:38PDF	opprettet

Anne	Lise	GrandeOpprettet	av

KANDIDAT

6

PRØVE

IE502414	1	Masteroppgave	i	Simulering	og
Visualisering

IE502414	1	Masteroppgave	i	Simulering	og	Visualisering Candidate	6

2/2

1 Ny	oppgave
Please	upload	your	master	thesis	here	(PDF	file).
We	refer	to	the	e-mail	dated	30.05.18	from	Anne	Lise	Grande	regarding:	1.	The	Template	for	the	Front
Page,	2.	Mandatory	Statement	and	3.	Publication	Agreement.	These	three	files	must	be	included	in
your	PDF	file	together	with	the	thesis.
	

Din	fil	ble	lastet	opp	og	lagret	i	besvarelsen	din.

Last	ned Fjern

Filnavn: Torstein_Sundnes_Lenerand_Master_Thesis.pdf

Filtype: application/pdf

Filstørrelse: 3.57	MB

Opplastingstidspunkt: 11.06.2018	17:44

Status: Lagret

	

	Erstatt

Besvart.

Master’s degree thesis

Component-Based Simulator for

Modelling the Design and Dynamics

of Modular Robots

Field of study: (880MVS) Simulation and Visualization

University: NTNU Ålesund

Number of pages including this page: 84

Rev. Place, date: Author:

1.0 Aalesund, 10.06.2018 Torstein Sundnes Lénérand

Mandatory statement
Each student is responsible for complying with rules and regulations that relate to examinations

and to academic work in general. The purpose of the mandatory statement is to make students

aware of their responsibility and the consequences of cheating. Failure to complete the statement

does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we herby declare that my/our paper/assignment is my/our own work,

and that I/we have not used other sources or received other help than is

mentioned in the paper/assignment.

X

2. I/we herby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text

and in the list of references

5. Is not a copy, duplicate or transcript of other work

X

X

X

X

X

3.

I am/we are aware that any breach of the above will be considered as

cheating, and may result in annulment of the examination and

exclusion from all universities and university colleges in Norway for

up to one year, according to the Act relating to Norwegian
Universities and University Colleges, section 4-7 and 4-8 and

Examination regulations at NTNU.

X

4. I am/we are aware that all papers/assignments may be checked for

plagiarism by a software assisted plagiarism check.

X

5. I am/we are aware that The Norwegian University of Science and

Technology (NTNU) will handle all cases of suspected cheating

according to prevailing guidelines.

X

6. I/we are aware of the University’s rules and regulations for using

sources.

X

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf

Publication agreement

ECTS credits: 30

Supervisors: Arne Styve, Dr. Guoyuan Li.

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The

Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage with the approval of the

author(s).

I/we hereby give NTNU the right to, free of

charge, make the thesis available for electronic publication: yes

Is there an agreement of confidentiality? no

(A supplementary confidentiality agreement must be filled in)

Date: 10.06.18

https://innsida.ntnu.no/wiki/-/wiki/English/Student+and+business+cooperative+agreements

Acknowledgments

This project marks the end of 2 years on the Simulation and Visualization masters

study at NTNU Ålesund. I would like to thank my supervisors, Dr. Guoyuan Li and Assistant

Professor Arne Styve, for their guidance throughout the project and for discussions which

always pushed me to see things from different perspectives. With extensive knowledge

about their respective fields, they have given better guidance and feedback than I could ever

hope for. The people at Algoryx support have also been very helpful in aiding with

troubleshooting and guidance. Lastly, I would like to thank my study program coordinator

Siebe Bruno Van Albada for continually finding ways to improve the sim&vis course, and

for helping me (together with my supervisors) get the permission to write this specific thesis.

i

i. Abstract

This project presents the design of a component-based simulator used for modelling the

design and movement of chain-based modular robots. This work is in collaboration with NTNU

Ålesund and implemented in the Unity® game engine with Algoryx® Dynamics for physics

calculations. The focus is on Modular robots, along with techniques for simulator creation and

software development such as Component-Based Software Engineering and Design. The

Unified Process is used for prototyping and research, while the finished design is verified using

tests, reviews, and use-case studies. This thesis discusses the impact of using Component-Based

Design in a relatively small project, and the advantages/disadvantages of this decision. The goal

is to provide the optimum tool for students to learn about, and researchers to develop,

customized modular robots.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 1 of 83

NTNU Ålesund Master’s degree thesis

ii. Contents

I. ABSTRACT ... I
II. CONTENTS ... 1
III. LIST OF FIGURES .. 3
IV. LIST OF TABLES .. 4
V. DOCUMENT HISTORY .. 5
VI. ABBREVIATIONS AND EXPLANATIONS ... 6
1. INTRODUCTION .. 7

1.1. INTRODUCTION AND MOTIVATION ... 7
1.1.1. Problem ... 7
1.1.2. Motivation ... 7
1.1.3. Scope ... 8
1.1.4. Objective .. 9
1.1.5. Research Questions ... 9

1.2. PREVIOUS WORK .. 10
1.2.1. Literature ... 10

1.2.1.1. Webots [4] ... 10
1.2.1.2. Unity [5] ... 10
1.2.1.3. VSPARC [6] ... 10
1.2.1.4. MECABOT [8, 9] ... 11
1.2.1.5. Screw-less Solution for Snake-like Robot Assembly & Sensor Integration [10] 11
1.2.1.6. Modular Robot Systems (Self-assembly) [1] .. 11
1.2.1.7. A Light-Weight Robot Simulator for Modular Robotics [11] .. 12
1.2.1.8. Component-based Development Process & Component Lifecycle [13] 12
1.2.1.9. Twenty-eight years of component-based software engineering [14] .. 12

1.2.2. Literature discussions .. 13
1.2.2.1. Advantages of CBSE ... 13
1.2.2.2. Development focus for various modular robots .. 13

2. BACKGROUND .. 15

2.1. PROJECT FRAMEWORK ... 15
2.1.1. Unified Process .. 15
2.1.2. Phases .. 17
2.1.3. Risk .. 18

2.2. MODULAR ROBOTICS .. 19
2.2.1. Design .. 19
2.2.2. Dynamics ... 20
2.2.3. Optimization algorithms viable for modular robotics ... 21

2.2.3.1. Genetic algorithm .. 21
2.2.3.2. Simulated Annealing .. 24

2.3. COMPONENT-BASED DEVELOPMENT .. 25
2.3.1. Introduction to CBSE .. 25
2.3.2. Business use-case .. 26
2.3.3. Component-based optimization .. 27

3. METHODOLOGY .. 28

3.1. DEVELOPMENT .. 28
3.1.1. Project methods .. 28

3.1.1.1. Unified Process .. 29
3.1.2. Research and planning .. 30
3.1.3. Modular robotics ... 30

3.2. VERIFICATION AND VALIDATION ... 32
3.2.1. Simulator Specifications .. 32

3.2.1.1. Requirements .. 32
3.2.1.2. Test and Verification .. 33

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 2 of 83

NTNU Ålesund Master’s degree thesis

3.2.1.3. System validation ... 34
3.2.2. Framework and simulator verification .. 34

3.3. TOOLS, PLATFORMS, LIBRARIES.. 35
3.3.1. Hardware ... 35
3.3.2. Software components.. 35
3.3.3. Algoryx Dynamics .. 37
3.3.4. Unity .. 38

4. RESULTS AND FINDINGS .. 39

4.1. DESIGN OF THE MODULAR ROBOT SIMULATOR .. 39
4.1.1. Setting up the software environment .. 39
4.1.2. Component-based design .. 40

4.1.2.1. Simulation Core ... 41
4.1.2.2. Algoryx Interface .. 42
4.1.2.3. Visualization ... 42
4.1.2.4. Dynamics .. 43
4.1.2.5. Optimization .. 43
4.1.2.6. Main ... 44

4.1.3. Software design ... 45
4.1.3.1. Simulation Core ... 46
4.1.3.2. AgX Interface ... 53
4.1.3.3. Unity_Visualization .. 59
4.1.3.4. Dynamics .. 61
4.1.3.5. Optimization .. 62
4.1.3.6. Scene Designer... 63

4.1.4. Core Framework usage (Robot design) ... 65
4.1.4.1. Robot assembly .. 65
4.1.4.2. Object creation .. 65
4.1.4.3. XML functionality ... 68

4.2. VERIFICATION AND VALIDATION ... 69
4.3. CASE STUDIES .. 70

4.3.1. Creating and running a scenario ... 70
4.3.1.1. Design .. 70
4.3.1.2. Result ... 71

4.3.2. Dynamics test .. 73
4.3.3. Framework case-study .. 74

5. DISCUSSION .. 77

5.1. CBD DECISIONS ... 77
5.2. STAKEHOLDER NEEDS (NTNU) .. 78
5.3. ISSUES .. 78
5.4. SUMMARY .. 79
5.5. FURTHER WORK ... 80

6. CONCLUSION .. 81
7. REFERENCES .. 82

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 3 of 83

NTNU Ålesund Master’s degree thesis

iii. List of figures
FIGURE 1: MAIN PROJECT COMPONENTS AND PROJECT SCOPE ... 8
FIGURE 2: ITERATIVE DEVELOPMENT MODEL .. 15
FIGURE 3: PROPOSED PROJECT PLAN .. 17
FIGURE 4: MODULAR ROBOT; PITCH, YAW, AND PITCH-YAW CONFIGURATIONS ... 19
FIGURE 5: EXAMPLE FITNESS FUNCTION .. 22
FIGURE 6: THE MUTATION AND SELECTION PROCESS IN A GA .. 22
FIGURE 7: "CUT AND SPLICE" CROSSOVER OPERATOR .. 23
FIGURE 8: EXAMPLES OF MUTATION OPERATORS SOURCE: HTTPS://WWW.RESEARCHGATE.NET/272093243 23
FIGURE 9: SIMULATED ANNEALING PATHFINDING EXAMPLE [FROM ANOTHER PROJECT] ... 24
FIGURE 10: PROJECT DEVELOPMENT PLAN .. 29
FIGURE 11: ALGORYX SIMULATION OF A MODULAR SNAKE-LIKE ROBOT ... 37
FIGURE 12: UNITY EDITOR ... 38
FIGURE 13: SETTING UP THE ENVIRONMENT VARIABLES ON THE TEST COMPUTER. ... 39
FIGURE 14: MODULAR ROBOT SIMULATOR COMPONENTS ... 41
FIGURE 15: CORE FRAMEWORK SOFTWARE ARCHITECTURE ... 45
FIGURE 16: SEQUENCE OF ALGORYX OBJECT HANDLING ... 53
FIGURE 17: UNITY_VISUALIZATION OBJECT LIFECYCLE ... 60
FIGURE 18: SCENE DESIGNER INTERFACE ... 63
FIGURE 19: THE SCENE DESIGNER'S MOST IMPORTANT FEATURES ... 64
FIGURE 20: ROBOT ASSEMBLY STRUCTURE .. 65
FIGURE 21: CREATION AND DESTRUCTION OF SIMULATION OBJECTS ... 66
FIGURE 22: XML FILE SCENARIO CLASS REPRESENTATION ... 68
FIGURE 23: CASE STUDY - DESIGN OVERVIEW .. 70
FIGURE 24: CASE STUDY - SENSOR MODULE AND SCENE OBJECT DESIGN.. 70
FIGURE 25: ROBOT MOVING FORWARD TO PUSH THE BALL ... 71
FIGURE 26: DISTANCE SENSOR MEASUREMENTS ... 71
FIGURE 27: FORCE SENSOR VS Y-POSITION MEASUREMENTS ... 72
FIGURE 28: ROBOT FORWARD MOTION .. 73
FIGURE 29: ROBOT FORWARD MOTION WITH INCREASED AMPLITUDE ... 73
FIGURE 30: ROBOT WIDE TURN .. 73
FIGURE 31: ROBOT SHARP TURN ... 73
FIGURE 32: CUSTOM PROJECT, SCENARIO ... 75
FIGURE 33: CUSTOM PROJECT, MODULE MOVEMENT .. 76

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 4 of 83

NTNU Ålesund Master’s degree thesis

iv. List of tables
TABLE 1: DOCUMENT HISTORY.. 5
TABLE 2: RISK MATRIX .. 18
TABLE 3: EXAMPLE OF CHROMOSOMES IN A GA SYSTEM .. 21
TABLE 4: REQUIREMENT IMPORTANCE ... 32
TABLE 5: REQUIREMENT EXAMPLE ... 33
TABLE 6: VERIFICATION CRITERIA... 33
TABLE 7: TEST SPECIFICATION EXAMPLE, FULLY VERIFIED .. 33
TABLE 8: TEST COMPUTERS .. 35
TABLE 9: CONTENTS OF THE SCENARIO CLASS .. 46
TABLE 10: CONTENTS OF THE ROBOT CLASS .. 47
TABLE 11: ROBOT CLASS FUNCTIONS ... 48
TABLE 12: CONTENTS OF THE MODULE CLASS ... 48
TABLE 13: MODULE CLASS FUNCTIONS ... 48
TABLE 14: CONTENTS OF THE FRAME CLASS .. 49
TABLE 15: FRAME CLASS FUNCTIONS ... 49
TABLE 16: CONTENTS OF THE JOINT CLASS .. 50
TABLE 17: JOINT CLASS FUNCTIONS ... 50
TABLE 18: CONTENTS OF THE SCENEOBJECT CLASS ... 51
TABLE 19: SCENEOBJECT CLASS FUNCTIONS .. 51
TABLE 20: CONTENTS OF THE SCENE CLASS ... 52
TABLE 21: SCENE CLASS FUNCTIONS .. 52
TABLE 22: CONTENTS OF THE AGX_ASSEMBLY CLASS: .. 54
TABLE 23: AGX_ASSEMBLY CLASS FUNCTIONS ... 54
TABLE 24: CONTENTS OF THE AGX_FRAME CLASS .. 55
TABLE 25: AGX_FRAME CLASS FUNCTIONS ... 55
TABLE 26: CONTENTS OF THE AGX_JOINT CLASS .. 56
TABLE 27: AGX_JOINT CLASS FUNCTIONS ... 56
TABLE 28: CONTENTS OF THE AGX_PRIMITIVE CLASS .. 56
TABLE 29: AGX_PRIMITIVE CLASS FUNCTIONS ... 57
TABLE 30: CONTENT OF AGX_SCENE CLASS .. 57
TABLE 31: AGX_SCENE CLASS FUNCTIONS .. 57
TABLE 32: CONTENT OF AGX_SIMULATION CLASS .. 58
TABLE 33: AGX_SIMULATION CLASS FUNCTIONS .. 58
TABLE 34: MAIN CONTENT OF THE UNITY_VISUALIZATION CLASSES ... 59
TABLE 35: MAIN CONTENT OF THE DYNAMICS CLASS .. 61
TABLE 36: MAIN CONTENT OF THE OPTIMIZATION CLASS ... 62
TABLE 37: FRAMEWORK IMPLEMENTATION IN A NEW PROJECT ... 75

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 5 of 83

NTNU Ålesund Master’s degree thesis

v. Document history

Table 1: Document history

Rev. Date Author Description

0.1 16.04.2018 TS Document created

Project sub-documents assembled

0.2 04.05.2018 TS Methodology reviewed

Results part 1 finished

0.3 03.06.2018 TS Results part 2 finished

Discussion and conclusion finished

1.0 10.06.2018 TS Published

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 6 of 83

NTNU Ålesund Master’s degree thesis

vi. Abbreviations and explanations

.Net Software framework developed by Microsoft

.png Short for Portable Network Graphics, a graphics file format.

AgX Algoryx

CBD Component-Based Development

CBSE Component-Based Software Engineering

dll Dynamic-link library (.dll file extension)

Enum Enumerated type, numbers (constants) represented by names (values)

EQ Equation

exe Executable file (.exe file extension)

GA Genetic Algorithm

Gait Pattern of movement of limbs of animals

JSON JavaScript Object Notation

MRSim Modular Robot Simulator

NTNU Norwegian University of Science and Technology

Porting Translating code from one language to another

PSO Particle Swarm Optimization

SA Simulated Annealing

UI User Interface

UP Unified Process

XML eXtensible Markup Language

XPath XML Path Language

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 7 of 83

NTNU Ålesund Master’s degree thesis

1. Introduction

1.1. Introduction and motivation

The field of modular robotics has been in development since the late eighties, starting

with the creation of CEBOT in 1988, up until all the different research projects that are being

worked on today [1]. Hereafter, the technology has continually been improved over the years,

with the implementation of more flexibility and functionality in modular robot systems.

Modular robots present an interesting and useful field of study, especially when it comes to

executing tasks humans are unable to perform. By creating robots with different designs, the

application areas can be anything from subsea operations, to deep space exploration.

Since the concept was presented, humans have always been interested in creating robots

that can change shape as seen in the movie industry, with examples like the robots in

“Terminator” [2], and “Transformers” [3] .The portrayal of modular robotic technology in

movies may very well be the inspiration that research groups need to come up with matching

solutions in real-life applications. Solutions that were once considered science fiction, which

are now actual proven science.

1.1.1. Problem

Humans can solve plenty of problems and are flexible enough to do relatively precise

operations. However, there are certain actions humans are not able to do and must thus rely on

other means of completing tasks. For this purpose, researchers are creating a wide range of

robots (with the focus of this thesis being on modular robots). However, because of the wide

range of use-cases and implementation techniques, together with a limited amount of people

knowing how to design modular robots or how to use modelling programs to design them, many

potentially great ideas may never be explored. If there existed a program that could allow users

to go from an early concept to finished simulation in a fraction of the time with relative ease, it

should be easier for seasoned researchers in addition to students and non-programmers, to test

out their ideas and possibly extend the number of possible uses for modular robotics.

1.1.2. Motivation

NTNU currently has an ongoing research project involving different forms of modular

robots. Currently they are being manually designed from scratch or a template by the

researchers, before being created and tested in self-coded simulations. Better and faster results

should be achieved if there existed a fast prototyping platform for robot assembly, scene

construction and control algorithm testing. This way users could create and optimize robots for

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 8 of 83

NTNU Ålesund Master’s degree thesis

different scenarios, using only a fraction of the time and resources as with the approach

implemented today, no matter how much experience the user has in creating modular robots

from before. Another motivation for this project is to create a learning platform where students

may study modular robotics and create their own designs and algorithms, without the need for

specialized knowledge of programming or physics simulations.

1.1.3. Scope

There are five main fields that will be used in this project to create a simulator for

modular robots:

• Modular robot research

• Implementation of visualization capable of realizing the project goals

• A realistic physics engine for prototyping (in this case, Algoryx)

• Component-based development for a flexible and expandable system

• The iterative based project framework “Unified Process” for reliable prototyping

Figure 1: Main project components and project scope

The scope of the project is limited to the snake/caterpillar configurations of modular

robots. As the project’s estimated time-frame is around 4 months, there are limits to the amount

of time spent on different tasks, making the simulation’s core functionality the focus as it should

be modular enough for integration with other potential visual interfaces. Based on this, the

component-based model is a large part of the project, as it facilitates separation of concerns and

incremental improvements to the simulator functionality. The visualizations shall be

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 9 of 83

NTNU Ålesund Master’s degree thesis

realistically rendered by interface with the stored physics objects and provide intuitive

simulation controls. When the modular robot and its environment is created, the user should be

able to apply optimization algorithms increasing the efficiency of the created robot prototypes.

1.1.4. Objective

The objective of this project is to enable realistic and easy design of snake-based

modular robots and exploring the benefits of component-based development in the simulation

architecture of a relatively small-scale project. The tool should give the user, no matter the level

of their previous knowledge, the ability to design modular robots and implement their own ideas

and creative solutions to realize their goals. It is hoped that the simulator will motivate students

to learn about modular robotics and allow researchers to develop their robots, or future

simulation systems, more quickly and efficiently. Having a simulator with realistic physics, a

professional degree of functionality and high quality visual effects should also make the design

of modular robots more appealing. The core simulation framework should be usable in custom

projects, requiring the component-based development method to be implemented correctly.

1.1.5. Research Questions

• Is the proposed simulation platform better for developing modular robots than manually

programming simulations from scratch?

• Will the component-based software development method notably improve the

flexibility of a simulation platform and ease its further development?

• Is the AgX physics library a stable choice for a simulator platform, and how efficient is

it in providing realistic simulations while allowing for the effective use of optimization

algorithms?

• Will the benefits of Component-Based Development outweigh the disadvantages of the

implementation in an independent, small-scale project?

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 10 of 83

NTNU Ålesund Master’s degree thesis

1.2. Previous work

Following section contains literature on key topics in the project. Specifics related to

the project are in focus, with the two main themes being modular robot design and Component-

Based Software Engineering (CBSE). Sections (1.2.1.1-1.2.1.3) feature a game engine and

simulator systems, where features related to the project are highlighted.

1.2.1. Literature

1.2.1.1. Webots [4]

Webots is a simulator designed for the creation of general robots. The application allows

users to create robots with functionality ranging from simple motorized tasks, to complex

intelligent behavior. It can simulate flying, rolling, and legged robots to mention a few.

Designing robots can be done by using pre-defined components, such as sensors, wheels, and

geometries. Webots runs on the ODE physics engine, which provides fast real-time physics

simulations. As Webots is a simulator for general modelling of robots, the specifications come

from the users themselves, requiring some knowledge of programming and robot design.

Implementation of optimization algorithms is done manually, mostly via supervisor controllers

which are required for reading positions, distances, and general simulation properties (Webots

PRO functionality).

1.2.1.2. Unity [5]

The game engine Unity uses components assigned to objects to handle the game-engine

architecture, which is an intuitive extension of the object-oriented way of designing systems.

The game object is in itself a component and may have components added to it for increased

functionality, such as a rigid body for physics calculations or a mesh for visualization. The

components have no knowledge of its surroundings or other components, as they are only

required to do their intended tasks parallel to whatever else is happening in the environment.

This method for defining objects automatically ensures that the created objects are independent

and can be used in different scenarios with no need for modification of the code.

1.2.1.3. VSPARC [6]

VSPARC is a more specific simulator focused on modular robots. The simulator enables

the creation of one specific type of module, called SMORES [7], which may be rearranged to

fit pre-determined configurations. There is only one type of module, but the joints may be

configured for speed or position control, adjusting the motion and design of the robot. The user

interface allows for “drag and drop” functionality, where the user clicks on the side of an already

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 11 of 83

NTNU Ålesund Master’s degree thesis

created module to add a new one. This results in a very user-friendly and visual-based robot

construction tool. VSPARC is created in Unity, whose physics engine is designed for quick and

simple simulations and is thus well-suited for quick prototyping and proof of concepts.

1.2.1.4. MECABOT [8, 9]

The MECABOT is a modular robotics system developed by the Militar Nueva Granada

University (Colombia). It is a modular robotic system focused on chain-based architecture, with

snake and caterpillar locomotion. The robot is created with several different configurations both

physically at the research locations, and virtually in the Webots simulation system. Possible

robot configurations are many, including prototypes for space exploration, self-balancing

tables, and hexapods. The specifications for the MECABOT research topics also contain details

about robot dynamics with relation to velocity, module size and sine functions, highlighting

differences in performance based on varying variables.

1.2.1.5. Screw-less Solution for Snake-like Robot Assembly & Sensor Integration [10]

The focus of NTNU’s research project regarding modular robots is to develop snake-

inspired robots that can be reproduced via fast prototyping with easy to configure sensors. The

modules are 3D-printed and connected to each other by sliding connectors, thus screw-less.

Sensors are placed in an intermediate module featuring the same sliding connectors. Several

solutions for connections are proposed, such as wired and wireless communication, the latter

removing the need for cables between modules. The paper also describes the researchers’

selected control behavior of the modular robot as being bio-inspired and allowing for

sidewinding behavior, as seen in snakes.

1.2.1.6. Modular Robot Systems (Self-assembly) [1]

A proposed approach from K.Gilpin and D.Rus uses induction coils in the modules to

perform the assembly connections to neighboring modules. The robots are as small as 12𝑚𝑚2,

and contain no moving parts, making them less expensive and more durable. The algorithm for

self-assembly assumes one root node, to which the neighboring modules will try to attach

themselves. The newly attached modules will then calculate their X and Y location relative to

the root node, and thus completing some part of the overall structure. If this location is not

appropriate relating to the neighbor modules, which should have two neighbors itself, the

module will power off, and detach itself from the structure.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 12 of 83

NTNU Ålesund Master’s degree thesis

1.2.1.7. A Light-Weight Robot Simulator for Modular Robotics [11]

The CTU (Czech Technical University) in Prague, faculty of electrical engineering, has

created a simulator named “Sim” within an EU project called Symbrion [12]. The project

focuses on behavior and design of modular robots based on biological and evolutionary

computational approaches. CTU’s simulator is based on a component-based design enabling

the physics simulation and the visualization to be separate, allowing non-GUI machines such

as computation grids to perform the physics calculations when visualization is not required.

The simulator is used for a variety of robot types, including modular robots and mobile (wheel-

based) robots. Lastly, locomotion examples are described together with optimization examples

(PSO), which can be implemented in the simulator.

1.2.1.8. Component-based Development Process & Component Lifecycle [13]

Component-Based Software Engineering is a relatively new discipline, with no specific

processes or workflow standards. However, the main principles featured in CBSE are proven

to be advantageous in multiple use-cases and projects. Mainly, the concept of developing

systems from pre-made components is one of the main ideas in CBSE. This reduces the amount

of work from the development process, as the components should already have been developed

in other projects. Furthermore, the journal defines Component Assessment as a process with

high focus, which consists of labeling, testing and validating each component to ensure stability

and usability. The last process introduced is the act of designing each component for reuse,

which is not an integral focus in traditional software engineering.

1.2.1.9. Twenty-eight years of component-based software engineering [14]

This study is set on mapping the motivations behind CBSE, and the rewards gained

from implementing the concept. It acknowledges that it is a large field of study, and that

questions arise on whether advantages of CBSE have been clearly defined or if there are still a

multitude of research topics that have not been concluded regarding the field. To perform the

study, researchers have set up 5 research questions, which relate to the intensity of CBSE

projects, main rewards, most investigated topics, different domains in which CBSE is applied,

and the most frequent applied research methods. The book states that the main objectives

highlighted in most of the journals concerning CBSE are increased productivity together with

cost savings, with quality and reusability concerns also being large contributors. The main

feature of CBSE is to create reusable components which may be used in future projects, and

design systems to be able to implement already verified components.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 13 of 83

NTNU Ålesund Master’s degree thesis

1.2.2. Literature discussions

This section contains an analysis of the literature review. The literature found in section

(1.2.1) is analyzed and compared against each other to highlight viable and relevant knowledge

in the field, which may be of importance to this project.

1.2.2.1. Advantages of CBSE

An emerging trend in software development seems to be the implementation of

Component-Based Software Engineering, CBSE, (or Component-Based Development, CBD)

in simulator systems. Sections (1.2.1.1, 1.2.1.2 and 1.2.1.7) all reference technology modelled

with this principle in mind and is a working demonstration on how well the concept is in use.

Even though CBSE is more rewarding in large-scale projects or businesses, many of the

advantages should be viable for relatively small-scale projects too. As an example, in section

(1.2.1.7), the importance of CBSE is shown when executing the simulations on computer grids,

when visualization of the 3D scenario is not required (which may be the case in pure analytic

and optimization-based simulations). This use-case is important in modern simulations, as users

require different functionality such as 3D visualization versus graphing, to either observe the

system or optimize components.

(Conclusions): Use of Component-Based Software Engineering should not only be

viable for large projects, but should also improve stability, code readability, and effectiveness

of the proposed simulator. It is expected that the advantages of using CBSE (gained from

modifiability of project, separation of responsibility, processing efficiency and reusability of

components) will outweigh the challenges (relating to time cost, complexity and version

control). It is also believed that CBSE should increase the number of possibilities regarding

expansion of the project when it comes to inclusion of further functionality.

1.2.2.2. Development focus for various modular robots

The physical models of modular robots have different design implementations

depending on the various use-cases. The most recurring theme in most of the studies being

performed on modular robots is the advantage of designing one module which is replicated,

reducing cost of manufacturing and maintenance.

The MECABOT study’s approach (1.2.1.4) uses modules containing a structural base

(body) connected to a motion joint. This allows the modules to be configured for quadruped

configurations as well as hexapod and snake configurations. The modules are designed for

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 14 of 83

NTNU Ålesund Master’s degree thesis

reusability and sturdiness in a variety of scenarios including space exploration and maneuvering

complex terrain structures.

The modules used in the Symbrion (1.2.1.7) simulator project are more compact and

customized, being a result of the research project’s commitment to adapting bio-inspired

behavior for their modular robots. This enables more flexibility but may increase costs relative

to the MECABOT system.

NTNU Ålesund’s research project (1.2.1.5) involves easily modifiable and simply

designed snake-like modular robots, that can be developed with fast prototyping and are easy

configurable. The design of the modules is less robust, with thinner components than in the

MECABOT and Symbrion projects, but with focus on modifiability there is a good tradeoff

between cost and sturdiness. The sliding mechanisms for locking modules together is also

relatively simple in design, again lowering the cost and complexity of assembly/disassembly.

(Conclusions): Studies regarding the optimal design of robot modules is an integral

part of the proposed Modular Robot Simulator featured in this project. Being able to design

different modules with varying materials and geometry for different terrain and obstacles will

help researchers reduce the time and cost of physically testing proposed prototypes, and

possibly implement more effective control algorithms for different use-cases and robot

properties.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 15 of 83

NTNU Ålesund Master’s degree thesis

2. Background

2.1. Project framework

2.1.1. Unified Process

The Unified Process (UP) is a software development framework, which ensures iterative

development by varying the workload of each process over the course of a project. With some

of the processes being, as an example; research, implementation, and testing; the workload of

these will be varied over the course of the project. In the beginning, there will be much more

focus on research than on implementation, as research must be performed for the

implementation to be started. However, where other models may complete the research phase

before starting with the implementation (ex. Waterfall model), the iterative UP model

encourages research during the implementation phase. Thus, the individual processes have

more influence over the process currently in focus. The workload of each process varies over

the course of iterations: Inception, Elaboration, Construction and Transition. Each of these

iterations ensure an increment to the system, resulting in increased or improved functionality

from the previous iteration.

Figure 2: Iterative development model

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 16 of 83

NTNU Ålesund Master’s degree thesis

This model is selected because it is designed for software development, ensuring

progress for every iteration. UP also enforces project deadlines and milestones, making it easier

to reach the project goals, and fulfill requirements. Another benefit of this model is that

additional parts of the project may be added without much complication, since the system’s

base architecture will be implemented after the Elaboration phase. This should allow for testing

new implementations or figuring out theories for other modules alongside the implementation

of further functionality. As an example, if a new method for file transfer is proposed, this may

be implemented alongside the current work in the analysis and design process. Since the

architecture should be up and running, it will also be possible to implement the functionality,

and evaluate the effectiveness of the new method. Another way to see this is that since the basic

environment is created, additional features may be researched and tested.

In the beginning of the project, focus will be on creating requirements, while assigning

priority values to each entry. These requirements must be formulated such that they may be

tested later and show progress for the project. The requirements will be designed with input

from the project supervisor and verified/validated through the Test and Verification

specification.

Secondly, a RISK matrix and table should be created, to clearly identify which parts of

the project are susceptible to failure or unacceptable behavior.

After each iteration, it may be feasible to create short iteration reports, highlighting the

changes and goals reached for the specific iterations. This helps in giving an overview of the

completeness of the project and serves to present the project progress. However, sprint reviews

from meetings as mentioned in the agile methods (3.1.1) may be more feasible to use as iteration

reports.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 17 of 83

NTNU Ålesund Master’s degree thesis

2.1.2. Phases

Figure 3: Proposed project plan

The four phases of the project contain different processes to be worked on during the

specific iterations. Figure 3 shows how these are set up.

The inception phase, which serves as the initialization of the project, is performed before

the official start date of the project. It can also be seen as an introduction to the project. Here,

initial literature will be reviewed, and key concepts will be researched before the start of the

thesis. The project scope and schedule will be defined in this phase.

In the elaboration phases, the focus is on setting up the working environment, in this

case the basic functionality of the simulator. There will also be research on the other

components of the system, and possible extensions to the currently proposed topics. There are

two iterations of Elaboration in this project.

In the construction phases, all the theories and design proposals will be implemented in

the project, as designed in the previous phases. There is also room for research. This phase is

focused on the actual implementation, compared to elaboration which is focused on the

preliminary designs theories. There are two iterations of Construction in this project.

The last phase is the Transition phase. This is where the project is refined, bugs are

fixed, and the documentations are finished. This phase serves to prepare the project for analysis,

review of results, and verification/validation. Thus, this phase’s main workload lies on the

report and evaluation aspect of the project.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 18 of 83

NTNU Ålesund Master’s degree thesis

2.1.3. Risk

UP has a big focus on the architecture of a system. One of the core tasks to be completed

in the elaboration phase is an up-and-running base architecture for the program or system to be

designed, so that requirements and the architecture may be tested and validated. Many projects

using the UP are also heavily Risk-focused, serving to address the most critical risks early in

the project. Thus, when the architecture is up, the preliminary RISK analysis may be finalized.

As shown in Table 2, a RISK matrix considers the probability of an impact together with the

impact effect. If something has a low probability, but a high impact, it will still have a medium

risk value, as the project most likely cannot afford to ignore the element simply because it has

a low probability for impact. Each risk entry will have an impact and probability value. The

preliminary risk matrix is shown in Appendix A.

Im
p
ac

t

High Medium High High

Medium Low Medium High

Low low Low Medium

Low Medium High

 Probability of impact

Table 2: Risk matrix

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 19 of 83

NTNU Ålesund Master’s degree thesis

2.2. Modular robotics

2.2.1. Design

Modular robots are composed of several parts, moving in a specific manner depending

on the current scenario to fulfill their goals. There are many ways of designing these robots, but

as this project is focused on the chain architecture, the design of these will be the focus. Chain

based modular robots form single or multi branched links, giving rise to multiple different

configurations when creating the modular robot. They are mainly created with certain problem

scenarios in mind and are thus modelled for these specific tasks.

Configurations:

Figure 4: Modular robot; pitch, yaw, and pitch-yaw configurations

Using the chain architecture, there are two main axes in which rotational motion is

performed: pitch and yaw. The robots may be connected in any manner that is suitable for the

user, but the three standard configurations are: Pitch, Yaw, and Pitch-Yaw-configuration.

Configurations outside of these three proposals do exist, with certain systems allowing for

adjustment of module axis during movement. The modules are connected as required depending

on the various use-cases of the robots, with configurations often sporting quadruplets or

hexapods, most notably for use in space-based operations or traversal of complex terrain [9].

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 20 of 83

NTNU Ålesund Master’s degree thesis

2.2.2. Dynamics

The motion of modular robots is mainly inspired from nature, with chain-based robots

often modelled after snakes and caterpillars. The movement is often modelled as a sinusoidal

function, with the rotation of each joint modelled as a function of time. An example of

programming the movement for a modular robot is shown from the research paper provided by

Dr. Guoyuan Li, from NTNU Ålesund [10], with a pitch-yaw configuration with 5 modules as

shown in EQ (1) and EQ (2):

𝜃𝑝(𝑖, 𝑡) = 𝐴𝑝 ∙ sin (𝜔𝑡 +

(𝑖 − 1)𝜙

2
) , 𝑖 ∈ {1,3,5}

(1)

 𝜃𝑦(𝑖, 𝑡) = 𝐴𝑦 ∙ sin (𝜔𝑡 +
(𝑖−2)𝜙

2
+ 𝜑𝑝𝑦), 𝑖 ∈ {2,4}, (2)

where 𝜃 is the reference angle for joint number “𝑖”, A is the amplitude, 𝜔 is the angular

frequency, 𝜙 is the phase difference for the selected configuration, and 𝜑 is the phase difference

between the configuration connections. As these equations describe motion for two separate

axes, the patterns of motion will be different depending on the configurations. One motion

(turn) consists of forcing an offset angle on the Yaw-modules and only dynamically controlling

the Pitch modules, allowing the robot to perform a right or left turn, depending on the direction

of the offset. There is no limit for how the dynamics of modular robots may be implemented,

and the example provided is just one instance. For this project, it is important to select a method

that is easily replaceable or modifiable as the user should be able to implement custom scripting.

This model for robot dynamics allows for a specific set of parameters, making it an interesting

potential method for movement control.

The four main motion behaviors for chain-based robots are the following:

• Linear progression

• Rolling

• Sidewinding

• Turning

These models will be the focus for the robot dynamics and will be used to create the

basis of a modifiable script for movement generation.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 21 of 83

NTNU Ålesund Master’s degree thesis

2.2.3. Optimization algorithms viable for modular robotics

The implementation of optimization algorithms is crucial for giving developers the tools

they need to model modular robots. There are several different approaches to optimization, thus

the Modular Robot Simulator should accommodate for implementation of the most common

ones.

2.2.3.1. Genetic algorithm

Utilizing genetic algorithms for optimization of parameters is not something new, and

has been around since 1950, when Alan Turing proposed a machine that could simulate the

properties of evolution [15]. Since then, plenty of algorithms have been designed for different

use cases, including for modular robots. To implement a genetic algorithm, one must first define

a set of variables that may be modified for the selected system to better perform certain tasks.

Examples of these variables in a modular robot system may be module weight and size,

materials and joint lengths. However, variables may also be connected to the dynamics of the

system, controlling the gait of the robot.

The variables for the genetic algorithm are often stored in an array or a list, in a specific

order. These arrays/lists are referred to as chromosomes.

Population Chromosomes

Entity 1 𝑎1 𝑏1 𝑐1 𝑑1 𝑒1 𝑓1

Entity 2 𝑎2 𝑏2 𝑐2 𝑑2 𝑒2 𝑓2

Entity 3 𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 𝑓3

Entity n 𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛 𝑒𝑛 𝑓𝑛
Table 3: Example of chromosomes in a GA system

A GA has 4 main functions: Fitness function, Selection operator, crossover operator and

mutation operator. More operations may be implemented, but these are regarded as part of the

standard GA algorithm.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 22 of 83

NTNU Ålesund Master’s degree thesis

Fitness function

Figure 5: Example fitness function

The fitness function defines the goal of the algorithm, and how well an entity has

performed for each iteration. It is important to select a fitness function with the right variables,

as this directly influences the time it takes to find the optimum solution, and how good this

solution is. A good output for fitness can be some weights of speed, distance and energy used

to get to the target. Having these as a fitness function with equal weights will in theory optimize

these three parameters primarily.

Selection Operator

Figure 6: The mutation and selection process in a GA

The selection operator chooses which of the entities that will “survive” to create

offspring, and thus pass their genes on. Often, the best solutions from the fitness function are

selected, and the worst performing entities are killed off. Only the best solutions go on to breed,

and the algorithm produces on average better results. Another method is to use probability to

select chromosomes all over the spectrum, with a higher probability for entities with higher

fitness to be selected. There are several ways to select entities, and specific solutions may be

tailored to different applications.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 23 of 83

NTNU Ålesund Master’s degree thesis

Crossover operator

Figure 7: "Cut and splice" crossover operator

The crossover operator takes the chromosomes from the selection operator as input and

produces children chromosomes as outputs. The function usually creates as many children as

the amount of entities killed in the selection process, unless the mutation operator creates

children on its own instead of modifying existing chromosomes. There are several different

methods for crossover, including “cut and splice” and “uniform” crossover. “cut and splice”

cuts off a part of two chromosomes and creates two children with one part of each parent

chromosome each. The “uniform” crossover method assigns chromosomes to children

randomly from each of the parents.

Mutation operator

Figure 8: Examples of mutation operators

source: https://www.researchgate.net/272093243

The mutation operator applies changes to the chromosome, to prevent the formation of

local minimums in the algorithm. By accepting completely new values to be added to the

chromosomes, it is possible to find new unexplored combinations that would never have been

found with just a crossover function. There are several ways to apply mutation, as seen in Figure

8, with the insertion mutation being the approach most similar to nature.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 24 of 83

NTNU Ålesund Master’s degree thesis

2.2.3.2. Simulated Annealing

An alternate approach to optimization for modular robots is the Simulated Annealing

(SA) algorithm. The principle is based on annealing in metallurgy, where a metal is heated and

slowly cooled to reduce defects in the material. In simulated annealing, the probability of

accepting worse solutions as a function of the temperature “T” is compared to the cooling

function in metallurgy annealing and is crucial to explore a wide area of possible solutions,

reducing the risk of being stuck in a local optimum.

Figure 9: Simulated Annealing pathfinding example [from another project]

The SA algorithm starts with an initial solution, which can either be a list of nodes to

be traversed or a list of variables to be modified, among others. The temperature “T” also starts

with a certain value, and is decreased based on a custom function, which is often based on time.

EQ (1.2.4) shows an example of a probability function:

𝑃(𝑆, 𝑇) = 𝑒

−(𝑆1−𝑆2)
𝑇

 > 𝑅, (1.2.4)

where S contains an evaluation of the previous and the suggested solution, T is the

temperature and R is a random number between 0 and 1. As the temperature decreases, the

probability function will consider less and less values that go uphill, and mostly favor solutions

that go downhill, making the start of the algorithm search for global solutions, while finding

local optimums nearing the end. When the temperature has reached 0, the algorithm finishes

while returning the final solution from the probability function.

In this project, SA may be used for finding the optimal robot parameters much like in

the GA. By initializing the robot with a set of variables, and specifying which parameters that

should not be changed, it is possible to perform annealing on the remaining variables, running

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 25 of 83

NTNU Ålesund Master’s degree thesis

a simulation for each step, finding optimal solutions. It would also be interesting to research the

algorithm’s ability to modify the robot dynamic behavior. Lastly, it may be possible to create a

pathfinding algorithm for the robot with the use of SA. This requires a fully observable

overhead view of the environment.

2.3. Component-Based Development

CBD is the top-level design of a system, while CBSE is the Software Engineering

aspect. This chapter contains both.

2.3.1. Introduction to CBSE

Component-Based Software Engineering involves creating components focused on

reusability with possibility for implementing them again in other systems with little to no

modification required. These components exist in the form of pre-compiled libraries or sections

of code. CBSE is closely tied to modular programming and both provide similar functionality,

with the main exception being that modules require no specific interfaces and may be viewed

as additions, rather than features. Specific characterizations of the two terms vary based on

developers’ definitions. In this project the mentioned distinctions will be referred to as the

standard.

As described in [16]: “A software component can be defined as an executable unit of

code that provides a set of services through specified interfaces”. The book describes the main

goals of implementing CBSE as:

Cost Reduction:

Cost reduction is a top motivation for any project be it business or research based [14].

The implementation of CBSE in the correct way ensures development, testing, validation, and

verification time is shortened by re-using the already tested components which have been

through the necessary processes in previous projects.

Ease of assembly:

Segmentation of functionality facilitates the assembly process by assigning specific

features to individual components. Correct use of the CBSE process ensures all components

have a simple interface to the system, facilitating intuitive and quick implementations.

Reusability:

Reusability applies to both the programming level; re-use of functions and class

frameworks, and the design level; re-use of architecture and design concepts. A popular tool

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 26 of 83

NTNU Ålesund Master’s degree thesis

for modelling component-based systems is UML, which allows for representations of the

system with class and flow diagrams.

Customization/flexibility:

When components are made available for the developers, the functionality of the system

depends on the different assembly of components. If new requirements are discovered, modules

may be replaced according to the developers’ needs.

Maintainability:

By designing with components, systems become divided into sections, which enables

troubleshooting specific parts of the code, rather than following the software flow. Bugs stay

local, rather than system-wide issues. Deprecated modules may be replaced instantly when

necessary.

Components are expected to offer certain services in a system. This creates different

functionality for the system based on the assembly of components rather than changes or

additions to individual code segments. By supplying independent component functionality, they

can be ported to other projects with ease, and likewise receive new or modified components to

extend their own functionality. The functionality of a component should be the same, whichever

system it is deployed to.

2.3.2. Business use-case

Larger businesses often receive the most advantages of CBD, as they have bigger

projects which may require more repetitive implementation than in smaller projects and they

may already have, or plan to use components in several systems. If a company designs with

modules/components, the modules may be re-used in other projects, shortening development

time and cost. The cost-reduction goal is likely the most important factor for a company when

deciding frameworks or development methods. However, it is a well-known fact that most

software developers do not trust in code created by others [16]. This is one of the main

challenges facing the CBD methods, as it reduces the probability for a component to be re-used.

Benefits of CBD mainly arise after extensive collections of components have been

created, thus the great potential for large businesses. However, the benefits regarding ease of

assembly, reusability, and maintainability are expected to be valid for projects, regardless of

size. These three goals will be the focus in evaluating CBD in this small-scale project, and

research will be conducted accordingly.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 27 of 83

NTNU Ålesund Master’s degree thesis

2.3.3. Component-based optimization

The customization and flexibility featured in the CBD process enables components to

be removed if obsolete. A scenario where this is required is during the use of optimization

algorithms, for optimizing movement or design performance. Since visualizing scenarios takes

a lot of processing power, a more favorable solution is to cut out the visualization altogether,

and only perform calculations in a closed system. Such a system is described in [11], where

simulations are performed in a computational grid. Since optimization algorithms rarely need

user interaction after initialization, the only visualization that will be needed is for showing the

finished result after optimization has been performed. Still using CBD principles, the

visualization module may be re-activated upon program completion, or shown in another setting

such as a professional rendering software, for presentation- or advertisement-based uses.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 28 of 83

NTNU Ålesund Master’s degree thesis

3. Methodology

As described in the introduction (section 1.1), the focus of this research is to enable

realistic and easy design of snake-based modular robots, in addition to studying the component-

based development methods in relation to the simulator architecture and small-scale projects in

general. Several methods have been used to study the proposed research problems, while at the

same time answering or discussing the research questions provided in Section (1.1.5). The

methods are as follows:

Section 3.1 contains methods for the development of the simulator, such as the project

framework and work schedules, in addition to research performed relating to key aspects of the

project such as the modular robot domain, and software methodology.

Section 3.2 describes the verification and validation part of the project which involves

the project requirements, tests and verification specification of the system and core framework,

and validation of the complete modular robot simulator.

Section 3.3 lists the tools, platforms and libraries used, including the hardware used for

development and testing, software components and the development environment/libraries.

3.1. Development

This section covers the methods for developing the Modular Robot Simulator including

research, the unified process, component-based software engineering and general research

strategies.

3.1.1. Project methods

The project development method, Unified Process, has been used in tandem with an

agile development method to ensure the project going according to plan. Unified process has

been selected for the system development and prototyping, and the agile method for status

updates, input from supervisors and short-term goals.

The agile method consisted of sprints every two weeks, with sprint reviews and

retrospective meetings with supervisors after each sprint to keep everybody up to date and

evaluate the quality of supervision. These sprints complimented the iterations in the UP,

allowing for feedback more often than just after iterations, and potential modifications to be

performed in good time before deadlines. In the elaboration phase, the increased feedback aided

in the planning of all the project phases and refining the required features of the simulator. In

the construction phases it aided with increased feedback and troubleshooting, by letting

supervisors be regularly updated on the progress and developed features of the system.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 29 of 83

NTNU Ålesund Master’s degree thesis

3.1.1.1. Unified Process

A roadmap has been created to show the design phases of the project, as shown in Figure

10. Even though selective content is the focus for a specified phase, the other parts of the system

are worked on simultaneously, as defined in the UP (2.1.1).

Figure 10: Project development plan

In the Elaboration phases, the focus has been the requirements, setup of the

environment, file system and relevant documents. Also, as is a standard in the UP, a prototype

architecture was finished by the end of the Elaboration 2 phase.

In the first construction phase, the focus was on the functional simulator framework,

including all the main features the simulator has. In the research and management field, theories

about object-oriented modelling were the first topics, with dynamics research the second, to

prepare for the implementation of the robot dynamics. In the second construction phase, the

focus was on the scene designer and further improvement of the work from phase 1, and in the

third construction phase, the optimization algorithms were the focus, along with research

relating to the topic.

The transition phase focused on finishing the main project components and ensured a

stable system, together with the documentation of findings and finalizing the technical

specifications.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 30 of 83

NTNU Ålesund Master’s degree thesis

3.1.2. Research and planning

Research was performed with regards to software frameworks to provide the most

robust and flexible solution for the simulator system. A comparison study on traditional vs.

Component-Based Development [17] highlights the advantages and disadvantages of the two

approaches, with the segments comparing the easy to implement- (traditional) versus easy to

re-use- (component-based) systems being the most relevant for this project. Research into other

modular robot simulators, as in section (1.2.1.8), also showed motivating advantages of CBD.

There are multiple ways of designing simulators and programs in general but using a

straight-forward development method did not seem like the correct way to approach this

problem when thinking long-term solutions. Thus, the focus shifted towards a component-based

engineering approach, which would not only enable easy modification of features but also

potentially improve reusability of components, improve efficiency of operations such as

optimization algorithms, and enable extraction of key-parts of the software to be used in other

projects.

Use of the CBD method in turn led to the separation of concerns in the core-architecture,

resulting in the Algoryx Interface class, and the Simulation Core class. Rough sketches of the

class structure were designed, and later revised into the class diagrams shown in section (4.1.3).

Towards the end of the second elaboration phase, technical documents were created as

documentation and concept plans of the simulator.

Throughout the entire project, the focus has been on finding new methods and

expansions to the project, to ensure the quality of the finished work. Thus, various research

phases have been included whenever a new possibility for improvement has been discovered.

This includes both research that has been implemented and conceptual research that has not

been included in the final prototypes but might be interesting for future work. Information has

been gathered from literature on the current state of the art regarding technologies and features

implemented in the final system, but also from community-based forums, with questions related

to simulator development and software implementations.

3.1.3. Modular robotics

Research regarding modular robots has been performed by studying relevant and new

literature, as described in (1.2.1.4-1.2.1.7), regarding the performance, use-cases, and dynamics

of these. The main inspiration for the modelling has come from the NTNU research project;

both from simulation code, simulation visualizations and physical 3D-printed models of the

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 31 of 83

NTNU Ålesund Master’s degree thesis

robot modules. The dynamics research comes mainly from biologic research on snakes and

their movement patterns, together with analysis and redesign of the NTNU project’s dynamics

code. Relating to the scene and terrain, most research comes from exploring the possibilities of

simulations and image-based heightmaps. Lastly, a lot of research has been performed on Unity

and Microsoft’s libraries to create custom class structures for variable types, and functions for

features not covered by the Algoryx library, like distance measuring in the scene and image-

loading for terrain.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 32 of 83

NTNU Ålesund Master’s degree thesis

3.2. Verification and validation

3.2.1. Simulator Specifications

3.2.1.1. Requirements

There must be thorough requirements describing the necessary functionality of the

simulator before creating the test specifications. The requirements have been based on the needs

of the professors working in the current research group at NTNU and the capabilities of the

group’s existing modular robot simulations, together with requirements derived from research

and functionality issues. When the requirement specification was finished, the test specification

was created to enable actual testing of the components and ensuring the requirements were met.

When testing the system, text fields in the test-specification were filled in with the results of

the tests, and the fully filled-out document became the Test and Verification specification.

As mentioned, requirements came from both the NTNU research group and also from

the general functionality which is required of simulators. Some requirements were also defined

from analyzing the manually-created modular robot simulations received from the research

group.

The requirements have been divided into two main topics based on different aspects of

the requirements; Simulator requirements, and CBD related requirements. Under these topics,

there are sub-topics with requirements regarding specific parts of the system/sections. To rank

the requirements, a three-letter system has been implemented, as shown in Table 4:

A The requirement shall be met to ensure a stable component

B The requirement should be met to ensure an efficient component

C The requirement is optional or flagged as further work
Table 4: Requirement importance

The actual requirements consist of table entries, as shown in Table 5. Individual

requirements reside within the sub-topics, and requirements within these are often tested

together in the test and verification specification.

Nr: Requirement Category Originator Verified?

REQ-

1.1.1T

The user shall be able

to save scenario

configurations

A NTNU Verified

T-1.1.1

REQ-

1.1.2T

The user shall be able

to load scenario

configurations

A NTNU Verified

T-1.1.1

REQ-

1.1.3T

The user should be

able to load a scenario

B TS Not verified

T-1.1.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 33 of 83

NTNU Ålesund Master’s degree thesis

stopped mid-

execution.

REQ-

1.1.4R

The saved robot

values should be

represented in a

format facilitating

potential prototyping

B TS Partly Verified

R-1.1.1

REQ-

1.1.5R

All aspects of the

simulation shall be

transferrable in one

single XML file

A TS Partly verified

R-1.1.1

Table 5: Requirement example

3.2.1.2. Test and Verification

The test specification is the document describing the various tests which are performed

on the simulator when the final prototype scheduled for the project is complete. The main goal

of the test and verification specification has been to ensure the system meets the requirements.

To verify the requirements, the test specification has been filled out with the results from the

test-procedures. Thus, the name “Test and Verification Specification”. Each test will be based

on at least one requirement.

There are three different categories of tests, as shown in Table 6:

T Test verification

R Review verification

U Use-case analysis verification
Table 6: Verification criteria

T-1.1.1 REQ-1.1.1T REQ-1.1.2T

Pass criteria Configurations are saved to file, then loaded in a new simulation.

Method 5 different configurations are created and saved.

The program is shut down, and configurations are loaded to the

simulator. Repeat 5 times with the different configurations.

Analyze the ease-of-use.

Result Verified

Comment Performed in build application.

Discussion A file browser instead of typing file name directly as in this prototype

scene designer would be more user-friendly.

Table 7: Test specification example, fully verified

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 34 of 83

NTNU Ålesund Master’s degree thesis

3.2.1.3. System validation

A comparison study has been performed to validate the requirements and test

verifications, where the focus points of the simulator are compared with the current technology

in the field. In this case, it was the current robot simulations created by NTNU Ålesund’s

research group on modular robots. A test and verification specification has been constructed for

the study so that advantages and disadvantages could be evaluated against each other,

comparing both overall results and individual features within the simulator. These studies are

marked with the letter “U” in the Test and Verification Specification.

3.2.2. Framework and simulator verification

There is also a test case for some of the components in the simulation framework.

Specifically, the Core Framework components as these are the central components in the

project. Here, the focus is on the component-based development, verifying if there are any

benefits of implementing this method while checking the difficulty of creating new custom

projects with the developed framework.

The component-based focus in this project has led to some additional possibilities

regarding testing, outside of the expected features of a simulator. Most notably, increased

extendibility and modifiability is expected to emerge from the design process. As a result, the

core framework of the simulator application is extracted in the form of “dll” files and used as a

library for creating a new simulator project with other visualization tools or scene designers.

Thus, the test scenario involves creating a custom project with the simulator framework and

checking the feasibility regarding the development of new projects with it.

Case-studies have also been performed to verify the functionality of the simulator and

the framework. These demonstrate scenario creation, robot dynamics and new simulator

creation.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 35 of 83

NTNU Ålesund Master’s degree thesis

3.3. Tools, platforms, libraries

3.3.1. Hardware

The software has been developed mainly on two separate computers with different

specifications. This has allowed for speedy development on the high-end computer with more

powerful hardware whilst testing the overall usability with a the relatively lower-end computer.

This enabled quick troubleshooting of parts of the system which were bottlenecking the

simulator, since the low-end system was used regularly throughout the entire project for

development. Code sections that were not well enough optimized for the lower-end system have

been optimized where possible. It is expected that users of the simulator will not use hardware

of lower grade than what the simulator has been tested with, thus validation and verification

performed on the low-end system should be considered valid. However, lower memory might

have been more suitable for the low-end system. Table 8 shows the test systems employed in

this project.

System Desktop (High-end) Laptop (Low-end)

CPU AMD FX-8350 Intel i7-4510U @ 2.0GHz

Cores 8 2(4)

GPU Nvidia GTX 970 4GB Nvidia GeForce 840M 2GB

Memory 8GB 8GB
Table 8: Test computers

3.3.2. Software components

Several software components needed for the project functionality were not included in

the Unity and AgX collection of libraries and had to be implemented manually:

ObjImport

The “ObjImport” class was used to import the “.obj” files containing the meshes of the

robot frames. Unity has no functionality for importing these from scripts and having non-

modifiable meshes would severely limit the functionality of the simulator.

System.drawing

Separation of concerns is an important part of this project, to the extent that the core

framework should be portable to external libraries, for use in multiple systems. To reduce file

size and ensure usability over multiple platforms, the libraries utilized in these classes should

be from Microsoft’s collections. However, some of the libraries are not automatically included

in the standard “system” library and must be imported manually in the form of dlls. This was

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 36 of 83

NTNU Ålesund Master’s degree thesis

the case of the “system.drawing” class which was needed in order to read pixel values from

the heightmap image generating the terrain in the scenario.

Heightmap values

There are no officially available libraries that convert image files into heightmaps. Thus,

a custom function had to be created to fulfill this requirement. An example solution was found

on Unity’s community page [18], and modified to suit the needs of the terrain component. The

original code created Unity meshes from an image by assigning to the mesh components

(triangles, uvs and vertices), while for this project it was modified to store these in the scene

class object, using the “system.drawing” class for bitmap storage, and ensuring the correct size

of the terrain.

Additional build requirements

When building the .dll files representing the individual components it is important to

build with .NET version 3.5.

Also, since “System.drawing” is a custom imported library, Unity does not recognize

the dependencies when building the application (.exe project). Thus, the “System.dll” file found

in the Unity install location (Unity\Editor\Data\Mono\lib\mono\2.0) must replace the file from

the build folder: (\Managed\System.dll).

The Algoryx version used in the project is AGX-2.21.1.2. Users may have to upgrade

their version to AGX-2.21.1.1 version+ to make all the functions work.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 37 of 83

NTNU Ålesund Master’s degree thesis

3.3.3. Algoryx Dynamics

https://www.algoryx.se/products/agx-dynamics/

To create a realistic simulation of the modular robots, and for correctly optimizing the

required components, standard integrated physics found in most visualization- and game-

engines will not be satisfactory. As these are designed to perform efficiently and in real-time

primarily, they are actively programmed with reduced accuracy and functionality, in favor of

speed. For a prototyping tool, it is more important to have accurate physics simulations, than

real-time visualization. Thus, the need for a custom physics engine, like Algoryx Dynamics

(AgX).

AgX is a highly realistic physics engine used for professional simulations. It is world

leading when it comes to wire simulations and features much higher accuracy for computations

than other conventional and open-source physics engines. The corresponding library consists

of hundreds of C++ classes with intuitive and portable code, allowing for the use of virtually

any programming language, with the use of correct references to the standard C++ code. To

implement a custom physics engine into an already existing visualization platform, it is simply

a matter of importing the required runtime libraries and launching the program with path

variables referencing to the physics engine’s file locations. When the programs are set up,

simulations can be created as usual except for the different library structure of the custom

physics engine, and the linking of visual objects to the corresponding physical objects. Also,

where the integrated physics colliders often allow for behind-the-scenes updating of visuals,

this must be done manually with a custom physics engine.

Figure 11: Algoryx simulation of a modular snake-like robot

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 38 of 83

NTNU Ålesund Master’s degree thesis

3.3.4. Unity

https://unity3d.com/unity

AgX contains a simple visualization tool for outputting graphics of a simulation, with

the company logo featured as a watermark on the screen. However, the graphics engine is

limited when it comes to implementing user interfaces and modification, together with the

relatively low visual quality of scenes. Since this project has a strong focus on user-friendly

interaction, together with a high level of portability and modular design, it will be advantageous

to use a game-engine such as Unity to visualize the simulation. Other solutions have been

considered, such as the Java-based JMonkey-Engine. However, due to the lower visual quality

and lower maintenance standards, these have been rejected.

Unity is one of the leading platforms for game development, due to its ease-of-use,

combined with excellent visual quality. The software is free to use (assuming little to no income

is generated from projects), and implementations are well documented, thanks to the large

number of developers on the platform. The programming can be performed in JavaScript or C#,

and the latter will be used for this project. Support for NET 3.5 gives access to most of the

functionality that C# has to offer, which will be a great addition to AgX physics.

Both AgX and Unity’s architecture is designed in such a way that porting the software

to other systems should be possible, especially considering the programming language (C#).

This has made it possible to import the code and library files to other C# based programs using

Visual Studio, facilitating the ability to change to a DirectX-platform, or performing

simulations on dedicated servers with no visualization. This is all assuming the code itself is

created in a manner that allows for reusability, as was the intention with the CBD method.

Figure 12: Unity editor

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 39 of 83

NTNU Ålesund Master’s degree thesis

4. Results and findings

4.1. Design of the modular robot simulator

This section contains the design of the simulator. The first chapter details the steps to

set up the editor and application environment, the second chapter contains the results of the

component-based design process implemented in the project, the third chapter is the technical

specification of the simulator framework, and the fourth chapter details the usage of the

simulator framework and how robot/scenario creation has been implemented.

4.1.1. Setting up the software environment

1. To set up the platform/application environment, Algoryx needs to be installed on

the computer as detailed in the user-manual:

https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/installation.html

2. After the installation, the license file is pasted into the Algoryx installation folder

(Failure to do so will result in the physics engine not starting and producing errors),

followed by adding the Algoryx installation path to the system environment path

variable.

3. Next, the agxDotNet.dll file is added from the “\bin\x64” folder to the “plugins”

folder in the Unity project.

4. Visual studio 2017 must be installed on the computer, in order to run the

environment setup in the next step.

5. Lastly, a command-window script is created as shown in Figure 13, to link the

environment variables to the selected application in which Algoryx physics will be

running.

Figure 13: Setting up the environment variables on the test computer.

The environment setup script must be executed every time the simulator application or

editor application is started. An easy way of ensuring this is to start the setup_env.bat script and

reference it directly to the executable file of the program. While developing the project, the

setup is referenced to the Unity editor executable, while with a built application, the

corresponding executable file must be referenced.

https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/installation.html

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 40 of 83

NTNU Ålesund Master’s degree thesis

The next task was to find a suitable development environment for the simulator, which

would enable quick prototyping without requiring too much effort to get familiar with. Two

game-development platforms were reviewed: the java-based JMonkey Engine, and the C#

based Unity engine. The latter was chosen because of previous experience with this software.

In addition, the Unity platform contains more openly available documentation and a larger

development community. However, any development platform featuring C# as the

programming language should be able to use Core Framework and have the same results and

features as this project. “.Net 3.5” versions of libraries from Microsoft are the ones

implemented, as this is the version that Unity supports.

4.1.2. Component-based design

The main result of the component-based design is the trinity of task separation in the

simulator, which is a result of dividing the functionality of the simulator into the three distinct

components: Visualization, Simulation variables, and Physics calculations. The two latter

(referred to as the Core Framework) are the most thoroughly designed aspects, as visualizations

may be implemented later in various forms such as graphing, statistics, or 3D renderings, which

all rely on a stable simulation to be effective.

The component-based architecture is a focus in designing the simulator, as the

implementation also allows for more portability and modularity in the programming structure.

As many program modules in the system may be changed in the future, having a component-

based design ensures less programming is needed to introduce the new modules, and when it is

implemented, the module should function flawlessly with the rest of the framework. Still, the

concept of components is not limited to the individual objects.

The smallest components in this system are the classes containing information about

individual objects. The largest component is the core framework itself, as it is usable without

modification with custom developed Scene Designer applications, such as web-based solutions.

The main individual components of the simulator system referenced to in this paper are

the classes and namespaces containing key functionality of the simulator, such as the

“Simulation_Core”, “Agx_Interface”, “Dynamics” and “Optimization”. Top-level components

in the Modular Robot Simulator are shown in Figure 14.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 41 of 83

NTNU Ålesund Master’s degree thesis

Figure 14: Modular Robot Simulator components

4.1.2.1. Simulation Core

The central functionality of the simulator is located in the data container namespace,

“Simulation_Core” (4.1.3.1). This contains the classes that store all the variables required for

the physics calculations and visualization of objects in the scenario. The objects created from

these classes are in the center of the whole simulator system (core), and the objects from the

physics handling (4.1.2.2) and visualization (4.1.2.3) namespaces will request information from

these objects to perform their designated tasks. The core-objects will have the same

functionality regardless of which technologies and methods are used within the other

namespaces/system components. It is up to the Algoryx interface classes to have the correct

attributes and function return values sent to the core-objects.

Components in the Simulation Core namespace are the classes containing object

information, such as Robot, Modules, Joints, Frames, etc. these classes also contain components

of other classes, such as the “Robot” objects which hold several modules, sensor modules and

joints. The Simulation Core objects function regardless of the status of the Algoryx Interface

or visualization objects, enabling visualizations without physics calculations, and vice versa.

When the Initialization functions of the objects are called, the objects are added to physics

calculations and are updated accordingly. Visualization is performed by retrieving component

data.

Modular Robot Simulator

Scene
Designer

Main
class

Core Simulator

Visualization

•Unity

•Analytics

Robot Optimization

• Opti_Dynamics

• Opti_Design

Dynamics

Core Framework

Simulation Core Algoryx interface

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 42 of 83

NTNU Ålesund Master’s degree thesis

4.1.2.2. Algoryx Interface

The physics handling namespace (4.1.3.2) is named based on the current physics library

in use for the simulator. The name was chosen to represent the functionality of the classes,

which is to handle the creation of physics objects and conveying the necessary information into

C# based class objects. The library contains the physics objects from the Algoryx simulation,

created by methods accessed by the Simulation Core, with return methods retrieving data from

the physics objects. In the current design of this platform, the physics handling namespace is

named “AgX_Interface”. However, in future versions it may be replaced with interfaces to other

physics libraries, such as “ODE_Interface” (Open Dynamics Engine). Since the architecture is

based on the component-based design, the only code requiring modification will be the

namespace name and class names (In the Simulation Core namespace).

Although renaming the “AgX_Interface” namespace and its underlying classes to a less

library-specific name might seem intuitive, this will reduce the readability in the system, as

there will be no indication which physics library is in use. The amount of work required to

rename these fields in the core-classes when libraries are changed will be minimal and will

keep the code more readable.

The components in the library are the classes containing the required simulation objects;

Joints, Frames, Scene, Simulation, etc. Based on which physics library is in use, the Simulation

class may be static, as it only needs to be instantiated, and the objects added to the physics

calculations of the Simulation. The rest of the classes reference the objects with the required

syntax defined by the physics library. When the objects of the classes have been created, there

should be two separate objects: an object residing in the physics calculations (again defined by

the current library), and an object of the physics handling namespace “AgX_Interface”, linking

to the physics object, which will contain all the information necessary to transmit relevant data

to the Simulation Core objects.

4.1.2.3. Visualization

The visualization class (4.1.3.3) is the component which is designed using the current

development environment’s proprietary libraries, as it directly relates to the visualization

program currently in use. As such, Unity’s libraries and game object classes have been utilized

to develop visualizations for the various objects created in the Simulator Core framework. Each

object created in the Visualization, Simulation Core, and Algoryx Interface have a GUID

(Globally Unique Identifier) which is used by the visualization classes to identify which object

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 43 of 83

NTNU Ålesund Master’s degree thesis

is currently being created/updated, since the decentralized architecture does not encourage

direct object referencing, in favor of modularity.

In the “Main” class (4.1.2.6), the robot objects are updated (following a simulation step

forward), following the update of visualization objects with GUIDs corresponding to the ones

of the core objects. Usage of the GUID variable is recommended throughout all

implementations of visualization classes in further development or new projects using the

MRSim framework.

4.1.2.4. Dynamics

The “Dynamics” class (4.1.3.4) is the component which controls the movement of the

joints between each frame of a robot module. To separate the class as much as possible with

regards to the component-based approach, it has been made to control all aspects of any

movement of the robot. All robot attributes are passed to the dynamics class, such as number

of modules and the joints to rotate. The dynamics class and its functions should be called from

the main class, with the input parameters being the current robot being simulated. However,

since the class is independent and not a reference in the robot assembly, the “Dynamics” class

can be used to control the movement of several robots at the same time, if necessary. This

assumes the availability of a list of robots, which is possible to implement as further work. If

the goal of the simulator is to enable as quick and simple a simulation as possible, the

“Dynamics” class has the functionality required to be called from the “Robot” object. However,

this limits the user/developer’s different customization options regarding the movement

variables.

4.1.2.5. Optimization

The “Robot_Optimization” class (4.1.3.5) is the component enabling the user to

optimize the robot dynamic variables. As with the “Dynamics” class, the class is separated from

the rest of the framework, allowing it to execute at any point in the simulation or not even be

included at all if desired. The functions within the class have been implemented with focus on

modifiability, allowing a developer to easily change the Genetic Algorithm’s properties, or even

replace the GA with another method altogether. Optimization functions use a modified version

of the “Dynamics” class, where the corresponding class object is being modified by the

algorithm, and the genome of the GA is the dynamics parameters.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 44 of 83

NTNU Ålesund Master’s degree thesis

4.1.2.6. Main

Each project created with this framework require a centralized script or class to perform

the operations required to set up and run the simulations. In this project, control has been

realized with a “Main” class deriving from the Unity “MonoBehaviour” class. This class is the

connection point between all the components described in the previous chapters and executes

all the functions necessary for the simulation to initialize, run, and finish. A good example of

the role of the “Main” class is the update of visualization objects, based on the “Guid” values

of the corresponding “Simulation_Core” object. The reason for implementing a

“MonoBehaviour” class is that it contains specific features for executing code at program start,

and time-based repeat functions which update the simulation step and robot “Update” functions

in Unity.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 45 of 83

NTNU Ålesund Master’s degree thesis

4.1.3. Software design

The core framework has been developed to create modular robots and put these in an

environment within a physics simulation. The creation of these objects is performed separately

in a Scene Designer script and serialized into the XML file, as shown in section (4.1.4.3), which

is the only file/data that is transmitted before the startup of the simulator application. Thus, with

the XML file correctly created, the simulator shall function independently with no additional

requirements from outside of the simulation environment, except for a program initialization

call (REQ-1.1.5T).

Figure 15: Core framework software architecture

The focus when designing the simulator was effectiveness and a structured architecture.

The requirements for the system state that the program shall provide a stable physics simulation

(REQ-1.2.4T), meaning that well-planned and structured code is of the essence, along with

clearly defined system components. The Component-based design approach has facilitated a

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 46 of 83

NTNU Ålesund Master’s degree thesis

structured architecture for the core framework, as shown in Figure 15, which makes object

creation and connection with sub-components easy to implement. The full-size figure can be

studied in Appendix D.

The usage of components improves ease of use for the class if it is to be implemented

in other projects in the future and allows for separating the two namespaces into different

libraries for further distribution. The “AgX_Interface” namespace is completely independent

with no dependencies from external sources, except for the standard Microsoft C# libraries.

Thus, the dll can be extracted and used as a quick prototyping tool using Algoryx simulations

in external projects.

Classes not shown in the following chapters are found in Appendix E.

4.1.3.1. Simulation Core

The “Simulation_Core” namespace contains all information about the scene and objects.

Except for the “ContactFriction”, all classes contain at least one component in the form of

“Simulation_Core” objects, or “AgX_Interface” objects. The classes in this namespace are the

center of the simulation, by containing all the information about the scenario, and having no

other dependencies than the Algoryx wrapper namespace. Thus, any visualization may be used

in tandem with these classes, even without using the “AgX_Interface” objects, as has been done

when visualizing the creation in real-time from the Scene Designer (Section 4.1.3.6) (without

physics interactions).

4.1.3.1.1. Scenario

The “Scenario” class is the top-level class containing all information about the current

simulation scenario. With no attribute variables or functions, its sole purpose is to be a wrapper

class for the “Robot”, “Scene”, “SceneObjects” and “ContactFricton” objects in the scenario.

The object of the scenario class is the one which is serialized into the XML file, with all other

sub-components being hierarchically listed inside of the respectable class fields.

Contents of the “Scenario” class are displayed in Table 9.

Attributes Components

none robot : Robot
scene : Scene
sceneObjects : List<SceneObject>
contactFrictions : List<ContactFriction>

Functions

 none

Table 9: Contents of the Scenario class

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 47 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.1.2. Robot

The “Robot” class represents the created robot containing all the modules in the current

configuration to keep track of all the parameters required for simulation. This class is the main

way of interacting with the robot from the main/control script, with access to modules and joints

through the sub-objects in the specific object lists. The “Robot” class contains all the required

functions for adding modules and sensor modules. This class also contains the file directories

for the frame meshes, in case a developer requires these. The class contains a list of locks, which

can take any form (Hinge or Lock), and a certain number are assigned after sub-component

allocations, while they are initialized with actual “AgX_Joint” joints in the form of hinges or

locks during the initialization function of this class.

Contents of the “Robot” class are displayed in Table 10, while the main functions of the

class are described in Table 11.

Attributes Components

position : Vector3

leftFrameDir, rightFrameDir : string

modules : List<Module>

sensorModules : List<SensorModule>

locks : List<Joint>

Functions

Initialize()

Update()

Add_Module()

Add_SensorModule()

RemovePhysicsObjects()

Table 10: Contents of the Robot class

Function Description Return

Initialize Calls the initialization function for all modules and

sensor modules in the “Robot” object.

For each module, depending on any sensor module

having that module to the right or left of itself

(defined in sensor module attributes), locks together

the module and the sensor module.

Adds the completely initialized robot with all its sub-

components to the simulation via the

“AgX_Assembly” class.

void

Update Updates each “Module” object in the list of modules.

Retrieves the position of all modules and uses it to

calculate the overall position of the “Robot” object.

Updates each “SensorModule” object in the list of

sensor modules and force sensors on these.

void

Add_Module Adds the function parameter’s module to this

“Robot” object’s list of modules.

If there is an additional parameter in the function for

a “Joint” object, it is added to the list of locks in this

“Robot” object.

Gives the module an axis label based on its

orientation in the global x-axis.

void

Add_SensorModule Adds the function parameter’s sensor module to this

“Robot” object’s list of sensor modules.

void

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 48 of 83

NTNU Ålesund Master’s degree thesis

Adds the function parameter’s lock “Joint” object to

the list of locks.

If there are two “Joint” objects in the function

parameters, both are added to the list of locks.

RemovePhysicsObjects Removes all physics objects from the Algoryx

simulation, and all the “AgX_Interface” objects.

void

Table 11: Robot class functions

4.1.3.1.3. Module

The “Module” class contains the assembly of two frames and one joint object and builds

up the shape of the robot. This class is included to better show the structure of the robot, and to

modify a specific module, instead of individual frames and joints. Because of the modularity,

it is easier to add multiple modules to a robot, which in turn makes modification of the code

easier. The modules can be attached to other modules or sensor modules, by lock connection to

the module’s frames. Thus, the architectural hierarchy of the module class allows for easy

access to the sub-components.

Contents of the “Module” class are displayed in Table 12, while the main functions of

the class are described in Table 13.

Attributes Components

mod_Nr : int
position : Vector3
axis : string

frames : Frame[2]
joint : Joint

Functions

Create() Update() Initialize()
Table 12: Contents of the Module class

Function Description Return

Create Assigns the left and right “Frame” objects.

Assigns the “Joint” object which will connect the two

“Frame” objects.

Sets an initial position of the module in case position is

requested before simulation time step.

void

Update Calls the update function of all “Frame” objects in the

module.

Calls the update function of the “Joint” object in the

module.

Updates the position of the module based on the “Frame”

object positions.

void

Initialize Calls the initialization function of all “Frame” objects in

the module.

Updates the position of the module based on the “Frame”

object positions.

Specifies the “Joint” object of the module to be a hinge

and connects the two “Frame” objects.

void

Table 13: Module class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 49 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.1.4. Frame

The “Frame” class contains information about the frames of the robot, where two

separate frames and a joint represent a module. The frames are created by uploading a specific

mesh for each of the two frames in a module, together with the other attributes. The size of the

meshes can be scaled by the “scale” attribute. The vertices, uvs and triangles stored as attributes

are used by both the “AgX_Frame” class and the visualization class, maintaining the

component-based separation which makes it possible to create frames either outside of the

physics simulation, or outside of visualization environments.

Contents of the “Frame” class are displayed in Table 14, while the main functions of

the class are described in Table 15.

Attributes Components

guid : Guid
shape, materialName : string
scale, mass : double
isStatic : bool
position, rotation : Vector3

quatRotation : Quaternion
meshVertices : Vector3[]
meshUvs : Vector2[]
meshTriangles : int[]

agxFrame : AgX_Frame

Functions

Initialize()
Update()

ScaleMesh()
SetMesh()

GetQuatRot()
QuatToRot()

Table 14: Contents of the Frame class

Function Description Return

Initialize Calls the ScaleMesh function.

Calls the QuatToRot function to get the Euler angles of

the frame rotation (for checking if the frame is pitch or

yaw-configured).

Creates the “AgX_Frame” object with the attributes and

mesh properties of this class.

void

Update Updates the position and rotation of the object based on

the corresponding values of the object in the Algoryx

simulation instance.

void

ScaleMesh Multiplies the mesh vertices with the “scale” attribute of

this class to scale the mesh accordingly.

void

SetMesh Assigns the mesh attributes to this class from the function

parameters.

void

QuatToRot Updates the Euler angle representation of the sensor

module’s rotation.

Returns the Euler angle representation of the sensor

module’s rotation.

Vector3

Table 15: Frame class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 50 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.1.5. Joint

The “Joint” class contains information about the joints of the robot, both locks and

hinges. A “Joint” object can be attached between two frames, a frame, and a sensor module,

and between sensor modules and connected sensors. The “Joint” object is also able to modify

the angle between the two objects it is attached to. This class is one of the few classes that are

not visualized, as the graphic would be mostly ignored. However, interpolating between two

attached objects will give the joint position, if desired for visualizations or analytics. The

function controlling the angle of the joint is interfaced through the “Dynamics” class.

Contents of the “Joint” class are displayed in Table 16, while the main functions of the

class are described in Table 17.

Attributes Components

guid, leftFrameGuid, rightFrameGuid : Guid
type : string
lowerRangeLimit, upperRangeLimit : double
Kp, max_vel : double

agxJoint : AgX_Joint
left, right : Frame

Functions

Create_Hinge()
Create_Lock()

Create_SensorModuleLock()
Create_ForceSensorLock()
Create_DistanceSensorLock()

SetAngle()
Stabilize_Angle()
GetAngle()

Table 16: Contents of the Joint class

Function Description Return

Create_Hinge Creates the “AgX_Joint” object in this class as a

hinge.

Adds hinge to simulation.

void

Create_Lock Creates the “AgX_Joint” object in this class as a

lock.

Adds lock to simulation.

void

Create_SensorModuleLock Creates a lock between a “Frame” and a

“SensorModule” object.

Adds lock to simulation.

void

Create_ForceSensorLock Creates a lock between a “ForceSensor” and a

“SensorModule” object.

Adds lock to simulation.

void

Create_DistanceSensorLock Creates a lock between a “SensorModule” and a

“DistanceSensor” object.

Adds lock to simulation.

void

SetAngle Adjusts the joint velocity to make the joint reach

the desired angle.

Controlled by a P-value.

void

StabilizeAngle Slowly resets the angle of the joint to return to 0. void

GetAngle Retrieves he current angle of the joint. double
Table 17: Joint class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 51 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.1.6. SceneObject

The “SceneObject” class contains the information about the objects the user may place

in the simulation environment. The objects can be used for either obstacles or objects to be

interacted with, such as balls or moving blocks. They can also be used as a static flat ground

for the robot in the scene to move on.

Contents of the “SceneObject” class are displayed in Table 18, while the main functions

of the class are described in Table 19.

Attributes Components

guid : Guid
size, position, rotation : Vector3
quatRotation : Quaternion
materialName, shape : string
mass : double
isStatic : bool

agxPrimitive : AgX_Primitive

Functions

Initialize() Update()

Table 18: Contents of the SceneObject class

Function Description Return

Initialize Creates the “AgX_Primitive” object with the attributes

of this class.

void

Update Updates the position and rotation of the object based on

the corresponding values of the object in the Algoryx

simulation instance.

void

Table 19: SceneObject class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 52 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.1.7. Scene

The “Scene” class mainly contains the terrain used in the simulation. The robot will

move on this terrain, and the individual heights of the terrain are specified in a heightmap file

from which the terrain is generated using a custom function for terrain creation. The Scene class

stores vertices, triangles and uvs as attributes, which are later used both for the “AgX_Scene”

objects, and visualization classes.

Contents of the “Scene” class are displayed in Table 20, while the main functions of the

class are described in Table 21.

Attributes Components

guid : Guid
height_Image : string
materialName : string
height : double
position : Vector3

vertices : List<Vector3>
triangles : List<int>
uvs : Vector2[]

scene : AgX_Scene

Functions

Create()

CreateMesh()

LoadTerrainFromImage()

Table 20: Contents of the Scene class

Function Description Return

Create Calls the LoadTerrainFromImage function

Creates a new “AgX_Scene” object with the

attributes from the “Scene” class.

void

CreateMesh Only calls the LoadTerrainFromImage function.

This is required when only visualizing the terrain,

and not including the physics.

void

LoadTerrainFromImage Converts the height_Image string to a byte array

and turns it into a bitmap.

Bitmap color values are retrieved for every pixel to

decide height of the specific point.

All pixels are iterated through while adding the

correct vertices and triangles.

Uvs are calculated from vertices.

void

Table 21: Scene class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 53 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.2. AgX Interface

The “AgX_Interface” namespace contains all functions for interacting with the AgX

library. Objects of these classes are used to represent the corresponding AgX objects and have

no relation to or knowledge of the Simulation core. Functions in these classes make Algoryx

interfacing intuitive for other classes like the Simulation core or code created in custom

projects. Several classes contain functions for retrieving the “agx.RigidBody” objects to enable

more customization of a simulator if a developer wishes to implement this framework.

Figure 16 explains the “AgX_Interface” classes’ role and the task of handling data from

the objects in the physics engine of Algoryx.

Figure 16: Sequence of Algoryx object handling

An Algoryx object is created when the corresponding “AgX_Interface” object is

initialized. The “AgX_Interface” objects always have direct references to the Algoryx objects

in the simulation environment. Thus, after the “agx.RigidBody” is created, it is modified with

geometries, mass properties, etc. and added to the Agx simulation instance.

When the update loop of the simulator is called, the Agx simulation timestep is

increased by the delta time each the update is called. All objects in the simulation are updated,

and for the “Simulation_Core” objects to receive these values, they must call their

corresponding “Update” functions which call “AgX_Interface” functions, which retrieve the

attribute values from the “agx.RigidBody” objects.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 54 of 83

NTNU Ålesund Master’s degree thesis

Finally, when the application is closing, or a new robot is to be created, the removal

functions are called, which first remove the rigid bodies from the simulation instance, and then

ensures the “AgX_Interface” objects are also removed. After this, the “Simulation_Core”

objects are cleared.

4.1.3.2.1. AgX_Assembly

The “AgX_Assembly” class is a container for the assembly class of Algoryx, which

allows for the logical grouping of objects inside such an assembly. As such, the assembly is

used for storing all the robot parts, such as the joints, frames, sensor modules and sensors.

Contents of the “AgX_Assembly” class are displayed in Table 22, while the main

functions of the class are described in Table 23.

Attributes Components

none robotAssembly : agxSDK.Assembly

Functions

AddToAssembly()
AddToSim()
RemoveFromSim()

SetPosition()
SetRotation()

GetPosition()
GetRotation()

Table 22: Contents of the AgX_Assembly class:

Function Description Return

AddToAssembly Adds a rigid-body or a joint to the assembly. void

AddToSim Adds the assembly to the Algoryx simulation instance. void

RemoveFromSim Removes the assembly from the Algoryx simulation

instance.

void

SetPosition Modifies the global position of the assembly. void

SetRotation Modifies the global quaternion rotation of the

assembly.

void

GetPosition Retrieves the global position of the assembly. Vector3

GetRotation Retrieves the global quaternion rotation of the

assembly

Quaternion

Table 23: AgX_Assembly class functions

4.1.3.2.2. AgX_Frame

The “AgX_Frame” class contains the AgX objects that are created by mesh and

constitute one of the two frames that make up a robot module. The class is dynamic and allows

for multiple shapes and sizes of the required meshes. The center vector should remain the same

for each frame that is created, as it is the center where the joint is located.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 55 of 83

NTNU Ålesund Master’s degree thesis

Contents of the “AgX_Frame” class are displayed in Table 24, while the main functions

of the class are described in Table 25.

Attributes Components

guid : Guid
shape : string
materialName : string
size : double

agx_Object : agx.RigidBody

Functions

AgX_Frame()
Remove()

GetAgxObject()
AddToSim()

GetPosition()
GetRotation()
GetQuatRotation()

Table 24: Contents of the AgX_Frame class

Function Description Return

AgX_Frame Creates the physics version of the mesh received via

vertices, uvs, triangles and other attribute parameters.

Adds the frame to the robot assembly.

AgX_Frame

AddToAssembly Adds the frame to the robot assembly. void

Remove Removes the frame from the simulation instance. void

GetAgxObject Returns the Algoryx rigid-body object. agx.RigidBody

GetPosition Returns the position of the object in the simulation Vector3

GetRotation Returns the rotation of the object in the simulation

(radians).

agx.Vec3

GetQuatRotation Returns the rotational matrix of the object in the

simulation (Quaternion).

Quaternion

Table 25: AgX_Frame class functions

4.1.3.2.3. AgX_Joint

The “AgX_Joint” class contains AgX joint objects, and receives information from the

C# simulation core, which defines each individual joint. It will also return values to the joint

class in the simulation core regarding position, forces, and other parameters relating to the joint.

The joint is the connection between each robot module and sensor module and contain

motor controllers which controls the movement of each joint. Since both lock-joints and hinge-

joints come from the same class, agx.Constraints, the “AgX_Joint” class can contain them both.

Contents of the “AgX_Joint” class are displayed in Table 26, while the main functions

of the class are described in Table 27.

Attributes Components

guid : Guid
type : string

joint : agx.Constraint
hinge_Frame : agx.HingeFrame

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 56 of 83

NTNU Ålesund Master’s degree thesis

Functions

AgX_Joint()
AddToAssembly()
Remove()

Create_Hinge()
Create_Lock()
ForceSensorLock()
DistanceSensorLock()

GetForce()
GetAngle()
SetSpeed()

Table 26: Contents of the AgX_Joint class

Function Description Return

AgX_Joint Adds the specified GUID to the object. AgX_Joint

AddToAssembly Adds the joint to the robot assembly. void

Remove Removes the joint from the simulation instance. void

Create_Hinge Creates a hinge with the given input variables.

Assigns it to the agx.Constraint of the class.

Locks two frames together.

void

Create_Lock Creates a lock with the given input variables.

Assigns it to the agx.Constraint of the class.

Locks two frames or a frame and a primitive together.

void

ForceSensorLock Creates a lock with the given input variables

Assigns it to the agx.Constraint of the class.

Locks a force sensor and a primitive together.

void

DistanceSensorLock Creates a lock with the given input variables

Assigns it to the agx.Constraint of the class.

Locks two primitives together.

void

GetForce Returns the force exerted on the joint. double

GetAngle Returns the current angle of the joint. double

SetSpeed Sets the desired velocity of the joint. void
Table 27: AgX_Joint class functions

4.1.3.2.4. AgX_Primitive

The “AgX_Primitive” class allows for the creation of a primitive-shaped object such as

spheres and cubes, to be placed into the simulation environment, or attached to the robot

assembly. Specific function parameters determine how the object is attached (robot or scene).

These objects may be static or dynamic.

Contents of the “AgX_Primitive” class are displayed in Table 28, while the main

functions of the class are described in Table 29.

Attributes Components

guid : Guid
shape, materialName : string
size : double

agx_Object : agx.RigidBody

Functions

AgX_Primitive()
GetAgxObject()

AddToAssembly()
Remove()

GetPosition()
GetRotation()

Table 28: Contents of the AgX_Primitive class

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 57 of 83

NTNU Ålesund Master’s degree thesis

Function Description Return

AgX_Primitive Creates the Algoryx rigid-body with shape, position,

rotation, size, mass, material, static/dynamic, and part

of robot/standalone values for the input variables.

Adds the object to the simulation instance if the

AddToRobot variable is false, and adds to the robot

assembly if true

AgX_Primitive

GetAgxObject Retrieves the Algoryx object agx.RigidBody

GetPosition Retrieves the position of the object in the simulation Vector3

GetRotation Retrieves the Quaternion rotation of the object in the

simulation

Quaternion

AddToAssembly Adds the rigid-body to the current robot-assembly (if

necessary)

void

Remove Removes the rigid-body from the simulation instance. void

Table 29: AgX_Primitive class functions

4.1.3.2.5. AgX_Scene

The “AgX_Scene” class contains the terrain information for the current scene. In the

scene class, a function transforms the vertices, triangles and indices received from the “Scene”

class and creates the physical terrain for the simulation. In addition, material name and position

is adjusted by the function parameters.

There is no function for modifying the height of the terrain independently, as this is

performed during the creation of the terrain variables in the “Scene” class and requires the

whole process to be restarted.

Contents of the “AgX_Scene” class are displayed in Table 30, while the main functions

of the class are described in Table 31.

Attributes Components

guid : Guid terrain : agx.RigidBody

Functions

 AgX_Scene()
Remove()

Table 30: Content of AgX_Scene class

Function Description Return

AgX_Scene Receives several parameters for terrain creation, and

constructs an Algoryx geometry which is used as the

terrain.

The created terrain rigid-body is added to the simulation

instance.

AgX_Scene

Remove Removes the terrain’s rigid-body from the Algoryx

simulation instance.

void

Table 31: AgX_Scene class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 58 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.2.6. AgX_Simulation

“AgX_Simulation” is a static class which provides an intuitive interface to the algoryx

simulation instance. By creating custom start and stop functions, the designer of programs using

this framework have an easy tool for starting the physics environment, and safely disposing of

it when necessary. All operations regarding the Algoryx simulation instance will be performed

through this class.

Contents of the “AgX_Simulatiojn” class are displayed in Table 32, while the main

functions of the class are described in Table 33.

Attributes Components

none sim_Instance : agxSDK.Simulation

Functions

Start()
Stop()

StepForward()
RemoveSimObjects()

AddContactMaterial()

Table 32: Content of AgX_Simulation class

Function Description Return

Start Initializes the Algoryx C# environment (by invoking

the agx.agxSWIG.init() function).

Starts the simulation instance (by initializing a new

agxSDK.Simulation instance).

Sets gravity and time step values.

void

Stop Removes all objects from the simulation.

Clears the simulation instance.

Shuts down the agxSWIG instance.

void

StepForward Moves time forward in the simulation by accessing the

“stepForward” function of the simulation instance.

void

RemoveSimObjects Removes all the objects in the Algoryx simulation

instance (by calling simulation.removeAllObjects()).

void

AddContactMaterial Adds the contact friction between two input materials,

defined by restitution, friction and Youngs modulus

between the two materials.

Adds the materials and the contact material info to the

simulation instance.

void

Table 33: AgX_Simulation class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 59 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.3. Unity_Visualization

This section describes the proposed (and currently used) visualization class for

visualizing objects in the simulation core. As the visualization is a secondary concern in the

project, the documentation will not be as in depth, but rather provide an example to the

possibilities and modifiability that is included in the framework of this system. The

“Unity_Visualization” objects are in no way referenced in the “Simulation_Core” objects,

rather using the GUID system to identify components to visualize. Each class contains a certain

method of visualizing a component, allowing the visualization class to display the terrain,

frames, scene objects, sensor modules and sensors using the information stored in the

“Simulation_core” classes. Table 34 shows how the individual visualization classes are

structured, and Figure 17 shows the sequence of operations for a “Unity_Visualization” class

object.

Scene_Vis

Attributes Components

guid : Guid
mesh : UnityEngine.Mesh

terrain : UnityEngine.GameObject

Functions

Scene_Vis()

Frame_Vis/Primitive_Vis()

Attributes Components

guid : Guid gameobject : UnityEngine.GameObject

Functions

Frame_Vis()/Primitive_Vis() Update() Remove()

Table 34: Main content of the Unity_Visualization classes

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 60 of 83

NTNU Ålesund Master’s degree thesis

Figure 17: Unity_Visualization object lifecycle

A second component class for visualization (Analytics_Visualization) has been created

as a demonstration of the simulator’s visualization capabilities, which logs all essential

information about the robot; such as positions, angles of joints, and force/distance

measurements. This class is also a standalone component, which is called from the “Main” class

(preferably in an update-loop) and takes a “Robot” object as input and reads its data. This

component is not described in the thesis.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 61 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.4. Dynamics

The “Dynamics” component class is used to modify the joint angles of a “Robot” object,

producing different configurations of motion for the modular robot. There are several

parameters relating to the phase, amplitude and offset of the angles of modules, in addition to

movement variables which are used as direction controllers. These direction controllers assume

values between “-1” and “1”, allowing input keys to change the direction of motion

forward/backward, and left/right from the “Main” class. This is in addition to the option of

changing the main parameters depicted in Table 35 under “Input parameters”. The values of the

main parameters are added to their corresponding arrays which aid in calculating the angles of

each joint, with the phase difference arrays being modified based on the phase offsets, giving a

certain offset to the movement of each joint of the robot. The “Dynamics” functions should

always be updated before the simulation timestep is advanced.

 The desired angle of each joint is calculated as shown in EQ(3):

𝐴𝑛𝑔𝑙𝑒[𝑖] = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒[𝑖] ∙ sin (

2𝜋𝑡

𝑝𝑒𝑟𝑖𝑜𝑑[𝑖] + 𝑝ℎ𝑎𝑠𝑒𝐷𝑖𝑓𝑓[𝑖]
) + 𝑜𝑓𝑓𝑠𝑒𝑡[𝑖].

(3)

All “Dynamics” movement parameters are arrays (even though it is only necessary for

the phase difference) to separate pitch and yaw configurations, in addition to enabling custom

parameters for each individual joint. When overriding the class, only the “Initialize” function

needs to be modified, as this is the one preparing parameter arrays.

Attributes

angles : double[]
amplitudes : double[]
period : double[]
phaseDiff : double[]
offset : double[]

f_movementVars : double[7]
t_movementVars : double[7]
currentAction : string
nextAction : string

Functions

Initialize() Control() Forward()
All_Movement()

Input parameters

Amplitudes
pitch

Amplitudes
yaw

phaseOffset
pitch

phaseOffset
yaw

period Offset
pitch

Offset
yaw

Table 35: Main content of the Dynamics class

The “Forward” and “All_Movement” functions perform the angle calculations based on

the movement parameters, using the equation shown in EQ(3). The forward and turn movement

variables are pre-made for basic robot movement. The input variable “dyn_vars” contains the

movement parameters given by the user. The current and next “action” variables define whether

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 62 of 83

NTNU Ålesund Master’s degree thesis

a new movement pattern, such as forward or turn, has been selected. The corresponding

initialization functions will be activated accordingly.

4.1.3.5. Optimization

The “Optimization” component class uses a Genetic Algorithm to improve the

movement of a robot over time. The class uses a modified version of the “Dynamics” class to

store the variables to optimize, called “Opti_Dynamics”. The genome featured in the algorithm

is the movement parameters, as described in the “Dynamics” section (4.1.3.4). The functions

of GA operations perform uniform crossovers and random mutations to better locate both global

and local optimums. The fitness function is based on the Euclidean position of the robot. There

are also upper and lower limits for the values that are to be optimized, so the robot will not

behave in a manner that is disadvantageous though effective. Table 36 shows the main contents

of the “Optimization” class:

Attributes

started : bool
population : int
quickOpti : bool
IterTime : int
currentGeneration : int

dynamics_List : List<Opti_Dynamics>
originalGenome : double[7]
UpperLimit : double[7]
LowerLimit : double[7]
toggledForOptimization : bool[7]

Functions

Load()
Reset()
Update()

UpdatePopulation()
UniformCrossover()
Mutate()

GetRandomNumber()

Table 36: Main content of the Optimization class

The optimization may be performed both while showing the visualization of the robot,

and in a closed loop only performing the optimization within the physics engine allowing the

user to step to a certain generation of species. The user may also customize the dynamics values

that are to be optimized, reducing optimization time by excluding parameters not in use with

the toggle array. These choices must be specified by the user and are in this project selected in

the “Main” class.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 63 of 83

NTNU Ålesund Master’s degree thesis

4.1.3.6. Scene Designer

Figure 18: Scene designer interface

 The “Scene Designer” is referred to as the GUI tool and its corresponding software,

created for realizing the functionality of the simulator. The scene designer is not developed with

regards to CBD, as the increased development time would possibly be problematic and that the

designer is platform dependent (Unity visualizations). It has been designed to enable creation

of scenarios in both an advanced manner with all parameters of the robot modifiable, and with

an easy mode where the user may simply select if the next component is a pitch-, yaw-, or

sensory-module, or if it’s a scene object. The details about the assembled robot are serialized

to the XML file, following an initialization call to the “Main” class when the robot design is

finalized, making the “Main” class take over the functionality of the program, and running the

simulation. The “Scene Designer” GUI still appears on top of the simulation after it has started,

to enable pausing/stopping, data recording, optimization value changes, etc. The controls on

the bottom enable rotation and zooming of the simulation, while the toggles control the

recording of data, and hiding the designer to show more of the scene.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 64 of 83

NTNU Ålesund Master’s degree thesis

Figure 19 shows the most important functionality of the Scene Designer.

Figure 19: The Scene Designer's most important features

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 65 of 83

NTNU Ålesund Master’s degree thesis

4.1.4. Core Framework usage (Robot design)

This chapter explains how the robot and the scenario is created, the simulation steps,

and the components of a robot.

4.1.4.1. Robot assembly

The robot assembly, as shown in Figure 20, is created by several “Module” objects and

“SensorModule” objects, with the amount depending on the choices of the designer. Each

“Module” object always contains two “Frame” objects and one “Joint”. Each “SensorModule”

may contain 1 “ForceSensor” object, or up to 6 “DistanceSensor” objects. In addition, there is

a list of “Joint” objects in the robot, which are used to lock the modules and sensor modules

together, and in the sensor module, to connect the sensors. Virtually infinite combinations may

be created because of the module/component-based assembly structure.

Figure 20: Robot assembly structure

4.1.4.2. Object creation

Figure 21 shows the sequences of operations on the robot’s components in the simulator.

General functions in the architecture mostly have the same function such as “Initialize” and

“Update”, and all work in the same manner with relation to object creation and destruction.

The diagram shows the sequence in which objects are created as “Simulator_Core”

objects, following the creation of their corresponding “AgX_Interface” objects, the update loop

running, and finally the destruction of the object.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 66 of 83

NTNU Ålesund Master’s degree thesis

Figure 21: Creation and destruction of simulation objects

1.Create object

An object of a certain class is created, using a frame object as an example. The public

variables of the frame are assigned, such as the unique GUID of the frame, scale, mass, and

material. Some classes, such as the “Module” class, also have a “Create” function which

performs more complex variable assignments, such as adding the correct frames and joints to

the specific module. When all objects have been created, they can be serialized to an xml file.

2.Initialize

The “Initialize” functions create the “AgX_Interface” objects with the attributes in the

corresponding “Simulation_Core” objects. In certain classes, such as the “Robot” and

“Module” class, the initialization function calls the initialization functions for all its sub-

components. In the “Robot” class, the initialization function also adds the robot to the

simulation instance.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 67 of 83

NTNU Ålesund Master’s degree thesis

3.StepForward

The “StepForward” call goes straight to the static class “AgX_Simulation”, with no

reference in the “Simulation_Core” namespace. There is no need for an extra wrapper for this

class, as it is static and solely used in the Algoryx domain. This function increases the step of

the Algoryx simulation instance by the delta time set in a startup call.

4.Update

The “Update” function is located in the “Robot” class, and updates all the positions,

rotations, and sizes within the robot assembly, automatically. It is performed to get the

“Simulation_Core” objects up to date with their corresponding objects residing in the Algoryx

simulation instance.

5.SetAngle

Each “Joint” object has a “SetAngle” function, which takes an angle as input. The

desired angle is sent to a P-regulator, which increases or decreases the speed of the joint motor

for the error between requested and actual angle to become as close to zero as possible. This

function is called from the “Dynamics” class which governs the movement of the robot. The

function can also be called from the “Optimization” class.

6.Remove

The “RemovePhysicsObjects” class exists in the “Robot” class and removes all Algoryx

objects in the “AgX_Interface” classes. Then, all the Algoryx interface objects are set to null,

and the lists containing the sub-components of the “Robot” class are cleared.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 68 of 83

NTNU Ålesund Master’s degree thesis

4.1.4.3. XML functionality

The XML file contains the object representation of the scenario created. The

“Scene_Designer” class serializes the created scenario, while the “Main” class deserializes it to

create objects of the robots (all based on the Core Framework). Figure 22 shows the hierarchy

of the XML tags, representing the class objects of the scenario. An example configuration of

the XML file is shown in Appendix F.

Figure 22: XML file scenario class representation

4.1.4.3.1. Scenario file structure and deserialization

The XML file is deserialized into an object containing the required parameters for the

simulation. Two frames and one joint object are contained within a module object, and multiple

module (or sensory module) objects together with corresponding joints are contained within the

robot.

When the XML file is deserialized, objects in the file are created of the “Scenario” class.

This class contains one instance of a robot assembly class, an instance of the scene, a list of

contact frictions and a list of scene objects. It is deserialized into objects of all the classes within

the “Simulation Core”, such as “Robot”, “Modules”, “Frames”, “Scene”, “ContactFriction”,

“SceneObject”, etc.

When objects within the robot assembly are deserialized, they are put into their

corresponding “parent” component, such as frames and joints put together to modules.

The “Scene” object is deserialized and initialized to create the AgX object which makes

the terrain. The terrain height data is represented as a string in the XML file. This string is

assigned to the Scene object and sent to AgX for terrain creation. The visualization class will

use the same string to create the corresponding mesh.

Scenario

Robot

Module

Frame Joint

Sensor Module

Force
Sensor

Distance
sensor

Joint

Joint

Scene
Scene

Objects
Contact
Friction

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 69 of 83

NTNU Ålesund Master’s degree thesis

Contact friction is calculated between all the objects specified in the “ContactFriction”

list in the scenario object, and all scene objects from the “SceneObject” list are placed in the

simulation.

4.2. Verification and validation

Full Requirement and Test&Verification Specifications are found in Appendix B and

Appendix C.

The tests were performed mainly in the build application, and some in the editor (if code

modification was necessary). Most tests passed, with a few exceptions which ended in “failed”,

partly verified or Not Applicable:

• The B-level requirement regarding loading a scenario which has been saved mid-

execution did not pass, due to a setting making robot construction easier (read more in

T-1.1.2 comment section).

• Some tests (T-1.2.1, T-4.1.1) have been marked as partly verified because of the

Algoryx library issues.

• Some tests have been marked as Not Applicable (N/A), due to functionality which has

intentionally or due to time limits not been implemented.

The reviews were performed by going over the code to verify performance or functions.

Some reviews were also performed by analysis of component functionality. By review, there is

a higher standard for verification, so if the reviews uncover minor discrepancies between pass

criteria and actual performance, the result will at most be partly verified.

Use-cases were performed along with Dr. Guoyuan Li, at NTNU Ålesund. The MRSim

was compared to the current development methods for modular robots at NTNU, and general

usefulness for teaching and research was distinctly reviewed.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 70 of 83

NTNU Ålesund Master’s degree thesis

4.3. Case studies

4.3.1. Creating and running a scenario

This is a test of the Modular Robot Simulator, demonstrating its functionality. A robot

is created with 5 modules and 6 sensor modules which all have force sensors under them,

weighing 1 gram. All components are made from plastic. The first sensor module has a distance

sensor in the front. The mass of each module and sensor module is set to 100 grams.

The XML file created for this scenario is shown in Appendix F.

Lastly, the simulation is started, and the robot will move to push a scene object.

Everything will be logged to a file for retrieving the values of sensors and modules.

4.3.1.1. Design

Figure 23: Case study - design overview

Figure 24: Case study - Sensor module and scene object design

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 71 of 83

NTNU Ålesund Master’s degree thesis

4.3.1.2. Result

Visualization of scene

Figure 25: Robot moving forward to push the ball

Figure 25 shows the robot going from a neutral position, to moving forward to push the

scene object, in this case modelled as a ball.

Analytics log

Figure 26: Distance sensor measurements

The chart in Figure 26 shows how the robot gets closer to the ball, before bumping into

it, causing the ball to roll away from the robot. The top-values {10} indicate the maximum

distance for the distance sensor measurements. Top-values occur when no objects intersect the

distance ray. The x-values correspond to the time in seconds since the application started.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 72 of 83

NTNU Ålesund Master’s degree thesis

Figure 27: Force sensor vs y-position measurements

Figure 27 shows how the force exerted on the front sensor module correlates to the y-

position of the front module. When the y-position is the lowest, the module is touching the

ground, making the force sensor register the increased force of the sensor module pushing

down.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 73 of 83

NTNU Ålesund Master’s degree thesis

4.3.2. Dynamics test

A robot with 11 modules is created. The dynamics are set to a normal forward motion,

then a more extreme forward motion, then a wide turn, followed by a sharp turn. Additional

dynamics tests are shown in Appendix G.

Forward

Figure 28: Robot forward motion

Forward with increased amplitude

Figure 29: Robot forward motion with increased amplitude

Wide turn

Figure 30: Robot wide turn

Sharp turn

Figure 31: Robot sharp turn

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 74 of 83

NTNU Ålesund Master’s degree thesis

4.3.3. Framework case-study

The Core Framework was built into two C# library files (dll), “Simulation_Core.dll”

and “AgX_Interface.dll”. Along with the “AgxDotNet.dll”, they were put into a clear Unity

project, for creating a simple simulation of two frames and a joint, assembled to a module,

residing in a robot and placed on a scene object. The angle of the joint was set to a constant

value, with the max velocity of the joint limited to
𝜋

6
 degrees per second, to demonstrate that

the joint movement is functional. Table 37 shows how one would go about creating a simple

simulation with the framework and can be expanded to include more modules/objects, shown

in the robot function that is commented out.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Xml.Serialization;
using AgX_Interface;
using Simulation_Core;
using System;

public class startSim : MonoBehaviour {

 Robot robot = new Robot();
 SceneObject sceneobj;
 void Start()
 {
 //Start simulation:
 Agx_Simulation.Start(0.01);

 //Setting position and rotations:
 var pos = new AgX_Interface.Vector3(0, 0, 0);
 var u_quat = UnityEngine.Quaternion.Euler(0, 90, 0);
 AgX_Interface.Quaternion frame_rot = new AgX_Interface.Quaternion(u_quat.x, u_quat.y, u_quat.z, u_quat.w);

 //Create Frames:
 Frame[] frames = new Frame[2];
 for (int i = 0; i < 2; i++)
 {
 frames[i] = new Frame()
 {
 guid = Guid.NewGuid(),
 position = pos,
 scale = 10,
 quatRotation = frame_rot,
 //rotation = rot,
 mass = 10,
 isStatic = false,
 materialName = "Plastic"
 };
 }

 //download mesh obj file:
 loadmesh();

 //Set mesh of frames:
 frames[0].SetMesh(AgxHelper(leftmesh.vertices), AgxHelper(leftmesh.uv), leftmesh.triangles);
 frames[1].SetMesh(AgxHelper(rightmesh.vertices), AgxHelper(rightmesh.uv), rightmesh.triangles);

 //Create Joint:
 Simulation_Core.Joint joint = new Simulation_Core.Joint()
 {
 guid = Guid.NewGuid(),
 leftFrameGuid = frames[0].guid,
 rightFrameGuid = frames[1].guid,
 type = "Hinge",
 lowerRangeLimit = -Math.PI/2,
 upperRangeLimit = Math.PI/2,
 max_vel = Math.PI/6,
 Kp = 3
 };

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 75 of 83

NTNU Ålesund Master’s degree thesis

 //Create Module:
 var module = new Module();
 module.Create(frames[0],joint,frames[1]);

 //Add module to robot:
 robot.Add_Module(module);

 //Add second module to robot:
 //robot.Add_Module(module2,new Simulation_Core.Joint());

 //Initialize robot:
 robot.Initialize();

 //Scene object:
 sceneobj = new SceneObject()
 {
 guid = Guid.NewGuid(),
 shape = "Box",
 size = new AgX_Interface.Vector3(5,1,10),
 position = new AgX_Interface.Vector3(0,-2,0),
 quatRotation = new AgX_Interface.Quaternion(0,0,0,1),
 materialName = "Rock",
 mass = 10,
 isStatic = true
 };
 sceneobj.Initialize();

 //Load vis from mesh and robot + scene object:
 Load_Vis();

 //Start sim update loop:
 InvokeRepeating("Update_Sim", 0.01f, 0.01f);
 }

Table 37: Framework implementation in a new project

Visualization and update functions can be found in Appendix F1. The “AgxHelper”

functions convert “AgX_Interface” structures to “UnityEngine” structures.

Figure 32 shows the created simulation:

Figure 32: Custom project, scenario

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 76 of 83

NTNU Ålesund Master’s degree thesis

Figure 33 shows the movement of the module over time:

Figure 33: Custom project, module movement

The program took around 1 hour to design, with most of this time going to assigning the

correct mesh. Each frame must have a mesh assigned to them, as well as to the Unity

visualization objects. It is much easier than to begin from nothing, designing objects directly

through the physics engine of both Unity or Algoryx, in addition to visualizing them.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 77 of 83

NTNU Ålesund Master’s degree thesis

5. Discussion

A modular robot simulator has been created for the NTNU research group focusing on

modular robotics (1.2.1.5). It is based on the needs of the research group and improved by

implementing CBD aspects originally intended for large scale projects, as partly demonstrated

in previous projects (1.2.1.7), with visual inspiration from simulators like VSPARC (1.2.1.3).

Though the system is designed for NTNU’s design of robots, custom object models for the

frames may be uploaded, specifically tailored to any type of chain-based modular robot.

Adopting the research questions in (1.2.1.9) have inspired several of the tests used to

verify the impact of CBD in the project, and the concept of component assessment (1.2.1.8)

have been the cornerstone for design and further improvements to modular robot simulators in

the future.

Discussions regarding the specific tests are found in the Test and Verification

Specification found in Appendix C

5.1. CBD decisions

Separating the simulation objects, simulation physics and simulation visualization has

made the simulator more modular and portable, while at the same time enabling more effective

optimization, by not showing visuals and only updating the robot variables for each timestep of

the simulation. It is suspected to have delayed the development to some extent, but its benefits

outweigh this development issue. Among these benefits are also the ability to use this

framework in other projects, to modify individual components without disturbing the rest of the

system, and the structure of the class system being easy to read and troubleshoot (because of

the object-oriented component-based architecture).

The general impression that CBD is only viable in large-scale projects or businesses is

contrasted in this project. Of course, this largely depends on the type of project, but for a master

thesis with limited time it was expected that just creating a program would not be enough, but

to create a framework and components that could be used in further teachings and research

would be much more beneficial.

The use of CBD was one of the best decisions made for the project. It has improved the

possibility for future work with the project, facilitated aspects like bug testing during

development, and made it easy to implement new functionality. The Case study presented in

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 78 of 83

NTNU Ålesund Master’s degree thesis

section (4.3.3) also proves the implementation has been successful, and provides easy, accurate

and quick prototyping.

5.2. Stakeholder needs (NTNU)

The simulator has passed all the tests required by the research group, especially with

regards to usability and effectiveness. For teaching purposes, the simulator allows for quick

prototyping, with either simple pitch-yaw design or more specific design choices, and features

that provides an easy entrance to the world of modular robots.

In research-use, some of the simulator’s features are similar in customizability as hard-

coded solutions offer. However, since custom dynamics scripting has not yet been

implemented, optimization does not allow for multiple algorithms, and sensory placement

options are limited for ease-of-use, it is decided that the simulator has not passed with regards

to extensive research-use.

However, with the Core-Framework having more functionality without the Scene

Designer, it is highly encouraged that researchers use this while developing new modular robot

prototypes. By coding with the framework, robot creation is much faster, and provides

customizability as with a hard-coded solution. Since the Core Framework is verified* there is

no need for time-consuming development of simulation methods and robot component

assembly. The Core Framework only uses Microsoft libraries, making it compatible with all C#

development environments.

*note, the Core Framework is verified for this project. It may not be verified if the

researcher needs different functionality than the robots and scenario provide in this project.1

test is only partly verified, but only by customizability, and the functionality can be achieved by

using the Core Framework directly, not through the Scene Designer.

5.3. Issues

Many problems in the project have been related to the Algoryx physics library. Because

of the limited possibilities for troubleshooting potential errors, many bugs go unnoticed before

a large section of code has been created. Switching out Algoryx with another physics engine

could have been a solution early in the project, where all the functions in the “Simulation_Core”

would remain the same, but the “AgX_Interface” class would be replaced with similar functions

from another physics library. Since many of the errors were related to memory access, there

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 79 of 83

NTNU Ålesund Master’s degree thesis

was no way to get information about the failures before Unity force-closed. The solution was

to construct a system-flow which ensured disposal of C# objects, and a reset of the Algoryx

simulation as often as possible.

The Dynamics class should have been made more abstract, to enable custom dynamics

more easily, without having to modify the class itself. Abstraction would have been a feature

in the Core Framework too, but since the scenario data is serialized to an XML file, the classes

cannot use inheritance implementations. If possible, this would make it possible to create

modules and sensor modules as the same top-level entity, and the same with force and distance

sensors. Nonetheless, the possibility of saving data to an XML file took precedence over the

improved modularity this would result in.

Even though the “AgX_Interface”class was made with focus on a flow ensuring proper

disposal, there are still bugs in the Optimization part of the MRSim which could not be fixed

through AgX support or troubleshooting. There might be limitations in the AgX software itself,

but this is not proven.

5.4. Summary

Based on the results and discussion, the research questions can now be reviewed and

answered:

Is the proposed simulation platform better for developing modular robots than

manually programming simulations from scratch?

Yes. As validated in (U-1.1.1, U-1.1.2 and U-1.1.3), the MRSim is much faster and

easier to use than manually coding by far. The customization options are the same or higher

than what is required for teaching, while for research purposes only certain parts are lacking in

functionality.

Will the component-based software development method notably improve the

flexibility and development of a simulation platform and ease further development of

the simulation platform?

Both points of this research question are confirmed to be true. Flexibility and

modifiability is partly verified in (R-5.3.1), with the reason for it being only partly being a wish

for even more modularity from the “Main” class. Ease of further development is verified in (U-

2.1.1 and U-2.2.1), but for the time being only in the Core Framework. Optimization and

Dynamics has not yet been tested.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 80 of 83

NTNU Ålesund Master’s degree thesis

Is the AgX physics library a stable choice for a simulator platform, and how efficient is

it in providing realistic simulations while allowing for the effective use of optimization

algorithms?

Using AgX as a physics library has notably increased development time. This is

described in section (5.3). This could be different if there were easier way of obtaining error

information, or the simulator required less complex operations like position resets of the robot,

or other optimization functionality. In conclusion: AgX is great for realistic physics simulations

and hard-coded development, but when developing an application where the physics features

are used as a reusable component interacting with other components, it may be better to use

another technology.

Will the benefits of Component-Based Development outweigh the disadvantages of

the implementation in an independent, small-scale project?

Yes. (Elaborated in section (5.1).

5.5. Further work

Following elements is suggested for further work, or did not fit into the time-schedule

of the project:

• Testing and verifying the Core Framework and components in other environments than

Unity, such as Visual studio with DirectX (C#).

• Verification of the Dynamics and Optimization component

• Modularizing the AgX_Interface even further, by eliminating all object references from

the Simulation_Core and only associating the components with GUIDs. (while at the

same time keeping the ease-of-use of the framework.)

• Eliminating all bugs from the optimization component related to AgX memory issues.

• Drag and drop functionality in the designer, for creating the modular robots.

• Scene designer with more options such as a string input field or .dll upload for custom

robot dynamics.

• 3D-printing robot configurations designed in the MRSim, validating the prototyping

feasibility.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 81 of 83

NTNU Ålesund Master’s degree thesis

6. Conclusion

The Modular Robot Simulator has been created for NTNU Ålesund’s Modular Robot

research group. It is tested and verified to be used for educational purposes and makes modular

robot research, design and prototyping more accessible to potential developers/students with

little to no programming background. The GUI gives suggestions on parameters to facilitate

development, enabling quick prototyping. The scenarios can be customized on a level close to

the manually-coded simulations, with uploads of custom 3D models and self-configured terrain.

By using the Component-Based approach, the core functionality of the simulator is

contained in two linked libraries, allowing for reusability in other projects, and encouraging

custom simulators or simulations to be created by both students and modular robot researchers.

The CBD also allows for removal of components like visualization, robot dynamics or

optimization, without impacting the rest of the simulator’s functionality. New components can

be added to projects without difficulty.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 82 of 83

NTNU Ålesund Master’s degree thesis

7. References

[1] K. Gilpin and D. Rus, "Modular Robot Systems," IEEE Robotics & Automation Magazine, vol.

17, no. 3, pp. 38-55, 2010.

[2] J. J.Cameron and W.Fisher, Director, "Terminator 2: Judgment Day. [Film]. 1991.

[3] B. Mantlo and B. Budiansky, The Transformers, New York: Marvel Comics, 1984.

[4] Cyberobotics Ltd., "Webots User Guide," Cyberobotics, 2018. [Online]. Available:

https://www.cyberbotics.com/doc/guide/introduction-to-webots. [Accessed 06 03 2018].

[5] Unity Technologies, "Unity Manual," Unity Technologies, 2018. [Online]. Available:

https://docs.unity3d.com/Manual/index.html. [Accessed 06 03 2018].

[6] Autonomous Systems Lab, ModLab, "VSPARC," Cornell University, University of

Pennsylvania, , 2012. [Online]. Available: vsparc.org. [Accessed 06 03 2018].

[7] Modular Robotics Laboratory, "MODLAB UPENN," University of Pennsylvania, 2012.

[Online]. Available: http://www.modlabupenn.org/2012/10/19/smores/. [Accessed 06 03 2018].

[8] P. N. Lancheros, L. B. Sanabria and R. Castillo, "Simulation of Modular Robotic System

MECABOT in Caterpillar and Snake Configuration Using Webots Software," in Robotics and

Automation (CCRA), Bogota, Colombia, 2016.

[9] R. Castillo, Cotera Mateo and G. Vargas , "Simulation and Implementation of a Hexapod

Configuration using Modular Robotics," in de innovacion y Tendencias en Ingenieria

(CONIITI), Bogota, Colombia, 2017.

[10] G. Li, P. Verdru , W. Li and H. Zhang, "A Screw-less Solution for Snake-like Robot Assembly

and Sensor Integration," Norwegian University of Science and Technology, Aalesund, Norway,

2017.

[11] V. Vonasek, D. Fiser, K. Kosnar and L. Preucil, "A Light-Weight Robot Simulator for Modular

Robotics," in Modelling and SImulation for Autonomous Systems, Switzerland, Springer

International Publishing, 2014, pp. 206-216.

[12] P. A. Winfield, "Symbiotic Evolutionary Robot Organisms," University of Stuttgart, 14 02 2017.

[Online]. Available:

http://www.brl.ac.uk/research/researchthemes/swarmrobotics/symbrion.aspx. [Accessed 06 03

2018].

[13] I. Crnkovic, M. Chaudron and S. Larsson, "Component-based Development Process and

Component Lifecycle," in International Conference on Software Engineering Advances, Tahiti,

2006.

[14] T. Vale, I. Crnkovic, E. Santana, P. Anselmo, Y. Cerqueira and S. Rotaro, "Twenty-eight years

of component-based software engineering," Journal of Systems and Software, vol. 111, pp. 128-

148, 2016.

[15] M. Burgin and E. Eberbach, "Evolutionary Turing in the Context of Evolutionary Machines,"

Hartford ; Los Angeles.

[16] W. Hasselbring, "Component-Based Software Engineering," in Handbook of Software

Engineering and Knowledge Engineering, Oldenburg, Germany, World Scientific Publishing

Co., 2002, pp. 289-306.

[17] M. Kaushik and M. S. Dulawat, "A Comparison Between Traditional and Component Based

Software Development Process Models," in Journal of Computer and Mathematical Sciences

Vol. 3, Udaipur, India, 2012, pp. 308-319.

[18] cjdev, "Unity Answers," Unity, 21 08 2015. [Online]. Available:

https://answers.unity.com/questions/1033085/heightmap-to-mesh.html. [Accessed 02 18].

[19] W3schools, "W3schools.com," Refsnes Data, [Online]. Available:

https://www.w3schools.com/xml/xpath_intro.asp. [Accessed 20 11 2017].

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 83 of 83

NTNU Ålesund Master’s degree thesis

[20] X. Cui, X. Zang, Y. Zhu, S. Tang and J. Zhao, "CPG based locomotion control of pitch-yaw

connecting modular self-reconfigurable robots," IEEE International conference on Information

and Automation, pp. 1410-1415, 2010.

[21] Janalta, "Techopedia," Janalta Interactive, [Online]. Available:

https://www.techopedia.com/definition/25972/modular-programming. [Accessed 21 11 2017].

[22] R. Jha, "DotNetConcept," 29 11 2014. [Online]. Available: http://www.dotnet-

concept.com/Articles/2014/11/29/Understanding-Structured-Unstructured-and-Modular-

programming-approach. [Accessed 21 11 2017].

[23] S. M. Sani and Y. K. Shokooh, "Minimalism in designing user interface of commercial websites

based on Gestalt visual perception laws," in Web Research (ICWR), Tehran, 2016.

 .

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 1 of 54

NTNU Ålesund Appendix

Appendix A Preliminary RISK
Nr RISK Likelihood Impact Total Mitigation action

Contingency
plan

Mitigation
date

1 Overall program 3.80 3.60 13.68

1.1 Development risk 3.80 3.60 13.68

1.1.1 bugs 5.00 1.00 5.00

Modular
programming,
structured coding for
easy identification of
bugs.

Ensure bugs
can be easily
identified and
fixed.

E2,C1-3

1.1.2
Incompatible
technologies

4.00 3.00 12.00

Ensure Elaboration
phase is thorough,
design with
possibility of
different
implementations
later

Allot extra time
for
modification
when planning
deadlines.

E1-2

1.1.3
Wrong
technology
decision

4.00 4.00 16.00

Design with
possibility of
different
implementations
later

Step back on
project goals,
focus on a
simple but
stable solution

E2

1.1.4
Misinterpretation
of end result

2.00 5.00 10.00
Concurrent dialogue
with supervisors

Create multiple
areas of value
in the project

E1

1.1.5
Program modules
do not work
together

4.00 5.00 20.00

Modular
programming, Clearly
defined
class/functionality
structure

Hardcoding E2,C1-3

1.1.6
Missing
functionality

4.00 4.00 16.00

Create technical
documents for
overview of
functionality and
ensurance of
continued work

Ensure program
can work
without specific
parts.

E1-2,C1-3

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 2 of 54

NTNU Ålesund Appendix

2 Scene Designer 3.23 3.67 11.86

2.1 functionality 4.00 5.00 20.00

2.1.1

User cannot
create the
desired robot
configuration

4.00 5.00 20.00
Ensure enough
parameters can be
set.

Create
alternative
method for
configuration
(low-level code
input)

E2,C1-2

2.2 XML issues 3.50 4.00 14.00

2.2.1
Robot
parameters
cannot be sent

3.00 5.00 15.00
Evaluate additional
technologies of file
transfer

Create
everything in
one program

E2, C2-3

2.2.2
Robot movement
script is not
working

4.00 3.00 12.00

Ensure the method
for setting robot
dynamics is reliable,
enable different
implementation
solutions

Set one specific
movement
pattern.

E2,C2-3

2.3 load/save issues 2.00 2.00 4.00

2.3.1
Configurations
cannot be saved

1.00 2.00 2.00
Ensure file is saved
before Simulation is
started

None E2,C1-3

2.3.2
Select
configurations
cannot be loaded

3.00 2.00 6.00
Allow for saving of
different revisions of
configuration.

Only save one
file

E2,C1-3

2.4 Dynamics issues 3.67 3.33 12.22

2.4.1
Robot dynamics
are incorrect

4.00 5.00 20.00
Dialogue with
supervisor

Allot time for
research on
modulr robotics

E2,C1-2

2.4.2
Script input is too
complex

3.00 2.00 6.00 Ensure UI is intuitive

Require user to
upload a file
instead of text
input

E2,C3

2.4.3

Script
functionality
cannot be
implemented

4.00 3.00 12.00
Design UI with
possibility for other
implementations

Don't allow for
scripting

E2,C3

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 3 of 54

NTNU Ålesund Appendix

2.5
Scene creation
issues

3.00 2.50 7.50

2.5.1
Created
heightmap has
physics errors

4.00 4.00 16.00

Ensure height image
has the correct
values/dimensions,
get programming
guidance from AgX

Define other
types of
colliders, worst
case: cube
collider

E2,C1-2

2.5.2
Scene features
are hard to
correctly design

2.00 1.00 2.00

Make user choose
features from list,
feedback from test
users

Create simple
interface with
minimal
customization

E2,C2-3

2.5 Reliability 3.00 4.00 12.00

2.5.1
Scene Designer is
unstable

3.00 4.00 12.00

Modular
programming,
structured coding for
easy identification of
bugs.

Use another
program for
scene designer

E2,C1

3 Simulation 2.00 5.00 10.00

3.1 functionality 2.00 5.00 10.00

3.1.1

Program does
not contain
desired
functionality

2.00 5.00 10.00
Keep high intervals
for meetings with
superviser

Redefine
requirements

E1-2,C1-3

3.2 XML issues 3.00 5.00 15.00

3.2.1

Robot
components are
not created
correctly

3.00 5.00 15.00

Technical document
for object creations
from XML, early
conceptional models
of classes

 E1-2,C1-2

3.2.2
Robot is not
moving correctly

3.00 5.00 15.00

Ensure the method
for setting robot
dynamics is reliable,
enable different
implementation
solutions,
alternatively, set
static dynamics script

Abstract classes
for further
implementation
later

E2,C2-3

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 4 of 54

NTNU Ålesund Appendix

3.3
Algoryx and Unity
not working
together

4.00 4.67 18.67

3.3.1
Objects not
behaving
correctly

4.00 5.00 20.00

Technical document
for object creations
from XML, early
conceptional models
of classes

keep options
open for other
physics engines
and
visualization
platforms

E1-2,C1-2

3.3.2
Visualization not
matching physics

4.00 5.00 20.00
Research, thorough
and clean code

 E1-T1

3.3.3 Missing features 4.00 4.00 16.00

Regular contact with
stakeholders,
thorough and specific
requirements

Component or
modular system
for easy
implementation
of additional
options

E1-2,C1

3.4
Robot
optimization

2.00 4.00 8.00

3.4.1
Algorithm does
not improve
functionality

2.00 4.00 8.00

Research, evaluate
multiple techniques,
ensure simulation
stability

Create an open
optimization
component so
user can edit
themselves

E2,C2-3

3.5 Reliability 3.00 3.50 10.50

3.5.1
Simulation is
lagging

3.00 3.00 9.00
Optimize code,
create clean code,
consult Algoryx

switch physics
engine

C1-3

3.5.2
Physics are not
accurate

3.00 4.00 12.00
Consult Algoryx,
research
documentation

switch physics
engine

C1-3

4 Project 3.67 3.33 12.22

4.1
Project not
finished in time

4.00 3.00 12.00

Set clear
goals/milestones,
create thorough plan
in
inception/elaboration
phases

set due dates
several weeks
earlier

I1,E1-2

4.2
Missing
requirements

3.00 5.00 15.00
Meetings at the end
of each iteration

set due dates
several weeks
earlier

E1-T1

4.4
Change in
requirements

4.00 2.00 8.00
Sprint meetings every
second week

 E1-T1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 5 of 54

NTNU Ålesund Appendix

Appendix B Requirement Specification

Project:

Component-Based Simulator for Modelling the Design and Dynamics

of Modular Robots

University:

NTNU Ålesund

Document:

0003_Requirements

Rev. Date: Author:

1.0 29.05.2018 Torstein Sundnes Lénérand

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 6 of 54

NTNU Ålesund Appendix

i. Contents

I. CONTENTS ... 6
II. LIST OF TABLES ... 7
III. DOCUMENT HISTORY .. 8
1. REQUIREMENTS .. 9

1.1. INTRODUCTION .. 9
1.2. SIMULATOR REQUIREMENTS ... 10

1.2.1. Simulator usage ... 10
1.2.1.1. Save/Load .. 10
1.2.1.2. Performance .. 11
1.2.1.3. GUI ... 12
1.2.1.4. Scenario ... 13

1.2.2. Core Framework .. 14
1.2.2.1. Robot ... 14
1.2.2.2. Frame ... 14
1.2.2.3. Joint ... 15
1.2.2.4. Module... 15
1.2.2.5. Sensors/sensor modules .. 16
1.2.2.6. Scene.. 17

1.2.3. Dynamics ... 18
1.2.4. Optimization .. 19

1.3. COMPONENT-BASED DESIGN .. 20
1.3.1. Cost reduction ... 20
1.3.2. Ease of assembly ... 20
1.3.3. Reusability ... 21
1.3.4. Customization flexibility .. 21
1.3.5. Maintainability .. 22

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 7 of 54

NTNU Ålesund Appendix

ii. List of tables

TABLE 38: DOCUMENT HISTORY.. 8
TABLE 39: REQUIREMENT CATEGORIES ... 9
TABLE 40: TEST CATEGORIES .. 9
TABLE 41: SAVE/LOAD .. 10
TABLE 42: PERFORMANCE ... 11
TABLE 43: GUI ... 12
TABLE 44: SCENARIO .. 13
TABLE 45: ROBOT .. 14
TABLE 46: FRAME .. 14
TABLE 47: JOINT .. 15
TABLE 48: MODULE ... 15
TABLE 49: SENSORS AND SENSOR MODULES .. 16
TABLE 50: SCENE ... 17
TABLE 51: DYNAMICS ... 18
TABLE 52: OPTIMIZATION .. 19
TABLE 53: COST REDUCTION .. 20
TABLE 54: EASE OF ASSEMBLY .. 20
TABLE 55: REUSABILITY ... 21
TABLE 56: CUSTOMIZATION FLEXIBILITY .. 21
TABLE 57: MAINTAINABILITY .. 22

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 8 of 54

NTNU Ålesund Appendix

iii. Document history

Rev. Date Author Description

0.1 15.01.2018 TS Document created

0.2 18.04.2018 TS Updated

1.0 29.05.2018 TS Updated with verification and added to report

Table 38: Document history

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 9 of 54

NTNU Ålesund Appendix

1. Requirements

1.1. Introduction
The requirements for this project are divided into categories depending on the necessity for

the requirements, and the potential risk impact.

A The requirement shall be met to ensure a stable component

B The requirement should be met to ensure an efficient component

C The requirement is optional or flagged as further work

Table 39: Requirement categories

The requirements are also divided into categories for verification methods, featured after the

requirement number. T is standard verification based on performed tests, U is a verification

based on a test case for the selected requirement/component, and R is verification based on

review and analysis of components and features.

T Test verification

R Review verification

U Use-case and comparison verification
Table 40: Test categories

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 10 of 54

NTNU Ålesund Appendix

1.2. Simulator requirements
These are the requirements for the Modular Robot Simulator application

1.2.1. Simulator usage

1.2.1.1. Save/Load

Nr: Requirement Category Originator Verified?

REQ-

1.1.1T

The user shall be able

to save scenario

configurations

A NTNU Verified

T-1.1.1

REQ-

1.1.2T

The user shall be able

to load scenario

configurations

A NTNU Verified

T-1.1.1

REQ-

1.1.3T

The user should be

able to load a scenario

stopped mid-

execution.

B TS Not verified

T-1.1.2

REQ-

1.1.4R

The saved robot

values should be

represented in a

format facilitating

potential prototyping

B TS Partly Verified

R-1.1.1

REQ-

1.1.5R

All aspects of the

simulation shall be

transferrable in one

single XML file

A TS Partly verified

R-1.1.1

Table 41: Save/load

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 11 of 54

NTNU Ålesund Appendix

1.2.1.2. Performance

Nr: Requirement Category Originator Verified?

REQ-

1.2.2T

The simulator

application shall be

usable on mid-range+

workstations.

A TS Verified

T-1.2.1

REQ-

1.2.3T

The physics in the

simulation shall be

performed in real-time

on mid-range+

workstations.

A TS Verified

T-1.2.1

REQ-

1.2.4T

The simulator

application shall be

stable.

A TS Partly verified

T-1.2.1

REQ-

1.2.5T

The simulation shall

not stop mid-execution.

A TS Partly verified

T-1.2.1

REQ-

1.2.6R

Robot components

which require so, shall

exist in the physics

environment.

A TS Verified

R-1.2.1

REQ-

1.2.7R

Information about

robot components

existing in the physics

environment shall be

retrievable.

A TS Verified

R-1.2.1

REQ-

1.2.8T

Physics objects shall

not unintentionally

overlap.

A TS Verified

T-1.2.1

REQ-

1.2.9T

Physics objects shall

not pass through each

other.

A TS Verified

T-1.2.1

Table 42: Performance

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 12 of 54

NTNU Ålesund Appendix

1.2.1.3. GUI

Nr: Requirement Category Originator Verified?

REQ-

1.3.1T

The simulator shall

preview the proposed

robot components during

the design.

A TS Verified

T-1.3.1

REQ-

1.3.2T

The simulator shall show

all robot components with

correct physics

representations.

A TS Verified

T-1.3.1

REQ-

1.3.3T

The simulator should

enable modification of the

scene view.

B TS Partly verified

T-1.3.2

REQ-

1.3.4R

The Scene Designer

should realize all potential

functionality in the Core

Framework.

B TS Verified

R-1.3.2

Table 43: GUI

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 13 of 54

NTNU Ålesund Appendix

1.2.1.4. Scenario

Nr: Requirement Category Originator Verified?

REQ-

1.4.1U

The simulator shall

make scenario

creation easier than

the current

programming

methods.

A NTNU Verified

U-1.1.1

REQ-

1.4.2U

The simulator shall

enable intuitive and

easy design of robots.

A NTNU Verified

U-1.4.2

REQ-

1.4.3U

The simulator should

provide

customizability of

robots similar to hard-

coded programs, for

experienced users.

B TS Partly verified

U-1.1.2

REQ-

1.4.4U

The simulator shall

enabler faster design

than hard-coded

programming,

regardless of user

experience.

A TS Verified

U-1.1.3

REQ-

1.4.5R

The simulator shall

not contain unused

parameters

B TS Verified

R-1.4.1

Table 44: Scenario

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 14 of 54

NTNU Ålesund Appendix

1.2.2. Core Framework

These are the requirements for the Core Framework. Some of the requirements are

disconnected from the simulator application, as the Core Framework is designed to work as a

standalone library.

1.2.2.1. Robot

Nr: Requirement Category Originator Verified?

REQ-

2.1.1T

Robot modules shall be

locked together

A TS Verified

T-2.1.1

REQ-

2.1.2T

Robot sensor modules

shall be locked together

A TS Verified

T-2.1.1

REQ-

2.1.3T

Robot assembly

transform values shall

be readable

A TS Verified

T-2.1.2

REQ-

2.1.4R

Robot objects shall

represent the entire

robot assembly

A TS Verified

R-2.1.1

Table 45: Robot

1.2.2.2. Frame

Nr: Requirement Category Originator Verified?

REQ-

2.2.1U

The framework shall

allow for customization

of all necessary frame

parameters.

A NTNU Verified

U-1.1.2

REQ-

2.2.2T

The framework shall

allow for custom

implementation of

frame meshes.

A TS Verified

T-2.2.1

REQ-

2.2.3T

Frames shall have

global transform

properties.

A TS Verified

T-2.2.2

REQ-

2.2.4T

Frame transform values

shall be readable

A TS Verified

T-2.2.2

REQ-

2.2.5T

Frames shall be

visualized

A NTNU Verified

T-2.2.2

Table 46: Frame

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 15 of 54

NTNU Ålesund Appendix

1.2.2.3. Joint

Nr: Requirement Category Originator Verified?

REQ-

2.3.1U

The framework shall

allow for customization

of all necessary joint

parameters

A NTNU Partly verified

U-1.1.2

REQ-

2.3.2T

Joint angle shall be

modifiable during

runtime of the physics

environment.

A TS Verified

T-2.3.1

REQ-

2.3.3T

Joints shall connect

frames.

A TS Verified

T-2.3.1

REQ-

2.3.4T

Joints shall connect

modules.

A TS Verified

T-2.3.1

REQ-

2.3.5T

Joints shall connect

sensor modules.

A TS Verified

T-2.3.1

REQ-

2.3.6T

Joints shall connect

sensors.

A TS Verified

T-2.3.1

REQ-

2.3.7T

Joints should be

detachable.

C TS N/A

T-2.3.2

REQ-

2.3.8T

Joint transform values

should be readable.

B TS N/A

T-2.3.3

Table 47: Joint

1.2.2.4. Module

Nr: Requirement Category Originator Verified?

REQ-

2.4.1T

Each module shall

contain one “Joint”

object.

A TS Verified

T-2.4.1

REQ-

2.4.2T

Each module shall

contain two “Frame”

objects.

A TS Verified

T-2.4.1

REQ-

2.4.3R

There should be no

limits on number of

modules in a robot.

B TS Verified

R-2.2.1

REQ-

2.4.4T

Module transform

values should be

readable.

B TS Verified

T-2.4.2

REQ-

2.4.5U

The framework shall

allow for customization

of all necessary module

parameters

A NTNU Verified

U-1.1.2

Table 48: Module

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 16 of 54

NTNU Ålesund Appendix

1.2.2.5. Sensors/sensor modules

Nr: Requirement Category Originator Verified?

REQ-

2.5.1T

The framework should

allow for custom

placements of sensor

modules in the robot.

B NTNU Partly verified

T-2.5.1

REQ-

2.5.2T

The framework should

allow for custom

sensor placements on

sensor modules.

B NTNU Verified

T-2.5.1

REQ-

2.5.3T

Sensor module

transform values shall

be readable.

A TS Verified

T-2.5.2

REQ-

2.5.4T

Force sensor values

shall be readable.

A NTNU Verified

T-2.5.2

REQ-

2.5.5T

Distance sensor values

shall be readable.

A NTNU Verified

T-2.5.2

REQ-

2.5.6T

Sensor modules shall

be visualized.

A NTNU Verified

T-2.5.2

REQ-

2.5.7T

Sensors should be

visualized.

B TS Verified

T-2.5.2

REQ-

2.5.8U

The framework shall

allow for customization

of all necessary sensor

module parameters.

A NTNU Verified

U-1.1.2

REQ-

2.5.9U

The framework shall

allow for customization

of all necessary sensor

parameters.

A NTNU Partly verified

U-1.1.2

Table 49: Sensors and sensor modules

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 17 of 54

NTNU Ålesund Appendix

1.2.2.6. Scene

Nr: Requirement Category Originator Verified?

REQ-

2.6.1U

The framework shall

allow for customization

of all necessary terrain

parameters

A NTNU Verified

U-1.1.2

REQ-

2.6.2T

The created terrain

shall be physically

accurate based on

design parameters.

A TS Verified

T-2.6.1

REQ-

2.6.3T

The terrain should be

created using a

heightmap image file.

B TS Verified

T-2.6.1

REQ-

2.6.4T

The terrain’s visual

representation shall

match the physical

representation.

A TS Verified

T-2.6.1

REQ-

2.6.5T

Scene should contain

functionality for water

fields.

B TS N/A

T-2.6.2

REQ-

2.6.6T

Scene should contain

functionality for air

resistance fields.

B TS N/A

T-2.6.2

Table 50: Scene

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 18 of 54

NTNU Ålesund Appendix

1.2.3. Dynamics

Nr: Requirement Category Originator Verified?

REQ-

3.1.1T

The dynamics

component shall

control the movable

elements of the robot.

(joints)

A NTNU Verified

T-2.3.1

REQ-

3.1.2R

The dynamics

component shall be

separate from the Core

Framework

A TS Verified

R-3.1.1

REQ-

3.1.3T

The dynamics

component shall enable

robot

forward/backwards

movement

A NTNU Verified

T-3.1.1

REQ-

3.1.4T

The dynamics

component shall enable

robot left/right turns

A NTNU Verified

T-3.1.1

REQ-

3.1.5T

The dynamics

component should

enable robot sideways

motion

B TS Partly verified

T-3.1.1

REQ-

3.1.6T

The dynamics

component should

enable modification of

movement parameters

to create custom

motion commands for

the robot.

B TS Verified

T-3.1.1

REQ-

3.1.7R

The dynamics

component should

enable custom robot

movement scripts

created by advanced

users.

B TS N/A

R-3.1.2

Table 51: Dynamics

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 19 of 54

NTNU Ålesund Appendix

1.2.4. Optimization

Nr: Requirement Category Originator Verified?

REQ-

4.1.1R

The optimization

component shall be

separate from the Core

Framework.

A TS Verified

R-4.1.1

REQ-

4.1.2R

The optimization

component should

contain functionality

for multiple

optimization

algorithms.

B TS N/A

R-4.1.2

REQ-

4.1.3T

The optimization

algorithms should be

able to fast-forward to

a specific simulation

time-step.

B TS Partly verified

T-4.1.1

REQ-

4.1.4T

The user shall be able

to optimize movement

variables.

A TS Verified

T-4.1.1

REQ-

4.1.5T

The user shall be able

to optimize robot

design.

A TS Not verified

T-4.1.1

REQ-

4.1.6T

The user shall be able

to select which

parameters to not

optimize throughout

the optimization

process.

A TS Verified

T-4.1.1

Table 52: Optimization

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 20 of 54

NTNU Ålesund Appendix

1.3. Component-Based Design
These are the requirements for the CBD aspect of the Modular Robot Simulator and software

components. Most requirements are abstract, prompting verification by review and analysis,

rather than testing.

1.3.1. Cost reduction

Nr: Requirement Category Originator Verified?

REQ-

5.1.1R

Future creation of

modular robot

simulators should be

faster/cheaper using

this framework.

B TS Verified

R-5.1.1

REQ-

5.1.2R

Time used on

modifying components

should be notably

lower compared to

modifying traditional

systems.

B TS Verified

R-5.1.2

Table 53: Cost reduction

1.3.2. Ease of assembly

Nr: Requirement Category Originator Verified?

REQ-

5.2.1U

Namespace/class

components shall be

easier to assemble into

a usable program, than

to create a program

from scratch.

A TS Verified

U-2.1.1

REQ-

5.2.2T

Custom variable

structures shall be

usable by all

class/namespace

components.

A TS Verified

T-5.1.1

REQ-

5.2.3R

CBS should make it

easier to assemble a

robot in various

configurations.

B TS N/A

R-5.2.1

Table 54: Ease of assembly

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 21 of 54

NTNU Ålesund Appendix

1.3.3. Reusability

Nr: Requirement Category Originator Verified?

REQ-

5.3.1U

The Core Framework

shall be reusable in

new projects.

A TS Verified

U-2.2.1

REQ-

5.3.2U

The Dynamics

component shall be

reusable in other

projects with the Core

Framework.

A TS Not tested

U-2.2.1

REQ-

5.3.3U

The Optimization

component shall be

reusable in other

projects with the Core

Framework.

A TS Not tested

U-2.2.1

REQ-

5.3.4U

The Core Framework

should enable creation

of simple simulations

using primitive shapes

in this and other

projects.

B TS Verified

U-2.2.1

REQ-

5.3.5U

Objects from classes

such as Frames, Joints,

SensorModules and

SceneObjects should

be usable without the

creation of robot

assemblies.

B TS Not verified

U-2.2.1

Table 55: Reusability

1.3.4. Customization flexibility

Nr: Requirement Category Originator Verified?

REQ-

5.4.1R

Implementation of new

components shall be

possible by default.

A TS Verified

R-5.3.1

REQ-

5.4.2R

Modification of the

system features shall be

possible by only

changing the specific

component.

A TS Partly verified

R-5.3.1

Table 56: Customization flexibility

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 22 of 54

NTNU Ålesund Appendix

1.3.5. Maintainability

Nr: Requirement Category Originator Verified?

REQ-

5.5.1R

Maintenance/fixes in

the code shall be easier

to perform compared to

traditional software

solutions.

B TS Verified

R-5.4.1

Table 57: Maintainability

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 23 of 54

NTNU Ålesund Appendix

Appendix C Test and Verification

Project:

Component-Based Simulator for Modelling the Design and Dynamics

of Modular Robots

University:

NTNU Ålesund

Document:

0009_Test&Verification

Rev. Date: Author:

2.0 30.05.2018 Torstein Sundnes Lénérand

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 24 of 54

NTNU Ålesund Appendix

i. Contents

I. CONTENTS ... 24
II. LIST OF TABLES ... 25
III. DOCUMENT HISTORY .. 26
1. TEST & VERIFICATION ... 27

1.1. TESTS ... 28
1.1.1. Simulator usage ... 28

1.1.1.1. Save/Load .. 28
1.1.1.2. Performance .. 29
1.1.1.3. GUI ... 29

1.1.2. Core Framework .. 30
1.1.2.1. Robot ... 30
1.1.2.2. Frame ... 30
1.1.2.3. Joint ... 31
1.1.2.4. Module... 32
1.1.2.5. Sensors/sensor modules .. 32
1.1.2.6. Scene.. 33

1.1.3. Dynamics ... 33
1.1.4. Optimization .. 34
1.1.5. Component-based design .. 34

1.1.5.1. Ease of assembly .. 34
1.2. REVIEWS AND ANALYSIS ... 35

1.2.1. Simulator usage ... 35
1.2.1.1. Save/Loads ... 35
1.2.1.2. Performance .. 35
1.2.1.3. GUI ... 36
1.2.1.4. Scenario ... 36

1.2.2. Core Framework .. 36
1.2.2.1. Robot ... 36
1.2.2.2. Module... 36

1.2.3. Dynamics ... 37
1.2.4. Optimization .. 37
1.2.5. Component-based design .. 38

1.2.5.1. Cost reduction.. 38
1.2.5.2. Ease of assembly .. 38
1.2.5.3. Customization flexibility... 39
1.2.5.4. Maintainability ... 39

1.3. USE-CASES AND COMPARISONS ... 40
1.3.1. Simulator usage ... 40

1.3.1.1. Scenario ... 40
1.3.2. Component-Based Design ... 41

1.3.2.1. Ease of assembly .. 41
1.3.2.2. Reusability ... 41

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 25 of 54

NTNU Ålesund Appendix

ii. List of tables
TABLE 58: DOCUMENT HISTORY.. 26
TABLE 59: TEST CATEGORIES .. 27
TABLE 60: T-1.1.1 .. 28
TABLE 61: T-1.1.2 .. 28
TABLE 62: T-1.2.1 .. 29
TABLE 63: T-1.3.1 .. 29
TABLE 64: T-1.3.2 .. 29
TABLE 65: T-2.1.1 .. 30
TABLE 66: T-2.1.2 .. 30
TABLE 67: T-2.2.1 .. 30
TABLE 68: T-2.2.2 .. 30
TABLE 69: T-2.3.1 .. 31
TABLE 70: T-2.3.2 .. 31
TABLE 71: T-2.3.3 .. 31
TABLE 72: T-2.4.1 .. 32
TABLE 73: T-2.4.2 .. 32
TABLE 74: T-2.5.1 .. 32
TABLE 75: T-2.5.2 .. 32
TABLE 76: T-2.6.1 .. 33
TABLE 77: T-2.6.2 .. 33
TABLE 78: T-3.1.1 .. 33
TABLE 79: T-4.1.1 .. 34
TABLE 80: T-5.1.1 .. 34
TABLE 81: R-1.1.1 .. 35
TABLE 82: R-1.2.1 .. 35
TABLE 83: R-1.3.2 .. 36
TABLE 84: R-1.4.1 .. 36
TABLE 85: R-2.1.1 .. 36
TABLE 86: R-2.2.1 .. 36
TABLE 87: R-3.1.1 .. 37
TABLE 88: R-3.1.2 .. 37
TABLE 89: R-4.1.1 .. 37
TABLE 90: R-4.1.2 .. 37
TABLE 91: R-5.1.1 .. 38
TABLE 92: R-5.1.2 .. 38
TABLE 93: R-5.2.1 .. 38
TABLE 94: R-5.3.1 .. 39
TABLE 95: R-5.4.1 .. 39
TABLE 96: U-1.1.1 .. 40
TABLE 97: U-1.1.2 .. 40
TABLE 98: U-1.1.3 .. 41
TABLE 99: U-2.1.1 .. 41
TABLE 100: U-2.2.1 .. 41

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 26 of 54

NTNU Ålesund Appendix

iii. Document history

Table 58: Document history

Rev. Date Author Description

0.1 15.01.2018 TS Document created

0.2 09.03.2018 TS Tests updated

1.0 18.04.2018 TS Tests finalized

2.0 30.05.2018 TS Tests performed, document added to report

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 27 of 54

NTNU Ålesund Appendix

1.Test & Verification
The test & verification specification ensures the simulator meets the requirements defined in

the requirement specification. There are three different categories of tests:

• Actual testing (T-X.X.X)

• Review and analysis of specifications (R-X.X.X)

• Testing a use-case and comparing to other solutions (U-X.X.X)

Tests are performed on the sub-topics specified in the requirement specification and will be

verified by the means described in Table 59. Each test and verification table will contain a

pass criterion, test execution (method) and a result, following a “comments” fields to

elaborate on the test results if necessary. Some tests also have discussion fields.

T Test verification

R Review verification

U Use-case and comparison verification
Table 59: Test categories

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 28 of 54

NTNU Ålesund Appendix

1.1. Tests
These are the tests performed within the project.

1.1.1. Simulator usage

1.1.1.1. Save/Load

T-1.1.1 REQ-1.1.1T REQ-1.1.2T

Pass criteria Configurations are saved to file, then loaded in a new simulation.

Method 5 different configurations are created and saved.

The program is shut down, and configurations are loaded to the

simulator. Repeat 5 times with the different configurations.

Analyze the ease-of-use.

Result Verified

Comment Performed in build application.

Discussion A file browser instead of typing file name directly as in this prototype

scene designer would be more user-friendly.

Table 60: T-1.1.1

T-1.1.2 REQ-1.1.3T

Pass criteria Scenario in a started simulation is saved, then loaded in a new

simulation.

Method 5 different configurations are created, and simulation is started. All 5 are

saved during runtime.

The 5 configurations are loaded and started.

Analyze results and observations.

Result Failed

Comment Performed in build application.

Robot can be saved mid-execution and loaded later. However, joint

angles are incorrect, since the initialization of the robot assumes frame

rotations as different configurations (pitch/yaw). This causes the joints to

be wrongly attached.

Discussion Solution may be to disable pitch/yaw separations, and let user manually

specify configurations. However, this was not done due to increased

complexity in designing the robots.
Table 61: T-1.1.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 29 of 54

NTNU Ålesund Appendix

1.1.1.2. Performance

T-1.2.1 REQ-

1.2.2T

REQ-

1.2.3T

REQ-

1.2.4T

REQ-

1.2.5T

REQ-

1.2.8T

REQ-

1.2.9T

Pass criteria The simulator application shall be usable and perform real-time physics

on a mid-range computer. There shall be no program crashes or mid-

simulation crashes. Physics objects shall not overlap or pass through

each other.

Method Run 10 simulations. For each simulation:

• Create a unique scenario.

• Run 1 minute.

• Ensure physics are not updated too fast or too slow (observe).

• Note any crashes.

• Zoom in on robot if necessary to observe physics errors.

Result Partly Verified

Comment Performed in build application.

Optimization has been observed to crash.

Rest of the simulator performing according to specification.
Table 62: T-1.2.1

1.1.1.3. GUI

T-1.3.1 REQ-1.3.1T REQ-1.3.2T

Pass criteria Robots shall be previewed during the design phase, with enough detail to

see the general shape of the robot. The robot shall also be correctly

visualized during the simulation, according to physics and transforms.

Method Design a robot.

Make sure robot components are representative in the way of shapes and

orientations while designing.

Start simulation. Observe and zoom in on robot to ensure visualizations

match physics behavior and design.

Result Verified

Comment Robot is previewed with details matching the main simulation

visualization.
Table 63: T-1.3.1

T-1.3.2 REQ-1.3.3T

Pass criteria Zoom, movement and rotation of camera shall be possible while the

simulation is running.

Method Start a simulation.

Rotate around the created robot.

Move camera around the created robot.

Zoom in on the created robot.

Result Partly verified

Comment Performed in build application.

Camera movement not working.
Table 64: T-1.3.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 30 of 54

NTNU Ålesund Appendix

1.1.2. Core Framework

1.1.2.1. Robot

T-2.1.1 REQ-2.1.1T REQ-2.1.2T

Pass criteria Robot modules and sensor modules are correctly locked together during

simulation.

Method Create 5 different robot configurations with different module sizes.

Observe module/sensor-module connections.

Review Robot class code structure.

Result Verified

Comment Performed in build application

Two sensor modules cannot be connected to each other based on current

Core Framework code structure.
Table 65: T-2.1.1

T-2.1.2 REQ-2.1.3T

Pass criteria Position and rotation of the entire robot can be retrieved.

Method In the update loop (or a similar function) retrieve the positional and

rotational values of the robot.

Result Verified

Comment Performed in editor.
Table 66: T-2.1.2

1.1.2.2. Frame

T-2.2.1 REQ-2.2.2T

Pass criteria Updating the mesh files shall update the mesh of the robot frames.

Method Design robot. Start simulation. Observe.

Upload new mesh to the StreamingAssets/Robot folder. Design robot.

Start simulation. Observe.

Analyze eventual discrepancies.

Result Verified

Comment Performed in build application.
Table 67: T-2.2.1

T-2.2.2 REQ-2.2.3T REQ-2.2.4T REQ-2.2.5T

Pass criteria Frame objects have position, rotation and scale properties. These can be

retrieved from outside of the class. They have correct values. Values

received can be used for visualization

Method Modify update loop to print out transform values of a Frame object.

Start simulation.

Analyze values compared to visualization.

Result Verified

Comment Performed in editor.
Table 68: T-2.2.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 31 of 54

NTNU Ålesund Appendix

1.1.2.3. Joint

T-2.3.1 REQ-

2.3.2T

REQ-

2.3.3T

REQ-

2.3.4T

REQ-

2.3.5T

REQ-

2.3.6T

REQ-

3.1.1T

Pass criteria Joint movement is performed during simulation.

Frames, modules, sensor modules and sensors are connected correctly

with joints.

Method Run simulation with dynamics component.

Ensure joint angles are modified by the component.

Ensure all robot components are correctly attached and do not detach.

Ensure different joints perform their specific task (locks vs. hinges).

Result Verified

Comment Performed in build application.
Table 69: T-2.3.1

T-2.3.2 REQ-2.3.7T

Pass criteria Joints detach.

Method Modify dynamics component to enable detachment of joints.

Design robot.

Run simulation.

Ensure joints detach correctly.

Result N/A

Comment Functionality not implemented.
Table 70: T-2.3.2

T-2.3.3 REQ-2.3.8T

Pass criteria Joint position and rotation is readable.

Method Print out a Joint objects position and rotation in the update loop.

Ensure values are correct.

Result N/A

Comment Functionality not implemented.

Discussion Can be approximated by interpolating between the two objects

connected to a specific joint.
Table 71: T-2.3.3

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 32 of 54

NTNU Ålesund Appendix

1.1.2.4. Module

T-2.4.1 REQ-2.4.1T REQ-2.4.2T

Pass criteria A Module object contains one joint object and two frame objects. No

more, no less.

Method Review class structure of a module.

Design robot, run simulation.

Observe all modules in simulation for errors in implementation.

Result Verified

Comment Performed in build application.
Table 72: T-2.4.1

T-2.4.2 REQ-2.4.4T

Pass criteria Module transform values can be retrieved.

Method Print out a Module object’s position from the update loop.

Ensure values are correct.

Result Verified

Comment Performed in editor.
Table 73: T-2.4.2

1.1.2.5. Sensors/sensor modules

T-2.5.1 REQ-2.5.1T REQ-2.5.2T

Pass criteria User may decide where sensor modules are placed and their size.

User may decide where sensors are placed on sensor modules.

Method While designing a robot, configure the sensor modules with different

positions/sizes.

While designing a robot, configure the sensors with different positions

on the sensor modules.

Run simulator to test design.

Result Partly verified

Comment Sensor modules may only be placed between any modules with a pre-set

position in the Scene Designer, but using the Core Framework, Sensor

Module position may be chosen manually.

Force sensors can be placed in 1 of 4 locations on sensor modules.

Distance sensors can be placed in 6 locations on sensor modules.
Table 74: T-2.5.1

T-2.5.2 REQ-2.5.3T REQ-2.5.4T REQ-2.5.5T REQ-2.5.6T REQ-2.5.7T

Pass criteria Sensor module position and rotation is readable.

Force and distance sensor values are readable.

Sensor module transform values can be used for visualization.

Sensor transform values can be used for visualization.

Method Design robot.

Start simulation.

Ensure visualization of sensor modules and sensors is visualized

according to standard physics behavior.

Ensure the analytics log is saving to file with a reasonable interval.

Analyze log-file and review values.

Result Verified

Comment Performed in build application.
Table 75: T-2.5.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 33 of 54

NTNU Ålesund Appendix

1.1.2.6. Scene

T-2.6.1 REQ-2.6.2T REQ-2.6.3T REQ-2.6.4T

Pass criteria The terrain height-mesh is created by an image file.

The terrain matches the image.

The visuals of the terrain match where the visuals of the robot interact.

Method Create a scenario. Check if terrain matches the image by robot

interaction.

Create a new scenario. Select a new image. Check if terrain matches the

image.

Result Verified

Comment Performed in build application.
Table 76: T-2.6.1

T-2.6.2 REQ-2.6.5T REQ-2.6.6T

Pass criteria Terrain can contain water and air resistance fields.

Method Create terrain with water field. Create scenario. Review robot

performance in field.

Create terrain with air field. Create scenario. Review robot performance

in field.

Result N/A

Comment Functionality not implemented.
Table 77: T-2.6.2

1.1.3. Dynamics

T-3.1.1 REQ-3.1.3T REQ-3.1.4T REQ-3.1.5T REQ-3.1.6T

Pass criteria Robot can move forwards and backwards.

Robot can turn left and right.

Robot can move sideways.

Robot can move in a user-defined manner.

Method Create scenario.

Move robot forward. move robot backward.

Turn robot left, turn robot right.

Move robot left, move robot right.

Create 5 different custom movement patterns using the dynamics

parameters.

Result Partly verified

Comment Performed in build application.

Dynamics does not contain functionality for left and right. (REQ-3.1.5T)

Discussion Left and right movement can be achieved by creating a custom

parameter selection for movement.
Table 78: T-3.1.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 34 of 54

NTNU Ålesund Appendix

1.1.4. Optimization

T-4.1.1 REQ-4.1.3T REQ-4.1.4T REQ-4.15T REQ-4.1.6T

Pass criteria Simulation can jump to specific time-step while optimizing.

Movement variables are optimized.

Design variables are optimized.

Specific variables can be selected/deselected for optimization.

Method Create scenario. Run simulation.

Perform for movement and design:

Select only 1 variable to optimize.

Jump to 2nd Generation.

Observe for errors.

Repeat, selecting all variables to optimize.

Observe for error.

Result Partly verified

Comment Performed in build application.

Design variables are not optimized. (REQ-4.1.5T)

Algoryx library errors cause the optimization to crash after too many GA

population iterations.
Table 79: T-4.1.1

1.1.5. Component-based design

1.1.5.1. Ease of assembly

T-5.1.1 REQ-5.2.2T

Pass criteria Vector2, Vector3 and Quaternion structures are used successfully for all

operations in the Core Framework and component classes.

Method If the visualization is working, the terrain is correctly created and

rotations seem correct, the structures are working.

Run simulation and check for errors.

Analyze code to see if Dynamics and Optimization components can

successfully implement the structures.

Result Verified

Comment Performed in build application.
Table 80: T-5.1.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 35 of 54

NTNU Ålesund Appendix

1.2. Reviews and analysis

1.2.1. Simulator usage

1.2.1.1. Save/Loads

R-1.1.1 REQ-1.1.4R REQ-1.1.5R

Pass criteria A simulation can be created with all necessary data coming from the

XML file (except for an initialization call). The XML class contents are

representative of the data used when physically creating modular robots.

Method Review the data flow from the Scene Designer to the Main class. Check

which variables are passed, and if any simulation properties are not

coming from the XML file.

Review the XML file, and find whether it contains all necessary info for

creating a real-life modular robot, such as sizes, assembly info, joint

angles, etc.

Result Partly verified

Comment All simulation properties relating to the scenario come through the XML

file. However, due to the Scene Designer needing to be designed with

the specific engine (Unity in this case), several buttons and values, such

as simulation start/stop, local file system paths and

dynamics/optimization values must be transmitted from Scene Designer

to the main file, outside of the XML file.

Discussion The parameters stored in the XML file have no specific units, such as

meters or centimeters, limiting the possibility of directly relating

creation of real-life robots based on pure values. However, scale and

mass can be set on all objects, so if the user makes all objects in the

scenario relative to each other, with the correct friction coefficients etc.

It should be easy to recreate the virtual robot as a physical 3D-printed

model. This will of course be based on the actual size of the Frame

meshes and sensor modules sizes. (REQ-1.1.4R)
Table 81: R-1.1.1

1.2.1.2. Performance

R-1.2.1 REQ-1.2.6R REQ-1.2.7R

Pass criteria Specific robot components featured in the assembly shall all exist in the

running physics environment. Information about these shall be

retrievable.

Method Follow the flow of information in each of the frames, joints, sensor

modules, force sensors and distance sensors.

Ensure all code paths ends in the addition of a component to either the

AgX simulation instance, or the robot assembly being added to the

instance.

Ensure all AgX_Interface classes contain correct return functions for

object values.

Result Verified

Comment All scenario objects are added to the Algoryx physics environment when

their corresponding initialization functions are called.

All objects can be removed from the environment by calling the

“AgX_Simulation.RemoveSimObjects()” function.
Table 82: R-1.2.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 36 of 54

NTNU Ålesund Appendix

1.2.1.3. GUI

R-1.3.2 REQ-1.3.4R

Pass criteria All functionality contained in the Core Framework is being utilized by

the Scene Designer.

Method Review the functionality of the Scene Designer versus the possibilities in

the Core Framework. Can the user do everything that is expected? Can

this be done in the Core Framework in the first place?

Result Verified

Comment All functionality in the core Framework is used, but only implemented to

various degrees. However, it is enough to get verified.
Table 83: R-1.3.2

1.2.1.4. Scenario

R-1.4.1 REQ-1.4.5R

Pass criteria All the tweakable parameters and values in the Scene Designer shall

have a purpose with impact on the scenario, and not be misleading or

useless.

Method Review all changeable values in the Scene Designer and analyze by

robot design or functionality whether the values have purpose. Also

check if the changed values have impact on the transmitted XML file.

Result Verified

Comment Not all input fields have impact on the scenario, but they all perform

functions relating to either the scenario, dynamics, optimization or

visualizations.

Discussion Some of the parameters could be hidden behind other options or sub-

containers.
Table 84: R-1.4.1

1.2.2. Core Framework

1.2.2.1. Robot

R-2.1.1 REQ-2.1.4R

Pass criteria The robot in the scene has no components other than those defined in the

robot class and its sub-components, except for any movement-

controlling components.

Method Review the robot class and its sub-components.

Ensure all sub-components exist in the Robot class.

Result Verified

Comment
Table 85: R-2.1.1

1.2.2.2. Module

R-2.2.1 REQ-2.4.3R

Pass criteria There are no limits to the number of modules in a robot.

Method Review the class structure of Module objects.

Result Verified

Comment A list contains the modules in the robot, and lists can be theoretically

infinite. No errors occur when adding a large amount of modules.
Table 86: R-2.2.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 37 of 54

NTNU Ålesund Appendix

1.2.3. Dynamics

R-3.1.1 REQ-3.1.2R

Pass criteria The dynamics component is separate from the Core Framework

Method Define the relationship between the Core Framework and the Dynamics

component.

Review how the component is connected to the simulator.

Result Verified

Comment The Dynamics component only takes a robot object as a parameter (from

the Core Framework). The Core Framework has no relation to the

Dynamics component.

The Dynamics class is connected through the “Main” class, which is the

class used to realize all component functionality.
Table 87: R-3.1.1

R-3.1.2 REQ-3.1.7R

Pass criteria The user can script robot dynamics.

Method Review how the user may implement a custom movement script through

a string input-field.

Result N/A

Comment Functionality not implemented.
Table 88: R-3.1.2

1.2.4. Optimization

R-4.1.1 REQ-4.1.1R

Pass criteria Optimization component is separate from the Core Framework.

Method Define the relationship between the Core Framework and the

Optimization component.

Review how the component is connected to the simulator.

Result Verified

Comment The Optimization component only takes a robot object from the Core

Framework. The Core Framework has no relation to the Optimization

component.

The Optimization class is connected through the “Main” class, which is

the class used to realize all component functionality.
Table 89: R-4.1.1

R-4.1.2 REQ-4.1.2R

Pass criteria Optimization component consists of more than one optimization

algorithm.

Method Define amount of optimization algorithms available.

Test all optimization algorithms.

Result N/A

Comment Only a Genetic Algorithm is currently included in the Optimization

component.

Discussion Algorithms such as simulated annealing could be added easily, thanks to

the similarities in execution operations such as iterative performance,

goal functions and hierarchical fitness tracking.
Table 90: R-4.1.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 38 of 54

NTNU Ålesund Appendix

1.2.5. Component-based design

1.2.5.1. Cost reduction

R-5.1.1 REQ-5.1.1R

Pass criteria Future creation of simulators is faster and cheaper to develop thanks to

this framework

Method Review the usage of the Core Framework and the other components.

Result Verified

Comment The Core Framework in addition to the accompanying components

(Dynamics, Optimization, Visualization), can be re-used, and developers

won’t have to invest as much time just to create a framework for robot

creation. There are aspects of the framework which may be improved

(such as adding more joint types), but improvements as such will still be

less effort than to redesign the entire framework. Because of the

component-based design, new components can also be added, based on

the developer’s needs.

As this verification specification is completed, future developers may

review it to see if it contains the desired functionality for their projects.
Table 91: R-5.1.1

R-5.1.2 REQ-5.1.2R

Pass criteria Time used on modification is shorter with components.

Method Review whether less time will be used on modifications and additions to

a modular robot simulator, by modifying components instead of whole

traditional systems.

Result Verified

Comment Throughout the development process and in test scenarios, all

modifications have been performed on the specific components only. If a

new feature is added to the dynamics class, this is the only place where

modification is performed. This has reduced development time and error

buildup. It is highly likely that such simple development and

maintainability functionality would not be present in a traditional

system.
Table 92: R-5.1.2

1.2.5.2. Ease of assembly

R-5.2.1 REQ-5.2.3R

Pass criteria CBD makes it easier to assemble a robot in various configurations.

Method Review design choices in the CBD and assess whether robot creation has

been facilitated versus using traditional design.

Result N/A

Comment There is no clear result.

Discussion It is assumed that separating all robot-related classes (in the Core

Framework) have made flexibility and observability easier. However,

without a case-study on a traditional system to compare with, this

statement cannot be backed up.
Table 93: R-5.2.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 39 of 54

NTNU Ålesund Appendix

1.2.5.3. Customization flexibility

R-5.3.1 REQ-5.4.1R REQ-5.4.2R

Pass criteria New components can be added to the Core Framework or the Modular

Robot Simulator.

Modification of components is the only necessity for changing system

features.

Method Review the method for adding components to the system. Is it easy to

just replace? Could it be easier?

Can modifications be performed purely inside the specific components

and thus change the functionality, or must modifications be performed

also in the main class?

Result Partly verified

Comment There could be less code which assembles components in the “Main”

class, but in order to not rely on visualization-specific functions, the

components cannot contain update-loops related to the visualization

platform. Thus, the “Main” class must contain this functionality.

The “Main” class is the only class that needs modification when adding

a component.

Only the current component needs to be changed when modifying

functionality or the component itself.
Table 94: R-5.3.1

1.2.5.4. Maintainability

R-5.4.1 REQ-5.5.1R

Pass criteria Code maintenance requires less effort in this component-based system

than if it was traditionally designed.

Method Review components. Are there many overlaps between classes? The

more separated the functionality is, the less maintenance is required, and

the easier it is to find bugs. How has bug-testing been solved during the

system design?

Result Verified

Comment See R-5.1.2.
Table 95: R-5.4.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 40 of 54

NTNU Ålesund Appendix

1.3. Use-cases and comparisons

1.3.1. Simulator usage

1.3.1.1. Scenario

All scenario comparisons have been discussed with the supervisor from NTNU.

U-1.1.1 REQ-1.4.1U REQ-1.4.2U

Pass criteria Scenario is easier to create in this program than making a hard-coded

simulation (both in easy and advanced mode). The simulator is intuitive

to use.

Method Compare the Modular Robot Simulator with NTNU’s method for

creating simulations.

Review the time and effort required to create a scenario, both from

scratch and by modifying an existing simulation.

Discuss the intuitiveness of the simulator.

Result Verified

Comment The simulator fulfills all of the necessary functionality while being

easier to use than manual-coding it or modifying existing software.
Table 96: U-1.1.1

U-1.1.2 REQ-

1.4.3U

REQ-

2.2.1U

REQ-

2.3.1U

REQ-

2.4.5U

REQ-

2.5.8U

REQ-

2.5.9U

REQ-

2.6.1U

Pass criteria Customization options are similar or better compared to hard-coded

simulations, by using the advanced mode in robot creation.

Method Compare the Modular Robot Simulator with NTNU’s method for

creating robot assemblies.

See if all required parameters are included, and if the customization

options are better, worse or has exactly the required customizability.

This will be performed by using the advanced design mode.

Also analyze the Frame, Joint, Module, Sensor module, Sensors and

Scene classes, to see if the Core Framework has enough customizability.

Result Partly verified

Comment Sensor attachment less customizable than hard-coding it.

Distance sensor is currently not sensing terrain.

Customization of joints, optimization and dynamics is enough for

teaching, but lacks a little for research purposes.

Should have more modularity regarding custom dynamics.

Terrain and scene object creation has enough customizability for

teaching and research purposes.

Discussion Sensor attachment is enough for teaching purposes.

Currently, researchers are designing flat ground. Thus, the distance

sensor will still work in the scenarios researchers use when developing.
Table 97: U-1.1.2

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 41 of 54

NTNU Ålesund Appendix

U-1.1.3 REQ-1.4.4U

Pass criteria Designing a robot is faster using the Modular Robot Simulator than with

hard-coded simulations.

Method Compare the Modular Robot Simulator with NTNU’s method for

creating simulations. Is it faster?

Review and discuss the use and advantages of speed vs. customizability.

Result Verified

Comment Both the easy and advanced options provide faster results than the

current methods used. The time it takes to design various modular robots

have been significantly improved.

There is a high level of customizability even though the design has been

made significantly easier.
Table 98: U-1.1.3

1.3.2. Component-Based Design

1.3.2.1. Ease of assembly

U-2.1.1 REQ-5.2.1U

Pass criteria Assembling a program is easier than to create it from scratch

Method Use the framework to create a new project with a basic visualization.

Review whether a designer will find it easier to use pre-made

components and whether these components are usable enough, or if it

would be easier to just create a new solution from scratch.

Result Verified

Comment Created in a new Unity project.

See framework case-study.
Table 99: U-2.1.1

1.3.2.2. Reusability

U-2.2.1 REQ-5.3.1U REQ-5.3.2U REQ-5.3.3U REQ-5.3.4U REQ-5.3.5U

Pass criteria The Core Framework can be used to create a new project.

The Dynamics component can be added to the project.

The Optimization component can be added to the project.

Primitive shapes can be created with the framework, resulting in a

minimalistic physics simulator, with no other simulation elements.

Sub-components of a robot can be included in the simulation without a

robot.

Method Create a new project using the Core Framework. Test functionality/vis.

Add Dynamics and optimization components. Test.

Create simulation only with primitive shapes.

Create a frame. Add to simulation. Test.

Result Partly verified

Comment Created in a new Unity project.

See framework case-study in the result section of the report.

Dynamics (REQ-5.3.2U) and Optimization (REQ-5.3.3U) not yet tested.

REQ-5.3.5U not tested.
Table 100: U-2.2.1

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 42 of 54

NTNU Ålesund Appendix

Appendix D Core Framework overview

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 43 of 54

NTNU Ålesund Appendix

Appendix E Remaining technical
specification

Simulation_Core
SensorModule

The “SensorModule” class contains modules that are connected between the

Frame/Joint modules and can be outfitted with distance and force sensors to receive input from

the surrounding area. The class is one of the most comprehensive ones, as it has specific

functions for sensory attachments allowing for 1 force sensor, and up to 6 distance sensors. The

module is a simple cube shape.

Contents of the “SensorModule” class are displayed in Table 101, while the main

functions of the class are described in Table 102.

Attributes Components

guid : Guid
leftMod_Nr, rightMod_Nr : int
forceLockPosition : Vector3
distanceLockPosition : Vector3
position, rotation, size : Vector3
quatRotation : Quaternion
mass : double
materialName : string

agxPrimitive : AgX_Primitive
forceSensor : ForceSensor
forceSensorLock : Joint
distanceSensors : List<DistanceSensor>
distanceSensorLocks : List<Joint>

Functions

Initialize()
Update()

ConnectForceSensor()
ConnectDistanceSensor()

QuatToRot()

Table 101: Contents of the SensorModule class

Function Description Return

Initialize Creates the “AgX_Primitive” object with the

attributes of this class.

If a force sensor is attached, the force sensor’s

initialization function is called, and the

corresponding lock is attached.

If one of more distance sensors are attached, the

initialization functions of these are called, and

corresponding locks are attached.

void

Update Updates the position and rotation of the object based

on the corresponding values of the object in the

Algoryx simulation instance.

Also updates the force and distance sensor attached

to the module.

void

ConnectForceSensor Attaches an input “ForceSensor” to this sensor

module and creates a new “Joint” as the sensor lock

component

void

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 44 of 54

NTNU Ålesund Appendix

Sets up the sensor and lock position based on the

attribute “sensorPosition” in the “ForceSensor”.

ConnectDistanceSensor Attaches a list of “DistanceSensors” to the sensor

module and creates a new list of “Joints” as distance

sensor locks.

Attaches each sensor at a position according to the

“sensorPosition” attribute in the “DistanceSensor”.

void

QuatToRot Updates the Euler angle representation of the sensor

module’s rotation.

Returns the Euler angle representation of the sensor

module’s rotation.

Vector3

Table 102: SensorModule class functions

ForceSensor

The “ForceSensor” class defines the force sensors which may be attached to the sensor

modules. The force calculations are not performed by this class, but in the “AgX_ForceSensor”

class. The force sensor may only be attached to sensor modules, and in four different places:

bottom, left, top and right.

Contents of the “ForceSensor” class are displayed in Table 103, while the main

functions of the class are described in Table 104.

Attributes Components

guid : Guid
forceValue, mass : double
sensorPosition : int
position, size : Vector3
rotation : Quaternion
materialName : string

agxSensor : AgX_ForceSensor
Fs_Joint : AgX_Joint

Functions

Initialize() Update()

Table 103: Contents of the ForceSensor class

Function Description Return

Initialize Creates the “AgX_ForceSensor” object with the

attributes of this class.

void

Update Updates the position, rotation and force value of the

object based on the corresponding values of the object

in the Algoryx simulation instance.

void

Table 104: ForceSensor class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 45 of 54

NTNU Ålesund Appendix

DistanceSensor

The “DistanceSensor” class defines the distance sensors which may be attached to the

sensor modules. The functionality of the actual sensor resides solely in this class, while the

“AgX_DistanceSensor”-object only keeps track of the sensor’s position and rotation on the

robot. This class has two main functions for the distance calculations, with one creating a ray,

which is sent out by a set distance and angle based on the requested resolution and direction of

the sensor. If the ray hits an object, the distance is saved in the class variable “hit_distance”,

which will equal to the “max_rayDistance” value if no object is intersecting the ray.

Contents of the “DistanceSensor” class are displayed in Table 105, while the main

functions of the class are described in Table 106.

Attributes Components

guid : Guid
sensorPosition : int
position, rotation : Vector3
size : Vector3
quatRotation : Quaternion
mass : double

max_rayDistance : double
hit_distance : double
ray_direction : Vector3
ray_Resolution : double

agxPrimitive : AgX_Primitive

Functions

Initialize()
Update()

CalculateDistance()
RayHitInside()

GetSensorDistance()

Table 105: Contents of the DistanceSensor class

Function Description Return

Initialize Creates the “AgX_Primitive” object with the attributes

of this class.

void

Update Updates the position and rotation of the object based on

the corresponding values of the object in the Algoryx

simulation instance.

void

CalculateDistance Shoots out a ray in the sensor direction.

Checks if any scene objects are hit using the

RayHitInside function.

Retrieves distance of the first object hit within the max

distance value.

void

RayHitInside Checks if the ray intersects any of the scene objects.

Checks for box and sphere collisions.

Boolean

GetSensorDistance Returns the “hit_distance” value. double

Table 106: DistanceSensor class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 46 of 54

NTNU Ålesund Appendix

ContactFriction

The “ContactFriction” class contains all information about the friction coefficients

between two individual materials. In each scenario there can be a near infinite number of these

objects. The class contains no functions, as the contact frictions are added directly to the static

“AgX_Simulation” class.

The attribute variables consist of two materials between which the friction coefficient

will be calculated each time the corresponding objects interact in the simulation.

The restitution coefficient contains the ratio between the final to initial velocity of the

objects after collision, the friction coefficient contains the resistance force of sliding motions,

and the Young’s modulus is the relationship of stress (or deformity) in the contact points. These

coefficients are used in the physics calculations of the AgX physics engine after being passed

to a function in the “AgX_Simulation” class.

Contents of the “ContactFriction” class are displayed in Table 107.

Attributes Components

material1 : string
material2 : string
restitution : double
friction : double
youngsModulus : double

none

Functions

 none

Table 107: Contents of the ContactFriction class

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 47 of 54

NTNU Ålesund Appendix

AgX_Interface
AgX_ForceSensor

The “AgX_ForceSensor” class contains the information about a force sensor that may

be added to a robot’s sensor module (“SensorModule” class). The module receives the force

magnitude from the “Joint” object connecting the force sensor’s rigid-body with the sensor

module rigid-body.

Contents of the “AgX_ForceSensor” class are displayed in Table 108, while the main

functions of the class are described in Table 109.

Attributes Components

guid : Guid
scale : Vector3

agx_Object : agx.RigidBody

Functions

AgX_ForceSensor()
GetAgxObject()

GetPosition()
GetRotation()

AddToAssembly()
Remove()

Table 108: Contents of the AgX_ForceSensor class

Function Description Return

AgX_ForceSensor Creates the Algoryx rigid-body with material, position,

rotation, scale, and mass values for the input variables.

Adds the object to the simulation instance.

AgX_ForceSensor

GetAgxObject Retrieves the Algoryx object agx.RigidBody

GetPosition Retrieves the position of the object in the simulation Vector3

GetRotation Retrieves the Quaternion rotation of the object in the

simulation

Quaternion

AddToAssembly Adds the rigid-body to the current robot-assembly (if

necessary)

void

Remove Removes the rigid-body from the simulation instance. void
Table 109: AgX_ForceSensor class functions

Operations

Since the AgX library has other variable types than Unity, the “Operations” class is

created to transform variables between AgX and Unity. These variables include vectors and

quaternions, which must be decomposed into their individual axis-values before constructing

the resulting output type.

Table 110 shows the operation functions.

Function Description Return

FromAgxVec3 Converts from agx.Vec3 to Vector3 Vector3

ToAgxVec3 Converts from Vector3 to agx.Vec3 agx.Vec3

FromAgxQuat Converts from agx.Quat to Quaternion Quaternion

ToAgxQuat Converts from Quaternion to agx.Quat agx.Quat

ToAgxVec3Vector Converts from a Vector3 array to an agx.Vec3Vector agx.Vec3Vector

ToAgxIntVector Converts from an int array to an agx.UInt32Vector agx.UInt32Vector
Table 110: Operations class functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 48 of 54

NTNU Ålesund Appendix

Types

As detailed in REQ-5.3.1U, the core architecture should be independent from any

specific platform and usable in other projects. Thus, the inclusion of Unity3D-based vector and

quaternion data types are not valid for use. Three distinct structures have been created to solve

this problem, Vector2, Vector3 and Quaternion, with inspiration from the functionality of the

corresponding Unity3D classes.

Vector2/Vector3

In the Vector3 structure, there are functions that perform certain operations on the

variables such as retrieving the length of a vector, converting from degrees to radians, and

interpolations. Operator overloads have also been created. The Vector2 structure contains two

variables, “x” and “y” for a 2D representation, and the Vector3 variable contains an additional

“z” variable for a 3D representation.

Table 111 shows the functions within the Vector3 structure (The Vector2 structure does

not contain any custom functions).

Function Description Return

Length Retrieves the length of the vector Double

Normalize Retrieves the direction of the vector with a length of 1 Vector3

ToRad Transforms the vector from degrees to radians Vector3

Lerp Linearly interpolates between two vectors by a set

amount

Vector3

Operators Allows for addition, subtraction, multiplication and

division between two vectors or a vector and a double

Vector3

Table 111: Vector3 structure functions

Quaternion:

Functions in the Quaternion structure have been influenced by Unity3D’s Quaternion

class, but also general matrix calculus for rotational matrices. The functions perform Quaternion

to vector operations and vice versa, in addition to some helper functions for the conversions.

There is one operator overload to enable multiplication between a Quaternion and a Vector3.

The Quaternion structure contains an “x”, “y”, “z”, and “w” variable, as it is a rotation matrix.

Table 112 shows the functions within the Quaternion structure.

Function Description Return

ToEulerRad Converts Quaternion to Vector3 in radians, and uses

two helper functions for the conversion

Vector3

FromEulerRad Converts from Vector3 Euler angles to Quaternion

Operator* Multiplies a Vector3 with a Quaternion to modify the

angles

Vector3

Table 112: Quaternion structure functions

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 49 of 54

NTNU Ålesund Appendix

Appendix F Case-study, XML file
Scenario, start of Robot, Module, Frames, Joints:

 <robot>
 <modules xmlns="Assembly">
 <Module>
 <mod_Nr>0</mod_Nr>
 <position>
 <x>0</x>
 <y>12</y>
 <z>-0.48999998755753</z>
 </position>
 <axis>Pitch</axis>
 <frames>
 <Frame>
 <guid>5f9f543f-fc55-49ec-9c97-9944e0264b4b</guid>
 <shape>Box</shape>
 <scale>10</scale>
 <position>
 <x>0</x>
 <y>12</y>
 <z>-0.48999998755753</z>
 </position>
 <rotation>
 <x>0</x>
 <y>270.00000196115104</y>
 <z>0</z>
 </rotation>
 <quatRotation>
 <x>0</x>
 <y>-0.70710676908493042</y>
 <z>0</z>
 <w>0.70710676908493042</w>
 </quatRotation>
 <mass>100</mass>
 <isStatic>false</isStatic>
 <materialName>Plastic</materialName>
 </Frame>
 <Frame>
 <guid>fe7a5aba-49bf-441b-8f4c-76089bb02d81</guid>
 <shape>Box</shape>
 <scale>10</scale>
 <position>
 <x>0</x>
 <y>12</y>
 <z>-0.48999998755753</z>
 </position>
 <rotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 </rotation>
 <quatRotation>
 <x>0</x>
 <y>-0.70710676908493042</y>
 <z>0</z>
 <w>0.70710676908493042</w>
 </quatRotation>
 <mass>100</mass>
 <isStatic>false</isStatic>
 <materialName>Plastic</materialName>
 </Frame>
 </frames>
 <joint>
 <guid>ead26d3b-e615-4e80-9464-a5e429e0ed02</guid>
 <leftFrameGuid>5f9f543f-fc55-49ec-9c97-9944e0264b4b</leftFrameGuid>
 <rightFrameGuid>fe7a5aba-49bf-441b-8f4c-76089bb02d81</rightFrameGuid>
 <type>Hinge</type>
 <lowerRangeLimit>-1.5707963267948966</lowerRangeLimit>
 <upperRangeLimit>1.5707963267948966</upperRangeLimit>
 <Kp>8</Kp>
 <max_vel>3</max_vel>
 </joint>
 </Module>

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 50 of 54

NTNU Ålesund Appendix

Sensor module, force sensor, distance sensor, locks:

<sensorModules xmlns="Assembly">
 <SensorModule>
 <guid>49c95067-af5e-49cc-9f24-d523666bf3d6</guid>
 <leftMod_Nr>-1</leftMod_Nr>
 <rightMod_Nr>0</rightMod_Nr>
 <forceSensor>
 <guid>2a343a24-a8c9-4ac6-8b5e-638fd98647b3</guid>
 <forceValue>0</forceValue>
 <sensorPosition>0</sensorPosition>
 <position>
 <x>0</x>
 <y>11.6985</y>
 <z>0</z>
 </position>
 <rotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 <w>1</w>
 </rotation>
 <materialName>Plastic</materialName>
 <mass>1</mass>
 <size>
 <x>0.3</x>
 <y>0.001</y>
 <z>0.1</z>
 </size>
 </forceSensor>
 <forceSensorLock>
 <guid>00000000-0000-0000-0000-000000000000</guid>
 <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid>
 <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid>
 <lowerRangeLimit>0</lowerRangeLimit>
 <upperRangeLimit>0</upperRangeLimit>
 <Kp>3</Kp>
 <max_vel>0</max_vel>
 </forceSensorLock>
 <forceLockPosition>
 <x>0</x>
 <y>11.6995</y>
 <z>0</z>
 </forceLockPosition>
 <distanceSensors>
 <DistanceSensor>
 <guid>e2e792af-bdaa-41ab-b851-541220f94b7b</guid>
 <sensorPosition>4</sensorPosition>
 <position>
 <x>0</x>
 <y>12</y>
 <z>0</z>
 </position>
 <rotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 </rotation>
 <quatRotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 <w>0</w>
 </quatRotation>
 <mass>1</mass>
 <size>
 <x>0.01</x>
 <y>0.01</y>
 <z>0.01</z>
 </size>
 <max_rayDistance>10</max_rayDistance>
 <ray_Direction>
 <x>0</x>
 <y>0</y>
 <z>1</z>
 </ray_Direction>
 <ray_Resolution>0.05</ray_Resolution>
 </DistanceSensor>
 </distanceSensors>
 <distanceLockPosition>
 <x>0</x>
 <y>12</y>

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 51 of 54

NTNU Ålesund Appendix

 <z>0</z>
 </distanceLockPosition>
 <distanceSensorLocks>
 <Joint>
 <guid>00000000-0000-0000-0000-000000000000</guid>
 <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid>
 <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid>
 <lowerRangeLimit>0</lowerRangeLimit>
 <upperRangeLimit>0</upperRangeLimit>
 <Kp>3</Kp>
 <max_vel>0</max_vel>
 </Joint>
 </distanceSensorLocks>
 <position>
 <x>0</x>
 <y>12</y>
 <z>0</z>
 </position>
 <rotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 </rotation>
 <size>
 <x>0.3</x>
 <y>0.3</y>
 <z>0.1</z>
 </size>
 <quatRotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 <w>1</w>
 </quatRotation>
 <mass>100</mass>
 <materialName>Plastic</materialName>
 </SensorModule>

Robot Locks (between modules)

 <locks xmlns="Assembly">
 <Joint>
 <guid>00000000-0000-0000-0000-000000000000</guid>
 <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid>
 <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid>
 <lowerRangeLimit>0</lowerRangeLimit>
 <upperRangeLimit>0</upperRangeLimit>
 <Kp>0</Kp>
 <max_vel>0</max_vel>
 </Joint>

Scene

Height image string is 21848 characters long.

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 52 of 54

NTNU Ålesund Appendix

Scene Objects

<sceneObjects>
 <SceneObject>
 <guid>7b579252-58ce-4fb0-937f-57c24696363f</guid>
 <size>
 <x>1</x>
 <y>1</y>
 <z>1</z>
 </size>
 <position>
 <x>0</x>
 <y>12</y>
 <z>4</z>
 </position>
 <rotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 </rotation>
 <quatRotation>
 <x>0</x>
 <y>0</y>
 <z>0</z>
 <w>1</w>
 </quatRotation>
 <materialName>Plastic</materialName>
 <shape>Sphere</shape>
 <mass>10</mass>
 <isStatic>false</isStatic>
 </SceneObject>
 </sceneObjects>

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 53 of 54

NTNU Ålesund Appendix

Appendix F1 Case-study, visualization
and update

Update loop:

//vis
 GameObject sceneobjvis;
 GameObject[] FrameDemoVis = new GameObject[2];

 // Update is called once per frame
 void Update_Sim ()
 {
 //Update physics:
 Agx_Simulation.StepForward();
 //Update the robot:
 robot.Update();
 //Update the visualization:
 {
 //Frames:
 FrameDemoVis[0].transform.position = AgxHelper(robot.modules[0].frames[0].position);
 FrameDemoVis[0].transform.rotation = (AgxHelper(robot.modules[0].frames[0].quatRotation));
 FrameDemoVis[1].transform.position = AgxHelper(robot.modules[0].frames[1].position);
 FrameDemoVis[1].transform.rotation = (AgxHelper(robot.modules[0].frames[1].quatRotation));
 //Scene object:
 sceneobjvis.transform.position = AgxHelper(sceneobj.position);
 }
 robot.modules[0].joint.SetAngle(2);
 }

Visualization:

Mesh leftmesh, rightmesh;
 void loadmesh()
 {
 ObjImporter import = new ObjImporter();
 leftmesh = import.ImportFile(Application.streamingAssetsPath + "/upper.obj");
 rightmesh = import.ImportFile(Application.streamingAssetsPath + "/bottom.obj");
 }

 void Load_Vis()
 {
 //Set frame meshes:
 FrameDemoVis[0] = GameObject.CreatePrimitive(PrimitiveType.Cube);
 FrameDemoVis[1] = GameObject.CreatePrimitive(PrimitiveType.Cube);

 Mesh[] mesh = new Mesh[2];
 mesh[0] = FrameDemoVis[0].GetComponent<MeshFilter>().mesh;
 mesh[1] = FrameDemoVis[1].GetComponent<MeshFilter>().mesh;

 var robotsize = new UnityEngine.Vector3(10,10,10);
 for(int i = 0; i<2;i++)
 {
 mesh[i].vertices = AgxHelper(robot.modules[0].frames[i].meshVertices);
 mesh[i].uv = AgxHelper(robot.modules[0].frames[i].meshUvs);
 mesh[i].triangles = robot.modules[0].frames[i].meshTriangles;
 }
 }

 UnityEngine.Vector3 AgxHelper(AgX_Interface.Vector3 vec)
 {
 var vector = new UnityEngine.Vector3();
 vector.x = (float)vec.x;
 vector.y = (float)vec.y;
 vector.z = (float)vec.z;

 return vector;
 }

Rev 1.0 Component-Based Simulator for Modelling

the Design and Dynamics of Modular Robots

Page 54 of 54

NTNU Ålesund Appendix

Appendix G Custom dynamics case study
Sidewinding 1

Sidewinding 2

Rolling

