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i. Abstract 

This project presents the design of a component-based simulator used for modelling the 

design and movement of chain-based modular robots. This work is in collaboration with NTNU 

Ålesund and implemented in the Unity® game engine with Algoryx® Dynamics for physics 

calculations. The focus is on Modular robots, along with techniques for simulator creation and 

software development such as Component-Based Software Engineering and Design. The 

Unified Process is used for prototyping and research, while the finished design is verified using 

tests, reviews, and use-case studies. This thesis discusses the impact of using Component-Based 

Design in a relatively small project, and the advantages/disadvantages of this decision. The goal 

is to provide the optimum tool for students to learn about, and researchers to develop, 

customized modular robots.  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 1 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

ii. Contents 

I. ABSTRACT ................................................................................................................................... I 
II. CONTENTS ................................................................................................................................. 1 
III. LIST OF FIGURES ........................................................................................................................ 3 
IV. LIST OF TABLES .......................................................................................................................... 4 
V. DOCUMENT HISTORY ................................................................................................................ 5 
VI. ABBREVIATIONS AND EXPLANATIONS ....................................................................................... 6 
1. INTRODUCTION .............................................................................................................................. 7 

1.1. INTRODUCTION AND MOTIVATION ......................................................................................................... 7 
1.1.1. Problem ................................................................................................................................. 7 
1.1.2. Motivation ............................................................................................................................. 7 
1.1.3. Scope ..................................................................................................................................... 8 
1.1.4. Objective ................................................................................................................................ 9 
1.1.5. Research Questions ............................................................................................................... 9 

1.2. PREVIOUS WORK .............................................................................................................................. 10 
1.2.1. Literature ............................................................................................................................. 10 

1.2.1.1. Webots [4] ................................................................................................................................... 10 
1.2.1.2. Unity [5] ....................................................................................................................................... 10 
1.2.1.3. VSPARC [6] ................................................................................................................................... 10 
1.2.1.4. MECABOT [8, 9] ........................................................................................................................... 11 
1.2.1.5. Screw-less Solution for Snake-like Robot Assembly & Sensor Integration [10] ........................... 11 
1.2.1.6. Modular Robot Systems (Self-assembly) [1] ................................................................................ 11 
1.2.1.7. A Light-Weight Robot Simulator for Modular Robotics [11] ........................................................ 12 
1.2.1.8. Component-based Development Process & Component Lifecycle [13] ...................................... 12 
1.2.1.9. Twenty-eight years of component-based software engineering [14] .......................................... 12 

1.2.2. Literature discussions .......................................................................................................... 13 
1.2.2.1. Advantages of CBSE ..................................................................................................................... 13 
1.2.2.2. Development focus for various modular robots .......................................................................... 13 

2. BACKGROUND .............................................................................................................................. 15 

2.1. PROJECT FRAMEWORK ....................................................................................................................... 15 
2.1.1. Unified Process .................................................................................................................... 15 
2.1.2. Phases .................................................................................................................................. 17 
2.1.3. Risk ...................................................................................................................................... 18 

2.2. MODULAR ROBOTICS ........................................................................................................................ 19 
2.2.1. Design .................................................................................................................................. 19 
2.2.2. Dynamics ............................................................................................................................. 20 
2.2.3. Optimization algorithms viable for modular robotics ......................................................... 21 

2.2.3.1. Genetic algorithm ........................................................................................................................ 21 
2.2.3.2. Simulated Annealing .................................................................................................................... 24 

2.3. COMPONENT-BASED DEVELOPMENT .................................................................................................... 25 
2.3.1. Introduction to CBSE ............................................................................................................ 25 
2.3.2. Business use-case ................................................................................................................ 26 
2.3.3. Component-based optimization .......................................................................................... 27 

3. METHODOLOGY ............................................................................................................................ 28 

3.1. DEVELOPMENT ................................................................................................................................ 28 
3.1.1. Project methods .................................................................................................................. 28 

3.1.1.1. Unified Process ............................................................................................................................ 29 
3.1.2. Research and planning ........................................................................................................ 30 
3.1.3. Modular robotics ................................................................................................................. 30 

3.2. VERIFICATION AND VALIDATION ........................................................................................................... 32 
3.2.1. Simulator Specifications ...................................................................................................... 32 

3.2.1.1. Requirements .............................................................................................................................. 32 
3.2.1.2. Test and Verification .................................................................................................................... 33 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 2 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

3.2.1.3. System validation ......................................................................................................................... 34 
3.2.2. Framework and simulator verification ................................................................................ 34 

3.3. TOOLS, PLATFORMS, LIBRARIES............................................................................................................ 35 
3.3.1. Hardware ............................................................................................................................. 35 
3.3.2. Software components.......................................................................................................... 35 
3.3.3. Algoryx Dynamics ................................................................................................................ 37 
3.3.4. Unity .................................................................................................................................... 38 

4. RESULTS AND FINDINGS ................................................................................................................ 39 

4.1. DESIGN OF THE MODULAR ROBOT SIMULATOR ........................................................................................ 39 
4.1.1. Setting up the software environment .................................................................................. 39 
4.1.2. Component-based design .................................................................................................... 40 

4.1.2.1. Simulation Core ........................................................................................................................... 41 
4.1.2.2. Algoryx Interface .......................................................................................................................... 42 
4.1.2.3. Visualization ................................................................................................................................. 42 
4.1.2.4. Dynamics ...................................................................................................................................... 43 
4.1.2.5. Optimization ................................................................................................................................ 43 
4.1.2.6. Main ............................................................................................................................................. 44 

4.1.3. Software design ................................................................................................................... 45 
4.1.3.1. Simulation Core ........................................................................................................................... 46 
4.1.3.2. AgX Interface ............................................................................................................................... 53 
4.1.3.3. Unity_Visualization ...................................................................................................................... 59 
4.1.3.4. Dynamics ...................................................................................................................................... 61 
4.1.3.5. Optimization ................................................................................................................................ 62 
4.1.3.6. Scene Designer............................................................................................................................. 63 

4.1.4. Core Framework usage (Robot design) ............................................................................... 65 
4.1.4.1. Robot assembly ............................................................................................................................ 65 
4.1.4.2. Object creation ............................................................................................................................ 65 
4.1.4.3. XML functionality ......................................................................................................................... 68 

4.2. VERIFICATION AND VALIDATION ........................................................................................................... 69 
4.3. CASE STUDIES .................................................................................................................................. 70 

4.3.1. Creating and running a scenario ......................................................................................... 70 
4.3.1.1. Design .......................................................................................................................................... 70 
4.3.1.2. Result ........................................................................................................................................... 71 

4.3.2. Dynamics test ...................................................................................................................... 73 
4.3.3. Framework case-study ........................................................................................................ 74 

5. DISCUSSION .................................................................................................................................. 77 

5.1. CBD DECISIONS ............................................................................................................................... 77 
5.2. STAKEHOLDER NEEDS (NTNU) ............................................................................................................ 78 
5.3. ISSUES ............................................................................................................................................ 78 
5.4. SUMMARY ...................................................................................................................................... 79 
5.5. FURTHER WORK ............................................................................................................................... 80 

6. CONCLUSION ................................................................................................................................ 81 
7. REFERENCES .................................................................................................................................. 82 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 3 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

iii. List of figures 
FIGURE 1: MAIN PROJECT COMPONENTS AND PROJECT SCOPE ............................................................................................... 8 
FIGURE 2: ITERATIVE DEVELOPMENT MODEL .................................................................................................................... 15 
FIGURE 3: PROPOSED PROJECT PLAN .............................................................................................................................. 17 
FIGURE 4: MODULAR ROBOT; PITCH, YAW, AND PITCH-YAW CONFIGURATIONS ....................................................................... 19 
FIGURE 5: EXAMPLE FITNESS FUNCTION .......................................................................................................................... 22 
FIGURE 6: THE MUTATION AND SELECTION PROCESS IN A GA .............................................................................................. 22 
FIGURE 7: "CUT AND SPLICE" CROSSOVER OPERATOR ........................................................................................................ 23 
FIGURE 8: EXAMPLES OF MUTATION OPERATORS  SOURCE: HTTPS://WWW.RESEARCHGATE.NET/272093243 ............................ 23 
FIGURE 9: SIMULATED ANNEALING PATHFINDING EXAMPLE [FROM ANOTHER PROJECT] ........................................................... 24 
FIGURE 10: PROJECT DEVELOPMENT PLAN ...................................................................................................................... 29 
FIGURE 11: ALGORYX SIMULATION OF A MODULAR SNAKE-LIKE ROBOT ................................................................................. 37 
FIGURE 12: UNITY EDITOR ........................................................................................................................................... 38 
FIGURE 13: SETTING UP THE ENVIRONMENT VARIABLES ON THE TEST COMPUTER. ................................................................... 39 
FIGURE 14: MODULAR ROBOT SIMULATOR COMPONENTS ................................................................................................. 41 
FIGURE 15: CORE FRAMEWORK SOFTWARE ARCHITECTURE ................................................................................................. 45 
FIGURE 16: SEQUENCE OF ALGORYX OBJECT HANDLING ..................................................................................................... 53 
FIGURE 17: UNITY_VISUALIZATION OBJECT LIFECYCLE ....................................................................................................... 60 
FIGURE 18: SCENE DESIGNER INTERFACE ......................................................................................................................... 63 
FIGURE 19: THE SCENE DESIGNER'S MOST IMPORTANT FEATURES ....................................................................................... 64 
FIGURE 20: ROBOT ASSEMBLY STRUCTURE ...................................................................................................................... 65 
FIGURE 21: CREATION AND DESTRUCTION OF SIMULATION OBJECTS ..................................................................................... 66 
FIGURE 22: XML FILE SCENARIO CLASS REPRESENTATION ................................................................................................... 68 
FIGURE 23: CASE STUDY - DESIGN OVERVIEW .................................................................................................................. 70 
FIGURE 24: CASE STUDY - SENSOR MODULE AND SCENE OBJECT DESIGN................................................................................ 70 
FIGURE 25: ROBOT MOVING FORWARD TO PUSH THE BALL ................................................................................................. 71 
FIGURE 26: DISTANCE SENSOR MEASUREMENTS ............................................................................................................... 71 
FIGURE 27: FORCE SENSOR VS Y-POSITION MEASUREMENTS ............................................................................................... 72 
FIGURE 28: ROBOT FORWARD MOTION .......................................................................................................................... 73 
FIGURE 29: ROBOT FORWARD MOTION WITH INCREASED AMPLITUDE ................................................................................... 73 
FIGURE 30: ROBOT WIDE TURN .................................................................................................................................... 73 
FIGURE 31: ROBOT SHARP TURN ................................................................................................................................... 73 
FIGURE 32: CUSTOM PROJECT, SCENARIO ....................................................................................................................... 75 
FIGURE 33: CUSTOM PROJECT, MODULE MOVEMENT ........................................................................................................ 76 
 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 4 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

iv. List of tables 
TABLE 1: DOCUMENT HISTORY........................................................................................................................................ 5 
TABLE 2: RISK MATRIX ................................................................................................................................................ 18 
TABLE 3: EXAMPLE OF CHROMOSOMES IN A GA SYSTEM .................................................................................................... 21 
TABLE 4: REQUIREMENT IMPORTANCE ........................................................................................................................... 32 
TABLE 5: REQUIREMENT EXAMPLE ................................................................................................................................. 33 
TABLE 6: VERIFICATION CRITERIA................................................................................................................................... 33 
TABLE 7: TEST SPECIFICATION EXAMPLE, FULLY VERIFIED .................................................................................................... 33 
TABLE 8: TEST COMPUTERS .......................................................................................................................................... 35 
TABLE 9: CONTENTS OF THE SCENARIO CLASS .................................................................................................................. 46 
TABLE 10: CONTENTS OF THE ROBOT CLASS .................................................................................................................... 47 
TABLE 11: ROBOT CLASS FUNCTIONS ............................................................................................................................. 48 
TABLE 12: CONTENTS OF THE MODULE CLASS ................................................................................................................. 48 
TABLE 13: MODULE CLASS FUNCTIONS ........................................................................................................................... 48 
TABLE 14: CONTENTS OF THE FRAME CLASS .................................................................................................................... 49 
TABLE 15: FRAME CLASS FUNCTIONS ............................................................................................................................. 49 
TABLE 16: CONTENTS OF THE JOINT CLASS ...................................................................................................................... 50 
TABLE 17: JOINT CLASS FUNCTIONS ............................................................................................................................... 50 
TABLE 18: CONTENTS OF THE SCENEOBJECT CLASS ........................................................................................................... 51 
TABLE 19: SCENEOBJECT CLASS FUNCTIONS .................................................................................................................... 51 
TABLE 20: CONTENTS OF THE SCENE CLASS ..................................................................................................................... 52 
TABLE 21: SCENE CLASS FUNCTIONS .............................................................................................................................. 52 
TABLE 22: CONTENTS OF THE AGX_ASSEMBLY CLASS: ...................................................................................................... 54 
TABLE 23: AGX_ASSEMBLY CLASS FUNCTIONS ................................................................................................................. 54 
TABLE 24: CONTENTS OF THE AGX_FRAME CLASS ............................................................................................................ 55 
TABLE 25: AGX_FRAME CLASS FUNCTIONS ..................................................................................................................... 55 
TABLE 26: CONTENTS OF THE AGX_JOINT CLASS .............................................................................................................. 56 
TABLE 27: AGX_JOINT CLASS FUNCTIONS ....................................................................................................................... 56 
TABLE 28: CONTENTS OF THE AGX_PRIMITIVE CLASS ........................................................................................................ 56 
TABLE 29: AGX_PRIMITIVE CLASS FUNCTIONS ................................................................................................................. 57 
TABLE 30: CONTENT OF AGX_SCENE CLASS .................................................................................................................... 57 
TABLE 31: AGX_SCENE CLASS FUNCTIONS ...................................................................................................................... 57 
TABLE 32: CONTENT OF AGX_SIMULATION CLASS ............................................................................................................ 58 
TABLE 33: AGX_SIMULATION CLASS FUNCTIONS .............................................................................................................. 58 
TABLE 34: MAIN CONTENT OF THE UNITY_VISUALIZATION CLASSES ..................................................................................... 59 
TABLE 35: MAIN CONTENT OF THE DYNAMICS CLASS ........................................................................................................ 61 
TABLE 36: MAIN CONTENT OF THE OPTIMIZATION CLASS ................................................................................................... 62 
TABLE 37: FRAMEWORK IMPLEMENTATION IN A NEW PROJECT ........................................................................................... 75 

 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 5 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

v. Document history 

Table 1: Document history 

 

  

Rev. Date Author Description 

0.1 16.04.2018 TS Document created 

Project sub-documents assembled 

0.2 04.05.2018 TS Methodology reviewed 

Results part 1 finished 

0.3 03.06.2018 TS Results part 2 finished 

Discussion and conclusion finished 

1.0 10.06.2018 TS Published 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 6 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

vi. Abbreviations and explanations 
  

.Net Software framework developed by Microsoft 

.png Short for Portable Network Graphics, a graphics file format.   

AgX Algoryx 

CBD Component-Based Development 

CBSE Component-Based Software Engineering 

dll Dynamic-link library (.dll file extension) 

Enum Enumerated type, numbers (constants) represented by names (values) 

EQ Equation 

exe Executable file (.exe file extension) 

GA Genetic Algorithm 

Gait Pattern of movement of limbs of animals 

JSON JavaScript Object Notation 

MRSim Modular Robot Simulator 

NTNU Norwegian University of Science and Technology 

Porting Translating code from one language to another 

PSO Particle Swarm Optimization 

SA Simulated Annealing 

UI User Interface 

UP Unified Process 

XML eXtensible Markup Language 

XPath XML Path Language 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 7 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

1. Introduction 

1.1. Introduction and motivation 

The field of modular robotics has been in development since the late eighties, starting 

with the creation of CEBOT in 1988, up until all the different research projects that are being 

worked on today [1].  Hereafter, the technology has continually been improved over the years, 

with the implementation of more flexibility and functionality in modular robot systems. 

Modular robots present an interesting and useful field of study, especially when it comes to 

executing tasks humans are unable to perform. By creating robots with different designs, the 

application areas can be anything from subsea operations, to deep space exploration.  

Since the concept was presented, humans have always been interested in creating robots 

that can change shape as seen in the movie industry, with examples like the robots in 

“Terminator” [2], and “Transformers” [3] .The portrayal of modular robotic technology in 

movies may very well be the inspiration that research groups need to come up with matching 

solutions in real-life applications. Solutions that were once considered science fiction, which 

are now actual proven science.  

1.1.1. Problem 

Humans can solve plenty of problems and are flexible enough to do relatively precise 

operations. However, there are certain actions humans are not able to do and must thus rely on 

other means of completing tasks. For this purpose, researchers are creating a wide range of 

robots (with the focus of this thesis being on modular robots). However, because of the wide 

range of use-cases and implementation techniques, together with a limited amount of people 

knowing how to design modular robots or how to use modelling programs to design them, many 

potentially great ideas may never be explored. If there existed a program that could allow users 

to go from an early concept to finished simulation in a fraction of the time with relative ease, it 

should be easier for seasoned researchers in addition to students and non-programmers, to test 

out their ideas and possibly extend the number of possible uses for modular robotics.  

1.1.2. Motivation 

NTNU currently has an ongoing research project involving different forms of modular 

robots. Currently they are being manually designed from scratch or a template by the 

researchers, before being created and tested in self-coded simulations. Better and faster results 

should be achieved if there existed a fast prototyping platform for robot assembly, scene 

construction and control algorithm testing. This way users could create and optimize robots for 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 8 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

different scenarios, using only a fraction of the time and resources as with the approach 

implemented today, no matter how much experience the user has in creating modular robots 

from before. Another motivation for this project is to create a learning platform where students 

may study modular robotics and create their own designs and algorithms, without the need for 

specialized knowledge of programming or physics simulations. 

1.1.3. Scope 

There are five main fields that will be used in this project to create a simulator for 

modular robots:  

• Modular robot research 

• Implementation of visualization capable of realizing the project goals 

• A realistic physics engine for prototyping (in this case, Algoryx) 

• Component-based development for a flexible and expandable system 

• The iterative based project framework “Unified Process” for reliable prototyping 

 
Figure 1: Main project components and project scope 

The scope of the project is limited to the snake/caterpillar configurations of modular 

robots. As the project’s estimated time-frame is around 4 months, there are limits to the amount 

of time spent on different tasks, making the simulation’s core functionality the focus as it should 

be modular enough for integration with other potential visual interfaces. Based on this, the 

component-based model is a large part of the project, as it facilitates separation of concerns and 

incremental improvements to the simulator functionality. The visualizations shall be 
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realistically rendered by interface with the stored physics objects and provide intuitive 

simulation controls. When the modular robot and its environment is created, the user should be 

able to apply optimization algorithms increasing the efficiency of the created robot prototypes.   

1.1.4. Objective 

The objective of this project is to enable realistic and easy design of snake-based 

modular robots and exploring the benefits of component-based development in the simulation 

architecture of a relatively small-scale project. The tool should give the user, no matter the level 

of their previous knowledge, the ability to design modular robots and implement their own ideas 

and creative solutions to realize their goals. It is hoped that the simulator will motivate students 

to learn about modular robotics and allow researchers to develop their robots, or future 

simulation systems, more quickly and efficiently. Having a simulator with realistic physics, a 

professional degree of functionality and high quality visual effects should also make the design 

of modular robots more appealing. The core simulation framework should be usable in custom 

projects, requiring the component-based development method to be implemented correctly.  

1.1.5. Research Questions 

• Is the proposed simulation platform better for developing modular robots than manually 

programming simulations from scratch? 

• Will the component-based software development method notably improve the 

flexibility of a simulation platform and ease its further development? 

• Is the AgX physics library a stable choice for a simulator platform, and how efficient is 

it in providing realistic simulations while allowing for the effective use of optimization 

algorithms? 

• Will the benefits of Component-Based Development outweigh the disadvantages of the 

implementation in an independent, small-scale project?  
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1.2. Previous work 

Following section contains literature on key topics in the project. Specifics related to 

the project are in focus, with the two main themes being modular robot design and Component-

Based Software Engineering (CBSE). Sections (1.2.1.1-1.2.1.3) feature a game engine and 

simulator systems, where features related to the project are highlighted. 

1.2.1. Literature 

1.2.1.1. Webots [4] 

Webots is a simulator designed for the creation of general robots. The application allows 

users to create robots with functionality ranging from simple motorized tasks, to complex 

intelligent behavior. It can simulate flying, rolling, and legged robots to mention a few. 

Designing robots can be done by using pre-defined components, such as sensors, wheels, and 

geometries. Webots runs on the ODE physics engine, which provides fast real-time physics 

simulations. As Webots is a simulator for general modelling of robots, the specifications come 

from the users themselves, requiring some knowledge of programming and robot design. 

Implementation of optimization algorithms is done manually, mostly via supervisor controllers 

which are required for reading positions, distances, and general simulation properties (Webots 

PRO functionality).  

1.2.1.2. Unity [5] 

The game engine Unity uses components assigned to objects to handle the game-engine 

architecture, which is an intuitive extension of the object-oriented way of designing systems. 

The game object is in itself a component and may have components added to it for increased 

functionality, such as a rigid body for physics calculations or a mesh for visualization. The 

components have no knowledge of its surroundings or other components, as they are only 

required to do their intended tasks parallel to whatever else is happening in the environment. 

This method for defining objects automatically ensures that the created objects are independent 

and can be used in different scenarios with no need for modification of the code. 

1.2.1.3. VSPARC [6] 

VSPARC is a more specific simulator focused on modular robots. The simulator enables 

the creation of one specific type of module, called SMORES [7], which may be rearranged to 

fit pre-determined configurations. There is only one type of module, but the joints may be 

configured for speed or position control, adjusting the motion and design of the robot. The user 

interface allows for “drag and drop” functionality, where the user clicks on the side of an already 
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created module to add a new one. This results in a very user-friendly and visual-based robot 

construction tool. VSPARC is created in Unity, whose physics engine is designed for quick and 

simple simulations and is thus well-suited for quick prototyping and proof of concepts.  

1.2.1.4. MECABOT [8, 9] 

The MECABOT is a modular robotics system developed by the Militar Nueva Granada 

University (Colombia). It is a modular robotic system focused on chain-based architecture, with 

snake and caterpillar locomotion. The robot is created with several different configurations both 

physically at the research locations, and virtually in the Webots simulation system. Possible 

robot configurations are many, including prototypes for space exploration, self-balancing 

tables, and hexapods. The specifications for the MECABOT research topics also contain details 

about robot dynamics with relation to velocity, module size and sine functions, highlighting 

differences in performance based on varying variables.  

1.2.1.5. Screw-less Solution for Snake-like Robot Assembly & Sensor Integration [10] 

The focus of NTNU’s research project regarding modular robots is to develop snake-

inspired robots that can be reproduced via fast prototyping with easy to configure sensors. The 

modules are 3D-printed and connected to each other by sliding connectors, thus screw-less. 

Sensors are placed in an intermediate module featuring the same sliding connectors. Several 

solutions for connections are proposed, such as wired and wireless communication, the latter 

removing the need for cables between modules. The paper also describes the researchers’ 

selected control behavior of the modular robot as being bio-inspired and allowing for 

sidewinding behavior, as seen in snakes.  

1.2.1.6. Modular Robot Systems (Self-assembly) [1] 

A proposed approach from K.Gilpin and D.Rus uses induction coils in the modules to 

perform the assembly connections to neighboring modules. The robots are as small as 12𝑚𝑚2, 

and contain no moving parts, making them less expensive and more durable. The algorithm for 

self-assembly assumes one root node, to which the neighboring modules will try to attach 

themselves. The newly attached modules will then calculate their X and Y location relative to 

the root node, and thus completing some part of the overall structure. If this location is not 

appropriate relating to the neighbor modules, which should have two neighbors itself, the 

module will power off, and detach itself from the structure.  
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1.2.1.7. A Light-Weight Robot Simulator for Modular Robotics [11] 

The CTU (Czech Technical University) in Prague, faculty of electrical engineering, has 

created a simulator named “Sim” within an EU project called Symbrion [12]. The project 

focuses on behavior and design of modular robots based on biological and evolutionary 

computational approaches. CTU’s simulator is based on a component-based design enabling 

the physics simulation and the visualization to be separate, allowing non-GUI machines such 

as computation grids to perform the physics calculations when visualization is not required. 

The simulator is used for a variety of robot types, including modular robots and mobile (wheel-

based) robots. Lastly, locomotion examples are described together with optimization examples 

(PSO), which can be implemented in the simulator.  

1.2.1.8. Component-based Development Process & Component Lifecycle [13] 

Component-Based Software Engineering is a relatively new discipline, with no specific 

processes or workflow standards. However, the main principles featured in CBSE are proven 

to be advantageous in multiple use-cases and projects. Mainly, the concept of developing 

systems from pre-made components is one of the main ideas in CBSE. This reduces the amount 

of work from the development process, as the components should already have been developed 

in other projects. Furthermore, the journal defines Component Assessment as a process with 

high focus, which consists of labeling, testing and validating each component to ensure stability 

and usability. The last process introduced is the act of designing each component for reuse, 

which is not an integral focus in traditional software engineering.  

1.2.1.9. Twenty-eight years of component-based software engineering [14] 

This study is set on mapping the motivations behind CBSE, and the rewards gained 

from implementing the concept. It acknowledges that it is a large field of study, and that 

questions arise on whether advantages of CBSE have been clearly defined or if there are still a 

multitude of research topics that have not been concluded regarding the field. To perform the 

study, researchers have set up 5 research questions, which relate to the intensity of CBSE 

projects, main rewards, most investigated topics, different domains in which CBSE is applied, 

and the most frequent applied research methods. The book states that the main objectives 

highlighted in most of the journals concerning CBSE are increased productivity together with 

cost savings, with quality and reusability concerns also being large contributors. The main 

feature of CBSE is to create reusable components which may be used in future projects, and 

design systems to be able to implement already verified components.  
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1.2.2. Literature discussions  

This section contains an analysis of the literature review. The literature found in section 

(1.2.1) is analyzed and compared against each other to highlight viable and relevant knowledge 

in the field, which may be of importance to this project.  

1.2.2.1. Advantages of CBSE 

An emerging trend in software development seems to be the implementation of 

Component-Based Software Engineering, CBSE, (or Component-Based Development, CBD) 

in simulator systems. Sections (1.2.1.1, 1.2.1.2 and 1.2.1.7) all reference technology modelled 

with this principle in mind and is a working demonstration on how well the concept is in use.  

Even though CBSE is more rewarding in large-scale projects or businesses, many of the 

advantages should be viable for relatively small-scale projects too. As an example, in section 

(1.2.1.7), the importance of CBSE is shown when executing the simulations on computer grids, 

when visualization of the 3D scenario is not required (which may be the case in pure analytic 

and optimization-based simulations). This use-case is important in modern simulations, as users 

require different functionality such as 3D visualization versus graphing, to either observe the 

system or optimize components.  

(Conclusions): Use of Component-Based Software Engineering should not only be 

viable for large projects, but should also improve stability, code readability, and effectiveness 

of the proposed simulator. It is expected that the advantages of using CBSE (gained from 

modifiability of project, separation of responsibility, processing efficiency and reusability of 

components) will outweigh the challenges (relating to time cost, complexity and version 

control). It is also believed that CBSE should increase the number of possibilities regarding 

expansion of the project when it comes to inclusion of further functionality. 

 

1.2.2.2. Development focus for various modular robots 

The physical models of modular robots have different design implementations 

depending on the various use-cases. The most recurring theme in most of the studies being 

performed on modular robots is the advantage of designing one module which is replicated, 

reducing cost of manufacturing and maintenance.  

The MECABOT study’s approach (1.2.1.4) uses modules containing a structural base 

(body) connected to a motion joint. This allows the modules to be configured for quadruped 

configurations as well as hexapod and snake configurations. The modules are designed for 
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reusability and sturdiness in a variety of scenarios including space exploration and maneuvering 

complex terrain structures.  

The modules used in the Symbrion (1.2.1.7) simulator project are more compact and 

customized, being a result of the research project’s commitment to adapting bio-inspired 

behavior for their modular robots. This enables more flexibility but may increase costs relative 

to the MECABOT system. 

NTNU Ålesund’s research project (1.2.1.5) involves easily modifiable and simply 

designed snake-like modular robots, that can be developed with fast prototyping and are easy 

configurable. The design of the modules is less robust, with thinner components than in the 

MECABOT and Symbrion projects, but with focus on modifiability there is a good tradeoff 

between cost and sturdiness. The sliding mechanisms for locking modules together is also 

relatively simple in design, again lowering the cost and complexity of assembly/disassembly.  

(Conclusions): Studies regarding the optimal design of robot modules is an integral 

part of the proposed Modular Robot Simulator featured in this project. Being able to design 

different modules with varying materials and geometry for different terrain and obstacles will 

help researchers reduce the time and cost of physically testing proposed prototypes, and 

possibly implement more effective control algorithms for different use-cases and robot 

properties.  
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2. Background   

2.1. Project framework 

2.1.1. Unified Process 

The Unified Process (UP) is a software development framework, which ensures iterative 

development by varying the workload of each process over the course of a project. With some 

of the processes being, as an example; research, implementation, and testing; the workload of 

these will be varied over the course of the project. In the beginning, there will be much more 

focus on research than on implementation, as research must be performed for the 

implementation to be started. However, where other models may complete the research phase 

before starting with the implementation (ex. Waterfall model), the iterative UP model 

encourages research during the implementation phase. Thus, the individual processes have 

more influence over the process currently in focus. The workload of each process varies over 

the course of iterations: Inception, Elaboration, Construction and Transition. Each of these 

iterations ensure an increment to the system, resulting in increased or improved functionality 

from the previous iteration.  

 
Figure 2: Iterative development model 
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This model is selected because it is designed for software development, ensuring 

progress for every iteration. UP also enforces project deadlines and milestones, making it easier 

to reach the project goals, and fulfill requirements. Another benefit of this model is that 

additional parts of the project may be added without much complication, since the system’s 

base architecture will be implemented after the Elaboration phase. This should allow for testing 

new implementations or figuring out theories for other modules alongside the implementation 

of further functionality. As an example, if a new method for file transfer is proposed, this may 

be implemented alongside the current work in the analysis and design process. Since the 

architecture should be up and running, it will also be possible to implement the functionality, 

and evaluate the effectiveness of the new method. Another way to see this is that since the basic 

environment is created, additional features may be researched and tested.  

In the beginning of the project, focus will be on creating requirements, while assigning 

priority values to each entry. These requirements must be formulated such that they may be 

tested later and show progress for the project. The requirements will be designed with input 

from the project supervisor and verified/validated through the Test and Verification 

specification. 

Secondly, a RISK matrix and table should be created, to clearly identify which parts of 

the project are susceptible to failure or unacceptable behavior.  

After each iteration, it may be feasible to create short iteration reports, highlighting the 

changes and goals reached for the specific iterations. This helps in giving an overview of the 

completeness of the project and serves to present the project progress. However, sprint reviews 

from meetings as mentioned in the agile methods (3.1.1) may be more feasible to use as iteration 

reports.  
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2.1.2. Phases 

 
Figure 3: Proposed project plan 

The four phases of the project contain different processes to be worked on during the 

specific iterations. Figure 3 shows how these are set up. 

The inception phase, which serves as the initialization of the project, is performed before 

the official start date of the project. It can also be seen as an introduction to the project. Here, 

initial literature will be reviewed, and key concepts will be researched before the start of the 

thesis. The project scope and schedule will be defined in this phase.  

In the elaboration phases, the focus is on setting up the working environment, in this 

case the basic functionality of the simulator. There will also be research on the other 

components of the system, and possible extensions to the currently proposed topics. There are 

two iterations of Elaboration in this project. 

In the construction phases, all the theories and design proposals will be implemented in 

the project, as designed in the previous phases. There is also room for research. This phase is 

focused on the actual implementation, compared to elaboration which is focused on the 

preliminary designs theories. There are two iterations of Construction in this project. 

The last phase is the Transition phase. This is where the project is refined, bugs are 

fixed, and the documentations are finished. This phase serves to prepare the project for analysis, 

review of results, and verification/validation. Thus, this phase’s main workload lies on the 

report and evaluation aspect of the project.  
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2.1.3. Risk 

UP has a big focus on the architecture of a system. One of the core tasks to be completed 

in the elaboration phase is an up-and-running base architecture for the program or system to be 

designed, so that requirements and the architecture may be tested and validated. Many projects 

using the UP are also heavily Risk-focused, serving to address the most critical risks early in 

the project. Thus, when the architecture is up, the preliminary RISK analysis may be finalized. 

As shown in Table 2, a RISK matrix considers the probability of an impact together with the 

impact effect. If something has a low probability, but a high impact, it will still have a medium 

risk value, as the project most likely cannot afford to ignore the element simply because it has 

a low probability for impact. Each risk entry will have an impact and probability value. The 

preliminary risk matrix is shown in Appendix A. 

Im
p
ac

t 

High Medium High High 

Medium Low Medium High 

Low low Low Medium 

 
Low Medium High 

 Probability of impact 

Table 2: Risk matrix 
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2.2. Modular robotics 

2.2.1. Design 

Modular robots are composed of several parts, moving in a specific manner depending 

on the current scenario to fulfill their goals. There are many ways of designing these robots, but 

as this project is focused on the chain architecture, the design of these will be the focus. Chain 

based modular robots form single or multi branched links, giving rise to multiple different 

configurations when creating the modular robot. They are mainly created with certain problem 

scenarios in mind and are thus modelled for these specific tasks.  

Configurations: 

 
Figure 4: Modular robot; pitch, yaw, and pitch-yaw configurations 

Using the chain architecture, there are two main axes in which rotational motion is 

performed: pitch and yaw. The robots may be connected in any manner that is suitable for the 

user, but the three standard configurations are: Pitch, Yaw, and Pitch-Yaw-configuration. 

Configurations outside of these three proposals do exist, with certain systems allowing for 

adjustment of module axis during movement. The modules are connected as required depending 

on the various use-cases of the robots, with configurations often sporting quadruplets or 

hexapods, most notably for use in space-based operations or traversal of complex terrain [9].  
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2.2.2. Dynamics 

The motion of modular robots is mainly inspired from nature, with chain-based robots 

often modelled after snakes and caterpillars. The movement is often modelled as a sinusoidal 

function, with the rotation of each joint modelled as a function of time. An example of 

programming the movement for a modular robot is shown from the research paper provided by 

Dr. Guoyuan Li, from NTNU Ålesund [10], with a pitch-yaw configuration with 5 modules as 

shown in EQ (1) and EQ (2):  

 
𝜃𝑝(𝑖, 𝑡) = 𝐴𝑝 ∙ sin (𝜔𝑡 +

(𝑖 − 1)𝜙

2
) , 𝑖 ∈ {1,3,5}  

(1) 

   

 𝜃𝑦(𝑖, 𝑡) = 𝐴𝑦 ∙ sin (𝜔𝑡 +
(𝑖−2)𝜙

2
+ 𝜑𝑝𝑦), 𝑖 ∈  {2,4}, (2) 

 

where 𝜃 is the reference angle for joint number “𝑖”, A is the amplitude, 𝜔 is the angular 

frequency, 𝜙 is the phase difference for the selected configuration, and 𝜑 is the phase difference 

between the configuration connections. As these equations describe motion for two separate 

axes, the patterns of motion will be different depending on the configurations. One motion 

(turn) consists of forcing an offset angle on the Yaw-modules and only dynamically controlling 

the Pitch modules, allowing the robot to perform a right or left turn, depending on the direction 

of the offset. There is no limit for how the dynamics of modular robots may be implemented, 

and the example provided is just one instance. For this project, it is important to select a method 

that is easily replaceable or modifiable as the user should be able to implement custom scripting. 

This model for robot dynamics allows for a specific set of parameters, making it an interesting 

potential method for movement control. 

The four main motion behaviors for chain-based robots are the following: 

• Linear progression 

• Rolling 

• Sidewinding 

• Turning 

These models will be the focus for the robot dynamics and will be used to create the 

basis of a modifiable script for movement generation.  
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2.2.3. Optimization algorithms viable for modular robotics 

The implementation of optimization algorithms is crucial for giving developers the tools 

they need to model modular robots. There are several different approaches to optimization, thus 

the Modular Robot Simulator should accommodate for implementation of the most common 

ones. 

2.2.3.1. Genetic algorithm 

Utilizing genetic algorithms for optimization of parameters is not something new, and 

has been around since 1950, when Alan Turing proposed a machine that could simulate the 

properties of evolution [15]. Since then, plenty of algorithms have been designed for different 

use cases, including for modular robots. To implement a genetic algorithm, one must first define 

a set of variables that may be modified for the selected system to better perform certain tasks. 

Examples of these variables in a modular robot system may be module weight and size, 

materials and joint lengths. However, variables may also be connected to the dynamics of the 

system, controlling the gait of the robot.  

The variables for the genetic algorithm are often stored in an array or a list, in a specific 

order. These arrays/lists are referred to as chromosomes.  

Population Chromosomes 

Entity 1 𝑎1 𝑏1 𝑐1 𝑑1 𝑒1 𝑓1 

Entity 2 𝑎2 𝑏2 𝑐2 𝑑2 𝑒2 𝑓2 

Entity 3 𝑎3 𝑏3 𝑐3 𝑑3 𝑒3 𝑓3 

Entity n 𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛 𝑒𝑛 𝑓𝑛 
Table 3: Example of chromosomes in a GA system 

A GA has 4 main functions: Fitness function, Selection operator, crossover operator and 

mutation operator. More operations may be implemented, but these are regarded as part of the 

standard GA algorithm.  
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Fitness function 

 
Figure 5: Example fitness function 

The fitness function defines the goal of the algorithm, and how well an entity has 

performed for each iteration. It is important to select a fitness function with the right variables, 

as this directly influences the time it takes to find the optimum solution, and how good this 

solution is. A good output for fitness can be some weights of speed, distance and energy used 

to get to the target. Having these as a fitness function with equal weights will in theory optimize 

these three parameters primarily.  

Selection Operator 

 
Figure 6: The mutation and selection process in a GA 

The selection operator chooses which of the entities that will “survive” to create 

offspring, and thus pass their genes on. Often, the best solutions from the fitness function are 

selected, and the worst performing entities are killed off. Only the best solutions go on to breed, 

and the algorithm produces on average better results. Another method is to use probability to 

select chromosomes all over the spectrum, with a higher probability for entities with higher 

fitness to be selected. There are several ways to select entities, and specific solutions may be 

tailored to different applications.  
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Crossover operator 

 
Figure 7: "Cut and splice" crossover operator 

The crossover operator takes the chromosomes from the selection operator as input and 

produces children chromosomes as outputs. The function usually creates as many children as 

the amount of entities killed in the selection process, unless the mutation operator creates 

children on its own instead of modifying existing chromosomes. There are several different 

methods for crossover, including “cut and splice” and “uniform” crossover. “cut and splice” 

cuts off a part of two chromosomes and creates two children with one part of each parent 

chromosome each. The “uniform” crossover method assigns chromosomes to children 

randomly from each of the parents.  

Mutation operator 

 
Figure 8: Examples of mutation operators  

source: https://www.researchgate.net/272093243 

The mutation operator applies changes to the chromosome, to prevent the formation of 

local minimums in the algorithm. By accepting completely new values to be added to the 

chromosomes, it is possible to find new unexplored combinations that would never have been 

found with just a crossover function. There are several ways to apply mutation, as seen in Figure 

8, with the insertion mutation being the approach most similar to nature. 
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2.2.3.2. Simulated Annealing 

An alternate approach to optimization for modular robots is the Simulated Annealing 

(SA) algorithm. The principle is based on annealing in metallurgy, where a metal is heated and 

slowly cooled to reduce defects in the material. In simulated annealing, the probability of 

accepting worse solutions as a function of the temperature “T” is compared to the cooling 

function in metallurgy annealing and is crucial to explore a wide area of possible solutions, 

reducing the risk of being stuck in a local optimum.  

 
Figure 9: Simulated Annealing pathfinding example [from another project] 

The SA algorithm starts with an initial solution, which can either be a list of nodes to 

be traversed or a list of variables to be modified, among others. The temperature “T” also starts 

with a certain value, and is decreased based on a custom function, which is often based on time. 

EQ (1.2.4) shows an example of a probability function: 

 
𝑃(𝑆, 𝑇) = 𝑒

−(𝑆1−𝑆2)
𝑇

 > 𝑅, (1.2.4) 

where S contains an evaluation of the previous and the suggested solution, T is the 

temperature and R is a random number between 0 and 1. As the temperature decreases, the 

probability function will consider less and less values that go uphill, and mostly favor solutions 

that go downhill, making the start of the algorithm search for global solutions, while finding 

local optimums nearing the end. When the temperature has reached 0, the algorithm finishes 

while returning the final solution from the probability function.   

In this project, SA may be used for finding the optimal robot parameters much like in 

the GA. By initializing the robot with a set of variables, and specifying which parameters that 

should not be changed, it is possible to perform annealing on the remaining variables, running 
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a simulation for each step, finding optimal solutions. It would also be interesting to research the 

algorithm’s ability to modify the robot dynamic behavior. Lastly, it may be possible to create a 

pathfinding algorithm for the robot with the use of SA. This requires a fully observable 

overhead view of the environment.  

2.3. Component-Based Development  

CBD is the top-level design of a system, while CBSE is the Software Engineering 

aspect. This chapter contains both.  

2.3.1. Introduction to CBSE 

Component-Based Software Engineering involves creating components focused on 

reusability with possibility for implementing them again in other systems with little to no 

modification required. These components exist in the form of pre-compiled libraries or sections 

of code. CBSE is closely tied to modular programming and both provide similar functionality, 

with the main exception being that modules require no specific interfaces and may be viewed 

as additions, rather than features. Specific characterizations of the two terms vary based on 

developers’ definitions. In this project the mentioned distinctions will be referred to as the 

standard. 

As described in [16]: “A software component can be defined as an executable unit of 

code that provides a set of services through specified interfaces”. The book describes the main 

goals of implementing CBSE as:  

Cost Reduction: 

Cost reduction is a top motivation for any project be it business or research based [14]. 

The implementation of CBSE in the correct way ensures development, testing, validation, and 

verification time is shortened by re-using the already tested components which have been 

through the necessary processes in previous projects. 

Ease of assembly: 

Segmentation of functionality facilitates the assembly process by assigning specific 

features to individual components. Correct use of the CBSE process ensures all components 

have a simple interface to the system, facilitating intuitive and quick implementations. 

Reusability: 

Reusability applies to both the programming level; re-use of functions and class 

frameworks, and the design level; re-use of architecture and design concepts. A popular tool 
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for modelling component-based systems is UML, which allows for representations of the 

system with class and flow diagrams.  

Customization/flexibility: 

When components are made available for the developers, the functionality of the system 

depends on the different assembly of components. If new requirements are discovered, modules 

may be replaced according to the developers’ needs.  

Maintainability: 

By designing with components, systems become divided into sections, which enables 

troubleshooting specific parts of the code, rather than following the software flow. Bugs stay 

local, rather than system-wide issues. Deprecated modules may be replaced instantly when 

necessary.  

Components are expected to offer certain services in a system. This creates different 

functionality for the system based on the assembly of components rather than changes or 

additions to individual code segments. By supplying independent component functionality, they 

can be ported to other projects with ease, and likewise receive new or modified components to 

extend their own functionality. The functionality of a component should be the same, whichever 

system it is deployed to.  

2.3.2. Business use-case 

Larger businesses often receive the most advantages of CBD, as they have bigger 

projects which may require more repetitive implementation than in smaller projects and they 

may already have, or plan to use components in several systems. If a company designs with 

modules/components, the modules may be re-used in other projects, shortening development 

time and cost. The cost-reduction goal is likely the most important factor for a company when 

deciding frameworks or development methods. However, it is a well-known fact that most 

software developers do not trust in code created by others [16]. This is one of the main 

challenges facing the CBD methods, as it reduces the probability for a component to be re-used.  

Benefits of CBD mainly arise after extensive collections of components have been 

created, thus the great potential for large businesses. However, the benefits regarding ease of 

assembly, reusability, and maintainability are expected to be valid for projects, regardless of 

size. These three goals will be the focus in evaluating CBD in this small-scale project, and 

research will be conducted accordingly. 
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2.3.3. Component-based optimization 

The customization and flexibility featured in the CBD process enables components to 

be removed if obsolete. A scenario where this is required is during the use of optimization 

algorithms, for optimizing movement or design performance. Since visualizing scenarios takes 

a lot of processing power, a more favorable solution is to cut out the visualization altogether, 

and only perform calculations in a closed system. Such a system is described in [11], where 

simulations are performed in a computational grid. Since optimization algorithms rarely need 

user interaction after initialization, the only visualization that will be needed is for showing the 

finished result after optimization has been performed. Still using CBD principles, the 

visualization module may be re-activated upon program completion, or shown in another setting 

such as a professional rendering software, for presentation- or advertisement-based uses.  
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3. Methodology 

As described in the introduction (section 1.1), the focus of this research is to enable 

realistic and easy design of snake-based modular robots, in addition to studying the component-

based development methods in relation to the simulator architecture and small-scale projects in 

general. Several methods have been used to study the proposed research problems, while at the 

same time answering or discussing the research questions provided in Section (1.1.5). The 

methods are as follows:  

Section 3.1 contains methods for the development of the simulator, such as the project 

framework and work schedules, in addition to research performed relating to key aspects of the 

project such as the modular robot domain, and software methodology.  

Section 3.2 describes the verification and validation part of the project which involves 

the project requirements, tests and verification specification of the system and core framework, 

and validation of the complete modular robot simulator. 

Section 3.3 lists the tools, platforms and libraries used, including the hardware used for 

development and testing, software components and the development environment/libraries.  

3.1. Development 

This section covers the methods for developing the Modular Robot Simulator including 

research, the unified process, component-based software engineering and general research 

strategies. 

3.1.1. Project methods 

The project development method, Unified Process, has been used in tandem with an 

agile development method to ensure the project going according to plan. Unified process has 

been selected for the system development and prototyping, and the agile method for status 

updates, input from supervisors and short-term goals.  

The agile method consisted of sprints every two weeks, with sprint reviews and 

retrospective meetings with supervisors after each sprint to keep everybody up to date and 

evaluate the quality of supervision. These sprints complimented the iterations in the UP, 

allowing for feedback more often than just after iterations, and potential modifications to be 

performed in good time before deadlines. In the elaboration phase, the increased feedback aided 

in the planning of all the project phases and refining the required features of the simulator. In 

the construction phases it aided with increased feedback and troubleshooting, by letting 

supervisors be regularly updated on the progress and developed features of the system.  
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3.1.1.1. Unified Process 

A roadmap has been created to show the design phases of the project, as shown in Figure 

10. Even though selective content is the focus for a specified phase, the other parts of the system 

are worked on simultaneously, as defined in the UP (2.1.1).  

 
Figure 10: Project development plan 

In the Elaboration phases, the focus has been the requirements, setup of the 

environment, file system and relevant documents. Also, as is a standard in the UP, a prototype 

architecture was finished by the end of the Elaboration 2 phase.  

In the first construction phase, the focus was on the functional simulator framework, 

including all the main features the simulator has. In the research and management field, theories 

about object-oriented modelling were the first topics, with dynamics research the second, to 

prepare for the implementation of the robot dynamics. In the second construction phase, the 

focus was on the scene designer and further improvement of the work from phase 1, and in the 

third construction phase, the optimization algorithms were the focus, along with research 

relating to the topic.  

The transition phase focused on finishing the main project components and ensured a 

stable system, together with the documentation of findings and finalizing the technical 

specifications.   

 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 30 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

3.1.2. Research and planning 

Research was performed with regards to software frameworks to provide the most 

robust and flexible solution for the simulator system. A comparison study on traditional vs. 

Component-Based Development [17]  highlights the advantages and disadvantages of the two 

approaches, with the segments comparing the easy to implement- (traditional) versus easy to 

re-use- (component-based) systems being the most relevant for this project. Research into other 

modular robot simulators, as in section (1.2.1.8), also showed motivating advantages of CBD.  

There are multiple ways of designing simulators and programs in general but using a 

straight-forward development method did not seem like the correct way to approach this 

problem when thinking long-term solutions. Thus, the focus shifted towards a component-based 

engineering approach, which would not only enable easy modification of features but also 

potentially improve reusability of components, improve efficiency of operations such as 

optimization algorithms, and enable extraction of key-parts of the software to be used in other 

projects. 

Use of the CBD method in turn led to the separation of concerns in the core-architecture, 

resulting in the Algoryx Interface class, and the Simulation Core class. Rough sketches of the 

class structure were designed, and later revised into the class diagrams shown in section (4.1.3). 

Towards the end of the second elaboration phase, technical documents were created as 

documentation and concept plans of the simulator.  

Throughout the entire project, the focus has been on finding new methods and 

expansions to the project, to ensure the quality of the finished work. Thus, various research 

phases have been included whenever a new possibility for improvement has been discovered. 

This includes both research that has been implemented and conceptual research that has not 

been included in the final prototypes but might be interesting for future work. Information has 

been gathered from literature on the current state of the art regarding technologies and features 

implemented in the final system, but also from community-based forums, with questions related 

to simulator development and software implementations. 

3.1.3. Modular robotics 

Research regarding modular robots has been performed by studying relevant and new 

literature, as described in (1.2.1.4-1.2.1.7),  regarding the performance, use-cases, and dynamics 

of these. The main inspiration for the modelling has come from the NTNU research project; 

both from simulation code, simulation visualizations and physical 3D-printed models of the 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 31 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

robot modules. The dynamics research comes mainly from biologic research on snakes and 

their movement patterns, together with analysis and redesign of the NTNU project’s dynamics 

code. Relating to the scene and terrain, most research comes from exploring the possibilities of 

simulations and image-based heightmaps. Lastly, a lot of research has been performed on Unity 

and Microsoft’s libraries to create custom class structures for variable types, and functions for 

features not covered by the Algoryx library, like distance measuring in the scene and image-

loading for terrain.  
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3.2. Verification and validation 

3.2.1. Simulator Specifications 

3.2.1.1. Requirements 

There must be thorough requirements describing the necessary functionality of the 

simulator before creating the test specifications. The requirements have been based on the needs 

of the professors working in the current research group at NTNU and the capabilities of the 

group’s existing modular robot simulations, together with requirements derived from research 

and functionality issues. When the requirement specification was finished, the test specification 

was created to enable actual testing of the components and ensuring the requirements were met. 

When testing the system, text fields in the test-specification were filled in with the results of 

the tests, and the fully filled-out document became the Test and Verification specification. 

As mentioned, requirements came from both the NTNU research group and also from 

the general functionality which is required of simulators. Some requirements were also defined 

from analyzing the manually-created modular robot simulations received from the research 

group. 

The requirements have been divided into two main topics based on different aspects of 

the requirements; Simulator requirements, and CBD related requirements. Under these topics, 

there are sub-topics with requirements regarding specific parts of the system/sections. To rank 

the requirements, a three-letter system has been implemented, as shown in Table 4: 

A The requirement shall be met to ensure a stable component 

B The requirement should be met to ensure an efficient component 

C The requirement is optional or flagged as further work 
Table 4: Requirement importance 

The actual requirements consist of table entries, as shown in Table 5. Individual 

requirements reside within the sub-topics, and requirements within these are often tested 

together in the test and verification specification.  

Nr: Requirement Category Originator Verified? 

REQ-

1.1.1T 

The user shall be able 

to save scenario 

configurations 

A NTNU Verified  

T-1.1.1 

 

REQ-

1.1.2T 

The user shall be able 

to load scenario 

configurations 

A NTNU Verified  

T-1.1.1 

 

REQ-

1.1.3T 

The user should be 

able to load a scenario 

B TS Not verified 

T-1.1.2 
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stopped mid-

execution. 

REQ-

1.1.4R 

The saved robot 

values should be 

represented in a 

format facilitating 

potential prototyping 

B TS Partly Verified  

R-1.1.1 

 

REQ-

1.1.5R 

All aspects of the 

simulation shall be 

transferrable in one 

single XML file 

A TS Partly verified  

R-1.1.1 

 

Table 5: Requirement example 

 

3.2.1.2. Test and Verification 

The test specification is the document describing the various tests which are performed 

on the simulator when the final prototype scheduled for the project is complete. The main goal 

of the test and verification specification has been to ensure the system meets the requirements. 

To verify the requirements, the test specification has been filled out with the results from the 

test-procedures. Thus, the name “Test and Verification Specification”. Each test will be based 

on at least one requirement.  

There are three different categories of tests, as shown in Table 6: 

T Test verification 

R Review verification 

U Use-case analysis verification 
Table 6: Verification criteria 

T-1.1.1 REQ-1.1.1T REQ-1.1.2T 

Pass criteria Configurations are saved to file, then loaded in a new simulation. 

Method 5 different configurations are created and saved.  

The program is shut down, and configurations are loaded to the 

simulator. Repeat 5 times with the different configurations. 

Analyze the ease-of-use. 

Result Verified 

Comment Performed in build application.  

Discussion A file browser instead of typing file name directly as in this prototype 

scene designer would be more user-friendly. 

 
Table 7: Test specification example, fully verified 
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3.2.1.3. System validation  

A comparison study has been performed to validate the requirements and test 

verifications, where the focus points of the simulator are compared with the current technology 

in the field. In this case, it was the current robot simulations created by NTNU Ålesund’s 

research group on modular robots. A test and verification specification has been constructed for 

the study so that advantages and disadvantages could be evaluated against each other, 

comparing both overall results and individual features within the simulator. These studies are 

marked with the letter “U” in the Test and Verification Specification.  

 

3.2.2. Framework and simulator verification  

There is also a test case for some of the components in the simulation framework. 

Specifically, the Core Framework components as these are the central components in the 

project. Here, the focus is on the component-based development, verifying if there are any 

benefits of implementing this method while checking the difficulty of creating new custom 

projects with the developed framework.  

The component-based focus in this project has led to some additional possibilities 

regarding testing, outside of the expected features of a simulator. Most notably, increased 

extendibility and modifiability is expected to emerge from the design process. As a result, the 

core framework of the simulator application is extracted in the form of “dll” files and used as a 

library for creating a new simulator project with other visualization tools or scene designers. 

Thus, the test scenario involves creating a custom project with the simulator framework and 

checking the feasibility regarding the development of new projects with it.  

Case-studies have also been performed to verify the functionality of the simulator and 

the framework. These demonstrate scenario creation, robot dynamics and new simulator 

creation. 
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3.3. Tools, platforms, libraries 

3.3.1. Hardware 

The software has been developed mainly on two separate computers with different 

specifications. This has allowed for speedy development on the high-end computer with more 

powerful hardware whilst testing the overall usability with a the relatively lower-end computer. 

This enabled quick troubleshooting of parts of the system which were bottlenecking the 

simulator, since the low-end system was used regularly throughout the entire project for 

development. Code sections that were not well enough optimized for the lower-end system have 

been optimized where possible. It is expected that users of the simulator will not use hardware 

of lower grade than what the simulator has been tested with, thus validation and verification 

performed on the low-end system should be considered valid. However, lower memory might 

have been more suitable for the low-end system. Table 8 shows the test systems employed in 

this project.  

System Desktop (High-end) Laptop (Low-end) 

CPU AMD FX-8350 Intel i7-4510U @ 2.0GHz 

Cores 8 2(4) 

GPU Nvidia GTX 970 4GB Nvidia GeForce 840M 2GB 

Memory 8GB 8GB 
Table 8: Test computers 

 

3.3.2. Software components 

Several software components needed for the project functionality were not included in 

the Unity and AgX collection of libraries and had to be implemented manually: 

ObjImport 

The “ObjImport” class was used to import the “.obj” files containing the meshes of the 

robot frames. Unity has no functionality for importing these from scripts and having non-

modifiable meshes would severely limit the functionality of the simulator.  

System.drawing 

Separation of concerns is an important part of this project, to the extent that the core 

framework should be portable to external libraries, for use in multiple systems. To reduce file 

size and ensure usability over multiple platforms, the libraries utilized in these classes should 

be from Microsoft’s collections. However, some of the libraries are not automatically included 

in the standard “system” library and must be imported manually in the form of dlls. This was 
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the case of the “system.drawing” class  which was needed in order to read pixel values from 

the heightmap image generating the terrain in the scenario.  

Heightmap values 

There are no officially available libraries that convert image files into heightmaps. Thus, 

a custom function had to be created to fulfill this requirement. An example solution was found 

on Unity’s community page [18], and modified to suit the needs of the terrain component. The 

original code created Unity meshes from an image by assigning to the mesh components 

(triangles, uvs and vertices), while for this project it was modified to store these in the scene 

class object, using the “system.drawing” class for bitmap storage, and ensuring the correct size 

of the terrain.  

Additional build requirements 

When building the .dll files representing the individual components it is important to 

build with .NET version 3.5.  

Also, since “System.drawing” is a custom imported library, Unity does not recognize 

the dependencies when building the application (.exe project). Thus, the “System.dll” file found 

in the Unity install location (Unity\Editor\Data\Mono\lib\mono\2.0) must replace the file from 

the build folder: (\Managed\System.dll). 

The Algoryx version used in the project is AGX-2.21.1.2. Users may have to upgrade 

their version to AGX-2.21.1.1 version+ to make all the functions work.  
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3.3.3. Algoryx Dynamics 

https://www.algoryx.se/products/agx-dynamics/ 

To create a realistic simulation of the modular robots, and for correctly optimizing the 

required components, standard integrated physics found in most visualization- and game-

engines will not be satisfactory. As these are designed to perform efficiently and in real-time 

primarily, they are actively programmed with reduced accuracy and functionality, in favor of 

speed. For a prototyping tool, it is more important to have accurate physics simulations, than 

real-time visualization. Thus, the need for a custom physics engine, like Algoryx Dynamics 

(AgX). 

AgX is a highly realistic physics engine used for professional simulations. It is world 

leading when it comes to wire simulations and features much higher accuracy for computations 

than other conventional and open-source physics engines. The corresponding library consists 

of hundreds of C++ classes with intuitive and portable code, allowing for the use of virtually 

any programming language, with the use of correct references to the standard C++ code. To 

implement a custom physics engine into an already existing visualization platform, it is simply 

a matter of importing the required runtime libraries and launching the program with path 

variables referencing to the physics engine’s file locations. When the programs are set up, 

simulations can be created as usual except for the different library structure of the custom 

physics engine, and the linking of visual objects to the corresponding physical objects. Also, 

where the integrated physics colliders often allow for behind-the-scenes updating of visuals, 

this must be done manually with a custom physics engine.  

 
Figure 11: Algoryx simulation of a modular snake-like robot 
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3.3.4. Unity 

https://unity3d.com/unity 

AgX contains a simple visualization tool for outputting graphics of a simulation, with 

the company logo featured as a watermark on the screen. However, the graphics engine is 

limited when it comes to implementing user interfaces and modification, together with the 

relatively low visual quality of scenes. Since this project has a strong focus on user-friendly 

interaction, together with a high level of portability and modular design, it will be advantageous 

to use a game-engine such as Unity to visualize the simulation. Other solutions have been 

considered, such as the Java-based JMonkey-Engine. However, due to the lower visual quality 

and lower maintenance standards, these have been rejected. 

Unity is one of the leading platforms for game development, due to its ease-of-use, 

combined with excellent visual quality. The software is free to use (assuming little to no income 

is generated from projects), and implementations are well documented, thanks to the large 

number of developers on the platform. The programming can be performed in JavaScript or C#, 

and the latter will be used for this project. Support for NET 3.5 gives access to most of the 

functionality that C# has to offer, which will be a great addition to AgX physics.  

Both AgX and Unity’s architecture is designed in such a way that porting the software 

to other systems should be possible, especially considering the programming language (C#). 

This has made it possible to import the code and library files to other C# based programs using 

Visual Studio, facilitating the ability to change to a DirectX-platform, or performing 

simulations on dedicated servers with no visualization. This is all assuming the code itself is 

created in a manner that allows for reusability, as was the intention with the CBD method.   

  
Figure 12: Unity editor 
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4. Results and findings 

4.1. Design of the modular robot simulator 

This section contains the design of the simulator. The first chapter details the steps to 

set up the editor and application environment, the second chapter contains the results of the 

component-based design process implemented in the project, the third chapter is the technical 

specification of the simulator framework, and the fourth chapter details the usage of the 

simulator framework and how robot/scenario creation has been implemented.  

4.1.1. Setting up the software environment 

1. To set up the platform/application environment, Algoryx needs to be installed on 

the computer as detailed in the user-manual: 

https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/installation.html 

2. After the installation, the license file is pasted into the Algoryx installation folder 

(Failure to do so will result in the physics engine not starting and producing errors), 

followed by adding the Algoryx installation path to the system environment path 

variable.  

3. Next, the agxDotNet.dll file is added from the “\bin\x64” folder to the “plugins” 

folder in the Unity project.  

4. Visual studio 2017 must be installed on the computer, in order to run the 

environment setup in the next step.  

5. Lastly, a command-window script is created as shown in Figure 13, to link the 

environment variables to the selected application in which Algoryx physics will be 

running. 

  
Figure 13: Setting up the environment variables on the test computer. 

The environment setup script must be executed every time the simulator application or 

editor application is started. An easy way of ensuring this is to start the setup_env.bat script and 

reference it directly to the executable file of the program. While developing the project, the 

setup is referenced to the Unity editor executable, while with a built application, the 

corresponding executable file must be referenced. 

https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/installation.html
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The next task was to find a suitable development environment for the simulator, which 

would enable quick prototyping without requiring too much effort to get familiar with. Two 

game-development platforms were reviewed: the java-based JMonkey Engine, and the C# 

based Unity engine. The latter was chosen because of previous experience with this software. 

In addition, the Unity platform contains more openly available documentation and a larger 

development community. However, any development platform featuring C# as the 

programming language should be able to use Core Framework and have the same results and 

features as this project. “.Net 3.5” versions of libraries from Microsoft are the ones 

implemented, as this is the version that Unity supports.  

 

4.1.2. Component-based design 

The main result of the component-based design is the trinity of task separation in the 

simulator, which is a result of dividing the functionality of the simulator into the three distinct 

components: Visualization, Simulation variables, and Physics calculations. The two latter 

(referred to as the Core Framework) are the most thoroughly designed aspects, as visualizations 

may be implemented later in various forms such as graphing, statistics, or 3D renderings, which 

all rely on a stable simulation to be effective. 

The component-based architecture is a focus in designing the simulator, as the 

implementation also allows for more portability and modularity in the programming structure. 

As many program modules in the system may be changed in the future, having a component-

based design ensures less programming is needed to introduce the new modules, and when it is 

implemented, the module should function flawlessly with the rest of the framework. Still, the 

concept of components is not limited to the individual objects.  

The smallest components in this system are the classes containing information about 

individual objects. The largest component is the core framework itself, as it is usable without 

modification with custom developed Scene Designer applications, such as web-based solutions. 

The main individual components of the simulator system referenced to in this paper are 

the classes and namespaces containing key functionality of the simulator, such as the 

“Simulation_Core”, “Agx_Interface”, “Dynamics” and “Optimization”. Top-level components 

in the Modular Robot Simulator are shown in Figure 14. 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 41 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

 
Figure 14: Modular Robot Simulator components 

4.1.2.1. Simulation Core 

The central functionality of the simulator is located in the data container namespace, 

“Simulation_Core” (4.1.3.1). This contains the classes that store all the variables required for 

the physics calculations and visualization of objects in the scenario. The objects created from 

these classes are in the center of the whole simulator system (core), and the objects from the 

physics handling (4.1.2.2) and visualization (4.1.2.3) namespaces will request information from 

these objects to perform their designated tasks. The core-objects will have the same 

functionality regardless of which technologies and methods are used within the other 

namespaces/system components. It is up to the Algoryx interface classes to have the correct 

attributes and function return values sent to the core-objects.  

Components in the Simulation Core namespace are the classes containing object 

information, such as Robot, Modules, Joints, Frames, etc. these classes also contain components 

of other classes, such as the “Robot” objects which hold several modules, sensor modules and 

joints. The Simulation Core objects function regardless of the status of the Algoryx Interface 

or visualization objects, enabling visualizations without physics calculations, and vice versa.   

When the Initialization functions of the objects are called, the objects are added to physics 

calculations and are updated accordingly. Visualization is performed by retrieving component 

data.  

Modular Robot Simulator

Scene 
Designer

Main 
class

Core Simulator

Visualization

•Unity

•Analytics

Robot Optimization

• Opti_Dynamics

• Opti_Design

Dynamics

Core Framework

Simulation Core Algoryx interface
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4.1.2.2. Algoryx Interface 

The physics handling namespace (4.1.3.2) is named based on the current physics library 

in use for the simulator. The name was chosen to represent the functionality of the classes, 

which is to handle the creation of physics objects and conveying the necessary information into 

C# based class objects. The library contains the physics objects from the Algoryx simulation, 

created by methods accessed by the Simulation Core, with return methods retrieving data from 

the physics objects. In the current design of this platform, the physics handling namespace is 

named “AgX_Interface”. However, in future versions it may be replaced with interfaces to other 

physics libraries, such as “ODE_Interface” (Open Dynamics Engine). Since the architecture is 

based on the component-based design, the only code requiring modification will be the 

namespace name and class names (In the Simulation Core namespace). 

Although renaming the “AgX_Interface” namespace and its underlying classes to a less 

library-specific name might seem intuitive, this will reduce the readability in the system, as 

there will be no indication which physics library is in use. The amount of work required to 

rename these fields in the core-classes when libraries are changed will be minimal and will 

keep the code more readable.  

The components in the library are the classes containing the required simulation objects; 

Joints, Frames, Scene, Simulation, etc. Based on which physics library is in use, the Simulation 

class may be static, as it only needs to be instantiated, and the objects added to the physics 

calculations of the Simulation. The rest of the classes reference the objects with the required 

syntax defined by the physics library. When the objects of the classes have been created, there 

should be two separate objects: an object residing in the physics calculations (again defined by 

the current library), and an object of the physics handling namespace “AgX_Interface”, linking 

to the physics object, which will contain all the information necessary to transmit relevant data 

to the Simulation Core objects. 

4.1.2.3. Visualization 

The visualization class (4.1.3.3) is the component which is designed using the current 

development environment’s proprietary libraries, as it directly relates to the visualization 

program currently in use. As such, Unity’s libraries and game object classes have been utilized 

to develop visualizations for the various objects created in the Simulator Core framework. Each 

object created in the Visualization, Simulation Core, and Algoryx Interface have a GUID 

(Globally Unique Identifier) which is used by the visualization classes to identify which object 
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is currently being created/updated, since the decentralized architecture does not encourage 

direct object referencing, in favor of modularity.  

In the “Main” class (4.1.2.6), the robot objects are updated (following a simulation step 

forward), following the update of visualization objects with GUIDs corresponding to the ones 

of the core objects. Usage of the GUID variable is recommended throughout all 

implementations of visualization classes in further development or new projects using the 

MRSim framework.  

4.1.2.4. Dynamics  

The “Dynamics” class (4.1.3.4) is the component which controls the movement of the 

joints between each frame of a robot module. To separate the class as much as possible with 

regards to the component-based approach, it has been made to control all aspects of any 

movement of the robot. All robot attributes are passed to the dynamics class, such as number 

of modules and the joints to rotate. The dynamics class and its functions should be called from 

the main class, with the input parameters being the current robot being simulated. However, 

since the class is independent and not a reference in the robot assembly, the “Dynamics” class 

can be used to control the movement of several robots at the same time, if necessary. This 

assumes the availability of a list of robots, which is possible to implement as further work. If 

the goal of the simulator is to enable as quick and simple a simulation as possible, the 

“Dynamics” class has the functionality required to be called from the “Robot” object. However, 

this limits the user/developer’s different customization options regarding the movement 

variables. 

4.1.2.5. Optimization  

The “Robot_Optimization” class (4.1.3.5) is the component enabling the user to 

optimize the robot dynamic variables. As with the “Dynamics” class, the class is separated from 

the rest of the framework, allowing it to execute at any point in the simulation or not even be 

included at all if desired. The functions within the class have been implemented with focus on 

modifiability, allowing a developer to easily change the Genetic Algorithm’s properties, or even 

replace the GA with another method altogether. Optimization functions use a modified version 

of the “Dynamics” class, where the corresponding class object is being modified by the 

algorithm, and the genome of the GA is the dynamics parameters.  
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4.1.2.6. Main 

Each project created with this framework require a centralized script or class to perform 

the operations required to set up and run the simulations. In this project, control has been 

realized with a “Main” class deriving from the Unity “MonoBehaviour” class. This class is the 

connection point between all the components described in the previous chapters and executes 

all the functions necessary for the simulation to initialize, run, and finish. A good example of 

the role of the “Main” class is the update of visualization objects, based on the “Guid” values 

of the corresponding “Simulation_Core” object.  The reason for implementing a 

“MonoBehaviour” class is that it contains specific features for executing code at program start, 

and time-based repeat functions which update the simulation step and robot “Update” functions 

in Unity.  
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4.1.3. Software design  

The core framework has been developed to create modular robots and put these in an 

environment within a physics simulation. The creation of these objects is performed separately 

in a Scene Designer script and serialized into the XML file, as shown in section (4.1.4.3), which 

is the only file/data that is transmitted before the startup of the simulator application. Thus, with 

the XML file correctly created, the simulator shall function independently with no additional 

requirements from outside of the simulation environment, except for a program initialization 

call (REQ-1.1.5T).  

 
Figure 15: Core framework software architecture 

The focus when designing the simulator was effectiveness and a structured architecture. 

The requirements for the system state that the program shall provide a stable physics simulation 

(REQ-1.2.4T), meaning that well-planned and structured code is of the essence, along with 

clearly defined system components. The Component-based design approach has facilitated a 
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structured architecture for the core framework, as shown in Figure 15, which makes object 

creation and connection with sub-components easy to implement. The full-size figure can be 

studied in Appendix D. 

The usage of components improves ease of use for the class if it is to be implemented 

in other projects in the future and allows for separating the two namespaces into different 

libraries for further distribution. The “AgX_Interface” namespace is completely independent 

with no dependencies from external sources, except for the standard Microsoft C# libraries. 

Thus, the dll can be extracted and used as a quick prototyping tool using Algoryx simulations 

in external projects.  

Classes not shown in the following chapters are found in Appendix E. 

4.1.3.1. Simulation Core 

The “Simulation_Core” namespace contains all information about the scene and objects. 

Except for the “ContactFriction”, all classes contain at least one component in the form of 

“Simulation_Core” objects, or “AgX_Interface” objects. The classes in this namespace are the 

center of the simulation, by containing all the information about the scenario, and having no 

other dependencies than the Algoryx wrapper namespace. Thus, any visualization may be used 

in tandem with these classes, even without using the “AgX_Interface” objects, as has been done 

when visualizing the creation in real-time from the Scene Designer (Section 4.1.3.6) (without 

physics interactions). 

4.1.3.1.1. Scenario 

The “Scenario” class is the top-level class containing all information about the current 

simulation scenario. With no attribute variables or functions, its sole purpose is to be a wrapper 

class for the “Robot”, “Scene”, “SceneObjects” and “ContactFricton” objects in the scenario. 

The object of the scenario class is the one which is serialized into the XML file, with all other 

sub-components being hierarchically listed inside of the respectable class fields. 

Contents of the “Scenario” class are displayed in Table 9. 

Attributes Components 

none robot : Robot 
scene : Scene 
sceneObjects : List<SceneObject> 
contactFrictions : List<ContactFriction> 

Functions 

 none  

Table 9: Contents of the Scenario class 
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4.1.3.1.2. Robot 

The “Robot” class represents the created robot containing all the modules in the current 

configuration to keep track of all the parameters required for simulation. This class is the main 

way of interacting with the robot from the main/control script, with access to modules and joints 

through the sub-objects in the specific object lists. The “Robot” class contains all the required 

functions for adding modules and sensor modules. This class also contains the file directories 

for the frame meshes, in case a developer requires these. The class contains a list of locks, which 

can take any form (Hinge or Lock), and a certain number are assigned after sub-component 

allocations, while they are initialized with actual “AgX_Joint” joints in the form of hinges or 

locks during the initialization function of this class.  

Contents of the “Robot” class are displayed in Table 10, while the main functions of the 

class are described in Table 11. 

Attributes Components 

position : Vector3 

leftFrameDir, rightFrameDir : string 

 

modules : List<Module> 

sensorModules : List<SensorModule> 

locks : List<Joint> 

Functions 

Initialize() 

Update() 

Add_Module() 

Add_SensorModule() 

RemovePhysicsObjects() 

 

Table 10: Contents of the Robot class 

Function Description Return 

Initialize Calls the initialization function for all modules and 

sensor modules in the “Robot” object. 

For each module, depending on any sensor module 

having that module to the right or left of itself 

(defined in sensor module attributes), locks together 

the module and the sensor module.  

Adds the completely initialized robot with all its sub-

components to the simulation via the 

“AgX_Assembly” class.  

void 

Update Updates each “Module” object in the list of modules. 

Retrieves the position of all modules and uses it to 

calculate the overall position of the “Robot” object. 

Updates each “SensorModule” object in the list of 

sensor modules and force sensors on these.  

void 

Add_Module Adds the function parameter’s module to this 

“Robot” object’s list of modules.  

If there is an additional parameter in the function for 

a “Joint” object, it is added to the list of locks in this 

“Robot” object. 

Gives the module an axis label based on its 

orientation in the global x-axis.  

void 

Add_SensorModule Adds the function parameter’s sensor module to this 

“Robot” object’s list of sensor modules.  

void 
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Adds the function parameter’s lock “Joint” object to 

the list of locks.  

If there are two “Joint” objects in the function 

parameters, both are added to the list of locks. 

RemovePhysicsObjects Removes all physics objects from the Algoryx 

simulation, and all the “AgX_Interface” objects.  

void 

Table 11: Robot class functions 

 

4.1.3.1.3. Module 

The “Module” class contains the assembly of two frames and one joint object and builds 

up the shape of the robot. This class is included to better show the structure of the robot, and to 

modify a specific module, instead of individual frames and joints. Because of the modularity, 

it is easier to add multiple modules to a robot, which in turn makes modification of the code 

easier. The modules can be attached to other modules or sensor modules, by lock connection to 

the module’s frames. Thus, the architectural hierarchy of the module class allows for easy 

access to the sub-components.  

Contents of the “Module” class are displayed in Table 12, while the main functions of 

the class are described in Table 13. 

Attributes Components 

mod_Nr : int 
position : Vector3 
axis : string 

frames : Frame[2] 
joint : Joint 

Functions 

Create() Update() Initialize() 
Table 12: Contents of the Module class 

Function Description Return 

Create Assigns the left and right “Frame” objects. 

Assigns the “Joint” object which will connect the two 

“Frame” objects. 

Sets an initial position of the module in case position is 

requested before simulation time step.  

void 

Update Calls the update function of all “Frame” objects in the 

module. 

Calls the update function of the “Joint” object in the 

module.  

Updates the position of the module based on the “Frame” 

object positions.  

void 

Initialize Calls the initialization function of all “Frame” objects in 

the module.  

Updates the position of the module based on the “Frame” 

object positions.  

Specifies the “Joint” object of the module to be a hinge 

and connects the two “Frame” objects.  

void 

Table 13: Module class functions 
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4.1.3.1.4. Frame 

The “Frame” class contains information about the frames of the robot, where two 

separate frames and a joint represent a module. The frames are created by uploading a specific 

mesh for each of the two frames in a module, together with the other attributes. The size of the 

meshes can be scaled by the “scale” attribute. The vertices, uvs and triangles stored as attributes 

are used by both the “AgX_Frame” class and the visualization class, maintaining the 

component-based separation which makes it possible to create frames either outside of the 

physics simulation, or outside of visualization environments.  

Contents of the “Frame” class are displayed in Table 14, while the main functions of 

the class are described in Table 15. 

Attributes Components 

guid : Guid 
shape, materialName : string 
scale, mass : double  
isStatic : bool  
position, rotation : Vector3 

quatRotation : Quaternion 
meshVertices : Vector3[] 
meshUvs : Vector2[] 
meshTriangles : int[] 

agxFrame : AgX_Frame 

Functions 

Initialize() 
Update() 

ScaleMesh() 
SetMesh() 
 

GetQuatRot() 
QuatToRot() 

Table 14: Contents of the Frame class 

Function Description Return 

Initialize Calls the ScaleMesh function. 

Calls the QuatToRot function to get the Euler angles of 

the frame rotation (for checking if the frame is pitch or 

yaw-configured).  

Creates the “AgX_Frame” object with the attributes and 

mesh properties of this class. 

void 

Update Updates the position and rotation of the object based on 

the corresponding values of the object in the Algoryx 

simulation instance. 

void 

ScaleMesh Multiplies the mesh vertices with the “scale” attribute of 

this class to scale the mesh accordingly.  

void 

SetMesh Assigns the mesh attributes to this class from the function 

parameters.  

void 

QuatToRot Updates the Euler angle representation of the sensor 

module’s rotation. 

Returns the Euler angle representation of the sensor 

module’s rotation. 

Vector3 

Table 15: Frame class functions 
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4.1.3.1.5. Joint 

The “Joint” class contains information about the joints of the robot, both locks and 

hinges. A “Joint” object can be attached between two frames, a frame, and a sensor module, 

and between sensor modules and connected sensors. The “Joint” object is also able to modify 

the angle between the two objects it is attached to. This class is one of the few classes that are 

not visualized, as the graphic would be mostly ignored. However, interpolating between two 

attached objects will give the joint position, if desired for visualizations or analytics. The 

function controlling the angle of the joint is interfaced through the “Dynamics” class. 

Contents of the “Joint” class are displayed in Table 16, while the main functions of the 

class are described in Table 17. 

Attributes Components 

guid, leftFrameGuid, rightFrameGuid : Guid 
type : string 
lowerRangeLimit, upperRangeLimit : double 
Kp, max_vel : double 

agxJoint : AgX_Joint 
left, right : Frame 

Functions 

Create_Hinge() 
Create_Lock() 
 

Create_SensorModuleLock() 
Create_ForceSensorLock() 
Create_DistanceSensorLock() 

SetAngle() 
Stabilize_Angle() 
GetAngle() 

Table 16: Contents of the Joint class 

Function Description Return 

Create_Hinge Creates the “AgX_Joint” object in this class as a 

hinge. 

Adds hinge to simulation.  

void 

Create_Lock Creates the “AgX_Joint” object in this class as a 

lock. 

Adds lock to simulation.  

void 

Create_SensorModuleLock Creates a lock between a “Frame” and a 

“SensorModule” object.  

Adds lock to simulation. 

void 

Create_ForceSensorLock Creates a lock between a “ForceSensor” and a 

“SensorModule” object.  

Adds lock to simulation. 

void 

Create_DistanceSensorLock Creates a lock between a “SensorModule” and a 

“DistanceSensor” object.  

Adds lock to simulation. 

void 

SetAngle Adjusts the joint velocity to make the joint reach 

the desired angle.  

Controlled by a P-value.  

void 

StabilizeAngle Slowly resets the angle of the joint to return to 0.  void 

GetAngle Retrieves he current angle of the joint.  double 
Table 17: Joint class functions 
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4.1.3.1.6. SceneObject 

The “SceneObject” class contains the information about the objects the user may place 

in the simulation environment. The objects can be used for either obstacles or objects to be 

interacted with, such as balls or moving blocks. They can also be used as a static flat ground 

for the robot in the scene to move on.  

Contents of the “SceneObject” class are displayed in Table 18, while the main functions 

of the class are described in Table 19. 

Attributes Components 

guid : Guid 
size, position, rotation : Vector3 
quatRotation : Quaternion 
materialName, shape : string 
mass : double 
isStatic : bool 

agxPrimitive : AgX_Primitive 

Functions 

Initialize() Update()  

Table 18: Contents of the SceneObject class 

Function Description Return 

Initialize Creates the “AgX_Primitive” object with the attributes 

of this class.  

void 

Update Updates the position and rotation of the object based on 

the corresponding values of the object in the Algoryx 

simulation instance. 

void 

Table 19: SceneObject class functions 
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4.1.3.1.7. Scene 

The “Scene” class mainly contains the terrain used in the simulation. The robot will 

move on this terrain, and the individual heights of the terrain are specified in a heightmap file 

from which the terrain is generated using a custom function for terrain creation. The Scene class 

stores vertices, triangles and uvs as attributes, which are later used both for the “AgX_Scene” 

objects, and visualization classes.  

Contents of the “Scene” class are displayed in Table 20, while the main functions of the 

class are described in Table 21. 

Attributes Components 

guid : Guid 
height_Image : string 
materialName : string  
height : double 
position : Vector3 

vertices : List<Vector3> 
triangles : List<int> 
uvs : Vector2[] 

scene : AgX_Scene 

Functions 

Create() 
 

CreateMesh() 
 

LoadTerrainFromImage() 
 

Table 20: Contents of the Scene class 

Function Description Return 

Create Calls the LoadTerrainFromImage function 

Creates a new “AgX_Scene” object with the 

attributes from the “Scene” class.  

void 

CreateMesh Only calls the LoadTerrainFromImage function. 

This is required when only visualizing the terrain, 

and not including the physics.  

void 

LoadTerrainFromImage Converts the height_Image string to a byte array 

and turns it into a bitmap.  

Bitmap color values are retrieved for every pixel to 

decide height of the specific point.  

All pixels are iterated through while adding the 

correct vertices and triangles. 

Uvs are calculated from vertices.  

void 

Table 21: Scene class functions 
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4.1.3.2. AgX Interface  

The “AgX_Interface” namespace contains all functions for interacting with the AgX 

library. Objects of these classes are used to represent the corresponding AgX objects and have 

no relation to or knowledge of the Simulation core. Functions in these classes make Algoryx 

interfacing intuitive for other classes like the Simulation core or code created in custom 

projects. Several classes contain functions for retrieving the “agx.RigidBody” objects to enable 

more customization of a simulator if a developer wishes to implement this framework.  

Figure 16 explains the “AgX_Interface” classes’ role and the task of handling data from 

the objects in the physics engine of Algoryx.  

 
Figure 16: Sequence of Algoryx object handling 

An Algoryx object is created when the corresponding “AgX_Interface” object is 

initialized. The “AgX_Interface” objects always have direct references to the Algoryx objects 

in the simulation environment. Thus, after the “agx.RigidBody” is created, it is modified with 

geometries, mass properties, etc. and added to the Agx simulation instance.  

When the update loop of the simulator is called, the Agx simulation timestep is 

increased by the delta time each the update is called. All objects in the simulation are updated, 

and for the “Simulation_Core” objects to receive these values, they must call their 

corresponding “Update” functions which call “AgX_Interface” functions, which retrieve the 

attribute values from the “agx.RigidBody” objects.  
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Finally, when the application is closing, or a new robot is to be created, the removal 

functions are called, which first remove the rigid bodies from the simulation instance, and then 

ensures the “AgX_Interface” objects are also removed. After this, the “Simulation_Core” 

objects are cleared.  

 

4.1.3.2.1. AgX_Assembly 

The “AgX_Assembly” class is a container for the assembly class of Algoryx, which 

allows for the logical grouping of objects inside such an assembly. As such, the assembly is 

used for storing all the robot parts, such as the joints, frames, sensor modules and sensors.  

Contents of the “AgX_Assembly” class are displayed in Table 22, while the main 

functions of the class are described in Table 23. 

Attributes Components 

none robotAssembly : agxSDK.Assembly 

Functions 

AddToAssembly() 
AddToSim() 
RemoveFromSim() 

SetPosition() 
SetRotation() 
 

GetPosition() 
GetRotation() 
 

Table 22: Contents of the AgX_Assembly class: 

Function Description Return 

AddToAssembly Adds a rigid-body or a joint to the assembly. void 

AddToSim Adds the assembly to the Algoryx simulation instance. void 

RemoveFromSim Removes the assembly from the Algoryx simulation 

instance. 

void 

SetPosition Modifies the global position of the assembly. void 

SetRotation Modifies the global quaternion rotation of the 

assembly. 

void 

GetPosition Retrieves the global position of the assembly. Vector3 

GetRotation Retrieves the global quaternion rotation of the 

assembly 

Quaternion 

Table 23: AgX_Assembly class functions 

 

4.1.3.2.2. AgX_Frame 

The “AgX_Frame” class contains the AgX objects that are created by mesh and 

constitute one of the two frames that make up a robot module. The class is dynamic and allows 

for multiple shapes and sizes of the required meshes. The center vector should remain the same 

for each frame that is created, as it is the center where the joint is located.  
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Contents of the “AgX_Frame” class are displayed in Table 24, while the main functions 

of the class are described in Table 25. 

Attributes Components 

guid : Guid 
shape : string 
materialName : string 
size : double 

agx_Object : agx.RigidBody 

Functions 

AgX_Frame() 
Remove() 

GetAgxObject() 
AddToSim() 
 

GetPosition() 
GetRotation() 
GetQuatRotation() 
 

Table 24: Contents of the AgX_Frame class 

Function Description Return 

AgX_Frame Creates the physics version of the mesh received via 

vertices, uvs, triangles and other attribute parameters. 

Adds the frame to the robot assembly.  

AgX_Frame 

AddToAssembly Adds the frame to the robot assembly. void 

Remove Removes the frame from the simulation instance. void 

GetAgxObject Returns the Algoryx rigid-body object.  agx.RigidBody 

GetPosition Returns the position of the object in the simulation Vector3 

GetRotation Returns the rotation of the object in the simulation 

(radians). 

agx.Vec3 

GetQuatRotation Returns the rotational matrix of the object in the 

simulation (Quaternion). 

Quaternion 

Table 25: AgX_Frame class functions 

 

4.1.3.2.3. AgX_Joint 

The “AgX_Joint” class contains AgX joint objects, and receives information from the 

C# simulation core, which defines each individual joint. It will also return values to the joint 

class in the simulation core regarding position, forces, and other parameters relating to the joint.  

The joint is the connection between each robot module and sensor module and contain 

motor controllers which controls the movement of each joint. Since both lock-joints and hinge-

joints come from the same class, agx.Constraints, the “AgX_Joint” class can contain them both.  

Contents of the “AgX_Joint” class are displayed in Table 26, while the main functions 

of the class are described in Table 27. 

Attributes Components 

guid : Guid 
type : string 

joint : agx.Constraint 
hinge_Frame : agx.HingeFrame 
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Functions 

AgX_Joint() 
AddToAssembly() 
Remove() 

Create_Hinge() 
Create_Lock() 
ForceSensorLock() 
DistanceSensorLock() 
 

GetForce() 
GetAngle() 
SetSpeed() 
 

Table 26: Contents of the AgX_Joint class 

Function Description Return 

AgX_Joint Adds the specified GUID to the object.  AgX_Joint 

AddToAssembly Adds the joint to the robot assembly. void 

Remove Removes the joint from the simulation instance. void 

Create_Hinge Creates a hinge with the given input variables. 

Assigns it to the agx.Constraint of the class. 

Locks two frames together. 

void 

Create_Lock Creates a lock with the given input variables. 

Assigns it to the agx.Constraint of the class. 

Locks two frames or a frame and a primitive together.  

void 

ForceSensorLock Creates a lock with the given input variables 

Assigns it to the agx.Constraint of the class. 

Locks a force sensor and a primitive together. 

void 

DistanceSensorLock Creates a lock with the given input variables 

Assigns it to the agx.Constraint of the class. 

Locks two primitives together. 

void 

GetForce Returns the force exerted on the joint. double 

GetAngle Returns the current angle of the joint. double 

SetSpeed Sets the desired velocity of the joint.  void 
Table 27: AgX_Joint class functions 

 

4.1.3.2.4. AgX_Primitive 

The “AgX_Primitive” class allows for the creation of a primitive-shaped object such as 

spheres and cubes, to be placed into the simulation environment, or attached to the robot 

assembly. Specific function parameters determine how the object is attached (robot or scene). 

These objects may be static or dynamic.  

Contents of the “AgX_Primitive” class are displayed in Table 28, while the main 

functions of the class are described in Table 29. 

Attributes Components 

guid : Guid 
shape, materialName : string 
size : double 

agx_Object : agx.RigidBody 

Functions 

AgX_Primitive() 
GetAgxObject() 
 

AddToAssembly() 
Remove() 

GetPosition() 
GetRotation() 
 

Table 28: Contents of the AgX_Primitive class 
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Function Description Return 

AgX_Primitive Creates the Algoryx rigid-body with shape, position, 

rotation, size, mass, material, static/dynamic, and part 

of robot/standalone values for the input variables.  

Adds the object to the simulation instance if the 

AddToRobot variable is false, and adds to the robot 

assembly if true 

AgX_Primitive 

GetAgxObject Retrieves the Algoryx object agx.RigidBody 

GetPosition Retrieves the position of the object in the simulation Vector3 

GetRotation Retrieves the Quaternion rotation of the object in the 

simulation 

Quaternion 

AddToAssembly Adds the rigid-body to the current robot-assembly (if 

necessary) 

void 

Remove Removes the rigid-body from the simulation instance.  void 

Table 29: AgX_Primitive class functions 

 

4.1.3.2.5. AgX_Scene 

The “AgX_Scene” class contains the terrain information for the current scene. In the 

scene class, a function transforms the vertices, triangles and indices received from the “Scene” 

class and creates the physical terrain for the simulation. In addition, material name and position 

is adjusted by the function parameters.   

There is no function for modifying the height of the terrain independently, as this is 

performed during the creation of the terrain variables in the “Scene” class and requires the 

whole process to be restarted. 

Contents of the “AgX_Scene” class are displayed in Table 30, while the main functions 

of the class are described in Table 31.  

Attributes Components 

guid : Guid terrain : agx.RigidBody 

Functions 

 AgX_Scene() 
Remove() 

 

Table 30: Content of AgX_Scene class 

Function Description Return 

AgX_Scene Receives several parameters for terrain creation, and 

constructs an Algoryx geometry which is used as the 

terrain.  

The created terrain rigid-body is added to the simulation 

instance.  

AgX_Scene 

Remove Removes the terrain’s rigid-body from the Algoryx 

simulation instance. 

void 

Table 31: AgX_Scene class functions 
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4.1.3.2.6. AgX_Simulation  

“AgX_Simulation” is a static class which provides an intuitive interface to the algoryx 

simulation instance. By creating custom start and stop functions, the designer of programs using 

this framework have an easy tool for starting the physics environment, and safely disposing of 

it when necessary. All operations regarding the Algoryx simulation instance will be performed 

through this class.  

Contents of the “AgX_Simulatiojn” class are displayed in Table 32, while the main 

functions of the class are described in Table 33. 

Attributes Components 

none sim_Instance : agxSDK.Simulation 

Functions 

Start() 
Stop() 
 

StepForward() 
RemoveSimObjects() 
 

AddContactMaterial() 
 

Table 32: Content of AgX_Simulation class 

Function Description Return 

Start Initializes the Algoryx C# environment (by invoking 

the agx.agxSWIG.init() function). 

Starts the simulation instance (by initializing a new 

agxSDK.Simulation instance). 

Sets gravity and time step values. 

void 

Stop Removes all objects from the simulation. 

Clears the simulation instance. 

Shuts down the agxSWIG instance.  

void 

StepForward Moves time forward in the simulation by accessing the 

“stepForward” function of the simulation instance. 

void 

RemoveSimObjects Removes all the objects in the Algoryx simulation 

instance (by calling simulation.removeAllObjects()). 

void 

AddContactMaterial Adds the contact friction between two input materials, 

defined by restitution, friction and Youngs modulus 

between the two materials.  

Adds the materials and the contact material info to the 

simulation instance.   

void 

Table 33: AgX_Simulation class functions 
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4.1.3.3. Unity_Visualization 

This section describes the proposed (and currently used) visualization class for 

visualizing objects in the simulation core. As the visualization is a secondary concern in the 

project, the documentation will not be as in depth, but rather provide an example to the 

possibilities and modifiability that is included in the framework of this system. The 

“Unity_Visualization” objects are in no way referenced in the “Simulation_Core” objects, 

rather using the GUID system to identify components to visualize. Each class contains a certain 

method of visualizing a component, allowing the visualization class to display the terrain, 

frames, scene objects, sensor modules and sensors using the information stored in the 

“Simulation_core” classes. Table 34 shows how the individual visualization classes are 

structured, and Figure 17 shows the sequence of operations for a “Unity_Visualization” class 

object.  

Scene_Vis 

Attributes Components 

guid : Guid 
mesh : UnityEngine.Mesh 

terrain : UnityEngine.GameObject 

Functions 

Scene_Vis()   

Frame_Vis/Primitive_Vis() 

Attributes Components 

guid : Guid gameobject : UnityEngine.GameObject 

Functions 

Frame_Vis()/Primitive_Vis() Update() Remove() 

Table 34: Main content of the Unity_Visualization classes 
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Figure 17: Unity_Visualization object lifecycle 

A second component class for visualization (Analytics_Visualization) has been created 

as a demonstration of the simulator’s visualization capabilities, which logs all essential 

information about the robot; such as positions, angles of joints, and force/distance 

measurements. This class is also a standalone component, which is called from the “Main” class 

(preferably in an update-loop) and takes a “Robot” object as input and reads its data. This 

component is not described in the thesis. 
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4.1.3.4. Dynamics 

The “Dynamics” component class is used to modify the joint angles of a “Robot” object, 

producing different configurations of motion for the modular robot. There are several 

parameters relating to the phase, amplitude and offset of the angles of modules, in addition to 

movement variables which are used as direction controllers. These direction controllers assume 

values between “-1” and “1”, allowing input keys to change the direction of motion 

forward/backward, and left/right from the “Main” class. This is in addition to the option of 

changing the main parameters depicted in Table 35 under “Input parameters”. The values of the 

main parameters are added to their corresponding arrays which aid in calculating the angles of 

each joint, with the phase difference arrays being modified based on the phase offsets, giving a 

certain offset to the movement of each joint of the robot. The “Dynamics” functions should 

always be updated before the simulation timestep is advanced. 

 The desired angle of each joint is calculated as shown in EQ(3): 

 
𝐴𝑛𝑔𝑙𝑒[𝑖] = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒[𝑖] ∙ sin (

2𝜋𝑡

𝑝𝑒𝑟𝑖𝑜𝑑[𝑖] + 𝑝ℎ𝑎𝑠𝑒𝐷𝑖𝑓𝑓[𝑖]
) + 𝑜𝑓𝑓𝑠𝑒𝑡[𝑖]. 

(3) 

   

All “Dynamics” movement parameters are arrays (even though it is only necessary for 

the phase difference) to separate pitch and yaw configurations, in addition to enabling custom 

parameters for each individual joint. When overriding the class, only the “Initialize” function 

needs to be modified, as this is the one preparing parameter arrays.   

Attributes 

angles : double[] 
amplitudes : double[] 
period : double[] 
phaseDiff : double[] 
offset : double[] 

f_movementVars : double[7] 
t_movementVars : double[7] 
currentAction : string 
nextAction : string 

Functions 

Initialize() Control() Forward() 
All_Movement() 

Input parameters 

Amplitudes 
pitch  

Amplitudes 
yaw 

phaseOffset 
pitch 

phaseOffset 
yaw 

period Offset 
pitch 

Offset 
yaw 

Table 35: Main content of the Dynamics class 

The “Forward” and “All_Movement” functions perform the angle calculations based on 

the movement parameters, using the equation shown in EQ(3). The forward and turn movement 

variables are pre-made for basic robot movement. The input variable “dyn_vars” contains the 

movement parameters given by the user. The current and next “action” variables define whether 
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a new movement pattern, such as forward or turn, has been selected. The corresponding 

initialization functions will be activated accordingly.  

 

4.1.3.5. Optimization 

The “Optimization” component class uses a Genetic Algorithm to improve the 

movement of a robot over time. The class uses a modified version of the “Dynamics” class to 

store the variables to optimize, called “Opti_Dynamics”. The genome featured in the algorithm 

is the movement parameters, as described in the “Dynamics” section (4.1.3.4). The functions 

of GA operations perform uniform crossovers and random mutations to better locate both global 

and local optimums. The fitness function is based on the Euclidean position of the robot. There 

are also upper and lower limits for the values that are to be optimized, so the robot will not 

behave in a manner that is disadvantageous though effective. Table 36 shows the main contents 

of the “Optimization” class: 

Attributes 

started : bool 
population : int 
quickOpti : bool 
IterTime : int 
currentGeneration : int 

dynamics_List : List<Opti_Dynamics> 
originalGenome : double[7] 
UpperLimit : double[7] 
LowerLimit : double[7] 
toggledForOptimization : bool[7] 

Functions 

Load() 
Reset() 
Update() 
 

UpdatePopulation() 
UniformCrossover() 
Mutate() 
 

GetRandomNumber() 

Table 36: Main content of the Optimization class 

The optimization may be performed both while showing the visualization of the robot, 

and in a closed loop only performing the optimization within the physics engine allowing the 

user to step to a certain generation of species. The user may also customize the dynamics values 

that are to be optimized, reducing optimization time by excluding parameters not in use with 

the toggle array. These choices must be specified by the user and are in this project selected in 

the “Main” class.  
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4.1.3.6. Scene Designer 

 
Figure 18: Scene designer interface 

 The “Scene Designer” is referred to as the GUI tool and its corresponding software, 

created for realizing the functionality of the simulator. The scene designer is not developed with 

regards to CBD, as the increased development time would possibly be problematic and that the 

designer is platform dependent (Unity visualizations). It has been designed to enable creation 

of scenarios in both an advanced manner with all parameters of the robot modifiable, and with 

an easy mode where the user may simply select if the next component is a pitch-, yaw-, or 

sensory-module, or if it’s a scene object. The details about the assembled robot are serialized 

to the XML file, following an initialization call to the “Main” class when the robot design is 

finalized, making the “Main” class take over the functionality of the program, and running the 

simulation. The “Scene Designer” GUI still appears on top of the simulation after it has started, 

to enable pausing/stopping, data recording, optimization value changes, etc. The controls on 

the bottom enable rotation and zooming of the simulation, while the toggles control the 

recording of data, and hiding the designer to show more of the scene.  
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Figure 19 shows the most important functionality of the Scene Designer.  

 
Figure 19: The Scene Designer's most important features 
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4.1.4. Core Framework usage (Robot design) 

This chapter explains how the robot and the scenario is created, the simulation steps, 

and the components of a robot.  

4.1.4.1. Robot assembly  

The robot assembly, as shown in Figure 20,  is created by several “Module” objects and 

“SensorModule” objects, with the amount depending on the choices of the designer. Each 

“Module” object always contains two “Frame” objects and one “Joint”. Each “SensorModule” 

may contain 1 “ForceSensor” object, or up to 6 “DistanceSensor” objects. In addition, there is 

a list of “Joint” objects in the robot, which are used to lock the modules and sensor modules 

together, and in the sensor module, to connect the sensors. Virtually infinite combinations may 

be created because of the module/component-based assembly structure.  

  
Figure 20: Robot assembly structure 

4.1.4.2. Object creation 

Figure 21 shows the sequences of operations on the robot’s components in the simulator. 

General functions in the architecture mostly have the same function such as “Initialize” and 

“Update”, and all work in the same manner with relation to object creation and destruction.  

The diagram shows the sequence in which objects are created as “Simulator_Core” 

objects, following the creation of their corresponding “AgX_Interface” objects, the update loop 

running, and finally the destruction of the object. 
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Figure 21: Creation and destruction of simulation objects 

1.Create object 

An object of a certain class is created, using a frame object as an example. The public 

variables of the frame are assigned, such as the unique GUID of the frame, scale, mass, and 

material. Some classes, such as the “Module” class, also have a “Create” function which 

performs more complex variable assignments, such as adding the correct frames and joints to 

the specific module. When all objects have been created, they can be serialized to an xml file.  

2.Initialize 

The “Initialize” functions create the “AgX_Interface” objects with the attributes in the 

corresponding “Simulation_Core” objects. In certain classes, such as the “Robot” and 

“Module” class, the initialization function calls the initialization functions for all its sub-

components. In the “Robot” class, the initialization function also adds the robot to the 

simulation instance.  
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3.StepForward 

The “StepForward” call goes straight to the static class “AgX_Simulation”, with no 

reference in the “Simulation_Core” namespace. There is no need for an extra wrapper for this 

class, as it is static and solely used in the Algoryx domain. This function increases the step of 

the Algoryx simulation instance by the delta time set in a startup call.  

4.Update 

The “Update” function is located in the “Robot” class, and updates all the positions, 

rotations, and sizes within the robot assembly, automatically. It is performed to get the 

“Simulation_Core” objects up to date with their corresponding objects residing in the Algoryx 

simulation instance.  

5.SetAngle 

Each “Joint” object has a “SetAngle” function, which takes an angle as input. The 

desired angle is sent to a P-regulator, which increases or decreases the speed of the joint motor 

for the error between requested and actual angle to become as close to zero as possible. This 

function is called from the “Dynamics” class which governs the movement of the robot. The 

function can also be called from the “Optimization” class.  

6.Remove 

The “RemovePhysicsObjects” class exists in the “Robot” class and removes all Algoryx 

objects in the “AgX_Interface” classes. Then, all the Algoryx interface objects are set to null, 

and the lists containing the sub-components of the “Robot” class are cleared.  
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4.1.4.3. XML functionality 

The XML file contains the object representation of the scenario created. The 

“Scene_Designer” class serializes the created scenario, while the “Main” class deserializes it to 

create objects of the robots (all based on the Core Framework). Figure 22 shows the hierarchy 

of the XML tags, representing the class objects of the scenario. An example configuration of 

the XML file is shown in Appendix F. 

 
Figure 22: XML file scenario class representation 

4.1.4.3.1. Scenario file structure and deserialization 

The XML file is deserialized into an object containing the required parameters for the 

simulation. Two frames and one joint object are contained within a module object, and multiple 

module (or sensory module) objects together with corresponding joints are contained within the 

robot. 

When the XML file is deserialized, objects in the file are created of the “Scenario” class. 

This class contains one instance of a robot assembly class, an instance of the scene, a list of 

contact frictions and a list of scene objects. It is deserialized into objects of all the classes within 

the “Simulation Core”, such as “Robot”, “Modules”, “Frames”, “Scene”, “ContactFriction”, 

“SceneObject”, etc.  

When objects within the robot assembly are deserialized, they are put into their 

corresponding “parent” component, such as frames and joints put together to modules.  

The “Scene” object is deserialized and initialized to create the AgX object which makes 

the terrain. The terrain height data is represented as a string in the XML file. This string is 

assigned to the Scene object and sent to AgX for terrain creation. The visualization class will 

use the same string to create the corresponding mesh.  

Scenario

Robot

Module

Frame Joint

Sensor Module

Force 
Sensor

Distance 
sensor

Joint

Joint

Scene
Scene 

Objects
Contact 
Friction
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Contact friction is calculated between all the objects specified in the “ContactFriction” 

list in the scenario object, and all scene objects from the “SceneObject” list are placed in the 

simulation.  

 

4.2. Verification and validation 

Full Requirement and Test&Verification Specifications are found in Appendix B and 

Appendix C.  

The tests were performed mainly in the build application, and some in the editor (if code 

modification was necessary). Most tests passed, with a few exceptions which ended in “failed”, 

partly verified or Not Applicable: 

• The B-level requirement regarding loading a scenario which has been saved mid-

execution did not pass, due to a setting making robot construction easier (read more in 

T-1.1.2 comment section).  

• Some tests (T-1.2.1, T-4.1.1) have been marked as partly verified because of the 

Algoryx library issues.  

• Some tests have been marked as Not Applicable (N/A), due to functionality which has 

intentionally or due to time limits not been implemented.  

The reviews were performed by going over the code to verify performance or functions. 

Some reviews were also performed by analysis of component functionality. By review, there is 

a higher standard for verification, so if the reviews uncover minor discrepancies between pass 

criteria and actual performance, the result will at most be partly verified.  

Use-cases were performed along with Dr. Guoyuan Li, at NTNU Ålesund. The MRSim 

was compared to the current development methods for modular robots at NTNU, and general 

usefulness for teaching and research was distinctly reviewed.   
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4.3. Case studies 

4.3.1. Creating and running a scenario 

This is a test of the Modular Robot Simulator, demonstrating its functionality. A robot 

is created with 5 modules and 6 sensor modules which all have force sensors under them, 

weighing 1 gram. All components are made from plastic. The first sensor module has a distance 

sensor in the front. The mass of each module and sensor module is set to 100 grams.  

The XML file created for this scenario is shown in Appendix F. 

Lastly, the simulation is started, and the robot will move to push a scene object. 

Everything will be logged to a file for retrieving the values of sensors and modules.  

4.3.1.1. Design 

 
Figure 23: Case study - design overview 

 
Figure 24: Case study - Sensor module and scene object design 
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4.3.1.2. Result 

Visualization of scene 

 
Figure 25: Robot moving forward to push the ball 

Figure 25 shows the robot going from a neutral position, to moving forward to push the 

scene object, in this case modelled as a ball.  

Analytics log 

 
Figure 26: Distance sensor measurements 

The chart in Figure 26 shows how the robot gets closer to the ball, before bumping into 

it, causing the ball to roll away from the robot. The top-values {10} indicate the maximum 

distance for the distance sensor measurements. Top-values occur when no objects intersect the 

distance ray. The x-values correspond to the time in seconds since the application started. 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 72 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

 
Figure 27: Force sensor vs y-position measurements 

Figure 27 shows how the force exerted on the front sensor module correlates to the y-

position of the front module. When the y-position is the lowest, the module is touching the 

ground, making the force sensor register the increased force of the sensor module pushing 

down. 

 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 73 of 83 

NTNU Ålesund Master’s degree thesis 

 

 

4.3.2. Dynamics test 

A robot with 11 modules is created. The dynamics are set to a normal forward motion, 

then a more extreme forward motion, then a wide turn, followed by a sharp turn. Additional 

dynamics tests are shown in Appendix G. 

Forward 

 

 
Figure 28: Robot forward motion 

Forward with increased amplitude 

 

 
Figure 29: Robot forward motion with increased amplitude 

Wide turn 

 

 
Figure 30: Robot wide turn 

Sharp turn 

 

 
Figure 31: Robot sharp turn 
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4.3.3. Framework case-study 

The Core Framework was built into two C# library files (dll), “Simulation_Core.dll” 

and “AgX_Interface.dll”. Along with the “AgxDotNet.dll”, they were put into a clear Unity 

project, for creating a simple simulation of two frames and a joint, assembled to a module, 

residing in a robot and placed on a scene object. The angle of the joint was set to a constant 

value, with the max velocity of the joint limited to 
𝜋

6
 degrees per second, to demonstrate that 

the joint movement is functional. Table 37 shows how one would go about creating a simple 

simulation with the framework and can be expanded to include more modules/objects, shown 

in the robot function that is commented out. 

using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using System.Xml.Serialization; 
using AgX_Interface; 
using Simulation_Core; 
using System; 
 
public class startSim : MonoBehaviour { 
 
    Robot robot = new Robot(); 
    SceneObject sceneobj; 
    void Start() 
    { 
        //Start simulation: 
        Agx_Simulation.Start(0.01); 
 
        //Setting position and rotations: 
        var pos = new AgX_Interface.Vector3(0, 0, 0); 
        var u_quat = UnityEngine.Quaternion.Euler(0, 90, 0); 
        AgX_Interface.Quaternion frame_rot = new AgX_Interface.Quaternion(u_quat.x, u_quat.y, u_quat.z, u_quat.w); 
 
        //Create Frames: 
        Frame[] frames = new Frame[2]; 
        for (int i = 0; i < 2; i++) 
        { 
            frames[i] = new Frame() 
            { 
                guid = Guid.NewGuid(), 
                position = pos, 
                scale = 10, 
                quatRotation = frame_rot, 
                //rotation = rot, 
                mass = 10, 
                isStatic = false, 
                materialName = "Plastic" 
            }; 
        } 
 
        //download mesh obj file: 
        loadmesh(); 
         
        //Set mesh of frames: 
        frames[0].SetMesh(AgxHelper(leftmesh.vertices), AgxHelper(leftmesh.uv), leftmesh.triangles); 
        frames[1].SetMesh(AgxHelper(rightmesh.vertices), AgxHelper(rightmesh.uv), rightmesh.triangles); 
         
        //Create Joint: 
        Simulation_Core.Joint joint = new Simulation_Core.Joint() 
        { 
            guid = Guid.NewGuid(), 
            leftFrameGuid = frames[0].guid, 
            rightFrameGuid = frames[1].guid, 
            type = "Hinge", 
            lowerRangeLimit = -Math.PI/2, 
            upperRangeLimit = Math.PI/2, 
            max_vel = Math.PI/6, 
            Kp = 3 
        }; 
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        //Create Module: 
        var module = new Module(); 
        module.Create(frames[0],joint,frames[1]); 
 
        //Add module to robot: 
        robot.Add_Module(module); 
 
        //Add second module to robot: 
        //robot.Add_Module(module2,new Simulation_Core.Joint()); 
 
        //Initialize robot: 
        robot.Initialize(); 
 
        //Scene object: 
        sceneobj = new SceneObject() 
        { 
            guid = Guid.NewGuid(), 
            shape = "Box", 
            size = new AgX_Interface.Vector3(5,1,10), 
            position = new AgX_Interface.Vector3(0,-2,0), 
            quatRotation = new AgX_Interface.Quaternion(0,0,0,1), 
            materialName = "Rock", 
            mass = 10, 
            isStatic = true 
        }; 
        sceneobj.Initialize(); 
         
        //Load vis from mesh and robot + scene object: 
        Load_Vis(); 
 
        //Start sim update loop: 
        InvokeRepeating("Update_Sim", 0.01f, 0.01f); 
    } 

Table 37: Framework implementation in a new project 

Visualization and update functions can be found in Appendix F1. The “AgxHelper” 

functions convert “AgX_Interface” structures to “UnityEngine” structures. 

Figure 32 shows the created simulation:  

 
Figure 32: Custom project, scenario 
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Figure 33 shows the movement of the module over time: 

 
Figure 33: Custom project, module movement 

The program took around 1 hour to design, with most of this time going to assigning the 

correct mesh. Each frame must have a mesh assigned to them, as well as to the Unity 

visualization objects. It is much easier than to begin from nothing, designing objects directly 

through the physics engine of both Unity or Algoryx, in addition to visualizing them. 
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5. Discussion 

A modular robot simulator has been created for the NTNU research group focusing on 

modular robotics (1.2.1.5). It is based on the needs of the research group and improved by 

implementing CBD aspects originally intended for large scale projects, as partly demonstrated 

in previous projects (1.2.1.7), with visual inspiration from simulators like VSPARC (1.2.1.3). 

Though the system is designed for NTNU’s design of robots, custom object models for the 

frames may be uploaded, specifically tailored to any type of chain-based modular robot. 

Adopting the research questions in (1.2.1.9) have inspired several of the tests used to 

verify the impact of CBD in the project, and the concept of component assessment (1.2.1.8) 

have been the cornerstone for design and further improvements to modular robot simulators in 

the future.  

Discussions regarding the specific tests are found in the Test and Verification 

Specification found in Appendix C 

 

5.1. CBD decisions 

Separating the simulation objects, simulation physics and simulation visualization has 

made the simulator more modular and portable, while at the same time enabling more effective 

optimization, by not showing visuals and only updating the robot variables for each timestep of 

the simulation. It is suspected to have delayed the development to some extent, but its benefits 

outweigh this development issue. Among these benefits are also the ability to use this 

framework in other projects, to modify individual components without disturbing the rest of the 

system, and the structure of the class system being easy to read and troubleshoot (because of 

the object-oriented component-based architecture).  

The general impression that CBD is only viable in large-scale projects or businesses is 

contrasted in this project. Of course, this largely depends on the type of project, but for a master 

thesis with limited time it was expected that just creating a program would not be enough, but 

to create a framework and components that could be used in further teachings and research 

would be much more beneficial.  

The use of CBD was one of the best decisions made for the project. It has improved the 

possibility for future work with the project, facilitated aspects like bug testing during 

development, and made it easy to implement new functionality. The Case study presented in 
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section (4.3.3) also proves the implementation has been successful, and provides easy, accurate 

and quick prototyping.  

 

5.2. Stakeholder needs (NTNU) 

The simulator has passed all the tests required by the research group, especially with 

regards to usability and effectiveness. For teaching purposes, the simulator allows for quick 

prototyping, with either simple pitch-yaw design or more specific design choices, and features 

that provides an easy entrance to the world of modular robots.  

In research-use, some of the simulator’s features are similar in customizability as hard-

coded solutions offer. However, since custom dynamics scripting has not yet been 

implemented, optimization does not allow for multiple algorithms, and sensory placement 

options are limited for ease-of-use, it is decided that the simulator has not passed with regards 

to extensive research-use.  

However, with the Core-Framework having more functionality without the Scene 

Designer, it is highly encouraged that researchers use this while developing new modular robot 

prototypes. By coding with the framework, robot creation is much faster, and provides 

customizability as with a hard-coded solution. Since the Core Framework is verified* there is 

no need for time-consuming development of simulation methods and robot component 

assembly. The Core Framework only uses Microsoft libraries, making it compatible with all C# 

development environments. 

*note, the Core Framework is verified for this project. It may not be verified if the 

researcher needs different functionality than the robots and scenario provide in this project.1 

test is only partly verified, but only by customizability, and the functionality can be achieved by 

using the Core Framework directly, not through the Scene Designer. 

 

5.3. Issues 

Many problems in the project have been related to the Algoryx physics library. Because 

of the limited possibilities for troubleshooting potential errors, many bugs go unnoticed before 

a large section of code has been created. Switching out Algoryx with another physics engine 

could have been a solution early in the project, where all the functions in the “Simulation_Core” 

would remain the same, but the “AgX_Interface” class would be replaced with similar functions 

from another physics library. Since many of the errors were related to memory access, there 
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was no way to get information about the failures before Unity force-closed. The solution was 

to construct a system-flow which ensured disposal of C# objects, and a reset of the Algoryx 

simulation as often as possible. 

The Dynamics class should have been made more abstract, to enable custom dynamics 

more easily, without having to modify the class itself. Abstraction would have been a feature 

in the Core Framework too, but since the scenario data is serialized to an XML file, the classes 

cannot use inheritance implementations. If possible, this would make it possible to create 

modules and sensor modules as the same top-level entity, and the same with force and distance 

sensors. Nonetheless, the possibility of saving data to an XML file took precedence over the 

improved modularity this would result in. 

Even though the “AgX_Interface”class was made with focus on a flow ensuring proper 

disposal, there are still bugs in the Optimization part of the MRSim which could not be fixed 

through AgX support or troubleshooting. There might be limitations in the AgX software itself, 

but this is not proven.  

 

 

5.4. Summary 

Based on the results and discussion, the research questions can now be reviewed and 

answered: 

Is the proposed simulation platform better for developing modular robots than 

manually programming simulations from scratch? 

Yes. As validated in (U-1.1.1, U-1.1.2 and U-1.1.3), the MRSim is much faster and 

easier to use than manually coding by far. The customization options are the same or higher 

than what is required for teaching, while for research purposes only certain parts are lacking in 

functionality.  

Will the component-based software development method notably improve the 

flexibility and development of a simulation platform and ease further development of 

the simulation platform? 

Both points of this research question are confirmed to be true. Flexibility and 

modifiability is partly verified in (R-5.3.1), with the reason for it being only partly being a wish 

for even more modularity from the “Main” class. Ease of further development is verified in (U-

2.1.1 and U-2.2.1), but for the time being only in the Core Framework. Optimization and 

Dynamics has not yet been tested. 
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Is the AgX physics library a stable choice for a simulator platform, and how efficient is 

it in providing realistic simulations while allowing for the effective use of optimization 

algorithms? 

Using AgX as a physics library has notably increased development time. This is 

described in section (5.3). This could be different if there were easier way of obtaining error 

information, or the simulator required less complex operations like position resets of the robot, 

or other optimization functionality. In conclusion: AgX is great for realistic physics simulations 

and hard-coded development, but when developing an application where the physics features 

are used as a reusable component interacting with other components, it may be better to use 

another technology. 

Will the benefits of Component-Based Development outweigh the disadvantages of 

the implementation in an independent, small-scale project? 

Yes. (Elaborated in section (5.1). 

 

5.5. Further work 

Following elements is suggested for further work, or did not fit into the time-schedule 

of the project: 

• Testing and verifying the Core Framework and components in other environments than 

Unity, such as Visual studio with DirectX (C#).  

• Verification of the Dynamics and Optimization component 

• Modularizing the AgX_Interface even further, by eliminating all object references from 

the Simulation_Core and only associating the components with GUIDs. (while at the 

same time keeping the ease-of-use of the framework.) 

• Eliminating all bugs from the optimization component related to AgX memory issues. 

• Drag and drop functionality in the designer, for creating the modular robots. 

• Scene designer with more options such as a string input field or .dll upload for custom 

robot dynamics.  

• 3D-printing robot configurations designed in the MRSim, validating the prototyping 

feasibility.  
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6. Conclusion 

The Modular Robot Simulator has been created for NTNU Ålesund’s Modular Robot 

research group. It is tested and verified to be used for educational purposes and makes modular 

robot research, design and prototyping more accessible to potential developers/students with 

little to no programming background. The GUI gives suggestions on parameters to facilitate 

development, enabling quick prototyping. The scenarios can be customized on a level close to 

the manually-coded simulations, with uploads of custom 3D models and self-configured terrain. 

By using the Component-Based approach, the core functionality of the simulator is 

contained in two linked libraries, allowing for reusability in other projects, and encouraging 

custom simulators or simulations to be created by both students and modular robot researchers. 

The CBD also allows for removal of components like visualization, robot dynamics or 

optimization, without impacting the rest of the simulator’s functionality. New components can 

be added to projects without difficulty.  
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Appendix A Preliminary RISK 
Nr RISK Likelihood Impact Total Mitigation action 

Contingency 
plan 

Mitigation 
date 

1 Overall program 3.80 3.60 13.68       

1.1 Development risk 3.80 3.60 13.68       

1.1.1 bugs 5.00 1.00 5.00 

Modular 
programming, 
structured coding for 
easy identification of 
bugs. 

Ensure bugs 
can be easily 
identified and 
fixed. 

E2,C1-3 

1.1.2 
Incompatible 
technologies 

4.00 3.00 12.00 

Ensure Elaboration 
phase is thorough, 
design with 
possibility of 
different 
implementations 
later 

Allot extra time 
for 
modification 
when planning 
deadlines. 

E1-2 

1.1.3 
Wrong 
technology 
decision 

4.00 4.00 16.00 

Design with 
possibility of 
different 
implementations 
later 

Step back on 
project goals, 
focus on a 
simple but 
stable solution 

E2 

1.1.4 
Misinterpretation 
of end result 

2.00 5.00 10.00 
Concurrent dialogue 
with supervisors 

Create multiple 
areas of value 
in the project 

E1  

1.1.5 
Program modules 
do not work 
together 

4.00 5.00 20.00 

Modular 
programming, Clearly 
defined 
class/functionality 
structure 

Hardcoding E2,C1-3 

1.1.6 
Missing 
functionality 

4.00 4.00 16.00 

Create technical 
documents for 
overview of 
functionality and 
ensurance of 
continued work 

Ensure program 
can work 
without specific 
parts.  

E1-2,C1-3 
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2 Scene Designer 3.23 3.67 11.86       

2.1 functionality 4.00 5.00 20.00       

2.1.1 

User cannot 
create the 
desired robot 
configuration 

4.00 5.00 20.00 
Ensure enough 
parameters can be 
set.  

Create 
alternative 
method for 
configuration 
(low-level code 
input) 

E2,C1-2 

                

2.2 XML issues 3.50 4.00 14.00       

2.2.1 
Robot 
parameters 
cannot be sent 

3.00 5.00 15.00 
Evaluate additional 
technologies of file 
transfer 

Create 
everything in 
one program 

E2, C2-3 

2.2.2 
Robot movement 
script is  not 
working 

4.00 3.00 12.00 

Ensure the method 
for setting robot 
dynamics is reliable, 
enable different 
implementation 
solutions 

Set one specific 
movement 
pattern. 

E2,C2-3 

                

2.3 load/save issues 2.00 2.00 4.00       

2.3.1 
Configurations 
cannot be saved 

1.00 2.00 2.00 
Ensure file is saved 
before Simulation is 
started 

None E2,C1-3 

2.3.2 
Select 
configurations 
cannot be loaded 

3.00 2.00 6.00 
Allow for saving of 
different revisions of 
configuration.  

Only save one 
file 

E2,C1-3 

                

2.4 Dynamics issues 3.67 3.33 12.22       

2.4.1 
Robot dynamics 
are incorrect 

4.00 5.00 20.00 
Dialogue with 
supervisor 

Allot time for 
research on 
modulr robotics 

E2,C1-2 

2.4.2 
Script input is too 
complex 

3.00 2.00 6.00 Ensure UI is intuitive 

Require user to 
upload a file 
instead of text 
input 

E2,C3 

2.4.3 

Script 
functionality 
cannot be 
implemented 

4.00 3.00 12.00 
Design UI with 
possibility for other 
implementations 

Don't allow for 
scripting 

E2,C3 
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2.5 
Scene creation 
issues 

3.00 2.50 7.50       

2.5.1 
Created 
heightmap has 
physics errors 

4.00 4.00 16.00 

Ensure height image 
has the correct 
values/dimensions, 
get programming 
guidance from AgX 

Define other 
types of 
colliders, worst 
case: cube 
collider 

E2,C1-2 

2.5.2 
Scene features 
are hard to 
correctly design 

2.00 1.00 2.00 

Make user choose 
features from list, 
feedback from test 
users 

Create simple 
interface with 
minimal 
customization  

E2,C2-3 

                

2.5 Reliability 3.00 4.00 12.00       

2.5.1 
Scene Designer is 
unstable 

3.00 4.00 12.00 

Modular 
programming, 
structured coding for 
easy identification of 
bugs. 

Use another 
program for 
scene designer 

E2,C1 

                

3 Simulation 2.00 5.00 10.00       

3.1 functionality 2.00 5.00 10.00       

3.1.1 

Program does 
not contain 
desired 
functionality 

2.00 5.00 10.00 
Keep high intervals 
for meetings with 
superviser 

Redefine 
requirements 

E1-2,C1-3 

                

3.2 XML issues 3.00 5.00 15.00       

3.2.1 

Robot 
components are 
not created 
correctly 

3.00 5.00 15.00 

Technical document 
for object creations 
from XML, early 
conceptional models 
of classes 

  E1-2,C1-2 

3.2.2 
Robot is not 
moving correctly 

3.00 5.00 15.00 

Ensure the method 
for setting robot 
dynamics is reliable, 
enable different 
implementation 
solutions, 
alternatively, set 
static dynamics script 

Abstract classes 
for further 
implementation 
later 

E2,C2-3 
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3.3 
Algoryx and Unity 
not working 
together 

4.00 4.67 18.67       

3.3.1 
Objects not 
behaving 
correctly 

4.00 5.00 20.00 

Technical document 
for object creations 
from XML, early 
conceptional models 
of classes 

keep options 
open for other 
physics engines 
and 
visualization 
platforms 

E1-2,C1-2 

3.3.2 
Visualization not 
matching physics 

4.00 5.00 20.00 
Research, thorough 
and clean code 

  E1-T1 

3.3.3 Missing features 4.00 4.00 16.00 

Regular contact with 
stakeholders, 
thorough and specific 
requirements 

Component or 
modular system 
for easy 
implementation 
of additional 
options 

E1-2,C1 

                

3.4 
Robot 
optimization 

2.00 4.00 8.00       

3.4.1 
Algorithm does 
not improve 
functionality 

2.00 4.00 8.00 

Research, evaluate 
multiple techniques, 
ensure simulation 
stability 

Create an open 
optimization 
component so 
user can edit 
themselves 

E2,C2-3 

                

3.5 Reliability 3.00 3.50 10.50       

3.5.1 
Simulation is 
lagging 

3.00 3.00 9.00 
Optimize code, 
create clean code, 
consult Algoryx 

switch physics 
engine 

C1-3 

3.5.2 
Physics are not 
accurate 

3.00 4.00 12.00 
Consult Algoryx, 
research 
documentation 

switch physics 
engine 

C1-3 

                

4 Project 3.67 3.33 12.22       

4.1 
Project not 
finished in time 

4.00 3.00 12.00 

Set clear 
goals/milestones, 
create thorough plan 
in 
inception/elaboration 
phases 

set due dates 
several weeks 
earlier 

I1,E1-2 

4.2 
Missing 
requirements 

3.00 5.00 15.00 
Meetings at the end 
of each iteration 

set due dates 
several weeks 
earlier 

E1-T1 

4.4 
Change in 
requirements 

4.00 2.00 8.00 
Sprint meetings every 
second week 

  E1-T1 
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1. Requirements 

1.1. Introduction 
The requirements for this project are divided into categories depending on the necessity for 

the requirements, and the potential risk impact.  

A The requirement shall be met to ensure a stable component 

B The requirement should be met to ensure an efficient component 

C The requirement is optional or flagged as further work 

Table 39: Requirement categories 

The requirements are also divided into categories for verification methods, featured after the 

requirement number. T is standard verification based on performed tests, U is a verification 

based on a test case for the selected requirement/component, and R is verification based on 

review and analysis of components and features.  

T Test verification 

R Review verification 

U Use-case and comparison verification 
Table 40: Test categories 
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1.2. Simulator requirements 
These are the requirements for the Modular Robot Simulator application 

1.2.1. Simulator usage 

1.2.1.1. Save/Load 

Nr: Requirement Category Originator Verified? 

REQ-

1.1.1T 

The user shall be able 

to save scenario 

configurations 

A NTNU Verified  

T-1.1.1 

 

REQ-

1.1.2T 

The user shall be able 

to load scenario 

configurations 

A NTNU Verified  

T-1.1.1 

 

REQ-

1.1.3T 

The user should be 

able to load a scenario 

stopped mid-

execution. 

B TS Not verified 

T-1.1.2 

REQ-

1.1.4R 

The saved robot 

values should be 

represented in a 

format facilitating 

potential prototyping 

B TS Partly Verified  

R-1.1.1 

 

REQ-

1.1.5R 

All aspects of the 

simulation shall be 

transferrable in one 

single XML file 

A TS Partly verified  

R-1.1.1 

 

Table 41: Save/load 
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1.2.1.2. Performance 

Nr: Requirement Category Originator Verified? 

REQ-

1.2.2T 

The simulator 

application shall be 

usable on mid-range+ 

workstations. 

A TS Verified 

T-1.2.1 

REQ-

1.2.3T 

The physics in the 

simulation shall be 

performed in real-time 

on mid-range+ 

workstations. 

A TS Verified 

T-1.2.1 

REQ-

1.2.4T 

The simulator 

application shall be 

stable. 

A TS Partly verified 

T-1.2.1 

REQ-

1.2.5T 

The simulation shall 

not stop mid-execution. 

A TS Partly verified 

T-1.2.1 

REQ-

1.2.6R 

Robot components 

which require so, shall 

exist in the physics 

environment. 

A TS Verified 

R-1.2.1 

REQ-

1.2.7R 

Information about 

robot components 

existing in the physics 

environment shall be 

retrievable.  

A TS Verified 

R-1.2.1 

REQ-

1.2.8T 

Physics objects shall 

not unintentionally 

overlap. 

A TS Verified 

T-1.2.1 

REQ-

1.2.9T 

Physics objects shall 

not pass through each 

other.  

A TS Verified 

T-1.2.1 

Table 42: Performance 
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1.2.1.3. GUI 

Nr: Requirement Category Originator Verified? 

REQ-

1.3.1T 

The simulator shall 

preview the proposed 

robot components during 

the design. 

A TS Verified 

T-1.3.1 

REQ-

1.3.2T 

The simulator shall show 

all robot components with 

correct physics 

representations.  

A TS Verified 

T-1.3.1 

REQ-

1.3.3T 

The simulator should 

enable modification of the 

scene view.  

B TS Partly verified 

T-1.3.2 

REQ-

1.3.4R 

The Scene Designer 

should realize all potential 

functionality in the Core 

Framework. 

B TS Verified 

R-1.3.2 

Table 43: GUI 
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1.2.1.4. Scenario 

Nr: Requirement Category Originator Verified? 

REQ-

1.4.1U 

The simulator shall 

make scenario 

creation easier than 

the current 

programming 

methods.  

A NTNU Verified 

U-1.1.1 

REQ-

1.4.2U 

The simulator shall 

enable intuitive and 

easy design of robots.  

A NTNU Verified 

U-1.4.2 

REQ-

1.4.3U 

The simulator should 

provide 

customizability of 

robots similar to hard-

coded programs, for 

experienced users. 

B TS Partly verified 

U-1.1.2 

REQ-

1.4.4U 

The simulator shall 

enabler faster design 

than hard-coded 

programming, 

regardless of user 

experience. 

A TS Verified 

U-1.1.3 

REQ-

1.4.5R 

The simulator shall 

not contain unused 

parameters  

B TS Verified 

R-1.4.1 

Table 44: Scenario 
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1.2.2. Core Framework 

These are the requirements for the Core Framework. Some of the requirements are 

disconnected from the simulator application, as the Core Framework is designed to work as a 

standalone library. 

1.2.2.1. Robot 

Nr: Requirement Category Originator Verified? 

REQ-

2.1.1T 

Robot modules shall be 

locked together 

A TS Verified 

T-2.1.1 

REQ-

2.1.2T 

Robot sensor modules 

shall be locked together 

A TS Verified 

T-2.1.1 

REQ-

2.1.3T 

Robot assembly 

transform values shall 

be readable 

A TS Verified 

T-2.1.2 

REQ-

2.1.4R 

Robot objects shall 

represent the entire 

robot assembly 

A TS Verified 

R-2.1.1 

Table 45: Robot 

1.2.2.2. Frame 

Nr: Requirement Category Originator Verified? 

REQ-

2.2.1U 

The framework shall 

allow for customization 

of all necessary frame 

parameters. 

A NTNU Verified 

U-1.1.2 

REQ-

2.2.2T 

The framework shall 

allow for custom 

implementation of 

frame meshes. 

A TS Verified 

T-2.2.1 

REQ-

2.2.3T 

Frames shall have 

global transform 

properties. 

A TS Verified 

T-2.2.2 

REQ-

2.2.4T 

Frame transform values 

shall be readable 

A TS Verified 

T-2.2.2 

REQ-

2.2.5T 

Frames shall be 

visualized 

A NTNU Verified 

T-2.2.2 

Table 46: Frame 
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1.2.2.3. Joint 

Nr: Requirement Category Originator Verified? 

REQ-

2.3.1U 

The framework shall 

allow for customization 

of all necessary joint 

parameters 

A NTNU Partly verified 

U-1.1.2 

REQ-

2.3.2T 

Joint angle shall be 

modifiable during 

runtime of the physics 

environment.   

A TS Verified 

T-2.3.1 

REQ-

2.3.3T 

Joints shall connect 

frames. 

A TS Verified 

T-2.3.1 

REQ-

2.3.4T 

Joints shall connect 

modules. 

A TS Verified 

T-2.3.1 

REQ-

2.3.5T 

Joints shall connect 

sensor modules. 

A TS Verified 

T-2.3.1 

REQ-

2.3.6T 

Joints shall connect 

sensors. 

A TS Verified 

T-2.3.1 

REQ-

2.3.7T 

Joints should be 

detachable. 

C TS N/A 

T-2.3.2 

REQ-

2.3.8T 

Joint transform values 

should be readable. 

B TS N/A 

T-2.3.3 

Table 47: Joint 

1.2.2.4. Module 

Nr: Requirement Category Originator Verified? 

REQ-

2.4.1T 

Each module shall 

contain one “Joint” 

object. 

A TS Verified 

T-2.4.1 

REQ-

2.4.2T 

Each module shall 

contain two “Frame” 

objects. 

A TS Verified 

T-2.4.1 

REQ-

2.4.3R 

There should be no 

limits on number of 

modules in a robot. 

B TS Verified 

R-2.2.1 

REQ-

2.4.4T 

Module transform 

values should be 

readable. 

B TS Verified 

T-2.4.2 

REQ-

2.4.5U 

The framework shall 

allow for customization 

of all necessary module 

parameters 

A NTNU Verified 

U-1.1.2 

Table 48: Module 
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1.2.2.5. Sensors/sensor modules 

Nr: Requirement Category Originator Verified? 

REQ-

2.5.1T 

The framework should 

allow for custom 

placements of sensor 

modules in the robot.  

B NTNU Partly verified 

T-2.5.1 

REQ-

2.5.2T 

The framework should 

allow for custom 

sensor placements on 

sensor modules. 

B NTNU Verified 

T-2.5.1 

REQ-

2.5.3T 

Sensor module 

transform values shall 

be readable. 

A TS Verified 

T-2.5.2 

REQ-

2.5.4T 

Force sensor values 

shall be readable. 

A NTNU Verified 

T-2.5.2 

REQ-

2.5.5T 

Distance sensor values 

shall be readable.  

A NTNU Verified 

T-2.5.2 

REQ-

2.5.6T 

Sensor modules shall 

be visualized. 

A NTNU Verified 

T-2.5.2 

REQ-

2.5.7T 

Sensors should be 

visualized. 

B TS Verified 

T-2.5.2 

REQ-

2.5.8U 

The framework shall 

allow for customization 

of all necessary sensor 

module parameters. 

A NTNU Verified 

U-1.1.2 

REQ-

2.5.9U 

The framework shall 

allow for customization 

of all necessary sensor 

parameters. 

A NTNU Partly verified 

U-1.1.2 

Table 49: Sensors and sensor modules 
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1.2.2.6. Scene 

Nr: Requirement Category Originator Verified? 

REQ-

2.6.1U 

The framework shall 

allow for customization 

of all necessary terrain 

parameters 

A NTNU Verified 

U-1.1.2 

REQ-

2.6.2T 

The created terrain 

shall be physically 

accurate based on 

design parameters. 

A TS Verified 

T-2.6.1 

REQ-

2.6.3T 

The terrain should be 

created using a 

heightmap image file.  

B TS Verified 

T-2.6.1 

REQ-

2.6.4T 

The terrain’s visual 

representation shall 

match the physical 

representation. 

A TS Verified 

T-2.6.1 

REQ-

2.6.5T 

Scene should contain 

functionality for water 

fields. 

B TS N/A 

T-2.6.2 

REQ-

2.6.6T 

Scene should contain 

functionality for air 

resistance fields. 

B TS N/A 

T-2.6.2 

Table 50: Scene 
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1.2.3. Dynamics 

Nr: Requirement Category Originator Verified? 

REQ-

3.1.1T 

The dynamics 

component shall 

control the movable 

elements of the robot. 

(joints) 

A NTNU Verified 

T-2.3.1 

REQ-

3.1.2R 

The dynamics 

component shall be 

separate from the Core 

Framework 

A TS Verified 

R-3.1.1 

REQ-

3.1.3T 

The dynamics 

component shall enable 

robot 

forward/backwards 

movement  

A NTNU Verified 

T-3.1.1 

REQ-

3.1.4T 

The dynamics 

component shall enable 

robot left/right turns 

A NTNU Verified 

T-3.1.1 

REQ-

3.1.5T 

The dynamics 

component should 

enable robot sideways 

motion 

B TS Partly verified 

T-3.1.1 

REQ-

3.1.6T 

The dynamics 

component should 

enable modification of 

movement parameters 

to create custom 

motion commands for 

the robot. 

B TS Verified 

T-3.1.1 

REQ-

3.1.7R 

The dynamics 

component should 

enable custom robot 

movement scripts 

created by advanced 

users. 

B TS N/A 

R-3.1.2 

Table 51: Dynamics 
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1.2.4. Optimization 

Nr: Requirement Category Originator Verified? 

REQ-

4.1.1R 

The optimization 

component shall be 

separate from the Core 

Framework. 

A TS Verified 

R-4.1.1 

REQ-

4.1.2R 

The optimization 

component should 

contain functionality 

for multiple 

optimization 

algorithms. 

B TS N/A 

R-4.1.2 

REQ-

4.1.3T 

The optimization 

algorithms should be 

able to fast-forward to 

a specific simulation 

time-step. 

B TS Partly verified 

T-4.1.1 

REQ-

4.1.4T 

The user shall be able 

to optimize movement 

variables. 

A TS Verified 

T-4.1.1 

REQ-

4.1.5T 

The user shall be able 

to optimize robot 

design. 

A TS Not verified 

T-4.1.1 

REQ-

4.1.6T 

The user shall be able 

to select which 

parameters to not 

optimize throughout 

the optimization 

process. 

A TS Verified 

T-4.1.1 

Table 52: Optimization 
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1.3. Component-Based Design  
These are the requirements for the CBD aspect of the Modular Robot Simulator and software 

components. Most requirements are abstract, prompting verification by review and analysis, 

rather than testing.  

1.3.1. Cost reduction 

Nr: Requirement Category Originator Verified? 

REQ-

5.1.1R 

Future creation of 

modular robot 

simulators should be 

faster/cheaper using 

this framework.  

B TS Verified 

R-5.1.1 

REQ-

5.1.2R 

Time used on 

modifying components 

should be notably 

lower compared to 

modifying traditional 

systems. 

B TS  Verified 

R-5.1.2 

Table 53: Cost reduction 

1.3.2. Ease of assembly 

Nr: Requirement Category Originator Verified? 

REQ-

5.2.1U 

Namespace/class 

components shall be 

easier to assemble into 

a usable program, than 

to create a program 

from scratch. 

A TS Verified 

U-2.1.1 

REQ-

5.2.2T 

Custom variable 

structures shall be 

usable by all 

class/namespace 

components.  

A TS Verified 

T-5.1.1 

REQ-

5.2.3R 

CBS should make it 

easier to assemble a 

robot in various 

configurations.  

B TS N/A 

R-5.2.1 

Table 54: Ease of assembly 
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1.3.3. Reusability 

Nr: Requirement Category Originator Verified? 

REQ-

5.3.1U 

The Core Framework 

shall be reusable in 

new projects. 

A TS Verified 

U-2.2.1 

REQ-

5.3.2U 

The Dynamics 

component shall be 

reusable in other 

projects with the Core 

Framework. 

A TS Not tested 

U-2.2.1 

REQ-

5.3.3U 

The Optimization 

component shall be 

reusable in other 

projects with the Core 

Framework. 

A TS Not tested 

U-2.2.1 

REQ-

5.3.4U 

The Core Framework 

should enable creation 

of simple simulations 

using primitive shapes 

in this and other 

projects.  

B TS Verified 

U-2.2.1 

REQ-

5.3.5U 

Objects from classes 

such as Frames, Joints, 

SensorModules and 

SceneObjects should 

be usable without the 

creation of robot 

assemblies.  

B TS Not verified 

U-2.2.1 

Table 55: Reusability 

1.3.4. Customization flexibility 

Nr: Requirement Category Originator Verified? 

REQ-

5.4.1R 

Implementation of new 

components shall be 

possible by default. 

A TS Verified 

R-5.3.1 

REQ-

5.4.2R 

Modification of the 

system features shall be 

possible by only 

changing the specific 

component. 

A TS Partly verified 

R-5.3.1 

Table 56: Customization flexibility 
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1.3.5. Maintainability 

Nr: Requirement Category Originator Verified? 

REQ-

5.5.1R 

Maintenance/fixes in 

the code shall be easier 

to perform compared to 

traditional software 

solutions. 

B TS Verified 

R-5.4.1 

Table 57: Maintainability 
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1.Test & Verification 
The test & verification specification ensures the simulator meets the requirements defined in 

the requirement specification. There are three different categories of tests:  

• Actual testing (T-X.X.X) 

• Review and analysis of specifications (R-X.X.X) 

• Testing a use-case and comparing to other solutions (U-X.X.X) 

Tests are performed on the sub-topics specified in the requirement specification and will be 

verified by the means described in Table 59. Each test and verification table will contain a 

pass criterion, test execution (method) and a result, following a “comments” fields to 

elaborate on the test results if necessary. Some tests also have discussion fields.  

 

T Test verification 

R Review verification 

U Use-case and comparison verification 
Table 59: Test categories 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 28 of 54 

NTNU Ålesund Appendix 

 

 

1.1. Tests 
These are the tests performed within the project. 

1.1.1. Simulator usage 

1.1.1.1. Save/Load 

T-1.1.1 REQ-1.1.1T REQ-1.1.2T 

Pass criteria Configurations are saved to file, then loaded in a new simulation. 

Method 5 different configurations are created and saved.  

The program is shut down, and configurations are loaded to the 

simulator. Repeat 5 times with the different configurations. 

Analyze the ease-of-use. 

Result Verified 

Comment Performed in build application.  

Discussion A file browser instead of typing file name directly as in this prototype 

scene designer would be more user-friendly. 

 
Table 60: T-1.1.1 

T-1.1.2 REQ-1.1.3T 

Pass criteria Scenario in a started simulation is saved, then loaded in a new 

simulation. 

Method 5 different configurations are created, and simulation is started. All 5 are 

saved during runtime.  

The 5 configurations are loaded and started.  

Analyze results and observations. 

Result Failed 

Comment Performed in build application. 

Robot can be saved mid-execution and loaded later. However, joint 

angles are incorrect, since the initialization of the robot assumes frame 

rotations as different configurations (pitch/yaw). This causes the joints to 

be wrongly attached.  

Discussion Solution may be to disable pitch/yaw separations, and let user manually 

specify configurations. However, this was not done due to increased 

complexity in designing the robots.  
Table 61: T-1.1.2 
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1.1.1.2. Performance 

T-1.2.1 REQ-

1.2.2T 

REQ-

1.2.3T 

REQ-

1.2.4T 

REQ-

1.2.5T 

REQ-

1.2.8T 

REQ-

1.2.9T 

Pass criteria The simulator application shall be usable and perform real-time physics 

on a mid-range computer. There shall be no program crashes or mid-

simulation crashes. Physics objects shall not overlap or pass through 

each other.  

Method Run 10 simulations. For each simulation:  

• Create a unique scenario. 

• Run 1 minute. 

• Ensure physics are not updated too fast or too slow (observe). 

• Note any crashes.  

• Zoom in on robot if necessary to observe physics errors. 

Result Partly Verified 

Comment Performed in build application. 

Optimization has been observed to crash. 

Rest of the simulator performing according to specification.  
Table 62: T-1.2.1 

1.1.1.3. GUI 

T-1.3.1 REQ-1.3.1T REQ-1.3.2T 

Pass criteria Robots shall be previewed during the design phase, with enough detail to 

see the general shape of the robot. The robot shall also be correctly 

visualized during the simulation, according to physics and transforms.  

Method Design a robot.  

Make sure robot components are representative in the way of shapes and 

orientations while designing. 

Start simulation. Observe and zoom in on robot to ensure visualizations 

match physics behavior and design. 

Result Verified  

Comment Robot is previewed with details matching the main simulation 

visualization.  
Table 63: T-1.3.1 

T-1.3.2 REQ-1.3.3T 

Pass criteria Zoom, movement and rotation of camera shall be possible while the 

simulation is running.   

Method Start a simulation. 

Rotate around the created robot. 

Move camera around the created robot.  

Zoom in on the created robot.  

Result Partly verified 

Comment Performed in build application. 

Camera movement not working. 
Table 64: T-1.3.2 
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1.1.2. Core Framework 

1.1.2.1. Robot 

T-2.1.1 REQ-2.1.1T REQ-2.1.2T 

Pass criteria Robot modules and sensor modules are correctly locked together during 

simulation.  

Method Create 5 different robot configurations with different module sizes.  

Observe module/sensor-module connections.  

Review Robot class code structure.  

Result Verified 

Comment Performed in build application 

Two sensor modules cannot be connected to each other based on current 

Core Framework code structure.  
Table 65: T-2.1.1 

T-2.1.2 REQ-2.1.3T 

Pass criteria Position and rotation of the entire robot can be retrieved.  

Method In the update loop (or a similar function) retrieve the positional and 

rotational values of the robot.  

Result Verified  

Comment Performed in editor. 
Table 66: T-2.1.2 

1.1.2.2. Frame 

T-2.2.1 REQ-2.2.2T 

Pass criteria Updating the mesh files shall update the mesh of the robot frames.  

Method Design robot. Start simulation. Observe. 

Upload new mesh to the StreamingAssets/Robot folder. Design robot. 

Start simulation. Observe.  

Analyze eventual discrepancies.  

Result Verified 

Comment Performed in build application. 
Table 67: T-2.2.1 

T-2.2.2 REQ-2.2.3T REQ-2.2.4T REQ-2.2.5T 

Pass criteria Frame objects have position, rotation and scale properties. These can be 

retrieved from outside of the class. They have correct values. Values 

received can be used for visualization 

Method Modify update loop to print out transform values of a Frame object. 

Start simulation. 

Analyze values compared to visualization. 

Result Verified 

Comment Performed in editor. 
Table 68: T-2.2.2 
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1.1.2.3. Joint 

T-2.3.1 REQ-

2.3.2T 

REQ-

2.3.3T 

REQ-

2.3.4T 

REQ-

2.3.5T 

REQ-

2.3.6T 

REQ-

3.1.1T 

Pass criteria Joint movement is performed during simulation.  

Frames, modules, sensor modules and sensors are connected correctly 

with joints.  

Method Run simulation with dynamics component.  

Ensure joint angles are modified by the component.  

Ensure all robot components are correctly attached and do not detach.  

Ensure different joints perform their specific task (locks vs. hinges).  

Result Verified 

Comment Performed in build application. 
Table 69: T-2.3.1 

T-2.3.2 REQ-2.3.7T 

Pass criteria Joints detach. 

Method Modify dynamics component to enable detachment of joints.  

Design robot. 

Run simulation. 

Ensure joints detach correctly.  

Result N/A 

Comment Functionality not implemented. 
Table 70: T-2.3.2 

T-2.3.3 REQ-2.3.8T 

Pass criteria Joint position and rotation is readable.  

Method Print out a Joint objects position and rotation in the update loop.  

Ensure values are correct. 

Result N/A 

Comment Functionality not implemented. 

 

Discussion Can be approximated by interpolating between the two objects 

connected to a specific joint. 
Table 71: T-2.3.3 
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1.1.2.4. Module 

T-2.4.1 REQ-2.4.1T REQ-2.4.2T 

Pass criteria A Module object contains one joint object and two frame objects. No 

more, no less.  

Method Review class structure of a module. 

Design robot, run simulation. 

Observe all modules in simulation for errors in implementation. 

Result Verified 

Comment Performed in build application. 
Table 72: T-2.4.1 

T-2.4.2 REQ-2.4.4T 

Pass criteria Module transform values can be retrieved. 

Method Print out a Module object’s position from the update loop. 

Ensure values are correct.  

Result Verified 

Comment Performed in editor.  
Table 73: T-2.4.2 

1.1.2.5. Sensors/sensor modules 

T-2.5.1 REQ-2.5.1T REQ-2.5.2T 

Pass criteria User may decide where sensor modules are placed and their size. 

User may decide where sensors are placed on sensor modules.  

Method While designing a robot, configure the sensor modules with different 

positions/sizes. 

While designing a robot, configure the sensors with different positions 

on the sensor modules. 

Run simulator to test design.  

Result Partly verified 

Comment Sensor modules may only be placed between any modules with a pre-set 

position in the Scene Designer, but using the Core Framework, Sensor 

Module position may be chosen manually. 

Force sensors can be placed in 1 of 4 locations on sensor modules. 

Distance sensors can be placed in 6 locations on sensor modules.  
Table 74: T-2.5.1 

T-2.5.2 REQ-2.5.3T REQ-2.5.4T REQ-2.5.5T REQ-2.5.6T REQ-2.5.7T 

Pass criteria Sensor module position and rotation is readable. 

Force and distance sensor values are readable.  

Sensor module transform values can be used for visualization. 

Sensor transform values can be used for visualization. 

Method Design robot. 

Start simulation.  

Ensure visualization of sensor modules and sensors is visualized 

according to standard physics behavior.  

Ensure the analytics log is saving to file with a reasonable interval.  

Analyze log-file and review values.  

Result Verified 

Comment Performed in build application. 
Table 75: T-2.5.2 
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1.1.2.6. Scene 

T-2.6.1 REQ-2.6.2T REQ-2.6.3T REQ-2.6.4T 

Pass criteria The terrain height-mesh is created by an image file.  

The terrain matches the image.  

The visuals of the terrain match where the visuals of the robot interact.  

Method Create a scenario. Check if terrain matches the image by robot 

interaction.  

Create a new scenario. Select a new image. Check if terrain matches the 

image.  

Result Verified 

Comment Performed in build application. 
Table 76: T-2.6.1 

T-2.6.2 REQ-2.6.5T REQ-2.6.6T 

Pass criteria Terrain can contain water and air resistance fields.  

Method Create terrain with water field. Create scenario. Review robot 

performance in field. 

Create terrain with air field. Create scenario. Review robot performance 

in field.  

Result N/A 

Comment Functionality not implemented.  
Table 77: T-2.6.2 

1.1.3. Dynamics 

T-3.1.1 REQ-3.1.3T REQ-3.1.4T REQ-3.1.5T REQ-3.1.6T 

Pass criteria Robot can move forwards and backwards. 

Robot can turn left and right. 

Robot can move sideways. 

Robot can move in a user-defined manner. 

Method Create scenario. 

Move robot forward. move robot backward. 

Turn robot left, turn robot right. 

Move robot left, move robot right.  

Create 5 different custom movement patterns using the dynamics 

parameters.  

Result Partly verified 

Comment Performed in build application. 

Dynamics does not contain functionality for left and right. (REQ-3.1.5T) 

Discussion Left and right movement can be achieved by creating a custom 

parameter selection for movement.  
Table 78: T-3.1.1 
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1.1.4. Optimization 

T-4.1.1 REQ-4.1.3T REQ-4.1.4T REQ-4.15T REQ-4.1.6T 

Pass criteria Simulation can jump to specific time-step while optimizing.   

Movement variables are optimized.  

Design variables are optimized.  

Specific variables can be selected/deselected for optimization. 

Method Create scenario. Run simulation. 

Perform for movement and design: 

Select only 1 variable to optimize. 

Jump to 2nd Generation. 

Observe for errors.  

Repeat, selecting all variables to optimize.  

Observe for error.  

 

Result Partly verified 

Comment Performed in build application. 

Design variables are not optimized. (REQ-4.1.5T) 

Algoryx library errors cause the optimization to crash after too many GA 

population iterations. 
Table 79: T-4.1.1 

1.1.5. Component-based design 

1.1.5.1. Ease of assembly  

T-5.1.1 REQ-5.2.2T 

Pass criteria Vector2, Vector3 and Quaternion structures are used successfully for all 

operations in the Core Framework and component classes.  

Method If the visualization is working, the terrain is correctly created and 

rotations seem correct, the structures are working.  

Run simulation and check for errors. 

Analyze code to see if Dynamics and Optimization components can 

successfully implement the structures.  

Result Verified 

Comment Performed in build application. 
Table 80: T-5.1.1 
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1.2. Reviews and analysis 

1.2.1. Simulator usage 

1.2.1.1. Save/Loads 

R-1.1.1 REQ-1.1.4R REQ-1.1.5R 

Pass criteria A simulation can be created with all necessary data coming from the 

XML file (except for an initialization call). The XML class contents are 

representative of the data used when physically creating modular robots. 

Method Review the data flow from the Scene Designer to the Main class. Check 

which variables are passed, and if any simulation properties are not 

coming from the XML file.  

Review the XML file, and find whether it contains all necessary info for 

creating a real-life modular robot, such as sizes, assembly info, joint 

angles, etc.  

Result Partly verified 

Comment All simulation properties relating to the scenario come through the XML 

file. However, due to the Scene Designer needing to be designed with 

the specific engine (Unity in this case), several buttons and values, such 

as simulation start/stop, local file system paths and 

dynamics/optimization values must be transmitted from Scene Designer 

to the main file, outside of the XML file.  

Discussion The parameters stored in the XML file have no specific units, such as 

meters or centimeters, limiting the possibility of directly relating 

creation of real-life robots based on pure values. However, scale and 

mass can be set on all objects, so if the user makes all objects in the 

scenario relative to each other, with the correct friction coefficients etc. 

It should be easy to recreate the virtual robot as a physical 3D-printed 

model. This will of course be based on the actual size of the Frame 

meshes and sensor modules sizes. (REQ-1.1.4R) 
Table 81: R-1.1.1 

1.2.1.2. Performance 

R-1.2.1 REQ-1.2.6R REQ-1.2.7R 

Pass criteria Specific robot components featured in the assembly shall all exist in the 

running physics environment. Information about these shall be 

retrievable. 

Method Follow the flow of information in each of the frames, joints, sensor 

modules, force sensors and distance sensors.  

Ensure all code paths ends in the addition of a component to either the 

AgX simulation instance, or the robot assembly being added to the 

instance.  

Ensure all AgX_Interface classes contain correct return functions for 

object values.  

Result Verified 

Comment All scenario objects are added to the Algoryx physics environment when 

their corresponding initialization functions are called.  

All objects can be removed from the environment by calling the 

“AgX_Simulation.RemoveSimObjects()” function.  
Table 82: R-1.2.1 
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1.2.1.3. GUI 

R-1.3.2 REQ-1.3.4R 

Pass criteria All functionality contained in the Core Framework is being utilized by 

the Scene Designer.  

Method Review the functionality of the Scene Designer versus the possibilities in 

the Core Framework. Can the user do everything that is expected? Can 

this be done in the Core Framework in the first place?  

Result Verified  

Comment All functionality in the core Framework is used, but only implemented to 

various degrees. However, it is enough to get verified.  
Table 83: R-1.3.2 

1.2.1.4. Scenario 

R-1.4.1 REQ-1.4.5R 

Pass criteria All the tweakable parameters and values in the Scene Designer shall 

have a purpose with impact on the scenario, and not be misleading or 

useless.  

Method Review all changeable values in the Scene Designer and analyze by 

robot design or functionality whether the values have purpose. Also 

check if the changed values have impact on the transmitted XML file.  

Result Verified 

Comment Not all input fields have impact on the scenario, but they all perform 

functions relating to either the scenario, dynamics, optimization or 

visualizations.  

Discussion Some of the parameters could be hidden behind other options or sub-

containers. 
Table 84: R-1.4.1 

1.2.2. Core Framework 

1.2.2.1. Robot 

R-2.1.1 REQ-2.1.4R 

Pass criteria The robot in the scene has no components other than those defined in the 

robot class and its sub-components, except for any movement-

controlling components.  

Method Review the robot class and its sub-components. 

Ensure all sub-components exist in the Robot class.  

Result Verified 

Comment  
Table 85: R-2.1.1 

1.2.2.2. Module 

R-2.2.1 REQ-2.4.3R 

Pass criteria There are no limits to the number of modules in a robot.  

Method Review the class structure of Module objects.  

Result Verified 

Comment A list contains the modules in the robot, and lists can be theoretically 

infinite. No errors occur when adding a large amount of modules.  
Table 86: R-2.2.1 
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1.2.3. Dynamics 

R-3.1.1 REQ-3.1.2R 

Pass criteria The dynamics component is separate from the Core Framework 

Method Define the relationship between the Core Framework and the Dynamics 

component.  

Review how the component is connected to the simulator.  

Result Verified 

Comment The Dynamics component only takes a robot object as a parameter (from 

the Core Framework). The Core Framework has no relation to the 

Dynamics component.  

The Dynamics class is connected through the “Main” class, which is the 

class used to realize all component functionality.  
Table 87: R-3.1.1 

R-3.1.2 REQ-3.1.7R 

Pass criteria The user can script robot dynamics.  

Method Review how the user may implement a custom movement script through 

a string input-field.  

Result N/A 

Comment Functionality not implemented. 
Table 88: R-3.1.2 

1.2.4. Optimization 

R-4.1.1 REQ-4.1.1R 

Pass criteria Optimization component is separate from the Core Framework. 

Method Define the relationship between the Core Framework and the 

Optimization component.  

Review how the component is connected to the simulator. 

Result Verified 

Comment The Optimization component only takes a robot object from the Core 

Framework. The Core Framework has no relation to the Optimization 

component.  

The Optimization class is connected through the “Main” class, which is 

the class used to realize all component functionality. 
Table 89: R-4.1.1 

R-4.1.2 REQ-4.1.2R 

Pass criteria Optimization component consists of more than one optimization 

algorithm.  

Method Define amount of optimization algorithms available. 

Test all optimization algorithms.  

Result N/A 

Comment Only a Genetic Algorithm is currently included in the Optimization 

component.  

 

Discussion Algorithms such as simulated annealing could be added easily, thanks to 

the similarities in execution operations such as iterative performance, 

goal functions and hierarchical fitness tracking.   
Table 90: R-4.1.2 
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1.2.5. Component-based design 

1.2.5.1. Cost reduction 

R-5.1.1 REQ-5.1.1R 

Pass criteria Future creation of simulators is faster and cheaper to develop thanks to 

this framework 

Method Review the usage of the Core Framework and the other components. 

Result Verified 

Comment The Core Framework in addition to the accompanying components 

(Dynamics, Optimization, Visualization), can be re-used, and developers 

won’t have to invest as much time just to create a framework for robot 

creation. There are aspects of the framework which may be improved 

(such as adding more joint types), but improvements as such will still be 

less effort than to redesign the entire framework. Because of the 

component-based design, new components can also be added, based on 

the developer’s needs.  

As this verification specification is completed, future developers may 

review it to see if it contains the desired functionality for their projects.  
Table 91: R-5.1.1 

R-5.1.2 REQ-5.1.2R 

Pass criteria Time used on modification is shorter with components.  

Method Review whether less time will be used on modifications and additions to 

a modular robot simulator, by modifying components instead of whole 

traditional systems.  

Result Verified 

Comment Throughout the development process and in test scenarios, all 

modifications have been performed on the specific components only. If a 

new feature is added to the dynamics class, this is the only place where 

modification is performed. This has reduced development time and error 

buildup. It is highly likely that such simple development and 

maintainability functionality would not be present in a traditional 

system.  
Table 92: R-5.1.2 

1.2.5.2. Ease of assembly 

R-5.2.1 REQ-5.2.3R 

Pass criteria CBD makes it easier to assemble a robot in various configurations. 

Method Review design choices in the CBD and assess whether robot creation has 

been facilitated versus using traditional design.  

Result N/A 

Comment There is no clear result.  

Discussion It is assumed that separating all robot-related classes (in the Core 

Framework) have made flexibility and observability easier. However, 

without a case-study on a traditional system to compare with, this 

statement cannot be backed up. 
Table 93: R-5.2.1 
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1.2.5.3. Customization flexibility 

R-5.3.1 REQ-5.4.1R REQ-5.4.2R 

Pass criteria New components can be added to the Core Framework or the Modular 

Robot Simulator. 

Modification of components is the only necessity for changing system 

features.  

Method Review the method for adding components to the system. Is it easy to 

just replace? Could it be easier? 

Can modifications be performed purely inside the specific components 

and thus change the functionality, or must modifications be performed 

also in the main class? 

Result Partly verified 

Comment There could be less code which assembles components in the “Main” 

class, but in order to not rely on visualization-specific functions, the 

components cannot contain update-loops related to the visualization 

platform. Thus, the “Main” class must contain this functionality.  

The “Main” class is the only class that needs modification when adding 

a component.  

Only the current component needs to be changed when modifying 

functionality or the component itself. 
Table 94: R-5.3.1 

1.2.5.4. Maintainability 

R-5.4.1 REQ-5.5.1R 

Pass criteria Code maintenance requires less effort in this component-based system 

than if it was traditionally designed. 

Method Review components. Are there many overlaps between classes? The 

more separated the functionality is, the less maintenance is required, and 

the easier it is to find bugs. How has bug-testing been solved during the 

system design?  

Result Verified 

Comment See R-5.1.2. 
Table 95: R-5.4.1 
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1.3. Use-cases and comparisons 

1.3.1. Simulator usage 

1.3.1.1. Scenario 

All scenario comparisons have been discussed with the supervisor from NTNU.  

U-1.1.1 REQ-1.4.1U REQ-1.4.2U 

Pass criteria Scenario is easier to create in this program than making a hard-coded 

simulation (both in easy and advanced mode). The simulator is intuitive 

to use. 

Method Compare the Modular Robot Simulator with NTNU’s method for 

creating simulations.  

Review the time and effort required to create a scenario, both from 

scratch and by modifying an existing simulation. 

Discuss the intuitiveness of the simulator. 

Result Verified 

Comment The simulator fulfills all of the necessary functionality while being 

easier to use than manual-coding it or modifying existing software.  
Table 96: U-1.1.1 

U-1.1.2 REQ-

1.4.3U 

REQ-

2.2.1U 

REQ-

2.3.1U 

REQ-

2.4.5U 

REQ-

2.5.8U 

REQ-

2.5.9U 

REQ-

2.6.1U 

Pass criteria Customization options are similar or better compared to hard-coded 

simulations, by using the advanced mode in robot creation. 

Method Compare the Modular Robot Simulator with NTNU’s method for 

creating robot assemblies.  

See if all required parameters are included, and if the customization 

options are better, worse or has exactly the required customizability.  

This will be performed by using the advanced design mode.  

 

Also analyze the Frame, Joint, Module, Sensor module, Sensors and 

Scene classes, to see if the Core Framework has enough customizability.  

Result Partly verified 

Comment Sensor attachment less customizable than hard-coding it. 

Distance sensor is currently not sensing terrain.  

Customization of joints, optimization and dynamics is enough for 

teaching, but lacks a little for research purposes.  

Should have more modularity regarding custom dynamics.  

Terrain and scene object creation has enough customizability for 

teaching and research purposes.  

Discussion Sensor attachment is enough for teaching purposes. 

Currently, researchers are designing flat ground. Thus, the distance 

sensor will still work in the scenarios researchers use when developing. 
Table 97: U-1.1.2 

 

 

 



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 41 of 54 

NTNU Ålesund Appendix 

 

 

U-1.1.3 REQ-1.4.4U 

Pass criteria Designing a robot is faster using the Modular Robot Simulator than with 

hard-coded simulations. 

Method Compare the Modular Robot Simulator with NTNU’s method for 

creating simulations. Is it faster? 

Review and discuss the use and advantages of speed vs. customizability.  

Result Verified 

Comment Both the easy and advanced options provide faster results than the 

current methods used. The time it takes to design various modular robots 

have been significantly improved.  

There is a high level of customizability even though the design has been 

made significantly easier.  
Table 98: U-1.1.3 

1.3.2. Component-Based Design 

1.3.2.1. Ease of assembly 

U-2.1.1 REQ-5.2.1U 

Pass criteria Assembling a program is easier than to create it from scratch 

Method Use the framework to create a new project with a basic visualization.  

Review whether a designer will find it easier to use pre-made 

components and whether these components are usable enough, or if it 

would be easier to just create a new solution from scratch.  

Result Verified 

Comment Created in a new Unity project. 

See framework case-study. 
Table 99: U-2.1.1 

1.3.2.2. Reusability 

U-2.2.1 REQ-5.3.1U REQ-5.3.2U REQ-5.3.3U REQ-5.3.4U REQ-5.3.5U 

Pass criteria The Core Framework can be used to create a new project. 

The Dynamics component can be added to the project. 

The Optimization component can be added to the project. 

Primitive shapes can be created with the framework, resulting in a 

minimalistic physics simulator, with no other simulation elements.  

Sub-components of a robot can be included in the simulation without a 

robot.  

Method Create a new project using the Core Framework. Test functionality/vis. 

Add Dynamics and optimization components. Test. 

Create simulation only with primitive shapes. 

Create a frame. Add to simulation. Test. 

Result Partly verified 

Comment Created in a new Unity project. 

See framework case-study in the result section of the report. 

Dynamics (REQ-5.3.2U) and Optimization (REQ-5.3.3U) not yet tested. 

REQ-5.3.5U not tested. 
Table 100: U-2.2.1 
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Appendix D Core Framework overview 
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Appendix E Remaining technical 
specification 

Simulation_Core 
SensorModule 

The “SensorModule” class contains modules that are connected between the 

Frame/Joint modules and can be outfitted with distance and force sensors to receive input from 

the surrounding area. The class is one of the most comprehensive ones, as it has specific 

functions for sensory attachments allowing for 1 force sensor, and up to 6 distance sensors. The 

module is a simple cube shape.  

Contents of the “SensorModule” class are displayed in Table 101, while the main 

functions of the class are described in Table 102. 

Attributes Components 

guid : Guid 
leftMod_Nr, rightMod_Nr : int 
forceLockPosition : Vector3 
distanceLockPosition : Vector3 
position, rotation, size : Vector3 
quatRotation : Quaternion 
mass : double 
materialName : string 

agxPrimitive : AgX_Primitive 
forceSensor : ForceSensor 
forceSensorLock : Joint 
distanceSensors : List<DistanceSensor> 
distanceSensorLocks : List<Joint> 

Functions 

Initialize() 
Update() 

ConnectForceSensor() 
ConnectDistanceSensor() 

QuatToRot() 

Table 101: Contents of the SensorModule class 

Function Description Return 

Initialize Creates the “AgX_Primitive” object with the 

attributes of this class. 

If a force sensor is attached, the force sensor’s 

initialization function is called, and the 

corresponding lock is attached.  

If one of more distance sensors are attached, the 

initialization functions of these are called, and 

corresponding locks are attached.  

void 

Update Updates the position and rotation of the object based 

on the corresponding values of the object in the 

Algoryx simulation instance. 

Also updates the force and distance sensor attached 

to the module.  

void 

ConnectForceSensor Attaches an input “ForceSensor” to this sensor 

module and creates a new “Joint” as the sensor lock 

component 

void 
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Sets up the sensor and lock position based on the 

attribute “sensorPosition” in the “ForceSensor”. 

ConnectDistanceSensor Attaches a list of “DistanceSensors” to the sensor 

module and creates a new list of “Joints” as distance 

sensor locks.  

Attaches each sensor at a position according to the 

“sensorPosition” attribute in the “DistanceSensor”.  

void 

QuatToRot Updates the Euler angle representation of the sensor 

module’s rotation. 

Returns the Euler angle representation of the sensor 

module’s rotation. 

Vector3 

Table 102: SensorModule class functions 

 

ForceSensor 

The “ForceSensor” class defines the force sensors which may be attached to the sensor 

modules. The force calculations are not performed by this class, but in the “AgX_ForceSensor” 

class. The force sensor may only be attached to sensor modules, and in four different places: 

bottom, left, top and right.  

Contents of the “ForceSensor” class are displayed in Table 103, while the main 

functions of the class are described in Table 104. 

Attributes Components 

guid : Guid 
forceValue, mass : double 
sensorPosition : int 
position, size : Vector3 
rotation : Quaternion 
materialName : string 

agxSensor : AgX_ForceSensor 
Fs_Joint : AgX_Joint 
 

Functions 

Initialize() Update()  

Table 103: Contents of the ForceSensor class 

Function Description Return 

Initialize Creates the “AgX_ForceSensor” object with the 

attributes of this class. 

void 

Update Updates the position, rotation and force value of the 

object based on the corresponding values of the object 

in the Algoryx simulation instance. 

void 

Table 104: ForceSensor class functions 

 

  



Rev 1.0 Component-Based Simulator for Modelling 

the Design and Dynamics of Modular Robots 

Page 45 of 54 

NTNU Ålesund Appendix 

 

 

DistanceSensor 

The “DistanceSensor” class defines the distance sensors which may be attached to the 

sensor modules. The functionality of the actual sensor resides solely in this class, while the 

“AgX_DistanceSensor”-object only keeps track of the sensor’s position and rotation on the 

robot. This class has two main functions for the distance calculations, with one creating a ray, 

which is sent out by a set distance and angle based on the requested resolution and direction of 

the sensor. If the ray hits an object, the distance is saved in the class variable “hit_distance”, 

which will equal to the “max_rayDistance” value if no object is intersecting the ray.  

Contents of the “DistanceSensor” class are displayed in Table 105, while the main 

functions of the class are described in Table 106. 

Attributes Components 

guid : Guid 
sensorPosition : int 
position, rotation : Vector3 
size : Vector3  
quatRotation : Quaternion 
mass : double 

max_rayDistance : double 
hit_distance : double 
ray_direction : Vector3 
ray_Resolution : double 

agxPrimitive : AgX_Primitive 

Functions 

Initialize() 
Update() 

CalculateDistance() 
RayHitInside() 

GetSensorDistance() 

Table 105: Contents of the DistanceSensor class 

Function Description Return 

Initialize Creates the “AgX_Primitive” object with the attributes 

of this class. 

void 

Update Updates the position and rotation of the object based on 

the corresponding values of the object in the Algoryx 

simulation instance. 

void 

CalculateDistance Shoots out a ray in the sensor direction. 

Checks if any scene objects are hit using the 

RayHitInside function.  

Retrieves distance of the first object hit within the max 

distance value.  

void 

RayHitInside Checks if the ray intersects any of the scene objects. 

Checks for box and sphere collisions. 

Boolean 

GetSensorDistance Returns the “hit_distance” value.  double 

Table 106: DistanceSensor class functions 
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ContactFriction 

The “ContactFriction” class contains all information about the friction coefficients 

between two individual materials. In each scenario there can be a near infinite number of these 

objects. The class contains no functions, as the contact frictions are added directly to the static 

“AgX_Simulation” class. 

The attribute variables consist of two materials between which the friction coefficient 

will be calculated each time the corresponding objects interact in the simulation. 

The restitution coefficient contains the ratio between the final to initial velocity of the 

objects after collision, the friction coefficient contains the resistance force of sliding motions, 

and the Young’s modulus is the relationship of stress (or deformity) in the contact points. These 

coefficients are used in the physics calculations of the AgX physics engine after being passed 

to a function in the “AgX_Simulation” class.   

Contents of the “ContactFriction” class are displayed in Table 107. 

Attributes Components 

material1 : string 
material2 : string 
restitution : double 
friction : double 
youngsModulus : double 

none 

Functions 

 none  

Table 107: Contents of the ContactFriction class 
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AgX_Interface 
AgX_ForceSensor 

The “AgX_ForceSensor” class contains the information about a force sensor that may 

be added to a robot’s sensor module (“SensorModule” class). The module receives the force 

magnitude from the “Joint” object connecting the force sensor’s rigid-body with the sensor 

module rigid-body.  

Contents of the “AgX_ForceSensor” class are displayed in Table 108, while the main 

functions of the class are described in Table 109. 

Attributes Components 

guid : Guid 
scale : Vector3 

agx_Object : agx.RigidBody 

Functions 

AgX_ForceSensor() 
GetAgxObject() 

GetPosition() 
GetRotation() 
 

AddToAssembly() 
Remove() 

Table 108: Contents of the AgX_ForceSensor class 

Function Description Return 

AgX_ForceSensor Creates the Algoryx rigid-body with material, position, 

rotation, scale, and mass values for the input variables.  

Adds the object to the simulation instance.   

AgX_ForceSensor 

GetAgxObject Retrieves the Algoryx object agx.RigidBody 

GetPosition Retrieves the position of the object in the simulation Vector3 

GetRotation Retrieves the Quaternion rotation of the object in the 

simulation 

Quaternion 

AddToAssembly Adds the rigid-body to the current robot-assembly (if 

necessary) 

void 

Remove Removes the rigid-body from the simulation instance.  void 
Table 109: AgX_ForceSensor class functions 

Operations 

Since the AgX library has other variable types than Unity, the “Operations” class is 

created to transform variables between AgX and Unity. These variables include vectors and 

quaternions, which must be decomposed into their individual axis-values before constructing 

the resulting output type.  

Table 110 shows the operation functions. 

Function Description Return 

FromAgxVec3 Converts from agx.Vec3 to Vector3 Vector3 

ToAgxVec3 Converts from Vector3 to agx.Vec3 agx.Vec3 

FromAgxQuat Converts from agx.Quat to Quaternion Quaternion 

ToAgxQuat Converts from Quaternion to agx.Quat agx.Quat 

ToAgxVec3Vector Converts from a Vector3 array to an agx.Vec3Vector agx.Vec3Vector 

ToAgxIntVector Converts from an int array to an agx.UInt32Vector agx.UInt32Vector 
Table 110: Operations class functions 
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Types 

As detailed in REQ-5.3.1U, the core architecture should be independent from any 

specific platform and usable in other projects. Thus, the inclusion of Unity3D-based vector and 

quaternion data types are not valid for use. Three distinct structures have been created to solve 

this problem, Vector2, Vector3 and Quaternion, with inspiration from the functionality of the 

corresponding Unity3D classes. 

Vector2/Vector3 

In the Vector3 structure, there are functions that perform certain operations on the 

variables such as retrieving the length of a vector, converting from degrees to radians, and 

interpolations. Operator overloads have also been created. The Vector2 structure contains two 

variables, “x” and “y” for a 2D representation, and the Vector3 variable contains an additional 

“z” variable for a 3D representation. 

Table 111 shows the functions within the Vector3 structure (The Vector2 structure does 

not contain any custom functions).  

Function Description Return 

Length Retrieves the length of the vector Double 

Normalize Retrieves the direction of the vector with a length of 1 Vector3 

ToRad Transforms the vector from degrees to radians Vector3 

Lerp Linearly interpolates between two vectors by a set 

amount 

Vector3 

Operators Allows for addition, subtraction, multiplication and 

division between two vectors or a vector and a double 

Vector3 

Table 111: Vector3 structure functions 

Quaternion: 

Functions in the Quaternion structure have been influenced by Unity3D’s Quaternion 

class, but also general matrix calculus for rotational matrices. The functions perform Quaternion 

to vector operations and vice versa, in addition to some helper functions for the conversions. 

There is one operator overload to enable multiplication between a Quaternion and a Vector3. 

The Quaternion structure contains an “x”, “y”, “z”, and “w” variable, as it is a rotation matrix.  

Table 112 shows the functions within the Quaternion structure. 

Function Description Return 

ToEulerRad Converts Quaternion to Vector3 in radians, and uses 

two helper functions for the conversion 

Vector3 

FromEulerRad Converts from Vector3 Euler angles to Quaternion  

Operator* Multiplies a Vector3 with a Quaternion to modify the 

angles 

Vector3 

Table 112: Quaternion structure functions 
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Appendix F Case-study, XML file 
Scenario, start of Robot, Module, Frames, Joints: 

  <robot> 
    <modules xmlns="Assembly"> 
      <Module> 
        <mod_Nr>0</mod_Nr> 
        <position> 
          <x>0</x> 
          <y>12</y> 
          <z>-0.48999998755753</z> 
        </position> 
        <axis>Pitch</axis> 
        <frames> 
          <Frame> 
            <guid>5f9f543f-fc55-49ec-9c97-9944e0264b4b</guid> 
            <shape>Box</shape> 
            <scale>10</scale> 
            <position> 
              <x>0</x> 
              <y>12</y> 
              <z>-0.48999998755753</z> 
            </position> 
            <rotation> 
              <x>0</x> 
              <y>270.00000196115104</y> 
              <z>0</z> 
            </rotation> 
            <quatRotation> 
              <x>0</x> 
              <y>-0.70710676908493042</y> 
              <z>0</z> 
              <w>0.70710676908493042</w> 
            </quatRotation> 
            <mass>100</mass> 
            <isStatic>false</isStatic> 
            <materialName>Plastic</materialName> 
          </Frame> 
          <Frame> 
            <guid>fe7a5aba-49bf-441b-8f4c-76089bb02d81</guid> 
            <shape>Box</shape> 
            <scale>10</scale> 
            <position> 
              <x>0</x> 
              <y>12</y> 
              <z>-0.48999998755753</z> 
            </position> 
            <rotation> 
              <x>0</x> 
              <y>0</y> 
              <z>0</z> 
            </rotation> 
            <quatRotation> 
              <x>0</x> 
              <y>-0.70710676908493042</y> 
              <z>0</z> 
              <w>0.70710676908493042</w> 
            </quatRotation> 
            <mass>100</mass> 
            <isStatic>false</isStatic> 
            <materialName>Plastic</materialName> 
          </Frame> 
        </frames> 
        <joint> 
          <guid>ead26d3b-e615-4e80-9464-a5e429e0ed02</guid> 
          <leftFrameGuid>5f9f543f-fc55-49ec-9c97-9944e0264b4b</leftFrameGuid> 
          <rightFrameGuid>fe7a5aba-49bf-441b-8f4c-76089bb02d81</rightFrameGuid> 
          <type>Hinge</type> 
          <lowerRangeLimit>-1.5707963267948966</lowerRangeLimit> 
          <upperRangeLimit>1.5707963267948966</upperRangeLimit> 
          <Kp>8</Kp> 
          <max_vel>3</max_vel> 
        </joint> 
      </Module> 
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Sensor module, force sensor, distance sensor, locks: 

<sensorModules xmlns="Assembly"> 
      <SensorModule> 
        <guid>49c95067-af5e-49cc-9f24-d523666bf3d6</guid> 
        <leftMod_Nr>-1</leftMod_Nr> 
        <rightMod_Nr>0</rightMod_Nr> 
        <forceSensor> 
          <guid>2a343a24-a8c9-4ac6-8b5e-638fd98647b3</guid> 
          <forceValue>0</forceValue> 
          <sensorPosition>0</sensorPosition> 
          <position> 
            <x>0</x> 
            <y>11.6985</y> 
            <z>0</z> 
          </position> 
          <rotation> 
            <x>0</x> 
            <y>0</y> 
            <z>0</z> 
            <w>1</w> 
          </rotation> 
          <materialName>Plastic</materialName> 
          <mass>1</mass> 
          <size> 
            <x>0.3</x> 
            <y>0.001</y> 
            <z>0.1</z> 
          </size> 
        </forceSensor> 
        <forceSensorLock> 
          <guid>00000000-0000-0000-0000-000000000000</guid> 
          <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid> 
          <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid> 
          <lowerRangeLimit>0</lowerRangeLimit> 
          <upperRangeLimit>0</upperRangeLimit> 
          <Kp>3</Kp> 
          <max_vel>0</max_vel> 
        </forceSensorLock> 
        <forceLockPosition> 
          <x>0</x> 
          <y>11.6995</y> 
          <z>0</z> 
        </forceLockPosition> 
        <distanceSensors> 
          <DistanceSensor> 
            <guid>e2e792af-bdaa-41ab-b851-541220f94b7b</guid> 
            <sensorPosition>4</sensorPosition> 
            <position> 
              <x>0</x> 
              <y>12</y> 
              <z>0</z> 
            </position> 
            <rotation> 
              <x>0</x> 
              <y>0</y> 
              <z>0</z> 
            </rotation> 
            <quatRotation> 
              <x>0</x> 
              <y>0</y> 
              <z>0</z> 
              <w>0</w> 
            </quatRotation> 
            <mass>1</mass> 
            <size> 
              <x>0.01</x> 
              <y>0.01</y> 
              <z>0.01</z> 
            </size> 
            <max_rayDistance>10</max_rayDistance> 
            <ray_Direction> 
              <x>0</x> 
              <y>0</y> 
              <z>1</z> 
            </ray_Direction> 
            <ray_Resolution>0.05</ray_Resolution> 
          </DistanceSensor> 
        </distanceSensors> 
        <distanceLockPosition> 
          <x>0</x> 
          <y>12</y> 
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          <z>0</z> 
        </distanceLockPosition> 
        <distanceSensorLocks> 
          <Joint> 
            <guid>00000000-0000-0000-0000-000000000000</guid> 
            <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid> 
            <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid> 
            <lowerRangeLimit>0</lowerRangeLimit> 
            <upperRangeLimit>0</upperRangeLimit> 
            <Kp>3</Kp> 
            <max_vel>0</max_vel> 
          </Joint> 
        </distanceSensorLocks> 
        <position> 
          <x>0</x> 
          <y>12</y> 
          <z>0</z> 
        </position> 
        <rotation> 
          <x>0</x> 
          <y>0</y> 
          <z>0</z> 
        </rotation> 
        <size> 
          <x>0.3</x> 
          <y>0.3</y> 
          <z>0.1</z> 
        </size> 
        <quatRotation> 
          <x>0</x> 
          <y>0</y> 
          <z>0</z> 
          <w>1</w> 
        </quatRotation> 
        <mass>100</mass> 
        <materialName>Plastic</materialName> 
      </SensorModule> 

 

Robot Locks (between modules) 

    <locks xmlns="Assembly"> 
      <Joint> 
        <guid>00000000-0000-0000-0000-000000000000</guid> 
        <leftFrameGuid>00000000-0000-0000-0000-000000000000</leftFrameGuid> 
        <rightFrameGuid>00000000-0000-0000-0000-000000000000</rightFrameGuid> 
        <lowerRangeLimit>0</lowerRangeLimit> 
        <upperRangeLimit>0</upperRangeLimit> 
        <Kp>0</Kp> 
        <max_vel>0</max_vel> 
      </Joint> 

 

Scene 

Height image string is 21848 characters long. 
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Scene Objects 

<sceneObjects> 
    <SceneObject> 
      <guid>7b579252-58ce-4fb0-937f-57c24696363f</guid> 
      <size> 
        <x>1</x> 
        <y>1</y> 
        <z>1</z> 
      </size> 
      <position> 
        <x>0</x> 
        <y>12</y> 
        <z>4</z> 
      </position> 
      <rotation> 
        <x>0</x> 
        <y>0</y> 
        <z>0</z> 
      </rotation> 
      <quatRotation> 
        <x>0</x> 
        <y>0</y> 
        <z>0</z> 
        <w>1</w> 
      </quatRotation> 
      <materialName>Plastic</materialName> 
      <shape>Sphere</shape> 
      <mass>10</mass> 
      <isStatic>false</isStatic> 
    </SceneObject> 
  </sceneObjects> 
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Appendix F1 Case-study, visualization 
and update 

Update loop: 

//vis 
    GameObject sceneobjvis; 
    GameObject[] FrameDemoVis = new GameObject[2]; 
 
    // Update is called once per frame 
    void Update_Sim () 
    { 
        //Update physics: 
        Agx_Simulation.StepForward(); 
        //Update the robot: 
        robot.Update(); 
        //Update the visualization: 
        { 
            //Frames: 
            FrameDemoVis[0].transform.position = AgxHelper(robot.modules[0].frames[0].position); 
            FrameDemoVis[0].transform.rotation = (AgxHelper(robot.modules[0].frames[0].quatRotation)); 
            FrameDemoVis[1].transform.position = AgxHelper(robot.modules[0].frames[1].position); 
            FrameDemoVis[1].transform.rotation = (AgxHelper(robot.modules[0].frames[1].quatRotation)); 
            //Scene object: 
            sceneobjvis.transform.position = AgxHelper(sceneobj.position); 
        } 
        robot.modules[0].joint.SetAngle(2); 
 } 

 

Visualization: 

Mesh leftmesh, rightmesh; 
    void loadmesh() 
    { 
        ObjImporter import = new ObjImporter(); 
        leftmesh = import.ImportFile(Application.streamingAssetsPath + "/upper.obj"); 
        rightmesh = import.ImportFile(Application.streamingAssetsPath + "/bottom.obj"); 
    } 
 
    void Load_Vis() 
    { 
        //Set frame meshes: 
        FrameDemoVis[0] = GameObject.CreatePrimitive(PrimitiveType.Cube); 
        FrameDemoVis[1] = GameObject.CreatePrimitive(PrimitiveType.Cube); 
 
        Mesh[] mesh = new Mesh[2]; 
        mesh[0] = FrameDemoVis[0].GetComponent<MeshFilter>().mesh; 
        mesh[1] = FrameDemoVis[1].GetComponent<MeshFilter>().mesh; 
 
        var robotsize = new UnityEngine.Vector3(10,10,10); 
        for(int i = 0; i<2;i++) 
        { 
            mesh[i].vertices = AgxHelper(robot.modules[0].frames[i].meshVertices); 
            mesh[i].uv = AgxHelper(robot.modules[0].frames[i].meshUvs); 
            mesh[i].triangles = robot.modules[0].frames[i].meshTriangles; 
        } 
    } 
 
        UnityEngine.Vector3 AgxHelper(AgX_Interface.Vector3 vec) 
    { 
        var vector = new UnityEngine.Vector3(); 
        vector.x = (float)vec.x; 
        vector.y = (float)vec.y; 
        vector.z = (float)vec.z; 
 
        return vector; 
    } 
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Appendix G Custom dynamics case study 
Sidewinding 1 

 
Sidewinding 2 

 
Rolling 

 

 
 


