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Thesis Outline

The thesis consists of the following papers, which can be read independently of each other,
though it is natural to read Paper III before Paper IV.

I Control variates for the Metropolis–Hastings algorithm.
With Håkon Tjelmeland. Accepted for publication in Scandinavian Journal of Statistics.

II Directional Metropolis–Hastings algorithms on hyperplanes.
With Håkon Tjelmeland. Report.

III Approximate forward–backward algorithm for a switching linear Gaussian

model – with application to seismic inversion.
With Håkon Tjelmeland. Report.

IV Empirical comparison of two Bayesian lithology–fluid prediction algorithms.
With Marit Ulvmoen. Report.

Paper I to III are written for a statistical audience, whereas Paper IV is primarily directed to
geoscientists.

Background

When doing stochastic modelling we typically need to evaluate integrals of the form

E(f(x)) =

∫
f(x)π(x)dx, (1)

where x is a stochastic vector of dimension n, f(·) a function and π(·) a probability density.
There are typically three directions to go in solving the integral, analytically, numerically or
by stochastic simulation.

Finding an analytic solution to the integral is naturally the best. There exist several
integrands where this is possible, at least when x is of low dimension. When x is of high
dimension possible alternatives are for example the multivariate normal distribution (Johnson
and Wichern, 1998) and Hidden Markov models (HMM) in combination with the Forward–
backward (FB) algorithm (Scott, 2002). For HMM the resulting posterior distribution will be
a non-stationary Markov chain and the transition probabilities can be computed exactly and
efficiently using the FB algorithm.

Numerical techniques, like approximating the integral with a Riemann sum, work only for
low dimensions of x since the number of evaluations of the integrand increases exponentially
with the dimension of x. For many situations, stochastic simulation is the only alternative.
In stochastic simulation the integral is typically estimated by the sample mean

Ê(f(x)) =
1

N

N∑
i=1

f(xi), (2)

where x1,x2, . . . ,xN are realizations from π(·). There exist both exact and approximate
simulation techniques. The exact techniques are normally only available for low dimensions
of x. Importance sampling (Liu, 2001) is an important class of simulation techniques and
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there exist both approximate and exact versions. Exact versions are typically only available
for low dimension. For higher dimensions there exist approximate sequential techniques and
in particular particle filtering (Gordon et al., 1993) applied on non-linear HMM, also referred
to as state space models, is popular.

A general and frequently used simulation technique is Markov chain Monte Carlo (MCMC)
simulation and in particular the Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970). The MCMC algorithms simulate from a stationary Markov chain which has
π(·) as its limiting distribution. The algorithms are in theory able to simulate from almost
any distribution. Among disadvantages with the algorithms are that the realizations are
dependent, and from π(·) only in the limit when the number of iterations goes to infinity.
Evaluation of the convergence and mixing properties of the constructed Markov chain are
important but often a challenging task. In the early days of MCMC the focus where on
finding general algorithms that worked for a large set of distributions. Typical examples where
algorithms that made small moves in samples space in each iteration like single site and random
walk algorithms. Later, as one wanted to consider more and more complicated distributions,
algorithms became more and more specialised for the application and distribution in question.
There exists a large amount of different MCMC algorithms. Below we mention some of the
most central.

In the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) the variables
are updated from the full conditionals π(xi|x−i), where x

−i are all the variables in x except
xi. The algorithm is also referred to as the single site Gibbs sampler. Alternatively one
may jointly update more than one component of x from the resulting full conditional. Such
algorithms are referred to as the block Gibbs sampler. The Gibbs sampler can be seen as a
special case of the MH algorithm, where the full conditionals are proposal distributions with
resulting acceptance probability one.

In auxiliary MCMC algorithms an auxiliary variable s is introduced and a joint distribution
π(x, s) is defined so that the marginal distribution for x still are distributed according to the
distribution of interest, π(·). The auxiliary variable s is included to simplify the definition
of large updates. A typical example would be to include an s such that π(x|s) and π(s|x)
are possible to sample from so that a block Gibbs sampler can be used. The Swendsen–
Wang algorithm (Swendsen and Wang, 1987) for example using this idea. Other examples
of auxiliary MCMC algorithms are simulated tempering (Marinari and Parisi, 1993; Geyer
and Thompson, 1995), multi–grid sampling (Goodman and Sokal, 1989) and slice sampling
(Edwards and Sokal, 1988; Neal, 2003).

An important class of MCMC algorithms is what is referred to as reversible jump algo-
rithms (Green, 1995; Waagepetersen and Sørensen, 2001). For these algorithms, the proposals
are generated through a parametrized deterministic function. This scheme is mostly used to
simulate from distributions of varying dimension. A class of algorithms that is using the re-
versible jump setup for distributions of fixed dimension is directional MH algorithms. Here, the
proposals are generated along lines in sample space. By making proposals in other directions
than defined by the coordinate algorithms with better convergence and mixing properties can
be obtained. Here the parameter in the algorithm represents the direction of the line. There
exist several direction MH algorithms. For example Chen and Schmeiser (1993) generate pro-
posals along lines with uniform directions, Roberts and Rosenthal (1998) present an algorithm
that moves along a direction centered at the gradient direction evaluated in the current point.
Eidsvik and Tjelmeland (2006) also let the direction be a function of the current point.

Single site MCMC algorithms work poorly in terms of convergence and mixing properties
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whenever strong dependency is present between any of the components in x. Proposing
changes for many variables simultaneously in a MCMC algorithm potentially results in better
algorithms. Such algorithms are typically referred to as block or grouping MCMC algorithms.
For example, Liu et al. (1994) argue that doing block updates work better than single site
updates when it comes to the Gibbs sampler and there is strong dependence in x. Often models
are constructed such that full conditionals for large blocks are either multivariate Gaussian
or such that the FB algorithm can be used. Alternatively auxiliary variables also are used to
achieve this. To avoid very low acceptance rates for block MH algorithms the proposals are
typically generated from approximations to the full conditionals.

Computer power is often a limiting factor when it comes to estimation of E(f(x)) using
stochastic simulation. There have been developed some techniques to reduce the variance of
the estimate of E(f(x)) without increasing the amount of realizations generated and thereby
save computer time. Typical examples are Rao–Blackwellization, antithetic variables and
the use of control variates (Liu, 2001). There also exist examples where variance reduction
techniques are used inside the MCMC framework. Casella and Robert (1996) makes use of
Rao–Blackwellization and Pinto and Neal (2001), Mira et al. (2003) and Atchadé and Perron
(2005) construct control variates.

Summary

In the following we summarise the four papers in this thesis.
Paper I constructs control variates for variance reduction in the estimation of mean values

using the MH algorithm. Traditionally, mean values are estimated by the sample mean of the
accepted states from the MH algorithm. The rejected proposals are not used in the estimation
and this seems like a waste of information. We present a framework for construction of zero
mean control variates which are a function of all the accepted and rejected states. The control
variates can generally be used for the HM algorithm and for the reversible jump algorithm.
We are able to construct the zero mean control variates by letting the variates be a weighted
sum of the current state and the proposal in each iteration. We also develop control variates
that in addition to the current and the potential new state are a function of the acceptance
/rejection decision. In our simulation examples, we get the highest variance reduction for
the control variate that is a function of just the accepted and rejected states. The variance
reductions are typically between 15% and 35%, but in one of our examples we get variance
reductions as high as 45%.

The algorithm considered in Paper II generalizes the direction MH algorithm in Eidsvik
and Tjelmeland (2006) by generating proposals in hyperplanes in stead of along lines. The
generalized algorithm is compared with the algorithm in Eidsvik and Tjelmeland (2006) and
more traditional MH algorithms in a simulation example. The generalized algorithm typically
proposes longer jumps then the other algorithms and this indicates better mixing properties.
However, with our implementation the generalised algorithm are more computation intensive
per iteration and so the simpler algorithms in most cases are better when run for the same
amount of computer time. An interesting area for future research is therefore to find direc-
tional Metropolis–Hastings algorithms that generate proposals in hyperplanes, but requires
less computation time per iteration.

Paper III considers a Hidden Markov model with two hidden layers. The model, which
we call switching linear Gaussian (SLG) model, has its origin from the problem of seismic
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inversion. The bottom layer of the model is a Markov chain and the intermediate layer and
the observations are Gaussian. The model has clear similarities to what is known as switching
linear dynamical systems and conditionally Gaussian state space model (Zoeter and Heskes,
2006; Bar-Shalom and Li, 1998; Barber, 2006). Because of the Markovian structure of the
SLG model, the FB procedure can be used, but the computational efficiency of traditional FB
algorithms are not present for the SLG model. The forward recursion involves a mixture of
Gaussian terms where the number of terms grows exponentially when iterating forward. We are
not able to handle this many terms on a computer and need to introduce an approximation
by removing less important terms. Related to the problem of seismic inversion, the SLG
model is a part of a seismic inversion (SI) model. The bottom and the intermediate layer of
the SLG model, represent LF classes and elastic material parameters, respectively, along a
vertical profile in a reservoir. The SI model contains an additional layer connecting the elastic
parameters of the SLG model with pre–stack seismic data. The SI model is closely related to
the models presented in Buland et al. (2003) and Larsen et al. (2006). To construct an efficient
simulation algorithm for the SI model, we include the uppermost layer of the SLG model as an
additional layer in the SI model. The layer can be seen as auxiliary variables for the simulation
algorithm. We simulate from the SI model using MCMC simulation, where new values for the
LF classes and elastic parameters are proposed using the approximate FB algorithm described
above. In our simulation examples, the resulting MCMC algorithm converges fast and seems
to have very favorable mixing properties.

Paper IV compare inversion results from the SI model MCMC algorithm in Paper III
with inversion results from the simulation algorithm in Larsen et al. (2006). The algorithm
Larsen et al. (2006) introduces an approximation in the likelihood part of the SI model and is
in this way able to evaluate the resulting approximate posterior exactly and very efficiently.
The consequences of the approximations introduced in the likelihood are on the other hand
not clear and the objective of Paper IV is to evaluate the consequences. We achieve this by
comparing the inversion results from the posterior distribution and the approximate poste-
rior distribution in a synthetic but realistic case study. Central in Paper IV is how to best
compare discrete distributions of high dimensions. By using several measures on the posterior
marginal distributions we succeed in getting a good understanding of the consequences of the
approximations. We observe that, dependent on the parameters in the model, typically will
the approximate likelihood model preserves between 55 and 80% of the information in the
original likelihood model. The consequences of the approximation increase when the amount
of noise in the model increases. The approximation work better when most of the variability
is in the rock physics model and it is little seismic noise, compared to the opposite.
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Control variates for the Metropolis–Hastings algorithm

Hugo Hammer and Håkon Tjelmeland

Department of Mathematical Sciences
Norwegian University of Science and Technology

Trondheim, Norway

Abstract

We propose new control variates for variance reduction in estimation of mean val-
ues using the Metropolis–Hastings algorithm. Traditionally, states that are rejected in
the Metropolis–Hastings algorithm are simply ignored, which intuitively seems to be a
waste of information. We present a setting for construction of zero mean control vari-
ates for general target and proposal distributions and develop the ideas for the standard
Metropolis–Hastings and the reversible jump algorithms. We give results for three simu-
lation examples. We get best results for variates that are functions of the current state
x and the proposal y, but we also consider variates that in addition are functions of
the Metropolis–Hastings acceptance/rejection decision. The variance reduction achieved
varies depending on the target distribution and proposal mechanisms used. In simulation
experiments we typically achieve relative variance reductions between 15% and 35%.

Key words: Control variate, Markov chain Monte Carlo, rejected states, variance reduction.

1 Introduction

Suppose we want to estimate the mean, µ, of a function f(x) when x ∈ Rn is distributed
according to a target distribution π(·). If x is of high dimension and π(·) is complex, Markov
chain Monte Carlo (MCMC) techniques are typically the only viable alternatives for evaluating
µ. In the Metropolis–Hastings algorithm (Hastings, 1970), each iteration consists of two steps.
Letting x denote the current state of the Markov chain, one first proposes a new state y.
Second, one accepts y with a probability, otherwise retaining x. After a burn in period the
current state is essentially from the target distribution π(·) and can be used to estimate µ.
The most natural and traditional estimator of µ is the empirical mean of f(x).

It is always possible to do better than the empirical mean when it comes to estimation
variance (Liu, 2001). In the antithetic variates method (Hammersley and Morton, 1956)
one uses samples with negative correlation. The variance of the empirical mean is then less
than with independent samples. The Rao-Blackwellization method uses that E[E(f(x)|z)] =
E(f(x)) and Var[E(f(x)|z)] ≤ Var(f(x)) for any random variable z, implying that if E(f(x)|z)
is analytically available, the empirical mean of this has less variance than the empirical mean
of f(x). The control variate method constructs estimators that are linear combinations of the
original unbiased estimator and a random variable with known mean, called control variate.

Variance reduction techniques can also be used in a Metropolis–Hastings setting. Casella
and Robert (1996) develop a Rao-Blackwellization technique for this situation, but the cost
for evaluating the resulting estimator is quadratic in the number of iterations. Pinto and Neal
(2001) use the same sequence of random numbers in two Markov chains, one sampling from
π(·) and one from a Gaussian approximation to π(·). The latter chain is used to construct a
control variate. Large variance reductions results if π(·) is close to the Gaussian distribution.
Mira et al. (2003) use a zero-variance principle from physics literature to construct an estimator
that is the sum of the original estimator f(x) and a zero mean term. The additional term



can be considered a control variate. The method is only explored for simple low dimensional
cases, so the potential for more complicated situations is unclear. Atchadé and Perron (2005)
construct control variates that are functions of all proposed states, but limit the attention to
the independent proposal case.

In the present paper we use the control variate technique and consider variates that are
functions of both the current state x and the proposal y. We introduce a scheme for construc-
tion of zero mean variates for general target and proposal distributions and develop the idea
for both the standard Metropolis–Hastings and the reversible jump algorithms. In simulation
examples we try both control variates that are functions of only x and y and variates that also
are functions of the acceptance/rejection decision. We get the highest variance reductions for
the simpler control variates that are functions only of x and y.

The paper is organised as follows. In Section 2 we give a brief introduction to the
Metropolis–Hastings algorithm, and in Section 3 we describe the control variate technique.
The new control variates are developed in Section 4 and simulation examples are presented in
Section 5. Finally, in Section 6 we provide closing remarks.

2 MCMC simulation

The aim is to generate samples from a target distribution π(·). The basic idea in MCMC
is to construct a Markov chain with π(·) as limiting distribution (Liu, 2001). An algorithm
typically has two steps in each iteration. Letting x denote the current state, one first proposes
a new state y and, second, accepts y with a probability, otherwise keeping x as the current
state. Let x1, . . . ,xN denote N states of the Markov chain after having discarded a “burn-in”
period, so that x1, . . . ,xN are samples from π(·). Thus, with

µ = E(f(x)) =

∫
f(x)π(x)dx, (1)

the most frequently used estimator for µ is the sample mean,

µ̂ =
1

N

N∑

i=1

f(xi). (2)

In the following we briefly describe three MCMC algorithms, starting with the standard
Metropolis–Hastings scheme.

2.1 Standard Metropolis–Hastings algorithm

The Metropolis–Hastings setup is a recipe for construction of time reversible Markov chains
with a given limiting distribution, see Smith and Roberts (1993) and Dellaportas and Roberts
(2003). The standard Metropolis–Hastings algorithm follows the framework of a MCMC
algorithm described above. Still letting x be the current state, we generate a proposal y from
a distribution q(y|x) and accept y with a probability α(y|x). Different choices are possible
for α(y|x). Peskun (1973) shows that it is optimal in terms of asymptotic variance to use

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q(x|y)

π(x)q(y|x)
. (3)
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Another choice of α(y|x) is what is known as the Barker (1965) acceptance probability,

α(y|x) =
R(x,y)

1 +R(x,y)
. (4)

As the latter choice is suboptimal it is today essentially never used, but it has a connection
to a control variate we introduce in this article. We discuss this further in Section 4.

2.2 Mode jumping algorithm

A variant of the Metropolis–Hastings setup is the mode jumping algorithm introduced in
Tjelmeland and Hegstad (2001). It uses two proposal densities q0(·|x) and q1(·|x) and works
as follows. First, k = 0 or 1 is randomly selected and potential new state y is generated from
qk(·|x). Second, we accept the proposed state y with probability

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q1−k(x|y)

π(x)qk(y|x)
. (5)

Otherwise we keep x as the current state.

2.3 Reversible jump algorithm

The reversible jump algorithm (Green, 1995; Waagepetersen and Sørensen, 2001) generalises
the standard Metropolis–Hastings algorithm. It is most often used when the target distribution
have a sample space of varying dimension.

The target distribution π(·) is the joint probability distribution of x = (m, z), where
m ∈ {1, 2, . . . ,M} is a model indicator and z a stochastic vector of possibly varying dimension.
The z takes values in a set C = ∪M

m=1Cm, where Cm = Rnm, nm ≥ 1. Given a value for m,
z can only take values in Cm. Letting x = (m, z) with z ∈ Cm be the current state, one
iteration works as follows. Propose a new state y = (m′, z′) with z′ ∈ Cm′ by first proposing
m′ and a u ∈ Rn

mm′ from a proposal distribution q(m′,u|x) = pmm′qmm′(u|z), where pmm′ is
the distribution for m′ and qmm′(u|z) the distribution for u. Next, a one-to-one deterministic
relation is defined between (z,u) and (z′,u′) for some u′. The proposed new value y = (m′, z′)
is accepted with probability

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q(m,u′|y)

π(x)q(m′,u|x)
|J | (6)

and J is the Jacobi determinant for the transformation from (z,u) to (z′,u′). More details
for this algorithm is given in the Appendix.

3 Control variates

Suppose we have samples x1, . . . ,xN from the target distribution π(·) and these are used to
estimate µ defined in (1) with an unbiased estimator µ∗. Typically µ∗ is the sample mean
given by (2). Suppose we have another random variable v, the control variate, with zero mean
and which is correlated with µ∗. Then for any value c we can also use the unbiased estimator

µ̃ = µ∗ + c · v. (7)
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This gives
Var(µ̃) = Var(µ∗) + c2Var(v) + 2cCov(µ∗, v),

which is minimised for

c = −
Cov(µ∗, v)

Var(v)
. (8)

For this optimal value of c, the relative variance reduction by using µ̃ in stead of µ∗ is

Var(µ∗) − Var(µ̃)

Var(µ∗)
= [Corr(µ∗, v)]2. (9)

Thus, the aim is to construct a control variate which has a high squared correlation with µ∗.
Clearly, it is also possible to use more than one control variate. In the next section we discuss
ways to construct control variates for the Metropolis–Hastings algorithm.

4 Control variates for the Metropolis–Hastings algorithm

In this section we construct control variates for the Metropolis–Hastings algorithm. Let
x1, . . . ,xN and y1, . . . ,yN denote the states of the Markov chain and the corresponding pro-
posals in an MCMC algorithm, respectively.

4.1 A first control variate

Consider a control variate of the form

v =
1

N

N∑

i=1

g(xi,yi), (10)

where g(·, ·) is a function to be specified. Then E(v) = 0 if E(g(x,y)) = 0, where the
expectation is with respect to (x,y) ∼ π(x)q(y|x). Define the function

g0(x,y) = w1(x,y)f(x) + w2(x,y)f(y), (11)

where w1(·, ·) and w2(·, ·) are functions to be specified. We can then use g0(·, ·) as g(·, ·) in
(10) if

E(g0(x,y)) =

∫∫
[w1(x,y)f(x) + w2(x,y)f(y)]π(x)q(y|x)dxdy = 0. (12)

To find w1(·, ·) and w2(·, ·) that satisfy (12), we write the above expression as a sum of two
integrals and change the order of integration in the last integral. This gives the requirement

∫∫
w1(x,y)f(x)π(x)q(y|x)dxdy +

∫∫
w2(y,x)f(x)π(y)q(x|y)dxdy = 0. (13)

Thus, a sufficient condition for E(g0(x,y)) = 0 is

w1(x,y)π(x)q(y|x) = −w2(y,x)π(y)q(x|y), (14)

which, for any function ψ(x,y), is satisfied for

w1(x,y) = −ψ(x,y)
π(y)q(x|y)

π(x)q(y|x) + π(y)q(x|y)
(15)
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and

w2(x,y) = ψ(y,x)
π(y)q(x|y)

π(x)q(y|x) + π(y)q(x|y)
. (16)

When choosing ψ(·, ·) it is natural to focus on w2(x,y), the “weight” assigned to the potential
new state. Two choices are of particular interest. With ψ(x,y) = 1 the weight assigned to
f(y) equals the Barker (1965) acceptance probability (4), the relative probability for the pair
(y,x), an intuitively reasonable choice. The control variate is then

g0(x,y) =
R(x,y)

1 +R(x,y)
(f(y) − f(x)). (17)

Another natural choice for ψ(·, ·) is

ψ(x,y) = min

{
1 +

π(x)q(y|x)

π(y)q(x|y)
, 1 +

π(y)q(x|y)

π(x)q(y|x)

}
, (18)

which gives w2(·, ·) equal to the Peskun (1973) optimal acceptance probability,

w2(x,y) = α(y|x) = min

{
1,
π(y)q(x|y)

π(x)q(y|x)

}
. (19)

Our experience in simulation examples is that (17) gives slightly larger variance reductions
than the variate based on (19). In the examples in Section 5 we therefore only report results
for (17). We end this section with some remarks.

Remark 1. With the same kind of reasoning as above we get the same control variates for the
mode jumping and the reversible jump algorithms. In the Appendix we give a proof of (17)
in the reversible jump setting.

Remark 2. The estimator corresponding to (18) can also be derived using Rao-Blackwellization.
More specifically, the sample mean estimator can be improved by (1/N)

∑N
i=1E(f(xi)|xi−1,yi)

= (1/N)
∑N

i=1[(1 − α(yi|xi−1)f(xi−1) + α(yi|xi−1)f(yi), where the expectation is over the
acceptance/rejection decision. Note however that the above discussion shows that a w2(x,y)
corresponding to the Barker acceptance probability can be used even if the Peskun optimal
acceptance probability is used in the acceptance/rejection decision.

Remark 3. All we need to calculate µ̃ is the current state x, the proposal y and the acceptance
ratio R(x,y). These are already calculated when running the simulation algorithm. Thus,
the extra computational cost by using µ̃ in stead of µ̂ is negligible.

4.2 Control variates including the acceptance indicator

The control variate (17) is based on the current state x and the potential new state y. A
natural next step is to consider control variates that depend also on the acceptance/rejection
decision, or variates that are also functions of the proposal in the next iteration of the Markov
chain. The above scheme can easily be generalised to these situations and in the following we
consider the inclusion of the acceptance/rejection decision.

Let γ ∈ {0, 1} be the Metropolis–Hastings acceptance indicator, i.e.

P(γ|x,y) = [α(y|x)]γ [1 − α(y|x)](1−γ), γ = 0, 1. (20)
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A variate that depends on both x, y and γ would then be

v =
1

N

N∑

i=1

g(xi,yi, γi), (21)

where
g(x,y, γ) = w1(x,y, γ)f(x) + w2(x,y, γ)f(y), (22)

γ1, . . . , γN are the acceptance indicators for each iteration, and w1(·, ·, ·) and w2(·, ·, ·) are
functions to be specified. Proceeding similar to (12) and (13), but now also summing over the
two values of γ, we get a sum of four integrals that has to equal zero. A sufficient condition
for this is that the sum of the integrands is identical to zero. This gives

w1(x,y, 0)π(x)q(y|x)(1 − α(y|x)) + w2(y,x, 0)π(y)q(x|y)(1 − α(x|y)) (23)

+w1(x,y, 1)π(x)q(y|x)α(y|x) + w2(y,x, 1)π(y)q(x|y)α(x|y) = 0.

Many solutions of this exists. In particular we may explore variates that result from setting
two of w1(x,y, 0), w2(x,y, 0), w1(x,y, 1) and w2(x,y, 1) to zero and solve for the other
two similarly to what we did to get (17). Assuming we use the Peskun optimal acceptance
probability (3), two of the resulting six cases produce degenerate control variates. For arbitrary
functions ψi(·, ·), i = 1, . . . , 4, the remaining four cases generate the following control variates

g1(x,y, γ) = ψ1(x,y)(α(y|x) − γ)f(x), (24)

g2(x,y, γ) = (1 − γ)ψ2(x,y)α(y|x)f(x) − γψ2(y,x)(1 − α(x|y))f(y), (25)

g3(x,y, γ) = (1 − γ)ψ3(x,y)α(y|x)f(y) − γψ3(y,x)(1 − α(x|y))f(x), (26)

g4(x,y, γ) = ψ4(x,y)(α(y|x) − γ)f(y). (27)

The g1(·, ·, ·) is not a function of f(y) and is thereby not achieving our goal of using all
proposed states to estimate µ. The g2(·, ·, ·) gives only weight to f(y) when y is accepted
and only to f(x) when x is retained. Thus, the weight is given to the state that becomes x

in the next iteration. Intuitively it seems better to give weight to the state that is left, and
this is what g3(·, ·, ·) is doing. The g4(·, ·, ·) is only a function of f(y) and is thereby achieving
the goal of using all proposed states to estimate µ. Moreover, as g4(·, ·, ·) is not a function of
f(x) one would expect the corresponding control variate to be less correlated with the variate
defined in Section 4.1.

Remark 4. The choice of ψi(·, ·) will clearly influence the effectiveness of the approach. A
simple and natural choice is to set ψi(·, ·) ≡ 1. For the examples discussed in the next section
we have tried both this and other choices. For particular π(·) and f(·) we have found choices
of ψi(·, ·) that give slightly better results than ψi(·, ·) ≡ 1, but this seems to be very problem
specific. Thus, ψi(·, ·) ≡ 1 seems reasonable and this is what we use in the simulation examples.

Remark 5. Clearly, other variates than (24) to (27) that fulfil (23) exist. For example, one
may set w2(x,y, 0) = w2(x,y, 1) and w1(x,y, 0) = 0 and proceed as before. We have tried
also this, and variants of this, without getting better results.

Remark 6. Suppose we achieve a relative variance reduction a by using a control variate
compared with just the sample mean. Alternatively we can obtain the same variance reduction
by running the chain for more iterations and estimate µ by the sample mean in the longer
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Figure 1: Values of c as a function of the number of realizations N . The dotted lines represent
95% percentile bootstrap intervals.

chain. Suppose the original chain was run for N1 iterations and the longer chain for N2

iterations (both after convergence). Then the longer chain gives a relative variance reduction
of a = (1/N1 − 1/N2)/(1/N1) = (N2 −N1)/N1. Thus, to get a relative variance reduction of
a we need to increase the number of iterations by a factor ra = N2/N1 = 1/(1 − a).

4.3 Calculation of the control variate estimate

When calculating µ̃ in (7) for one of the control variates in Section 4 we want to use the optimal
value for c given in (8). However, this value cannot be directly used as both Cov(µ∗, v) and
Var(v) are unknown. In the following discussion we consider the control variate in (10), but a
similar discussion is also valid for the variates defined by (21). Substituting (2) and (10) into
(8), we get

copt(N) = −
1

N2

∑N
i=1

∑N
j=1 Cov(f(xi), g(xj ,yj))

1
N2

∑N
i=1

∑N
j=1 Cov(g(xi,yi), g(xj ,yj))

, (28)

where we note that copt depends both on the number of iterations run, N , and the initial
distribution. To remove the effect of the initial distribution we consider the situation after the
burn-in period. Thus, we have a stationary Markov chain and get

copt(N) = −

∑N−1
h=−(N−1)

(
1 − |h|

N

)
γfg(h)

∑N−1
h=−(N−1)

(
1 − |h|

N

)
γgg(h)

, (29)

where γfg(h) = Cov(f(xi), g(xi+h,yi+h)) and γgg(h) = Cov(g(xi,yi), g(xi+h,yi+h)). The
asymptotic value when N → ∞ becomes

copt(∞) = lim
N→∞

copt(N) = −

∑∞
h=−∞ γfg(h)∑∞
h=−∞ γgg(h)

. (30)

Figure 1 We focus on estimating the asymptotic value copt(∞). This is clearly a good approx-
imation to copt(N) when N is large enough so that |h|/N is small compared to 1 for all values
of h where γfg(h) or γgg(h) are significantly different from zero. Thus, copt(N) ≈ copt(∞) when

7
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Figure 2: Values of the estimator ĉopt(∞) based on a chain with N realizations, as a function
of batch length L. The dotted lines represent 95% bootstrap percentile intervals.

N is larger than some multiple of the effective correlation length, where the effective correla-
tion length may be defined as the smallest value r so that γfg(h) ≤ 0.05 and γgg(h) ≤ 0.05 for
all |h| > r. In all our simulation exercises γgg(h) drops to zero much faster than γfg(h), so in
practise it is the effective correlation length of γfg(h) that matter. For the toy Gaussian ex-
ample used to produce Figure 1 the effective correlation length of γfg(·) is about 60 iterations
(found by visual inspection of the empirical correlation function). In Figure 1 we see that
copt(∞) is obtained at N ≈ 1000, so an N equal to about 17 times the effective correlation
length is sufficient to obtain copt(N) ≈ copt(∞). We have done similar studies for the three
simulation examples in Section 5 with about the same general conclusion, an N equal to 15
to 20 effective correlation lengths is sufficient.

To estimate asymptotic values for Cov(µ⋆, v) and Var(v) and thereby copt(∞) one may
estimate the numerator and denominator in (30) separately via time series analysis methods
(Priestly, 1981; Geier, 1992; Han and Green, 1992). We adopt the computationally simpler
method of dividing the simulated chain into batches. More precisely, letting N be the number
of simulated iterations after having discarded the burn-in period, divide the N iterations into
M batches of L = N/M iterations each. Assuming L to be at least 15 to 20 times the effective
correlation length we get copt(L) ≈ copt(∞) ≈ copt(N). Moreover, we get that the correlation
between the batch means are small, so ignoring these correlations we get the estimator

ĉopt(∞) = −
̂Cov(µ̂j , vj)

V̂ar(vj)
= −

1
M

∑M
j=1(µ̂

j − µ̂)(vj − v)

1
M

∑M
j=1(v

j − v)2
, (31)

where µ̂j and vj are the sample mean and the control variate for batch number j, µ̂ =
(1/M)

∑M
j=1 µ̂

j and v = (1/M)
∑M

j=1 v
j .

From the above we have that the batch length, L, should be at least 15 to 20 effective
correlation lengths. For a given simulation length N we can then either choose to make the
number of batches as large as possible under this restriction or to make the length of the
batches, L, as large as possible under the restriction M ≥ 20 (say). For the toy Gaussian
example mentioned above, Figure 2 shows (estimated) values of ĉopt(∞), based on a a chain
with N iterations, as a function of the batch length L. The dotted lines are 95% bootstrap
percentile intervals. We see that the uncertainty in the estimate increases as a function of
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L. Similar studies for the simulation examples in Section 5 gave qualitatively similar results.
Thus, the best is to maximise the number of batches, M , under the given restriction on L.

5 Numerical examples

In this section we evaluate the control variates defined above in three simulation examples.
All three examples are based on previously analysed and published data sets and we adopt
the exact same models and simulation algorithms previously used.

5.1 Gaussian Markov random field example

Here we consider a simple but much analysed binomial time series from Kitagawa (1987).
Each day in 1983 and 1984 it was recorded whether there was more than one mm rainfall in
Tokyo. We use the likelihood function (Kitagawa, 1987)

f(d|χ) =

n−1∏

t=0

(
nt

dt

)
p(χt)

dt(1 − p(χt))
(nt−dt) (32)

where p(·) is the logit link and d = (d1, . . . , dn)T is number of days it rained more than onemm
on each calendar day. Clearly, nt = 2 for t 6= 60 and n60 = 1 corresponding to February 29.
We use two prior models for χ = (χ1, . . . , χn), circular Gaussian Markov random fields with
first and second order neighbourhood with precision κ which is apriori gamma distributed with
parameters a and b. Rue and Held (2004) refer to the priors as RW1 and RW2, respectively.
With x = (χ, κ) the interest is in π(x|d) and in particular the posterior expectation for rain
pt = E(p(χt)|d), t = 1, . . . , 366. Thus, with notation from Section 2 we have f(x) = p(χt).

To sample from the posterior we use a Metropolis–Hastings algorithm from Rue and Held
(2004). We first propose a new precision value κ′ = φκ where φ has density π(φ) ∝ 1 + 1/φ
on the interval [1/Φ,Φ]. This conveniently makes π(κ′|κ)/π(κ|κ′) = 1. Next we propose
a new value χ′ conditioned on κ′ for the Markov random field from a second order Taylor
approximation to the posterior distribution and finally jointly accept or reject (χ′, κ′). We
simulate using the library GMRFlib (Rue and Follestad, 2002). To estimate pt, t = 1, . . . , 366
we try all five control variates in Section 4. We denote the variates derived from (17) and (24)
to (27) with v0, v1, v2, v3 and v4, respectively and compute results for the corresponding five
estimators,

µ̃(l) = µ̂+ c · vl for l = 0, . . . , 4. (33)

In the simulations we adopt hyper-parameter values a = 1.0 and b = 0.000289 from Rue
and Held (2004). Further, we use Φ = 7 which give acceptance rate around 30%. For each
of the RW1 and RW2 priors we run the algorithm for 300000 iterations (after convergence).
Our focus is on the variance reduction obtained by using µ̃(l) for l = 0, . . . , 4 in stead of µ̂.
As discussed in Section 4.3, we estimate the variance reductions by dividing each run into M
batches of length 20 effective correlation lengths. To get uncertainty estimates for the variance
reductions we bootstrap the batches.

Figure 3 shows bootstrap percentile intervals for the variance reductions in the estimation
of pt = E(p(χt)|d) for each calendar day t = 1, . . . , 366. The top and bottom rows show the
reductions when using µ̃(0) and µ̃(1), respectively, in stead of µ̂, for each of the RW1 (left col-
umn) and RW2 (right column) priors. The µ̃(0) results in variance reductions between 20 and
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Figure 3: Gaussian Markov random field example: As function of calendar day t, 95% boot-
strap percentile intervals for the relative variance reductions by estimating the posterior mean
pt by µ̃(0) (upper row) and µ̃(1) (lower row) in stead of the sample mean µ̂. Left and right
columns contain results when using the RW1 and RW2 priors, respectively.

30%, while µ̃(1) give minimal variance reductions. None of the other estimators give promising
results. We also tried combinations of the control variates without getting significantly better
results than by v0 alone. Using v0 alone typically resulted in ra values between 1.2 and 1.55
which means that one has to increase the number of iterations by 20–55% to achieve the same
variance reduction by the sample mean estimator.

5.2 Mode jumping example

In this section we reconsider the example in Section 4.2 of Tjelmeland and Hegstad (2001),
where a mixture model is used for a data set originally presented in Brooks et al. (1997)
concerning fetal deaths in litters of mice. The model is a mixture of beta-binomial and
binomial distributions

p(λ|η) = γ

[(
η

λ

) λ−1∏

r=0

µ+ rθ

1 + rθ

η−λ−1∏

r=0

1 − µ− rθ

1 + rθ

]
+ (1 − γ)

[(
η

λ

)
νλ(1 − ν)η−λ

]
, (34)

where λ is the number of deaths and η the number of implants or fetuses. The model pa-
rameters are γ ∈ [0, 1], µ ∈ [0, 1], θ ≥ 0 and ν ∈ [0, 1], to which independent vague prior
distributions are assigned. The resulting posterior turns out to have two distinct modes. Most
of the posterior mass is in a mode with small values for γ and large values for ν, whereas a
smaller mode has larger values for γ and small values for ν. Our focus here is to estimate the
posterior mean for the probability mass contained in the smaller mode.

Given a current state x = (γ, µ, θ, ν), we simulate using the mode jumping algorithm
presented in Section 2.2. A potential new state y is generated by first drawing a vector
ϕ from a wide Gaussian distribution and setting k = 0 or 1 at random. Second, a local
optimisation algorithm for the posterior density is run, starting at x+ϕ if k = 0 and at x−ϕ
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Table 1: Mode jumping example: For the empirical mean, µ̂, and each of µ̃(l), l = 0, . . . , 4,
95% confidence intervals for the posterior mean of the amount of probability mass contained
in the smaller posterior mode, corresponding standard deviations, estimated ra-values and
95% bootstrap percentile confidence intervals for the relative variance reductions by using
µ̂(l), l = 0, . . . , 4 in stead of µ̂.

Estimator Confidence interval Standard.dev. ra Var. red.

µ̂ (0.01477, 0.01891) 1.06·10−03

µ̃(0) (0.01489, 0.01795) 7.81·10−04 1.83 (0.407, 0.496)

µ̃(1) (0.01467, 0.01877) 1.05·10−03 1.02 (0.001, 0.053)

µ̃(2) (0.01467, 0.01874) 1.04·10−03 1.03 (0.007, 0.072)

µ̃(3) (0.01504, 0.01834) 8.43·10−04 1.57 (0.316, 0.411)

µ̃(4) (0.01470, 0.01809) 8.39·10−04 1.58 (0.325, 0.416)

if k = 1. Third, a Gaussian or t-distribution is fitted to the local optimum found and, finally,
the potential new state y is generated from the fitted distribution. More details can be found
in the first reference given above. We ran the algorithm for 100000 iterations.

We consider the same control variates and estimators and adopt the same computational
procedures to obtain confidence intervals as in Section 5.1. Table 1 summarises the results.
For µ̂ and each of µ̃(l), l = 0, . . . , 4 we give 95% confidence intervals for the posterior mean
of the amount of probability mass in the smaller mode, corresponding standard deviations,
ra-values and 95% bootstrap percentile intervals for the relative variance reductions by using
µ̂(l), l = 0, . . . , 4 in stead of µ̂. In contrast to the previous example we obtain satisfying results
for three estimators, namely µ̃(0), µ̃(3) and µ̃(4). However, µ̃(0) is still best, and v0, v3 and v4
are highly correlated so little extra is gained by using more than one variate.

5.3 Reversible jump example

Here we consider the model and data sets presented in Richardson and Green (1997). For
three different data sets Richardson and Green (1997) use a mixture of Gaussian densities
with a stochastic number of mixture components. Thus, the resulting posterior is defined on
a space of varying dimension and a reversible jump algorithm is adopted for sampling. We
use the same data sets as in Richardson and Green (1997) and also adopt the same model
and simulation algorithm. Three groups of proposals are used. First, Gibbs updates is used
for allocation of observations into mixture components and for model parameters. Second,
reversible jump moves are used to split one mixture component into two or merging two into
one. The last is to propose to remove an existing or to add a new empty mixture component.
For details we refer to the reference given above.

Our focus is on number of mixture components, denoted m, and in particular its posterior
distribution. Thus, for each value of m we let f(x) be the indicator function that is one when
the number of mixture components equals the given value. For estimation we consider only
updates of the last two types. The first does not change m and is therefore of no relevance
here. We consider the same five control variates as in Sections 5.1 and 5.2. However, we now
define two control variates of each type, one for each of the two update types involving a
change in m. For l = 0, . . . , 4 let vl,2 be the control variate defined from equations (17) and
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(24) to (27), respectively, for the second update type, and similarly vl,3 for the third update
type. We considered the five estimators

µ̃(l) = µ̂+ c2vl,2 + c3vl,3 for l = 0, 1, . . . , 4 (35)

and ran the algorithm for 32 million sweeps (as defined in Richardson and Green (1997)) after
convergence. For each value of m we estimate the same type of quantities as in the previous
examples, adopting the same computational procedures. The results are summarised in Figure
4. The left and right columns show results the "enzyme" and "acidity" data sets, respectively.
The results for the third data set were almost equally promising. For m = 2, . . . , 10, bootstrap
percentile intervals is shown for the relative variance reduction by using µ̃(l) in stead of µ̂.
Row l give results for µ̃(l−1). The first variate, v0, is again most effective, but as in Section
5.2 also µ̃(3) and µ̃(4) give noticeable variance reductions.

6 Closing remarks

In this paper we introduce five new control variates for the Metropolis–Hastings algorithm.
We consider functions of both the current and the proposed new state, and this enables us to
construct control variates with zero mean values for general target and proposal distributions.
We work out the ideas for the standard Metropolis–Hastings setting and for the more general
reversible jump situation.

To apply the new variates require little extra effort, both in terms of implementation and
computation. It is best implemented as a program post-processing the simulation output.
The only change necessary in the simulation code is to store the proposed new value y and
the acceptance ratio R(x,y) in addition to the current state x. The post-processing is best
implemented as a general program, the only part that need recoding for each problem is the
function of interest, f(x). The extra computation time is proportional to the number of iter-
ations and is usually negligible. In contrast, the extra time used by the Rao-Blackwellization
scheme introduced in Casella and Robert (1996) is quadratic in the number of iterations,

In three simulation examples we have explored what variance reductions are obtained
with the new control variates. Two of the variates, v1 and v2 seem to be of little practical
importance. The best results are consistently obtained for the simplest control variate, v0, but
also v3 and v4 give promising results in two of the examples. However, as v3 and v4 typically
seem to be highly correlated with v0, we expect it to be most reasonable to use only v0.

The relative variance reductions obtained vary significantly depending on the target and
proposal distributions used and the expectation of interest. The largest reduction in our
examples is 45%, which corresponds to ra = 1.83. Thus, to obtain a similar variance reduction
by increasing the number of iterations, the run length must be increased by 83%. This number
is from our mode jumping example where the simulation run took days of computation time,
so here such a variance reduction is definitely of practical use.

The largest reductions seem to be obtained with proposal distributions that proposes large
changes. This is certainly true for the mode jumping example. The reductions are smaller for
the reversible jump example where, loosely speaking, the proposed changes are rather small.
This conclusion is intuitively reasonable, when proposing very small changes the correlation
between x and y becomes high and not much can be gained by using also the rejected proposals.
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Figure 4: Reversible jump example: 95% Bootstrap percentile intervals for relative variance
reduction in estimation of P(m = i), i = 2, . . . , 10 by using µ̃(l), l = 0, . . . , 4 in stead of the
sample mean µ̂. The left and right columns contain results for the Enzyme and the Acidity
data, respectively. Row l shows results for µ̃(l−1).
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A Proof of the first control variate for the Reversible jump

algorithm

Recall the algorithm described in Section 2.3. Here comes some more details related to the
algorithm which is needed to prove the first control variate. The functional relation between
(z,u) and (z′,u′) can be written as

(z′,u′) = φmm′(z,u) = (φ1mm′ (z,u), φ2mm′ (z,u))

and
(z,u) = φ−1

mm′(z
′,u′) = (φ1m′m(z′,u′), φ2m′m(z′,u′)).

The deterministic mappings must be of dimension φ1mm′ : Rnm+n
mm′ → Rn

m′ and φ2mm′ :
Rnm+n

mm′ → Rn
m′m . When considering a move from state (m, z) to (m′, z′) = (m′, φ1mm′ (z,u))

and the reversed move (m′, z′) to (m, z) = (m,φ1m′m(z′,u′)) the crucial so called dimensional
matching condition nm + nmm′ = nm′ + nm′m must be satisfied to obtain reversibility. It
means that the vectors (z,u) and (z′,u′) must be of the same dimension. We write the Jacobi
determinant in (6) as

J =

∣∣∣∣
φmm′(z,u)

∂z∂u

∣∣∣∣ .

Remember that we have x = (m, z), y = (m′, z′) and z′ = φ1mm′(z,u). Thus, g0(x,y)
defined in (11) can be written on the form

g0(x,y) = w1(m, z,m
′,u)f(m, z) + w2(m, z,m

′,u)f(m′, φ1mm′(z,u)). (36)

This gives

E(g0(x,y)) =
∑

m

∑

m′

∫∫
[w1(m, z,m

′,u)f(m, z) + w2(m, z,m
′,u)f(m′, φ1mm′ (z,u))]

π(m, z)pmm′qmm′(u|z)dzdu

=
∑

m

∑

m′

∫∫
w1(m, z,m

′,u)f(m, z)π(m, z)pmm′qmm′(u|z)dzdu

+
∑

m

∑

m′

∫∫
w2(m, z,m

′,u)f(m′, φ1mm′(z,u))π(m, z)pmm′qmm′(u|z)dzdu

Performing the substitution (z′,u′) = φmm′(z,u) in the last term above, and thereafter inter-
changing the variable symbols (m, z,u) and (m′, z′,u′) in the same term we get

E(g0(x,y)) =
∑

m

∑

m′

∫∫
w1(m, z,m

′,u)f(m, z)π(m, z)pmm′qmm′(u|z)dzdu

+
∑

m

∑

m′

∫∫
w2(m

′, φ1mm′(z,u),m, φ2mm′ (z,u))f(m, z)π(m′, φ1mm′ (z,u))

pm′mqm′m(φmm′(z,u))

∣∣∣∣
φmm′(z,u)

∂z∂u

∣∣∣∣dzdu.

(37)
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Thus, we get a sufficient condition for E(g0(x,y)) = 0 by setting the sum of the two integrands
identical to zero. This gives

w1(m, z,m
′,u)

=
π(m′, φ1mm′ (z,u))pm′mqm′m(φmm′(z,u))

∣∣∣φ
mm′ (z,u)
∂z∂u

∣∣∣

π(m′, φ1mm′(z,u))pm′mqm′m(φmm′(z,u))
∣∣∣φ

mm′ (z,u)
∂z∂u

∣∣∣ + π(m, z)pmm′qmm′(u|z)
(38)

w2(m, z,m
′,u) = −w1(m, z,m

′,u) (39)

and we get the first control variate for the reversible jump setting by substituting (38) and
(39) into (36). Finally, we get (17) using the expression for the acceptance ratio R(x,y).
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Abstract

In this paper we define and study new directional Metropolis–Hastings algorithms
that propose states in hyperplanes. Each iteration in directional Metropolis–Hastings
algorithms consist of three steps. First a direction is sampled by an auxiliary variable.
Then a potential new state is proposed in the subspace defined by this direction and the
current state. Lastly, the potential new state is accepted or rejected according to the
Metropolis–Hastings acceptance probability. Traditional directional Metropolis–Hastings
algorithms define the direction by one vector and so the corresponding subspace in which
the potential new state is sampled is a line. In this paper we let the direction be defined
by two or more vectors and so the corresponding subspace becomes a hyperplane.

We compare the performance of directional Metropolis–Hastings algorithms defined
on hyperplanes with other frequently used Metropolis–Hastings schemes. The experience
is that hyperplane algorithms on average produce larger jumps in the sample space and
thereby have better mixing properties per iteration. However, with our implementations
the hyperplane algorithms is more computation intensive per iteration and so the simpler
algorithms in most cases are better when run for the same amount of computer time.
An interesting area for future research is therefore to find variants of our directional
Metropolis–Hastings algorithms that require less computation time per iteration.

Keywords: Angular Gaussian distribution, Directional Metropolis–Hastings, Markov chain
Monte Carlo, Hyperplane algorithms, Subspace.

1 Introduction

We are often interested in calculating the mean of some function f(x) for x distributed ac-
cording to a target probability distribution π(·). If x is of high dimension and π(·) is complex,
stochastic simulation is the only viable alternative. There exists a wide range of simulation
algorithms for this. If the target distribution π(·) is sufficiently complex, the Metropolis–
Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is the standard choice. In
MH algorithms we run a Markov chain which has π(·) as its limiting probability distribution.
Each new state of the chain is generated in two steps. Letting x denote the current state
of the Markov chain, first a potential new state, y, is proposed and second the proposal y is
accepted with a certain probability, otherwise retaining x as the current state.

In directional MH algorithms the proposal step is done in two parts. First, a direction
is sampled via an auxiliary variable. Next, the potential new state is sampled in the sub-
space defined by the sampled direction and the current state of the Markov chain. Several
directional MH algorithms are discussed in the literature: Chen and Schmeiser (1993) gen-
erate the direction from an uniform distribution, Roberts and Rosenthal (1998) present an
algorithm that moves along a direction centered at the gradient direction evaluated in the
current point. Also Eidsvik and Tjelmeland (2006) let the direction depend on the current
state of the Markov chain. Gilks et al. (1994), Roberts and Gilks (1994) and Liu and Sabatti
(2000) use information from parallel chains to generate proposals along favourable directions.



Goodman and Sokal (1989) and Liu and Sabatti (2000) find what proposal distribution to use
in the chosen subspace to obtain unit MH acceptance rate. Eidsvik and Tjelmeland (2006)
also study this, but for direction distributions that depend on the current state of the Markov
chain.

In all the articles discussed above, the directional MH algorithms use directions that are
defined by one vector, and so the corresponding subspace is a line. The focus of this paper
is when the direction is defined by two or more vectors, so that the resulting subspace is a
(hyper) plane. By allowing ourselves to generate the potential new states in a hyperplane
instead of just a line, the setup becomes more flexible and thereby there should be a potential
for obtaining algorithms with better mixing properties. We implement this idea by generalising
the setup in Eidsvik and Tjelmeland (2006). Similar to what is done in that article our focus is
on proposal distributions that give unit MH acceptance rates. We compare the performance of
our new directional MH schemes with other frequently used MH algorithms. Our experience is
that the hyperplane algorithms on average produce larger jumps in each iteration and thereby
have better mixing properties per iteration. In some cases our new algorithms even give
negative one iteration correlations, which we were not able to obtain by either the directional
MH algorithms using only one vector to define the direction, or the simple random walk and
Langevin proposal algorithms. However, with our implementations the hyperplane algorithms
require more computation time per iteration and in most cases therefore is outperformed by
the simpler algorithms when run for the same amount of computer time. An interesting area
for future research is therefore to define variants of the hyperplane algorithms that require
less computation time per iteration.

The paper is organised as follows. In Section 2 we give a short introduction to directional
MH algorithms and in Section 3 we present details for directional MH algorithms generating
proposals in hyperplanes. In Section 4 we study how to define the proposal distributions to
obtain unit acceptance rate. In section 5 we present a simulation example comparing the
performance of our new directional MH algorithm with other frequently used MH schemes.

2 Metropolis–Hastings algorithms

A MH algorithm simulate from a specified target distribution, π(·), by simulating a Markov
chain for a large number of iterations, where the Markov chain is constructed to have the
target distribution π(·) as its limiting distribution. In this paper we restrict the attention
to continuous target distribution on Rn and let π(·) denote its density with respect to the
Lebesgue measure on Rn. We let x ∈ Rn denote the current state of the Markov chain.

2.1 Parametric Metropolis–Hastings

Parametric MH is a subclass of the MH algorithm where a parametric form is used to gen-
erate potential new states (Green, 1995; Waagepetersen and Sørensen, 2001), also known as
reversible jump algorithms. The algorithms are originally developed for target distributions
defined on sample spaces of varying dimension, but they are equally valid when the dimension
of the state vector x is fixed. In the following we describe the procedure for this latter case.

To generate a potential new state y one first samples a t ∈ Rm from a distribution q(t|x)
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and secondly generates the proposal y using the one-to-one transformation

y = w1(x, t)
s = w2(x, t)

}
⇔

{
x = w1(y, s)
t = w2(y, s),

(1)

where w1 : Rn+m → Rn and w2 : Rn+m → Rm. The proposal y should thereafter be accepted
with probability

α(y|x) = min

{
1,

π(y)q(s|y)

π(x)q(t|x)
|J |

}
, (2)

where

J =

∣∣∣∣∣∣

∂w1(x,t)
∂x

∂w1(x,t)
∂t

∂w2(x,t)
∂x

∂w2(x,t)
∂t

∣∣∣∣∣∣
(3)

is the Jacobian determinant for the one-to-one relation (1).
In the following we also use an auxiliary stochastic variable in the parametric MH setup.

Letting ϕ ∈ Φ denote the auxiliary variable, the procedure is then as follows. First we
generate ϕ from some distribution h(ϕ|x). As indicated in the notation the distribution for
ϕ may depend on the current state vector x. Next we generate t from a distribution q(t|x, ϕ)
that also may depend on the auxiliary variable. From t and ϕ we compute the proposal y using
the one-to-one relation (1), where now w1 and w2 may be functions also of ϕ. Note, however,
that the one-to-one relation is still between (x, t) and (y, s), the auxiliary variable ϕ should
here be considered as a fixed parameter. Lastly, we accept the proposal y with probability

α(y|ϕ, x) = min

{
1,

π(y)h(ϕ|y)q(s|ϕ, y)

π(x)h(ϕ|x)q(t|ϕ, y)
|Jϕ|

}
, (4)

where, as indicated in the notation, the Jacobian determinant may be a function of ϕ.

2.2 Directional Metropolis–Hastings

The class of directional MH algorithms is an important subclass of parametric MH algorithms.
In directional MH algorithms potential new states are traditionally generated along a line in
the sample space defined by the current state x and an auxiliary variable ϕ, where ϕ is
either a point or a directional vector in Rn. This situation is considered in Eidsvik and
Tjelmeland (2006) and in the following we introduce this setup and discuss the most important
experiences for this situation. In the next section we generalise the scheme to allow proposals
in a hyperplane.

Following Eidsvik and Tjelmeland (2006), we use z to denote the auxiliary variable when-
ever it represents a point in Rn, and use u when it represents a direction vector. First consider
the case that the line is defined by x and an auxiliary point z. An iteration of the MH al-
gorithm then starts by generating z from a distribution p(z|x). Next, we generate a scalar t
from some distribution q(t|z, x) and compute the proposal y through the one-to-one relation

y = x + t(z − x)
s = − t

1−t

}
⇔

{
x = y + s(z − y)
t = − s

1−s
.

(5)

Using (4), the acceptance probability becomes

α(y|z, x) = min

{
1,

π(y)p(z|y)q(s|z, y)

π(x)p(z|x)q(t|z, y)
|Jz|

}
, (6)
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where the Jacobian determinant is

Jz =

∣∣∣∣∣∣

∂y(x,t)
∂x

∂y(x,t)
∂t

∂s(x,t)
∂x

∂s(x,t)
∂t

∣∣∣∣∣∣
=

∣∣∣∣
(1 − t) · In z − x

0 −(1 − t)−2

∣∣∣∣ = −(1 − t)n−2, (7)

where In is the n-dimensional identity matrix and 0 is a matrix with only zero entries.
Consider next the situation when we use a direction vector u to define the line. To obtain

a unique vector u for a given line, Eidsvik and Tjelmeland (2006) require

u ∈ Sn = {u ∈ Rn \ {0} : ‖u‖ = 1 and ul > 0 for l = min{j;uj 6= 0}, }. (8)

Each iteration of the algorithm then starts by generating a direction u from a distribution
g(u|x). Next, a scalar t is proposed from a distribution q(t|u, x) and the proposal y is found
by the one-to-one relation

y = x + tu
s = −t

}
⇔

{
x = y + su
t = −s.

(9)

The acceptance probability now becomes

α(y|u, x) = min

{
1,

π(y)g(u|y)q(s|u, y)

π(x)g(u|x)q(t|u, y)
|Ju|

}
, (10)

where

Ju =

∣∣∣∣∣∣

∂y(x,t)
∂x

∂y(x,t)
∂t

∂s(x,t)
∂x

∂s(x,t)
∂t

∣∣∣∣∣∣
=

∣∣∣∣
In u
0 −1

∣∣∣∣ = −1. (11)

A critical choice in the two MH algorithms defined above is the distribution for the aux-
iliary variable, p(z|x) or g(u|x). For p(z|x) Eidsvik and Tjelmeland (2006) propose to use a
Gaussian approximation to the target distribution. For g(u|x) a uniform distribution in Sn is
clearly a possible choice. However, a better choice would be one that is adapted to the target
distribution in question and the current state x. This can be achieved by first sampling a
point z from a p(z|x) and let u be the direction vector that define the same line, i.e.

u =

{
z−x

||z−x|| if z−x
||z−x|| ∈ Sn,

− z−x
||z−x|| otherwise.

(12)

The resulting g(u|x) is then given as

g(u|x) =

∫ ∞

−∞
|r|n−1p(x + ru|x)dr. (13)

To be able to compute the corresponding acceptance probability g(u|x) must be analytically
available. In general this is not be the case, but when p(z|x) is Gaussian the corresponding
g(u|x) is called the angular Gaussian distribution and can easily be evaluated, see e.g. Watson
(1983) and Pukkila and Rao (1988).

One should note that the acceptance probabilities in the two above directional MH algo-
rithms differ. They become different even if the proposal mechanisms are chosen identical by
defining g(u|x) indirectly via p(z|x) as discussed above and the proposal distributions along

4



the line are chosen to be the same. The experience reported in Eidsvik and Tjelmeland (2006)
is that the algorithm based on u results in longer jumps and better mixing. Intuitively that
can be understood as the acceptance probabilities are conditional on the sampled values of
the auxiliary variable and a direction u contains less information than a point z. When gen-
eralising the above scheme to a situation where the auxiliary variable defines a hyperplane
instead of a line our focus is therefore on direction vectors.

2.3 Hyperplane directional MH algorithms

We now consider a directional MH algorithm where the potential new state is proposed in
a hyperplane of a dimension k < n. Thus, k = 1 corresponds to the algorithm discussed
above. Each iteration of the algorithm then starts by generating k vectors u1, . . . , uk according
to a distribution g(u|x), where u = (u1, . . . , uk). Next we propose a k-dimensional vector
t = (t1, . . . , tk)

T ∈ Rk from a distribution q(t|x, u) and compute the proposal y through the
one-to-one relation

y = x +
∑k

i=1 tiui

s = −t

}
⇔

{
x = y +

∑k
i=1 siui

t = −s,
(14)

where s = (s1, . . . , sk)
T ∈ Rk. The corresponding acceptance probability becomes

α(y|u, x) = min

{
1,

π(y)g(u|y)q(s|u, y)

π(x)g(u|x)q(t|u, y)
|Ju|

}
, (15)

where the Jacobian determinant is given by

Ju =

∣∣∣∣∣∣

∂y(x,t)
∂x

∂y(x,t)
∂t

∂s(x,t)
∂x

∂s(x,t)
∂t

∣∣∣∣∣∣
=

∣∣∣∣
In u1 · · · uk

0 −Ik

∣∣∣∣ = (−1)k. (16)

To fully define the simulation algorithm it remains to specify the distribution of the auxiliary
variables, g(u|x), and the proposal distribution q(t|u, x). In the following we first discuss how
q(t|u, x) should be chosen to give unit acceptance probability.

2.3.1 Proposal q with unit acceptance rate

Following the strategy used in Eidsvik and Tjelmeland (2006) one can easily identify a proposal
distribution q(t|x, u) that gives unit acceptance probability, namely

q(t|u, x) = c(x, u) π

(

x +

k∑

i=1

tiui

)

g

(

u

∣∣∣∣∣x +

k∑

i=1

tiui

)

, (17)

where c(x, u) is a normalising constant given by

c(x, u) =

[∫

R
k

π

(
x +

k∑

i=1

tiui

)
g

(
u

∣∣∣∣∣x +
k∑

i=1

tiui

)
dt

]−1

. (18)

To see that the resulting acceptance probability is equal to one, insert the above expression
for q(t|u, x) in (15),

α(y|u, x) = min





π(y) g(u|y) c(y, u) π

(
y +

∑k
i+1 siui

)
g
(
u
∣∣∣y +

∑k
i=1 siui

)

π(x) g(u|x) c(x, u) π
(
x +

∑k
i=1 tiui

)
g
(
u|x +

∑k
i=1 tiui

)




 . (19)
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Using the one-to-one relation between (x, t) and (y, s) in (14) and noting that c(x, u) = c(y, u)
we see that everything in the fraction cancels and we get α(y|u, x) = 1.

It should be noted that in most cases we will in practice not be able to use the q(t|u, x)
defined above because the integral in (17) is not analytically available. However, the above
expressions are still of interest as we may construct analytically available approximations to
(17) and thereby get acceptance rates close to one. In practice how to do this depend on the
properties of the q(t|u, x) in (17), which in turn depends on the choice of g(u|x). Next we
therefore discuss the choice of g(u|x).

3 Choice of g(u|x)

The goal is to choose g(u|x) so that the resulting hyperplanes with high probability goes
through high density areas of the target distribution. To obtain this it seems reasonable to
draw auxiliary points, z1, . . . , zk, from a distribution that resembles the target density and
use direction vectors that span the same hyperplane. In the following we discuss two ways
to define direction vectors u1, . . . , uk from z1, . . . , zk. The first set of direction vectors we

denote by u
(1)
1 , . . . , u

(1)
k and the resulting distribution by g1(u

(1)|x) and use u
(2)
1 , . . . , u

(2)
k and

g2(u
(2)|x) for the corresponding quantities for the second set of direction vectors.
Assume we have available a Gaussian approximation to the target distribution π(·), and

denote this by π̃(·). Thus, letting z1, . . . , zk be independent realisations from π̃(·), we may

define corresponding direction vectors u
(1)
1 , . . . , u

(1)
k by applying (12) to each zi separately.

Referring to our discussion in Section 2.2, the resulting g1(u
(1)|x) clearly becomes a product

of angular Gaussian densities.

Notice that even though each u
(1)
i is uniquely defined by the corresponding zi, the set

u
(1)
1 , . . . , u

(1)
k is not uniquely defined from the set z1, . . . , zk. Other direction vectors spanning

the same hyperplane may be defined by taking linear combinations of u
(1)
1 , . . . , u

(1)
k . Thus, as

we discuss in the last paragraph of Section 2.2, we should expect to get an algorithm with

better mixing properties by in stead using a set of direction vectors, u
(2)
1 , . . . , u

(2)
k , that is

uniquely defined from z1, . . . , zk. We obtain this by setting

u
(2)
1 = [1, 0, . . . , 0, u1,k+1, . . . , u1,n]T

u
(2)
2 = [0, 1, . . . , 0, u2,k+1, . . . , u2,n]T

...

u
(2)
k = [0, 0, . . . , 1, uk,k+1, . . . , uk,n]T .

(20)

Thus, u
(2)
1 , . . . , u

(2)
k are defined by k(n − k) variables and these can by found from z1, . . . , zk

by solving

zi = x +
k∑

j=1

ciju
(2)
j for i = 1, . . . , k, (21)

with respect to u(2) = {uij , i = 1, . . . , k, j = k + 1, . . . , n} and c = {cij , i, j = 1, . . . , k}. The
resulting distribution for u(2), g2(u

(2)|x), is found by first finding the joint distribution for u(2)

and c, g2(u
(2), c|x), and thereafter marginalise this over c,

g2

(
u(2)|x

)
=

∫
g2

(
u(2), c

∣∣∣ x
)

dc. (22)
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For n = 2 and k = 1 this integral can be solved analytically and u1,2, which is then the only
variable in u(2), has a Cauchy distribution. For n > 2 we have not been able to solve the
integral analytically, but simulations show that g2(u

(2)|x) has heavy tails also for n > 2. As
g2(u

(2)|x) is not analytically available for n > 2 it can not be used, but an approximation
to it may be used. To construct such an approximation we note that both the conditional
marginal distribution for c given x, and the conditional distribution for u(2) given c and x are
Gaussians. Thus, it is natural to factorize the integrand in (22) as a product of these two
distributions,

g2(u
(2), c|x) = g2(u

(2)|c, x)g2(c|x). (23)

Note, however, that u(2) and c given x are not jointly Gaussian. Inserting this in (22) and
performing a linear substitution for c so that the new variable, denoted by c̃, gets a k2-variate
standard Gaussian distribution, we have

g2(u
(2)|x) =

∫
g2(u

(2)|c̃, x)N(c̃)dc̃, (24)

where N(·) is the density of a standard Gaussian distribution. A natural approximation is
therefore to sample c̃1, . . . , c̃N independently from the standard Gaussian distribution and use

ĝ2(u
(2)|x) =

1

N

N∑

i=1

g2(u
(2)|c̃i, x). (25)

Clearly, ĝ2(u
(2)|x) is easy to sample from and it is straight forward to evaluate the corre-

sponding density. We will therefore use this as our second distribution for u. We note in
passing that taking N = 1 corresponds to using z1, . . . , zk to define the hyperplane. Clearly,
in practice one should use a value for N much larger than this.

4 Appearance of the unit acceptance rate proposal distribution

For k = 1 Eidsvik and Tjelmeland (2006) show that the proposal distribution that gives unit
acceptance rate, equation (17), typically becomes a bi-modal distribution with one mode close
to x and one far away from x. Thus, using this proposal distribution enables large jumps
in the sample space by proposing values to the mode away from the current state x. In this
section we study how this generalises for k > 1. As discussed in Section 2.3.1 we can not
actually use (17) as our proposal distribution, but this is still of interest for two reasons. It
shows what the potential is for using a proposal distribution that is an approximation to (17)
and it may generate ideas for how to construct good approximations to (17).

To study the appearance of (17) for k > 1 we consider a simplified variant of a Bayesian
model that in Rabben et al. (2008) is used for non-linear inversion of seismic data. The
variable of interest, x ∈ Rn, is assumed to have a Gaussian prior distribution with mean
m and covariance matrix S. Given x, the data d is assumed Gaussian with mean value
ax � x + bx and covariance matrix Σ, where a and b are scalar (known) parameters and �

denotes elementwise multiplication. Thus, the posterior distribution for x given d becomes
non-Gaussian for a 6= 0. Our simplification relative to the model used in Rabben et al. (2008)
is that we here consider n = 10, and in Section 5 n = 30, whereas in the seismic inversion
application much larger values of n are of interest.
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Our target distribution of interest is the posterior distribution π(x|d) ∝ π(d|x)π(x). Our
simulation algorithm requires that we have available a Gaussian approximation to π(x|d) and
this is easily obtained by approximating the likelihood mean in each dimension, ax2

i + bxi

by the corresponding linear Taylor approximation around the prior mean, mi. We let π̃(x|d)
denote the resulting Gaussian posterior approximation. In the following we use b = 1, m =
d = (1, . . . , 1)T , Sij = exp {−(i − j)2} and Σij = exp {−|i − j|}, and consider three different
values for a, 0, 0.1 and 0.3. Clearly, for a = 0 the two posterior distributions π and π̃ are
identical.

The appearance of the proposal distribution (17) that gives unit acceptance probability
depends on our choice of distribution for the auxiliary variable u. We consider the two alter-
natives defined in Section 3, g1(u

(1)|x) and g2(u
(2)|x). As discussed in Section 3, the g2(u

(2)|x)
is not analytically available, so here we use the approximation in (25) with a very large value
for N so that the result is indistinguishable from g2(u

(2)|x). To map the appearance of (17)
we first run until convergence a directional MH algorithm with g1(u

(1)|x) as distribution for
the auxiliary variable. At an arbitrary iteration after convergence we stop the simulation,
generate a u(1) and the corresponding u(2) and map the resulting two proposal distributions,

qj

(
t|u(j), x

)
= c

(
x, u(j)

)
π

(
x +

k∑

i=1

tiu
(j)
i

)
gj

(
u(j)

∣∣∣∣∣x +
k∑

i=1

tiu
(j)
i

)
(26)

for j = 1, 2. The two q1(t|u
(1), x) and q2(t|u

(2), x) are not directly comparable as the same
vector t give different proposed values y. To fix this we in stead choose an orthonormal basis for
the hyperplane spanned by x and u(1) (or u(2)), v1, . . . , vk and consider the two distributions
relative to this basis, i.e.

rj

(
t
∣∣∣u(j), v1, . . . , vk, x

)
∝ π

(

x +

k∑

i=1

tivi

)

g1

(

u(j)

∣∣∣∣∣x +

k∑

i=1

tivi

)

(27)

for j = 1, 2. It should be noted that by transforming to an orthonormal basis gives that the
Euclidean norm ‖t‖ is equal to the Euclidean distance between x and the proposed value y
in Rn. In Figure 1 we show results for k = 2 when a = 0 (left column) and a = 0.3 (right
column). Thus, the target distribution is Gaussian in the left column and non-Gaussian in the
right column. The upper row shows the target distribution π(x+ t1v1 + t2v2) for t = (t1, t2)

T ,
t1, t2 ∈ (−7, 5, 7.5). For the same values of t the middle row shows r1(t|u

(1), v1, v2, x) and
the lower row r2(t|u

(2), v1, v2, x). The current state x is located in the center in all six plots.
We see that in the lower row we get an O-shaped distribution. Comparing the upper and
lower rows for a = 0 we observe that r2(t|u

(2), v1, v2, x) seem to follow the contours of the
target distribution. Intuitively it seems reasonable that proposals to other parts of the target
distribution with almost the same density as x should often be accepted with high probability.
We observe this property also for a = 0.3, but here r2(t|u

(2), v1, v2, x) is not symmetrical.
Note that the results in the lower row is in accordance with the observation made in Eidsvik
and Tjelmeland (2006), namely that the proposal distributions for k = 1 typically have two
modes, one on each side of a high density area of the target distribution. Here we have a
high density area of the target distribution in the center of the O-shaped distribution. For
a = 0, middle row, we see that the two largest modes are placed on each side of a high density
area of the target distribution, one close to x and one on the other side of the high density
area of the target distribution. Again this is accordance with Eidsvik and Tjelmeland (2006).
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Figure 1: Results for the Bayesian simulation example with a = 0 (left column) and a = 0.3
(right column). The upper row shows the target distribution π(x+t1v1+t2v2) for t = (t1, t2)

T ,
t1, t2 ∈ (−7, 5, 7.5). For the same values of t the middle row shows r1(t|u

(1), v1, v2, x) and the
lower row r2(t|u

(2), v1, v2, x). The current state x is in the center, (25, 25), in all of the panels.
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Comparing the middle and lower rows for a = 0, we observe that the two largest modes in the
middle row are parts of the O-shaped distribution. This seem to be a general behaviour. We
observe the same for a = 0.3. Thus, long jumps are possible with both g1(u|x) and g2(u|x),
but we are loosing something in where we are able to propose potential new states by using
u(1) based on a non-unique basis relative to using u(2) that is based on a unique basis.

5 Bayesian simulation example

In this Section we analyse the behaviour of the algorithm based on g1(u
(1)|x) introduced

above and compare the results with simpler MH algorithms. In turns out that the simulations
necessary to calculate a satisfying approximation to (22) by using (25) is too expensive to be
of any practical use. We again consider the Bayesian model for non-linear seismic inversion
defined in Section 5, but now let n = 30.

5.1 Approximating the unit acceptance rate proposal distribution

As the proposal distribution (17) is not analytically available we need to construct an approx-
imation to it and use this as our proposal distribution. From the discussion in Section 4 we
know that the proposal distribution (17) typically contains two large modes, one close to t = 0
and one further away from t = 0. Our strategy is to approximate (17) by a mixture of two
Gaussian distributions.

To locate the large mode close to t = 0 we start a deterministic minimisation algorithm at
t = 0, searching for a local minimum for V (t) = − ln{q1(t|u

(1), x)}. Let µ0 denote the location
of local minimum found and let Σ0 = (∇2V (µ0))

−1 denote the inverse of the Hessian matrix
evaluated at µ0. We use µ0 and Σ0 as the mean vector and covariance matrix, respectively, in
the first mixture component. We want to use a similar procedure to approximate the second
large mode in (17), but then need to use another starting value for t in the minimisation
algorithm. From the results discussed in Section 4 we know that the maximal value for
π(x +

∑k
i=1 tiui) (as function of t) is located close to the line going through the two larger

local maxima of q1(t|u
(1), x). Moreover, the maximal value for π(x +

∑k
i=1 tiui) is located

between the two large local maxima of q1(t|u
(1), x). A natural initial value for the second

minimisation run is therefore t = µ0 + 2(µπ − µ0), where µπ is the location of the local
maximum of π(x +

∑k
i=1 tiui). Letting µ1 denote the location of the resulting second local

minimum found for V (t), and letting Σ1 = (∇2V (µ1))
−1 denote the corresponding inverse

Hessian matrix, our approximation to q1(t|u
(1), x) is

q̂1(t|u
(1), x) =

q1(µ0|u
(1), x)N(t;µ0,Σ0) + R · q1(µ1|u

(1), x)N(t;µ1,Σ1)

q1(µ0|u(1), x) + R · q1(µ1|u(1), x)
(28)

where N(t;µ,Σ) is the density of the Gaussian distribution with mean vector µ and covariance
matrix Σ evaluated at t, and R is a scalar constant that can make proposals to the mode far
away from the current state more or less likely. The results in Roberts et al. (1997) and
Roberts and Rosenthal (1998) indicate that a value of R > 1 should be preferable. For a = 0
simulations show that the acceptance rate is close to one for all choices of R. In this case it is
therefore best always to propose the mode away from the current state, i.e. use a large value
for R. For a 6= 0 the situation is more complicated. In all the simulations of the directional
MH algorithm we have tuned the parameter R to the optimal value in terms of mean jump
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length. It turns out that high acceptance rates, over 50%, works best. Before presenting
further simulation results for the proposal distribution just defined we give a few remarks.

Remark 1. Simulation show that for R = 1 the algorithm results in acceptance rates over 95%
for k = 1, 2, 3, 4, so the approximation in (28) is good.

Remark 2. If we use a quasi-Newton optimisation algorithm to find µ0 and µ1, the algorithm
in addition to finding the minimum also build up an approximation to the Hessian matrix
that can be used as Σ0 and Σ1.

Remark 3. We motivate our approximation q̂1(t|u
(1), x) from the results in Section 4, that

is for k = 2. However, we have done similar studies for k = 3, and also there q1(t|u
(1), x)

typically seems to contain two large modes.

5.2 Performance of the directional MH algorithm for k ≥ 1

To evaluate the performance of the directional MH algorithm with proposal distribution
q̂1(t|u

(1), x) we run the algorithm for k = 1, 2, 3, 4 and compare the results with the results
from the simpler random walk (RW) and Langevin (L) proposal algorithms. We tuned the pa-
rameters to get close to the optimal acceptance rates of 0.23 and 0.57, respectively, calculated
in Roberts et al. (1997) and Roberts and Rosenthal (1998). The results are summarised in
Figure 2 and Table 1. In Figure 2 we give estimated autocorrelation functions for the various
algorithms considered. The left column shows the autocorrelation as a function of iterations,
whereas in the right column the autocorrelation is shown as function of number of target
density evaluations. The three rows show results for a = 0, a = 0.1 and a = 0.3, respectively.
Table 1 gives some key attributes for the runs. For a = 0 we see that the directional MH
works better then both RW and L, both when measured in number of iterations and in num-
ber of target density evaluations. For k > 1 we even get negative lag one correlations. For
a = 0.1 the directional MH algorithms are better when measured in number of iterations, but
when evaluated in terms of the number of target density evaluations the Langevin algorithm
is clearly preferable. For a = 0.1 the directional MH algorithm with k = 1 and RW performs
equally good in terms of the number of target density evaluations. The directional MH with
k > 1 are less favourable in this case. Note in Table 1 that using k > 1 does not generate
much longer jumps than k = 1. As k > 1 requires more target density evaluations than k = 1,
the k > 1 is less attractive in this case. For a = 0.3 the qualitative performances of the various
algorithms are similar to with a = 0.1, but the differences are larger.

6 Closing remarks

Directional MH algorithms are generalised to propose new states in a hyperplane in this article.
The hyperplane is specified by the current state and auxiliary variables. We consider two types
of auxiliary variables, one is uniquely given by the hyperplane and the other is not. Consistent
with the findings in Eidsvik and Tjelmeland (2006), our analysis indicates that it is preferable
to use the auxiliary variables that is uniquely given by the hyperplane. However, we are
not able to do the analytical analysis necessary to implement the MH algorithm in this case.
Therefore we instead consider the MH algorithm corresponding to the auxiliary variables that
are not uniquely defined by the hyperplane and compare its performance with frequently used
simpler alternatives in a simulation example. The experience is that hyperplane algorithms
on average produce larger jumps in the sample space and thereby better mixing properties per
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Figure 2: Estimated autocorrelation functions for random walk and Langevin proposal MH
algorithms, and for our directional MH algorithm with k = 1, 2, 3, 4. Left column: Autocor-
relation as a function of iteration. Right column: Autocorrelation as a function of number of
target evaluations. The upper, middle and lower rows shows results for a = 0, a = 0.1 and
a = 0.3, respectively.
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Table 1: Attributes for the random walk and Langevin proposal MH algorithms, and for the
directional MH algorithm for k = 1, 2, 3, 4

Mean number of target Mean acceptance Mean jump Evaluations per
evaluations per iteration rates length independent sample

a = 0 :
RW 1 0.23 0.33 300
L 2 0.54 1.61 75

k = 1 14 0.99 5.5 30
k = 2 29 0.99 6.4 150
k = 3 49 0.99 6.8 300
k = 4 77 0.99 7.1 750

a = 0.1 :
RW 1 0.25 0.31 200
L 2 0.58 1.1 50

k = 1 18 0.61 3.0 150
k = 2 39 0.58 3.2 600
k = 3 77 0.56 3.3 1200
k = 4 130 0.56 3.3 2500

a = 0.3 :
RW 1 0.25 0.28 400
L 2 0.58 0.96 100

k = 1 20 0.51 1.0 2000
k = 2 45 0.64 1.0 2700
k = 3 83 0.73 0.94 15 · 103

k = 4 146 0.80 0.90 600 · 103

13



iteration. However, in our implementation the hyperplane algorithms is more computation
intensive per iteration and so the simpler algorithms in most cases are preferable when run for
the same amount of computation time. An interesting area for future research is therefore to
find variants of our directional Metropolis–Hastings algorithm that require less computation
time per iteration.
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Abstract

Motivated by the application of seismic inversion in the petroleum industry we con-
sider a hidden Markov model with two hidden layers. The bottom layer is a Markov chain
and given this the variables in the second hidden layer are assumed conditionally inde-
pendent and Gaussian distributed. The observation process is assumed Gaussian with
mean values that are linear functions of the second hidden layer. This model class, which
we call switching linear Gaussian models, has clear similarities with what is known as
switching linear dynamical systems and conditionally Gaussian state space models. The
important difference is that we allow the observations to depend on both past and future
values of the hidden Gaussian process. The forward-backward algorithms is not directly
feasible for switching linear Gaussian models as the recursions then involve a mixture of
Gaussian densities where the number of terms grows exponentially with the length of the
Markov chain. We propose an approximate forward-backward algorithm by dropping the
less important terms and thereby obtain a computationally feasible algorithm that gen-
erates samples from an approximation to the conditional distribution of the unobserved
layers given the data. We also use this approximation as a proposal distribution in a
Metropolis–Hastings setting and obtain high acceptance rates and good mixing proper-
ties. We demonstrate the effectiveness and quality of the approximation in simulation
examples.

1 Introduction

Hidden Markov models combined with recursive algorithms have successfully been used in
many areas, see the discussion and references in MacDonald and Zucchini (1997), Künsch
(2000), Scott (2002) and Cappé et al. (2005). In a hidden Markov model the observations are
assumed to be an incomplete and noisy function of an underlying unobserved process, where
the latent unobserved process has a discrete state space and is assumed to be Markov. The
goal is typically to restore the underlying Markov chain from the noisy observations and per-
haps also to estimate unknown parameters in both the latent and observation processes. With
reasonable assumptions for the observation process these goals are achieved via efficient recur-
sive computations known as the forward-backward algorithms, corresponding to the famous
Kalman filter equations when the latent Markov process is Gaussian.

Hidden Markov models with two hidden layers have been considered by several authors.
Switching linear dynamical systems (Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998)
and switching state space models (Barber, 2006) are hidden Markov models with two latent
layers. The bottom hidden layer is a discrete state space Markov chain and conditioned on
this bottom layer the second hidden layer is a Gaussian Markov process. Finally, given the two
hidden layers the observations are assumed independent and Gaussian. The mean vector and
covariance matrix for the observed value at any time index are functions of the two unobserved
states at the same time index. Larsen et al. (2006) consider a similar model, but allow the



observations to be functions of both past and future values of the hidden Gaussian process.
The goal is again to restore the unobserved Markov chain. The forward-backward recursions
can be formulated also for these models, but they are not computationally feasible as the
forward recursion involves a mixture of Gaussian distributions where the number of terms
grows exponentially with the length of the Markov chain. In the two first references given
above, approximate forward recursions are defined by substituting the mixture of Gaussian
distributions by a single Gaussian term. Larsen et al. (2006) define approximate recursions by
approximating the marginal distribution for the unobserved continuous process by a product
of Gaussian densities.

Motivated by the application of seismic inversion in the petroleum industry, we consider the
same model as discussed in Larsen et al. (2006). Here the Markov chain represents lithology-
fluid classes along a vertical trace through the underground, the intermediate Gaussian layer
represents elastic parameters of the rock along the same trace, and the observations are the
seismic data. The focus is again to restore the unobserved layers and particularly the Markov
chain. Parameter estimation is clearly also of interest, but not considered here. To get a
computationally feasible algorithm we must again consider approximate forward-backward al-
gorithms. In the forward part of the forward-backward algorithm we propose to drop terms
associated with small weights in the Gaussian mixture. Thus, our approximation is less dra-
matic than what is used before, but to a somewhat higher computational cost. The quality
of the approximation depends on the number and importance of the terms that are dropped.
Using the output of the resulting approximate forward-integration-backward-simulation algo-
rithm as proposals in a Metropolis–Hastings setting (Hastings, 1970) we are able to correct
for the induced approximation and the associated Metropolis–Hastings acceptance rate is a
natural measure of the quality of the approximation.

The paper is organised as follows. Section 2 defines and introduces necessary notation for
what we call the switching linear Gaussian model. In Section 3 we give a brief introduction
to the seismic inversion application and explain how the switching linear Gaussian model
constitutes the core part of this model. In Section 4 we first develop the exact forward
recursions for the switching linear Gaussian model, then discuss the dropping Gaussian terms
approximation and develop the backward simulation algorithm. In Section 5 we evaluate the
approximate forward–backward algorithm in simulation examples. Finally, in Section 6 we
provide conclusions.

2 The switching linear Gaussian model

In this paper we represent (multivariate) Gaussian distributions in its canonical form, as this
simplify the forward-backward recursions. A Gaussian distribution with mean vector µ and
covariance matrix Σ is in its canonical form parametrised by the precision matrix Q = Σ−1

and the vector q = Qµ, and we use N(q,Q) to denote this distribution. The corresponding
density we denote by N(u|q,Q) and this reads

N(u|q,Q) =

√
|Q|

(2π)
r

2

exp

{
−

1

2
qT Q−1q

}
exp

{
−

1

2

[
uT Qu − 2qT u

]}
. (1)

Consider a three layer hidden Markov model {(xi, yi, zi)}
n
i=1 as visualised in Figure 1,

where xi ∈ {1, . . . , L}, yi = (yi1, . . . , yir)
T ∈ Rr and zi = (zi1, . . . , zis)

T ∈ Rs for i = 1, . . . , n.
We require the number of possible values for the xi’s, L, to be small. In the seismic data
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Figure 1: Directed acyclic graph representation of the hidden Markov model discussed in
Sections 2 and 4.

example in Section 5 we have L = 4. We assume x = (x1, . . . , xn) to be a stationary, aperiodic
and ergodic Markov chain with transition matrix

P = [p(xi|xi−1)]
L
xi−1,xi=1. (2)

Thus, the marginal distribution of x1 equals the limiting distribution induced by P, which
we denote by p(x1). Conditioned on x we assume the elements of y = (y1, . . . , yn) to be
independent and Gaussian distributed, where the (conditional) mean vector and precision
matrix of yi are (known) functions of xi, which we denote by µ(xi) and Q(xi), respectively.
Thus,

yi|x ∼ N(q(xi), Q(xi)), (3)

where q(xi) = Q(xi)µ(xi). Given y we assume the elements of the third layer, z = (z1, . . . , zn),
to be independent of x and independent of each other. The conditional distribution for zi is
Gaussian with mean vector aT

i yi−1 + bT
i yi + cT

i yi+1 and precision matrix Ri, i.e.

zi|y ∼ N
(
AT

i yi−1 + BT
i yi + CT

i yi+1, Ri

)
, (4)

where Ai = aiRi, Bi = biRi and Ci = ciRi. Note that we allow the coefficient matrices ai, bi

and ci to vary with i, and in particular we of course require a1 = cn = 0.

3 The seismic inversion application

Seismic inversion is the discipline of predicting lithology-fluid characteristics in a reservoir
from seismic data. Numerous introductory books to seismic terminology and inversion exist,
see for example Sheriff and Geldart (1995).

Seismic data is created by an explosion which sends sound waves into the ground. Parts of
the waves are reflected, returned upwards and observed by microphones (geo- or hydrophones).
These observations are the basis for the seismic data. A forward model, describing what we
observe for given lithology–fluid characteristics, is known from physics theory. In seismic
inversion we are interested in the corresponding inverse problem, predicting the lithology–
fluid characteristics given observed seismic data.
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Seismic inversion is typically done based on either pre-stack or post-stack data. The pre-
stack data are also referred to as amplitude versus offset (AVO) data or common midpoint
gather (CMP). In a CMP gather, seismic data with different offsets (reflection angles) related
to the same vertical profile are gathered together. Before the data is used for inversion, noise
effects like moveout, multiples and the effect of geometrical spreading and absorption are
removed. The data is also pre-stack migrated such that any dip related effects are removed.
Post-stack data are generated from pre-stack data using the method of “stacking” (Sheriff
and Geldart, 1995). Here we consider how to do seismic inversion from one vertical profile of
pre-stack seismic data.

Our forward model is similar to the ones in Buland et al. (2003) and Larsen et al. (2006).
When dealing with seismic data the depth is typically not referenced by distance from the
surface, but by the time used by the sound wave from the surface to a location in the un-
derground and back, called travel time and denoted by t. A problem not considered here is
how to convert travel times to depths. Let the discrete variable x(t) be the lithology–fluid
class in the reservoir at travel time t. Assuming an isotropic and elastic medium, the material
properties are uniquely defined by the continuous variables P-wave velocity, S-wave velocity
and density. At time t we let

y(t, 1) = ln(α(t))

y(t, 2) = ln(β(t))

y(t, 3) = ln(ρ(t))

(5)

denote the logarithms of each of these three quantities, respectively. The forward relation
from x to y is based on the so-called Gassman equations (Berryman, 1995), we return to this
below. For each depth t and offset (reflection angle) θ a reflection coefficient, r(t, θ), results
from y. For this we use what is known as a weak contrast approximation (Aki and Richards,
1980; Buland and Omre, 2003), which reads

r(t, θ) = γα(θ)
∂

∂t
y(t, 1) + γβ(θ)

∂

∂t
y(t, 2) + γρ(θ)

∂

∂t
y(t, 3), (6)

where

γα(θ) =
1

2
(1 + tan2(θ)) (7)

γβ(θ) = −4β/α
2
sin2(θ) (8)

γρ(θ) = −4
(
β/α

2
sin2(θ)

)
, (9)

and one has assumed the ratio β(t)/α(t) to have an approximately constant value, β/α, in the
reservoir. Seismic data depends on the reflection coefficients and is observed for each travel
time t and offset θ. Still following Buland et al. (2003) and Larsen et al. (2006), we use a
convolution model with additive noise for this,

d(t, θ) =

∫
w(u, θ) · r(t − u, θ)du + ε(t, θ), (10)

where w(u, θ) is a wavelet function and ε(t, θ) is Gaussian noise. Similar to Buland and
Omre (2003) we assume that the main part of the Gaussian noise has a correlation structure
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corresponding to the wavelet. The argument for this is that both the signal and noise parts
are the results of sound waves going through the (same) underground.

For doing the inversion we consider a discrete version of the forward model discussed above.
We use i = 1, . . . , n to denote n travel times along the vertical profile and let xi and yi ∈ R3

denote corresponding values for x(t) and y(t). We consider s offset values θ1, . . . , θs and let
ri = (ri1, . . . , ris)

T ∈ Rs and di = (di1, . . . , dis)
T ∈ Rs denote reflection coefficients and seismic

data at travel time i, respectively. As prior for x = (x1, . . . , xn)T we use a Markov chain, as
specified in (2). The distribution for y = (yT

1 , . . . , yT
n )T given x is, as mention above, based

on the Gassman equations and we assume Gaussian distributions as specified in (3). Using
a central difference approximation for the partial derivatives in (6) we get an expression for
r = (rT

1 , . . . , rT
n )T as a function of y,

ri = ΓT ·
yi+1 − yi−1

2
for i = 1, . . . , n, (11)

where

Γ =




γα(θ1) γα(θ2) · · · γα(θs)
γβ(θ1) γβ(θ2) · · · γβ(θs)
γρ(θ1) γρ(θ2) · · · γρ(θs)



 . (12)

To avoid boundary problems for i = 1 and i = n, we use forward and backward difference
approximations, respectively, for the derivatives there.

Finally we discretise (10) to get the distribution for d = (dT
1 , . . . , dT

n )T given r,

dij =
k∑

u=−k

w(u, θj) · ri−u,j + εij , (13)

where the zero mean Gaussian noise εij is given as

εij =

k∑

u=−k

w(u, θj)ε
1
i−u,j + ε2

i,j (14)

and ε1
i,j and ε2

i,j are independent Gaussian white noise and we assume the variance of ε1
ij to

be much larger than the variance in ε2
ij so that most of the noise are on the same form as the

wavelet. Clearly, we also assume the wavelet to be nonzero only in a finite interval so that the
sum in (13) has a finite number of terms.

3.1 Simulating from the seismic model

We are now interested in simulating the variables x and y conditioned on the data d from the
model above. To define an effective MCMC algorithm for this, we introduce z = (z1, . . . , zn)T ,
where zi = (zi1, . . . , zis)

T ∈ Rs for i = 1, . . . , n,

zi = ri + ε1
i (15)

and ε1
i = (ε1

i1, . . . , ε
1
is)

T . The distribution for x, y and z is then on the form specified in Section
2. In (4) we have Ai = −Γ Ri/2, Bi = 0 and Ci = Γ Ri/2 for i = 2, . . . , n − 1, and using
forward and backward difference at the boundaries B1 = −Γ R1, C1 = Γ R1, An = −Γ Rn and
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Bn = Γ Rn. Finally we use Ri = σ−2
1 I for i = 1, . . . , n, where I denote the identity matrix.

Combining (13), (14) and (15) we get the relation between z and d,

dij |z ∼ N

(
σ−2

2

k∑

u=−k

w(u, θj) · zi−u,j, σ
−2
2 I

)
. (16)

To simulate effectively from the specified model we use a Metropolis–Hastings algorithm (Han
and Green, 1992; Hastings, 1970) consisting of two steps in each iteration. In the first step we
use a joint Gibbs update for y and z. The joint full conditional for y and z is Gaussian and
thereby easy to sample from. The full conditional for x and y is a model of the type specified
in Section 2. In the next section we discuss how to generate samples from an approximation
to this distribution and we adopt this as proposal distribution.

Remark 1. A perhaps more direct Metropolis–Hastings algorithm would be a three block
Gibbs algorithm, updating each of x, y and z separately. The full conditionals for y and z are
Gaussian and to sample the full conditional for x the (standard and exact) forward-backward
algorithm can be used. However, this algorithm has an extremely slow mixing because x and
y are highly correlated. This is the reason we in stead propose the two step algorithm specified
above.

Remark 2. A variant of the two block Metropolis–Hastings algorithm defined above is to
propose new values only for parts of x and y in each iteration. In simulations we have found
that one has to adopt this alternative if n is large, as otherwise either the approximate proposal
distribution is not computational feasible or the resulting Metropolis–Hastings acceptance rate
becomes very low.

4 Simulation algorithm

In this section we define the approximate forward-backward algorithm for the model defined in
Section 2 and discuss how this can be used as a proposal distribution in a Metropolis–Hastings
algorithm. We start by deriving the exact forward-integration recursion.

4.1 Forward integration

The conditional distribution of interest is

π(x, y|z) ∝ π(x)π(y|x)π(z|y) = p(x1) ·

n∏

i=2

p(xi|xi−1) ·

n∏

i=1

N (yi|q(xi), Q(xi)) (17)

·

n∏

i=1

N
(
zi|A

T
i yi−1 + BT

i yi + CT
i yi+1, Ri

)
.

To make the forward integration easier we need to introduce more notation. Let T1(x1, y1, x2,
y2, y3) be a product of all the factors in π(x, y|z) containing x1 or y1, let T2(x2, y2, x3, y3, y4)
be a product of all factors in π(x, y|z) containing x2 or y2 and that is not already included
in T1(x1, y1, x2, y2, y3), and so on. Thus, by adopting the conventions p(xn+1|xn) = 1 and
Bn+1 = Cn+1 = 0 we have

π(x, y|z) ∝

n∏

i=1

Ti(xi, yi, xi+1, yi+1, yi+2), (18)
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with

T1(x1, y1, x2, y2, y3) = p(x1)p(x2|x1)

N(y1|q(x1), Q(x1))N(z1|B1y1 + C1y2, R1)N(z2|A
T
2 y1 + BT

2 y2 + CT
2 y3, R2), (19)

Ti(xi, yi, xi+1, yi+1, yi+2) =

p(xi+1|xi)N(yi|q(xi), Q(xi))N(zi+1|A
T
i+1yi + BT

i+1yi+1 + CT
i+1yi+2, Ri+1) (20)

for i = 2, . . . , n. Recalling Cn = 0 and the notational conventions just made we see that
none of the above functions really depends on xn+1, yn+1 or yn+2. We include these in
the argument lists just to simplify the notation. Now define Ui(xi, yi, xi+1, yi+1, yi+2) and
Vi(xi, xi+1, yi+1, yi+2) for i = 1, . . . , n − 1 so that

π(xi, . . . , xn, yi, . . . , yn|z) ∝ Ui(xi, yi, xi+1, yi+1, yi+2)

·
n∏

j=i+1

Tj(xj , yj , xj+1, yj+1, yj+2), (21)

π(xi, xi+1, . . . , xn, yi+1, . . . , yn|z) ∝ Vi(xi, xi+1, yi+1, yi+2)

·

n∏

j=i+1

Tj(xj , yj , xj+1, yj+1, yj+2). (22)

This gives U1(x1, y1, x2, y2, y3) = T1(x1, y1, x2, y2, y3),

Ui(xi, yi, xi+1, yi+1, yi+2) = Ti(xi, yi, xi+1, yi+1, yi+2)
L∑

xi−1=1

Vi−1(xi−1, xi, yi, yi+1) (23)

for i = 2, . . . , n − 1, and

Vi(xi, xi+1, yi+1, yi+2) =

∫
Ui(xi, yi, xi+1, yi+1, yi+2)dyi (24)

for i = 1, . . . , n. Note that none of the Ui or Vi functions are really functions of xn+1, yn+1 or
yn+2, but again we include them as arguments to simplify the notation. In the following we
use 0 and I to denote an r × r matrix with all elements equal to zero and the r-dimensional
identity matrix, respectively. Moreover, let Di and Fi be 3r×3r and 2r×2r identity matrices,
respectively, for i = 1, . . . , n − 2, and define

Dn−1 =

[
I 0 0

0 I 0

]
, Dn =

[
I 0 0

]
and Fn−1 =

[
I 0

]
. (25)

The following Theorem presents the forward recursions for i = 1, . . . , n.

Theorem 1. Consider the hidden Markov model defined in Section 2 and the notation intro-
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duced above. We then have

Ui(xi, yi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi)

·

Ni∑

j=1

fij(xi)N



Di




yi

yi+1

yi+2





∣∣∣∣∣∣
gij(xi), Gij(xi)



 for i = 1, . . . , n
(26)

Vi(xi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi)

·

Ni∑

j=1

fij(xi)N

(
Fi

[
yi+1

yi+2

]∣∣∣∣ kij(xi),Kij(xi)

)
for i = 1, . . . , n − 1

(27)

Vn(xn, xn+1, yn+1, yn+2) ∝

Nn∑

j=1

fnj(xn), (28)

where Ni = Li−1 and fij(xi), gij(xi), Gij(xi), kij(xi), and Kij(xi) can be computed recursively.
Initial values for g11(x1), G11(x1) and f11(x1) are given by

G11(x1) =




Q(x1)+B1R

−1
1 BT

1 +A2R
−1
2 AT

2 B1R
−1
1 CT

1 +A2R
−1
2 BT

2 A2R
−1
2 CT

2

C1R
−1
1 BT

1 +B2R
−1
2 AT

2 C1R
−1
1 CT

1 +B2R
−1
2 BT

2 B2R
−1
2 CT

2

C2R
−1
2 AT

2 C2R
−1
2 BT

2 C2R
−1
2 CT

2



 (29)

g11(x1) =




q(x1)+B1z1+A2z2

C1z1+B2z2

C2z2



 (30)

f11(x1) = p(x1)
√

|Q(x1)| exp

{
−

1

2

(
q(x1)

T Q(x1)
−1q(x1)

)}
. (31)

For i = 2, . . . , n − 2, j = 1, . . . , Ni and l = 1, . . . , L, we have the following recursions

Gi,(j−1)L+l(xi) =




I

0

0



Q(xi) [I 0 0 ] +




I 0

0 I

0 0



Ki−1,j(l)

[
I 0 0

0 I 0

]

+




Ai+1

Bi+1

Ci+1



R−1
i+1

[
AT

i+1 BT
i+1 CT

i+1

]
,

(32)

gi,(j−1)L+l(xi) =




I

0

0



 q(xi) +




I 0

0 I

0 0



 ki−1,j(l) +




Ai+1

Bi+1

Ci+1



 zi+1, (33)

Ki,(j−1)L+l(xi) =




[

0 I 0

0 0 I

]
Gi,(j−1)L+l(xi)

−1




0 0

I 0

0 I








−1

, (34)

ki,(j−1)L+l(xi) = Ki,(j−1)L+l(xi)

[
0 I 0

0 0 I

]
Gi,(j−1)L+l(xi)

−1gi,(j−1)L+l(xi). (35)

For the final two iterations, i = n − 1 and n, the recursions are slightly different. For j =
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1, . . . , Nn−1 and l = 1, . . . , L we have

Gn−1,(j−1)L+l(xn−1) =

[
I

0

]
Q(xn−1)

[
I 0

]
+ Kn−2,j(l) +

[
An

Bn

]
R−1

n

[
AT

n BT
n

]
(36)

gn−1,(j−1)L+l(xn−1) =

[
I

0

]
q(xn−1) + kn−2,j(l) +

[
An

Bn

]
zn (37)

Kn−1,(j−1)L+l(xn−1) =

([
0 I

]
Gn−1,(j−1)L+l(xn−1)

[
0

I

])−1

(38)

kn−1,(j−1)L+l = Kn−1,(j−1)L+l(xn−1)
[

0 I
]
Gn−1,(j−1)L+l(xn−1)

−1gn−1,(j−1)L+l(xn−1),

(39)

and for j = 1, . . . , Nn and l = 1, . . . , L

Gn,(j−1)L+l(xn) = Q(xn) + Kn−1,j(l) (40)

gn,(j−1)L+l(xn) = q(xn) + kn−1,j(l). (41)

Finally, the recursion for fij(x) is, for i = 2, . . . , n, j = 1, . . . , Nn−1 and l = 1, . . . , L

fi,(j−1)L+l(xi) = fi−1,j(l)p(xi|l)

√
|Q(xi)Ki−1,j(l)|

|Gi,(j−1)L+l(xi)|
exp

{
−

1

2

[
q(xi)

T Q(xi)
−1q(xi)+

ki−1,j(l)
T Ki−1,j(l)ki−1,j(l) − gi,(j−1)L+l(xi)

T Gi,(j−1)L+l(xi)
−1gi,(j−1)L+l(xi)

]}
.

(42)

The theorem is proved by induction. Reordering terms in T1(x1, y1, x2, y2, y3) straightfor-
wardly gives (26) for i = 1 and initial values (29), (30) and (31). Integrating out yi in (26)
and using well known properties of the multivariate Gaussian distribution gives (27) and (28),
and the recursion formulas (34), (35), (38) and (39). We represent Gaussian distributions in
the canonical form and not by the mean vector and covariance matrix and this is the reason
for the somewhat unfamiliar expressions in these four equations. Summing over xi in (27) and
renumbering terms give after straightforward but tedious calculations (26) and the recursions
(32), (33), (36), (37), (40), (41) and (42).

The number of Gaussian terms in (26) and (27) grows exponentially with i and the recur-
sive algorithm defined by Theorem 1 is thereby computationally feasible only for very small
values of n. In the next section we discuss how to approximate Ui(xi, yi, xi+1, yi+1, yi+2) and
Vi(xi, xi+1, yi+1, yi+2) by ignoring less important terms in (26) and (27).

4.2 Approximate forward integration algorithm

In this section we propose an approximate and computationally feasible version of the recur-
sions defined in Theorem 1. We first compute the (exact) representation of U1(x1, y1, x2, y2, y3)
and V1(x1, x2, y2, y3) as given in Theorem 1. When starting iteration i − 1 ≤ n − 2 of the
sequential algorithm we have available an approximation of Vi−1(xi−1, xi, yi, yi+1) on the form

Ṽi−1(xi−1, xi, yi, yi+1) ∝ p(xi|xi−1)

·

eNi−1(xi−1)∑

j=1

f̃i−1,j(xi−1)N

([
yi

yi+1

]∣∣∣∣ k̃i−1,j(xi−1), K̃i−1,j(xi−1)

)
,

(43)
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where we use tilde to distinguish quantities in the approximation from the corresponding
exact ones. Note that the approximate representation is on the same form as in (27), except
that in the approximation the number of Gaussian terms may depend on the value of xi−1.
Of course, for i = 2 we use Ṽi−1(xi−1, xi, yi, yi+1) = Vi−1(xi−1, xi, yi, yi+1). Starting with
Ṽi−1(xi−1, xi, yi, yi+1) we perform iteration i− 1 in two steps. First we compute approximate
representations of Ui(xi, yi, xi+1, yi+1, yi+2) and Vi(xi, xi+1, yi+1, yi+2) using the same type of
recursion formulas as in Theorem 1. More precisely, letting U⋆

i (xi, yi, xi+1, yi+1, yi+2) and
V ⋆

i (xi, xi+1, yi+1, yi+2) denote the approximations, we have

U⋆
i (xi, yi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi) ·

N⋆

i
(xi)∑

j=1

f⋆
ij(xi)N








yi

yi+1

yi+2





∣∣∣∣∣∣
g⋆
ij(xi)G

⋆
ij(xi)



 , (44)

V ⋆
i (xi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi) ·

N⋆

i
(xi)∑

j=1

f⋆
ij(xi)N

([
yi+1

yi+2

]∣∣∣∣ k
⋆
ij(xi),K

⋆
ij(xi)

)
, (45)

where N⋆
i (xi) = LÑi−1(xi), and G⋆

ij(xi), g⋆
ij(xi), f⋆

ij(xi), K⋆
ij(xi) and k⋆

ij(xi) are given from ex-
pressions (32) to (35) and (42) after substituting Gi,(j−1)L+l(xi), gi,(j−1)L+l(xi), fi,(j−1)L+l(xi),
Ki,(j−1)L+l(xi), ki,(j−1)L+l(xi), Ki−1,j(l), ki−1,j(l) and fi−1,j(l) by G⋆

i,(j−1)L+l
(xi), g⋆

i,(j−1)L+l
(xi),

f⋆
i,(j−1)L+l

(xi), K⋆
i,(j−1)L+l

(xi), k⋆
i,(j−1)L+l

(xi), K̃i−1,j(l), k̃i−1,j(l) and f̃i−1,j(l), respectively.

In the second step of the iteration we start from V ⋆
i (xi, xi+1, yi+1, yi+2) and generate a sec-

ond (and final) approximation for Vi(xi, xi+1, yi+1, yi+2), denoted Ṽi(xi, xi+1, yi+1, yi+2), by
dropping the less important Gaussian terms in the first approximation (45) and thereafter
renumbering the remaining terms. We use the same approximation procedure also for the
final two iterations, i = n − 1 and n. The expressions are again slightly modified for this
iterations.

What terms in (45) that are of less importance is not obvious as they are functions of yi+1

and yi+2, which are still unknown when this decision has to be taken. Natural strategies for
handling this are either to maximise over or to integrate out yi+1 and yi+2 before comparing
the size of the different terms. To maximise over yi+1 and yi+2 is obtained by evaluating the
Gaussian density in (45) at its mean value. Thus, for a threshold value ε this strategy gives
that we should drop terms in (45) that have

f⋆
ij(xi)N

(
µ⋆(xi)| k

⋆
ij(xi),K

⋆
ij(xi)

)

maxk=1,...,N⋆

i
(xi)

{
f⋆

ik(xi)N
(
µ⋆(xi)| k

⋆
ik(xi),K

⋆
ik(xi)

)} < ε, (46)

where µ⋆(xi) =
(
K⋆

ij

)−1
k⋆

ij(xi). With the second strategy, to integrate out yi+1 and yi+2,

only f⋆
ij(xi) remains to compare. Thus, again for a given threshold ε, we drop all terms that

corresponds to a f⋆
ij(xi) that have

f⋆
ij(xi)

maxk=1,...,N⋆

i
(xi)

{
f⋆

ik(xi)
} < ε. (47)

In the simulation examples in Section 5 we adopt the first strategy, but we do not expect the
second strategy to behave much differently. One should note that we decide what terms to
drop separately for each possible value of xi, and as a result the number of remaining terms,
Ñi(xi), may differ for the different values of xi.
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Clearly, alternative term dropping strategies may be defined. First, one may use the term
dropping step for U⋆

i (xi, yi, xi+1, yi+1, yi+2) instead of for V ⋆
i (xi, xi+1, yi+1, yi+2), but we do

not expect this to make much difference. Second, instead of choosing a specific threshold value
ε, one may fix the number of terms we want to keep in Ṽi(xi, xi+1, yi+1, yi+2) and drop the
necessary number of small terms in V ⋆

i (xi, xi+1, yi+1, yi+2). Thereby the memory requirements
for running the algorithm will be known in advance, but the quality of the approximation may
be more variable than with the strategy we have chosen.

4.3 Backward simulation

When the (exact or approximate) forward integration has been done and the necessary quan-
tities stored in memory, backward simulation is straight forward. Here we give the necessary
equations for the approximate, computational feasible algorithm.

Sequentially for i = n, . . . , 1 we first simulate xi from

π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z) ∝ V ⋆
i (xi, xi+1, yi+1, yi+2) (48)

and then draw yi from

π⋆(yi|xi, . . . , xn, yi+1, . . . , yn) ∝ U⋆
i (xi, yi, xi+1, yi+1, yi+2). (49)

The first is a discrete distribution and the second a mixture of r-variate Gaussian densities,
so both are simple to generate realizations from. The resulting sample is thereby simulated
from an approximation to the conditional distribution π(x, y|z),

π⋆(x, y|z) =
n∏

i=1

[π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z)π⋆(yi|xi, . . . , xn, yi+1, . . . , yn)] . (50)

One should also note that it is straight forward to evaluate π⋆(x, y|z) for the generated
sample (x, y), but to do this correctly one must of course remember to include the nor-
malizing constants in the two conditional distributions π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z) and
π⋆(yi|xi, . . . , xn, yi+1, . . . , yn).

4.4 Simulation from the hidden Markov model

To correct for the error introduced by the approximation discussed above one may use π⋆(x, y|z)
as a proposal distribution in a independent proposal Metropolis–Hastings algorithm. The re-
sulting acceptance rate is also a natural measure for the quality of the approximation.

5 Simulation examples

We study the approximate forward-backward algorithm introduced above in a number of
simulation exercises. We consider five sets of parameter values, which we denote by P1 to P5.
Parameter set P1, which is our base case, are chosen to reflect realistic values for the seismic
inversion application. P2 and P3 are identical to P1 except that we decrease and increase,
respectively, the noise variance. The parameter values in P4 is the same as in P1 except for
the rock physics model, the variances in y given x are larger in P4 than in P1. In all these
first simulation studies we use a seismic profile of length n = 100, which is sufficiently small
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to allow us to use the approximate forward-backward algorithm for all of x and y. In a last
simulation example we increase the resolution of the lattice and consider n = 400. For this
we use parameters corresponding to P1, but where some parameter values are changed to
compensate for the increased resolution. We denote the resulting parameter values by P5.
With n = 400 we are no longer able to update the whole profile, but must adopt the block
Metropolis–Hastings algorithm discussed in Remark 2 in Section 3.1 to obtain satisfactory
convergence and mixing results.

In the following we first, in Section 5.1, define the precise parameter values used for P1 to
P5. Thereafter, in Section 5.2, we quantify the noise level in the five models by defining and
reporting values for the signal-to-noise-ratios. In Section 5.3 we present simulation results and
use these to discuss the quality of the approximate algorithms and convergence and mixing
properties of the corresponding Metropolis–Hastings algorithms. We consider both simulation
of x and y given z and the seismic inversion problem of sampling x, y and z given the seismic
data d. In Section 5.4 we present results for the seismic inversion problem for parameter sets
P1 to P4. Finally, in Section 5.5 we give results for a small sensitivity study, using a different
parameter set for inversion than what is used to generate the data.

5.1 Parameter values

Our base case parameter values, P1, are chosen to be realistic for the seismic inversion appli-
cation and is based on the values used in Larsen et al. (2006). We consider a model with L = 4
possible classes for xi, where xi = 1, 2 and 3 represent gas-, oil- and brine (water) saturated
sandstone, respectively, and xi = 4 represents shale. Sandstone is porous and allows flow of
gas, oil, and water, whereas the porosity in shale is negligible and therefore acts as a barrier
to fluid flow. Our choice of transition matrix for x, P, is based on the values used in Larsen
et al. (2006), but we consider a coarser seismic resolution than done there. Numbering the
nodes from the bottom of the trace, we use

P =





0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591



 . (51)

This is obtained by first cubing the P used in Larsen et al. (2006) and thereafter moving
the resulting values at the three positions with zeros above to the diagonal. The three zero
elements are important in the seismic application as these represent known physical properties.
As water has a higher density than oil, which again has a higher density than gas, water can
not be above gas or oil and oil can not be above gas, unless separated by a non-porous shale
layer. The resulting marginal probabilities for xi are [0.24, 0.16, 0.38, 0.22].

As discussed in Section 3 we consider a situation where yi ∈ R3, where the three elements
represent the logarithms of P-wave and S-wave velocities and density, respectively. In Larsen
et al. (2006) the distribution of yi|xi is represented as empirical distributions given by a set
of corresponding xi and yi values. We use the same set of (xi, yi) values to estimate mean
vectors and covariance matrices for the four assumed Gaussian distributions. The resulting
mean vectors are

µ(1) =




8.052
7.492
7.688



 , µ(2) =




8.071
7.472
7.730



 , µ(3) =




8.121
7.467
7.746



 , µ(4) =




8.166
7.546
7.846



 (52)
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Figure 2: Scatter plots of P- and S-wave velocities and density of samples from the distribution
adopted for yi|xi in P1, P2, P3 and P5 (upper row) and P4 (lower row). Red, green, blue and
black is used for gas-, oil- and brine-saturated sandstone and shale, respectively.

and the covariance matrices are given by the following figures, where the diagonal and off-
diagonal entries give standard deviations and correlations, respectively, for each of the four
possible values of xi,




0.031 0.876 0.322
0.876 0.033 0.271
0.322 0.271 0.012



 ,




0.027 0.891 0.384
0.891 0.032 0.295
0.384 0.295 0.009



 (53)




0.022 0.912 0.453
0.912 0.032 0.317
0.453 0.315 0.008



 ,




0.044 0.982 0.935
0.982 0.068 0.917
0.935 0.917 0.015



. (54)

The upper row in Figure 2 shows scatterplots of simulated P- and S-wave velocities and density
according to the specified distributions. Here and in all the following figures we use the colours
red, green, blue and black for gas-, oil- and brine-saturated sandstone and shale, respectively.
We observe that shale is well separated from the other three classes and that gas-saturated
sandstone is reasonably well separated from oil- and brine-saturated sandstone, whereas there
is large overlap between the densities of oil- and brine-saturated sandstone.

To specify the model of d given y it remains to specify the number of and what angles
that are used, the wavelet for each angle, and variances for the two error terms ε1

ij and ε2
ij .

Analogously to Larsen et al. (2006) we use the s = 5 angles θ = 0◦, 10◦, 20◦, 30◦ and 40◦. We
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also use the same angle independent Ricker wavelet, except that we scale it to compensate for
coarser resolution. We use

w(u, θ) = (1 − 2(π φu)2) exp (−(π φu)2), u = −k, . . . , k, (55)

where φ = 0.11 and k = 10. Also for the error variances we use corresponding values as in
Larsen et al. (2006), except for an appropriate scaling to compensate for the difference in
seismic resolution. We use Var(ε1

ij) = 0.0152 and Var(ε2
ij) = Var(ε1

ij)/10
4.

The above completely defines the parameter values in P1. P2 to P4 are small modifications
of P1. In P2 and P3 the variances for the noise terms ε1

ij and ε2
ij are scaled to give higher

and lower signal-to-noise ratios, respectively. We use Var(ε1
ij) equal to 0.00852 and 0.0262 in

P2 and P3, respectively, still with Var(ε2
ij) = Var(ε1

ij)/10
4. The parameter values in P4 are

identical to P1 except for a scaling of the covariance matrices in the Gaussian densities for
yi|xi so that the four classes are less separated. For classes 1 to 3, gas-, oil- and brine-saturated
sandstone, the covariance matrices used in P1 are multiplied with 10, whereas for class four,
shale, the covariance matrix is multiplied with 2. These scaling values are also used in Larsen
et al. (2006). Scatter plots of simulated P-wave and S-wave velocities and density are shown
in the lower row of Figure 2.

Parameter set P5 corresponds to P1, but some of the parameter values are changed to
compensate for an increased lattice resolution. Thus, P5 corresponds to the base case P1 on
a finer lattice. The transition matrix P for P5 is the same as in Larsen et al. (2006)

P =





0.980 0 0 0.020
0.015 0.970 0 0.015
0.002 0.008 0.980 0.010
0.007 0.007 0.036 0.950



 (56)

with resulting marginal probabilities for xi equal to [0.23, 0.16, 0.39, 0.22]. The distribution for
yi given xi is the same as for P1. The wavelet has the same parametric form as for P1, but the
parameter values are changed to compensate for the difference in resolution. We use (55) with
φ = 0.03 and k = 30, which is identical to the choice in Larsen et al. (2006). To compensate
for the change in resolution we also need to scale the error variances to get approximately the
same noise level as in P1. We set Var(ε1

ij) = 0.0152/3 and again Var(ε2
ij) = Var(ε1

ij)/10
4.

5.2 Signal-to-noise-ratio

It is common to quantify the amount of noise in an inversion problem by a signal-to-noise
(SN) ratio. In the setting we consider here it is not obvious how to split d into signal and
noise parts. The x and y represent physical quantities, and so it may be reasonable to classify
variability in d that has its origin in x or y as the signal part. However, our main interest
is to regain x from d, and this makes it natural to include in the signal only the variability
in d that originates from x. We define one signal-to-noise ratio for each of these two views,
starting with the first.

Let d̃ denote the data in the absence of observation noise so that (13) becomes

d̃ij =

k∑

u=−k

w(u, θj) · ri−u,j. (57)
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Parameter set P1 P2 P3 P4 P5

SN 2.82 8.35 0.92 6.15 3.10
SN⋆ 1.33 2.47 0.64 0.45 1.10

Table 1: Signal-to-noise ratios for the various parameter sets.

It is natural to define the strength of the signal by Var(d̃ij). However, this quantity is a
function of angle j and, due to border effects, node number i. To get one number we average
over i and j,

S =
1

ns

n∑

i=1

s∑

j=1

Var(d̃ij). (58)

This can not be calculated analytically, but is easily estimated via simulation. The strength
of the noise is correspondingly defined by

N =
1

ns

n∑

i=1

s∑

j=1

Var(εij). (59)

The resulting signal-to-noise ratio we denote by SN = S/N.
Let S⋆ and N⋆ denote the strength of the signal and noise, respectively, when only the

variation that results from x is considered as signal. S⋆ is then again given by (58) if d̃ij is
replaced by

d⋆
ij =

k∑

u=−k

w(u, θj) · r
⋆
i−u,j, (60)

where r⋆
ij is given from (11) by substituting yi−1 and yi+1 by their mean values,

r⋆
i = (r⋆

i1, . . . , r
⋆
is)

T = ΓT ·
µ(xi+1) − µ(xi−1)

2
. (61)

N⋆ can then be expressed as

N⋆ =
1

ns

n∑

i=1

s∑

j=1

Var(dij − d⋆
ij) (62)

and the corresponding signal-to-noise ratio is SN⋆ = S⋆/N⋆. Again the quantities that are not
analytically available can easily be found via simulation.

The resulting signal-to-noise ratios for parameter sets P1 to P5 are given in Table 1. We
see that P4 has higher SN than P1, even if retrieving x from d is clearly harder in P4 than in
P1. We find SN⋆ to be a better measure for the difficulty of the inverse problem, but signal-
to-noise ratio definitions similar to SN are most common in the seismic inversion literature,
probably because the objective often is inversion to y only.

5.3 Evaluation of approximate forward-backward algorithm

In this section we evaluate the performance of the proposed approximate forward-backward
algorithm in a simulation exercise for each of the parameter sets P1 to P5. The length of the
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Parameter set P1 P2 P3 P4 P5

ε 10−4 10−4 10−3 10−3 10−4

acceptance rate 0.83 0.91 0.55 0.51 0.63

Table 2: Threshold values ε used in (46) and resulting Metropolis–Hastings acceptance rates
for each of the parameter sets P1 to P5.

lattice is n = 100 for P1 to P4 and n = 400 for P5. In each case we first simulate x, y, z
and d according to the model specified in Sections 2 and 3 and thereafter use the proposed
algorithms to simulate from the resulting posterior distributions. We consider both simulating
x and y given z by the algorithm discussed in Section 4.4 and the seismic inversion problem
of simulating x, y and z given d by the algorithm defined in Section 3.1. We evaluate the
quality of the approximate algorithm by the acceptance probability and the convergence and
mixing properties of the Metropolis–Hastings algorithms.

The approximate forward-backward algorithm, and thereby the corresponding Metropolis–
Hastings algorithms, contains one tuning parameter, ε in (46). The quality of the approx-
imation and effectiveness of the algorithm clearly depends on this value. If ε is too small
the number of terms that needs to be computed and stored becomes large and the algorithm
becomes infeasible. If ε is too large the quality of the approximation deteriorates with very
low Metropolis–Hastings acceptance probabilities as a result. For each of the parameter sets
we found a reasonable value for ε by trial and error, the values are reported in Table 2. As
expected ε must be higher when the signal-to-noise-ratios SN⋆ is low, and for the same value
of ε the acceptance rate decreases when SN⋆ decreases. The acceptance rates for P3 and P4
can easily be increased by using a smaller ε, but then the number of Gaussian terms to store
quickly becomes too large for the memory of typical computers. Our experience is that it is
mainly the available memory that limits the possible value of ε and thereby the quality of the
approximation, not the computation time. The acceptance rates reported in Table 2 is when
simulating x, y and z given d, but simulating x and y given z produced essentially the same
rates.

Figures 3 to 6 present the simulation results for parameter sets P1 to P4, respectively.
To upper rows show the simulated “true” values. Note that we use the same realisation of
x in all four cases to make comparison easier. The middle and lower rows contain posterior
simulation results when conditioning on z and d, respectively. The two lower rows consist of
three parts. To the left the “true” x is replotted for easier comparison, in the middle each
state of the Metropolis–Hastings algorithm is plotted side by side, and the plots to the right
show resulting marginal probabilities for each xi. The Markov runs shown in Figures 3 to 6
are all initiated by setting all xi = 1 and drawing y (and z when conditioning on d) values
from the corresponding full conditional. In all the runs the initial state is left within very
few iterations, so the burn-in phases of the Markov chains are not visible in the figures. We
have also tried starting with all xi = 4, and other initial values, without experiencing burn-in
problems. The results clearly show that the approximate forward-backward algorithm gives
a very good approximation to the distribution of interest and produces thereby very good
mixing properties when used as a proposal distribution in a Metropolis–Hastings setting.

Figure 7 presents simulation results for parameter set P5. As mentioned above, this is for
n = 400 and then the memory requirements for the approximate algorithm made it impossible
to update all of x and y jointly. In stead we adopted the block Metropolis–Hastings algorithm
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Figure 3: Simulation results for parameter set P1: The upper row gives, from left to right, the
simulated “true” x, the simulated “true” elastic parameters, z and d. The middle and lower
rows contain posterior simulation results when condition on z and d, respectively. From left
to right, the two rows give the true x (for easier comparison), each state of the Metropolis–
Hastings algorithm plotted side by side, and resulting marginal posterior probabilities for each
xi. Red, green, blue and black represent gas-, oil- and brine-saturated sandstone and shale,
respectively.
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Figure 4: Simulation results for parameter set P2: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 5: Simulation results for parameter set P3: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 6: Simulation results for parameter set P4: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 7: Simulation results for parameter set P5: The upper row gives, from left to right,
the simulated “true” x, the simulated “true” elastic parameters and d. The two lower rows
contain posterior simulation results when condition on d. The middle and lower rows show
runs initiated with all xi = 1 and xi = 4, respectively. From left to right, the two rows give
the true x (for easier comparison), each state of the Metropolis–Hastings algorithm plotted
side by side, and resulting marginal posterior probabilities for each xi. Red, green, blue and
black represent gas-, oil- and brine-saturated sandstone and shale, respectively.
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discussed in Remark 2. We use blocks of 100 nodes and in each iteration randomly choose one
of the intervals [1, 100], [51, 150], . . . , [301, 400] to update. Again we run with the two initial
states mentioned above. Figure 7 corresponds to Figures 3 to 6, except that the two lower
rows both show simulation results when condition in d, one for each of the two initial states
mentioned. We see that the convergence is much slower in this case, we can easily see the
burn-in phase in the plots. The mixing of the chain is also somewhat less favourable in this
case.

5.4 Inversion results

In this section we summarise the inversion results for the simulation exercises introduced
above. We limit the attention to the runs where we condition on the simulated seismic data
d. Comparing the marginal posterior probabilities in the bottom right corner in Figures 3
to 7 with the corresponding “true” x-values we see how the inversion results, as expected,
depend on the signal-to-noise ratio SN⋆. For each of the parameter sets P1 to P4 we repeat
the analysis for ten different realisations of y, z and d, still keeping the same realisation for
x to allow easier comparison. Figure 8 shows the resulting marginal posterior probabilities
for three cases with parameter set P1. Using the maximum marginal posterior probability
classifier this figure also gives the resulting confusion matrices. As one should expect, the
prediction ability varies somewhat between the different simulated data sets. Figure 9 shows
corresponding results for each of P1 to P4 averaged over the ten runs. Again we see how the
prediction ability deteriorates as SN⋆ becomes lower. Still, we find the results quite impressive
given that the data is as shown in the upper right corners of Figures 3 to 6. It is close to
impossible to identify the true x-values by just looking at the data. Studying the confusion
matrices more in detail we see shale (black) are best identified, that gas-saturated sandstone
(red) are mostly confused with oil-saturated sandstone (green), and oil-saturated sandstone
(green) mostly confused with brine-saturated sandstone (blue). This is all as one should expect
from Figure 2, the cloud of shale is well separated from the others and the clouds of gas- and
oil-saturated sandstone are closer then the clouds of gas- and brine-saturated sandstone.

5.5 A small sensitivity study

Clearly the inversion results above are better than what one can expect for real seismic data.
In the simulation exercises we know, and use, the correct model and parameter values that
generated the data. It is beyond the scope of this paper to do inversion of real seismic data,
our focus is the algorithms for handling the hidden Markov chain with two hidden layers.
However, as a first small test of the consequences of using a wrong model in the inversion we
have done a simulation exercise where the data is generated according to our forward model
with parameter set P1, whereas parameter set P4 is used in the inversion. Our interest is both
how this influences the inversion results and what the consequences are for the convergence
and mixing of the Metropolis–Hastings algorithm. After a little try and error, as discussed
above, we settled on a value ε = 2 · 10−3 for the algorithm tuning parameter, which resulted
in an acceptance rate of 0.49. Again we made two Markov chain runs, one initiated with all
xi = 1 and one with with all xi = 4. Convergence seems to occur after very few iterations and
the mixing is good, see one of the simulated chains in Figure 10. Corresponding to Figure 9,
Figure 11 gives inversion results averaged over ten realisations of y, z and d. The shale (black)
and brine-saturated sandstone are still well identified, whereas this is no longer true for gas-
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Figure 9: Inversion results for each of the parameter sets P1 to P4: ‘ From left to right,
the figures shows the “true” x-values, marginal posterior probabilities and confusion matrix,
averaged over ten realisations of y, z and d. Red, green, blue and black represent gas-, oil-
and brine-saturated sandstone and shale, respectively.
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Figure 10: Sensitivity study: In the first row from left to right, the truth x, the true elastic
parameters and the synthetic seismic data d. In the second row from left to right, the truth
x, all the samples of x from a simulation x, y and z given d, with initial state x = [0, . . . , 0]T

and the resulting marginal probabilities from the simulation.
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Figure 11: Inversion results for the sensitivity study. We have the average result for all the
ten inversions. Red, green, blue and black represent gas-, oil-, brine-saturated sandstone and
shale, respectively.
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and oil-saturated sandstone.

6 Closing remarks

We have revisited the seismic inversion problem as a hidden Markov model with both continu-
ous and discrete hidden variables. We split the model into a switching linear Gaussian model
and a Gaussian linear model. To handle the first part computationally we propose an approx-
imate forward-backward algorithm. In a number of simulation exercises we demonstrate the
effectiveness of the approximation and how this makes inversion of the seismic model compu-
tationally feasible. The approximate algorithm includes a tuning parameter ε. To choose a
value for ε one must compromise between memory usage and computation time on one side
and approximation accuracy on the other. We have found no automatic way to set the value
of ε, but our experience is that it is relatively easy to find a reasonable value by try and error.
What makes the choice of ε non-trivial is that it is used to decide what terms to drop in
the forward recursions when information from the data is available from one side only. The
correct importance of the various terms becomes available first after the following backward
recursions.

We think the inversion problem in the switching linear Gaussian model for seismic inversion
is harder than the problems previously considered for switching linear dynamical systems
(Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998) and switching state space models (Barber,
2006). Within an interval with the same value for x, the seismic data does not depend on the
mean value of the continuous variable. By the difference taken in (11) the mean value of the
continuous variable influences the data only when the value of x is changing. Otherwise the
data only depends on x via the covariance matrix of the continuous variable. This induces
larger posterior uncertainty in x and it becomes correspondingly more important to have an
approximate forward-backward algorithm that realistically represents this uncertainty. Thus,
we think the importance of including more Gaussian terms in the forward recursion is larger
for the seismic model than for the cases previously considered in Zoeter and Heskes (2006),
Bar-Shalom and Li (1998) and Barber (2006).

We define an approximate forward recursion by dropping Gaussian terms with small
weights. In the references mentioned above an approximation is obtained by taking a single
Gaussian density that (approximately) represents the whole Gaussian mixture. It is clearly
also possible to define an approximate forward recursion by following an intermediate strategy,
finding groups of terms in the Gaussian mixture that have similar mean and covariance and
approximate these by a single Gaussian term. However, the computational cost of finding
what terms to merge is quadratic in the number of terms, whereas the cost of finding what
terms to drop is linear in the number of terms. Thus, unless the number of Gaussian terms
necessary to obtain a sufficient good approximation is dramatically reduced when using the
merging strategy, our simple dropping strategy is preferable. We have done a little experi-
mentation with the merging strategy for our seismic inversion model, but without any success.
However, we think the merging strategy may have a potential if the continuous variable y is
univariate.

The focus of this paper is the computational problem associated with the hidden Markov
seismic model. We have not considered inversion of real seismic data. To answer a real inver-
sion problem one must also solve the associated parameter estimation problem. Preliminary
experimentation with maximum likelihood estimation from simulated data indicates that it
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is not possible to estimate all the model parameters from available seismic data. Either one
must adopt a Bayesian view with informative priors, or information about (at least some of)
the parameters must be obtained from other sources.
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Abstract

We consider a Bayesian model for doing lithology–fluid prediction from prestack (am-
plitude versus offset) seismic data. Related to the Bayesian model, we look at two inversion
algorithms. The first algorithm simulates from the posterior distribution with no approxi-
mations, but the algorithm is quite computer demanding. The second inversion algorithm
introduces an approximation in the likelihood model and is in this way able to evaluate
the resulting approximate posterior distribution very rapidly. The consequences of the
approximation for the inversion result are not clear. The objective of this paper is to
evaluate the consequences of the approximation in a synthetic but realistic empirical case
study. The consequences are evaluated by comparing the inversion results from the two
inversion algorithms. In the case study we observe that, dependent on the parameters in
the model, typically the approximate likelihood model preserves between 55% and 80% of
the information in the original likelihood model. The consequences of the approximation
increase when the amount of noise in the model increases. The approximation works bet-
ter when most of the variability is in the rock physics model and it is little seismic noise,
compared to the opposite.

Keywords: amplitude versus offset seismic data, Bayesian model, empirical comparison,
forward–backward algorithm, lithology–fluid prediction, seismic inversion

1 Introduction

In lithology–fluid (LF) prediction we want to determine the lithology and fluid properties of a
reservoir using inversion techniques on seismic data. For an introduction to and presentation
of several techniques for doing LF prediction we recommend Avseth et al. (2005) and references
therein. We focus on LF prediction based on amplitude-versus-offset (AVO) seismic data in
one vertical profile. Before the data are used for inversion, noise effects like moveout, multiples
and the effect of geometrical spreading and absorption are removed. The data are also pre-
stack migrated such that any dip related effects are removed. We focus on the Bayesian model
presented in Larsen et al. (2006) and Hammer and Tjelmeland (2008). As a prior model
for the LF properties a stationary Markov chain is used. Further, the model consists of a
likelihood model that relates the LF properties to a set of elastic material properties and the
AVO seismic data. The model is closely related to Buland and Omre (2003) and Buland et al.
(2003).

To evaluate the model given in Larsen et al. (2006) and Hammer and Tjelmeland (2008) is
a challenging task. Direct sampling from the posterior distribution is infeasible and single site
Metropolis–Hastings algorithms give extremely slow convergence. Hammer and Tjelmeland
(2008) simulate from the model using a more sophisticated block Metropolis–Hastings (MH)
algorithm that proposes changes for all the variables in the model in each iteration. Larsen
et al. (2006) introduce an approximation in the likelihood model and evaluate the resulting



approximate posterior exactly and rapidly. For example, the algorithm needs about a second
to compute the approximate posterior distribution by recursion and generates therefore in-
dependent realizations every half millisecond. In comparison, the algorithm in Hammer and
Tjelmeland (2008) needs hours to estimate properties like marginal distributions or maximum
posterior value and generates independent realizations about every minute.

Central in both of the inversion algorithms is a Hidden Markov model (HMM). In a HMM
we suppose that the observations are a noisy function of an underlying and unknown Markov
process. In traditional HMM the underlying process is a Markov chain. Then the posterior is in
fact a non-stationary Markov chain and can be evaluated analytically, exact and very efficiently
using the Forward-backward (FB) algorithm (Scott, 2002). The FB algorithm consists of two
parts. In the first part we iterate forward computing all the transition propabilities in the
non-stationary Markov chain. In the second part we iterate backward evaluating the posterior
distribution.

What consequences the approximation in Larsen et al. (2006) have on the inversion results
are not clear. The objective of this paper is to evaluate these consequences in an empirical
case study. Since the MH algorithm in Hammer and Tjelmeland (2008) simulates from the
posterior distribution without approximations, we are able to analyse the consequence of
the approximations by comparing the approximate inversion results with the exact inversion
results.

The paper is organised as follows. In Section 2 we present the Bayesian model from
Larsen et al. (2006) and Hammer and Tjelmeland (2008). In Section 3 we give a review of the
inversion methods in the same two papers. Further, in Section 4 we discuss criteria to compare
the inversion results and finally in Section 5 we analyse the consequence of the approximation
in Larsen et al. (2006) in a synthetic but realistic case study.

2 Bayesian seismic model

The Bayesian seismic model relates the LF properties along a vertical profile with elastic
material properties and observed AVO seismic data. The Bayesian model presented is identical
to the one used in Hammer and Tjelmeland (2008) and only differs from Larsen et al. (2006)
in the formulation of the rock physics model. We follow the notation in Larsen et al. (2006).
We define a discretised Bayesian formulation. We use i = 1, . . . , n to denote n travel times
along the vertical profile. Let πi denote LF classes and let αi, βi and γi denote P-wave velocity,
S-wave velocity and density, respectively, at position i. Further define mi = (mi1,mi2,mi3) =
(ln(αi), ln(βi), ln(γi)). We consider s offset values θ1, . . . , θs and let ci = (ci1, . . . , cis)

T ∈ Rs

and di = (di1, . . . , dis)
T ∈ Rs denote reflection coefficients and seismic data, respectively, at

position i for the s different offsets.

2.1 Prior model

As a prior model for the LF classes along the vertical profile, π = (π1, . . . , πn)T , we assume a
stationary Markov chain

P = [p(πi|πi−1)]
L
πi−1,πi=1. (1)

Further, let p(π1) denote the marginal distribution for π1.
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2.2 Likelihood model

The distribution for m = (mT
1 , . . . ,mT

n )T given π is related to a rock physics model (Mavko
et al., 1998). We assume the relation to be Gaussian distributed

[mi|πi] ∼ N(mi|µ(πi),Σ(πi)), (2)

where N(x|µ,Σ) denotes a multivariate Gaussian distribution evaluated in x, with expectation
µ and covariance matrix Σ. We assume µ(πi) and Σ(πi) to be known and that m1, . . . ,mn

are conditionally independent given π.
Further, we assume that the reflection coefficients, c = (cT

1 , . . . , cT
n )T , to be related to m

through a weak contrast approximation of the Zoeppritz equations (Aki and Richards, 1980;
Buland and Omre, 2003)

ci = ΛT ·

(
mi+1 − mi−1

2

)
for i = 2, . . . , n − 1, (3)

where

Λ =




aα(θ1) aα(θ2) · · · aα(θs)
aβ(θ1) aβ(θ2) · · · aβ(θs)
aρ(θ1) aρ(θ2) · · · aρ(θs)



 (4)

and

aα(θ) =
1

2
(1 + tan2(θ)) (5)

aβ(θ) = −4β/α
2
sin2(θ) (6)

aρ(θ) = −4
(
β/α

2
sin2(θ)

)
. (7)

The differences in (3) represent approximations to derivatives originating from the continous
version of the model. To avoid boundary problems for i = 1 and i = n in (3), we use forward
and backward differences, respectively. The relation between m and c may be written on a
linear matrix form. Let A = In � ΛT , where In is the n × n identity matrix and � represent
the Kronecker product. Moreover, let D be a matrix representing the approximations to the
derivatives in (3). We then may write (3) on a linear form as c = ADm.

The seismic data d = (dT
1 , . . . , dT

n )T are related to the reflection coefficients through a
wavelet convolution

dij =
k∑

u=−k

w(u, θj) · ci−u,j + εij , (8)

where w(·, ·) is a wavelet function. We assume εij to be coloured Gaussian noise, given as

εij =

k∑

u=−k

w(u, θj)ε
1
i−u,j + ε2

i,j (9)

where ε1
i,j and ε2

i,j are independent Gaussian white noise with Var(ε1
i,j) = σ2

1 and Var(ε1
i,j) =

σ2
2 . We see that the first part of the noise has the same waveform as the wavelet while the

second part is white nose. The relation in (8) may also be written on linear matrix form

d = Wc + Wε1 + ε2 = Wc + ε. (10)
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Finally, by defining G = WAD, we get

d = WADm + Wε1 + ε2 = Gm + ε. (11)

Remark 1. As mentioned above, the Bayesian model in Larsen et al. (2006) only differs from
the model presented above in the rock physics formulation. Larsen et al. (2006) assume
p(mi|πi) to be an empirical distribution in stead of the Gaussian assumption in (2) and are
in this way able to model more general rock physics models. In this paper we only consider
the rock physics model in (2).

2.3 Posterior distribution

The posterior distribution resulting from the prior and likelihood models presented above can
be written as

p(π|d) ∝

∫
. . .

∫
p(d|m)

n∏

i=1

p(mi|πi)dm

n∏

i=1

p(πi|πi−1). (12)

Here p(d|m) and p(mi|πi), refer to the relations in (11) and (2), respectively. In p(π|d)
and below, we let p(π1) = p(π1|π0) for notational convenience. We integrate out the elastic
parameters, m, from the posterior distribution to emphasise that our focus is on the LF
classes, π, in the posterior distribution. Larsen et al. (2006) introduce an approximation in
the likelihood which makes it possible to evaluate the approximate posterior analytically and
fast. The resulting approximate posterior distribution can be written on the form

p̂(π|d) ∝

n∏

i=1

l(d|πi)p(πi|πi−1). (13)

In the next section we give the details in the approximation which results in p̂(π|d) and discuss
how to simulate from p(π|d) and p̂(π|d).

3 Inversion algorithms

In Sections 3.1 and 3.2 we give a review of the inversion methods in Larsen et al. (2006) and
Hammer and Tjelmeland (2008), respectively.

3.1 Fast and approximate inversion

In this section we present the fast and approximate inversion method of Larsen et al. (2006).
From (12), we may write

p(π|d) ∝

∫
. . .

∫
p(m|d)

p(m)

n∏

i=1

p(mi|πi)dm
n∏

i=1

p(πi|πi−1). (14)

The distribution p(m) is a mixture of Ln Gaussian components. We are not able to evaluate
this distribution or p(m|d) analytically. Instead we substitute p(m) and p(m|d) with distri-
butions p⋆(m) and p⋆(m|d), respectively, but in such a way that the distribution p(π|d) is not
changed. We acheve this by letting p⋆(m) and p⋆(m|d) satisfy the relation

p⋆(m|d) ∝ p(d|m)p⋆(m). (15)
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Here p(d|m) denotes (11) in the likelihood model. Based on (15) we can then write (14) as

p(π|d) ∝

∫
. . .

∫
p⋆(m|d)

p⋆(m)

n∏

i=1

p(mi|πi)dm
n∏

i=1

p(πi|πi−1). (16)

We observe that if let p⋆(m) be Gaussian, then also p⋆(d|m) becomes Gaussian based on (15).
We therefore let p⋆(m) be Gaussian with the possibility of spatial dependencies

p⋆(m) = N(m;µ⋆
m,Σ⋆

m), (17)

where Σ⋆
m = c(δ)�Σ⋆

m0. Here c(δ) is a correlation function to model spatial dependencies along
the vertical profile and Σ⋆

m0 is a 3 × 3 matrix representing intervariable covariance structure
for the elastic parameters.

As a basis for a fast inversion we introduce an approximation by removing the spatial
dependence in p⋆(m) and p⋆(m|d) in (16). This means that the covariance matrices in p⋆(m)
and p⋆(m|d) are 3 × 3 block diagonal, only containing the intervariable dependencies. Note
that we use p⋆(m) with spatial dependencies when we calculate p⋆(m|d) in (15) before we
remove the spatial dependencies. An approximate posterior can then be written as

p̂(π|d) ∝

n∏

i=1

[
p(πi|πi−1)

∫
p⋆(mi|d)

p⋆(mi)
p(mi|πi)dmi

]
. (18)

Since we assume that the rock-physics model p(mi|πi) is Gaussian distributed, the integrals in
(18) are analytically available. The approximate posterior p̂(π|d) can then be written as given
in (13). The posterior p̂(π|d) is in fact a first order hidden Markov model. The approximate
posterior can therefore be exactly assessed very rapidly using the Forward-backward (FB)
algorithm (Scott, 2002) shortly described in the introduction. Realizations can be generated
extremely fast from p̂(π|d) of course.

3.2 MCMC simulation: Inversion with no approximations

In this section we summarise the Markov chain Monte Carlo (MCMC) simulation algorithm
presented in Hammer and Tjelmeland (2008). The algorithm simulates from p(π|d) with no
approximations. To define an effective MCMC algorithm, we introduce z = (z1, . . . , zn)T ,
where zi = (zi1, . . . , zis)

T ∈ Rs for i = 1, . . . , n,

zi = ci + ε1
i (19)

and ε1
i = (ε1

i1, . . . , ε
1
is)

T as presented in the model in Section 2. Combining (8), (9) and (19)
we get the relation between z and d,

dij|z ∼ N

(
dij ;

k∑

u=−k

w(u, θj)zi−u,j , σ2
2

)
. (20)

The posterior of interest is then

p(π,m, z|d) ∝ p(π)p(m|π)p(z|m)p(d|z) =
n∏

i=1

p(πi|πi−1) ·

n∏

i=1

N (mi|µ(πi),Σ(πi)) · (21)

n∏

i=1

N

(
zi|Λ

T

(
mi+1 − mi−1

2

)
, σ2

1Is

)
· N(d|Wz, σ2

2Ins),
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where W is the wavelet matrix introduced in Section 2. To simulate effectively from (21) we
construct an MCMC algorithm consisting of two steps in each iteration. The first step is a
Gibbs step (Liu, 2001) where we jointly update m and z conditioned on π and d. We are able to
do this efficiently since the resulting distribution is Gaussian. The second step is a Metropolis–
Hastings step where we propose new values for π and m conditioned on z from a proposal
distribution, q(π,m|z). Then the states of π from each iteration of the MCMC algorithm
are (dependent) realizations from the posterior distribution in p(π|d) after convergence of the
Markov chain.

The key part in the MCMC algorithm is the proposal distribution q(π,m|z). If we where
able to generate proposals from p(π,m|z, d) ∝ p(π,m|z) it would be a Gibbs step and we
would always get acceptance for our proposals. Our goal is therefore to generate proposals
from a distribution close to p(π,m|z). We start by giving an overview of an algorithm that
generate realizations from p(π,m|z), but this algorithm is not feasible to implement on a
computer. Secondly we describe how we introduce approximations which result in the proposal
distribution q(π,m|d). For a detailed description of the proposal distribution, we refer to the
original paper Hammer and Tjelmeland (2008). Here we only give a short review.

So ideally we would like to generate samples from p(π,m|z) which is, using (1), (2) and
(20),

p(π,m|z) ∝ p(π)p(m|π)p(z|m) =
n∏

i=1

p(πi|πi−1) ·
n∏

i=1

N (mi|µ(πi),Σ(πi)) ·
n∏

i=1

N

(
zi|Λ

T

(
mi+1 − mi−1

2

)
, σ2

1I

)
.

(22)

This is a Hidden Markov model of order two with two hidden layers, π and m, and one
observed layer, z. The FB procedure described for the traditional HMMs in Section 1 can also
be used for this model, but the computational efficiency will be much reduced.

The forward part of a forward-backward algorithm for p(π,m|z) sequentially integrates
out mi and πi for i = 1, . . . , n. Because of the Markovian structure of p(π,m|z) and that the
πi’s are discrete and the mi’s are Gaussian these integrals are analytically available. However,
the result after having integrated over (πi,mi), i = 1, . . . , k is a mixture of Lk Gaussian
densities. Thus, the number of mixture terms grows exponentially and the exact algorithm is
computationally feasible only for very small values of n. A corresponding approximate forward
integration algorithm is defined by ignoring the less important Gaussian terms, keeping a
number of mixture terms that makes the algorithm feasible. Thereafter to do the backward
simulation is computationally straight forward. We use the probability distribution defined
by this approximate forward-backward algorithm as proposal distribution in a Metropolis–
Hastings scheme.

Remark 2. In MCMC simulation one always needs to be careful when it comes to the analysis of
the convergence and mixing properties of the Markov chain. The MCMC algorithm described
above converges fast and mixes very well, which makes the results reliable. For an analysis of
the convergence and mixing properties of the MCMC algorithm, see Hammer and Tjelmeland
(2008).

Remark 3. Our main focus will, in the rest of the paper, be on the marginal distribution for
the LF classes. The fast and approximate algorithm in Section 3.1 calculates the marginal
probabilities by the FB algorithm, while the MCMC algorithm in Section 3.2 estimates these
quantities through simulation. This makes the approximate algorithm a much faster alterna-
tive.
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4 Comparison criteria

We seek for ways to quantify the differences between the true posterior p(π|d) and the ap-
proximate posterior p̂(π|d). As mentioned above, we evaluate p̂(π|d) and p(π|d) using the
algorithms in Sections 3.1 and 3.2, respectively. Our focus will be on the posterior marginal
distributions for the LF classes along the vertical profile for the two methods. This is typically
the quantities from the inversions (posterior distributions) of main interest. We may observe
differences by e.g. inspecting the marginal probabilities visually, but to really quantify the
differences, we use univariate measures.

A natural quantity to measure, is the ability the posterior distributions have in regaining
the true π. This does not cover all the aspects of the posterior marginal distributions but at
least a very important one. A technique to archive this is the use of confusion matrices. We
construct L×L confusion matrices, C(p) = [ci,j] such that row i give the posterior probabilities
for the different LF classes when LF class i is the truth. More specifically we define

ci,j =

∑n
k=1 I(π0

k = i)P (πk = j|d),∑n
k=1 I(π0

k = i)
(23)

where I(·) represent the indicator function and π0
k the true LF class at node k. The posterior

marginal probabilities P (πk = j|d) can either be calculated from p(π|d) or p̂(π|d). Clearly, we
want the diagonals in the confusion matrices to be close to one.

Now we want to measure to what extent a posterior distribution do wrong classifications
related to the true π, and define

∆(p) =
1

n

n∑

k=1

∑

i6=π0

k

P (πk = i|d) =
1

n

n∑

k=1

[
1 − P (πk = π0

k|d)
]
. (24)

We see that for each node in (24) we have the posterior probability for all the LF classes except
the true LF class π0

k. Naturally we want ∆(p) to be small. We may calculate (24) based on
either p(π|d) or p̂(π|d) and denote this ∆(p) and ∆(p̂), respectively. We may also want to
calculate (24) based on the prior marginal probabilities, p(πk), and denote the measure ∆(pr).

It is natural to assume that in a practical situation some wrong classifications have more
consequences then others. For example confusing oil with gas may not be as dramatic as
confusing oil with some other rock type, for example shale. We incorporate this by defining
an L×L loss matrix Γ = [γi,j ], where γi,j quantify the consequence of classifying to the class
j if i is the true LF class. A natural generalisation of (24) is then

∆Γ(p) =
1

n

n∑

k=1

L∑

i=1

γπ0

k
,i P (πk = i|d). (25)

Similar to (24) we also want (25) to be small. Similar to above we may calculate (25) based
on prior probabilities, p(π|d) or p̂(π|d) and denote the resulting measures ∆Γ(pr), ∆Γ(p) and
∆Γ(p̂), respectively.

We also introduce a metric to quantify the difference between discrete distributions. The
metric is inspired by Endres and Schindelin (2003), but we multiply by the factor 1/(2 ln(2))
so that the maximal distance between the two distributions will be 1. Let p = (p1, . . . , pL)
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and q = (q1, . . . , qL) represent two discrete distributions. We quantify the difference between
p and q with

d(p, q) =

√√√√ 1

2 ln(2)

L∑

i=1

(
pi ln

(
2pi

pi + qi

)
+ qi ln

(
2qi

pi + qi

))
. (26)

We then have that d(p, q)2 satisfies the requirement of being a metric. At an arbitrary node k,
we are typically interested in measuring differences between the marginal prior probabilities
p(πk), posterior marginal probabilities p(πk|d) and approximate posterior marginal probabil-
ities p̂(πk|d). We also want to compare these marginal probabilities against the true π by
defining a “probability distribution” for the true π at a node being 1 for the true LF class and
0 for the others. More specifically, at an arbitrary node k we denote this “probability distri-
bution” p0

k = (p0
k1, . . . , p

0
kL) with p0

ki = I(π0
k = i) for i = 1, . . . , L. It is natural to evaluate the

differences between the distribution above for the whole profile. We compute the difference
by taking the average of the differences for each node. For example for the difference between
the true π and the prior distribution we compute and denote this as follows

d(p0, pr) =
1

n

n∑

k=1

d(p0
k, p(πk)). (27)

We denote the difference from the true π to p(π|d) and p̂(π|d) with d(p0, p) and d(p0, p̂),
respectively. We denote other combinations of differences similarly.

The posterior distribution is a result of both the prior distribution and the likelihood
model. The approximation introduced to get p̂(π|d) is done in the likelihood. A natural
quantification of the consequences of the approximations is then to see how much the likelihood
models correct on the prior information. We then define based on (24), (25) and (26)

ρ∆ =
∆(pr) − ∆(p̂)

∆(pr) − ∆(p)
(28)

ρ∆Γ
=

∆Γ(pr) − ∆Γ(p̂)

∆(pr) − ∆Γ(p)
(29)

ρd =
d(p0, pr) − d(p0, p̂)

d(p0, pr) − d(p0, p)
. (30)

If the approximations introduced in the likelihood work well, we will expect the numerator
to be almost as large as the denominator in ρ∆, ρ∆Γ

and ρd. If the approximations works
poorly, the approximate likelihood adds little information to the posterior distribution and the
numerator will be small compared to the denominator. This means that ρ∆, ρ∆Γ

and ρd can
be interpreted as quantifying the portion of the information in the true likelihood preserved
by the approximate likelihood.

5 Simulation example

We are now interested in evaluating the approximate posterior p̂(π|d) against the correct
posterior p(π|d) in a synthetic but realistic seismic inversion simulation example. We evaluate
p̂(π|d) using the fast FB algorithm in Section 3.1 and simulate from p(π|d) using the MCMC
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Figure 1: 3000 realizations from the rock physics model considered in the cases BC, NN, NL,
MN and NZ. Red, green, blue and black represent gas, oil and brine saturated sandstone, and
shale, respectively.

algorithm in Section 3.2. The general test design is to generate data from the forward model in
Section 2 and secondly perform inversions using the two algorithms in Section 3. We evaluate
the inversion results based on the criteria described in Section 4.

5.1 Model parameter values

We will evaluate the posteriors p(π|d) and p̂(π|d) for seven different choices for the parameters
in the model. The parameters we choose are closely related to the choices in Larsen et al.
(2006) and Hammer and Tjelmeland (2008). We start by presenting one case, which we
characterise as the base case and denote with BC. Secondly we present how the other six cases
are different from BC. We use a length of the profile equal to n = 100. We consider L = 4 LF
classes, representing gas, oil and brine saturated sandstone, and shale. We use the following
prior transition matrix

P =





0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591



 (31)

defined upward along the vertical profile. The resulting marginal probabilities are p(πi) =
[0.2419, 0.1552, 0.3830, 0.2199]. The transition matrix is the same used in Hammer and Tjelme-
land (2008) and closely related to the one in Larsen et al. (2006). The first row are the proba-
bilities going from gas, the second row going from oil, the third brine saturated sandstone and
the forth going from shale. We observe that we have zero probabilities for transitions from
gas saturated sandstone to oil saturated sandstone, from gas saturated sandstone to brine
saturated sandstone and from oil saturated sandstone to brine saturated sandstone, which
seems reasonable due to gravity.

To illustrate the rock physics model, we generate 3000 realizations from p(mi|πi) in (2)
for each of the four LF classes and secondly calculate the resulting P-wave velocity, S-wave
velocity and density, see Figure 1. In this figure and in the figures below, we let red, green,
blue and black represent gas, oil and brine saturated sandstone, and shale, respectively. We
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Figure 2: In row one and two we have 3000 realizations from the rock physics models considered
in the cases RL and RM, respectively. Red, green, blue and black represent gas, oil, brine
saturated sandstone and shale, respectively.

consider s = 5 angles [0◦, 10◦, 20◦, 30◦, 40◦] and use an angle independent Ricker wavelet

w(u) = (1 − 2(π φu)2) exp (−(π φu)2), u = {−k, . . . , k} (32)

in (20), where we let φ = 0.11 and k = 10.
In the base case BC, we set σ1 = 1.5 · 10−2 and σ2 = 0.01σ1. This results in a reasonable

Signal-to-noise ratio in the model. We return to this below. We consider six other cases. In
the first case different from the BC, we change σ1 to 5.0 · 10−4 which can be interpreted as a
case where we have essentially no noise added and denote the case NN. For the next two cases
we change σ1 to 0.85 · 10−2 and 2.6 · 10−2, which can be interpreted as cases with little and
much noise and we denote the cases LN and MN, respectively. Similar to BC, we let in all the
cases σ2 = 0.01σ1. For the next two cases we change the variability in the rock physics model.
In the fifth case we divide the covariance matrices in (2) for the BC with two and in the sixth
case we multiply the covariance matrices with two. The rock physics models are illustrated in
Figure 2. We denote the cases RL and RM respectively, meaning rock physics models with less
and more variability. For RL and RM we choose σ1 = 1.7 · 10−2, σ1 = 0.95 · 10−2, respectively
and σ2 = 0.01σ1. We return to a motivation for these choices below. In the last case we
change the prior transition matrix. We want to see if using a prior distribution with no zero
elements, in contrast to (31), effects the difference between the posteriors p(π|d) and p̂(π|d).
In stead of (31) we use a transition matrix with 0.91 on the diagonal and 0.03 in all the other
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Case Description

BC Base case
NN No noise
LN Little noise
MN Much noise
RL Rock physics model with less variability
RM Rock physics model with more variability
NZ Transition matrix with no zeros

Table 1: Description of the cases considered.

Case Trans. matrix Rock phys. model σ1 σ2 SN SN⋆

BC (31) Figure 1 1.5 · 10−2 0.01σ1 2.91 1.27
NN (31) Figure 1 5.0 · 10−4 0.01σ1 2350 3.49
LN (31) Figure 1 0.85 · 10−2 0.01σ1 8.44 2.17
MN (31) Figure 1 2.6 · 10−2 0.01σ1 0.95 0.64
RL (31) Row one Figure 2 1.7 · 10−2 0.01σ1 1.90 1.28
RM (31) Row two Figure 2 0.95 · 10−2 0.01σ1 8.44 1.31
NZ (33) Figure 1 1.5 · 10−2 0.01σ1 3.02 1.32

Table 2: Parameter values and resulting Signal-to-noise ratios for the different cases consid-
ered.

elements

PNZ =





0.91 0.03 0.03 0.03
0.03 0.91 0.03 0.03
0.03 0.03 0.91 0.03
0.03 0.03 0.03 0.91



 . (33)

We denote this case NZ. For this case we use the same noise levels σ1 and σ2 as in BC, which
result in a Signal-to-noise ratio equal to that in BC. All the cases are summarised in Tables 1
and 2.

The parameter sets in Table 2 are chosen to get reasonable Signal-to-noise ratios in the
model. Similar to Hammer and Tjelmeland (2008) we find it natural to introduce two different
interpretations of the Signal-to-noise ratio denoted with SN and SN⋆. For a more detailed
description of the Signal-to-noise ratios, see Hammer and Tjelmeland (2008). For SN we
consider m as the origin for the seismic signal and ε in (10) as the noise part. This is the
way the Signal-to-noise ratio normally is defined in the seismic inversion literature, probably
because the objective there is an inversion back to m and not all the way back to π. Typical
values for SN in the literature are between 1.0 and 5.0. For SN⋆ we consider π as the origin
for the seismic signal and both the variability in the rock physics model in (2) and ε as noise
parts. The Signal-to-noise values for the seven situations are given in Table 2. We see that
SN⋆ is approximately the same for the cases BC, RL, RM and NZ. It is easier to observe the
effect of other changes in the model by holding SN⋆ constant. The effect of changes in SN and
SN⋆ are studied by comparing the cases BC, NN, LN and MN.

In addition to the parameter choices in the model, we need to find a suitable correlation
function c(δ) for the inversion method in Section 3.1. By generating samples of m from the
stochastic model and inspecting the spatial correlations in the samples, we find a correlation
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function of the form
c(δ) = exp (−δ1/2/3) (34)

suitable.

5.2 Results with discussion

In this section we analyse the difference between the posteriors p̂(π|d) and p(π|d) through
several simulations using the algorithms in Sections 3.1 and 3.2. For each of the seven cases in
Table 1 we generate ten independent realizations of π from the prior (1) and resulting seismic
data d using the forward model in Section 2. Secondly we run both of the inversion algorithms
for all the resulting 70 sets of data d.

We start by visually inspecting realizations from the ten inversions in each of the cases
given in Table 1. Figures 3 and 4 shows a few samples from one of the ten inversions for
each of the cases given in Table 1. In the figures, the first column shows the seismic data
d, the second column the truth π, the next four columns independent samples from the fast
and approximate algorithm in Section 3.1 and in the final four columns four independent
samples from the MCMC algorithm in Section 3.2. We see that for both inversion algorithms
the amount of variability in the realisations increases when the noise level increases. We see
that in all the cases considered the realizations have similarities with the truth π. For the
cases NN and LN there are little difference between the realizations from the same inversion
algorithm, while for MN there are large differences, as one would expect. It also seems like
the realizations from p̂(π|d) have some systematic differences compared to the true π while
we do not see the same effect for p(π|d). Except from these observations, it is hard to say
anything more precise about the differences between the posteriors p(π|d) and p̂(π|d).

A step further is to look at marginal probabilities for one set of seismic data for each case.
This is given in Figures 5 and 6. In the two figures, in the first column we have the truth
π. In the second and the fourth columns we have the marginal probabilities for the posteriors
p̂(π|d) and p(π|d), respectively. The first can be computed by the FB recursive algorithm
while the latter must be assessed by sampling. In the third and the fifth columns we have the
distance the marginal probabilities in each node are from the truth using the metric in (26).
In the last column we have the difference between the marginal probabilities in columns two
and four. It seems like the true posterior p(π|d) over all are closer to the true π compared to
the approximate posterior p̂(π|d) as one would expect.

To be able to draw more definite conclusions we need to summarise the results for all the
ten inversions for each of the seven cases. In Table 3 we present confusion matrices for all
the seven cases given in Table 1. We have calculated the elements in the confusion matrix
according to (23). We have in addition, for each case taken the average of the calculated
confusion matrix for each of the ten inversions. We see that the true posterior p(π|d) regains
the truth better then p̂(π|d), as one would expect. However the probabilities along the diagonal
is also mostly large for the approximate posterior p̂(π|d), which means that also this posterior
contains valuable information about the true π.

Now we want to quantify the difference in p(π|d) and p̂(π|d) using (24) and (25). As
mentioned in Section 4 it is natural to expect that some wrong classifications have more
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Figure 3: Row 1 to 4 give results for the cases BC, NN, LN and MN, respectively. In the first
column we have the seismic data d, the second column the truth π, the next four columns
independent samples from the fast and approximate algorithm in Section 3.1 and in the final
four columns four independent samples from the MCMC algorithm in Section 3.2.
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Figure 4: Row 1 to 3 give results for the cases RL, RM and NZ, respectively. In the first
column we have the seismic data d, the second column the truth π, the next four columns
independent samples from the fast and approximate algorithm in Section 3.1 and in the final
four columns four independent samples from the MCMC algorithm in Section 3.2.
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Figure 5: Row 1 to 4 give results for the cases BC, NN, LN and MN, respectively. In the
first column we have the truth π. In the second and the fourth columns we have the marginal
probabilities for the posteriors p̂(π|d) and p(π|d), respectively. In the third and the fifth
columns we have the distance the marginal probabilities in each node are from the truth using
the metric in (26). In the last column we have the difference between the marginal probabilities
in column two and four.
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Figure 6: Row 1 to 3 give results for the cases RL, RM and NZ, respectively. In the first column
we have the truth π. In the second and the fourth columns we have the marginal probabilities
for the posteriors p̂(π|d) and p(π|d), respectively. In the third and the fifth columns we have
the distance the marginal probabilities in each node are from the truth using the metric in
(26). In the last column we have the difference between the marginal probabilities in column
two and four.
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Approximate posterior Posterior

BC

gas oil brine shale

gas 0.459 0.372 0.159 0.001
oil 0.488 0.451 0.061 0.000

brine 0.035 0.196 0.639 0.130
shale 0.013 0.002 0.047 0.939

gas oil brine shale

gas 0.794 0.168 0.035 0.003
oil 0.410 0.495 0.092 0.003

brine 0.003 0.053 0.874 0.069
shale 0.001 0.002 0.078 0.920

NN

gas oil brine shale

gas 0.881 0.118 0.000 0.000
oil 0.542 0.447 0.010 0.000

brine 0.002 0.044 0.936 0.018
shale 0.001 0.001 0.038 0.961

gas oil brine shale

gas 0.996 0.004 0 0
oil 0.018 0.976 0.007 0.000

brine 0 0.000 0.997 0.003
shale 0 0.000 0.006 0.994

LN

gas oil brine shale

gas 0.959 0.041 0.000 0.000
oil 0.224 0.595 0.171 0.010

brine 0.014 0.250 0.600 0.136
shale 0.006 0.032 0.214 0.748

gas oil brine shale

gas 0.983 0.017 0 0.000
oil 0.278 0.614 0.108 0.001

brine 0.001 0.014 0.953 0.032
shale 0.000 0.000 0.081 0.919

MN

gas oil brine shale

gas 0.253 0.458 0.232 0.057
oil 0.429 0.280 0.213 0.078

brine 0.115 0.218 0.474 0.194
shale 0.057 0.048 0.141 0.754

gas oil brine shale

gas 0.623 0.200 0.141 0.037
oil 0.413 0.313 0.253 0.021

brine 0.047 0.137 0.741 0.072
shale 0.013 0.029 0.222 0.735

RL

gas oil brine shale

gas 0.759 0.237 0.002 0.002
oil 0.190 0.333 0.471 0.006

brine 0.049 0.311 0.542 0.098
shale 0.003 0.012 0.134 0.850

gas oil brine shale

gas 0.888 0.111 0.000 0.000
oil 0.113 0.585 0.298 0.003

brine 0.003 0.079 0.900 0.018
shale 0.001 0.004 0.092 0.903

RM

gas oil brine shale

gas 0.716 0.214 0.061 0.010
oil 0.635 0.286 0.071 0.008

brine 0.014 0.186 0.689 0.112
shale 0.019 0.031 0.062 0.888

gas oil brine shale

gas 0.751 0.234 0.009 0.005
oil 0.416 0.542 0.035 0.007

brine 0.002 0.043 0.892 0.063
shale 0.001 0.007 0.073 0.919

NZ

gas oil brine shale

gas 0.539 0.319 0.140 0.002
oil 0.308 0.332 0.336 0.024

brine 0.090 0.294 0.407 0.209
shale 0.016 0.054 0.137 0.794

gas oil brine shale

gas 0.764 0.206 0.028 0.002
oil 0.258 0.632 0.096 0.014

brine 0.039 0.287 0.644 0.031
shale 0.003 0.025 0.101 0.872

Table 3: Confusion matrices. Row 1 to 7 give results for the cases given in Table 1.
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∆(pr) ∆(p̂) ∆(p) ∆Γ(pr) ∆Γ(p̂) ∆Γ(p) ρ∆ ρ∆Γ

BC 0.722 0.391 0.177 0.503 0.178 0.056 0.605 0.733
NN 0.722 0.162 0.008 0.503 0.031 0.002 0.789 0.942
LN 0.722 0.320 0.120 0.503 0.168 0.034 0.671 0.703
MN 0.722 0.565 0.405 0.503 0.303 0.226 0.500 0.727
RL 0.722 0.388 0.140 0.503 0.261 0.086 0.557 0.562
RM 0.722 0.325 0.198 0.503 0.130 0.044 0.763 0.817
NZ 0.750 0.532 0.286 0.525 0.315 0.152 0.469 0.563

Table 4: Row 1 to 7 give results for the cases given in Table 1. In the columns one to three
we have calculated (24) based on the prior distribution, p̂(π|d) and p(π|d) respectively. In
columns four to six we have the same based on (25). In columns seven and eight we have
calculated ρ∆ and ρ∆Γ

in (28) and (29), respectively.

d(p0, pr) d(p0, p̂) d(p0, p) d(p̂, p) ρd

BC 0.719 0.430 0.249 0.373 0.615
NN 0.719 0.195 0.013 0.191 0.747
LN 0.719 0.368 0.163 0.353 0.637
MN 0.719 0.600 0.463 0.393 0.480
RL 0.719 0.427 0.214 0.340 0.567
RM 0.719 0.366 0.246 0.240 0.752
NZ 0.741 0.568 0.357 0.428 0.450

Table 5: Row 1 to 7 give results for the cases given in Table 1. For columns one to four we
have calculated d(p0, pr), d(p0, p̂), d(p0, p) and d(p̂, p), respectively. In column five we have
calculated ρd in (30). For each value, the result are an average over all the ten inversions.

serious consequences than others. We therefore evaluate (25), where we use

Γ =





0 0.1 1 1
0.1 0 1 1
1 1 0 0.1
1 1 0.1 0



 , (35)

where the first row quantifies the negative consequences of classifying to gas, oil, brine sat-
urated sandstone and shale if gas is the truth, the second to the forth row is the same for
oil and brine santurated sandstone and shale respectively. We quantify that the consequence
of confusing the type of hydrocarbon or confusing the non-hydrocarbon classes is not as dra-
matic as confusing hydrocarbon with non-hydrocarbon. The results are summarised in Table
4. Row 1 to 7 give results for the cases given in Table 1. In columns one to three we have
calculated (24) based on the prior distribution, p̂(π|d) and p(π|d), respectively. In columns
four to six we have the same based on (25). In columns seven and eight we have calculated ρ∆

and ρ∆Γ
in (28) and (29), respectively. We now quantify the difference between the posterior

distributions considering the metric in (26). The results are summarised in Table 5. Row 1
to 7 give results for the cases given in Table 1. For columns one to four we have calculated
d(p0, pr), d(p0, p̂), d(p0, p) and d(p̂, p), respectively. In column five we have calculated ρd in
(30). Each value is an average of the result from each of the ten inversions.

From row one to four in Tables 4 and 5 we see that the consequences of the approximations
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increase when the amount of noise in the model increases. From row five and six we see that
the consequence of the approximation are smallest for RM meaning that the approximations
seem to work better when the variability in the model are mostly in the rock physics model
and less in the noise part ε. We get the largest consequences for the case NZ where we have the
prior transition matrix without zeros. Using a transition matrix without zeros may be seen as
a weaker prior distribution and it then becomes more important to have a likelihood without
approximations. From columns seven and eight in Table 4 and column five in Table 5 we see
that the approximate likelihood typically preserves between 55% and 80% of the information
in the true likelihood function.

6 Closing remarks

We have considered a Bayesian model for doing LF prediction from AVO seismic data. The
model contains a Markov chain prior, wavelet convolution and a colored noise term. Related
to the Bayesian model, we have considered two inversion algorithms. The first algorithm, from
Larsen et al. (2006), introduces an approximation in the likelihood model and is in this way able
to evaluate exactly the resulting approximate posterior very efficiently. The other algorithm,
presented in Hammer and Tjelmeland (2008), is a more computer demanding alternative, but
simulate from the posterior model without approximations. The objective of this paper have
been to evaluate the approximations introduced in the efficient algorithm, by comparing the
inversion results from the two algorithms.

We have presented a synthetic but realistic study where several different parameter sets in
the Bayesian model have been considered. The conclusions is that the approximate likelihood
model typically preserves between 55 and 80% of the information in the true likelihood model.
The consequences of the approximations increase when the amount of seismic noise in the
model increases. The approximations work better in a situation where most of the variability
is in the rock physics model and little is seismic noise, compared to the opposite case.

For an inversion problem of the size considered in this paper the algorithm without ap-
proximations seems to be the best alternative. In a real situation, we are normally interested
in inverting a large amount of traces and then the algorithm without approximations can end
up with problems, because it is quite computer demanding. For this situation the approximate
alternative in Larsen et al. (2006) is the best alternative. It is also worth to note that the
Bayesian model considered in this paper contains several assumptions and approximations. It
is an open and relevant question how much the approximations introduced in the approximate
algorithm will have on inversion results from real seismic data compared to the impact of the
assumptions and approximations in the Bayesian model.
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