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An Immune Genetic Algorithm for Inter-Cell Layout Problem in 

Cellular Manufacturing System 

ABSTRACT 

The objective function of inter-cell layout problem minimizes the total inter-cellular 

material handling cost. It is mostly significant with moderate production quantity in 

Cellular Manufacturing Systems (CMS). This problem is classified as Quadratic 

Assignment Problem (QAP) which is NP-Hard in nature. Heuristic techniques are 

extremely effective for such problems. In this paper we have proposed a novel 

Immune Genetic Algorithm (Immune-GA-RS) to obtain competent inter-cell layout in 

the vicinity of CMS. It exploits an elitist replacement strategy in order to improve the 

rate of convergence. The proposed method is successfully tested with 8 datasets which 

are being widely used for inter-cell layout design problems. Proposed Immune-GA-RS 

is compared with two variants of the Genetic Algorithms, GA-RS and Alt-GA-RS and 

7 other published layout design techniques. Results portray that Immune-GA-RS 

acquires 11.11% improved solutions with 7.72% reduced CPU time on an average. 

Further Immune-GA-RS is tested on 36 structured QAP instances available through 

QAPLIB and shown to outperform other two GA variants while attaining optimal 

solutions for 33 instances and also shown to outpace five recent QAP based 

algorithms, SA (S&S-2008), GA (S&S-2010), SC-TS (F&M-2011), IHGA (Mis-

2004), GA-(KTF&D-2011) while attaining smaller solution gap for 11 test instances 

and obtain at least equal or better quality solutions for 24 instances. We conclude our 

work with a statistical data test to signify the results of Immune-GA-RS. 

Keywords: Inter-cell layout; Material handling; Intercell material flow; Immune 

Genetic algorithm; Quadratic assignment problem. 

1. Introduction 

Group Technology (GT) is a manufacturing philosophy, has been effectively employed to 

reduce the output time of production systems, material handling costs, the work-in-progress 

and stocks of finished goods, etc. GT enhances the competence of the system by improving 

the forecast precisions in uncertain production scenarios (Selim, Askin, and Vakharia, 1998; 

Won and Currie, 2007). Cellular manufacturing (CM) is a function of GT and has been 

evolved as a potential replacement of the traditional manufacturing systems. CM could be 

illustrated as a hybrid system which exploits the advantages of jobshop (variety) and 

flowshop (higher rate of production) production strategies. To design an efficient CMS, first 

we have to decompose the manufacturing system into several cells by recognizing and 

exploiting the resemblances amongst parts and machines, next we need to design efficient 

layout to control the material handling costs. The 1
st
 step is identified as the classical cell 

formation problem (CFP). CFP obtains machine-cells and corresponding part families and 

minimizes the inter-cell part travels. The cells are not practically independent to each other 

since some of the operations of a part might be required to be performed beyond its granted 

cell (Heragu and Kakuturi, 1997). That part is distinguished as an ‘exceptional element’. The 

machines which process that part and do not belong to the dedicated cell of that part are 

distinguished as the ‘bottleneck’ machines. These machines are solely responsible for inter-

cell material flow. The newly formed cells are believed to be assigned to optimal locations 

inside the factory area to minimize inter-cell material flow. This assignment problem is 

classified as cell layout problems (CLP) or inter-cell layout problems (Kulkarni and Shankar, 

2007). A competent layout does not only improve the performance of the system but also 
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minimizes nearly 40-50% of the production costs (Balakrishnan and Cheng, 2009). However 

layout design in CMS has not acquired much interest of researchers in recent past since most 

of the relevant works investigate the CFPs (Wang and Sarker, 2002). In the domain of CMS 

only some articles particularly considered CLPs as independent research problems. 

Logendran (1991) first proposed a mathematical model that considered the operational 

sequences to evaluate the inter-cell and intra-cell moves and the impact of the cell layout to 

illustrate the inter-cell material flow. Alfa, Chen and Heragu (1992) suggested a concurrent 

sub-optimal solution of the machine grouping and layout problem in CMS using a simulated 

annealing (SA) approach. Sarker and Yu (1994) reported a twofold procedure for duplicating 

bottleneck machines in CMS and solved a cell layout problem which minimizes the inter-cell 

material flow. Tang and Abdel-Malek (1996) stated a flow-network-oriented inter-cell layout 

model in three key steps: (1) K-Shortest Path method to reduce various flows of a system; (2) 

a flow pattern which designates the system’s aisle structure; (3) cell allocation around the 

flow pattern and the aisle structure within a limited area floor plan. Lee (1998) adopted the 

intra-cell and inter-cell layout design problems using a three-phase interactive method 

following the decomposition strategy to reduce the large problem into smaller sub-problems 

with minute details. Salum (2000) introduced some similarity measures to construct an intra-

cell layout by placing the machines with higher similarity value next to each other to 

minimize the material handling time of the system. Wang and Sarker (2002) stated a lower 

bound on the inter-cell layout problem (QAP) and prescribed a 3-pair comparison heuristic 

and a ‘bubble search’ technique to minimize the inter-cell material flow incurred due to 

bottleneck machines. Chan, Chan and Kwong (2004) proposed the MAIN algorithm to solve 

the intra-cell layout problems in static and dynamic conditions by considering part-handling 

factor, machine rearrangement cost and machine closeness factor. Solimanpur, Vrat and 

Shankar (2004) developed ant colony algorithm (ACO) to solve the QAP model of inter-cell 

layout and compared their results with other techniques such as H63, HC63-66, CRAFT and 

bubble search successfully. Wu et al. (2006) implemented a new genetic algorithm (GA) to 

solve the cell design and group layout problems concurrently incorporating some important 

production factors such as operational sequences, part demand, transfer batch, machine 

capacities, and layout types. Chan et al. (2006) proposed a GA based algorithm to solve the 

layout based QAP along with a cell formation model considering the linear layout shape. 

Kulkarni and Shankar (2007) employed a GA to the inter-cell layout problem and validated 

the performance of GA with well-known layout design techniques. Tavakkoli-Moghaddam et 

al. (2007) presented a new mathematical model to solve a layout problem with varying 

demand to minimize the total layout costs. Mahdavi and Mahadevan (2008) developed an 

algorithm that concurrently obtains manufacturing cells and the intra-cell layout successfully. 

Ahi et al. (2009) applied a TOPSIS based initial solution generating method for order 

preference by similarity to the ideal solution that leads to determination of cell formation, 

intra-cell and inter-cell layouts and shown further improvements to the proposed method. 

Ariafar and Ismail (2009) proposed a new QAP model for inter-cell and intra-cell layouts and 

solved that using an SA algorithm efficiently. Ma and Zhang (2010) demonstrated the 

dynamic layout framework based on the reconfigurable CMS aiming at the enterprise 

problems. It solves CFP and CLP jointly using alternative process routes and multiple 

machine types available for the operations. Jolai, Taghipour and Javadi (2011) employed a 

binary particle swarm algorithm (PSO) to solve a QAP model for inter-cell and intra-cell 

layout problems considering uncertain demand of parts and batch sizes using a variable 

neighborhood search. Leno et al. (2011) discussed the multi-objective CLP with unequal size 

of cells which minimizes the total material handling cost in the first place and subsequently 

maximizes the distance-weighted closeness factor of cells and solved it using a GA. Arkat, 

Farahani and Hosseini et al. (2011) employed two techniques based on GA to solve an 
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integrated model of cell formation, cell layout and cell scheduling. Similar issues are 

addressed by Kia et al. (2012) by developing a novel non-linear model and solved that using 

an SA algorithm and compared successfully with the solutions of Lingo software.  

Table 1. Summary of the literature review done on cellular layout problems 

References 

Solution Methodology 

Used 

Scope of the 

layout problem 

considered 
Objectives considered (either minimization 

type (total cost) or maximization type 

(profit/closeness/similarity/machine 

utilization)) 

Inter-

Cell 

Intra-

Cell 

Logendran (1991) Heuristic based on 

operational sequence and 

configuration 

× × Total inter-cell and intra-cell moves and 

utilization of workstations 

Alfa, Chen and 

Heragu (1992) 

SA × × Total flow of material (combined form of cell 

formation and layout design) 

Sarker and Yu 

(1994) 

Two phase heuristic 

method  

×  Inter-cell material flow and bottleneck machine 

that need to be duplicated 

Tang and Abdel-

Malek (1996) 

A flow network oriented 

heuristic 

×  Cell to cell material flow considering a flow 

pattern within strict floor plan 

Lee (1998) Three phase heuristic 

technique 

× × Total inter-cell and intra-cell material handling 

cost 

Salum (2000) two-phase method based 

on total manufacturing 

lead time reduction 

 × total manufacturing lead time (MLT) reduction 

and intra-cell flow 

Wang and Sarker 

(2002) 

3-pair comparison and 

bubble search method 

×  Total inter-cell material flow 

Chan, Chan and 

Kwong (2004) 

MAIN (Machines 

Allocation Inter-

relationship) 

algorithm 

 × Material handling cost and rearrangement cost 

Solimanpur, Vrat 

and Shankar 

(2004) 

ACO ×  Total inter-cell material flow 

Wu et al. (2006) Hierarchical GA × × Total flow of material (combined form of cell 

formation and layout design) 

Chan et al. (2006) Macro approach based 2-

stage heuristic technique 

×  Total inter-cell material flow (combined form of 

cell formation and layout design) 

Kulkarni and 

Shankar (2007) 

GA ×  Total inter-cell material flow 

Tavakkoli-

Moghaddam et al. 

(2007) 

Branch and Bound 

method 

× × Total flow of material 

Mahdavi and 

Mahadevan (2008) 

CLASS (Cell and 

Layout Solution using 

Sequence data) algorithm  

 × Total intra-cell material flow (combined form of 

cell formation and layout design) 

Ahi et al. (2009) TOPSIS based 2-stage 

Heuristic method 

× × Total flow of material (combined form of cell 

formation and layout design) 

Ariafar and Ismail 

(2009) 

SA × × Total inter-cell and intra-cell material handling 

cost 

Ma and Zhang 

(2010) 

Dynamic Programming × × Total flow of material (combined form of cell 

formation and layout design) 

Jolai, Taghipour 

and Javadi (2011) 

variable neighborhood 

binary PSO 

× × Total inter-cell and intra-cell material flow 

Arkat, Farahani 

and Hosseini 

(2011) 

GA × × Total flow of material (combined form of cell 

formation and layout design considering cell 

scheduling decisions) 

Leno et al. (2011) GA ×  Total flow of material, total distance-weighted 

closeness rating and penalty to force the 

solutions to satisfy floor boundary condition   

Kia et al. (2012) SA  × Total intra-cell material flow (combined form of 

cell formation and layout design considering cell 

scheduling decisions) 
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The layout problem in CMS is classified as the QAP which is believed to be NP-hard in 

nature (Kaufman and Broeckx, 1978). Heuristic or meta-heuristic approaches are extremely 

effective for such problems and accomplish near optimal solutions (Solimanpur, Vrat, and 

Shanker, 2004). Genetic Algorithms are mostly practised among all the meta-heuristic 

approaches for the solution of combinatorial optimization problems (Anderson and Ferris, 

1994). GA based methods are heavily employed in the domain of CMS to design efficient 

cells. A comprehensive review of GAs in CMS can be found in Ghosh et al. (2010).  Ahuja, 

Orlin and Tiwari (2000), Fleurent and Ferland (1994), and Tate and Smith (1995) used GAs 

as the solution approaches to QAP. Drezner (2003) proposed a new GA based QAP solving 

technique with problem specific improved crossover method and a Tabu Search approach. Ji, 

Wu and Liu (2006) reported a hybrid GA based technique to examine the solvability of QAP 

instances. Wu and Ji (2007) proposed a GA based on a new replacement strategy which aims 

to improve the performance of the method. Kratica et al. (2011) proposed a novel genetic 

encoding scheme for QAP which is implemented with objective function and modified 

genetic operators. We have summarized the outcomes of the literature review in Table 1. 

Following facts can be stated henceforth, 

a) Most of the articles have considered a combined form of the layout and CFPs which 

may perhaps complicate the model unnecessarily while the CLPs could be addressed 

independently. 

b) Few researchers have proposed the QAP model as a combined form of inter-cell and 

intra-cell layout problems. However the inter-cell and intra-cell layout subject matters 

might be discussed individually due to the consequence of critical and intrinsic factors 

related to CMS.  

c) Single and multi-period layout problems are not distinctly and prominently discussed 

in the CMS literature. Both of these two problems have enormous scopes to be 

explored. 

d) Most of the researchers considered problem specific heuristic approaches due to the 

combinatorial nature of the layout problems. Few of the articles proposed 

metaheuristic techniques such as SAs, ACOs and GAs for the CLPs with prominent 

solutions. However there could be many other efficient methodologies which can 

solve CLP successfully. 

In this paper we have developed a novel immunity based genetic algorithm (Immune-GA-RS) 

for the CLP. The technique exploits elitist replacement strategy which improves the 

convergence rate drastically. Further we have developed two different variants of GA and 

compared the results obtained by these three techniques. The rest of the article is structured in 

the following manner, in §2 we have introduced the QAP formulation of the problem, in §3 

we have illustrated the proposed Immune-GA-RS. The simulation study and results are 

conferred in §4. Lastly, in §5 we have concluded our research study. 

2. Problem Definition 

Notations: 

 

j, l indices of locations (j, l = 1, 2, 3…, N) 

i, k indices of cells (i, k = 1, 2, 3, …, N; fik = fki, i ≠ k) 

djl  distance between two locations j and l  

fik  the amount of material flow from cell i to k  
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frik  the inter-cell trips between cell i and k, (frik = fik + fki) 

xij  the decision variable (xij ∊ {0, 1}). 

 

We have considered a QAP based inter-cell layout problem in this paper as suggested by 

Wang and Sarker (2002). 

The suppositions of the proposed model are, 

 Manufacturing cells are already developed and cell formation solutions are available. 

 Size of each cell is equal and the shape and space of the floor area is not limited. 

 Distance between two locations is measured from one centre of location to another. 

 Material flow from one cell to another is measured beforehand. 

 

The QAP formulation of the proposed MPCLP model is depicted as follows, 
 

 
 

Subject to, 

 

 

 
 

 
 

Equation (1) minimizes the total inter-cell material handling costs. Equation (2) and (3) are 

the assignment constraints. These ensure that each cell is assigned to only one location and 

each location contains only one cell respectively. Remaining constraint (4) is the 0-1 decision 

variable xij. 

  

3. Research Methodology 
 

Immune Genetic algorithm is a stochastic search and optimization technique based on GA 

and initiated on the basic insights of natural selection (Darwin, 1929), population genetics 

(Fisher, 1930) and theory of immunity (Chen, 1980). Jiao and Wang (2000) stated an 

Immune-GA and made this algorithm accustomed among researchers. It is a modified form of 

standard GA. Standard GA executes iteratively on a set of encoded chromosomes called a 

population using three basic genetic operators: selection, crossover and mutation (Holland, 

1975; Goldberg, 1989). A comprehensive theory of GA can be obtained in the book written 

by Gen and Cheng (2000). The biological immune system is moderately complicated in 

nature. It facilitates in shielding against pathogenic organisms. The function of an immune 

system is to protect our physique from antigens. The idea of immunity can be incorporated in 

GA by choosing proper ‘vaccination’ rule and immune selection strategy. The ‘vaccination’ 

modifies genes of the current chromosome by altering few bits depending upon the problem 

so as to conceivably move to the more prominent area of the state space. The immune 

selection strategy picks the better chromosomes for next stage by applying annealing 
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schedule. We used the ‘vaccination’ to retain good genes and adjust other genes. In 

vaccination, a random number r is used to decide whether to pick forward or backward 

operator. In the next subsections we discuss the Immunity based GA with elitist replacement 

strategy (Immune-GA-RS) in details. 

3.1. Immune-GA-RS 

The proposed technique starts with an initial population of randomly selected feasible 

solutions which are encoded on a string of finite length depending upon the number of cells 

in the layout. Immune-GA-RS is real coded and depends on the nature of the layout solution. 

3.1.1. Initial Population and Encoding Scheme     

Initial population is generated randomly following the rule, 

a) Every cell is placed in one location, thus there would not be a repeat of string element 

(gene). Encoding of a layout for a period can be presented as, 

5 4 1 3 6 2 

This chromosome is based on a 6 cells, 6 locations problem. It implies cell 5, 4, 1, 3, 6, 2 are 

assigned to location 1 2, 3, 4, 5, and 6 respectively. It is known as a chromosome of Immune-

GA-RS. This arrangement is considered as a solution for a (6×6) problem. 

3.1.2. Fitness Function 

The fitness function essentially evaluates a solution string by computing a numerical score. 

The CLP objective function (eq. (1)) is used for this purpose. Since the CLP is a 

minimization type function, therefore the low score of a solution string is desirable in this 

context. 

3.1.3. Selection method 

Fitness-proportionate selection scheme frequently forces the algorithm to "exploit" the good 

areas at the cost of investigating the other parts of the solution space. At the later stage, when 

all the solution strings of the population are relatively similar (trivial variation in fitness), 

selection becomes insignificant and the evolution stops with premature convergence 

(Mitchell, 1999). To avoid such occurrence, the ‘sigma truncation’ method is adopted as a 

selection method (Goldberg, 1989). It eventually maintains a robust selection pressure 

throughout the direction of the execution. Unprocessed fitness values are first transformed 

into the expected values. The formula used in this work is, 

 

E(i, t) is the expected value of individual i at time t, f(i) is the fitness of i, fµ(t) is the mean 

fitness of the population at time t, and fσ(t) is the standard deviation of the population 

fitnesses at time t, Cσ is the sigma truncating coefficient. A higher value of Cσ (=2) can 

reduce the fitness pressure of the population. This phenomenon would help the better solution 

to stand out more in the later stage of execution when the population is likely to converge and 

standard deviation is comparatively low in order to continue evolution. 
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3.1.4. Implementation of Reproduction Operator   

Four genetic operations are employed in Immune-GA-RS implementation. These are 

reproduction, crossover, mutation and immune operators (vaccination). The reproduction 

operation triggers best fit chromosomes from the current population and put them into a list 

called ‘elite list’ or ‘mating pool’ to be used for next operations in the evolution. If the 

current population contains n chromosomes and the reproduction rate is defined by Pr, then 

n×Pr best chromosomes are required to be reproduced and to be put in ‘elite list’. Thereafter 

(n - n×Pr) chromosomes are replicated from the list of ‘elite’ chromosomes and added to the 

‘mating pool’.  

3.1.5. Implementation of Crossover Operator 

The crossover operator exchanges genetic features between two parent chromosomes selected 

randomly from ‘mating pool’ and then produces offsprings or child chromosomes. If the 

‘mating pool’ contains n chromosomes and the crossover rate is Pc, then n×Pc chromosomes 

randomly chosen for crossover. The crossover method applied in this Immune-GA-RS is 

based on two-point operation. An example of the crossover operation is depicted in Figure 1. 

The crossover points are chosen randomly by generating two random integers r1 and r2 

between 0 and m (m is the number of cells in the layout) and then exchanging the r1
th

 to r2
th

 

substring of each of the parents. As shown in Figure 1, say r1 = 3 and r2 = 5 thus 3
rd

 to 5
th

 

genes are transferred between parents and two offsprings are generated.  

 

Figure 1. Crossover operation for (6×6) test problem 

At this moment in each of the offsprings cell numbers are duplicated which is not desirable. 

In order to avoid such situation a small heuristic procedure is introduced to restructure the 

offsprings. The procedure is furnished as, 

for j=1:r1-1 
    for k=r1:r2-1 
        if child1(j)==child1(k) 
           child1(j)=parent1(k); 
        end 
           if child2(j)==child2(k) 
              child2(j)=parent2(k); 
           end 
    end 
end 
for j=r2:m 
    for k=r1:r2-1 
        if child1(j)==child1(k) 
           child1(j)=parent1(k); 



9 
 

        end 
        if child2(j)==child2(k) 
           child2(j)=parent2(k); 
        end 
    end 
end 

  

This procedure would eventually retain the exchanged genetic structure of the offsprings 

while avoiding the gene recurrence. The resulting offsprings are portrayed in Figure 2. 

 

Figure 2. Restructure of offsprings 

3.1.6. Implementation of Mutation Operator 

The aim of mutation is to increase the variability in chromosomes of the population and to 

direct the population into an unexplored area of the search space. It often directs the 

execution to escape from local optima. If the population contains n chromosomes, m is the 

number of genes in each chromosome and the rate of mutation is Pm, then n×m×Pm genes are 

randomly chosen for mutation. It generates new chromosome as demonstrated in Figure 3. 

 

Figure 3. Mutation operation for a chromosome of (6×6) test problem 

The procedure generates two random integers, r1 and r2 between 0 and m. Then swaps the 

r1
th

 and r2
th

 genes as shown in Figure 3. The procedure of the mutation operation is presented 

as, 

for i=1:ceil(popSize*m*prob_Mutation) 
        p=randint(1,1,[1,popSize]); 
        b=Population(p,:); 
        r1=randint(1,1,[1,len]); 
        r2=randint(1,1,[1,len]); 
        tmp=b(r1); 
        b(r1)=b(r2); 
        b(r2)=tmp; 
        Population(p,:)=b; 
    end 
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3.1.7. Implementation of Immune Operator 

The procedure of forward immune operator is presented as: 

for i=1:ceil(popSize*prob_Immune) 
      e(i)=randint(1,1,[1,popSize]); 
      tmp= Population(e(i),:); 
      for i=1:m 

r1=randint(1,1,[1,m]); 
tmp1=tmp(r1); 
tmp(r1)=tmp(i); 
tmp(i)=tmp1; 
temporary_Fitness=f(tmp); 

       if (temporary_Fitness<=Elitist_Fitness) 
             Population(e(i),:)=tmp; 
       else if (rand<=exp((Elitist_Fitness-temporary_Fitness)/(k*T))) 
        Population(e(i),:)=tmp; 
                   end 
       end 

      end 

end 
 

We select a position within a chromosome at random and exchange the first position and the 

randomly selected position to produce a new offspring. Then, we perform the immunity test 

based on Boltzmann’s acceptance probability of Simulated Annealing (SA). Here we set the 

value of k=1 and T= log (Elitist_Fitness /generation_count + 1). If the new offspring is good 

enough we include it into the population else the next to the first gene (right) of the offspring 

is altered in the same way until all the locations have been considered. 

The backward immune operator works in the same way except that we select the last gene of 

the offspring in place of the first gene and proceeds to the left. The procedure is, 

for i= ceil(popSize*prob_Immune):1 
      e(i)=randint(1,1,[1,popSize]); 
      tmp= Population(e(i),:); 
      for i=1:m 

r1=randint(1,1,[1,m]); 
tmp1=tmp(r1); 
tmp(r1)=tmp(i); 
tmp(i)=tmp1; 
temporary_Fitness=f(tmp); 

       if (temporary_Fitness<=Elitist_Fitness) 
             Population(e(i),:)=tmp; 
       else if (rand<=exp((Elitist_Fitness-temporary_Fitness)/(k*T))) 
        Population(e(i),:)=tmp; 
                   end 
       end 

      end 

end 
 

If the population contains n (popSize=n) chromosomes and the immunity rate is Pv, then 

n×Pv chromosomes randomly chosen for immune operation. Whether to choose forward or 

backward immune operator that depends on a random number rn, if rn <= 0.5 we go for 
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forward operator else we go for backward operator. The forward and backward operations are 

depicted in Figure 4 for two iterations. 

 

Figure 4. Immune operation for a chromosome of (6×6) test problem 

3.1.8. Elitist Replacement Strategy 

For every generation we specifically store the worst chromosome separately and we replace 

this with the elitist chromosome of that particular population. For an example in the i
th

 

generation once we perform all the genetic operations on the population P, we obtain a new 

population newP. We evaluate each of the chromosomes of newP and store the best one as 

elitisti. Then if pi+1 is the worst chromosome in (i+1)
th

 generation then we store it to a 

variable called worsti+1 and replace worsti+1 with elitisti. This phenomenon eventually 

improves the searching direction of the algorithm since it follows the schema of the good 

solutions. 

3.1.9. Stopping Condition 

It governs the execution of the Immune-GA-RS algorithm. It implies that all the operators are 

executed repeatedly until a stopping condition is encountered. The execution of IGA is 

eventually terminated if it doesn’t observe any improvement for a long interval of execution 

or if it reaches the maximum number of generations count. The flowchart of Immune-GA-RS 

is depicted in Figure 5. 

 

Figure 5. Flow Chart of Immune-GA-RS 
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4. Experimental Verifications 

The proposed Immune-GA-RS algorithm is coded in Matlab 7.6 using an Intel PC with Quad 

CPU (2.83 GHz) and 4 GB of RAM. The computational complexity of the Immune-GA-RS 

intensifies exponentially with the size of the problems. Therefore a good design is indeed 

important while dealing with the large test problems. The evaluation criterion of Immune-

GA-RS is based on total inter-cell material flow cost. To determine the desired values of the 

parameters of Immune-GA-RS, extensive experiments are accomplished. Parameters of 

Immune-GA-RS, population size (PopSize), number of maximum generations (MaxGen), 

probability of reproduction (Pr), probability of crossover (Pc) and probability of mutation 

(Pm) and probability of vaccination (immunity) (Pv) are to be fixed to obtain good results. 

The values of the parameters are reported in Table 2. 

Table 2. Parameter values for the Immune-GA-RS 

No. of cells PopSize MaxGen Pr Pc Pm Pv 

<=25 100 2000 0.6 0.5 0.05 0.3 

>25 100 4000 0.6 0.5 0.05 0.3 

These values are obtained after extensive analysis with different settings of parameters on all 

the datasets. The decision of keeping the low CPU time is a crucial trade-off in the context of 

the QAP since the Immune-GA-RS is intended to get trapped in local optima with reduced 

values of parameters. In order to show the competence of the proposed Immune-GA-RS first 

we compared our results with the published results. For the comparison purpose we have 

developed two more variants of genetic algorithms namely GA-RS (genetic algorithm with 

replacement strategy) and ALT-GA-RS (alternative genetic algorithm with replacement 

strategy). The flowcharts of these algorithms are depicted in appendix. From the open CLP 

literature we have understood that the test problems suggested by Nugent, Vollman and Ruml 

(1968) are being widely used by the CLP researchers to verify their techniques. Thus we have 

used the same datasets for the experimental verifications. To establish the proposed Immune-

GA-RS we have compared our results with all the available CLP methodologies such as 

Bubble Search (Wang and Sarker, 2002), ACO (Solimanpur, Vrat and Shankar, 2004), HGA 

(Singh, 2007) and GA (Kulkarni and Shankar, 2007) along with the popular layout design 

techniques such as HC63, HC63-66 and CRAFT (Nugent, Vollman, and Ruml, 1968). Table 

3 demonstrates the results obtained by the proposed Immune-GA-RS and also the published 

results. 

Table 3. Comparison of Immune-GA-RS with other published techniques 

No. of 

Cells H63 

HC63-

66 CRAFT 

Bubble 

Search HGA 

K&K 

GA ACO 

GA-

RS 

Alt-

GA-

RS 

Immune-

GA-RS Time 

Nug5 27.6 29.4 28.2 25.2 25 25 25 25 25 25 0.01 

Nug6 44.2 44.2 44.2 43 43 43 43 43 43 43 0.01 

Nug7 78.8 78.4 78.4 75 74 74 74 74 74 74 0.12 

Nug8 114.4 110.2 113.4 109 116 107 107 107 107 107 0.26 

Nug12 317.4 310.2 296.2 301.6 296 302 289 300 289 289 2.3 

Nug15 632.6 600.2 606 585.8 592 640 575 601 575 575 6.82 

Nug20 1400.4 1345 1339 1332.6 1314 1474 1285 1310 1287 1285 25.12 

Nug30 3267.2 3206.8 3189 3165.2 3482 3518 3062.4 3128 3097 3062 74.4 
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All these test problems (Nug5-Nug30) are available in QAPLIB-A Quadratic Assignment 

Problem Library (http://www.seas.upenn.edu/qaplib/). The global optimal solutions are also 

available in that stated library. We have executed all the three methods 10 times for each and 

every problem tested and picked the best objective value achieved. Table 3 clearly states that 

Immune-GA-RS is capable enough of achieving the best results which are optimal according 

to the QAPLIB. It outperforms all the other 9 techniques in terms of solution quality. We 

have also recorded the computational time of Immune-GA-RS as provided in last column of 

Table 3. The average computing time calculated is 13.63 CPU Seconds. Only Solimanpur, 

Vrat and Shankar (2004) demonstrated the CPU Seconds of the ACO method for all these 

problems. The average of the CPU time of their method is 14.77. Thus we established a better 

methodology which is 11.11% improved in terms of the quality of solutions and 7.72% 

improved in terms of computational time. Figure 6 depicts the pictorial view of the improved 

performances of Immune-GA-RS. 

 

Figure 6. Performance curve of Immune-GA-RS and other methods for Nug5-Nug30 

In the next stage of our experiment we tested the proposed Immune-GA-RS with various 

dimensions of the QAP instances obtained from QAPLIB. Solimanpur, Vrat and Shankar 

(2004) mentioned that it is unnecessary to consider problems larger than N=30 since in real 

scenario more than 30 cells are rarely used in the factory shop-floor. Yet we have tested our 

methodology for even one of the largest datasets available in QAPLIB (wil100) in order to 

realize the ability of Immune-GA-RS while solving the tangibly large QAP. The results are 

reported in Table 4. According to the QAPLIB there is hardly any technique available in past 

literature which can provide optimal solutions for all the different QAP instances singly. We 

have tested total 36 structured QAP instances for which 12 ≤ N ≤ 100. Along with Immune-

GA-RS other two GA variants are also tested for the performance comparisons.  All the 

methodologies are compared in terms of the objective values achieved and the computational 

time consumed. Table 4 depicts that Immune-GA-RS is extremely efficient in terms of the 

obtained solution quality. It attains global optimal solutions for 33 test instances while near-

optimal solutions for the remaining 3 problems. From the very last column of Table 4 we 

decode that on an average Immune-GA-RS took 28.42 CPU Seconds for all the 36 structured 

QAP instances. Thus Immune-GA-RS outperforms the other two variants of GA in terms of 

CPU time also (Figure 7). Thus we achieved 91.67% improved solutions while compared to 

http://www.seas.upenn.edu/qaplib/
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OS/BSF and GA variants. Furthermore we compared the results of Immune-GA-RS with 

recently published five QAP solution methodologies, SA (Singh and Sharma, 2008), GA 

(Singh and Sharma, 2010), SC-TS (Fescioglu-Unvera and Kokar, 2011), IHGA (Misevicius, 

2004), GA-(Kratica et al., 2011) respectively. Table 5 demonstrates the outcome of this 

comparison. It shows that all the 36 QAP instances have rarely been considered collectively 

in any recent article. However these five methodologies are contemporary and capable of 

producing improved solutions for QAP while compared to past literature. The proposed 

Immune-GA-RS is shown to attain smaller solution gap for 11 instances and outperforms all 

the five published algorithms. Conversely for 1 problem instance (Tai25b) Immune-GA-RS 

achieved 0.09% deviation from the optimal solution of IHGA (Misevicius, 2004). There are 5 

test instances (lipa20a, lipa20b, Nug25, Lipa30b and Lipa50b) for which we could not 

compare the results obtained by Immune-GA-RS since none of those five algorithms is used 

to solve those test problems. However Immune-GA-RS achieved ‘zero’ solution gap for those 

5 instances, therefore we do not need any comparison for that matter.    

Table 4. Comparison of results obtained by Immune-GA-RS, ALT-GA-RS and GA-RS for 

the standard QAP instances obtained from QAPLIB and their optimal solutions 

Instances OS/BSF* GA-RS CPU time ALT-GA-RS CPU time Immune-GA-RS CPU time 

 Chr12a 9552 9938 6.10 9562 5.10 9552 1.20 

 Chr12b 9742 9762 9.60 9742 8.90 9742 1.50 

 Chr12c 11156 11834 15.40 11662 6.50 11156 3.70 

 Had12 1652 1660 20.09 1652 10.90 1652 28.10 

 Rou12 235528 240124 55.90 241700 9.30 235528 0.31 

 Scr12 31410 32236 7.44 31410 3.90 31410 25.50 

Tai12a 224416 238860 5.65 224416 26.10 224416 1.20 

 Tai12b 39464925 40376142 13.30 39464925 6.50 39464925 2.80 

Chr15a 9896 11372 6.70 10122 12.30 9896 11.20 

Chr15b 7990 10166 2.30 8640 34.90 7990 2.50 

Chr15c 9504 11488 10.20 9504 19.60 9504 3.40 

 Rou15 354210 368446 19.80 354210 8.40 354210 21.30 

 Scr15 51140 53182 8.80 54144 12.90 51140 16.10 

Tai15a 388214 398394 15.60 388402 31.20 388214 1.50 

Tai15b 51765268 52002324 2.92 51765268 8.40 51765268 53.11 

 Chr20a 2192 2726 13.35 2290 31.20 2192 48.10 

 Chr20b 2298 3006 19.85 2576 12.16 2298 10.60 

 Chr20c 14142 18658 15.43 17584 21.32 14142 45.90 

 Had20 6922 6940 9.20 6922 25.70 6922 1.90 

Lipa20a 3683 3767 29.50 3683 17.20 3683 9.80 

Lipa20b 27076 30960 24.30 27076 21.20 27076 16.10 

Rou20 725522 734156 7.70 727322 11.90 725522 6.10 

Scr20 110030 113460 9.36 110030 12.10 110030 2.10 

Tai20a 703482 720830 4.80 703482 12.40 703482 32.75 

Tai20b 122455319 124358060 108.42 123062505 7.70 122455319 10.20 

Nug25 3744 3912 19.90 3790 52.10 3744 21.45 

Tai25a 1167256 1217670 72.41 1216392 55.50 1167256 12.88 

Tai25b 344355646 364570560 27.30 353995465 48.40 344390003 16.70 

Kra30a 88900 96250 19.20 95260 25.80 88900 7.30 

Kra30b 91420 94400 22.60 93350 27.21 91420 12.10 

Lipa30a 13178 13477 19.30 13178 47.20 13178 7.70 

Lipa30b 151426 175979 42.10 160066 11.90 151426 44.60 

Lipa50a 62093 63107 161.20 63070 98.11 62093 101.80 

Lipa50b 1210244 1442621 128.20 1336731 113.30 1210244 84.70 

Wil50 48816 50030 89.90 49916 78.43 48851 84.20 

Wil100 273038 284704 418.45 284736 336.60 273078 272.62 

    * OS/BSF: optimal solution/best solution found 

To further prove the competence of the Immune-GA-RS an elaborated statistical analysis is 

performed on the results obtained for all the 44 problems (36 QAPs + 8 CLPs). The details 
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are given in Table 6 and Table 7. First we have performed the F-test two samples for 

variances among the two set of data obtained for OS/BSF (from QAPLIB) and Immune-GA-

RS for all the 44 instances. If test statistic < critical value (F < Fcritical), we accept the null 

hypothesis. In other words if p-value > α, we accept the null hypothesis. Table 6 depicts F < 

Fcritical (1.000174448 < 1.660743744) and p-value > α (0.499773161 > 0.05), thus we accept 

the null hypothesis that the variances are equal. Next we have conducted the paired t-test 

assuming equal variances. 

Table 5. Comparison of solution gap obtained by Immune-GA-RS and SA (S&S-2008), GA 

(S&S-2010), SC-TS (F&M-2011), IHGA (Mis-2004), GA-(KTF&D-2011)  

Instances OS/BSF* 

SA (S&S-

2008) 

GA (S&S-

2010) 

SC-TS 

(F&M-2011) 

IHGA (Mis-

2004) 

GA-(KTF&D-

2011) 

Immune-

GA-RS 

Chr12a 9552 0 - - - 0 0 

Chr12b 9742 0 - - - 0 0 

Chr12c 11156 0.26 - - - 0 0 

Had12 1652 0 - - - 0 0 

Rou12 235528 0 - - - - 0 

Scr12 31410 0 - - - - 0 

Tai12a 224416 0 - - - - 0 

Tai12b 39464925 0.3 - - - - 0 

Chr15a 9896 0 - - - 0.061 0 

Chr15b 7990 2.7 - - - 0 0 

Chr15c 9504 11.5 - - - 1.3 0 

Rou15 354210 0.71 - - - - 0 

Scr15 51140 0 - - - - 0 

Tai15a 388214 0.39 - - - - 0 

Tai15b 51765268 0.47 - - - - 0 

Chr20a 2192 0 - - - 0.77 0 

Chr20b 2298 0 - - - 5.01 0 

Chr20c 14142 0 - - - 0.473 0 

Had20 6922 0 1.5 - - 0 0 

Lipa20a 3683 - - - - - 0 

Lipa20b 27076 - - - - - 0 

Rou20 725522 0.06 - - - - 0 

Scr20 110030 2.13 2.3 - - - 0 

Tai20a 703482 0.21 3.6 0.246 0 - 0 

Tai20b 122455319 5.6 2.3 - 0 - 0 

Nug25 3744 - - - - - 0 

Tai25a 1167256 - - 0.239 0 - 0 

Tai25b 344355646 - - 0.702 0 - 0.009 

Kra30a 88900 - - 0.714 0 - 0 

Kra30b 91420 - - 0.178 0 - 0 

Lipa30a 13178 - 3.2 - - - 0 

Lipa30b 151426 - - - - - 0 

Lipa50a 62093 - 2.4 - - - 0 

Lipa50b 1210244 - - - - - 0 

Wil50 48816 - 4 0.105 - - 0.072 

Wil100 273038 - 6.36 0.099 - - 0.015 

* OS/BSF: optimal solution/best solution found 

The result of paired t-test is reported in Table 7. We interpret the two-sample t-test result as, 

if test statistic < critical value (t< tcritical), we accept the null hypothesis or in other word if p-

value > α, we accept the null hypothesis. Since the null hypothesis is that the mean difference 

= 0, is a two-sided test. Therefore, we use both the one-tail and two-tail values for the 

analysis. Since the t-statistic < tcritical (6.66022E-05 < 1.662765449) and 6.66022E-05 < 

1.987934206) and both the p-values 0.499973507 (one tail) and 0.999947013 (two-tail) > α (α = 

0.05), we accept the null hypothesis and state that the means are same i.e. the data are 

consistent. More specifically we can state that the Immune-GA-RS (mean = 12821157) is an 
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improved method and it is capable of obtaining similar quality solutions for the structured 

QAP problems of QAPLIB (mean of OS/BSF = 12820375) at 95% confidence level. 

Therefore we prove that Immune-GA-RS is an efficient layout designing technique. 

Table 6. Two-Sample F-Test for variances of results obtained for Immune-GA-RS and 

OS/BSF (α =0.05)  

 
Immune-GA-RS OS/BSF 

Mean 12821157 12820375 

Variance 3.03741E+15 3.03688E+15 

Observations 44 44 

df 43 43 

F 1.000174448  

P(F<=f) one-tail 0.499773161  

F Critical one-tail 1.660743744  

 

4.1. Convergence Characteristics of Immune-GA-RS 

Figure 8 displays the convergence property of Immune-GA-RS along with the other two 

variants of GA. These are almost equivalent for all the problem datasets. For explanation 

purpose lipa20b problem is selected. Convergence property is demonstrated during the 

iterations of the proposed techniques. Immune-GA-RS obtains best layout configuration 

along with ALT-GA-RS which is way better than the GA-RS technique. However Immune-

GA-RS converges faster than ALT-GA-RS. Immune-GA-RS consumes around 700 iterations 

while ALT-GA-RS takes nearly 900 iterations to attain optimality. Due to the diversification 

property of immune operator Immune-GA-RS reaches to the more prominent area of search 

space faster. Thus we can conclude that the competency of Immune-GA-RS to escape from 

local optimal solution is better than other GAs since it constantly improves the solution till 

the end of the execution. All the three techniques confirm the same pattern of convergence 

characteristics for all the tested problems therefore the convergence property is established. 

Table 7. Two-sample T-test assuming equal variance and equal sample size of results 

obtained for Immune-GA-RS and OS/BSF (α=0.05) 

  Immune-GA-RS  OS/BSF 

Mean 12821157 12820375 

Variance 3.03741E+15 3.03688E+15 

Observations 44 44 

Pooled Variance 3.03714E+15  

Hypothesized Mean Difference 0  

df 86  

t-Statistic 6.66022E-05  

P(T<=t) one-tail 0.499973507  

tCritical one-tail 1.662765449  

P(T<=t) two-tail 0.999947013  

tCritical two-tail 1.987934206  

 

5. Conclusions 

We have proposed a novel CLP methodology based on Immune-GA with elitist replacement 

strategy, namely Immune-GA-RS. We have adopted a QAP model of CLP proposed by 

Wang and Sarker (2002). QAP is considered as the hardest among all the optimization 
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problems (NP-Hard). Therefore a good design of the heuristic method is essential in this 

context. We have incorporated an elitist replacement strategy in the proposed technique 

which improves the searching efficiency of standard Immune-GA. We have also developed 

two more variants of GA namely, GA-RS and ALT-GA-RS for the testing purpose. For the 

verification of the proposed Immune-GA-RS, we have adopted 8 benchmark problems which 

are being profoundly used in CLP literature. We have compared Immune-GA-RS with total 

of 9 algorithms from published literature including the two variants of GA we have coded. 

Immune-GA-RS is shown to perform extremely well for all the datasets and obtains 11.11% 

improvement in terms of solution quality and 7.72% improvement in terms of CPU time.  

 

Figure 7. The comparison curve of Immune-GA-RS with other GA variants in terms of 

computational time for 36 systematized QAP instances of QAPLIB 

In order to realize the efficiency of Immune-GA-RS, we have selected 36 structured QAP 

instances from QAPLIB where 12 ≤ N ≤ 100. We have tested all the three techniques for 

these test problems and compared with the best known solutions of these problems. Immune-

GA-RS is shown to achieve equally good solutions for 33 problems and near-best solutions 

for remaining 3 problems. Thus we achieved 91.67% improved solutions while compared to 

OS/BSF and have shown to outperform the recent QAP based algorithms, SA (S&S-2008), 

GA (S&S-2010), SC-TS (F&M-2011), IHGA (Mis-2004), GA-(KTF&D-2011), respectively 

with smaller solution gap for 11 instances and obtain equal or better solutions for 24 

instances. It is also shown outperforms other two GA based methods not only in terms of 

solution quality but also for the CPU time (Figure 7). Further the statistical tests (F-test and 

paired t-test) are carried out to prove the competence of the proposed Immune-GA-RS. It 

depicts that the achieved solutions of Immune-GA-RS are as good as the best known 

solutions found in the literature. The novelty of our paper is twofold, (a) to foster a state-of-

the-art meta-heuristic technique which not only outperforms all the standing CLP techniques 

available in the literature but also produces best solutions for the larger QAPs of QAPLIB 

while compared with recent self-controlling Tabu Search method, (b) to carry out statistical 

verification of solutions of the proposed technique which has never been carried out in the 

history of inter-cell layout methodologies.  
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 Figure 8. Sample convergence analysis for Immune-GA-RS and other two GA variants for 

lipa20b problem instance 

Appendix 

The flowcharts of GA-RS and Alt-GA-RS are displayed in Figure A1 and A2 respectively. 

 

 

 
 

Figure A1. Flowchart of GA-RS 

 

 
 Figure A2. Flowchart of ALT-GA-RS 
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 We have proposed a novel Immune Genetic Algorithm (Immune-GA-RS) to obtain 

competent inter-cell layout in the vicinity of CMS. 

 The proposed method is successfully tested with 8 datasets which are being widely 

used for inter-cell layout design problems. 

 Immune-GA-RS is compared with two variants of the Genetic Algorithms, GA-RS 

and Alt-GA-RS and 7 other published layout design techniques. Results portray that 

Immune-GA-RS acquires 11.11% improved solutions with 7.72% reduced CPU time 

on an average. 

 Immune-GA-RS is tested on 36 structured QAP instances available through QAPLIB 

and shown to outperform other two GA variants while attaining optimal solutions for 

33 instances and also shown to outpace five recent QAP based algorithms while 

attaining smaller solution gap for 11 test instances and obtain at least equal or better 

quality solutions for 24 instances. 
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