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Chapter 1

Introduction

Seismic analysis is a key element in successful exploration and production of
natural resources. During the last decades, seismic methodology has had a
significant progress with respect to both acquisition, processing and analysis.
Despite all the new technology, the uncertainty related to seismic analysis is
still large, and even worse, the uncertainty is often not systematically assessed.

In this thesis, the uncertainty aspect of seismic amplitude versus offset (AVO)
inversion is assessed using a Bayesian approach to inversion. The main objec-
tive is to estimate elastic material parameters with associated uncertainty from
large seismic data sets, but the inversion problem also includes estimation of
seismic wavelets and the noise level. State of the art statistical methodology
is applied to attack these current and crucial geophysical problems. The core
part of the work is presented in four separate papers written for geophysical
journals, constituting Chapter 2 through 5 in this thesis. Fach of the papers is
self-contained, with exception of the references which are placed in a separate
bibliography chapter.

This introduction starts with a presentation of required basic concepts within
spatial random fields, Bayesian inference and stochastic simulation, and con-
tinues with a presentation of classical and Bayesian seismic inversion. Finally,
an outline of the four papers is given.



Introduction

1.1 Spatial random fields

Geophysical problems are often described in a spatial setting. Usually, geo-
physical models represent simplifications of the reality, and typical geophysical
data suffer from measurement uncertainty and noise. This calls for spatial
random field models.

A spatial random field {r(z) : € D} is a function whose values are random
for any location & € D, where D is a subset of the d-dimensional Euclidean
space, D C IRY, see for example Cressie (1991); Christakos (1992). In the
following, we consider continuous random fields, i.e. random fields where r(x)
is a continuous variable.

A random field is fully specified by the cumulative distribution functions (cdf)
P(ri,...,mp) = Prob{r(zy) <r,...,r(x,) <rp}, (L.1)

for any positive integer n, and any x&; € D. The generic cdf P(:) is right-
continuous and nondecreasing. For continuous distribution functions, the prob-
ability density function (pdf) is, if it exists, obtained from the partial deriva-
tives as

O"P(ri,... )

p("”la---a""n): 67"1"'67" (12)
n

Expectation and covariance

The expectation of the random field in location @ can be defined by the prob-
ability density function by

e (@) = E{r(@)} = [ 1(@)p(r(@)) dr(e). (13)
and the covariance for locations & and y can be defined by

Yr(z,y) = Cov{r(z), (y)}
N // () (), 7(y)) dr(z) dr(y) — pr(@)(y). (1.4)

The variance function is defined from the covariance function as
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and the spatial correlation function for the random field is defined by

(2, y)

o @) (y) (16)

Vr(ma y) =

Any valid covariance function must be positive definite, which means that
n n
ZZCZ'C]'ET(CW,:U]') Z 0, (17)
i=1j=1

for any positive integer n, any set of weights ¢; € R', and any x; € D. Cor-
relation functions must also be in the class of positive definite functions, and
further have the property that v, (2, ) = 1. The class of valid correlation func-
tions is closed under multiplication and addition, in the sense that if v1(x,y)
and v9(x,y) are valid correlation functions, then

vr(z,y) = vi(e, y)ra(z,y), (1.8)
is a valid correlation function, and
ve(z,y) = avi(z,y) + ase(e, y) (1.9)
is a valid correlation function if a1,as > 0 and a1 + a2 = 1.

A random field may be multidimensional, that is a vector random field
r(x) = [ri(z),...,rm@)], (1.10)

with expectation functions

pir (z) = E{ri(z)}, (1.11)

and cross-covariance functions

Eri,rj ($,y) = COV{’F,;($),’F]‘ (y)}a (112)
fori,7 =1,...,m. Special cases of expression (1.12) are the spatial covariance
functions

Zﬁ' ($, y) = COV{Ti ($), T (y)}a (113)

and the variable covariance functions

i (@, @) = Coviry(z),r;j(z)}. (1.14)
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Symmetry properties

A random field may have symmetry properties defined by invariance of statisti-
cal properties under some transformations. Two important symmetry proper-
ties are homogeneity (stationarity for time series) related to invariance under
translations, and isotropy related to invariance under translations and rota-
tions.

A random field is homogeneous in the strict sense (first order or strong homo-
geneity) if all finite-dimensional distributions are invariant under translation:

Prob{r(z1+s) <ry,...,r(x,+8) <7y} =Prob{r(x1) <r,...,r(x,) <m0}

(1.15)
for s € R%. Homogeneity in the strict sense implies homogeneity in the wide
sense (second order or weak homogeneity), defined by homogeneity for the first
and second moments:

pr(®) = prand 3 (2,y) = %, (£), (1.16)

where £ = & — y is the separation vector. Generally, homogeneity in the wide
sense does not imply homogeneity in the strict sense.

The covariance function for a homogeneous random field is said to be a homo-
geneous covariance function. A homogeneous covariance function has constant
variance

5, (€) = o2, (8). (L.17)

A homogeneous random field is an isotropic random field if the covariance
depends on distance only

Er(mvy) = 27‘(6) = Er(f)v (1'18)

where £ is the distance between the locations « and y. An isotropic random
field is also a homogeneous random field.

Derivatives of random fields

Consider the random field r(z) and assume that it is differentiable with re-
spect to . The gradient field (potential vector field) Vr(x) is defined by the
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components (Christakos, 1992)

—(z) = lim ' , (1.19)

where e; is a unit vector in direction 4.
The expectation of a gradient component is
or 0
: =E{— =—E . 1.20
por@) =B{ 5 (@) | = 5E(r(@)) (1.20)

The cross-covariance function between Or(x)/0z; and r(y) is defined by

S (@, y) = Cov {%(w),r(w} - a%zr(w,y), (1.21)

and the cross-covariance function between Or(x)/0z; and Jr(y)/dy; is

or or 0o 0

Yo = — (), — = %.(z,y). 1.22
azr,ajT(w?y) COV { 81‘@ (".U), 8y] (y)} a$l 8y] (m y) ( )

If r(x) is a homogeneous random field, the expectation of the gradient compo-
nents are zero, pg,,(x) = 0. Further, since X, (x,y) = £,(£), the covariance of
Or/0z; is —0%%,.(€)/0¢2, where the minus sign is related to the minus sign in
& = x —y. For a homogeneous random field, the covariance attains maximum
at & = 0, and therefore 0%, (& = 0)/9¢; = 0.

Gaussian random fields

A large number of natural phenomena can be modeled with sufficient accuracy
by Gaussian random fields. Gaussian random fields have convenient mathe-
matical properties, and many problems can only be solved analytically under
Gaussian assumptions.

A Gaussian random field r(z) is a random field where all the finite-dimensional
distributions P(rq,...,m,) = Prob{r(xy) < ry,...,r(x,) < r,} are multivari-
ate Gaussian distributions for any n and any x; € D. Let r = [r,...,r,]".
The multi Gaussian probability density for » is (Anderson, 1984)

1 1

exp __(r - MT)TET_I(T - /'Lr) ’ (123)

p(r) = ( 5

271.)n/2|2r|1/2
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which is completely specified by the expectation vector p, and the covariance
matrix X,. A compact notation is

rNNn(urazT)a (124)

where ~ means “distributed as”. The expectation can be arbitrarily chosen, but
the covariance function must be positive definite to ensure the existence of all
finite-dimensional distributions. Since a Gaussian random field is completely
specified by its expectation and covariance, homogeneity in the wide and strict
sense are equivalent.

Linear combinations of the components of r» and all subsets of the components
of r are (multivariate) Gaussian. If r ~ N, (u,,X;) and M is an arbitrary
m X n matrix, then Mr ~ N,,,(Mu,, MX, MT). If r(z) is a differentiable
Gaussian random field, then the components dr(x)/dz; are also Gaussian ran-
dom fields since the differential operator is defined as the limit of linear com-
binations of Gaussian variables.

A well-known result which is frequently used in this thesis is the formula for a
conditional Gaussian distribution. Consider two multivariate Gaussian random
vectors vy ~ Ny, (p1, £11) and 1o ~ Ny, (9, Zg2) with joint distribution

e E) e
The conditional distribution of r; given 79 is Gaussian
ri|re ~ m(#1|2a ip2), (1.26)
with conditional expectation
Kijg = By + 21222_21 (r2 — pa), (1.27)
and conditional covariance
ip =211 — D125 Tt (1.28)

Note that the conditional covariance does not depend on the given ro, but is
solely determined from the covariance matrix of the joint distribution.
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1.2 Bayesian inference

For a given problem, let @ be a vector of unknown parameters with a specific
meaning and interest for the problem, and let o be some observations related
to 6. The observations are in general uncertain, and statistically linked to 6
via the pdf p(o|@). In the Bayesian paradigm, the unknown parameter vec-
tor @ is also regarded as stochastic, and it is therefore natural to represent
the current knowledge and uncertainty about @ by a probability distribution.
The distribution for @ assigned before o is observed is called the prior dis-
tribution, denoted p(@). At this point, the Bayesian philosophy differs from
classical frequentistic statistics, where @ is regarded as an unknown, but fixed
nonstochastic quantity (Robert, 1994).

Statistical inference can be formulated as drawing conclusions or inference
about @ through the quantitative observations o. As opposed to statistical
modeling, statistical inference can be regarded as an inversion process, since
the objective is to retrieve the “causes” 0 from the observed “effects” 0. When
o is an observed and constant vector, the pdf p(o|@) defines a function of 6
known as the likelihood function. Some authors use the notation L(@]o) =
p(0]@) to stress the inversion aspect of the likelihood function. In classical
frequentistic statistics, a natural and common point estimator for @ is the
maximum likelihood estimator (MLE)

~

0 = argmgx{p(o|0)}. (1.29)

In the Bayesian approach to inference, the prior model expressed by p(0) is
combined with the information about @ provided by o through the likelihood
model. While p(0) expresses the probability distribution before o is observed,
the posterior distribution p(€|0) expresses the updated probability distribution
for @ after observing the value of 0. The posterior distribution can be expressed
by Bayes’ law,

_ p(ol0)p(0)
p(0lo) = o) (1.30)

where
p(o) = [ p(olo)p(6)d6. (1.31)

is the marginal density for o. Since p(0) does not depend on the unknown @,
it can be regarded as a normalizing constant for the posterior distribution in
expression (1.30). For real problems, the marginal density p(0), and hence the
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posterior distribution p(@|o) are generally not available on closed analytical
forms. Historically, this has been one of the most serious drawbacks using
Bayesian methodology on real problems.

Bayes’ law can be regarded as an inversion formula for @, where the posterior
distribution represents the complete solution, including the uncertainty. A
convenient point estimator for @ is the maximum posterior (MAP) solution

~

0= argmgx{p(0|o)}, (1.32)

while the classical Bayes estimator (under quadratic loss function) is the pos-
terior expectation

6 = E{0|o}. (1.33)

Bayesian inference is completely based on the posterior distribution. The pos-
terior information is usually summarized by quantities as posterior mean and
variance, maximum posterior distribution, quantiles and credibility regions.
Many summary quantities can be represented by integrals on the form

E{9(6)lo} = [ 9(6)p(6lo)de, (1.34)

where for example g(@) = 6; for the posterior mean pu; of element 6; in 6, and
g(0) = (0; —11;) (0 — 1) for the posterior covariance of §; and 6;. A (1—€)100%
credible interval C for 0; is such that

/H@ecmwpmozl—@ (1.35)

where I{ A} is the indicator function being 1 when A is true and 0 otherwise.
A widely used (1 —¢€)100% credible interval is defined such that the probability
that 6; is below the lower limit of the interval is equal to the probability that
f; is above the upper limit, that is €/2. A (1 — €)100% highest posterior
distribution (HPD) interval for 0; is

C ={0i;p(0:lo) > pc}, (1.36)

where p(0;|0) is the posterior marginal density for 6;, and p¢ is the largest
constant such that C is a (1 — €)100% credible interval.
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1.3 Markov chain Monte Carlo

A practical difficulty with Bayesian analysis is that the posterior distribution
p(0|0) is generally not available on a closed analytical form, and integrals as
in expression (1.34) may be hard to evaluate. This problem can be solved
approximately if a number of posterior samples 81, ..., 8™ from p(0]o) can
be provided, such that the integral in expression (1.34) can be evaluated by
Monte Carlo integration (Robert and Casella, 1999):

E(9(8)lo} ~ - 3" g(6). (137
=1

The law of large numbers ensures that the result of the Monte Carlo integration
converges almost surely to the correct value when m — co. A credible interval
for g(@) can be approximated by

: (1.38)

where gl represents an increasing sorted sequence of g(0(i)). A HPD interval
may be more difficult to obtain, see e.g., Chen et al. (2000).

Generation of samples from the posterior distribution requires a numerical
simulation algorithm, usually based on pseudo random numbers generated by
a computer. For several well-known distributions, algorithms which generate
independent samples are available, see Ripley (1997). For more complex distri-
butions, however, viable methods for direct generation of independent samples
do generally not exist. In such cases, Markov chain Monte Carlo (MCMC)
simulation can be applied. MCMC simulation has wide applicability and has
during the last decade gone into mainstream statistics, especially within the
fields of spatial statistics, image analysis and Bayesian statistics.

The idea of MCMC is to generate samples from a sampling distribution p, (@),
which in our setting is the posterior distribution p(@|o), by simulating a clev-
erly constructed Markov chain, see e.g., Gilks et al. (1996); Robert and Casella
(1999). This is done by constructing a Markov chain with stationary distri-
bution equal to the desired sampling distribution. When the Markov chain
has converged to its stationary distribution, each new state of the Markov
chain is then also a sample from the desired sampling distribution. The
Metropolis-Hastings algorithm, which was proposed by Metropolis et al. (1953)
and later generalized by Hastings (1970), gives a very general recipe on con-
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struction of Markov chains with the required properties. The pseudo-code of
the Metropolis-Hastings algorithm is simple:

Initiate: Set arbitrary 8(°) where p,(6(?) > 0.
Iterate: ¢ =1,2,...
e Draw a possible new sample candidate 6 from q(0|0(i_1))

e Compute acceptance probability

. ps(6) q(8“7D16)
Da = mln{l, ps(G(i’l)) q(é|0(i*1)) } , (1.39)

e With probability p, set 8% = 6, otherwise ) = g(i—1.

The Metropolis-Hastings algorithm simulates a Markov chain by proposing a
sample 0 as candidate for the next element 8 in the Markov chain. The pro-
posed sample is drawn from a proposal density q(0|0(i*1)), and accepted with
probability p, such that o) = 0, otherwise 0% = 90~ The samples 0
generated by the Metropolis-Hastings algorithm form a Markov chain which
converges to ps(@) as stationary distribution for any legal initial state 0 and
almost any choice of proposal density ¢(8]@7~1). For a wide range of practi-
cal problems, the choice of simple proposal densities give satisfactory results,
see e.g., Gilks et al. (1996). For more complicated distributions, for example
multi modal distributions with modes separated by low or zero probability
zones, careful tuning of the proposal densities may be necessary (Tjelmeland
and Hegstad, 2001; Tjelmeland and Eidsvik, 2002).

The convergence rate of the Markov chain for an actual ps(@) depends on
both the initial state and on the choice of proposal density, but is generally
hard to assess. In practice, the convergence of an actual simulation problem
can be evaluated by monitoring the involved variables using different initial
values (Gilks et al., 1996). The main objective is to determine the burn-
in period of the Markov chain, that is the initial period before the Markov
chain has converged to its stationary distribution. The samples generated
before convergence are usually not used in the Monte Carlo integration. To be
strictly correct, if burn-in samples are abandoned, the samples generated by
the Metropolis-Hastings algorithm must be re-indexed compared to the Monte
Carlo integration in expression (1.37).

An important property of the Metropolis-Hastings algorithm is that the sam-
pling distribution ps(@) only appears in the ratio in expression (1.39). The
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algorithm can therefore be used to draw samples from the posterior distribu-
tion without knowing the exact value of the normalizing constant.

Different classes of algorithms can be defined from the choice of the proposal
distribution. If the proposal density is symmetric, q(0|0(i_1)) = q(0<i_1)|0),
the algorithm reduces to the Metropolis algorithm (Metropolis et al., 1953).
If the proposal density does not depend on the current state 0(2'*1), such that
q(8]60~Y) = ¢(@), the algorithm is called an independence sampler. The
algorithms above suggest a simultaneously sampling of the complete vector 6,
but it is often a better procedure to use single-component Metropolis-Hastings
to update single elements of @ one by one, or alternatively blocks of elements.

The popular Gibbs sampler algorithm is also a special case of the general
Metropolis-Hastings algorithm, where the full conditional distributions for the
elements in @ given the current state of the remaining elements are used as
proposal distributions, such that the proposal density for element 6, is

i—1 i—1
a(0,10%7") = p.(6;6%77), (1.40)
where 09;1) = {0@, - ,03(-?1,03(-?11), - ,07(12-71)}. In this case, the acceptance
probability is p, = 1, that means that a proposed candidate sampled from the
full conditional distribution is always accepted. One iteration of the Gibbs

sampler algorithm consists of drawing a new sample for each of the elements
in 8. Once an element is drawn, it goes into the current state of 8.

The pseudo-code of the Gibbs sampling algorithm can be written

Initiate: Set arbitrary 8(°) where p,(6(?)) > 0.
Iterate: 1 =1,2,...

e Draw 9]@

from ps(0j|0951)) forj=1,...,n.

Instead of drawing single elements from @ as shown above, a more general
algorithm is obtained by allowing for simultaneously drawing a block of ele-
ments. It is well known that the performance of the Gibbs sampler may be
poor if there are strong correlations between some of the elements in 0. If
samples from the full conditional joint distribution for a block of correlated
elements can be provided, such blocking may significantly improve the Gibbs
sampling. There is no restrictions on the size of a block as long as samples can
be generated from the full conditional joint distribution.
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1.4 Seismic inversion

The problem of finding the cause of an observed effect is generally termed
inversion (Tarantola, 1987; Scales and Snieder, 2000). The opposite problem is
to calculate the effect of a given cause, that is the direct or forward modeling
problem. In seismic exploration, a seismic wave is initiated by firing a seismic
source, and the waves reflected from the subsurface are recorded on a set
of receivers. In marine seismic acquisition, a seismic vessel tows the source,
usually an air gun array, and one or several streamers containing hydrophones.
The wave propagation through the subsurface rocks is physically described by
the wave equation. The calculation of synthetic seismic data for a known earth
model is the seismic forward modeling problem, while seismic inversion aims
at estimating material properties of the earth model from the seismic data.

The wave equation

Seismic wave propagation in an anelastic, anisotropic, and inhomogeneous
earth medium can be described by a differential vector equation which gives
the direction and quantity of the energy transport at every location & in the
medium as a function of time ¢, see e.g., Aki and Richards (1980); Taran-
tola (1988). The fundamental basis for the wave equation is Newton’s law of
motion, represented by
2
ple) (@) = T (w0 + i), (141)

in coordinate direction 4, and a stress-strain relation on the form

7i(@,t) = [ cil@,t = 7) ez, ) dr, (142)

where p is the density, u; is particle displacement, o;; is the stress field, f; is
body force density, c;;x; is the viscoelastic Hooke’s tensor, and ¢;; is the strain
tensor defined by

1 (911,1 (911,]'
i@, t) == | =—(x,¢ t)]. 1.43

EZJ(J’.’ ) 2 <8x] (m? )+ 8.’,51 (w? )) ( )
Repeated latin indexes are summed over according to Einstein’s sum conven-
tion. Combination of expressions (1.41) through (1.43) gives the wave equa-
tion for particle displacement in an anelastic, anisotropic, and inhomogeneous
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medium:

82Ui o 8 3“1:
P("B)W(-’BJ) = 8—% /Cz]kz(a:,t —7) a—(a:,T) dr + fi(x,t). (1.44)

Ty

In an elastic medium, the stress-strain relation in expression (1.42) is reduced
to Hooke’s law:

oij(@,t) = cijri(®) exi(z,1). (1.45)

The general elastic Hooke’s tensor c;ji(x) has 3* = 81 components, but the
number of independent elastic coefficients can be reduced to 21 for an arbitrary
anisotropic medium (Aki and Richards, 1980).

Combination of expressions (1.41) and (1.45) gives the elastic wave equation
for particle displacement

(92U,i 0
p(x)—o5 (T, t) = 5
ot? oz

auk

(cijkl(ma—ﬂ(m,t)) TS, (146)

For an isotropic, elastic medium, the elasticity is determined by only two elastic
parameters, and the Hooke’s tensor can be written

cijri(x) = M) 030k + p(2) (03051 + 050k (1.47)

where A(z) and p(x) are the Lamé parameters and d;; is the Kronecker sym-
bol. In this case, a complete description of the material properties is given
by {A(z),u(x),p(x)}. Several other parameterizations can also be used, for
example {a(x), f(x), p(x)}, where

A+2
o= A2 (1.48)
P
is the velocity of a P-wave (compressional wave), and
1
g= /" (1.49)
p

is the velocity of an S-wave (shear wave). The material properties can also be
described by impedances, {Zp(x), Zs(x), p(x)}, where Zp = ap is the acoustic
impedance, and Zg = Bp is the shear impedance. The shear impedance is often
substituted by the P-wave velocity to S-wave velocity ratio a/f.
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Seismic forward modeling

When an earth model is described, for example by {a(x), B(x), p(z)} for elastic
isotropic rocks, and the seismic source signature is known, a synthetic seismo-
gram can be computed by modeling the wave propagation according to the
wave equation. The solution of the wave equation is non-trivial except for
simple, idealized situations, but several numerical techniques can be used to
find approximate solutions. The finite difference (FD) method (Madariaga,
1986; Virieux, 1984, 1986; Levander, 1988; Emmerich and Korn, 1987; Car-
cione et al., 1988) and the finite element method (FEM) (Lysmer and Drake,
1972; Marfurt, 1984) are brute force techniques giving the complete solution
of the wave equation. The accuracy of the solution is primarily related to the
discretization of a continuum by a grid with finite extent.

Ray tracing methods (Cerveny et al., 1977) do not give the complete solution
of the wave equation, but the sum of prespecified events, for example primary
reflected waves reflected from a set of selected reflectors. The ray path depends
on the initial ray direction and the wave propagation velocity. When a ray
passes an interface between two layers with different wave velocity, the ray
bending at the interface is given by Snell’s law. When a wave hits an interface
between two layers, some of the energy of the incident wave is reflected. The
reflection coefficient is usually defined as the ratio of the amplitude of the
reflected wave to the amplitude of the incident wave, and depends on the
material properties and the ray angle relative to the interface normal. The
exact expression for the reflection coefficient was derived by Zoeppritz (1919),
and is known as the Zoeppritz equation.

In the special case of a horizontally layered earth model, the reflectivity method
(Kennett, 1983; Ursin, 1983, 1987) can be used. The reflectivity method models
a synthetic seismogram for a stack of layers in a 1-D earth model with laterally
constant material properties.

The modeling of synthetic seismic data is time consuming, especially 3-D FD
and FEM modeling, and the relationship between the earth model and the
corresponding seismic data is strongly nonlinear. Usually, the recorded seismic
data go through an extensive processing before the data are used in analysis
and interpretation. Modern true amplitude processing aims at providing ge-
ometrically correct images of the subsurface structures where the amplitudes
are proportional to the reflection strength if interference effects are neglected.
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Unwanted effects from the acquisition system, different kind of noise, and un-
wanted wave propagation effects are removed or accounted for by seismic pro-
cessing. Examples are the removal of multiples and diffractions, and amplitude
recovery due to geometrical spreading and attenuation. The data are sorted
and migrated towards their correct spatial positions, including correction for
offset dependent traveltime. Usually, the depth coordinate is represented by
the vertical seismic two-way traveltime, but depth migration will probably be
more common in the future. The migration process effectively transforms the
3-D relationship between the earth model and the seismic data to vertical 1-D
relationships for each surface location. This is approximate for time migration,
but still an adequate assumption, except for very complex earth models with
strong velocity variations.

A forward modeling algorithm can be constructed such that processed seismic
data are simulated directly. Such modeling are often used for a target zone
of special interest, often with a simplified model for the overburden. True
amplitude processed seismic data in a target zone are usually represented by
the convolutional model. The convolutional model in continuous form for a
single seismic time trace can be written

dops (1) = / s(7) et — 7) dr + e(t), (1.50)

where dps(t) is the seismic data as function of the vertical two-way traveltime
t, s is the wavelet, ¢ is the reflectivity, and e is an error term. The wavelet
may be estimated from the seismic data in the target zone under certain as-
sumptions, or from seismic and well log data. The reflectivity c¢ is determined
by the nonlinear Zoeppritz equation, but if ¢ is linearized, a linear relationship
between the seismic data and the earth model is established.

Over the years, a number of approximations to the nonlinear Zoeppritz equa-
tion has been made. One of the first was Bortfeld (1961), and further modi-
fications were done by Richards and Frasier (1976) and by Aki and Richards
(1980). The approximate reflection coefficient given by Aki and Richards
(1980) is linear with respect to relative contrasts in the material parameters
under weak contrast assumption. The reflection coefficient is a function of the
angle of incidence relative to the interface normal. On seismic prestack data,
this can be observed as amplitude versus offset (AVO) variation (Ostrander,
1984), where offset is the distance between the source and the receiver. AVO
analysis is alternatively termed AVA (amplitude versus angle) analysis.
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Classical seismic inversion

An earth model may be defined by a vector field m(x), for example related
to {a(x), B(x), p(x)}, or represented by a discretized model parameter vector
m. The seismic data are available on discrete form, represented by the vector
dops. The seismic forward model can generally be written

dops = g(m) +e, (151)

where g is a (possible nonlinear) modeling operator and e is an error term.
The error term represents both random noise and systematic errors related
to effects which is not included in the modeling operator (Scales and Snieder,
1998).

The aim of seismic inversion is to estimate m from d,s, see e.g., Tarantola
(1987). Classical seismic inversion is often formulated as optimization of an
objective function F, for example the squared data error

E = ||dos — g(m)|*. (1.52)
An optimal solution may be the m which minimizes F.

Seismic inverse problems are often ill-posed, and usually need to be stabilized.
The stabilization can be achieved by constraining the solution. The constraints
may be imposed by including a penalty function to the objective function, for
example

B = doss — g(m) |2 + Am — m|2, (1.53)

where my is a prior guess on a reasonable solution, and A is the weight of the
penalty term relative to the data misfit term.

The objective function is often related to the maximum likelihood or the max-
imum posterior concepts. If the error term e in expression (1.51) is assumed
to be zero-mean Gaussian with covariance 3,

e~ N, (0,%,), (1.54)
the maximum likelihood solution is defined by minimizing
1 _
E= E(dobs - g(m))TEe 1(dobs —g(m)). (1.55)

This is identical to a (possible nonlinear) weighted least square problem. If the
error term represents white noise such that ¥, = 021, the problem reduces to
an ordinary (nonlinear) least square problem.



1.4 Seismic inversion

23

If the prior knowledge and uncertainty about m are summarized by a Gaussian
prior distribution,

m ~ nm(“mazm)a (156)
the maximum posterior solution is defined by minimizing
1 _ 1 _
B = S (dops — ()T S, (s — g(m)) + 5 (m— o, ) 2, (m = o). (157)

This is equivalent to a (nonlinear) stabilized weighted least square problem,
where the prior model acts as the stabilizer. If 3, = 02I and £, = 02 I, the
maximum posterior problem equals minimizing F in expression (1.53) with
mo = p,, and A = 02/02,.

In classical seismic inversion, the optimal solution with respect to an objective
function is estimated by iterative search methods such as steepest descent, con-
jugated gradients, Gauss-Newton or the Levenberg-Marquard method (Lines
and Treitel, 1984). A serious problem with these local search methods is that
the search could be trapped in local optima. A possible way around this
problem is provided by global optimization methods such as simulated an-
nealing (Metropolis et al., 1953; Kirkpatrick et al., 1983; Geman and Geman,
1984; Rothman, 1986) and genetic algorithms (Goldberg, 1989; Sen and Stoffa,
1996), but these methods may be extremely time consuming. However, both
the local and the global optimization methods only provide a point estimate
of the solution, and do not assess the associated uncertainty.

Bayesian seismic inversion

Seismic data are usually strongly affected by noise and measurement uncer-
tainty, and seismic inverse problems are in general multidimensional and ill-
posed. An ill-posed inverse problem may not have any solutions, which is typ-
ical for an over-determined problem, or the solution may not be unique, which
is typical for under-determined problems. Nonuniqueness means that several
models fit the measured data equally well. The earth parameters vary contin-
uously in three spatial directions, leading to an infinite dimensional problem.
In a realistic seismic exploration situation, only a limited amount of data are
available, making the inverse problem inherently nonunique. Another aspect
of nonuniqueness is related to identifiability of the parameters from the data.
This problem arises when more than one parameter set has the same forward
response. Further, an ill-posed problem may be unstable, that means that the
solution is highly sensitive to slight perturbations in the data.
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A Bayesian setting is a natural choice for many geophysical inverse problems
(Tarantola and Valette, 1982; Tarantola, 1987; Duijndam, 1988a,b; Omre and
Tjelmeland, 1997; Ulrych et al., 2001; Scales and Tenorio, 2001; Kolbjgrnsen,
2002). The solution of a Bayesian inverse problem is represented by the com-
plete posterior distribution, which means that the solution is not limited to a
single best-fitting set of model parameters, but it does also characterize the
uncertainty of the inversion results. In Bayesian inversion, it is possible to
combine available prior knowledge with the information contained in the mea-
sured data. The use of a prior model has been criticized by non-Bayesians
where the primary argument is that subjective prior information may lead to
a nonobjective solution. In many geophysical inversion problems, however,
the prior distribution serves as a necessary stabilizator to ensure a physically
reasonable solution. Further, when prior knowledge is available, for example
in form of well log measurements or general geological knowledge, this prior
knowledge can naturally be included via the prior distribution.

For nonlinear problems, even with Gaussian prior and Gaussian likelihood
models, the posterior distribution can only be found by use of stochastic simu-
lation techniques (Monte Carlo) (Mosegaard and Tarantola, 1995; Mosegaard,
1998; Eide et al., 2002). However, stochastic simulation of inverse problems
involving seismic data is in most cases impractical due to high computational
costs. For linear problems, or problems that can be linearized, analytical solu-
tions may in some cases be found. A solution with an explicit analytical form
is usually computationally superior to iterative search and simulation based
solutions.

1.5 Outline of the papers

The main part of the thesis consists of four separate self-contained papers writ-
ten for geophysical journals. The papers may be read independently, but the
order listed below is strongly recommended. The main subject is related to the
uncertainty aspects of seismic amplitude versus offset (AVO) inversion, where
the uncertainty is assessed using a Bayesian approach to inversion. The objec-
tive of the AVO inversion is to estimate elastic material parameters from large
seismic data sets, but the complete inversion problem also includes estimation
of seismic wavelets and the noise level. To be able to invert large seismic data
sets, a crucial aspect is the computational efficiency of the inversion algorithm.
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Properly processed seismic data are used such that the AVO inversion problem
can be linearized, and the inversion algorithm utilizes the convenient mathe-
matical properties obtained by Gaussian assumptions. The wavelet estimation
and noise level estimation involve well log data and seismic data only at the
well locations. This allows for more advanced and time consuming techniques
like MCMC. In the examples, only one or two wells are used to illustrate the
methods, but more wells should be used to increase the accuracy. Real data
examples are shown in all papers.

The paper in Chapter 2, Bayesian linearized AVO inversion, presents a
linearized AVO inversion technique based on the convolutional model and log-
Gaussian prior and Gaussian noise assumptions. The wavelet and the noise
covariance are in this paper assumed to be known. The objective of the AVO
inversion is to obtain posterior distributions for P-wave velocity, S-wave veloc-
ity, and density from processed seismic data. A new element with this method
is related to the implicit trace integration which transforms the reflectivity
information to material properties in a stochastic setting. The solution is rep-
resented by a Gaussian posterior distribution with explicit expressions for the
posterior expectation and covariance, which provides a computationally fast
inversion method. The inversion algorithm is applied to a real 3-D dataset
from the Sleipner Field.

The paper in Chapter 3, Bayesian wavelet estimation from seismic and
well data, presents a new approach to wavelet and noise level estimation,
where the uncertainties are an integral part of the solution. The method is
based on the convolutional model, where the reflectivity is calculated from the
well logs. Possible mistie between the seismic traveltimes and the time axis of
the well logs, errors in the log measurements, and seismic noise are included
in the model. The stochastic model is illustrated by a directed acyclic graph
(DAG). The solution is obtained by Markov chain Monte Carlo simulation,
and the method is illustrated through a real data example.

The paper in Chapter 4, Joint AVO inversion, wavelet estimation, and
noise level estimation using a spatially coupled hierarchical Bayesian
model, presents a method for joint AVO inversion, wavelet estimation, and
estimation of the noise level, and is a combination and extension of the two
previous papers in chapters 2 and 3. A spatial coupling of the model param-
eters is now imposed via the prior distribution by a spatial correlation func-
tion. The stochastic model includes uncertainty of both the elastic parameters,
the wavelet, and the seismic and well log data. The posterior distribution is
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explored by Markov chain Monte Carlo simulation using the Gibbs sampler
algorithm. The inversion algorithm has been tested on a seismic line from the
Heidrun Field with two wells located on the line.

The paper in Chapter 5, Rapid spatially coupled AVO inversion in the
Fourier domain, presents a fast and exact method to solve high dimensional
spatially coupled inverse problems sampled on a regular grid. The method
utilizes the fact that a circulant matrix can be diagonalized by the Fourier
transform. Under certain assumptions, we show how the spatially coupled
inversion problem can be decoupled in the Fourier domain, such that the in-
version problem can be solved independently for each frequency component.
The method is applied to a 3-D spatially coupled AVO inversion problem. The
computing time for a 3-D inversion example from the Sleipner Field with 12
million unknown model parameters was only some few minutes.
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Bayesian linearized AVO
inversion

Arild Buland and Henning Omre

Paper accepted for publication in Geophysics, 2002. Presented at the 62nd
EAGE conference, Glasgow 2000 (Extended abstract).

Abstract

A new linearized AVO inversion technique is developed in a Bayesian frame-
work. The objective is to obtain posterior distributions for P-wave velocity,
S-wave velocity, and density. Distributions for other elastic parameters can also
be assessed, for example acoustic impedance, shear impedance, and P-wave to
S-wave velocity ratio. The inversion algorithm is based on the convolutional
model and a linearized weak contrast approximation of the Zoeppritz equation.
The solution is represented by a Gaussian posterior distribution with explicit
expressions for the posterior expectation and covariance, hence exact predic-
tion intervals for the inverted parameters can be computed under the specified
model. The explicit analytical form of the posterior distribution provides a
computationally fast inversion method. Tests on synthetic data show that all
inverted parameters were almost perfectly retrieved when the noise approached
zero. With realistic noise levels, acoustic impedance was the best determined
parameter, while the inversion provided practically no information about the
density. The inversion algorithm has also been tested on a real 3-D dataset
from the Sleipner Field. The results show good agreement with well logs, but
the uncertainty is high.

27



28

Bayesian linearized AVO inversion

2.1 Introduction

The objectives of geophysical inverse problems are to make inferences about
model parameters based on general knowledge and a set of geophysical mea-
surements. In general, these inverse problems are multidimensional and ill-
posed, and they are often strongly affected by noise and measurement uncer-
tainty.

In a statistical perspective, the solution of an inverse problem is not limited
to a single set of predicted parameters, but is represented by a probability
density function (pdf) on the model space. The aim of inversion is not only to
find a best-fitting set of model parameters, but also to characterize the uncer-
tainty in the inversion results. A Bayesian setting is a natural choice for many
geophysical inverse problems, where it is possible to combine available prior
knowledge with the information contained in the measured data (Tarantola and
Valette, 1982; Tarantola, 1987; Duijndam, 1988a,b; Ulrych et al., 2001; Scales
and Tenorio, 2001). The solution of a Bayesian inverse problem is represented
by the posterior distribution. Analysis of nonuniqueness and uncertainty in the
solutions of inverse problems is often called resolution analysis. In a Bayesian
setting, all questions about resolution are addressed by the posterior distribu-
tion. The Bayesian concept is general and recognized both in statistics and in
geophysics, but the specific model definition and the associated solution of an
actual problem may be complicated.

A general geophysical inverse problem has a nonlinear relationship between the
model parameters and the measured data, and the posterior distribution can
usually be found only by use of stochastic simulation techniques (Monte Carlo)
(Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996; Mosegaard, 1998; Eide
et al., 2002). However, stochastic simulation of inverse problems involving
seismic data is in most cases impractical due to high computational costs. For
linear problems, or problems that can be linearized, analytical solutions may
in some cases be found. A solution with an explicit analytical form is usually
computationally superior to iterative search and simulation based solutions.

Amplitude versus offset (AVO) inversion is a seismic prestack inversion tech-
nique for estimating elastic subsurface parameters. AVO inversion utilizes the
fact that the reflection strength from subsurface interfaces depends on the re-
flection angle and on the material properties where the reflections take place.
The AVO inversion methods can be separated into nonlinear methods (Dahl
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and Ursin, 1991; Buland et al., 1996; Gouveia and Scales, 1997, 1998), and
linearized inversion (Smith and Gidlow, 1987; Lortzer and Berkhout, 1993).
Gouveia and Scales (1998) defined a Bayesian nonlinear model, and optimized
the posterior distribution via a nonlinear conjugated gradient procedure to
find the maximum a posteriori model (MAP). The uncertainty analysis was
performed by making a Gaussian approximation of the posterior distribution
centered at the MAP solution. This approach is much faster than using Monte
Carlo simulation, but since the problem is complex and strongly nonlinear,
the method is still computationally intensive compared to linearized AVO in-
version. In the linearized AVO inversion methods, the Zoeppritz equation for
the reflection coefficient is linearized assuming weak contrasts. The seismic
data must be processed prior to linear AVO inversion to remove nonlinear re-
lations between the model parameters and the seismic response, such as offset
dependent traveltime and geometrical spreading.

In this paper, a Bayesian linearized AVO inversion method is presented, where
the objective is to obtain posterior distributions for the P-wave velocity, S-
wave velocity, and density. Closest to our approach is the method presented
in Lortzer and Berkhout (1993). Their inversion algorithm, however, was for-
mulated for relative contrasts of the elastic parameters, and not for the elastic
parameters themselves. Transformation to the elastic parameters may not
be simple in a stochastic setting. Lortzer and Berkhout used standard AVO
techniques based on single interface theory, which are then applied indepen-
dently on a sample by sample basis. We will base our inversion algorithm on
a weak contrast reflectivity function defined for continuous seismic traveltime.
The inversion problem is solved simultaneously for all times in a given time
window, which makes it possible to include the wavelet by convolution, and
temporal correlation between model parameters close in time. The solution
is represented by a Gaussian posterior distribution with explicit expressions
for the posterior expectation and covariance. The explicit analytical form of
the posterior distribution provides a computationally fast inversion method.
A continuous definition of the elastic parameters makes it possible to integrate
various types of observations with varying sampling density and sampling sup-
port. Moreover, generalization to a full 3-D model with spatial dependencies
is in principle straightforward, but an efficient numerical technique is required.

The inversion result is obtained from true amplitude processed seismic prestack
data. Important steps in the processing are the removal of multiples and
corrections for the effects of geometrical spreading and absorption. We assume
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that wave mode conversions, interbed multiples, and anisotropy effects can be
neglected after processing. The data should be prestack migrated, such that
dip related effects and the moveouts are removed. After prestack migration, we
assume that each single bin gather can be regarded as the response of a local 1-
D earth model. Finally, the gathers must be transformed from offsets to angles,
either by common-angle migration, or by a transform after the migration.

In the following sections, the methodology, synthetic tests, and the application
of the inversion method on a real 3-D dataset are presented.

2.2 Methodology

The seismic reflection coefficients depend on the material properties of the
subsurface. An isotropic, elastic medium is completely described by three
material parameters. We have chosen {«(t), 5(t), p(t)} , where «a(t), B(t), and
p(t) are P-wave velocity, S-wave velocity, and density, and ¢ is the two-way
vertical seismic traveltime. Several other parameterizations can also be used,
for example {Zp(t), Zs(t),p(t)}, where Zp = ap is the acoustic impedance,
and Zg = fp is the shear impedance. The shear impedance is often substituted
by the P-wave velocity to S-wave velocity ratio a/5. When inversion results
are obtained for a chosen parameter set, the corresponding results can be
generated for another parameter set, including uncertainty.

The inversion method is based on a weak contrast approximation to the PP
reflection coefficient (Aki and Richards, 1980):

A A A
rp(0) = aa(0) 5 +05(0) 2 +0,(0) L, @.1)
where
aa(0) = %(1+tan2 0), (2.2)
P
ag(d) = 4@2 sin” 0, (2.3)
a,(0) = %(1—4a—z sin20>, (2.4)

and &, (8 and p are average P-wave velocity, S-wave velocity, and density over
the reflecting interface, Aa, AS and Ap are the corresponding contrasts, and
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0 is the reflection angle. Only PP reflectivity is discussed in this paper, but
the extension to include converted waves is straightforward.

The single interface reflection coefficient in equation (2.1) can be extended to
a time continuous reflectivity function (Stolt and Weglein, 1985):

cpp(t,0) = aq(t,0) 9 Ino(t) + as(t, ) 9 In5(t) + a,(t,0) 9 Inp(t), (2.5)
ot ot ot

where a,(t,0), ag(t, ), and a,(t,8) are generalizations of the coefficients in ex-
pressions (2.2)-(2.4) with time dependent velocities @(t) and 3(t). We assume
that @(t) and (t) can be represented by a constant or slowly varying known
background model, such that @(t) and B(t) are the average or moving average
of a(t) and B(t) in a time window. The inversion algorithm requires that this
background model is known prior to the inversion, such that the coefficients
can be precalculated.

In the formulas above, the reflection angle 6 is used as an independent variable.
However, the seismic data are recorded as a function of source-receiver distance
h (offset). The transform of the data from the (¢, h)-domain to the (¢,6)-
domain depends on the velocity function. This transform can be performed
by common-angle migration, ray-tracing, or standard approximate offset-angle
relations based on a smooth background model.

The prior model

In a Bayesian setting, the prior model defines a statistical model for the prior
information of the material parameters, expressed mathematically by prob-
ability density functions (pdf). The prior information must be independent
of the seismic data, and is established from other available information and
knowledge. It is in a good statistical tradition to be vague when specifying the
prior model.

The material parameters {«(t),8(t),p(t)} are a priori assumed to be log-
Gaussian, which implies that the parameters are restricted to take positive
values. This assumption is required for later analytical treatment due to ex-
pression (2.5). The logarithm of these material parameters defines a continuous
Gaussian vector field

m(t) = [Ina(t), In B(t),In p(t)]", (2.6)
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with expectation

E{m(t)} = p(t) = [1a(t), s (1), np (0], (2.7)

where the elements p(t), ps(t), and p,(t) are the expectations of Inea(t),
In3(t), and lnp(t), respectively. We assume that the expectation functions
are smooth. The covariances between Inea, In 3, and Inp at times ¢ and s are
denoted

Cov{m(t),m(s)} = X(t,s). (2.8)

A simple example is the stationary covariance function
E(tas) =3 Vt(T)a (29)

where v4(7) is a temporal correlation function, and 7 is the time-lag 7 = [t —s|.
The time invariant covariance matrix X is

o2 0a08Vaf OTalplap
30 = | 0a08Vap O'% o80,VEp | (2.10)
TaOplap OROpVE) o’

where the diagonal elements are the variances, and v,g, Vo), and vg,, are the
correlations between In«(t), InS(t) and Inp(t), respectively. The temporal
correlation function v4(7) must be a positive definite function, take values in
the interval [—1, 1], and have the property that 14(0) = 1. One such correlation
function is the second order exponential function

vi(7) = exp [— G)Q] : (2.11)

where d is a range parameter characterizing the temporal dependency.

The time derivative of m(t) defines a new vector field

m/(t) = {ana(t) 9 18t L (t)]T (2.12)
~ ot ot P '
where the elements can be recognized in the reflectivity function, expres-

sion (2.5). This is also a Gaussian vector field due to the linearity of the
differentiation process (Christakos, 1992). The expectation of m/(t),

B{m' ()} = 2 ult) = (1), (2.13)
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and the covariance

82
ot Os
are both derived from the specified prior model for m(¢). The stochastic model

for the differentiated field m/(t) is needed later, but discussed here due to the
close relationship to m(t). The cross-covariance between m/(t) and m(s) is

Cov{m/(t),m(s)} = %E(t,s) =¥'(t,s). (2.15)

Cov{m/(t),m/(s)} = X(t,s) = B"(t, 5), (2.14)

For the stationary covariance function in expression (2.9), the covariance in
expression (2.14) and the cross-covariance in expression (2.15) are

62
Cov{m/(t),m/(s)} = —EOWVt(T), (2.16)
and 5
Cov{m/(t), m(s)} = sign(t — S)EOEI/t(T), (2.17)

respectively, where sign(-) returns the sign of the argument.

The continuous form of the Gaussian field m(#) makes it possible to give a
proper definition of the time differentiated Gaussian field m/(¢). In a computer
program, the continuous fields are represented on a grid. The grid density
should be determined by the temporal variability of the elastic parameters,
and not by the sampling density of the seismic data. A discrete representation
of m(t) in a time interval is Gaussian:

m = [h’laT, IHIBT,ID pT]T ~ Nnm(l“tmv Em)v (218)

where the vectors e, B, and p are discrete representations of «(t), 5(t), and
p(t), respectively. The logarithm operates element wise on the vector elements,
~ means “distributed as”, and N, (u,X) denotes an n-dimensional Gaussian
distribution with expectation pu and covariance 3, see Appendix 2.A. The
dimension of m is ny,, and w,,, and 3, are defined from the continuous analogs
p(t) and X(t,s), respectively. A discrete representation of the differentiated
field m/(t) in a time interval is Gaussian:

with p!, and X! being defined from the continuous analogs in expressions (2.13)
and (2.14), respectively. A discrete version of the cross-covariance in expres-
sion (2.15) is denoted X .
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Seismic forward modeling

In Bayesian AVO inversion, the likelihood function can be defined through a
pdf for the observed seismic data d,s given a specific parameter vector m,
denoted p(dyps|m). The likelihood function describes how likely the observed
data are for these specific parameters. The unconditional pdf for the seismic
data, denoted p(dops), is related to the likelihood function by

P(dops) = /p(dobs|m)p(m) dm, (2.20)

where p(m) is the prior model for the parameter vector m. Below, the pdf
p(dops) is defined and will later be used to derive the posterior distribution

p(m|dobs)'

A discrete version of the reflectivity function cpp(t,8), expression (2.5), for a
given time interval and a set of reflection angles can be written

c=Am/, (2.21)

where the matrix A is defined by the coefficients aq(t,0), ag(t,0) and a,(t,6),
see Appendix 2.B. The corresponding seismic angle gather dys is represented
by the convolutional model,

dyys = Sc+e=SAm' + e, (2.22)

where the convolution is formulated by the matrix-vector multiplication Sc.
The matrix S represents one wavelet for each reflection angle, see Appendix 2.B.
We assume that the error term e is zero mean Gaussian

e~ N, (0,5,), (2.23)

and independent of m, then d,;s is Gaussian

dops ~ Nnd (p‘dobs’ Edobs)a (2'24)

where
B, = SAp,, (2.25)
24, = SAZIATST +3:, (2.26)

using Result 1 in Appendix 2.A.
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The posterior model

Combination of equations (2.18) and (2.24), gives the joint distribution

m Em Em dop
~ »@obs 22
[ dobs ] Nnm—l—nd ( ’ [ Ed m Ed ’ ( 7)

where 3y , ., is the cross-correlation between dys and m,

227
udobs

Ed = COV{dObs, m} = SAE;n, (2.28)

obs T

and X, 4 ,. is the transpose of Xy , .

The posterior distribution for m given d,;; is Gaussian

m|d0b5 ~ Nnm (l"’m|d0bsv 2m|d(,bs)a (2.29)

where the posterior expectation and covariance are

Bnldy, = M+ (SAZL) S0 (dovs — p14,,,); (2.30)
Sldy, = Sm— (SAZ)'S; SAS, (2.31)

using the general formula for a conditional Gaussian distribution, see Ap-
pendix 2.A. The posterior distribution, which is found on an explicit analytical
form, contains the complete solution of the inverse problem, including uncer-
tainty. A set of possible solutions can be generated by stochastic simulation
from the posterior distribution: m®, m®, ... m . Since m represents the
logarithm of the elastic material parameters, the corresponding set of simulated
solutions of the P-wave velocity, S-wave velocity, and density are obtained by
the inverse transform exp[m®], i =1,...,n.

The maximum aposteriori (MAP) solution for m is equal to the posterior ex-
pectation, MAP{m} = Fmld,,,» since the posterior distribution is Gaussian.
The MAP solution is generally smoother than a single realization m(9. When
the noise level in expression (2.22) increases, the posterior distribution con-
verges to the prior distribution. In the case where the noise level is high, the
MAP solution will be defined mainly from the maximum of the prior distri-
bution, which we have assumed to be smooth. A single realization, however,
will be a possible solution with the full variability defined mainly from the
prior distribution. In the opposite case, when the noise approaches zero, the
solution is determined mainly from the seismic data, and the influence of the
prior model decreases.
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The posterior distributions for the P-wave velocity, S-wave velocity, and den-
sity are log-Gaussian. The MAP solution for the elastic parameters, exp|m],
can be determined component wise by

MAP{exp[m]} = eXP[Nm\dobs - 0-"2n|dobs]’ (2.32)
while the posterior expectation is
E{exp[m]} = expliim|d,,, + Tima,,. /2]; (2.33)

where m is a component of m, p,,4, is the posterior expectation for m,
72n|dobs < Hip|dyy,» Such that
the log-Gaussian distribution is close to symmetric, and exp[,um‘dobs] is a good
approximation for both MAP{exp[m]} and E{exp[m]}.

and 072n| dops is the posterior variance. Typically, o

A (1 —€) prediction interval for a specific parameter m, for example In «(t), is
given by
Fomldops £ 25 Tmldys (2.34)

where z¢ is the e-quantile in the standard Gaussian distribution. A 0.95 interval
for a(t) is explpim|a,,, £1.9604,,,]. Prediction intervals for Zp, Zs, a/f, and
other combinations of «, 8, and p can be obtained by variable transforms or
by stochastic simulation from the posterior distribution.

2.3 A synthetic example

The inversion method is tested on two synthetic earth profiles, well A and B,
shown in Figures 2.1 and 2.2. The two profiles are simulated from a stationary
prior distribution with constant expectation

p(t) = = [pas s, 11p) " = [8.006,7.313,7.719]7 (2.35)

corresponding to the logarithm of 3000 m/s P-wave velocity, 1500 m/s S-wave
velocity, and 2250kg/m? density, and a stationary covariance function with
o5 (t) = 0.0074, o3(t) = 0.0074, and o7() = 0.0024. A second order exponen-
tial correlation function, equation (2.11), with range d = 5ms is used for both
wells. The two wells have different correlations between Inea, Inf and Inp:
The logs in well A are uncorrelated, while the logs in well B have a relatively
strong correlation, v,g = vo, = vg, = 0.7.
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Figure 2.1: The P-wave velocity, S-wave velocity, and density in Well A (solid
lines). The constant background model is dotted.
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Figure 2.2: The P-wave velocity, S-wave velocity, and density in Well B (solid
lines). The constant background model is dotted.
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Modeling test

The weak contrast reflection coefficient approximation in equation (2.1) is ad-
equate for moderate reflection angles. A further approximation is utilized in
this inversion algorithm, where the coefficients aq(t,6), ag(t,0) and a,(t,6),
equations (2.2) to (2.4), are calculated from a constant or slowly varying prior
known background model. The seismic forward modeling is performed by con-
volution directly in the time-angle domain. Real seismic data are recorded
in the time-offset domain, and transformed to the time-angle domain prior to
inversion.

Modeling tests are shown in Figures 2.3 and 2.4 for well A and B, respectively.
The wavelet is a Ricker wavelet with 25 Hz center frequency and normalized
amplitude. The CDP gathers to the left are calculated using weak contrast
modeling directly in the time-angle domain. The coefficients a,, ag and a,
are calculated from the constant background model defined in equation (2.35).
The CDP gathers in the middle of the figures are produced by ray-tracing in
the time-offset domain using the full Zoeppritz equation, and the gathers are
then transformed to the time-angle domain. The gathers to the right show the
differences between these two modeling methods. The relative squared data
errors are only 0.0019 and 0.0027 for the two examples, which justifies the
use of the weak contrast reflectivity function and convolution directly in the
time-angle domain. Compared to typical noise levels in real seismic data, the
modeling errors in these examples are negligible.

Inversion test

The AVO inversion is tested on synthetic seismic data sets with different noise
levels. A mixture of white and colored noise of the form

e=e; + Sey (2.36)

was added to the synthetic data. The first term represents the white Gaus-
sian noise with variance 0%, e; ~ N,,,(0,07I). The error term Sey represents
source generated noise, for example remaining multiples, and are assumed to
be correlated between different angle traces by an exponential correlation func-
tion, vy = exp[—|0; — 0;|/dy], where dyg = 20° is the correlation range. For each
angle 6;, the elements in the error term es corresponding to #; are white Gaus-
sian with variance o3. Noise gathers with four different levels were simulated
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with variances 0? = g2 = 0.000052, 0.0082, 0.015, and 0.032, corresponding
to signal to noise ratios (S/N) 10°, 15, 5, and 1, respectivley. The CDP gathers
for model A with noise are shown in Figure 2.5.

The inversion results of dataset A with S/N ratio 10° are displayed in Fig-
ure 2.6, showing the MAP solutions with 0.95 prediction intervals for P- and
S-wave velocities, density, acoustic impedance, shear impedance, and P- to
S-wave velocity ratio. The solutions for the P- and S-wave velocities, and the
density are analytically obtainable, while stochastic simulation from the pos-
terior distribution is used for the acoustic impedance, shear impedance, and
P- to S-wave velocity ratio. The prior model applied is optimal in the sense
that it is the same statistical model which was used to make the synthetic well
logs. The 0.95 intervals of the prior model are shown in Figure 2.6 with dotted
lines. Also the correct noise covariance and the correct wavelet have been used.
With this low noise level, all inverted parameters are retrieved almost perfectly
with low uncertainty.

The inversion results of dataset A with S/N ratio 5 are displayed in Figure 2.7.
The confidence regions are much wider than in Figure 2.6, and the MAP solu-
tions are smoother. Realizations from the posterior distribution for the data
set with S/N ratio 5 are shown in Figure 2.8. These realizations have a higher,
but more realistic, variability than the smooth MAP solution. Each of the
realizations is a possible solution with this noise level. The large variations
among these realizations explain the wide confidence regions.

A comparison of the 0.95 confidence regions for the prior and the posterior
model makes a picture of the information content in the seismic prestack data.
For model A, the seismic data provide mostly information about the acoustic
impedance, the P- to S-wave velocity ratio, and the shear impedance for the
case with S/N ratio 10°, where the width of the confidence regions is reduced by
75% to 79%, see Table 2.1. In the case with an S/N ratio of 1, the seismic data
provide mostly information about the acoustic impedance, the P-wave velocity
and the P- to S-wave velocity ratio, but the intervals are only reduced by about
20%. In this case with strong noise, the seismic data provide practically no
information about the S-wave velocity, the density or the shear impedance
(3-4% reduction of the interval width).

In well A, the P-wave velocity, S-wave velocity, and density are uncorrelated,
but this is unrealistic. Well B is simulated with a strong correlation (0.7)
between these three logs. The results in Table 2.2 shows that the confidence
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intervals for most parameters have been reduced more than in case A.

S/N-ratio | a | B| p| Zp | Zs | a/p
10° 71166 58| 79| 75| T8
15 37120 12| 46| 26 | 39
33|11 8| 40| 11| 30
1 21 3| 4] 25 3 17

Table 2.1: Percentwise decrease of the width of the 0.95 interval from the prior
model to the posterior model for model A.

S/N-ratio | a | B| p| Zp | Zs | /B
10° TT| 73169 | 81| 78| 75
15 45129 (33 49| 36 | 22
39 |21 | 28| 41| 26 16
1 2512 20| 27| 17 7

Table 2.2: Percentwise decrease of the width of the 0.95 interval from the prior
model to the posterior model for model B.
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Figure 2.5: Synthetic CDP gathers for model A with different noise levels.
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Figure 2.6: The MAP solution (thick blue line) of model A with S/N ratio
10° with 0.95 prediction interval (thin blue lines), the true earth profile (black
line), and 0.95 prior model interval (red dotted lines).
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Figure 2.8: Realizations from the posterior distribution (gray lines) for model
B with S/N ratio 5. The true earth profile is shown in black.
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2.4 Inversion of Sleipner data

The Sleipner Ost Field is located on the eastern side of the South Viking
Graben in the Norwegian Block 15/9. The gas/condensate is trapped in a
submarine-fan sandstone complex of the early Tertiary Ty Formation. The
depth of the reservoir sand is in the range of 2270-2500 m sub-sea with the
gas-water contact at 2415m sub-sea. The reservoir underlies a thick shale
package. The Ty Formation is composed of mainly clean sandstone with some
thin shale and siltstone layers. The base reservoir is a sand/chalk interface
(Top Shetland Formation).

A rectangular portion of the seismic survey, defined from inlines 1411 to 1751,
and from crosslines 1225 to 1400, is used in this inversion. The inversion area
covers 9.3 km?, representing 12% of the total survey. The seismic data were
processed by a contractor applying the processing sequence shown in Table 2.3.
The processing sequence was defined such that the final prestack amplitudes
should image the reflection strength of the subsurface interfaces as correctly
as possible. The stack section of inline 1627 is shown in Figure 2.9, where the
strong continuous reflector appearing between 2350 and 2450 ms is the Top
Shetland horizon (base reservoir).

A well is located at inline 1627 and crossline 1291. The well logs are displayed
as function of depth in Figure 2.10, where the impedance logs and the P-
to S-wave velocity ratio log are calculated from the P-wave velocity, S-wave
velocity, and density logs.

The top reservoir is characterized by an increase in P-wave velocity (20%), a
large increase in S-wave velocity (60%), and a small decrease in density (-8%).
The acoustic impedance has only a minor increase from the shale to the gas
sand (12%). The increase in the S-wave velocity may therefore be a better
indicator for the top reservoir.

The base reservoir is well delineated on the seismic stack by the strong Top
Shetland reflector. In the well, the P-wave velocity increases from about
3000m/s in the sand reservoir to about 5000m/s in the Top Shetland chalk
formation, the S-wave velocity increases from about 1400 to 2600 m/s, and the
density increases from 2200 to 2550 kg/m?, which gives a reflection coefficient
of about 0.3. As the inversion algorithm is based on a weak contrast assump-
tion, the inversion window is defined as a 250 ms window ending 32 ms above
the Top Shetland (a half wavelet). At the well, the inversion window is from
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SEGD read and data editing

Navigation merge

Gun, cable and filter delay correction (-38.6 ms)
Deterministic zero phasing

Lowcut filter 6Hz

Gain correction #2

Tidal correction

Swell noise and interference attenuation
Forward 7 — p transformation

Predicted deconvolution 64/300ms gap/operator

. Inverse 7 — p transformation

. Old velocity input

. NMO

. k-filter spatial resampling

. CMPs to 75 m trace spacing

. Sort to 39 offsetvolumes, 50% xline binning
. [ — x trace interpolation

. Static correction

. DMO, reduction to 19 offsets

. Prestack time-migration with minimum velocity
. Inverse NMO with old velocities

. New velocity picking

. NMO with new velocities

. Transform to time-angle by ray-tracing

Table 2.3: Processing sequence
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Figure 2.9: Stack section of inline 1627. The data are stacked after the pro-
cessing listed in Table 2.3. The strong continuous reflector appearing between
2350 and 2450 ms is the Top Shetland horizon (base reservoir)

2100 ms to 2350 ms.

Prior model estimation

The specification of the prior model is a controversal part of the Bayesian
analysis. The extensive use of mathematically convenient prior distributions
and the precision level of the prior distributions are often matters of discus-
sions. Often, the available prior information is not sufficient to define a unique
parametric prior distribution. This problem can partly be handled by non-
informative prior models, or by including the uncertainty in the prior model
by a hierarchical prior model. When some prior observations are available, a
pragmatic approach is to select a parametric distribution, and then estimate
the neccessary parameters from the available prior observations. The most
obvious pitfall with this approach is that a prior distribution with too low
variance may be specified.

In the current study, the most important source of prior information is the
available well logs. Ideally, the prior model should be estimated from several
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wells in the area in order to include lateral heterogeneity. Unfortunately, only
one well is available in the portion of the survey selected for this inversion test.

The parameter vector m is a priori assumed to be Gaussian. This assumption
can be graphically evaluated in the well position by a Gaussian probability
plot. If the parameters at this well are exactly Gaussian, the plot will be
linear. Gaussian probability plots of Inq, In g, and Inp calculated from the
well logs in the time interval 2100-2350 ms are shown in Figure 2.11. Despite
some curvature in these plots, we consider the Gaussian a priori assumption to
be acceptable. The computational cost of rejecting the Gaussian assumption
is dramatic, since we loose the analytical form of the solution.

From the well logs, estimates of the elements in ¥ are obtained by standard
estimators. The estimated variances for Ina, Ing and lnp are o2 = 0.0037,

—

UZ, = 0.0116, and ;% = 0.0004, and the estimated correlation coefficients are
Uap = 0.65, Vo, = 0.11, v, = —0.07.

The temporal correlation function are estimated for certain time lags from the
well logs, see Figure 2.12. The temporal correlation function is modeled by an
analytic correlation function,

1 2
v(ridi,d2) = 5 eXPp l— <dll> ]
1 272 7\?2
—[1—-—- - = 2.37
+2< d%>exp[ (d)] (237)
defined by the sum of an exponential second order correlation function with
range d; = 1.8 ms, and a normalized second derivative of an exponential second

order correlation function with range do = 9ms. The fit to the estimated
correlation function is considered to be good, see Figure 2.12.

Estimation of wavelets and noise covariance

The last step before inversion is to estimate wavelets and the noise covariance
matrix from the well-logs and the CDP gather at the well position. A Bayesian
wavelet estimation method has been used, where seismic noise, possible mistie
between the time axis of the well logs and the seismic traveltimes, and errors
in the log measurements are included, see Buland and Omre (2002b). The
possible mistie between the time axis of the seismic data and the well-logs is



50

Bayesian linearized AVO inversion

handled by allowing for shift, stretch and squeeze of the time axis of the well-
logs. The noise term is assumed to be a mixture of white and colored noise
as in expression (2.36). The solution of the estimation problem is obtained by
Markov chain Monte Carlo (MCMC) simulation, using 2000 iterations. The
estimated wavelets are shown in Figure 2.13. The two variance terms of e;
and e are estimated to 0? = 0.0114 and 03 = 0.0001, and the estimated
correlation range for ey is @ = 10°.

Inversion results

The inversion results in the well position are displayed in Figure 2.14, showing
the MAP solutions and 0.95 prediction intervals. With the estimated noise level
in this data set, the prediction intervals are only marginally reduced compared
to the prior model. The acoustic impedance and the P-wave velocity are the
best determined parameters, but the prediction intervals are only reduced by
31% and 27%, respectively. The prediction intervals for the P- to S-wave
velocity ratio, the shear impedance and the S-wave velocity are reduced by
about 15%, while the interval for the density is reduced by only 5%. Top
reservoir is located at 2300 ms, and is characterized by an increase in both
P- and S-wave velocity. This increase in the two velocities is seen in the
inversion results, but the thin low velocity layer at 2317 ms is not retrieved by
the inversion.

The MAP solutions of inline 1627 are shown in Figure 2.15. The bottom of the
inversion window is shown by a thick black line 32ms above the Top Shetland
horizon. The well logs are plotted for comparison, and show a good agreement
with the inversion results. Time slices (2320 ms) of the P- and S-wave velocities
are shown in Figure 2.16. The boundary of the top reservoir, interpreted from
stacked data, is shown by a black line.

The inversion algorithm is fast. The inversion of the 3-D test cube was finished
in less than 3 minutes on a single 400 MHz Mips R12000 CPU. The algorithm
is suitable for parallelization. On a 8 CPU parallel machine, the whole survey
(77.5km?) could be inverted in approximately 3 minutes.
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Figure 2.10: The well logs plotted in the depth interval 2000-2500 m. The Top
reservoir is at 2340 m, the gas-water contact at 2415 m, and the Base reservoir
at 2465 m.
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Figure 2.11: Gaussian probability plot of the logarithm of the P-wave velocity
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Figure 2.14: The MAP solution (thick blue line) in the well position with 0.95
prediction interval (thin blue lines), the well log (black line), and 0.95 prior
model interval (red dotted lines).
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Figure 2.16: Time slice of MAP solution. The interpreted boundary of the top
reservoir is shown by black line.
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2.5 Discussion and Conclusions

We have developed a Bayesian AVO inversion method where the objective
is to obtain posterior distributions for P-wave velocity, S-wave velocity, and
density. The solution of the AVO inversion is given by a Gaussian posterior
distribution. The explicit analytical form of the posterior distribution provides
a fast inversion method. The uncertainty in the inverted parameters is an
integral part of the solution.

Inversion tests on synthetic data with S/N=10° show high agreement between
the estimated and the correct model, but weak noise (S/N=15) have a dramatic
effect on the uncertainty of the predicted parameters. The inversion of the field
data from Sleipner show good agreement with well logs, but the uncertainty is
high. Acoustic impedance is the best determined parameter, while the AVO
inversion provides practically no information about the density. Generally, the
resolution of the different parameters depends on the prior model and the noise
covariance.

2.6 Acknowledgments

We thank Statoil and the Sleipner licence (Statoil, Exxon/Mobil, Norsk Hydro
and TotalFinaElf) for permission to publish this paper. We will also thank the
reviewers for a thorough review and useful comments.

2.A Gaussian distribution

A random field r(¢) is a spatially correlated function where the function value
is random for any ¢. A Gaussian random field r(¢) is a random field where
all multi-dimensional distribution for vectors » = [r(t1),...,7(t,)]" are Gaus-
sian for any n and any configuration {t1,...,t,}. The Gaussian random field
is completely specified by the expectation function u(t) and the covariance
function X(t,s) = Cov{r(t),r(s)}. The expectation can be arbitrary, but the
covariance must be symmetric, (¢, s) = 3(s,t), and positive definite. The
Gaussian probability density function for = is

1 1

p(r) = W exp —5(1" — u)TE_I(r -wl, (2.A.1)
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where n is the dimension of the vector r, and p and X are the expectation
vector and the covariance matrix defined from u(t) and X(¢, s), respectively.
A compact notation is r ~ N, (u,X). For further reading on multivariate
statistical analysis, see e.g., Anderson (1984), where also the two basic results
below are presented.

Result 1 If the vector v is Gaussian, r ~ Np(u, X), and M is an m X n
matriz, then

Mr ~ Ny (Mp, MSM™). (2.A.2)

Result 2 Consider two multivariate Gaussian variables r1 ~ Ny, (pq, X11)
and Ty ~ Ny, (Ho, X22) with joint distribution

r1 Y o
[ ro ] ~ JNni+na ( ) [ o1 Soo ]) . (2'A-3)

Then the conditional distribution of r1 given ro is Gaussian

251

T1|T2 ~ n1(“1|2a21|2)a (2.A.4)

where the conditional expectation and covariance are

M1 = pp+ B9850 (P2 — By), (2.A.5)
Y0 = B - T35 . (2.A.6)

2.B The forward modeling

A discrete version of the continuous reflectivity function

cpp(t,0) = aq(t,0) % Ina(t) + ap(t,0) %lnﬁ(t) +a,(t,0) %lnp(t), (2.B.1)

in a time interval and for a set of reflection angles can be written as
c=Am'. (2.B.2)
The sparse matrix A is defined by

Aq(61) Ag(b1) Ay6)
A= : : : , (2.B.3)
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where Ay (0;), Ag(0;), and A,(6;) are ™= x "= diagonal matrices containing
discrete time samples of an(t,6;), ag(t,0;) , and a,(t,0;), respectively, ng is the

number of reflection angles, and n,, is the dimension of m and m/.

The convolution of the reflection coefficients ¢ with the wavelets can be for-
mulated as a matrix-vector multiplication

dops = Sc+ e, (2.B.4)

where S is a block-diagonal matrix containing one wavelet for each reflection
angle. In an expanded form, expression (2.B.4) can be written

dobs (61) S(01) c(61) e(6h)
: = |+ |, 2B

dobs (0719) S(Qno) c(one) e(gne)
where dyps(0;) is the seismic time trace for angle 6;, and ¢(6;) and e(6;) are

the corresponding reflection coefficients and error samples, respectively. The
block matrix S(6;) represents the wavelet for angle 6;

- s1(61) -
82(97;) 81(02')
Sn (97,) . . 51(02')
S(6;) = , (2.B.6)
Sns(gi) 31(91')
L Sng (02) J
where (s1(6;),...,sn,(0;)) are the samples of the wavelet for angle ;. In this

example, the sampling of the wavelet is equal to the sampling of the seismic
data. If the sampling of ¢ and dg,s are different, the rows of S contains
wavelets corresponding to the sampling of ¢, and the rows are shifted relatively
according to the sampling of dp;.
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Abstract

A Bayesian method for wavelet estimation from seismic and well data is de-
veloped. The method works both on stacked data, and prestack data in form
of angle gathers. The seismic forward model is based on the convolutional
model, where the reflectivity is calculated from the well logs. The estimated
wavelets are given as probability density functions such that uncertainties of
the wavelets are an integral part of the solution. Possible mistie between the
seismic traveltimes and the time axis of the well logs, errors in the log measure-
ments, and seismic noise are included in the model. The solution is obtained
by Markov chain Monte Carlo simulation.

3.1 Introduction

The seismic wavelet is a required input to many seismic processing, modeling
and inversion algorithms, and a misspecified wavelet may lead to erroneous
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results. By quantifying the uncertainty related to detailed seismic analysis, for
example by including confidence bounds on inversion results, see e.g. Buland
and Omre (2002a), more robust interpretations of the reservoir characteristics
can be made. Uncertainty bounds on the provided wavelet may contribute to
more realistic uncertainty models.

There exist several methods and approaches for wavelet extraction from seismic
data. The methods fall into two main classes depending on whether well log
information is used or not. In this paper, wavelet estimation from seismic
and well data is discussed. Wavelet estimation from seismic and well data
is routinely done in seismic analysis, and discussed by several authors, see
Danielson and Karlsson (1984); Lines and Treitel (1985); Nyman et al. (1987);
Richard and Brac (1988); Poggiagliolmi and Allred (1994). In these papers
different least square and spectral division methods are proposed and it is
assumed that the seismic data can be explained by the convolutional model

dops(t) = / o(r)s(t — 7)dr + eq(t), (3.1)

where dyps(t) represents the seismic trace, c(t) is the reflectivity derived from
the well logs, s(t) is the unknown wavelet, and e4(#) is an error term. The seis-
mic data are assumed to be properly processed by a true amplitude process-
ing sequence, which means that unwanted effects like multiples, transmission
losses, absorption, geometrical spreading, focusing, changes in source strength
and receiver sensitivity, etc., are removed or accounted for by the processing.
It is further assumed that the reflectivity along the well trace can be calculated
from the available well logs, where the well logs have been edited, calibrated
and transformed from depth to seismic travel time. Moreover, to fulfill the
underlying stationarity assumption in the convolutional model, the wavelet
estimation should be restricted to a limited time window covering the target
zone.

A possible time varying mistie between the seismic traveltimes and the time
axis of the well log reflectivity is a complicating factor in the wavelet esti-
mation. Danielson and Karlsson (1984) concluded that such mistie may have
serious effects on the wavelet estimation. If uncertainty in the well position
and measurement errors are included, the true reflectivity can be represented
by

c(t) = cops(t + €(t)) + ec(t), (3.2)

where e;(t) and e.(t) are error terms. The time error function e;(t) allows for
shift, stretch and squeeze of the time axis, while e.(t) represents errors in the
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reflection coefficient values. These are related to measurement uncertainty, but
also to a possible change in the reflectivity related to uncertainty of the well
position relative to the seismic data.

The wavelet extraction is often done from stacked data using the common
assumption that a stack is a good approximation for normal incidence data.
The normal incidence reflectivity is determined by the acoustic impedance,
Z(t) = a(t)p(t), calculated from the P-wave velocity and density logs. A more
general problem is estimation of angle dependent wavelets s(t, ), where 6 is
the reflection angle. These wavelets are estimated from a seismic reflection
angle gather ds(t,0) and the corresponding angle dependent well log reflec-
tivity c(t,0). In this case, also the error terms e4(t,6) and e.(t,6) are angle
dependent. The angle dependent reflectivity can be calculated by the Zoep-
pritz equation or by approximations when they are valid. The S-wave velocity
information is now needed in addition to the P-wave velocity and density logs.
If a reliable S-wave velocity log is not available, an estimated S-wave velocity
log can be used, but this will in general increase the uncertainty of the wavelet
estimation.

In the following, a Bayesian wavelet estimation method based on the convo-
lutional model is presented. Mistie between the seismic traveltimes and the
time axis of the well logs, errors in the log measurements, and seismic noise
are included in the model such that the uncertainty of the estimated wavelet
becomes an integral part of the solution. The solution is obtained by Markov
chain Monte Carlo (MCMC) simulation, see for example Gilks et al. (1996);
Chen et al. (2000). Stochastic simulation by MCMC techniques has a large
potential for realistic statistical modeling, and it has during the last decade
gone into mainstream statistics, especially within the fields of spatial statistics,
image analysis and Bayesian statistics.

3.2 Methodology

The methodology will be described in a discrete setting. A discrete version of
the convolutional model in expression (3.1) can be written

dopys = C* s+ ey, (3.3)

where the vector d,,s represents the seismic data in a limited time window,
c is the corresponding reflectivity, s is the wavelet and eq is the error term.
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If the vectors dgps, ¢, s and ey represent several traces, for example different
offsets or reflection angles, the same notation is used where the convolution is
applied trace by trace. The discrete representation of expression (3.2) is

c = cos(er) + e, (3.4)

where cps(€;) is a discrete representation of the well log reflectivity after mod-
ification of the time axis by the time error vector e;. In practice, e; may be
defined from a set of well markers {¢1,%o,...,%,}, which may correspond to
major changes in the well logs or interfaces between major layers in a layered
subsurface model. A time shift At of one of the well markers then corresponds
to a change in the layer thicknesses (in time) of the layers just above and below
this marker.

Combining expressions (3.3) and (3.4) gives the generalized convolutional model
dyys = {cobs(et) + ec} xS+ eq. (3.5)

The error term e.*s is related to well log errors, but components of the seismic
error term ey may have a similar form, for example remaining multiples. These
two error terms are not separable without additional information.

Stochastic model

The problem will now be cast in a Bayesian framework, such that the rele-
vant statistical properties of the problem can be explored. The variables and
the problem structure are displayed in Figure 3.1 as a directed acyclic graph
(DAG), see for example Spiegelhalter et al. (1996); Lauritzen (1996). The
nodes in the graph represent stochastic variables, and g and ¥ denote ex-
pectations and covariances which will be defined later. The arrows represent
the causal dependency structure, where thin lines indicate probability depen-
dencies and thick lines represent deterministic relationships. The DAG can
be interpreted as a family tree where the parent nodes point to its children.
Before any data are observed, the marginal distributions of the parents are
independent, but when their child is known, the properties of the parents be-
come dependent. An example is the reflectivity ¢ and the wavelet s which are
apriori independent, but become dependent when the observed seismic data
are included in the model.

When probabilistic dependencies are considered, nodes connected by deter-
ministic links merge into a single node, so the parents of the seismic data are
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Figure 3.1: The convolutional model represented by a directed acyclic graph.

Pa(dops) = {Cobs, €1, €c, 8,24}, and the parents of the wavelet are Pa(s) =
{ps, s}, where the notation Pa(v) denotes the parents of a node v. The com-
plete stochastic model can be specified by likelihood terms for the nodes with
parents, and prior distributions for the nodes without parents.

Likelihood model

The seismic error term ey in expression (3.5) is assumed to be Gaussian with
zero expectation and covariance Xg4, so the likelihood model for the seismic
data is Gaussian,

dobs|/~"da Ed ~ Nnd (l"’da Ed)a (36)

where ng is the dimension of dys, and p, is the expectation vector defined
by the convolution p; = ¢ % s, where ¢ is the reflectivity vector defined by
expression (3.4). The multi-Gaussian distribution is defined in Appendix 3.A.
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The wavelet s is modeled by a Gaussian likelihood,
S|/.Ls,25 Nan(p‘saEs)a (37)

where n; is the dimension of s, and p, and ¥, are the expectation vector and
the covariance matrix, respectively. The prior knowledge of the expectation
and covariance are defined by prior distributions. The length of the wavelet is
fixed. In general, the wavelet length is determined by a compromise between
minimizing the data residual and avoiding a too long wavelet. By increasing the
wavelet length, the data residual will in general decrease since an increasing
amount of local noise is explained by the wavelet. In principle, the wavelet
length could be included in the wavelet estimation algorithm as an unknown
variable, but this is not done in this study.

Alternatively, the wavelet could have been represented by a parameterized
model, for example a Ricker wavelet with unknown amplitude, frequency and
time shift, but this is not considered here.

Prior model

To obtain a fully specified stochastic model, prior distributions must be spec-
ified for the nodes without parents, that is the two error terms e; and e., the
wavelet expectation and covariance pg and X, and the seismic noise covari-
ance Xg. A prior model for ¢y is not needed since it only appears in the
model as a constant vector since it is observed.

The prior model for the time error vector e; can be defined from a set of well
markers {t1,t2,...,tn}. If a time shift A¢ of a well marker can be restricted to
a specified interval, a vague prior model is defined by the uniform distribution
on this interval. The intervals for the well markers must be defined such that
time order for the well markers remain unchanged. This is ensured if the legal
time intervals are small compared to the distance between the well markers.
Other distributions may be more appropriate than the uniform distribution,
for example the triangular distribution

At~ Tr (1, te, tu), (3.8)

where the probability is maximum in the center point ¢., and decreases linearly
to zero at the low and upper limits ¢; and ¢,. If we consider the depth to time
conversion of the well logs to be optimal based on our current knowledge, the
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top of the triangular distribution then corresponds to no time shift, such that
t. = 0.

The reflectivity error is assumed to be zero mean Gaussian
e. ~ N, (0,%,), (3.9)

where 3. is the covariance matrix. Here, the reflectivity error is assumed to be
white noise such that ¥, = 021, with o2 being the variance of the errors. In
prestack analysis, it is reasonable to assume high correlation between different
reflection angles.

The wavelet is defined by a Gaussian likelihood, expression (3.7), with prior
distributions on the expectation vector g, and the covariance matrix 3,. Usu-
ally, the expectation and covariance define a smooth wavelet with samples
approaching zero at the ends. The likelihood expression for the wavelet can
alternatively be regarded as the first level of a hierarchical prior model, the
structural portion, while the distributions of the parameters p, and ¥, form
the second level, the subjective portion. A prior model is often defined by a pdf
specified by some fixed parameters, for example a Gaussian distribution with
fixed expectation and variance. In a hierarchical prior model, the parameters
which specify the prior pdf are regarded as uncertain. Each of these param-
eters is modeled by a pdf specified by hyperparameters, which gives a more
flexible prior model. A general introduction to hierarchical Bayesian theory
can be found in e.g., Robert (1994); Carlin (1996), but a deep insight into this
concept is not required for this paper.

A mathematically convenient class of prior distributions is the conjugate prior
distributions. These are distributions which have the same parametrical prior
and posterior forms, but with different parameters. The conjugate distribu-
tions for expectation and variance in a Gaussian model are the Gaussian and
the inverse gamma distributions, respectively. The expectation vector p, is
therefore modeled by a conjugate Gaussian distribution,

Bs ~ Nug (B Ziy)s (3.10)

where p, and X, are hyperparameters.

If we have sufficient prior knowledge about the structure of the covariance
matrix X such that it is known up to an unknown multiplicative variance
factor o2, the covariance matrix can be factorized as

3, = 025, (3.11)
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2

The uncertainty of the unknown variance factor o3

is modeled by the inverse
gamma distribution

a3 ~ IG(vs, Ns), (3.12)

which is the conjugate distribution and the standard choice for unknown vari-
ances in hierarchical Bayesian models (Robert, 1994). The hyperparameters
7vs and As in expression (3.12) should be defined in accordance with the prior
knowledge. The expectation of the inverse gamma distribution is A/(y — 1),
valid for v > 1, and the variance is A\2/((y — 1)2(y — 2)), valid for v > 2.
A precise prior distribution with low variance is obtained by specifying large
values for v and A such that the expectation becomes correct. A vague prior
distribution is obtained by ¥ — 1 and A — 0. In this case, the variance is un-
defined (infinite). See Appendix 3.B for more details about the inverse gamma
distribution.

Similarly, if we have sufficient prior knowledge about the structure of the seis-
mic noise covariance, the covariance matrix can be factorized as

Ed = O—(ZiEOdﬂ (3.13)

where the uncertainty in the unknown variance factor o3 is inverse gamma
distributed

02 ~ TGV, M) (3.14)

If the covariance matrices are completely unknown, the factorization in ex-
pressions (3.11) and (3.13) will not be possible. It is still possible to obtain
conjugate prior distributions for the unknown covariances, however, by using
the Wishart distribution (Anderson, 1984). This is not used in this study.

Posterior model

The objective of this wavelet estimation method is to find the posterior dis-
tributions for the involved variables based on the observed seismic data dp
and the well log reflectivity cops. Let v = {v1,...,v,} represents the unknown
quantities, where v = {e;, €., 8, g, 02,05} in this problem.

The posterior distribution for v given dyps and cops can be written

p(v, d0b87 cobs)

3.15
p(d0b87 cobs) ( )

p(v|dobsa cobs) =
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where p(v, dgps, Cops) 18 the complete joint distribution for the problem. The
pdf p(dops, Cops) does not contain unknown variables, and can therefore be
regarded as a constant. The complete joint distribution for a model represented
by a DAG can be written (Spiegelhalter et al., 1996)

p(vadobSacobs) = H p(vi|Pa(Ui))' (316)
'Uie{vzdobs:cobs}

From expressions (3.15) and (3.16), and the DAG in Figure 3.1, the posterior
distribution can now be written

p(eta €c, S, U, U?a 0—3|dobsa Cobs) X

)
p(dobs|cobsa €¢, €Ec, S, 0—3)

pler) plec) p(sls, o) p(ms) p(07) p(od), (3.17)

where the proportionality is caused by unknown constant probability density
functions involving dups and Cgps-

Bayesian inference is completely based on the posterior distribution, where
quantities as posterior mean and variance, maximum posterior distribution,
quantiles and confidence (credibility) regions may be used. Interesting quan-
tities can often be expressed as the posterior expectations of a function g(v),

EA9(0)ldobss Cons} = [ 9(0) pl0ldobss co) o (3.18)

where for example g(v) = v for the posterior mean p, of variable v, and
g(v) = (v — juy)? for the posterior variance.

The posterior distribution in expression (3.17) is not analytically obtainable,
but can be explored by stochastic simulation. Several MCMC algorithms are
available for this purpose, for example the Gibbs sampler and the Metropolis-
Hastings algorithm, see e.g. Gilks et al. (1996); Chen et al. (2000). These
algorithms provide a set of samples v, v . v(™me) from the posterior
distribution p(v|deps, €ops). The integral in expression (3.18) can now be esti-
mated by Monte Carlo integration:

Nme

E{g(v)|dob5700bs} = Zg(v(l)) (319)
=1

Nome =

A (1 —€)100% confidence interval for g(v) can be approximated by

_£

[g[%nmC}’g[(l 2)nm6}]’ (320)
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where gl¥ represents an increasing sorted sequence of 'l = g(v(")).

The MCMC algorithms are iterative, and may need a number of iterations
before the first sample from the correct distribution can be provided. These
initial iterations, termed burn-in iterations, should not be used in the statistical
analysis. In general, the convergence rate is complicated to assess, but it can
be monitored during the iteration procedure.

Gibbs sampler algorithm

The Gibbs sampler is perhaps the best known and most popular of the MCMC
algorithms. The name of the algorithm was introduced by Geman and Geman
(1984) who worked with Gibbs distributions on lattices, but the name is mis-
leading as the application of the algorithm is general, and not restricted to
Gibbs distributions.

The Gibbs sampler algorithm works on the complete joint distribution and
requires conditional distributions for each single variable given all the others.
One iteration consists of drawing new samples for the elements in v. An
element may be a single scalar, for example 05, or it may be a group of values,
for example the vector s. A new sample is drawn conditioned on the current
state of the other elements in v. Once an element is drawn, it goes into the
current state of v. The pseudo-code of the Gibbs sampling algorithm can be
written

Initiate: Set arbitrary v(©) where p(v(©|dyps, Cops) > 0.

Iterate: For¢:=1,2,..., draw

(4)

U1 ~ p(v1|v—lad0bsacobs)a
vj ~ p(vj|'v—jadobs,cobs)a

UT(LZ) ~ p(vn|v,n, dops, cobs)a

where v_; = {vgi), . ,U](Ql,v](-i:ll), . ,vr(ffl)}. The conditional distributions

are specified in Appendix 3.C.
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3.3 Examples

The method is applied on a data set from the Sleipner @st Field in the Nor-
wegian Block 15/9. Well logs and the corresponding CDP gather are shown
in Figure 3.2, where the CDP gather has been transformed from offset to a
set of reflection angles (5°, 13°, 21°, 29°, and 37°). A set of well markers are
displayed by horizontal lines, numbered from 1 to 8. The last well marker cor-
responds to a strong sand/chalk contrast with a reflection coefficient of about
0.3.

In the following, wavelet estimation is first done from a CDP stack and zero
incidence well log reflectivity, and then from the angle gather in Figure 3.2 and
the corresponding angle dependent well log reflectivity.

Wavelet estimation from stacked data

As a first test on wavelet estimation from stacked data, assume that there are
no errors in the well log information, such that the generalized convolutional
model in expression (3.5) reduces to

dops = Cops x S + €4. (3.21)

Prior distributions are required for the wavelet expectation p,, the wavelet
variance o2, and the seismic noise variance o2. This first test example has a
simple model, but the problem has no simple analytical solution since o2 and

03 are unknown and independent.

A priori, we know that the maximum reflection coefficient in the target zone
is about 0.3. Further, we know that the maximum amplitude of the seismic
data is in the order of 10, and that the seismic data has been zero phased in an
early step in the processing sequence. A vague prior model for the unknown
wavelet is defined. The wavelet expectation has prior distribution

p, ~ N, (0,10'%,), (3.22)

where ng = 35. Initial tests showed that this was sufficient for a wavelet
with one center loop and two side loops. The expected smoothness of the
wavelet is imposed through 3, which is defined by a second order exponential
correlation function, exp[—(7/d)?], with range d=10ms. The variance of the
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Figure 3.2: The well logs and the corresponding offset to angle transformed
CDP gather.
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2
Hs
The prior distribution for the wavelet covariance is

wavelet expectation, o2 = 10%, is large compared to the wavelet amplitude.

28 = 0’3205, (323)
o2 ~ TIG(2,5), (3.24)

where the variance factor o2 has expectation 5 and infinite variance.

The unknown data variance, 03, is also given a vague inverse gamma dis-
tributed prior

03 ~ TG(2,5). (3.25)

The Gibbs sampler algorithm was used to draw samples from the posterior
distribution, and 2000 samples were generated. The convergence of the Gibbs
simulation can be monitored by plotting variable values for each iteration. A
monitor plot of the maximum wavelet amplitude and the seismic noise variance
is shown in Figure 3.3. The initial values are 0 and 5, respectively, and both
quantities converge within some few iterations. Tests with other initial values
show the same desirable convergence properties. To be sure, the number of
burn-in iterations is set to 100, and these samples are not used in subsequent
calculations.

The posterior expectation and 95% confidence bounds for the wavelet are
displayed in Figure 3.4. The posterior distribution of the unknown seismic
noise variance o2 is shown in Figure 3.5. The estimated maximum wavelet

amplitude is 26.5, and estimated mean data variance is 2.2.

When errors in the well log reflectivity are ignored as in the example above, the
estimated seismic noise variance, 03, is too high. The relatively large misfit
between the seismic well log response and the observed seismic data has a
damping effect on the wavelet estimation. The error terms e; and e. are now
included in the model as defined in expression (3.5). The strong contrast at
well marker 8 is used as a reference time, hence well marker 8 is fixed at this
reference time to avoid a complete translation of the log. The time shifts of
the other well markers are triangular distributed

At; ~ Tr (—8ms, 0 ms, 8ms), (3.26)
and the reflectivity errors are zero mean white Gaussian

e. ~ Np (0,107°1). (3.27)
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In this example, the variance is set to 02 = 1075, such that 95% of the re-
flectivity errors are within +0.0063, corresponding to two standard deviations
from the expectation value. For comparison, the mean well log reflection co-
efficient is 0.02 (absolute value), while the maximum reflection coefficient is
about 0.3.

The posterior expectation and 95% confidence bounds for the wavelet are
displayed in Figure 3.6, while the posterior distribution of the unknown seismic
noise variance, o2, is shown in Figure 3.7. By including well log errors in the
model, the estimated maximum wavelet amplitude is now increased from 26.5
to 32.3, while the estimated mean data variance is reduced from 2.2 to 0.26.
The uncertainty of the wavelet is decreased since the well tie is improved by
adjusting the well logs. Note that this improved wavelet is not within the
95% confidence interval in Figure 3.4. The reason is that the confidence region
in Figure 3.4 is based on a simplified model neglecting the well log errors.
The posterior distributions of the well markers are shown in Figure 3.8, where
the position of well marker 8 is fixed. The result shows that the total time
window of the log is slightly stretched, while the layer between marker 5 and
6 is squeezed.

The real stack trace dgps, the expected synthetic trace cx s, the corresponding
seismic error ey, and the expected reflectivity error response e. x s are shown
in Figure 3.9. In principle, also the variance o2 of the well log reflectivity error
e, could be regarded as an unknown quantity with a vague prior distribution,
similarly as o2 and 03. The problem with this approach is that the error terms
ey and e, x s are not completely separable. The prior model for the variance
of the well log error must therefore be specified exactly, or at least relatively
precise. The effect of different o2 is shown in Figure 3.10. For reflection error
variances below 1074, the estimation of the wavelet is stable, also with respect
to uncertainty. Variances larger than 10~* allows for reflectivity errors larger
than the typical well log reflection coefficient, and this has a dramatic damp-
ing effect on the wavelet. As expected, the estimated seismic noise variance
decreases with increasing reflection error variance. Reflection error variances
below 1076 only have a marginal effect.
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Figure 3.6: Estimated wavelet from stacked data including well log stretching
and well log errors.

Figure 3.7: Estimated seismic noise variance from stacked data including well
log stretching and well log errors. The prior pdf is dashed.
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Figure 3.8: Estimated time shifts (ms) of the well markers from stacked data.
Note that well marker 8 is fixed. The prior triangular distribution is dashed.
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Figure 3.10: Maximum wavelet amplitude (a) and seismic noise variance (b)
as function of reflectivity error variance, o2. The thin lines show the 95%
confidence intervals.
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Wavelet estimation from prestack data

The extension of the wavelet estimation to prestack data in form of angle
gathers is straightforward. In this prestack example, a complete model is used
including well log errors, and the prior distributions are as in the poststack
example. It is reasonable to assume a high degree of similarity between the
wavelets corresponding to different reflection angles. This is obtained by an
exponential correlation function, vy = exp[—|0; — 6;|/dy], where dy = 20° is
the choosen correlation range. The log errors are still assumed to be white as
function of time, but a strong correlation between different angles are imposed
by the second order correlation function exp[—(6; — 6;)?/80°].

From Gibbs sampling, the posterior expectation and 95 % confidence bounds
for the five angle wavelets are displayed in Figure 3.11. The maximum am-
plitudes are slightly higher than the poststack amplitude, ranging from 34 for
the lowest angle to 43 for the largest angle. Note also that the frequency con-
tent of the wavelets decreases with increasing reflection angle. The posterior
distribution of the seismic noise variance, 03, is shown in Figure 3.12. The
estimated mean value of the noise variance is 0.50, which is about twice the
stack noise variance. The posterior distributions of the time shifts are more
peaked than in the poststack example, see Figure 3.13.

30}
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Figure 3.11: Estimated wavelets from prestack data including well log stretch-
ing and well log errors.
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Figure 3.12: Estimated seismic noise variance from prestack data including
well log stretching and well log errors. The prior pdf is dashed.
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3.4 Discussion

Based on the convolutional model, the estimated wavelet can be interpreted as
the link between the measured well log and the seismic data. In contrast to the
physical source signature at the source, a wavelet estimated from seismic and
well data is not a physical source wavelet. In addition to the source signature it
also contains components from wave propagation in the overburden and from
the processing sequence. When the estimated wavelet is used in inversion or by
other tools for detecting spatial variation of the geology, it is usually assumed
that the wavelet is laterally constant. The validness of this assumption depends
on the acquisition, the wave propagation through the overburden, and the
processing of the seismic data. These problems were discussed in Ziolkowski
(1991), where also the value of wavelet estimation from seismic and well data
was questioned. As an alternative, a deterministic approach was proposed
where the seismic signature at the source is measured, and the seismic prestack
response is calculated by a complete forward modeling including all kinds of
propagating effects like mode conversions, interbed multiples, etc.. However,
this strategy has yet not become a routinely viable method. Ziolkowski (1991)
initiated an intensive debate where the front line was between strict theory
and more practical approaches. Despite some theoretical objections, there is
no doubt that wavelet estimation from well log data and processed seismic data
based on the convolutional model has shown to be a very powerful technique
in detailed seismic analysis.

3.5 Conclusions

A Bayesian method for wavelet estimation from seismic and well data is de-
veloped, where uncertainty in the wavelet estimation process is included. The
problem is nonlinear, and the solution is explored by MCMC simulation. The
applied Gibbs sampler has a fast convergence. The method works both on
stacked data, and prestack data in form of angle gathers. The forward model
is based on the convolutional model, where the reflectivity is calculated from
the well logs. Large misfits between the synthetic well log seismogram and the
real seismic data have a damping effect on the wavelet estimation. When well
log errors are included in the model, the uncertainty of the wavelet estimation
decreases and the amplitude of the estimated wavelets increase. Uncertainty
bounds on the estimated seismic wavelet may contribute to more realistic un-
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3.A Gaussian distribution

The multi-Gaussian probability density is
1 1 Tsr—1
p(r) = W exp —5(7" —p) I (r—p)|, (3.A.1)
where n is the dimension of r, and p and 3 are the expectation vector and
the covariance matrix, respectively.

Consider two multivariate Gaussian variables vy ~ Ny, (@1, 211) and ro ~

N, (pg, o2) with joint distribution
T i o
~ 3.A.2
[ ro ] ni+nso ( ) [ 221 222 ]) ) ( )

where nq and ny are the dimensions. Then the conditional distribution of r{

1251
M2

given ry is Gaussian with expectation

Mijp = py + 21222721(7'2 — o) (3.A.3)

and covariance
Y =X — 2130, Bor. (3.A4)

3.B Gamma and inverse gamma distribution

The gamma distribution G(v, \) is defined by the probability density function

p(zly, A) = %aﬂl exp[—Az], (3.B.1)
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for z > 0, v > 0, A > 0. The expectation and variance are

E{zly,A\} =

Var{zly, A} =

(3.B.2)

(3.B.3)

==

Two special cases of the gamma distribution are the exponential distribution
E(N) for ¥ = 1, and the chi-squared distribution X2 for v = /2 and A = 1/2.

If y ~ G(v,A), then £ = 1/y has the inverse gamma distribution ZG(y, A)
defined by the probability density function

p(zly,A) = % e)m exp {—ﬂ : (3.B.4)

for x > 0, v > 0, A > 0. The expectation and variance are

E{z|y,\} = — v>1, (3.B.5)

Var{z|y,\} = CENHCEDR v > 2. (3.B.6)

The expectation and variance in expressions (3.B.5) and (3.B.6) approach in-
finity when v — 1 and v — 2 (from above), respectively. For v < 1 and vy < 2
(v > 0), the expectation and variance are not defined.

For a Gaussian distribution N7(u,0?) with unknown variance, the inverse
gamma distribution is a conjugate distribution for the variance. That means
that if the prior distribution for the variance is inverse gamma o2 ~ ZG(7y, \),
then the posterior distribution is also inverse gamma, but with modified param-
eters. For z1,...,x, iid N1 (u,o?), the posterior distribution for the unknown
variance is

n52

o2|s? Nzg(y+g,/\+7), (3.B.7)

where

2= znj (i —p)* (3.B.8)
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3.C Conditional distributions in Gibbs sampling

The Gibbs sampler algorithm requires conditional distributions for each single
variable given all the others. For a DAG model, the joint distribution is

p(vadobSacobs) = H p(Ui|Pa(Ui)), (301)
Uie{’vvdobs:cobs}

and the full conditional distribution for a variable v; can be constructed by
using only the terms p(+|-) which involve the actual variable v;. In the following,
all the necessary conditional distributions are defined.

Conditional distribution for e

The conditional distribution for the time error term e; given the other parame-
ters is not analytical available, but if the time error function is defined by a set
of well markers taking discrete time shift values, the total conditional distri-
bution for e; can be calculated. For each well marker, the following algorithm
can be applied:

e For all possible discrete time shifts At, calculate the corresponding

A

— €= cops(€1) + ec.

— €3 =dyps —SkC

— p(At]-) = exp[-5€," =, €q] p(At)
e Normalize p(At|-)

e Draw a time shift A¢ from p(At|-), and calculate the updated e;.

Conditional distribution for e,

When the wavelet s is given, the convolution can be reformulated to a matrix-
vector multiplication

dops = S{cos(er) +ec} + eq, (3.C.2)
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where the matrix S contains the given wavelet. The conditional joint distri-
bution for the reflectivity error and the seismic data is

€c

dobs
v 0 3. INCE

metta \ | Segs(er) | 7] 88, SE.8T + 3y

The full conditional distribution for e, is

Cobss €ty S, 263 Ed] ~

)  3.03)

ec|dob5, Cobsy €ty S, Eca 2d ~ Nnc (uec‘-a Eec‘-)a (3C4)

where
e = Bc8T(SBST + 2yg) Hdovs — Scans(er)), (3.C.5)
Be = Ze—2.87(8%.8T +3,) 'S=.. (3.C.6)

Conditional distribution for s

The convolution can be reformulated to a matrix-vector multiplication
dops = Cs + ey, (307)

where the matrix C contains the given reflectivity ¢ = cpps(€t) + €.. The
conditional joint distribution for the wavelet and the seismic data is

s
2 ~
[ dobs © d]
N, s 3 ESCT (3.0.8)
netra \ | cp, |7 €8, CE,CT+34 | ) "
The full conditional distribution for s is
3|dob5,c, EdNan(ll's‘.azs‘.), (3C9)
where
py. = py+B,CT(CE,CT +2g)  (dops — Cpg),  (3.C.10)

. = %, -%,07(Cs,CcT+3y) 'cx,. (3.C.11)
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Conditional distribution for p,

The conditional distribution for the wavelet expectation p, depends on the
wavelet s and the covariance 3. Both p, and s are Gaussian, and the condi-
tional joint distribution is

s >, | ~
s
b)) b))
Nt ( Pue | [ e e ) : (3.C.12)
" ! Ms Eﬂs EHS + 25
The full conditional distribution for g, is
Bsl8, Bs ~ Nog (B s By ) (3.C.13)
where
oo = My, + B (B, +25) 7 (s = py,), (3.C.14)
2#8‘ = Eﬂs - Eﬂs (Eﬂs + 2s)ilz,us- (3015)

Conditional distribution for o?

The conditional distribution for the wavelet variance o2 depends on the wavelet
s and the expectation p,. When the prior distribution for o2 is inverse gamma

0—3 ~ TG (s, As), (3.C.16)
then the full conditional distribution for o is inverse gamma
2
n NgS
o5lst ~ IG(vs + 5 he =50, (3.C.17)

where S
_ - _
82 _ (s MS) 0s (s MS). (3‘0‘18)

s
Ng

Conditional distribution for o2

The conditional distribution for the data variance 03 depends on the seismic
data dys and the expectation p; = 8 % ¢, where ¢ = ¢yp5(€;) + e.. When the
prior distribution for o7 is inverse Gamma

g ~ IG(va, Aa), (3.0.19)
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then the full conditional distribution for 03 is inverse gamma,

nd83
2

n
oglsg ~IG(va + 7‘1,)\(1 +

), (3.C.20)

where S
dyps — 3 (dyps —
83 _ ( obs /-"d) 04 ( obs I“‘d) ) (3.0.21)
ng
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Abstract

The main objective of the AVO inversion is to obtain posterior distributions
for P-wave velocity, S-wave velocity, and density from specified prior distri-
butions, seismic data, and well log data. The inversion problem also involves
estimation of a seismic wavelet and the seismic noise level. The noise model
is represented by a zero mean Gaussian distribution specified by a covariance
matrix. A method for joint AVO inversion, wavelet estimation, and estimation
of the noise level is developed in a Bayesian framework. The stochastic model
includes uncertainty of both the elastic parameters, the wavelet, and the seis-
mic and well log data. The posterior distribution is explored by Markov chain
Monte Carlo simulation using the Gibbs sampler algorithm. The inversion

91
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algorithm has been tested on a seismic line from the Heidrun Field with two
wells located on the line. The use of a colored seismic noise model resulted in
about 10% lower uncertainties for the P-wave velocity, S-wave velocity, and
density compared to a white noise model. The uncertainty of the estimated
wavelet is low. In the Heidrun example, the effect of including uncertainty of
the wavelet and the noise level was marginal with respect to the AVO inversion
results.

4.1 Introduction

Geophysical measurements are of crucial importance to make models of the
structures and the physical properties of the subsurface. The geophysical mea-
surements are often strongly affected by noise and measurement uncertainty,
and the established subsurface models may be highly uncertain. Quantification
of the uncertainty is important to correctly appreciate these subsurface models.
In a Bayesian setting, available prior knowledge is combined with the informa-
tion contained in the measured data (Tarantola and Valette, 1982; Duijndam,
1988a,b; Malinverno, 2000; Ulrych et al., 2001; Scales and Tenorio, 2001). The
prior knowledge about the model parameters is specified by probability density
functions where the prior belief and the corresponding uncertainty is defined.
The relationship between the model parameters and the measured data is de-
scribed by the likelihood model. The solution of a Bayesian inverse problem is
represented by the posterior distribution, which provides both the most prob-
able solution and information about the corresponding uncertainty.

Amplitude versus offset (AVO) inversion can be used to extract information
about the elastic subsurface parameters utilizing the angle dependency of the
reflection coefficient (Smith and Gidlow, 1987; Hampson and Russell, 1990;
Buland et al., 1996; Gouveia and Scales, 1998). The AVO inversion problem
can be linearized if an appropriate processing sequence is applied to the seis-
mic data prior to the inversion. Important elements in such processing are the
removal of the moveout, multiples, and the effect of geometrical spreading and
absorption. The seismic data should be prestack migrated and transformed
from offset to reflection angle. A Bayesian linearized AVO inversion is defined
in Buland and Omre (2002a), where an explicit analytical form of the poste-
rior distribution is derived under Gaussian model assumptions. The explicit
analytical form of the posterior distribution provides a computationally fast
inversion method suitable for inversion of large 3-D seismic datasets. However,
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the elastic parameters are not laterally coupled, so the inversion is performed
independently for each bin gather. Further, the seismic wavelet and the noise
covariance are assumed to be known prior to the inversion. A Bayesian method
for estimation of the wavelet and the noise covariance is presented in Buland
and Omre (2002b).

In this paper, a more realistic and complex statistical model is defined for the
linearized AVO inversion problem. Firstly, a spatial coupling of the model
parameters is imposed by a spatial correlation function. This ensures a spa-
tially consistent solution. Secondly, the solution is obtained both from seismic
prestack data and well logs. The spatial coupling of the model parameters is
required for the integration of seismic and well log data. Thirdly, the AVO in-
version, the wavelet estimation, and the estimation of the noise level are done
simultaneously. The uncertainty of the wavelet and the noise level, and the
corresponding effect on the estimated elastic parameters are integrated in the
algorithm. A general hierarchical Bayesian model is defined. That means that
also the statistical parameters specifying probability density functions are re-
garded as uncertain, for example the mean vector and the covariance matrix for
a Gaussian variable. These statistical parameters are assigned prior distribu-
tions specified by hyperparameters. For trivial Bayesian problems, analytical
expressions for the posterior distributions can often be found. In the current
case, no analytical solution exists, but the posterior distribution can be ex-
plored by Markov chain Monte Carlo (MCMC) simulation (Gilks et al., 1996;
Chen et al., 2000). The methodology is presented in the following sections,
firstly in rather general terms, and then illustrated by an inversion example of
a real dataset from the Heidrun Field.

4.2 Methodology

An isotropic, elastic medium is completely described by the material param-
eters {a(x,t), B(x,t), p(x,t)}, where a, £, and p are P-wave velocity, S-wave
velocity, and density, x is the lateral location, and ¢ is the two-way vertical
seismic traveltime. A weak contrast reflectivity function for PP reflections is
(Aki and Richards, 1980; Stolt and Weglein, 1985)

c(xz,t,0) = aq(x,t,0) %lna(az,t)

Vgl 1,0) o Bl 1) +aye,1,0) o pla, 1), (4.1)
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where @ is the reflection angle, a, = (1 +tan?0) /2, ag = —4(8/a)?sin®0,
and a, = (1 — 4(B8/a)?sin? #) /2. The inversion algorithm requires that aq, ag,
and a, are defined from a prior known background model. Motivated by the
form of the reflectivity function in expression (4.1), let the unknown model
parameter vector be

m(z,t) = [Ino(z,t),Inf(z, ), Inp(z, )], (4.2)
where T' denotes transpose.

The seismic data are represented by the convolutional model
dopa (1, 0) = / 5(r,0) c(w, t — 7,0) dr + eq(w,t,0), (4.3)

where s is the wavelet, and ey is an error term. The wavelet is allowed to be
angle dependent, but should be independent of the lateral location . The
wavelet is assumed to be stationary within a limited target window.

The seismic data dgps(x,t,0) are available on a discrete form, denoted dps.
In general, the discretization of the subsurface parameters m(z,t) should be
determined by the intrinsic variability and future use of the inverted parame-
ters. An identical lateral and temporal sampling of the model parameters and
the seismic data is often chosen. Usually, this is an adequate choice, but the
methodology is not restricted to equal sampling. Let a discrete representation
of m(x,t) be written m. Further, let s be a discrete representation of the
seismic wavelet and let wgp; be a discrete representation of the well log data.

The stochastic dependency model

The variables and the problem structure are graphically displayed by a directed
acyclic graph (DAG) in Figure 4.1, see for example Spiegelhalter et al. (1996);
Lauritzen (1996). All nodes in the graph represent stochastic variables, where
p and X denote expectation vectors and covariance matrices. The arrows rep-
resent the causal dependency structure, where thin lines indicate probability
dependencies and thick lines represent deterministic relationships. The DAG
can be interpreted as a family tree where the parent nodes point to its chil-
dren. When probabilistic dependencies are considered, nodes connected by a
deterministic link merge into a single node. The expectation vectors u,, and
g are deterministically determined from m and from m and s, respectively.
The parents of the well log data are therefore Pa(wys) = {m, Xy}, and the
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parents of the seismic data are Pa(d,s) = {m,s, X}, where the notation
Pa(v) denotes the parents of a node v. Before any data are observed, the
marginal distributions of the parents are independent, but when their child is
observed, the properties of the parents become dependent. An example is m
and s which are apriori independent, but become dependent when the observed
seismic data d,ps are included in the model.

Figure 4.1: The stochastic model represented by a directed acyclic graph.
The nodes represent stochastic variables, the thin arrows represent probability
dependencies, and the thick arrows represent deterministic relationships.
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The likelihood model

The error term in the convolutional model in expression (4.3) is assumed to be
zero mean Gaussian with covariance 34. The likelihood model for the seismic
data d,ps is then Gaussian, compactly denoted

dobs|“da 2al ~ Nnd (p‘da 2d)a (4'4)

where ng is the dimension of the seismic data vector dys. A definition of
the multi-Gaussian distribution is given in Appendix 4.A. The expectation
vector p, is deterministically determined by the convolution of the reflection
coefficients computed from m with the wavelet s.

The relation between the well observations ws and the total model parameter
vector m can be written
Weops = Pm + ey, (4.5)

where P is a design matrix of zeros and ones which defines the locations of the
wells relative to m, and e,, is an error term. If we assume that the well log
error e, is zero mean Gaussian with covariance 3,,, then the likelihood model
for the well log information is Gaussian

wobs|“w7 Ew ~ Nny (uwa 2’11))7 (46)

where n,, is the dimension of wys and p,, = Pm. The well locations relative
to the seismic data are assumed to be correct. Also the conversion of the well
logs from depth to seismic traveltime is assumed to be correct. In principle, this
uncertainty related to the depth to time transform of the well logs could have
been included in the present method by simulation of possible shift, stretch
and squeeze of the log time axis (Buland and Omre, 2002b).

The prior model

The model parameters m are apriori assumed to be Gaussian

m|l"’mv2m ~ nm(l"’mazm)v (47)

where n,, is the dimension of m, and pu,, and ¥, are the expectation vector
and covariance matrix, respectively. The expectation is usually constant or
slowly varying for each of the parameters In «, In 8, and In p in m. The covari-
ance defines the variances and the correlations between the different elements
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in m. A spatial coupling of the parameters is imposed through the covariance
matrix by a spatial correlation function.

Also the wavelet s is apriori modeled with a Gaussian distribution,
S|/.Ls,25 Nan(p‘saEs)a (48)

where ng is the dimension of s, and p, and 3 are the expectation vector
and the covariance matrix, respectively. The length of the wavelet is fixed.
In general, the length of the wavelet should be as short as possible, but still
long enough to represent the link between the model parameters and the seis-
mic data as defined by the convolutional model. Expected smoothness of the
wavelet can be imposed through the covariance matrix by a temporal correla-
tion function.

The DAG in Figure 4.1 represents a hierarchical Bayesian model, where the
expectations and covariances are stochastic. The prior expressions for m and
s in expressions (4.7) and (4.8) can be regarded as the first level of an hier-
archical prior model, the structural portion, while the prior distributions for
the expectation vectors and covariance matrices form the second level, the
subjective portion of the prior, see Robert (1994); Carlin (1996).

A mathematically convenient class of prior distributions for the second level
is the conjugate prior distributions (Robert, 1994). These distributions have
the same parametric prior and posterior forms, but with different parameters.
The conjugate distributions for expectation and variance in a Gaussian model
are the Gaussian and the inverse gamma distributions, respectively. The un-
certainties of p,, and p, are therefore modeled by Gaussian distributions,

M~ nm(”umazum)? (49)
p‘s ~ ns(uusazus)a (410)

where the expectations p, ~and g, , and the covariances 3, ~and X, are
fixed hyperparameters. The expectations p,, and p,; are deterministically
determined and do not need prior distributions.

If the covariance matrices X,,, 3, X, and X; are known up to unknown
multiplicative variance factors, the covariances can be written

Ei == 0—7;220,% (411)

where i is one of {m, s, w,d}. The uncertainty of the unknown variance factor
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o? is modeled by the inverse gamma distribution,

a7 ~ IG(7i, M), (4.12)

where the hyperparameters v; and A; define the prior expectation and variance,
see Appendix 4.B. If a covariance matrix is completely unknown, a conjugate
prior distribution can be obtained using the inverted Wishart distribution.
Then the conditional distribution given the corresponding sample covariance
matrix is also inverted Wishart distributed, see Appendix 4.C.

The posterior model

The objective of the inversion is to obtain the posterior distributions for for
the involved variables based on the observed seismic data d,;s and the well logs
wyps. Let the vector v represent the unknown quantities, that is all variables
in the DAG in Figure 4.1 except dys and wgs. Further, let o be a vector
containing the observed data,

Wobs
o= . 4.13
[ dobs ] ( )

The posterior distribution for v given dps and weps can be written
p(v,0)
(o)

where p(v, 0) is the complete joint distribution. The pdf p(0) does not contain

p(v]o) = (4.14)

unknown variables, and can therefore be regarded as a constant. The complete
joint distribution for a model represented by a DAG can generally be written
(Spiegelhalter et al., 1996)

pv,0)= [ plzilPa(z)). (4.15)
z;€{v,0}
An expression for the posterior distribution is now defined from expressions (4.14)
and (4.15), and the DAG in Figure 4.1,
P(M, 8, s P, B, B, B, B| dobs, Wops) X
p(dobs|masazd) p(wobs|m72w) p(m|p‘m72m) (4'16)
p(slps: Bs) p(p) p(ps) P(Zm) p(Es) p(Bw) p(Ea),

where the proportionality is caused by the unknown constant probability den-
sity functions involving dgps and wps-
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The Gibbs sampler algorithm

The posterior distribution can be explored by MCMC simulation. The Gibbs
sampler is perhaps the best known and most popular of the MCMC algorithms.
The name of the algorithm was introduced by Geman and Geman (1984) who
worked with Gibbs distributions on lattices, but the name is misleading as the
application of the algorithm is general, and not restricted to Gibbs distribu-
tions. A general presentation of MCMC can be found in Gilks et al. (1996);
Chen et al. (2000).

The Gibbs sampler algorithm works on the complete joint distribution and re-
quires full conditional distributions for each single variable given all the others.
One iteration consists of drawing new samples for the unknown quantities. A
new sample is drawn conditioned on the current state of the other elements in
v. Once an element is drawn, it goes into the current state of v.

The pseudo-code of the Gibbs sampling algorithm can be written

Initiate: Set arbitrary v(®) where p(v(®|o) > 0.

Iterate: For¢:=1,2,..., draw
vy’ ~ puijv, o),
vt p(Uj|’U—j,0),
o)~ p(vn,[v—n,0),

@ =1 (i—1

G210 Vj 1 e Uy )}. Instead of drawing single ele-
ments from v as shown above, a slightly more general algorithm is obtained by

where v_; = {vgi), e U, U
allowing for simultaneously drawing of a group of elements. An example is to
draw the complete wavelet s instead of updating single samples of the wavelet.
The elements in the model parameter vector m can also be grouped, for exam-
ple into the complete vector m, or some partition of m. The full conditional
distributions needed in the Gibbs sampling are specified in Appendix 4.D.
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4.3 Inversion example of Heidrun data

The Heidrun Field is an oil and gas field offshore Mid-Norway. Geologically,
the field comprises a heavily faulted and eroded horst block of early to mid-
Jurassic clastic deposits. The reservoirs are located in the shallow, clean Fangst
Group sandstones, and in the deeper and more heterogeneous sandstones of
the Tilje and Are Formations.

A seismic line passing through two wells, well A and B, is used in this inversion
example. The seismic data consist of ng = 3 angle stacks with average angles
11°, 22°) and 33°, see Figure 4.2. Well A is located at CDP 1191 and well B
at CDP 1227. An interpretation of top reservoir (Fangst Group) is shown by
a black line. A 300ms time window is inverted, where the top and bottom
are parallel to the interpreted top reservoir horizon. Typical seismic peak
amplitudes are in the order of 0.1.

The prior model

Among the hierarchical parameters, we consider the unknown seismic error
covariance matrix Xy to be the most interesting. The estimation of both the
wavelet s and the model parameter vector m with corresponding uncertainties
depend on X;. Unfortunately, the estimation of 3; is usually not a trivial
problem. The dominating noise in processed seismic data is usually source
generated noise, for example remaining multiples, or processing artifacts. Such
noise components usually have a smooth waveform similar to the waveform of
the primary events. However, if well logs are available, the misfit between
the synthetic seismic well log response and the real seismic data can be used
to estimate 3,4, or a set of parameters which determines the complete 3.
Three different seismic noise models are defined below, numbered from 1 to
3. The covariance matrices are here defined for a single CDP gather with
ng = 3 traces, and we assume no correlation between different CDP positions.
In contrast, ¥, in expression (4.4) is the covariance for the complete seismic
dataset. Accordingly, ng is here reduced to be the dimension of a CDP gather.

Noise model 1 is a simple white noise model with unknown variance,
i1 = 03ln,, (4.17)

where I, is an ng X ng identity matrix. Our apriori knowledge about the
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Figure 4.2: The seismic data represented by angle stacks, 11° (top), 22° (mid-
dle), and 33° (bottom).
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seismic noise level is vague. The apriori uncertainty is described by the inverse
gamma distribution

02 ~ TG(2,0.0005), (4.18)

where the apriori expectation of 05 is 0.0005, and the variance is undefined
(infinite), see Appendix 4.B.

Noise model 2 has colored covariance with fixed correlation structure. The
expected temporal smoothness of the seismic error is modeled by a second
order exponential correlation function with range 14ms. In addition, 10%
white noise is added. Let the corresponding discrete correlation matrix for a
seismic error trace be denoted Y 4. A block-diagonal colored covariance matrix
is defined by the Kronecker product

a2 =051, ® Y4, (4.19)

where each of the elements in the 3 x 3 identity matrix I, is multiplied with
the temporal n; x n; correlation matrix Y4, with n; = 151 being the number
of time samples. This means that we assume that the error variance is equal
for the three angle stacks, and that there is no correlation between them.
The unknown variance 03 is modeled by the inverse gamma distribution as in
expression (4.18). Note that noise model 1 can be written on a similar form,
S =031, QI,,.

Noise model 3 has colored covariance with a separate unknown variance factor
for each angle stack and unknown correlation coefficients between the angles.
The covariance matrix is obtained by substituting the diagonal matrix 031 1o
in expression (4.19) with an unknown ny X ny covariance matrix 3y, such that

Ed’g =3y Yy (4.20)

The covariance matrix 3y is apriori assigned an inverted Wishart distribution
with 5 degrees of freedom,

X9 ~ IW,, (0.00011,,,, 5), (4.21)

see Appendix 4.C. With only 5 degrees of freedom, the prior distribution will
only have a marginal effect on the conditional distribution for ¥y. Here, the
relative influence of the prior distribution versus the sample covariance is about
1 to 60. If the prior knowledge about Xy is more precise, the relative influence
of the prior distribution can be increased by increasing the degree of freedom.
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The wavelet is apriori assumed to be Gaussian with unknown expectation and
covariance. The wavelet length is set to 80 ms, which is sufficient for a main
center loop and two side loops. A separate wavelet is estimated for each of the
three angle stacks, such that ny; = 3 x 41 with 2ms sampling. The expected
temporal smoothness is imposed through a covariance matrix 3y by a sec-
ond order exponential correlation function with range 14 ms. Note that this
correlation function is identical to the correlation used to model the smooth-
ness of the colored seismic noise. Further, it is imposed that the wavelets
should smoothly approach zero towards the first and last wavelet samples.
The wavelets are also assumed to vary smoothly as function of reflection an-
gle. This is imposed through Xy, by a second order exponential correlation
function with range 30°. The prior distribution for the wavelet expectation is

B ~ N, (0,2,,), (4.22)

where the prior expectation is a zero vector, and the covariance X3, is a fixed
hyperparameter. From the seismic amplitudes, see Figure 4.2, we expect the
maximum wavelet amplitude to be in the order of 1, so X, = 1220,3. The
unknown wavelet covariance X, is

B =025, (4.23)
where the apriori model for the unknown variance is
o2 ~ TG(2,0.001), (4.24)

with expectation 0.001, and undefined (infinite) variance. To illustrate the
defined prior model, a set of wavelets simulated from the prior distribution is
shown in Figure 4.3. Except the imposed smoothness and the amplitude decay
towards -40 ms and 40 ms, the prior model is flexible with respect to the shape
of the wavelets.

The prior model for m is modeled by a Gaussian distribution specified by the
expectation p,, and the covariance 3,,. A thorough presentation of the prior
model for m can be found in Buland and Omre (2002a). In this example,
the prior model for m is determined from the well logs and then fixed. The
expectation u,, can be considered to be a slowly varying background model
for lna(x,t), InB(x,t), and lnp(x,t). The temporal variation of p,, should
be smooth, but sufficiently high frequent to cover the lacking low frequencies
in the band-limited seismic data. In this example, the prior expectation is
vertically slowly varying but laterally constant, that means constant along
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Figure 4.3: Wavelets simulated from the prior distribution.

structures parallel to the interpreted top reservoir horizon. The covariance
function is stationary and homogeneous, and can be factorized as

ST, ti; e, t2) = Bom vm (&, 7), (4.25)

where v, (£, 7) is a spatial correlation function, ¢ is the distance between @
and xo, 7 is the time lag between ¢; and to, and

2
o O'aO'ngaﬁ Ta0pVap
Som = | 0a0sVags 0 o80,VEp | - (4.26)
2
TaOplap OBTHVE) o,

The diagonal elements of X, are the variances, and v,g, va,, and vg,, are
the correlations between In a(x,t), In 5(x,t) and In p(x,t), respectively. From
the well logs, estimates of the elements in X, ,, are obtained by standard

(is\timators. The estimated variances for Ina, Inf and Inp are (;g = 0.0026,
0’% = 0.0034, and ;g = 0.0020, and the estimated correlation coefficients are
Vap = 0.76, vo, = 0.77, vg, = 0.81. The vertical variability is modeled by
a sum of an exponential second order correlation function with range 2ms,
and a normalized second derivative of an exponential second order correlation
function with range 10ms (Buland and Omre, 2002a). The lateral coupling
of the model parameters is imposed by a first order exponential correlation

function with range 125m, that is 10 CDP positions.
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In the well positions, the well logs represent measurements of the model pa-
rameters m. The covariance of the possible well log errors is set to

S, =021, (4.27)

with o2, = 0.0001, such that the variance is fixed and identical for the Inc, In 3,
and the In p logs. A noninformative prior distribution should not be specified
for 02 since the seismic error term in the convolutional model is not completely
separable from errors corresponding to the well log errors. The prior model for
o2 should therefore be specified exactly, or at least relatively precise (Buland

and Omre, 2002b).

Simulation results

The posterior distribution is explored by 500 iterations with the Gibbs sam-
pler algorithm. MCMC algorithms generally need some initial iterations before
convergence to the posterior distribution is reached. The convergence can be
evaluated by monitoring the involved variables using different initial values.
In this problem, the convergence is fast, only some few burnin iterations are
needed. To be sure, the first 20 iterations are considered to be burnin it-
erations, and these are not used in the calculations. For noise model 1 in
expression (4.17), the simulated seismic error variance is shown as function of
iteration number in Figure 4.4. The initial variance was 0.0001, but the conver-
gence to the level between 0.0002 and 0.0003 is reached after the first iteration.
Tests with other start values do also show good convergence properties. The
posterior distribution of 03 is represented by a histogram of the simulated
variance values in Figure 4.5. The posterior mean of the seismic white noise
variance is estimated from the MCMC samples to 0.00024. For noise model 2
in expression (4.19), the posterior distribution for the variance factor is shown
in Figure 4.6, with posterior mean about 0.0001. A lower variance factor is
sufficient to represent the seismic error with the colored covariance compared
to the white covariance. For noise model 3 in expression (4.20), the posterior
mean for Xy is estimated to

0.91 0.14 —0.21
Sy=10"%| 0.14 1.03 056 |. (4.28)
—0.21 0.56  0.99

The variance factors on the diagonal of ¥y are about 0.0001 for the three angle
stacks as for noise model 2. The correlations are 0.15 between the error traces
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for 11° and 22°, 0.5 between 22° and 33°, and -0.2 between 11° and 33°. The
posterior uncertainty of Xy represented by two standard deviations is

+0.21 +0.16 =+0.15
107* | 4£0.16 +0.24 +0.21 |. (4.29)
+0.15 +0.21 +0.24

The uncertainty of variance factors on the diagonal is about 23%, while the off
diagonal covariance factors are relatively far more uncertain.
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Figure 4.4: Monitor plot of the seismic white noise variance 03.

The simulated wavelets for the three different seismic noise models in expres-
sions (4.17), (4.19), and (4.20) are plotted in Figures 4.7, 4.8, and 4.9 with
gray lines. The gray clouds illustrate the wavelet uncertainty. The estimated
posterior mean wavelets are shown with black lines. The differences between
the wavelets for the three seismic noise models are marginal.

A simulated solution for the P-wave velocity, the S-wave velocity, and the den-
sity is shown in Figure 4.10 using seismic noise model 2 in expression (4.19).
The simulated solution represents one possible laterally consistent solution
with high vertical variability. In some cases, for example in fluid flow simula-
tion, a set of simulated solutions with realistic variability is needed. Usually,
however, it is more convenient to summarize the results in a best solution with
corresponding uncertainty, for example the posterior mean or the maximum
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Figure 4.5: Posterior distribution for the seismic white noise variance o%. The
apriori distribution is dotted.

posterior solution. The posterior mean solution obtained from the simulations
is shown in Figure 4.11. The corresponding solutions using the two other
seismic covariance models differ only marginally. Note that the solution has
highest resolution near the two wells. The additional information obtained
from the well logs reduces the uncertainty near the wells. The vertically av-
eraged posterior uncertainty represented by two standard deviations is shown
in Figures 4.12, 4.13, and 4.14 for each CDP position along the seismic line
for the three different seismic noise models. In comparison, the average apriori
uncertainty is 316 m/s for the P-wave velocity, 181 m/s for the S-wave veloc-
ity, and 200 kg/m? for the density. The average uncertainty at well B is higher
compared to the uncertainty at well A since the well log data in B do not cover
the complete inversion window. The jagged form of the curves is related to
the approximate screening algorithm presented in Appendix 4.E. However, we
consider the deviations from a smooth curve to be small compared to the to-
tal uncertainty. The posterior uncertainty of the estimated elastic parameters
is about 10-15% higher for the white noise model than the two colored noise
models.

If the wavelet and the noise covariance are estimated prior to the inversion,
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Figure 4.6: Posterior distribution for the seismic error variance o for colored
noise. The apriori distribution is dotted.

and then plugged into the inversion as fixed quantities, the solution of the
linearized AVO inversion problem is given on an explicit analytical form, and
MCMC simulation is not required. In this paper, a stochastic model is defined
which includes the uncertainty of s and X ;. However, in the Heidrun example
the effect of including the uncertainty of the wavelet and the noise covariance
was marginal with respect to the estimated m and its uncertainty. With the
peaked posterior distribution for the noise variance in Figure 4.6 and the low
wavelet uncertainty in Figure 4.8, this is not a big surprise. In cases where the
wavelet and the covariance uncertainty are larger, the corresponding effect on
the estimated P-wave velocity, the S-wave velocity, and the density may be
more distinct.

If the lateral coupling of the model is abandoned, the AVO inversion can not
be conditioned to the well log data, except exactly in the well positions. The
posterior mean solution with no lateral coupling and with fixed wavelet and
noise covariance is shown in Figure 4.15, and the corresponding posterior un-
certainty is shown in Figure 4.16. The differences between the MCMC solution
in Figure 4.11 and the the analytically obtained solution in Figure 4.15 are mi-
nor, except near the wells. The uncertainty level is close to the maximum
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Figure 4.7: Simulated wavelets (gray lines), and the posterior mean wavelet
(black line) for noise model 1.

uncertainty in Figure 4.13. The difference in computer time is dramatic, how-
ever. The MCMC solution shown in Figure 4.11 was obtained in about 12
hours, while the solution shown in Figure 4.15 was completed within some few
seconds on a 400 MHz single CPU machine. The difference in the computer
time is mainly caused by the 500 iterations of the Gibbs sampler algorithm,
but also by the lateral coupling of the model parameters.
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Figure 4.8: Simulated wavelets (gray lines), and the posterior mean wavelet
(black line) for noise model 2.
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Figure 4.9: Simulated wavelets (gray lines), and the posterior mean wavelet
(black line) for noise model 3.
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Figure 4.11: Posterior mean solution conditioned to seismic and well log data.
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4.4 Conclusions

A spatially coupled AVO inversion method has been defined in a hierarchical
Bayesian framework. The stochastic model includes uncertainty of both the
elastic parameters, the wavelet, and the seismic and well log data. The seismic
noise model is of special interest since both the AVO inversion and the wavelet
estimation depend on the noise covariance, and since the estimation of a noise
model may be highly uncertain itself. One white and two colored seismic noise
models with stochastic noise levels are tested. On a real data example from the
Heidrun Field, the use of colored seismic noise models gave better results with
about 10% lower uncertainty than the white noise model. The uncertainty of
the estimated wavelet was low for all three noise models. If the wavelet and
the noise covariance are estimated prior to the AVO inversion and used as
fixed nonstochastic quantities, the inversion problem has an explicit analytic
solution. When the wavelet and the noise level are stochastic, the posterior
solution can be obtained by Monte Carlo simulation. In the Heidrun exam-
ple, the effect of including the uncertainty of the wavelet and the noise level
was negligible with respect to the elastic parameters and the corresponding
uncertainty.
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4.A Gaussian distribution

The multi-Gaussian probability density is (Anderson, 1984)

1

) = e |- W S - w]. @A)

2

where n is the dimension of r, and p and 3 are the expectation vector and
the covariance matrix, respectively.

Consider two multivariate Gaussian variables 1 ~ Ny, (p1, 211) and ro ~
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N, (Bg, Ea2) with joint distribution

T By Y1 Yo
~ Nt , , 4A2
e ()5 ) e

where nq and ny are the dimensions. Then the conditional distribution of 7
given ry is Gaussian with expectation

Mijp = py + 21222721(7'2 — M) (4.A.3)

and covariance
Y =¥ — 1235, B (4.A.4)

4.B Gamma and inverse gamma distribution

The univariate gamma distribution G(vy, A) is defined by the probability density
function (Robert, 1994)

AT
p(x|y, ) = =277 exp[—Az], 4.B.1
([, A) T [—Az] (4.B.1)
for z > 0, v > 0, A > 0. The expectation and variance are
Bzl A} = 1, (4.B.2)
g
Var{z|y,\} = IVE (4.B.3)

Two special cases of the gamma distribution are the exponential distribution
E(N) for v = 1, and the chi-squared distribution X2 for v = v/2 and A = 1/2.

If y ~ G(v,A), then £ = 1/y has the inverse gamma distribution ZG(y, A)
defined by the probability density function

AT\ A
A) === |- —— 4.BA4
pahd =705 (5) e |3, (4.B.4)
for x > 0, v > 0, A > 0. The expectation and variance are
A
E{zly, A} = L v>1, (4.B.5)
)\2
Var{z|y,\} = v > 2. (4.B.6)

(v =12y —-2)’
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The expectation and variance in expressions (4.B.5) and (4.B.6) approach in-
finity when v — 1 and v — 2 (from above), respectively. For v <1 and vy < 2
(7 > 0), the expectation and variance are not defined.

For a Gaussian distribution Nj(u,0?) with unknown variance, the inverse
gamma distribution is a conjugate distribution for the variance. That means
that if the prior distribution for the variance is inverse gamma o2 ~ ZG(v, \),
then the posterior distribution is also inverse gamma, but with modified param-

eters. For z1,...,x, iid N (u,0?), the posterior distribution for the unknown
variance is )
n ns

0'2|32 NIQ(’}/—}-E,)\—I—T), (4B7)

where
n 2

L= @iz nw” (4.B.8)

i=1 n

4.C Wishart and inverted Wishart distribution

Let ¥ be an n X n covariance matrix. The Wishart probability density function
for a symmetric positive definite n x n matrix W' is (Anderson, 1984)

|W|(m*”*1)/2 exp[—%tr(E_IW)]
2mn/2|2|m/21"n(m/2) ’

p(W|Z,m) = (4.C.1)

for m > mn where m is the degrees of freedom, tr(-) denotes the trace of a
matrix, that is the sum of the diagonal elements, and

Duy) = 700 T[Ty — (i~ 1)/2] (1.02)
=1

In the special case with n = 1, the matrices ¥ and W are reduced to scalars.
If ¥ =1/2\, W =z, and m/2 = vy, the Wishart distribution is reduced to the
gamma distribution.

Let the Wishart distribution be denoted W, (%, m). If r; is independent Gaus-
sian r; ~ N, (0,X) for 1 =1,...,m, then

m
W => rir] ~Wy(Z,m), (4.C.3)
i=1
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and
Wl IW, (21 m), (4.C.4)

where ZW,, (27!, m) is the inverted Wishart distribution with m degrees of
freedom. The expectations are

E{W} =mEX, (4.C.5)
and
E{Ww 1l = m_ln_ 12*1. (4.C.6)

Consider 3 to be unknown and stochastic. If 3 is assigned an inverted Wishart
prior distribution,
3 ~ IWy (X0, mo), (4.C.7)

then the conditional distribution of 3 given W is

S|W ~ IWh (S0 + W, mg + m). (4.C.8)

4.D The full conditional distributions

The full conditional distribution for an unknown variable conditioned on all
the other variables can be constructed only by the terms in expression (4.16)
containing the actual variable. In the following, all the necessary conditional
distributions are defined.

The full conditional distribution for m

From expression (4.16), the full conditional distribution for the model param-
eter vector m can be written

p(m|) X p(d()bs|m7 S, Ed) p(wobs|m7 E’w) p(m|p‘m7 2m,)a (4D1)

where the two first terms are the Gaussian likelihoods defined in expres-
sions (4.4) and (4.6), and the last term is the Gaussian prior defined in expres-
sion (4.7). Below, the full conditional distribution for m is calculated by firstly
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defining p(dops|s, Xq) and p(weps|Ey). Following Buland and Omre (2002a),
let the derivative of m(x,t) be

T

0 0 0
/ — _
m'(x,t) = pr Ina(z,t), Py Inf(z,t), 5 Inp(x,t)| , (4.D.2)

with discrete representation m'. The corresponding discrete version of the
reflectivity is
c=Am'. (4.D.3)

where A is a sparse matrix defined by the coefficients a,, ag and a, in expres-
sion (4.1).

Since m is assumed to be Gaussian with expectation vector u,, and covariance
matrix X,,, expression (4.7), then m' is Gaussian,

m,|:um72m NNnm(:ulmvzgz)v (4.D.4)

see Christakos (1992) for details on differentiation of Gaussian variables. The
discrete expectation vector u! . is defined by

E{m/(z,t)} = %pm(m,t), (4.D.5)

and the covariance matrix X! is defined by

2

COV{mI(.’B, t)a ml(ya 3)} = %

Yoz, t;y,s). (4.D.6)

The discrete cross-covariance matrix between m' and m is denoted ¥ | and
is defined by

Cov{m/(z,t),m(y,s)} = %Em(w,t;y,s). (4.D.7)

The relationships between the observed data 0 = [wps, dops]’ and the model
parameter vector m are given by

Weops = Pm + ey, (4.D.8)
and the convolutional model

dops = SAm' + €ed, (4.D.9)
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here written in matrix-vector form where S is a matrix representation of the
wavelet s. The conditional joint distribution for m and o is

m [ w,, S0 S
Yy Bdy D | ~ '
l o Sy Bypy 24ms s w] Nm+Nw+ng <- Lo ) l Eo,m Eo ]) )
(4.D.10)
where )
Pu,,
= 4.D.11
Ho=| sap | ( )
T 1 T AT T
3, = PE’”P, +E“’ P%m TA TS ; (4.D.12)
SAY P SAY, A'S' +3,
| PX,
Eo,m - [ SAE;n ] ) (4:D].3)
and
o = S - (4.D.14)
The full conditional distribution for m is
m|oasaﬂm72m72d72w NNnm(um|-72m|-)7 (4D15)
where the conditional expectation and covariance are
Bl = B+ ZmoZ, (0= ), (4.D.16)
S = Bm— Do,  Zom. (4.D.17)

For real size problems, the dimension of m is usually large, and an efficient
numerical technique is required. For model parameters and seismic data sam-
pled on a regular grid, the spatially coupled inversion problem can be solved
efficiently and exactly in the Fourier domain when the involved covariance ma-
trices are homogeneous and stationary (Buland et al., 2002). For more general
cases, an approximative solution can be obtained by the sequential screening
algorithm (Omre et al., 1993), see Appendix 4.E.

The full conditional distribution for s

From expression (4.16), the full conditional distribution for the wavelet s can
be written

p(8|-) x p(dops|m, 8, 2q) p(s|ps, Xs), (4.D.18)
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where the first term is the Gaussian likelihood defined in expression (4.4)
and the last term is the Gaussian prior defined in expression (4.8). Firstly,
p(dops|m, Xy) is calculated. The convolutional model can be written

doyps = Cs + ey, (4.D.19)

where the matrix-vector multiplication C's represents the convolution of the
reflectivity vector ¢ = Am/' with the wavelet vector s. The conditional joint
distribution for s and dps is

s [T IR ESC’T
3, Xyl ~ .
[ dobs m, W, 245, d] an+nd ( C/-‘fs ) [ C’ES CESCT + Ed
(4.D.20)
The full conditional distribution for s is then
S|dobs,m,/.ts,25,2d Nan(:us|-725|~)a (4'D'21)
where the conditional expectation and covariance are
l-l's\- = My + ESCT(CESCT + Ed)_l(dobs - Cll’s)a
(4.D.22)
. = %,-%,07(Cs,CcT+3y) 'cx,. (4.D.23)

The full conditional distribution for u

The conditional distribution for the wavelet expectation p, depends on the
wavelet s and the covariance matrix 3. Similarly, the conditional distribution
for p,, depends on m and 3,,. The derivation of the conditional distribution
for p, and p,,, follows the same pattern and is shown below for p,.

Both s and its expectation p, are Gaussian, and the conditional joint distri-

bution is
Ms K DI DI
| ~ s
[ s s] an+ns ([ :uus ] ) [ Eﬂs Eus +25

The full conditional distribution for p, is

) . (4D.24)

Bls, B Nan(uus|~a2us\-)a (4.D.25)

where
Mﬂs" = uﬂs + ENS (Eﬂs + 2s)il(s - /-'Lus), (4:D26)
2#8‘ = Eﬂs - Eﬂs (Eﬂs + 2s)ilz,us- (4:D27)
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The full conditional distribution for o2

The covariance matrices are assumed to be known up to unknown variance
factors. When the prior distribution for o2 is inverse Gamma

o2 ~IG(v,\), (4.D.28)

then the full conditional distribution for o2 is

o252 Nzg(wrg,wr?), (4.D.29)
where s? is the sample variance, for example
1 _

s5=—(s — 1) By 5 (s — my), (4.D.30)

Ur

for the wavelet variance o2, where 3,5 is the known structural factor of the

covariance matrix 3.

4.E The sequential screening algorithm

The full conditional distribution for the complete spatially coupled model pa-
rameter vector m, expressions (4.D.15)-(4.D.17), can be factorized as

p(m|) = p(m(z)])

X p(m(zs)|m(z1), )

x  p(m(xzy)|m(xz),...,m(xy_1),"), (4.E.1)

where x1 to @, are the involved surface locations for the inversion in some
arbitrary order, and m(z;) is a sub-vector of m containing the model param-
eters at location @;. Expression (4.E.1) defines an exact sequential simulation
algorithm, but the dimensions of the pdfs on the right hand side is rapidly
growing, and the algorithm can not be used in real size problems.

The sequential screening algorithm is an approximate version of the exact
sequential simulation algorithm defined above. The sequential screening algo-
rithm is based on the assumption that the solution at a location @x; depends
only on a subset of the model and data. The full conditional distribution for
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m(x;) is obtained by conditioning to a subset of {m(x1),...,m(x;_1)}, de-
fined by nearest neighbors to @; in specified directions, and a subset of wps
and dgs. The locations of the wells should define the first locations. Next,
the inversion should be run for the boundary locations of the survey, and then
a halving procedure is used to select new inversion locations, see Omre et al.

(1993).
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Abstract

Spatial coupling of the model parameters in an inversion problem provides
lateral consistence and robust solutions. We have defined the inversion problem
in a Bayesian framework, where the solution is represented by a posterior
distribution obtained from a prior distribution and a likelihood model for the
recorded data. The spatial coupling of the model parameters is imposed via
the prior distribution by a spatial correlation function. In the Fourier domain,
the spatially correlated model parameters can be decoupled, and the inversion
problem can be solved independently for each frequency component. For a
spatial model parameter represented on n grid nodes, the computing time for
the inversion in the Fourier domain follows a linear function of the number of
grid nodes, while the computing time for the fast Fourier transform follows an
nlogn function. We have developed a 3-D linearized AVO inversion method
with spatially coupled model parameters, where the objective is to obtain
posterior distributions for P-wave velocity, S-wave velocity, and density. The
inversion algorithm has been tested on a 3-D dataset from the Sleipner Field
with 4 million grid nodes, each with three unknown model parameters. The
computing time was less than 3 minutes on the inversion in the Fourier domain,
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while each 3-D Fourier transform used about 30 seconds on a single 400 MHz
Mips R12000 CPU.

5.1 Introduction

Many geophysical inverse problems can naturally be cast in a Bayesian frame-
work, where it is possible to combine available prior knowledge with the infor-
mation contained in the measured data, see e.g., Tarantola and Valette (1982);
Tarantola (1987); Duijndam (1988a,b). The solution of a Bayesian inverse
problem is represented by the posterior distribution. From the posterior dis-
tribution, the best estimate of the solution and the corresponding uncertainty
can be extracted. A set of plausible solutions can also be drawn directly from
the posterior distribution.

Amplitude versus offset (AVO) inversion can be used to extract information
about the elastic subsurface parameters from the angle dependency in the re-
flectivity, see e.g., Hampson and Russell (1990); Lortzer and Berkhout (1993);
Pan et al. (1994); Buland et al. (1996); Gouveia and Scales (1998). In prac-
tice, and especially for 3-D surveys, linearized AVO inversion is attractive
since it can be performed with use of moderate computer resources. Prior
to a linearized AVO inversion, the seismic data must be processed to remove
nonlinear relations between the model parameters and the seismic response.
Important steps in the processing are the removal of the moveout, multiples,
and the effects of geometrical spreading and absorption. The seismic data
should be prestack migrated, such that dip related effects are removed. Af-
ter prestack migration, it is reasonable to assume that each single bin-gather
can be regarded as the response of a local 1-D earth model. The benefits of
prestack migration before AVO analysis is discussed in Brown (1992); Mosher
et al. (1996); Buland and Landrg (2001). We further assume that wave mode
conversions, interbed multiples and anisotropy effects can be neglected after
processing. Finally, the prestack gathers must be transformed from offsets to
reflection angles.

Under Gaussian model assumptions, an explicit analytical solution of a Bayesian
linearized AVO inversion problem is worked out for a single angle gather, see
Buland and Omre (2002a). The objective of this method is to obtain poste-
rior distributions for the P-wave velocity, S-wave velocity, and density. The
solution is fast to compute and the method is therefore suitable for inversion
of seismic 3-D data. However, the model parameters are not laterally coupled,
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so each CDP gather is inverted independently of the neighbor CDPs.

In the current paper, a spatially coupled model is defined to obtain a spatial
consistent and robust solution of the linearized AVO inversion problem. The
consequence of the spatial coupling is that the solution in each location depends
on the solutions in all other locations. Even for small data sets, this results in
an enormous system of equations. For example, a small 3-D inversion problem
may have dimension 100 x 100 x 100, that is n = 10% grid nodes. The com-
puting time for inversion of the corresponding equation system is proportional
to n3, denoted O(n?). An obvious approximate approach to this problem is to
assume that the solution in a specific location only depends on the solutions
at the nearest neighbor locations, see e.g., Omre et al. (1993); Rue (2000).
Domain decomposition constitutes another approximate technique, where the
inversion area is divided into several subareas, each limited to a size which
efficiently can be handled by the actual computer. The problems with this
method are related to boundary effects and the final coupling of the inverted
subareas. In this paper we present a Bayesian AVO inversion method where
the spatial coupling can be handled exactly under certain assumptions. The
method utilizes the fact that the covariance matrix for a homogeneously corre-
lated spatial variable sampled on a regular grid can be diagonalized by a Fourier
transform, see Wood (1995). In the Fourier domain, the inversion problem can
be solved independently for each frequency component. The computing time
for the inversion in the Fourier domain is then O(n), which is the optimal scal-
ing property for an inversion algorithm. However, the computing time for a
fast Fourier transform is O(nlogn), such that the Fourier and inverse Fourier
transforms will dominate the computing time asymptotically.

5.2 Methodology

An isotropic, elastic medium is completely described by three material param-
eters {a(x,t), B(x,t), p(x,t)}, where «a, £, and p are P-wave velocity, S-wave
velocity, and density, « is the lateral position, and ¢ is the vertical seismic
traveltime. A weak contrast approximation to the seismic reflectivity function
c(x,t,0) is (Buland and Omre, 2002a)

c(xz,t,0) = aq(x,t,0) %lna(az,t)

Fag(@, 1,0) o B, 1) +aye,1,0) o pla, 1), (5.1)
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where 0 is the reflection angle, and

aa(z,t,0) = % (1 + tan? 0) :
2
ag(x,t,0) = —4% sin? 0, (5.2)
2

Motivated by the form of the reflectivity function in expression (5.1), let
m(z,t) = [Ino(z,t),Inf(z, ), Inp(z, )], (5.3)

where T' denotes transpose such that m(a,t) is a column vector. Further, let
a(xz,t,0) be a row vector

a(a:, ta 0) = [aa(a:, t7 9)7 a’ﬁ(ma ta 0)7 a‘p(ma t? 0)] . (54)
For zero incidence reflections, the reflectivity function c(, ¢, ) reduces to
(@.4,0) = = 210 Zp(a.t) (5.5)
= — — In .
c\x,t, 2 Ot pP\Z,7),

where Zp = ap is the acoustic impedance. In this case, a(x,t,0) reduces
to 1/2, and m(x,t) reduces to In Zp(x,t). Inversion for acoustic impedance
from zero incidence data can be defined by a simple reformulation of the AVO
inversion problem, and is therefore not further discussed in this paper.

The seismic data are represented by the convolutional model
dope(, 1,6) = /S(T, 0) c(w,t — 7,0) dr + e(,1,0), (5.6)

where s is the wavelet, and e is an error term. Note that the wavelet is allowed
to be angle dependent, but independent of the lateral position . The wavelet
is assumed to be stationary within a limited target window.

The Fourier transform

The spatial coupled inversion problem can be decoupled in the Fourier domain.
The inversion problem can then be solved independently for each frequency
component. Let the Fourier transform be defined as

Flk,w) = ///f(a:,t) exp|—i(k - @ + wt)] da dt, (5.7)
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with inverse transform
f(z,t) = ﬁ /// f(k,w) expli(k - & + wt)] dk dw, (5.8)

where 7 = /=1, w is the temporal frequency, and k is the spatial frequency
vector with components k, and k,. In the following, frequency means a (k,w)
pair. Note that geophysicists often call k£, and k, wavenumbers, and the sign
of the temporal frequency w is often defined opposite of the definition above.

The Fourier transform of the convolutional model in expression (5.6) is

dops (k,w,0) = 3(w,0) ¢(k,w,0) + é(k,w,0). (5.9)

We use a constant [/« ratio in expression (5.2), such that a(x,t,0) = a(6),
then the Fourier transform of the convolutional model can be written

dops (k,w,0) = g(w,0) - m(k,w) + é(k,w, ), (5.10)
where g is a row vector defined by
g(w,0) =iw §(w,0) a(h), (5.11)

and m(k,w) is the Fourier transform of the elements in m(x,t), that is
Ina(z,t), Inf(x,t), and Inp(x,t), see expression (5.3). Although a constant
B/« ratio is used in an approximative expression for the reflection coefficient,
the solution will in general have a varying 3/« ratio. Further, note that the
differentiations in equation (5.1) now appear as an iw term in expression (5.11).
In Buland and Omre (2002a), it was assumed that m(z,t) was differentiable
with respect to time, but here it is sufficient to assume that the convolution of
s(t,0) and a(f) - m(x,t) is differentiable.

For a set of ny specified reflection angles, the Fourier transformed seismic data
can be written in the vector form

&obs(ka (/J) = G(w) ’ﬁ’l,(k, (/J) + é(ka w)a (512)
where G(w) is an ng x 3 matrix defined by

g(wv 91)
G(w) = : , (5.13)

g(wagnf;)

and dyps(k,w) and &(k,w) are ny-dimensional vectors.
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The prior model

The elastic parameters a(z,t), f(x,t), and p(x,t) are assumed to be log-
Gaussian random fields, hence the vector field m(xz,t), which contains the
logarithm of these parameters, is Gaussian with expectation

P (2, 1) = [,ua(a:,t),ug(a:,t),up(a:,t)]T, (5.14)

where the elements are the expectations of In«(x,t), In 5(z,t), and In p(x, t),
respectively, and with covariance

Em($1, tl; o, tg) = Cov{m(a:l, tl), m($2, tg)}. (515)

We assume that the covariance function is stationary and homogeneous, and
can be factorized as

Em($1,t1;$2,t2) = 2U,m Vm(gaT)a (516)
where v,,(€,7) is a spatial correlation function, & = [|za — z1], |y — y1]]%,
T = |t2 —t1|, and

o2 0a0BVaB OalpVap
Yom = | Oa0pVag U% 0B0pV3p | - (5.17)
TaOplap OBROpVE) ag

The diagonal elements of X ,, are the variances, and v,g, vy, and vg,, are
the correlations between Ina(x,t), Inf(x,t) and Inp(x,t), respectively. A
more general covariance function is also allowed, where the covariance func-
tion is composed of a sum of terms with the form on the right-hand side of
expression (5.16).

The model parameters and the seismic data are so far defined for continuous
x and t. In practice, the seismic data are available in a discrete form. In the
following we assume an identical sampling of the model parameters and the
seismic data on a regular grid in space and time. This is a required assumption
for this method. Let the discrete representation of the model parameter field
m(x,t) in a time window and for a set of lateral positions be written m. The
discrete model parameter vector m is Gaussian with expectation vector u,,
and covariance matrix X,,, shortly denoted

m ~ No, (B> Zim), (5.18)
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where n,, is the dimension of m. For a 3-D problem on a regular grid with
n = ngnyn; grid nodes, the dimensions of m and u,, are n,, = 3n, while the
dimension of X, is n,, X n,,. Since the covariance function can be written as
in expression (5.16), the complete covariance matrix for m can be written as
a Kronecker product

Xm=30m® Y, (5.19)

where each of the elements in the 3 x 3 constant matrix Xg,,, defined in
expression (5.17), are multiplied with the n x n correlation matrix Y,,, defined
from v, (&, 7).

The spatial dependency can be decoupled by Fourier transforming the problem.
The Fourier transform of m, denoted m, is Gaussian with Fourier transformed
expectation vector fi,, and covariance matrix

2Nim = 2O,m ® Ama (5'20)

where A, is the diagonal eigenvalue matrix of Y, scaled by the dimension of
the discrete Fourier transform, see Appendix 5.A. The important consequence
of this diagonalization is that the frequency components of m are independent,
with each component being Gaussian

’l’hk ~ N3(/1m,k:a Em,k)a (521)

with index k corresponding to a specific discrete (k,w) pair. The covariance
matrix for frequency component k is a 3 X 3 matrix defined by

Sk = Ak Z0,ms (5.22)

with S\m,k being the corresponding diagonal element in the scaled diagonal
eigenvalue matrix A, Further, and of crucial importance, is that the n =
ngnyny eigenvalues can be calculated efficiently by a 3-D Fourier transform of
n discrete samples of the correlation function v, (&, 7) extended to a circulant
form, see Appendix 5.A. That means that the complete n X n correlation
matrix Y, and the even larger covariance matrix X, are not involved in the
computations.

The statistical model for the seismic data

We assume that the error term e(z, t, ), introduced in the convolutional model
in expression (5.6), is zero mean colored Gaussian noise. The covariance of the
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error vector e(x,t) = [e(x,t,01),...,e(x,t, Hno)]T is
Ee(m1,t1; @2, t2) = Boe ve(§,7), (5.23)

where ¥ . is an ng X ny covariance matrix containing the noise variances for
the different reflection angles and the correlations between the angles, and
ve(€,7) is a spatial and temporal correlation function. Again we allow sums
of terms with the form on the right-hand side of expression (5.23). Note that
white noise is a special case, where 3, is diagonal, and v.(€,7) = 0 except
for v.(0,0) = 1.

As for the prior model above, the frequency components of the discrete Fourier
transformed error vector € are now independent Gaussian

e ~ Nne (07 2e,lc)- (5'24)

From expressions (5.12), (5.21), and (5.24), each frequency component of the
seismic data is then apriori Gaussian

ovs b ~ Noog (B o k) (5.25)

where
Par = Grbpp (5.26)
Sir = GLEnxGi 4 ek, (5.27)

and * denotes the conjugate transpose (adjoint).

The cross-covariance between the Fourier transform of seismic data and the
model parameters is

COV{&ObS’k,’ﬁ’lk} = Gkim,k (528)

The cross-covariance is needed to compute the posterior distribution.

The posterior model

The posterior distribution is defined by a Gaussian conditional distribution. A
general presentation of Gaussian and conditional Gaussian distributions can
be found in Anderson (1984). Using expressions (5.21) and (5.25)-(5.28), the
posterior distribution for frequency component k is given by the Gaussian
conditional distribution

mk|&0bs’k ~ N3(l]m‘dobs:k’ 27n‘dobsyk:)’ (529)
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where

Poldps k. = Hmg T (szm,k)*zg,llc(dobs,k — B (5.30)

Stk = Sk — (CrZn ) Sy 1 G (5.31)
The core part of the inversion is the calculation of the 3 elements in the poste-
rior mean vector in expression (5.30) and the 3 x 3 posterior covariance matrix
in expression (5.31) for all frequency components k, that is for all discrete (k,w)
pairs. The solution is transformed back to the (x,t) domain by 3-D inverse
Fourier transforms, 3 for the posterior mean, and 6 for the posterior covariance
since the covariance is symmetrical. The posterior distribution of the model
parameters is represented by the posterior mean p,, 4, and the posterior co-
variance 3,4 . . The posterior covariance is stationary and homogeneous and
hence can be represented by six cubes of size n.

A set of possible solutions can be generated by simulation from the poste-
rior distribution. This can be done efficiently in the Fourier domain: For
each frequency component k, draw my from the posterior distribution, and
then transform m to m by an inverse 3-D Fourier transform for each of the
three model parameters in m. Since m represents the logarithm of the elastic
material parameters, see expression (5.3), the corresponding set of simulated
solutions of the P-wave velocity, S-wave velocity, and density are obtained by
the inverse transform exp[m]. Since the posterior distribution for the model
parameters can be represented explicitly by the posterior mean and covariance,
the inversion results can be merged with a set of well logs to refine the solu-
tion around wells. This can be done both for the conditional mean and the
conditional simulations using Kriging, see e.g., Cressie (1991).

The inversion procedure

The inversion procedure is summarized by the following steps :

1. Define the prior model for the model parameters based on the available
knowledge, that is pw,,(x,t), Xom, and vy (&, 7), see expressions (5.14)-
(5.17).

2. Estimate the wavelet s(t,0).

3. Estimate the noise covariance, that is 3. and v.(€,7), see expres-
sion (5.23).
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4. Calculate the discrete 3-D Fourier transform of w,,, (2, t), v (&, 7), ve (€, 7),
and the 1-D Fourier transform of s(¢,#). Sort the seismic data dgps (2, ,6)
into common angle cubes, and 3-D Fourier transform each of these angle
cubes to czobs(k,w,H).

5. For each frequency component k, calculate the posterior expectation
P,k and the posterior covariance X4, k, see expressions (5.30)
and (5.31).

6. Inverse Fourier transform the solution represented by the posterior mean
and covariance.

5.3 Inversion example of Sleipner data

A rectangular portion of a seismic survey from the Sleipner @st Field is used
in this inversion example. This is the same dataset which was used in Buland
and Omre (2002a), where a more detailed presentation of the dataset can be
found, including seismic processing, prior model definition, wavelet estimation
and estimation of the noise covariance. More on wavelet estimation and the
estimation of the noise covariance can be found in Buland and Omre (2002b).
The main focus in this paper is on the lateral coupling of the model parameters.

The inversion area is defined from inlines 1411 to 1751, and from crosslines
1225 to 1400, covering 9.3km?, or 12% of the total survey. Every second line
is used, such that n, = 176 and n, = 171. The seismic data set is reduced to
three angle stacks, ny = 3, representing 9°, 21°, and 33°. The thickness of the
target area is 250 ms in two-ways traveltime, such that n; = 126 with sampling
interval 2ms. The time window follows an interpretation of the main layering
in this target zone. The corresponding number of frequency components are
ny = 318, ng, = 350, and ng, = 340, that is 38 million frequency components.
Compared to the grid size, this increase is caused by extending the problem to
a circulant form, see Appendix 5.A. The grid size is not optimal with respect
to fast Fourier transform, so the fast radix-2 Fourier transform can not be
applied.

The spatial coupling of the model parameters is imposed through the spatial
correlation function in expression (5.16). The lateral correlation of the model
parameters is estimated from the seismic data and found to be adequately
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fitted by a first order exponential correlation function,

Vé &

Vm,g(€) = exp | —=———1, (5.32)
T

with lateral range d, = 250 m. The temporal correlation of the model parame-

ters can not be directly estimated from the seismic data since they are blurred

by the seismic wavelet. However, a temporal correlation function can be esti-

mated directly from the well logs, here modeled by the composite correlation

function
1 7\ 2 272 7\?
= —| = 1 — —- — (= 5.33
Vm,T(T) 2{6Xp [ (dt1> ] + ( d%Q ) €xXp [ <dtz> ] }a ( )
with temporal range parameters d;;, = 1.8ms and d;, = 9ms, see Buland

and Omre (2002a). The complete spatial correlation function v, (€, 7) is the
product of the lateral and the temporal correlation functions defined in expres-
sions (5.32) and (5.33).

The error term e(x,t,0) in the convolutional model, expression (5.6), includes
both seismic noise and errors related to the inversion methodology. We have
assumed that the error is zero-mean Gaussian with covariance function on the
form given in expression (5.23). The simplest form of the covariance function
is obtained for white noise, that is noise with no spatial correlation. However,
in seismic inversion, the most serious noise is usually source generated noise,
where remaining multiples are an important example. Such noise components
have a smooth waveform similar to the waveform of the primary events. The
estimated temporal correlation of this noise can be modeled by a scaled second
derivative of a second order exponential correlation function,

Ver(T) = (1 - %) exp l— <dlt>2] : (5.34)

where the temporal range is estimated to d; = 13ms. Note that this corre-
lation function can be recognized as a Ricker wavelet with center frequency
fe = 25Hz, using the relation d; = 1/(nf;). Further, we model the lateral
correlation of the seismic coherent noise with same correlation function as the
model parameters, see expression (5.32). A first order exponential correlation
function is also used to model the correlation between the different reflection
angles, with range estimated to dy = 10°. The variance of the coherent noise is
estimated to be 0.1, and the variance of the white noise component is estimated
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to be 0.01. In the frequency domain, the coherent seismic noise colored by the
seismic wavelet is band-limited, lacking the lowest and the highest frequencies.
In contrast, the white noise distributes equally to all frequencies.

The complete solution of the inversion is represented by the posterior distri-
bution, defined by the posterior mean and covariance, see expressions (5.30)
and (5.31). In Figure 5.1, the P-wave velocity, S-wave velocity, and density

corresponding to the exponent of the posterior mean of m, exp[um|d are

b
shown for inline 1627. A well is located at crossline 1291, and the W(:ll logs
are plotted for comparison, showing good agreement with the inversion re-
sults for the velocities. A constant time slice of the P-wave velocity and the
S-wave velocity at 2320 ms are shown in Figure 5.2. The real data of inline
1627, the synthetic data computed from the posterior mean solution, and the
corresponding residual are shown in Figures 5.3, 5.4, and 5.5 for 9°, 21°, and
33°. It is important to realize that the objective of the inversion is not only to
minimize the data residual, but to estimate a solution which honor both the
seismic data and our prior knowledge. The residual could have been reduced
by erroneously altering the error covariance, e.g., by erroneously reducing the
variance or the spatial correlation range.

A set of possible solutions for the P-wave velocity, S-wave velocity, and density
can be found by drawing a set of vectors m from the posterior distribution, in-
verse Fourier transform them to m, and then calculate exp[m]. One such sim-
ulated solution is shown in Figure 5.6 for inline 1627. The simulated solution
differs significantly from the smoother posterior mean solution in Figure 5.1,
but both give a good explaination of the real seismic data.

The prior model specifies the prior values for the variances of Ina, In g3, and
Inp. These values are defined on the diagonal of X ,,, see expression (5.17).
In this example, the prior variances are estimated from the well logs to be

Diag(Zo,m) = 107* x [39, 123, 4]. (5.35)
After inversion, the corresponding posterior variances are
Diag (o, mjd,,.) = 107" x [22,85,4]. (5.36)

The variance of Ina has the relatively strongest decrease, followed by the
variance of Inf. The variance of Inp is hardly changed, that means that
the inversion does not provide significant new information which reduces the
uncertainty about this parameter.



5.3 Inversion example of Sleipner data

139

In Figures 5.1 and 5.6, the well logs are plotted for comparison with the in-
version result. However, the well logs can be included in a refined solution
by Kriging, see e.g. Cressie (1991). This requires specification of a covariance
matrix for the well log errors. For simplicity, the covariance matrix is here set
to zero, meaning that the well logs are defined to be exact. Including the well
logs to the sections in Figures 5.1 and 5.6 by Kriging gives the corresponding
updated solutions shown in Figure 5.7 and 5.8. Since the well logs are defined
to be exact, the solutions updated by Kriging are equal to the well logs in the
well position. The influence of the well logs decreases with increasing distance
to the well position, and the uncertainty of the refined solution decreases near
the well. The effect of merging the well log information with the seismic in-
version results is most distinct for the posterior mean density in Figure 5.7.
The reason is that seismic data provides little information about the density,
resulting in a smooth posterior mean solution. After merging with the density
log, the solution is far more detailed near the well. Also the simulated solutions
in Figure 5.8 are updated near the well and are practically unchanged far from
the well. The average of a large number of simulated solutions updated by
Kriging will approach the solution in Figure 5.7.
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Figure 5.1: P-wave velocity (top), S-wave velocity (middle), and density (bot-
tom) corresponding to the posterior mean.
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Figure 5.2: Time slice of the P-wave velocity (top) and the S-wave velocity
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Figure 5.3: Real data (top), synthetic (middle), and residual (bottom) for 9°.
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Figure 5.4: Real data (top), synthetic (middle), and residual (bottom) for 21°.
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Figure 5.5: Real data (top), synthetic (middle), and residual (bottom) for 33°.
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Figure 5.6: Simulated P-wave velocity (top), S-wave velocity (middle), and
density (bottom).
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Figure 5.7: The posterior mean solution conditioned to the well logs.
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5.4 Discussion and conclusions

We have developed an efficient AVO inversion technique where the spatially
correlated model parameters are decoupled in the Fourier domain. The seismic
data and the model parameters are assumed to be represented on an identical,
regularly sampled grid. Further, the covariance functions for the model pa-
rameters and the data errors are assumed to be homogeneous and stationary
(i.e., translationally invariant). When the range of the spatial dependency is
shorter than the total spatial extension of the grid, the inversion technique is
exact with respect to the spatial coupling.

The solution of the inversion problem is represented by a Gaussian posterior
distribution with explicit matrix expressions for the posterior mean and co-
variance. The posterior mean can be interpreted as a smooth best estimate of
the solution, while the posterior covariance contains the uncertainty and the
correlation structures of the solution. The posterior covariance is homogeneous
and stationary, such that the estimated uncertainty of the solution is equal for
all positions (x,t). The uncertainty at the boundary of the inversion area is in
general underestimated, most severely at the corners. This problem is related
to the assumed symmetry in the spatial coupling of the model parameters. At
the boundary of the inversion area, this symmetry is lacking. The thickness of
the influenced boundary zone depends on the correlation range.

The computing time for the inversion in the Fourier domain follows a linear
function of the total number of grid nodes, O(n), while the computing time for
the fast Fourier transform follows an O(nlogn) function. A 3-D dataset from
the Sleipner Field represented by 3 angle stacks on a grid with 4 million grid
cells, each with 3 unknown model parameters, used less than 3 minutes on the
inversion on a single 400 MHz Mips R12000 CPU. In addition, each Fourier
transform used about 30 seconds, but asymptotically the Fourier transforms
will dominate the computing time when n approaches infinity. The inversion
method is suitable for parallellization, since the inversion problem can be solved
independently for each frequency component. Utilizing that the seismic data
are band limited, a further speedup can be obtained by inverting only the
significant frequencies.
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5.A Diagonalization of a covariance matrix by DFT

In the following, the relationship between the discrete Fourier transform (DFT)
and the eigen-values and eigen-vectors of a circulant matrix is presented. Fur-
ther, it is shown how this can be used to diagonalize a homogeneous covariance
function sampled on a regular grid. For simplicity, the presentation is limited
to 1-D, but the extension to higher dimensions is straightforward. More details
on these topics can be found in Brockwell and Davis (1987); Wood and Chan
(1994); Wood (1995).

The DFT

The 1-D discrete Fourier transform (DFT) of the sequence f(k), k=0,...,n—
1, can be written

B n—1 ,kl
f()y=>" f(k)exp {—2mﬂ , 1=0,....,n—1, (5.A.1)
k=0

with inverse transform (IDFT)
1 '«
n

1
fk) = F(1) exp {mﬂ] . k=0,...,n—1. (5.A.2)
0 n

=

The DFT can alternatively be written as a matrix-vector product
f=FF, (5.A.3)

where f = [£(0),...,f(n— 1)]T, and

F=|. . . | (5.A.4)
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where w = exp[—2mi/n]. The matrix corresponding to the IDFT is F~! =
n~!F* where % denotes the conjugate transpose. If the dimension n is a
power of 2, the fast radix-2 Fourier transform (FFT) can be used.

Circulant matrices

An n X n matrix M is a circulant matrix if the elements my; are defined by a
function m(-) with period n such that myg; = m;_, = m(l — k), that is

mo mp - Mp—1
Mmp—-1 Mo -+ Mp-2
m=| "t aay (5.A.5)
ml m2 PECEEY mO

see Brockwell and Davis (1987). Note that a circulant matrix is Toeplitz, but
the opposite is generally not true. The eigenvalues of a circulant matrix M

are
n—1 kl
A=Y m(k)exp [—%i—] , 1=0,...,n—1, (5.A.6)
n
k=0
with orthonormal eigenvectors
1
w'
vy =n""? _ . (5.A.7)
w(nfl)l
The circulant matrix M can be diagonalized by
VMV* = Ay, (5.A.8)
where A = diag{Ag, A\1,...,An—1}, and V is the unitary eigenvector matrix
V = [vg,v1,...,0p-1]. (5.A.9)

For the following, it is important to recognize that the eigenvalues of a circulant
matrix M are equal to the DFT of the first row, and that F = n!/2V .
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Diagonalization of a circulant covariance matrix

Let r(z) be a zero mean Gaussian variable with homogeneous covariance func-
tion

Y(z1, z2) = o2v(§), (5.A.10)

where £ = |zo — z1|. Let r be a discrete representation of r(z) sampled on a
regular grid, zr = kAz, where kK = 0,...,n; — 1. The corresponding n, X n,
covariance matrix is then symmetric Toeplitz,

o 14! Tt Vg1
14! o Tt Up,—2
> =02 _ _ _ : (5.A.11)
Vngy—1 Vpy,—2 - 140)

where v = v(kAz). This covariance matrix is not circulant, but it can be
embedded in a symmetric circulant n X n matrix

B VU Vl .. Vn/2 .. Vl T
41 4] Tt VUpjo—1 V3
¥, = o2 _ , (5.A.12)
Vn/2 Vnjo—1 -° : Vn/2—1
L 1 V2 o Vpjoa e o J

where n > 2(n, — 1), and such that the top left n, X n, sub matrix of 3.
is equal to X. The circulant matrix 3. is a legal covariance matrix if and
only if it is positive definite. A sufficient, but not neccessary condition for
positive definiteness is that v, = 0 for all k¥ > ko, where ky < ng, see Wood
(1995). Strictly, this excludes many of the most common correlation functions,
for example exponential correlation functions with order (1,2]. However, the
range of a correlation function will often be much shorter than the total spatial
dimension, such that vy = 0 for all £ > ky. In such cases a truncation of the
correlation function may be adequate.

Let now 7. be an extension of » with dimension n and covariance matrix ..
While » is sampled on a line, r. can be interpreted to be sampled on a circle.
Then the Fourier transform of r., 7. = Fr., has a diagonal covariance matrix

Y. = FS.F*=nVE V! =nAy = Ay, (5.A.13)
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where Ay is the eigenvalue matrix of ¥, with real nonnegative eigenvalues.
This means that the correlated variables in r are transformed to independent
variables in the Fourier domain. From above, we know that Ay, can simply be
calculated by a DFT of the first row of 3.. This means that it is not necessary
to compute the matrix products FX.F*. In fact, the complete matrix X, is
not involved in the computations.

The extension to 2-D and 3-D problems is straightforward. Let » be a discrete
representation of a zero mean Gaussian variable with homogeneous covariance
function, sampled on a regular 2-D or 3-D grid. The corresponding covariance
matrices are block Toeplitz in 2-D and nested block Toeplitz in 3-D, and they
can be embedded in block or nested block circulant matrices. Similarly to the
1-D case, the n eigenvalues can be found by a 2-D or 3-D DFT of a circulant
discrete representation of the correlation function.
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