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Introduction

The thesis consists of the following six papers:

Paper I: Estimating Blood Vessel Contours in Ultrasound Im-
ages Using a Deformable Template Model
Submitted.

Paper II: High-Level Models in Ultrasound Imaging
Report.

Paper I1I: A Model for Recognition of Non-Dense 3D Objects in

Range Images
With Ulf Grenander. Submitted.

Paper IV: Advances in Bayesian Image Analysis
With Merrilee Hurn and Havard Rue. To appear in Highly
Structured Stochastic Systems, eds. P. Green, N. L. Hjorth, and
S. Richardson, Oxford University Press.

Paper V: Bayesian 2D Deconvolution: A Model for Diffuse Ul-
trasound Scattering
With Torgrim Lie, Thomas Langg, Jgrn Hokland, and Havard
Rue. Published in IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 2001, 48, No. 1, pp. 121-130.

Paper VI: Bayesian 2D Deconvolution: Effect of Spatially Invari-
ant Ultrasound Point Spread Function
With Thomas Langg, Torgrim Lie, and Jgrn Hokland. Pub-
lished in IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, 2001, 48, No. 1, pp. 131-141.

The papers are listed in reverse chronological order. Paper II is a long
version of Paper I, containing an introduction to statistical imaging, and back-
ground material on high-level models and ultrasound imaging. It also gives an
overview of other approaches found in the statistical literature. It is recom-
mended to read papers I & II, and papers V & VI in their respective order;
otherwise the papers can be read independently of each other.

Background

The papers in this thesis are motivated by challenges encountered in the anal-
ysis of images. The goals of such analyses are many, but are often divided into
two classes. The first, and oldest, is concerned with the restoration of images
to remove degradation and provide reconstructions that are faithful to the un-
known, true scene. This is closely related to the analysis of spatial processes



found in eg. geostatistics, spatial epidemiology, and agricultural field experi-
ments. Markov random fields (Besag, 1974; Geman and Geman, 1984) provides
a family of distributions that are natural for modelling such spatial data.

The other and more recent task concerns the interpretation of images,
for instance object recognition and measurement, classification, or detection
of pathologies. Such high-level tasks are often solved using deformable template
models (Grenander, 1993; Grenander and Miller, 1994); these are highly struc-
tured probability models containing contextual information about the imaged
objects themselves. Objects are divided into classes, and for each class apriori
knowledge on object shape is represented via a template: a parametric model
of a typical object. Natural variability in object shape is then modelled by
applying a transformation group to the template.

Papers I-II and V-VI are motivated by problems occuring in the use of
ultrasound data for medical purposes. Ultrasound is widely used in medicine,
mainly because of low cost, relative safety, real-time imaging capability, and the
availability of portable units. Moreover, ultrasound is increasingly applied for
complicated tasks such as image-guided surgery (Langg, 2000) and evaluation
of cardiac diseases (Mulet-Parada and Noble, 2000), all of which call for the
detection and tracking of anatomical boundaries. The development of such
applications, as well as the more traditional use of ultrasound for diagnosis and
monitoring, are hampered by the low contrast caused by blur, reflections at
tissue interfaces, and speckle: image artifacts caused by the coherent detection
of reflections from small, closely located reflectors in the imaged tissue. These
degradations give ultrasound images their characteristic granular appearance,
and seriously reduce their diagnostic value.

Object recognition and measurement using deformable templates are the
topics of papers I, II, and III. We aim at locating and measuring the shape
and size of objects in ultrasound images and laser range images, and the nature
of these imaging modalities poses a great challenge. Careful modelling of the
imaging process is necessary, and a Markov random field model for ultrasound
images is used both for object recognition, and as a basis for the restoration of
ultrasound images in papers V and VI. Paper IV presents an overview of recent
work in Bayesian image analysis, both on pixel-based and object-based models.

Summary

The main theme of Paper I and Paper II is interpretation of ultrasound images.
As an example application we are interested in measuring change in the cross-
sectional area of a blood vessel resulting from some stimuli. For this to be of any
use, not only point estimates, but also uncertainty estimates must be provided,
and we therefore aim at producing interval estimates of the vessel areas. We use
a deformable template (Grenander and Miller, 1994; Rue and Hurn, 1999) model
for the vessel wall, and combine it with a physically based likelihood model
for ultrasound images. This model is also used in papers V and VI. We use
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two Gaussian fields to model the spatial variations in acoustical characteristics
inside and outside of the vessel wall; the fields are only observed within their
respective regions, and are approximated by Gaussian Markov random fields
(Rue and Tjelmeland, 2001) to achieve efficient computations.

A problem in ultrasound imaging especially relevant for contour detection is
the strong reflections at tissue interfaces being approximately perpendicular to
the incoming ultrasound pulse. The explicit prior model for the contour allows
us to easily correct for such reflections, and we present experiments showing
that this correction is important for obtaining reliable estimates of the vessel
wall.

A main concern in our analysis is robustness: Inferences should be valid
and efficient under the model, even with the poor data often encountered in
ultrasound imaging. We find that for our particular problem, robustness is de-
pendent both on a good likelihood model and a well-designed MCMC sampling
scheme; in particular, we need to update all or nearly all parameters jointly.
We show examples estimating areas in images of the carotid artery, and obtain
results that are deemed reasonable by medical experts. The main contributions
of the paper are the specification of a model for contour detection in ultrasound
images that is much more robust with respect to poor data than traditional
models; and the demonstration that the choice of sampling scheme greatly af-
fects the robustness of the proposed method.

Paper III is related to papers I and II by the use of deformable templates
for modelling objects, and is motivated by problems occurring in automated
target recognition (ATR), ie. the identification and tracking of three-dimensional
targets based on their projections onto an image sensor (see eg. Miller, Srivastava
and Grenander (1995)). Besides classification of objects, this often involves the
estimation of nuisance parameters such as target position and orientation.

In ATR objects are often assumed to be rigid and having a surface with
fixed and known texture, but lately there has been an increasing interest in mod-
elling non-rigid objects and objects with highly variable shapes and textures.
Paper III represents a step in that direction, and is concerned with objects hav-
ing shapes that are highly irregular on a local scale. A triangulated template
surface represents the global shape of the object, and variations on a finer scale
is modelled by assuming the object to consist of geometric primitives placed at
random position within the region defined by the template outline. The model
is parametrised by a low-dimensional Lie group representing the deformation of
the template, and the intensity function of the inhomogeneous Poisson process
defining the positions of the geometric primitives. We take a Bayesian approach,
and use MCMC methods to explore the parameter space. Experiments are per-
formed on laser range images of forest, and show that the model is well suited
for locating and estimating the shape of irregular objects, even objects that are
partially occluded.

Paper IV presents an overview of recent work in Bayesian image analysis,
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both on pixel-based and object-based models. The paper focuses on all aspects
of the methodology, including modelling, inference, and the treatment of pa-
rameters.

Paper V concerns restoration of ultrasound images. Current approaches
are primarily focused on reducing speckle to enhance the contrast between the
objects of interest and the background, and most work have been done on filter-
ing (Iwai and Asakura, 1996; Zong, Laine and Geiser, 1998) and deconvolution
(Jensen and Leeman, 1994; Taxt, 1995) techniques. These approaches have in
common that they do not utilise all knowledge of the physics behind ultrasonic
image formation. In addition, many work on the intensity images that are ob-
tained by transforming the raw data — or radio frequency image — received by
the scanner. The intensity images are visually more pleasing and can be stored
with less sampling and memory than the raw data, but contain less information
and are more difficult to model.

A Bayesian approach using Markov random field (MRF) models is natural
for modelling the spatial structure of the imaged anatomy, but to our knowledge
there has been little work in that direction. Hokland and Kelly (1996) presents
one attempt, building a discrete MRF model based on a well-known model
for radio frequency ultrasound images (Goodman, 1975; Wagner, Insana and
Brown, 1987). In Paper V we extend this model, using a smooth MRF to
model the variations in acoustical characteristics present in the imaged anatomy.
Based on the assumption that acoustical characteristics vary smoothly within
homogeneous tissue, but may change abruptly at interfaces between different
tissues, we use an edge-preserving (Geman and Yang, 1995) prior distribution to
model the imaged anatomy. The smoothing prior is combined with the physical
likelihood to yield a posterior distribution which is explored using Markov chain
Monte Carlo (MCMC) methods. We present results from restoration of both real
and simulated ultrasound images, and compare them to restorations obtained
by Wiener filtering.

The results demonstrate the usefulness of MRF models in restoration of
medical ultrasound images. The restorations of the simulated images are more
representative of the true object than the observed images. Also, in case of
the real image, the restorations obtained are significantly better than the one
produced by Wiener filtering. In both cases the speckle patterns are efficiently
removed, and, at the same time, important details are kept, and artificial struc-
tures are not introduced.

The model in Paper V is based on knowledge of the point spread function
(PSF) of the imaging system. However, in reality one cannot assume the point
spread function to be known precisely, especially as it is known to change as the
ultrasound pulse penetrates the body (Ddegard, 1995). Attempts at estimating
non-stationary point spread functions have been made, but it would be of great
importance and advantage to have a restoration method that works well even
when the point spread function is poorly estimated and spatially invariant. In
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Paper VI we investigate the robustness of our restoration method with respect
to incorrectly specified sizes and frequencies of the model point spread function.
We degrade simulated ultrasound images using both parametric and measured
point spread functions, and then use different PSF shapes during restoration to
study the effect of misspecifications. We find that variations in the parameters
characterising the point spread function of the order +25% yielded satisfac-
tory results. Larger changes gave restorations that were unacceptable. Thus,
Bayesian restoration using a fixed point spread function may yield good results
as long as the true variant point spread function have not changed too much
during imaging.
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images using a deformable template model
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Abstract

We consider the problem of obtaining interval estimates of vessel ar-
eas from ultrasound images of cross-sections through the carotid artery.
Robust and automatic estimates of the cross sectional area is of med-
ical interest and of help in diagnosing atherosclerosis, which is caused
by plaque deposits in the carotid artery. We approach this problem by
using a deformable template to model the blood vessel outline, and use
recent developments in ultrasound science to model the likelihood. We
demonstrate that by using an explicit model for the outline, we can eas-
ily adjust for an important feature in the data: strong edge reflections
called specular reflection. The posterior is challenging to explore, and
naive standard MCMC algorithms simply converge to slowly. To obtain
an efficient MCMC algorithm we make extensive use of computational ef-
ficient Gaussian Markov Random Fields, and use various block-sampling
constructions that jointly update large parts of the model.

1 INTRODUCTION

Ultrasound is widely used in medical imaging, mainly because of its real-time
imaging capability, low cost, relative safety, and the availability of portable
units. Increasingly, medical ultrasound images are used in complicated applica-
tions such as surgery (Langg, 2000) and evaluation of cardiac diseases (Mulet-
Parada and Noble, 2000). Common to these and other applications is the need
for detecting anatomical boundaries, eg. for detecting the position of a surgi-
cal instrument, measuring response to some stimuli, or estimating quantities
such as ejection fraction and wall motion. To focus the discussion, we consider
the ultrasound images in Figure la and b, showing cross-sections through the
carotid artery of a single individual. The carotid artery is susceptible to plaque
deposits, a condition called atherosclerosis. The condition is usually diagnosed
by angiography, but this method does not work for all patients. An alternative
is to use ultrasound, since the vessel walls appear more clearly in that partic-
ular image modality. It is known that healthy arteries will dilate in response



to infusion of acetylcholine, and thus comparison of the cross-sectional vessel
areas before and after infusion may help in diagnosing atherosclerosis. For this
method to be of any use, not only point estimates, but also uncertainty esti-
mates must be provided, and we therefore aim at producing interval estimates
of the quantity of interest.

We construct a Bayesian model which is analysed using MCMC. In order
to obtain reliable estimates we need both a good model for the data formation
process, ie. the likelihood, and a well-designed MCMC sampling scheme. In
particular, we need to update jointly all or nearly all parameters in our model,
an approach which is computational feasible due to recent advances in sampling
and design of Gaussian Markov Random Fields (Rue, 2001; Rue and Tjelmeland,
2001).

(d)

Figure 1: Ultrasound images of cross sections through the carotid
artery. Panels (a)-(b) show the log-compressed intensity images as
they appear on the screen, while panels (c)-(d) show the raw data
— or radio frequency image — collected by the ultrasound scanner.

There exists a vast literature on contour detection in medical images, see eg.
Duncan and Ayache (2000) and Pham, Cu and Prince (2000) for recent reviews.
Most of these methods, including the popular active contour models (Kass,
Witkin and Terzeopoulos, 1988), are deterministic, thus only providing point
estimates of the contour. In a more statistical setting, a popular approach is to
use the deformable template models introduced by Ulf Grenander, see Grenan-
der (1993) for a thorough review. Deformable template models have been used
for such diverse tasks as recognising hands (Grenander, Chow and Keenan,
1991), galaxies (Ripley and Sutherland, 1990), potatoes (Grenander and Man-
beck, 1993), cells (Grenander and Miller, 1994; Rue and Syversveen, 1998; Rue
and Hurn, 1999), magnetic domains (Qian, Titterington and Chapman, 1996),
mushrooms (Mardia, Qian, Shah and de Souza, 1997), fish (de Souza, Kent
and Mardia, 1999), and roads (Stoica, Descombes and Zerubia, 2000). In ultra-
sound images there exists a few Bayesian approaches to contour detection, using
eg. deformable templates (de Figueiredo and Leitao, 1992; Hansen, Mgller and
Togersen, 2001), point distribution models (Glasbey, 1998), and line processes



(Kao, Pan, Hiller and Chen, 1998).

In ultrasound imaging a pulse of ultra high frequency sound is sent into
the body, and the backscattered signal is measured after some time delay cor-
responding to the desired depth. Compared to most other image modalities,
contour detection in ultrasound images is particularly difficult because of the
low resolution caused by noise, blur, edge reflections, and image artifacts called
speckle. Speckle is caused by the coherent detection of the acoustic echoes, and
give ultrasound images their characteristic granular appearance. Another im-
portant feature is the strong reflections at tissue interfaces being approximately
perpendicular to the incoming pulse. This effect is called specular reflection,
and is clearly seen in Figure la and b; note in particular the strong signal on
the upper and lower part of the vessel. Speckle and specular reflection seriously
affects the quality, accuracy and robustness of those contour detection methods
in which the likelihood is defined through intensity gradients in the image. This
is because intensity gradients in ultrasound images often have large variations,
are missing or are artificial. It is tempting to resolve the data modelling issue
based on the intensity data available on the screen, but this approach is hard
for several reasons and is still not solved satisfactory.

In our approach we use a model that takes into account how speckle patterns
and specular reflections are formed. Contrary to what is common, we do not
use the processed ultrasound image as it appears on the screen, but instead
collect the raw data received by the scanner, before any pre-processing is done.
The corresponding data for Figure la and b are provided in Figure 1c and d.
The raw data — or radio frequency image — contains more information than the
commonly used intensity image, and moreover there exists a tractable, physical
model for how these data are formed (Goodman, 1975; Wagner, Insana and
Brown, 1987). One drawback of using the raw data is that they are not easily
accessible but require some engineering work to tap the signal in the correct
place. Hokland and Kelly (1996) and Husby, Lie, Langg, Hokland and Rue
(2001) have investigated image restoration using the raw data with binary and
gray-level pixel prior models, but neither are able to provide us with robust
interval estimates of the vessel area.

The purpose of this work is to demonstrate how a deformable template
model for the vessel contour naturally fits into the data model for the radio
frequency image using the Bayesian paradigm. Further, a direct prior model
for the contour makes it easy to correct for specular reflections. However, the
posterior density is challenging to explore using standard MCMC methodology,
and the design of a fast and robust sampling scheme was a challenge; even
quite involved schemes gave severely biased interval estimates for the vessel
area. We have made use of three important ingredients to construct a robust
and fast MCMC sampling scheme: the ability of Gaussian Markov Random
Fields (GMRF) to approximate stationary Gaussian fields on a lattice (Rue and
Tjelmeland, 2001), fast sampling of GMRFs based on numerical algorithms for
sparse matrices (Rue, 2001), and knowledge on how to construct joint proposals
for use in MCMC algorithms for situations with a few hyperparameters control-



ling one or many Gaussian or near Gaussian fields (Knorr-Held and Rue, 2002).

The article is organised as follows. In section 2 we present details of the
model, including the deformable template model for the vessel wall, and the like-
lihood model for ultrasound image formation. Inference and MCMC sampling
are discussed in section 3, and results are presented in section 4.

2 MODEL FORMULATION
2.1 Data Formation

2.1.1 A Model for Radio Frequency Ultrasound Images A statistical model
for radio frequency signals was first described in Goodman (1975), and the
model has later been shown to be reasonable for body liquids and most soft
tissues (Insana, Wagner, Garra, Brown and Shawker, 1986). Under the model
a body liquid or tissue is seen as a collection of point scatterers lying in a
uniform non-scattering medium. The incoming ultrasound beam is reflected
at each scatterer, and the sum of these reflections is the received signal. The
dominating part of the scattering is called diffuse scattering, which occurs when
there is a large number of randomly located scatterers of roughly equal size. It is
assumed that the spatial variation in density is small relative to the resolution
of the image. Then the diffuse scattering signal & consists of n independent
Gaussian random variables x; having zero mean and a variance dependent on
the acoustical properties of the tissue or body liquid. The variance will only in
ideal situations be constant within each tissue type or body liquid, but will in
practice be spatially smooth.

In our case the true scene consists of two natural regions, one corresponding
to the interior of the blood vessel and the other to the surrounding muscle
tissue. Let t define the boundary of the blood vessel, and v and vy be the log
variance of x in the exterior and interior region, respectively. The assumption
of independence between the z;’s is not realistic in all situations, but reasonable
in our case.

2.1.2 Modelling Edge Reflections This signal « is the main component of
the raw data. However, at interfaces between different tissue types or at tis-
sue/blood interfaces, there is a strong reflection component due to the abrupt
change in acoustical impedance, which is the mass density of the tissue times
the speed of sound. The effect is called specular reflection and is strongest when
the tissue interface is approximately perpendicular to the incoming pulse. The
specular reflection is determined by the reflection coefficient (Christensen, 1988)

Z2 _ Zl
__ cosfy cos 1
R - 7 71 (1)
cos 0o + cos 1

where Z; and Z, are the acoustic impedances on the incident and transmit-
ted side of the interface, respectively; and #; and 6, are the angles between



the interface and the incoming and transmitted beams, see Figure 2a. The
incident and transmitted beam angles 6, and 6, are related by Snell’s law
sinf;/sinfy = c1/ce, where ¢; and ¢y are the beam velocities. The coeffi-
cient in Eq. (1) measures the total reflection, but the amount of the reflection
returning to the ultrasound transducer will depend on the angle of incidence.
We follow Hokland and Kelly (1996) and model the specular reflection returned
to the transducer as

Zy  _ _ 4
. __ cosfs cos 01 %
rg =gt s cos” 6y, (2)
cos 02 cos 01

for a site ¢ on the tissue interface. Figure 2b shows the reflection coefficient R
measured counter-clockwise along a circle, starting on the middle right of the
circle. We use Z; = 162.0 kg/(s-cm?) and Z> = 166.6 kg/(s-cm?) corresponding
to muscle and blood, respectively (Christensen, 1988). Note that when the beam
velocity is higher in the transmitted medium than in the incident medium, there
exists critical angles for which no energy is transmitted.

The raw data is, after correcting for specular reflection, & + pr, where
the constant p is the relative magnitude of the specular and diffuse scattering
component. p can be estimated from the generalised spectrum of the observed
raw data (Varghese, Donohue and Chatterjee, 1995), but we find it easier to
treat p as an unknown parameter. Note that the specular reflection is clearly
visible in Figure 1c and d, as parts of the data has non-zero mean.

It is difficult to model the specular reflection without an explicit model for
the contour of the vessel, as we need to know both its position and tangent
to properly correct for the specular reflection. This is one motivation for the
later use of an explicit model for the contour of the vessel using a deformable
polygon template as a prior. Note however that the model for specular reflection
does not correct for all degradation effects, such as constructive and destructive
interference due to the spacing of the specular reflectors, but these effects are
in general more difficult to model.

2.1.83 Observation Model The observed radio frequency image y will at site i
be the superposition of signals from a small neighbourhood around i. We model
y as a convolution of x + pr with a point spread function h, with additive
independent zero mean Gaussian noise with unknown variance 1/A. We use the
point spread function

k2 2 27k
hi; xe —— — — | cos — 3
k,l XP( 20’% 20_5) w ’ ( )
where k and [ indexes the radial and lateral dimensions of the image, respec-
tively. Experiments have verified this to be a good approximation (@degard,
1995) for images similar to ours. To avoid over-parameterising the model we fix
w, o1 and o2 from inspection of the observed image and its derived frequency



Figure 2: Specular reflection. (a) Diagram showing the path of
the ultrasound pulse through a boundary between tissues hav-
ing acoustic impedances Z; and Z. (b) The specular reflection
coefficient R measured counter-clockwise from the middle right
of a circle. The impedances inside and outside the circle are
Z3 =166.6 kg/(s - cm?) and Z; = 162.0 kg/(s - cm?), respectively.

spectrum. Experiments indicate that similar methods are insensitive to slight
misspecifications of these parameters (Langg, Lie, Husby and Hokland, 2001).

2.2 Prior model

2.2.1 A prior model for the acoustical parameters In section 2.1.1 we defined
v(® and (M) as the log variances of & in the exterior and interior, respectively.
To model their smooth behaviour, we let each field be Gaussian with exponential
correlation functions, ie. v*) ~ N(u(k),E(k)) for k = 0,1, where

) = ojexp (=3li—jll/m), k=01, (4)
Although Gaussian fields are natural candidates for smooth log variance fields,
they are not computationally convenient due to full matrices giving complexity
of order O(n3) for vital operations. We make use of the results in Rue and
Tjelmeland (2001) which demonstrate how we can fit a GMRF with covariance
function very close to eg. the exponential using only a 5 x 5 neighbourhood
around each site. The computational complexity for the fitted GMRF is only
O(n?) (Rue, 2001), giving a speed-up of @(n). The density for v*), k = 0,1 is

T
w(u(k) | g, ) X exp (—%Tk (l/(k) - Hkln) Q(k) (V(k) - Hkln)> ) (5)

where the Q(k) ’s are the normalised precision matrices obtained by the approx-
imation method in Rue and Tjelmeland (2001), and 1,, is a vector with n ones.



The parameters 79 and 7 are the precisions and are given Gamma priors. The
levels o and p; are given uninformative constant prior densities.

Note that #(°) and 1) are defined on the whole lattice, but only observed
exterior and interior to the vessel contour, respectively. The next step is to
define the explicit model for the vessel contour.

2.2.2 A Deformable Template Model for the Vessel Wall We assume that the
shape of the vessel contour is well approximated by an m-sided simple polygon.
In the polygonal deformable template approach (see eg. Grenander et al. (1991))
the template for an object is a polygon representing a typical instance of its
shape, and variability in appearance is achieved by applying transformations to
the template polygon. In our application it is natural to let the prototype shape
be a circle; thus the template is represented by a set of vectors gg, g1, --- ,Gm—1
defining the edges of a circular polygon. With this representation, the template
does not have any location information, and so the first vertex is located at
a point ¢. The positions of the remaining vertices are ¢ + g,, ¢ + gy + 91,
and so on. Finally, to ensure that the polygon is closed we must impose the
constraint Z;’;Bl g; = 0. To model shape variability, the template is subject
to local deformations constituting a scaling and rotation of each edge, and we

write
o [ cosB;  sinb; _(1+ tl(-o) tEl)
8i9; =9; + G (_ sinf; cos 9i> 9; = ( _tgl) 14 tEO) 9i> (6)

where the variables (; and 6; represents the scale and angle of rotation for the
change s;g; — g;. Letting (; be proportional to a Rayleigh random variable,

and 6; be uniformly distributed on the interval [0,27), tEO) and tEl) can be
seen to be independent and identically distributed zero mean Gaussian random
variables. To impose smoothness in the deformations we let the unconstrained
deformation vector t = (t(()o, . ,tgg)_l,t[()l),... ,tg,}b)_l) be Gaussian with zero

mean and precision matrix I, ® P, where P has entries

Epogm® i=j
Pl']': —4T}m3 i:j—l,j+1m0dm (7)
nm? i=7—2,7+2mod m.
This parameterisation was suggested in Grenander (1993, Chap. 11), and its
behaviour is approximately independent of the number m of edges. The hy-
perparameters k£ and 7 are given Gamma priors. Hobolth and Jensen (2000)
derived the limiting Gaussian process as m — oo, and based on their results
we can choose hyperparameters such that the priors are reasonably informative.
Imposing the closure constraint ), s;g; = 0 reduces the parameter dimension to
2m — 2, and destroys the Markov structure of the model. However, for the pur-
pose of MCMC simulation the unconstrained density is sufficient (when x and



7 are kept fixed) since we only need to evaluate the ratio of the density at two
positions ¢ and t'. As the constraint is linear in £, the ratio of two constrained
densities equals the ratio of the corresponding unconstrained densities.

2.3 Summary of the posterior

The posterior is proportional to the product of the prior and the likelihood,
and is summarized in Figure 3. The first part of the model is the deformable

Vessel contour  t
Interior log-variance V;

Exterior log-variance V,

Diffuse scattering image

r

Specular reflection r \1/

E Observed radio frequency image

Figure 3: Graphical representation of the model for contour esti-
mation in ultrasound images.

template ¢ defining the contour of the vessel. The contour defines which parts
of the log variance fields v(") are visible, and hence we have defined the log
variance of x for each site in the image. The contour and its tangent function
defines the specular reflection pr; at each site. Sampling the components of
independently with the corresponding variance and adding pr, then blurring
with the point spread function h and adding independent zero-mean Gaussian
noise, gives us the observed raw data. The posterior is found by conditioning
the joint model on the observed y and is proportional to the joint density.

3 CONSTRUCTION OF MCMC ALGORITHMS

Our next task is to construct an MCMC algorithm that is able to explore the
posterior defined in section 2.3, and return samples with the correct limiting
distribution. For each sample from the posterior we can compute the corre-
sponding cross sectional area (CSA) of the blood vessel using Green’s theorem,
thus producing a sample from the posterior distribution for the CSA. Using
these samples we estimate the marginal density of the CSA, and compute its



posterior mean estimate and estimated credibility interval. Although the route
ahead might seem standard, there are severe problems constructing a reasonable
MCMC algorithm.

The model consists of several fields (z, v(°) and v(1), each with their re-
spective hyperparameters; and the deformable template ¢ with its hyperparam-
eters. The sampling difficulties are due both to the strong interaction between
each field and its hyperparameters, and to the interdependency between the
fields including ¢. Moreover, there are computational difficulties due to the high
dimension of the fields, so a naive implementation will not be computationally
feasible.

The Markov chain is easiest and most commonly constructed using single
site updating, which consists of sampling parameters sequentially from their
full conditional distributions. For models with strong spatial interactions sin-
gle site samplers are known to have poor mixing and convergence properties,
and significant computational improvements can be gained by block updating
the components of the random fields (Liu, Wong and Kong, 1994; Knorr-Held
and Rue, 2002). Knorr-Held and Rue (2002) demonstrated that the best effect
occurs when the random fields are updated jointly with their hyperparameters
by constructing joint updates: Use a simple random walk, say, for the hyper-
parameters, update the field (or more than one field) by sampling from its
conditional density and then accept or reject jointly. The computational costs
of such blocking schemes have until now been prohibitive, but efficient com-
putations are available for GMRFs (Rue, 2001). This includes both efficient
sampling and computations of the log-posterior gradient for use in Langevin
proposals; the speedup is in both cases O(n). The full conditionals for a, v(*)
and v all take advantage of the GMRF representation. The full conditional
of the deformation parameter ¢ of the template is somewhat more complicated
due to inclusion and exclusion of data which are either outside or inside of the
deformed template, and due to the correction for specular reflection. For v(9),
vV and t we construct block-updates based on the Langevin proposal, ie.

v © N (1/(0) + %hv Inr (u(0> | ) ,hI) (8)

where h is a scaling parameter. For x we use that the full conditional is a
GMREF.

We have implemented various sampling schemes to investigate whether the
choice of sampler affect the estimated CSA of the blood vessel, and the ro-
bustness of each scheme over various datasets. All schemes follow the setup in
Knorr-Held and Rue (2002), as previously described. The hyperparameters are
all updated in the same manner; if they are positive, we propose a new value by
scaling with an s having density proportional to 1+1/s on [1/f, f], where f > 1,
otherwise we sample a new proposal uniformly in a neighbourhood around the
old value. We tune the proposals so the acceptance rate is about 25%.

Scheme 1 This scheme updates each field (z, v, (1) or t) jointly with one



of its hyperparameters. The fields are either updated using a GMRF (x)
or a Langevin proposal (¢(®, v() and t).

Scheme 2 This scheme is similar to scheme 1, but we update the fields  and ¢
jointly together with one of their hyperparameters in the following sense.
A new value ' for one of the hyperparameters 6 is proposed. Conditioned
on ' and = we propose a new value ¢’ for ¢, and then a new value z'
for x is drawn from its full conditional. Finally (x’,t',6") are accepted or
rejected jointly.

Scheme 3 This scheme is similar to Scheme 2 except that we update all fields
in a single block together with each hyperparameter in turn.

The motivation behind scheme 2 is the belief that & and ¢ are the fields having
the strongest interaction, and we therefore update them jointly. If there are
strong between-field dependencies, scheme 2 and 3 may possibly reduce their
effect by improving the mixing properties of the Markov chain.

As the hyperparameters change in each proposal, the acceptance proposal
will in most cases involve the evaluation of the normalising constant of the
GMREF fields. However, the normalising constant can be efficiently computed,
see Rue (2001) for details.

For a 64 x 128 image, a 500MHz PC used approximately 0.18 seconds per
iteration for Scheme 1, and 0.16 seconds per iteration for Schemes 2 and 3. One
iteration consists of updating all hyperparameters in the model, each jointly
with one or more of the fields.

4 RESULTS

In this section we present the estimated cross sectional vessel areas in the images
shown in Figure 1, and summarise our experience regarding specification of
hyperparameters, performance of the different sampling schemes and the effect
of correcting for specular reflection.

4.1 Specification and effect of priors

We use quite informative priors for the unknown parameters in the deformable
template due to our specific knowledge of the object in the image. Based on
analysis of the limiting correlation structure (Hobolth and Jensen, 2000), we
found that x about 100 and 7 about 1073 gave a reasonable behaviour of re-
alizations from the prior. Hyperpriors were then selected having these values
as means. All other parameters in the model were given near un-informative
[-priors and uniform priors, for parameters defined on Rt and R, respectively.
We found the interval estimate for the vessel area to be rather insensitive to
different but sensible choices of the hyperparameters.
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4.2 Performance of the sampling schemes

Performance of the three different sampling schemes was monitored by inspect-
ing trace plots and autocorrelations for the parameters and other statistics of
the Markov chain. Especially the trace of the cross sectional area, which is our
main target, where studied carefully. It was our experience, that the CSA was
the slowest converging statistics of those we studied. This is not surprising given
the complexity and high dimension of the model.

Quite interestingly, we found the interval estimate to depend on the choice
of sampling scheme. Scheme 1 performed poorly, exhibiting slow convergence.
Repeated runs revealed that the Markov chain is prone to get stuck in local
minima, or even drifting off; in this sense the sampling scheme is not robust. The
behaviour of scheme 1 is somewhat surprising considering the complexity of the
sampling scheme. The reason is the strong interdependency between the radio
frequency field  and the template ¢. Thus, updating one field conditionally on
the other may cause the chain to move very slowly. A single-site scheme behaves
even worse.

The other two schemes perform better in that their behaviour is consistent
over repeated runs, several datasets and different initialisations, and that the
estimated contour and CSA were reasonable compared to “reference” estimates
obtained with very long runs. Inspection of autocorrelation plots and compari-
son of the asymptotic variances for the CSA, reveal that Scheme 2 is better than
Scheme 3. In the last scheme the number of parameters to update is more than
doubled, and the dependence between the v-fields and the other fields does not
seem to be strong enough to counterbalance the increase in complexity. The
estimated autocorrelation function for Scheme 2 is shown in Figure 4, indicating
reasonably good mixing of the chain.

4.8 Effect of the specular reflection

The fact that we could adjust for specular reflection by having an explicit
model for the outline of the blood vessel, was one main motivation for using
a deformable template model. Modelling specular reflection is important in
ultrasound imaging, as the large variations in signal magnitude around the con-
tour may cause problems. The importance of the correction is most prominent
when data is of low quality, as is the case here. Figure 5 illustrates this ef-
fect, and shows 50 samples taken with a separation of 100 iterations in MCMC
runs without correction for specular reflection (left image), and with correction
for specular reflection (right image). Without the correction, the deformable
template can take strange shapes trying to over-fit the data.

4.4 Results

Figure 7 shows the histogram of the CSA for the images in Figure 1, using the
model for specular reflection and the prior settings described above. The corre-
sponding 95% credibility intervals are [2690, 3086] for Figure 1a and [1062, 1530]
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Figure 4: FEstimated autocorrelation function for the cross-
sectional area using Scheme 2. The function is calculated using
every 100th sample after a burn-in of 25 000 iterations.

Figure 5: Samples from the posterior distribution for the vessel
wall in Figure 1la. We have collected every 100th sample after a
suitable burn-in period.
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for Figure 1b. We have also computed point-estimates of the vessel walls by us-
ing the distance average for random closed sets (Baddeley and Molchanov, 1998).
Visually the point-estimates (Figure 6) seem reasonable, without carrying too
much spurious detail. The results have been evaluated by cardiologists, who
have found them to be in good agreement with their knowledge of vessel shapes.

Figure 6: Point-estimates of the vessel wall for the images in Fig-
ure la and Figure 1b, respectively.

Figure 7: Histograms of the CSA for the images in Figure 1a and
Figure 1b, respectively.
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CHAPTER 1

Introduction

Bayesian analysis of images has received considerable attention over the last
20 years, following ground-breaking work on pixel based Markov random field
models (Geman and Geman, 1984; Besag, 1986) and object models (Grenander,
Chow and Keenan, 1991; Grenander and Miller, 1994). In the advent of these
new developments, and as the theory for Markov chain Monte Carlo (MCMC)
sampling has developed (Besag, Green, Higdon and Mengersen, 1995; Green,
1995; Rue, 2001), image models have become increasingly more complex, focus-
ing on interpretation tasks such as recognition, classification, and detection of
abnormalities (Grenander and Miller, 1998; Rue and Hurn, 1999). As models
and applications have grown in scope and complexity, there has been interest
in fully utilising the Bayesian paradigm’s ability to provide more information
than just point estimates. For the end user quantitative measurements of uncer-
tainty are often of vital interest, and can be provided for instance by means of
an interval estimate. In relation to this many authors advocate the use of fully
Bayesian approaches to integrate out the effect of hyper-parameters (Higdon,
Bowsher, Johnson, Turkington, Gilland and Jaszczak, 1997; Weir, 1997; Hurn,
1998). There has also been some interest in developing better point estimators
more tailored for image interpretation than the usual MAP or MPM estimators
(Baddeley, 1992; Rue and Syversveen, 1998).

The development of realistic data models has not received the same amount
of interest as the prior models. However, besides the important fact that a re-
alistic likelihood makes the analysis more believable, modelling the image for-
mation process allows us to extract more information from the data. Thus
data modelling may increase the scope of applications, as well as reducing un-
certainty in the estimates. Some recent work on data modelling can be found
in emission tomography (Green, 1990; Weir, 1997), microscopy (Higdon and
Yamamoto, 2000), and impedance imaging (Nicholls and Fox, 1998; Andersen,
Brooks and Hansen, 2000). In this report we consider ultrasound imaging, and
present a new model for contour detection in ultrasound images. Ultrasound is
an widely used imaging modality, mainly because of low cost, portable equip-



ment and real-time imaging capability. Increasingly, medical ultrasound images
are used in complicated applications such as surgery (Langg, 2000) and evalu-
ation of cardiac diseases (Mulet-Parada and Noble, 2000). Common for these
and other applications is the need for detecting anatomical boundaries, eg. for
determining the position of a surgical instrument, measuring response to some
stimuli, or estimating quantities such as ejection fraction and wall motion. There
exists a vast literature on contour detection in medical images, see Duncan and
Ayache (2000) and Pham, Cu and Prince (2000) for recent reviews; including a
few Bayesian approaches using line processes (Kao, Pan, Hiller and Chen, 1998)
and deformable templates (de Figueiredo and Leitao, 1992; Hansen, Mgller and
Togersen, 2000). Compared to most other image modalities, contour detection
in ultrasound images is particularly difficult because of the low resolution caused
by noise, blur, edge reflections, and image artifacts called speckle; still most of
the current approaches use image data as they appear on the ultrasound scanner
after some pre-processing, using a simple additive Gaussian noise model as a
likelihood. Such a model does not take into account how the speckle patterns
are formed, and thus do not use all information provided by the data. However,
a physical model for ultrasound imaging does exists, based on the raw data —
or radio frequency signal — received by the scanner (Goodman, 1975; Wagner,
Insana and Brown, 1987). Figure 1.1 (f) shows an example of a radio frequency
ultrasound image. Recently the model for radio frequency images has been
proposed for restoration of ultrasound images (Hokland and Kelly, 1996; Husby,
Lie, Langg, Hokland and Rue, 2001; Langg, Lie, Husby and Hokland, 2001), and
the main contribution of this report is to use this physically sound likelihood
together with a deformable template model for contour detection in ultrasound
images. The derived hierarchical model is complex, hence great care needs to be
taken in designing a MCMC sampling algorithm for doing inference. In related
applications such as agricultural field experiments (Besag and Higdon, 1999) and
spatial epidemiology (Knorr-Held and Rue, 2002) block updating has proved to
be very efficient, and we explore different block sampling algorithms for our
model. It turns out that the choice of sampler is important for the reliability of
the MCMC simulation.

To be more specific, Figure 1.1 shows a collection of real ultrasound im-
ages. Figure 1.1 (a) displays a part of the right ventricle of the human heart,
while Figure 1.1 (b) and (c) show images of an abdominal aorta aneurism, i.e.
a blood-filled dilatation of the aorta. The roundish object in the middle of the
aorta is a vessel prosthesis. Finally, panels (d)-(f) displays cross-sectional im-
ages of the carotid artery, taken from the neck of a single individual. Common
to the images is the characteristic speckle pattern that makes it difficult for the
untrained eye to spot the important anatomical features, and this calls for image
restoration techniques to improve contrast and resolution. We have previously
discussed restoration using our new model for radio frequency ultrasound images
and relying on standard single site MCMC algorithms for sampling and infer-
ence (Husby et al., 2001; Langg et al., 2001). To preserve discontinuities in the
images, our model uses non-convex, edge-preserving prior potentials (Geman



and Reynolds, 1992; Charbonnier, Blanc-Feraud, Aubert and Barlaud, 1997)
which are known to have poor sampling properties. We did indeed experience
slow convergence and inadequate mixing of our MCMC sampler, and the first
aim of this report is to explore whether block sampling can improve the sam-
pling properties of edge-preserving models. We start in Chapter 3 by deriving
our model for radio frequency ultrasound images, and continue in Chapter 4 by
reviewing edge-preserving prior models and discussing some of their important
properties, in particular a dual model formulation introduced by Geman and
Yang (1995). The dual model depends both on the parameters of interest and a
set of auxiliary parameters, and is Gaussian conditional on the auxiliary param-
eters. We show how to construct such a dual model, and discuss how we can do
block updating of the unknown parameters using Rue’s algorithm for sampling
Gaussian Markov random fields (Rue, 2001). In Chapter 7 we show examples
comparing the block sampling algorithm with standard single site sampling.
The second theme of this report is interpretation of ultrasound images.
To focus the discussion we present two potential applications involving contour
detection. Figure 1.1 (b) and (c) shows an abdominal aorta aneurism, which
is a potentially lethal condition, treated by inserting a vessel prosthesis. This
is a delicate operation, and in the subsequent year the patient must undergo
frequent follow-ups to check if the condition is stable. One particular concern
is that the aneurism deflates and obstructs the flow of blood through the vessel
prosthesis, and one therefore produces a sequence of cross-sectional images along
the whole aneurism, and use the images to get an impression of the shape of
the aneurism. The visualisation can be eased by using deformable templates
to estimate the contour in each image, and then use eg. a smoothing spline
for constructing a 3D model of the aneurism. A second example concerns the
vessel images in Figure 1.1 (d)-(f). The carotid artery is susceptible to plaque
deposits, a disease called atherosclerosis. This condition is usually diagnosed by
angiography, but the method does not work for all patients. An alternative is
to use ultrasound, since the vessel walls appear more clearly in that particular
modality. Furthermore it is known that healthy arteries will dilate in response
to infusion of acetylcholine, and thus comparison of the cross-sectional vessel
areas before and after infusion may help in diagnosing atherosclerosis. For this
method to be of use, uncertainty estimates of the areas must be provided, and
we therefore aim at obtaining interval estimates of the cross-sectional areas.
These applications call for the use of deformable templates in analysis of
ultrasound images, and for the need for obtaining both point estimates and in-
terval estimates of contours. Another motivation for using template models is
the strong reflections occurring at tissue boundaries in ultrasound images, see
eg. Figure 1.1 (b) and (d). These reflections can be much stronger than the
other modes of reflection, but are difficult to model without using explicit mod-
els for the tissue boundaries. We will demonstrate how we can use templates to
model reflections at boundaries, and show experiments comparing models with
and without boundary reflection. We discuss deformable template models in
Chapter 5, and inference in object models in Chapter 6. We are particularly



concerned with obtaining good point estimates of closed curves, and thus dis-
cuss distances between such curves. A hierarchical Bayesian model for contour
detection is presented in Chapter 8, together with experiments using both a sim-
ulated ultrasound image and real images of blood vessels. Finally, we conclude
with a discussion in Chapter 9.



(f)

Figure 1.1: Real ultrasound images. Panel (a) shows a log-
compressed radio frequency image of the right ventricle of the
heart, while panels (b)—(c) show B-scan ultrasound images of an
aorta aneurism with a vessel prosthesis in the middle. Panels
(d)—(f) display radio frequency ultrasound images of cross sec-
tions through the carotid artery. The images in (d)—(e) are log-
compressed to enhance contrast.



CHAPTER 2

Preliminaries

2.1 BAYESIAN IMAGE ANALYSIS

In image analysis the basic problem is to recover an unknown, “ideal” image
x = {zs; s € S} from an observation y = {ys; s € T'} related to = through a
forward imaging transformation accounting for noise, scattering, digitisation,
etc. We will in the following assume T = S C Z2. Usually the problem is
ill-posed, as the information provided by the data is not sufficient to establish
. One way of dealing with this is to introduce a priori knowledge or beliefs on
x, and to search for an estimate & that (i) satisfies the prior assumptions on z,
and (i7) is in “agreement” with the data y. These constraints are determined by
the prior distribution 7(z) on the space of ideal images, and by the likelihood
distribution with density on the space of observations; these are combined to
yield the posterior distribution

m(z|y) < w(y|z)m(z), (2.1)

from which we seek an estimator & based on some decision-theoretic rule (see
Section 6.1). The likelihood distribution is problem dependent, and is based on
physical knowledge of the imaging system. A likelihood model for ultrasound
images is one of the main topics of this report, and is discussed in Chapter 3.
Prior models are discussed in Chapter 4 and Chapter 5. Both distributions
are usually and most conveniently expressed in terms of Markov random field
models, which we describe briefly. See eg. Besag (1974) and Winkler (1995) for
details and further references.

2.2 MARKOV RaNDOM FIELDS

Consider a finite array S C Z?2 with n sites. Let © = {xs; s € S}, with each x;
defined on a separable space E with o-algebra £. A strictly positive probability
distribution 7 on E" is called a random field. To obtain Markov random fields
we associate a neighbourhood 0s C S to each node s € S. The collection



0 ={0s : s € S} is called a neighbourhood system if it satisfies the conditions
(1) s € Os, and (ii) t € 0s & s € Ot. We write s ~ t if sites s and ¢ are
neighbours.

DEFINITION 1
A random field 7 is a Markov random field w.r.t. the neighbourhood system O
if for all events A € £™ and subsets C € S,

m(rc € Alzs\c) = m(zo € Al wac).

A nonempty subset C C S is called a clique if C' contains a single point or if
all elements are pairwise neighbours. We let C be the set of all cliques. The
concept of cliques gives us an elegant and efficient way to represent the joint
distribution 7 (z) for a Markov field:

THEOREM 1 (HAMMERSLEY-CLIFFORD,(BEsAG, 1974))
A random field 7 is a Markov field w.r.t. the neighbourhood system O if and
only if we can write

7(z) o exp (- > Vc(m)> : (2.2)

cecC
where the V¢ (-) are arbitrary functions satisfying [ exp(— Y Ve (z))dz < oo.

The potential functions {Vo; C' € C} determines the properties of the Markov
field, and the choice of such functions will be discussed in Chapters 4 and 5.

2.2.1 Gaussian Markov random fields

An important Markov random field model is the Gaussian Markov random field,
which we will use extensively throughout. We therefore give a brief introduction,
and refer to eg. Guyon (1995), Besag and Kooperberg (1995), and Rue (2001)
for further details. A Markov random field x is Gaussian if and only if its
finite dimensional distributions 7, 7' C S are Gaussian. Defining the potential
function

Vc(x) _ {%%sxg — (ss (//fs + ngas ZST:HT) zs, C= {5}
qsrLsly, C= {T’, S},T’ 7£ S,

one can show that the conditional distribution for each element z, is Gaussian
with characteristics

Es|o_y) = pe— Y. g, (2.3)

r€ds Uss
Var (zs|2_s) = 1/gss- (2.4)



We often write the distribution on vector form as
1
m(x) x exp <—§$TQ£E + bTJ,’> ) (2.5)

where the inverse covariance, or precision, matrix () has entries Qs = ¢s and
b determines the mean p through the relation g = Q" 1b.

Rue (2001) discusses sampling of Gaussian Markov random fields using
Cholesky decomposition, ie. setting Q = LL” and solving L”x = z. Noting that
@ usually is sparse due to the local Markov structure, and that the bandwidth
usually can be made smaller by permuting the columns of @), he shows that for
amn; X ny (ng < ne) lattice with a (2n, + 1) x (2n, + 1) neighbourhood, the
Cholesky decomposition costs nsnini floating point operations (flops), while
solving LTz = z costs 2nyn?ny, flops. Note that the cost is linear in the largest
dimension, so that sampling rectangular arrays is relatively more efficient than
sampling square arrays. This is convenient in our ultrasound applications, as
ultrasound data usually are measured on rectangular lattices.

2.2.2  Approzimating Gaussian fields by Gaussian Markov random fields

One important aspect of Gaussian Markov random field models is the specifica-
tion of the precision matrix (). One wants the GMRF to fit with prior knowledge
about the spatial behaviour of the unknown parameter. For instance, if the cor-
relation structure of the unknown parameter can be represented by a Gaussian
field 7 with a given correlation function p, how can we specify a GMRF 7 to
approximate the Gaussian field? Rue and Tjelmeland (2001) solves this problem
by minimising the metric

~ ~ 1
D(m, @) = Z (prs — Prs) m; (2.6)
r,s€S\{0,0} ’

where d(r, s) is the Euclidean distance between (r, s) and (0,0) on the torus, and
p is the correlation function of the GMRF. They show that Gaussian Markov
random fields with 5 x 5-neighbourhoods can provide very good approximations
to Gaussian fields with exponential, Gaussian and spherical correlation func-
tions; for instance, Table 2.1 shows the coefficients of a GMRF approximating a
Gaussian field having an exponential correlation function with range 20. Note
that the coefficients are not very intuitive; this indicates that one should be
careful when specifying the precision matrix of a GMRF model.



Table 2.1: Coefficients of the GMRF fitted to a Gaussian field
having an exponential correlation function with range 20. The
table shows the parameters of the lower right of the 5 x 5 neigh-
bourhood.

330 285 —.150
285 015 .080
—.150 .080 —.060




CHAPTER 3

Ultrasound Images

In this section we describe ultrasound images: Their use in medicine and the
physics behind the image formation. We derive our model for radio frequency
ultrasound images, and show how we can model the strong reflections at tissue
boundaries.

3.1 INTRODUCTION

Ultrasound is widely used in medical imaging, mainly because of its low cost,
ease of use and its real-time imaging capability. The principle of ultrasound
imaging is simple: A pulse of ultra high frequency sound is sent into the body,
and the backscattered signal is measured after a time delay corresponding to
the desired depth. The sound waves travel at different speeds in different types
of tissue, and when the pulse hits a boundary between tissues having differ-
ent acoustic impedances, it is partially reflected and partially transmitted. In
addition there is reflection within homogeneous material due to randomly dis-
tributed (diffuse) or regularly spaced (quasi-periodic) scatterers. Thus varia-
tions in acoustic impedance is the basis for identifying regions of interest in the
imaged tissue.

However, the quality of ultrasound images is often low, due to noise and
blur introduced in the imaging process, and speckle, a characteristic granular
structure resulting from the interference of the echoes from the randomly dis-
tributed scatterers in the tissue. Speckle may cause artificial structures in the
image, thus reducing the diagnostic value.

Reducing speckle to enhance ultrasound image quality has been an area
of active research over the last decade. Most work has been done on filtering
(Iwai and Asakura, 1996; Zong, Laine and Geiser, 1998), and deconvolution
(Taxt, 1995; Jensen and Leeman, 1994) techniques. These approaches have in
common that they do not utilise all knowledge of the physics behind ultrasonic
image formation. In addition, most work on the B-mode or intensity images
that are obtained by transforming the backscattered radio frequency signal.
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The intensity images can be stored with less sampling and memory than the
original signal (Wagner et al., 1987), but contain less information and are more
difficult to model.

There has been little work using Bayesian methods and Markov random
field models for restoration of ultrasound images. To our knowledge, Hokland
and Kelly (1996) presents the first attempt, building a discrete Markov random
field model using a well-known model for radio frequency signals. Husby et al.
(2001) and Langg et al. (2001) extends the model to the continuous case, ob-
taining a more stable and computationally tractable model. Kao et al. (1998)
use the same model to develop a discrete MRF model for restoration of B-scan
images.

Perhaps more than restoration, tasks such as estimation of areas and vol-
umes, counting and classifying objects, and measuring distances between shapes,
are the force of Bayesian methods. There has been some work in that direction,
estimating areas of cross-sections of blood vessels (Hansen et al., 2000), and
estimating boundaries between tissue types in sheep (Glasbey, 1998). In the
above works the imaging models were simple, but as such tasks become more
complicated, there is a need for good imaging models to obtain a desirable accu-
racy of the estimates. Thus further work on developing good statistical models
for ultrasound images is needed.

This chapter is organised as follows: First we review the model for diffuse
scattering in radio frequency images, and then briefly discuss some other scat-
tering types, in particular the specular reflection occurring at interfaces between
tissues.

3.2 A MODEL FOR ULTRASONIC IMAGE FORMATION

In this section we derive the model for ultrasonic image formation. The model is
based on results from Goodman (1975), Wagner et al. (1987), Lizzi, Greenbaum,
Felappa and Elbaum (1983), and Kao et al. (1998); for a thorough introduction
to ultrasound imagery, see eg. Angelsen (2000).

The source of information in ultrasonic imaging is the radio frequency sig-
nal: The recorded acoustic echo from focused high-frequency beams transmitted
into the imaged medium from a transducer. The radio frequency signal has a
random character coming from two different sources: the coherent interference
of the backscattered echo from a collection of scatterers, and diffraction in the
imaging system (Goodman, 1975). Trying to model this process in its full gen-
erality is a very ambitious task, and the model used below ignore some phys-
ical factors such as absorption at the scatterers, multiple scattering, etc (Kao
et al., 1998).

The geometry of the problem is shown in Figure 3.1; we assume a planar
transducer lying in the zy-plane, and a short acoustic pulse being transmitted in
the positive z-direction into the body. Kao et al. (1998) argue that the received
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echo from depth 2y at a transducer location (xo,yo) is

¢ (z0,Y0,20) =

2
/ %T(m,y, z) exp (iE (m2 + yz)) exp (12kz) h(zo—x,yo—y, 20—2) dz dy dz,
A z
(3.1)

where £ is the wave number, h is the point spread function of the imaging
system,

T = 1 9pc
poco 0z

is the fractional variation of the acoustic impedance pc, and V is the imaged
volume. Note that we assume a stationary point spread function, and that
the derivation rely on the assumption that the density p and wave propagation
speed ¢ are assumed to satisfy p(z,y,z) = po + Ap(z,y,2) and c(z,y,z) =
co + Ac(z,y, z), where |Ap(z,y,2)| < po and |Ac(z,y, 2)| K co.

Figure 3.1: Geometry of the imaging system. The enclosing curves
represents the imaged area.

In reality the signal is recorded on a discrete grid, and so we fix a yo and
divide the corresponding zz-plane into square bins 2; corresponding to pixels
(k,1) of the recorded image. Using Eq. (3.1) and assuming separability of the
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point spread function, the received signal & = 2; ((xk, Yo, z1) at pixel (k,1) is

sz%Z‘zZ/

0 K2 K ‘
/ —T (2,y,2)exp (i— (332 + yz)) exp (i2k2)
e Qr'l J—o z z

X ha(x —2)hy(y — yo)h-(2 — z) dydaedz. (3.2)

Note that & is defined as z; ¢ since the decay of ¢ with z is compensated by a
time gain control (Kao et al., 1998).

The properties of this signal depends on the scatterers or reflectors in the
imaged tissue. The simplest case occurs when there is a large number M of
discrete, uniformly distributed scatterers in the volume V. We can then write
the fractional variation as

M
T(z,y,2) = Z tm0(T = Tons ¥ — Yms 2 — Zm),

m=1

where (2, Ym, zm) 1s the position of scatterer m, and ¢ is Dirac’s delta function.
Furthermore, by assuming that the cells 2, are small relative to the point
spread function h, we can use the approximations h.(z — z;) & h,(zy — 2z;) and
h.(z — zk) & hy(zp — 1), where (xy,2p) is the centre of cell Q. We also
assume h.(z — z;)/2® ~ h.(2 — z1) /2], getting

Ii2

flcl ~ th(iﬂkr — mk)hz(zlr — Z[)—

I o

2 2
X Z tim hy (Ym — yo) exp <i2l€2m (1 + M))

222
M (Tym,2m ) EQpryr m

= Z h;c],cl’,l) Z tm exp(iom) |,

k'l M (T, 2m ) EQprpr
(3.3)

222,
Now denote the bracketed term in Eq. (3.3) by &f,;,: the true, unobserved
radio frequency signal at position (k',1'). If we assume that the phases ¢y,
are independent and uniformly distributed on [0,27), and independent of the

h _ w° 7 =9 1 a2 +yl,
where tm = "= hy(Ym — Yo)tm and ¢m = 2K2p, ( + —)
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amplitudes t,,, we easily see that for all (k,1)
ERGy = > EtwE cosg, =0

E S,

ZEtmE Sin ¢y, = 0

1
E (%5;;1)2 = Z Z Etmtm’E COS ¢m COS ¢)m/ = 5 Z Et?n
m m' m
: 1
E (gle)z = Z Z Etmtm’E Sin d)m Sin Qsm/ = 5 Z Et?n
m m' m
E §R£;§l gfl)gl = Z Z E tmtm’E COS ¢m Sin ¢mr = 0,
m m'

where &, and J¢j; denote the real and imaginary parts of &}, respectively.
Furthermore, as the ¢,,’s and ¢,,’s are independent, the central limit theorem
gives that RE;; and ¢, are asymptotically Gaussian with zero mean and vari-
ance

M
2 . 2
= 1 Et; . 3.4
Tht M;Jgoo 2Mlcl mz::l m ( )

Concerning the correlation structure of the process £, we see that

GGy = 2 Xt 5016

m  m/'

=0k —K,1-1)) _Et,
~ bk — k1 =1),

and thus £* is a circular complex Gaussian Markov Random field with no spatial
interactions. This is referred to as the diffuse scattering case, and is important
because diffuse scattering is the main component of most ultrasonic signals,
and because it is a simple case for which there exists a tractable mathematical
model. The model is believed to be very accurate for body liquids (Insana,
Wagner, Garra, Brown and Shawker, 1986), and works well for most soft tissue.
Below we summarise the conditions for the diffuse scattering model:

CONDITIONS FOR THE DIFFUSE SCATTERING MODEL
A. All amplitudes and phases are independent, ie. all areas are un-
correlated, and the strength of the echo from a given scatterer is in-
dependent of its phase.

B. The phases are uniformly distributed on [0, 27), ie. the structure of
the tissue is rough compared to the wavelength of the incoming beam.

14



C. The imaged tissue consists of randomly distributed scatterers.

D. The resolution cell of the imaging system is small relative to the
size of the point spread function.

E. The spatial variation in scatter density is small within the support
of the resolution cell.

F. There is a large number of scatterers per resolution cell.

3.3 SPECULAR REFLECTION

Other well known types of scattering are quasi-periodic scattering and specu-
lar reflection. Quasi-periodic scattering occur in tissues where scatterers are
organised in regular structures, such as in the liver and the collagenous fibres
surrounding muscle bundles (Hokland, 1995). In the presence of a coherent scat-
ter component either the real or imaginary part of the radio frequency signal
&* will have a non-zero mean. We will not consider quasi-periodic scattering
further in this report.

Specular reflection occur at the interface between two tissue types with
sufficiently large differences in acoustic impedance (Christensen, 1988). The
effect is strongest when the incoming pulse is approximately normal to the
tissue interface; in that case the echo can then be much stronger than the
diffuse component. The specular reflection is given by the reflection coefficient
(Christensen, 1988)

Zs 2y
__ cosfy cos 1
b= 7 (3:5)
cos 0o cos 1

where Z; and Z, are the acoustic impedances on the incident and transmitted
side of the interface, respectively; and #; and 6, are the angles between the
interface and the incoming and transmitted beams, see Figure 3.3 (a). The
incident and transmitted beam angles 6; and 6, are related by Snell’s law
sinf;/sinfy = c¢1/ce, where ¢; and ¢y are the beam velocities. The coeffi-
cient in Eq. (3.5) measures the total reflection, but the amount of the reflection
returning to the ultrasound transducer will depend on the angle of incidence,
whence we follow Hokland and Kelly (1996) and model the specular reflection
returning to the transducer as

Zo _ Z1
__ cosfy cos 1 %
ri = ﬁ COS 01, (36)
cos 0o cos 1

for a site 7 on the tissue interface. Figure 3.3 (b) shows the specular reflection
coefficient R measured counter-clockwise along a circle, starting on the middle
right of the circle. The impedances are Z; = 162.0 kg/(s - cm?) and Zy =
166.6 kg/(s-cm?) corresponding to muscle and blood (Christensen, 1988). Note
that when the beam velocity is higher in the transmitted medium than in the
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incident medium, there exists critical angles for which no energy is transmitted.

_
=
=

-

|

.

(a)

Figure 3.2: Specular reflection. (a) Diagram showing the path
of the ultrasound pulse through a boundary between tissues hav-
ing acoustic impedances Z; and Z>. (b) The specular reflection
coefficient R measured counter-clockwise from the middle right
of a circle. The impedances inside and outside the circle are
Z3 = 166.6 kg/(s - cm?) and Z; = 162.0 kg/(s - cm?), respectively.

Note that it is difficult to model the specular reflection without having an
explicit model for the edges, and this is a strong motivation for using deformable
templates for modelling tissue interfaces in ultrasound images.

16



CHAPTER 4

Edge-Preserving
Restoration

In this chapter we discuss prior models for edge-preserving restoration of images.
Such models play a key role in our Bayesian model for restoration of radio-
frequency ultrasound images, and will be used later in Chapter 7. We will in
particular be concerned with constructing algorithms for efficient sampling of
such models; this is discussed in Section 4.3.

4.1 INTRODUCTION

We will in this chapter consider restoration of images that are piecewise smooth,
ie. consisting of smooth regions separated by edges. This problem was intro-
duced in Geman and Geman (1984), and is thoroughly discussed in Geman and
Reynolds (1992) and Geman and Yang (1995), on which we base our exposition.
We will consider prior densities of the form 7 (z) o« exp(—H (z)), where

H(z) =B wee (Do), (4.1)

ceC

¢ and D¢ are real functions, the wes are positive weights, and § is a positive
scaling parameter. Following Hurn and Jennison (1996), we define the neigh-
borhood of a site s € S to be its eight nearest sites, and define first and second
order cliques consisting of pairs and triplets of pixels. The M = 14 resulting
cliques are shown in Figure 4.1. Using eight neigbors increases the model com-
plexity compared to the four neighbors usually chosen, but more importantly it
eliminates the bias towards horizontal and vertical edges. We impose roughness
penalties by defining the D¢’s to be discrete difference operators corresponding
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to approximations of first- and second-order derivatives, ie.

DMy = (x, —24)/0 m=1,...,4 (4.2
D\ = (x; — 22, + 2,) /6 m=5,...,8 (4.3
DMy = (g — 21 — Ty + 24) /6 m=9,...,14 (44

The weights are chosen to accomodate the differences in distance between di-
agnoal and vertical or horizontal sites; for instance, Hurn and Jennison (1996)
choose w; = ws =1, w3 = wy = 1/\/5, W =wg =wy =1, wg =wg =wyg =1/2,
and Wil = ... =Wi4 = l/ﬂ

/
N\

-

Figure 4.1: Cliques for the prior density Eq. (4.1).

Using the above definitions we write the prior energy as

®(z) = f JXM: W Y0 (ng)az) . (4.5)

m=1 sES
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By chosing an appropriate potential function ¢(-) we are able to punish large
local variations in the first and second derivatives, thus obtaining fields that are
locally constant or planar. The choice of the potential function has implications
for the properties of the solution, and will be the topic of the next section.

4.2 EDGE-PRESERVING FUNCTIONALS

The potential function ¢(-) in the prior density (4.5) imposes smoothnes con-
ditions on the discrete derivatives D(™gz. It is natural to assume ¢ to be
symmetric, so that positive and negative gradients of equal magnitude are pun-
ished equally; we will also assume it to be continuous and nondecreasing on R*
and to have value zero at the origin. Note that the last condition is not really
neccessary since any offset would be incorporated in the normalizing constant.

One particular and important choice is the quadratic potential ¢(u) = u?
which leads to a Gaussian prior; and, combined with a Gaussian likelihood,
an unimodal aposteriori distribution. This of course simplifies the optimisation
and sampling problems. Gaussian models can be efficiently sampled using sparse
matrix methods (Rue, 2001), or FFTs in the special case of toroidal boundary
conditions (Wood and Chan, 1994). However, this choice is not suited for es-
timation of piecewise constant or planar fields, as the rapid growth as u — oo
severly punishes the intensity jumps that occur across edges. In addition, the
slow variation around origo might cause excessive smoothing and interpolation.

The choice of potential functions for edge-preserving restoration is widely
discussed in the litterature. One possibility is to explicitly model the edges us-
ing discrete line processes (Geman and Geman, 1984) or deformable templates
(Grenander and Miller, 1994). We will in this section consider implicit line
models only; the use of deformable templates in the modelling of edges and
discintinuities is discussed later, in Chapter 5. Concerning implicit models, one
school, starting with Geman and McClure (1987), consider non-convex poten-
tial functions having a horizontal asymptote, while others use convex functions
(Green, 1990; Bouman and Sauer, 1993; Schultz and Stevenson, 1995). Char-
bonnier et al. (1997) gives a unifying definition of edge-preserving functionals
and shows which conditions need to be fulfilled.

We will largely follow Geman and Yang (1995) and consider potential func-
tions in the class

£= {¢<-> € COR)| ¢(0) =0, ¢(u) = ¢(~u), lim ¢(u) < oo, % >0,u€ R+} :
(4.6)

The arguments for this class of model are largely based on heuristics, but it
is clear that the finite limit and slow growth for large u ensures that intensity
jumps over edges are not too severely punished. The following example, taken
from Blake and Zisserman (1987), shows that using potential functions in £ has
links to both line processes and robust inference.
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ExaMpPLE 4.2.1 Let u be a Markov Random field with neighborhood relation
~, and define the line process

L 1 3 edge between u; and u;
Y710 otherwise.

Furthermore, define the prior energy functional

O(u,l) =Y ((us —uy)* = 1) (1 =1y)

invj

smoothing within the disjoint regions defined by the line process [. Then Blake
and Zisserman (1987) observed that

irllf'l>(u, l) = Z ((uz - 'LL]')2 - 1) ]:[[(Ui—Uj)2<1]

i~
=3 ((wi—u))* =1)7 =& (u),
i~
where £~ = min(z,0). Thus inf, inf; ®(u,l) = inf, ®*(u), and so in terms of

model behaviour there is no need to model the edges explicitly; one can instead
use the truncated quadratic ®*.

In addition to the behaviour of ¢(-) as u grows large, the behaviour around
the origin is important. Geman and Reynolds (1992) advocate functions that
are strictly concave, such as

—1 __lul

p(u) = T4 P(u) = T+ [u]

(4.7)

and base their argumentation on considerations of coordinate-wise minima. Let
z* be a coordinate-wise minimum of the posterior energy, and consider a small
pertubation z; +tu toward the data y;. This will lead to a decrease of order tu in
the likelihood component, but an increase in the prior energy since ¢'(0+) > 0.
By appropriately choosing the scaling parameter 3 the combined effect will very
likely be an increase of the aposteriori likelihood. This is in contrast to the case
where ¢'(0) = 0, when there will be interpolation between neighbouring sites.

Geman and Yang (1995) study the behaviour of concave functions ¢ applied
to a one-dimensional signal x = (xg,... ,z,). In particular, they show that
the choice of clique functions affects the properties of the minimizer of the
aposteriori energy (4.5), as shown in the following result.
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PROPOSITION 1 (GEMAN AND YANG (1995))
Let ¢(u) € C®(R) be symmetric with % < 0 on (0,00), and define

du
= Tip1 — T; — Tip1 — 2@ + Ti_1
H(z) =) w¢ ) > wag 5, : (4.8)
i=0 =1

where 01 and dy are positive constants. Then we have the following.

(i) If w; > 0 and wy = 0, the global minimizer of H subject to xg = 0 and
xn = ¢ > 0 is piecewise constant with exactly one jump.

(ii) If vy = 0 and we > 0, the global minimizer of H subject to xo = x; =0
and ©,—1 = x, = c has three linear segments, with the least possible
fluctuation in slopes.

(iii) If wy > 0 and ws > 0, the global minimizer of H subject to xg = 1 = 0
and x,—1 = x, = c is piecewise linear with exactly three segments.

Proof. Represent x as a continous and picewise linear graph over [0, n].

(i) Obviously,  can have at most n — 1 segments. Let m < n — 1 be the
number of segments, then H(z) = w; E;nzl ¢ (cj/61) where Y ¢; = c. But
since ¢ is concave we have

¢ (c/01) < ¢ (tc/or) + ¢ ((1—t)c/dr), VO<t <,

and thus the energy is uniquely minimized by choosing one jump.

(ii) Let the m < n — 1 linear segments have slopes a1, ... ,ay. Then

m—2
Wy H(z) = ¢ <§_§> +é <a,g21> N Z p (aj+152—aj> 7
j=2

since a1 = a,, = 0. Again, because of the concavity of ¢, H is minimized
by setting az = ...am—1 = ¢/(n — 1), see Figure 4.2.

(iii) See Geman and Yang (1993).

d

Further insight might be gained from considering the asymptotic behaviour
of the model. Let ¢(-) be the Geman-McClure functional (Table 4.1) and assume
w1 = 1 and es = 0 in Eq. (4.8). Then Rosati (2000) shows that under some
regularity consitions, H (z) converges to the functional

E(z) = / (z'(t))* dt + 6 card (S,.)

where S, is the set of singularities (ie. jumps) for z. In two dimensions the last
term generalizes to dA;(S,), where A;(-) is a one dimensional Hausdorff type
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Figure 4.2: Minimal energy configurations for a 1D signal. (a)
First order model. (b) Second order model.

measure called the cab-driver measure (Chambolle, 1995). The resulting model
is a modified form of the well known Mumford-Shah functional (Mumford and
Shah, 1989).

Note that most functions in the class £ are convex on some interval (—t,t)
around origo, but as noted in Geman and Yang (1995) this is only a matter of
scaling. If ¢(u) is convex on (—t,t), then ¢(u/e€) is convex on (—ce, ce), and thus
the above results are valid for all ¢ € £ by chosing appropriate parameters d;
and 62.

Charbonnier et al. (1997) argues that certain non-quadratic convex poten-
tial functions will perform equally well, at least when considering optimization
or MAP-estimation. (As an aside, note that it is generally difficult to say some-
thing sensible about the choice of ¢ when we consider estimators such as the
posterior mean, since we then need to consider the distribution as a whole rather
than just the mode). The conditions for an edge-preserving potential function
are as follows:

CONDITIONS FOR EDGE-PRESERVING FUNCTIONALS
(Charbonnier et al., 1997)
¢(u) > 0 VYu with ¢(0) = 0.

p(u) = ¢(—u).
¢ continuosly differentiable.
¢'(u) >0 Yu>0.

o' (u)

5.~ continuous and strictly decreasing on [0, 00).

¢'(w) _
L — o,
W — M < 0.

2u

limy o0

Q" EYaw s

im0+

Condition G is not satisfied by the strictly concave potential functions in
Eq. (4.7), but most functions used in the litterature satisfy the above condition;
see Table 4.1 for some examples.
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Table 4.1: Some edge preserving functionals.

Potential function Reference
min (1, u?) Blake and Zisserman (1987)
% Geman and McClure (1987)
log cosh u Green (1990)
log(1 + u?) Hebert and Leahy (1989)
21+ u? -2 Charbonnier (1994)

4.3 SAMPLING AND OPTIMIZATION

One of the disadvantages of non-convex prior functionals is that they intro-
duce additional computational problems. Deterministic minimization of a non-
convex function is a hard problem, and also stochastic algorithms such as the
Metropolis-Hastings sampler tend to be inefficient, especially when the likeli-
hood introduces strong spatial interactions. One promising way of dealing with
this problem was introduced by Geman and Reynolds (1992), who shows that
for a large family of potential functions ¢ there exist a dual model that in some
sense has the same distributional properties (ie. the same mode) as the origi-
nal model, but that has better computational properties and hopefully better
sampling properties. Their main idea is to model edges explicitly by exploring
correspondences similar to the one in Example 4.2.1.

Most of the work in this field concerns MAP-estimation or determinstic
optimization, and we will start by reviewing some of the important results in
this area. At the end of the section we give some results in a more “statistical”
setting.

4.8.1 Half-quadratic optimization

The concept of half-quadratic optimization was introduced in Geman and Rey-
nolds (1992), and the idea is to introduce a dual prior functional ®*(z,b) that
depends both on z and an auxillary Markov field b. The world “half-quadratic”
stems from the fact that ®*(x, b) is constructed so that it is quadratic in z. This
is desirable in at least two different respects; the prior energy has an unique
minimizer x*, and the distribution of x given b is Gaussian. As mentioned
above there exist several algorithms for effiecient sampling of Gaussian Markov
random fields; in particular is it possible to do global updates, a feature that
might be important in spatially structured models, see eg. Knorr-Held and Rue
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(2002) and Rue (2001).
In order that optimization of the dual model shall be equivalent to opti-
mization in the original one, ®* is constructed such that

o(z) = irgf D" (z,b), (4.9)

implying that z* = arginf, ; ®* is the global minimizer of both ® and ®*. The
auxillary variables in b can be interpreted as edge variables much in the same way
as the line process in Example 4.2.1; but unlike the edge variables introduced
in Geman and Geman (1984), there are no interactions between them, and they
are not constrained to lie in the interval [0, 1].

Given the above conditions, the dual model ®* can be constructed using
the Legendre transform, as in Geman and Yang (1995).

DEFINITION 2
Let f,g be functions on R. The Legendre transform of f is

f(v) = sup (wv — f(u)).

uER

The pair (f,g) is a Legendre pair if both functions are convex, f = g* and
g=1r".
Using these definitions we have the following result:

PROPOSITION 2 (GEMAN AND YANG (1995))
Let the functional ® be as in Eq. (4.5) and define

M 2
) =0 Y wn Y (5 (Do) wo (M) @)

m=1 seS

where b = (b(l), . ,b(M)) € R™™ and v is a real-valued function.
If

u2

2
S - o(w) and T +9()

is a Legendre pair, then
O(z) = irgf " (x,b).

and 1 () are given, and define fs(u) = u?/2— ¢(u) and

Proof. Assume that ¢(-)
If (fg,9y) is a Legendre pair it is easy to show that

gu(v) = v*/2+ 1 (v).

o) =int (U5 +vw).
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from which it follows that

m=1 seS
M
=13 o it (% (Dye b)) (b<m>)>

d

Barone (1999) study deterministic minimization of the above model. He
shows that under mild conditions it is only neccesary to minimize with respect
to the auxillary variable b; given the minimizer b there exists an unique & = z(b)
so that (&,b) is a global minimizer of the aposteriori energy. However, when ¢
is non-convex, the minimizer b is not neccesarily easy to find.

4.8.2  Bayesian methods

In the engineering litteratur focus has often been on MAP-estimation. How-
ever, from a statistical perspective it is often desirable to know more about the
posterior distribution, and from that point of view other estimators, such as
the posterior mean are more sensible to use. In the following we show how the
above framework can be modified for estimation of the posterior mean.

Again, given a non-quadratic prior functional ®(z) we want to find a dual
functional ®*(z, b) which is quadratic in z and so that z has the right marginal
distribution. Let

exp (—®(z)) exp (—®*(x,b))
[ exp (—®(x)) dx [[ exp (—®*(z,b)) dx db’

where ® and ®* are as defined in Eq. (4.5) and Eq. (4.10). Then we have the
following result

(x) = and 7*(z,b) =

PRrOPOSITION 3 (GEMAN AND YANG (1995))
Let ¢(-) satisfy

co(u) = —ln/exp( ;(u—v) —cp(v )) (4.11)

for some ¢ > 0. Then
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Proof. A straightforward calculation shows that

/W*(m’b) = /eXp <_52°"m > G (i b§m>)2 + w(bgm))) db
Lo (o (L1 s o

m=1 seS

= H Hexp( Bwmd (D(m) )) w(x).

m=1s€S

d

Consequently E« (z|y,b) = E; (z]y), and we can utilize the nice sam-
pling properties of ®* to estimate the mean of z under w. As above, this is
especially desirable if the likelihood is Gaussian or near Gaussian, since we then
can do block sampling. Some experiments using this method are shown below,
in Chapter 7.

The function 9 can be found numerically given ¢, but in most cases it is
easier to go the other way around. The following results shows that if ¢ is in
the family £ of edge-preserving functions, then ¢ is “almost” in £.

PROPOSITION 4
Let ¢ € € and ¢ be related by Eq. (4.11). Then there exists a constant k € R
so that o+ k € &.

Proof. We need to show that ¢(u) is even, non-decreasing on [0, c0), and finite
as u — 0o. The first part is obvious, so we start by showing that ¢'(u) > 0 on
R*. Let limy,_,o 9 (v) = M and define

I(u) = / e 3 (v 0 gy
R
Then v2me™™ < I < /27, and for u > 0

%:/(v—u)e 3(v—u)’— Uy < V2r (e™-1)u<o.
R

Thus for u > 0, ¢'(u) = —ﬁ% > 0.

Furthermore, since ¢(u) is non-decreasing and bounded, ¢(0) > —In+v/27
and lim,_ oo ¢(u) < M —In+/27. Hence ¢ has a finite limit and there exists an
k <1n+v/2rm such that ¢+ k € £. O

It can in fact be shown that ¢ satisfies all the conditions (i) — (vii) in
Section 4.2. As an example Figure 4.3 shows ¢ computed when ¢ (v) = |v|/(1 +

[0])-
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Figure 4.3: Functions ¢(v) and ¢ (v) = |v|/(1 + |v]) related by
Eq. (4.11).
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CHAPTER 5

High-Level Prior Models
for Object Recognition

In this chapter we discuss high-level models for object recognition in images,
with a special focus on the deformable template model we will use for contour
detection in Chapter 8.

5.1 INTRODUCTION

High-level models makes definitive statements about the image under study
in the sense that it is the imaged objects, or their shapes, which are directly
modelled. The idea of using compact, parametric models of object shape was
pioneered by Ulf Grenander in the late 60s (Grenander, 1967; Grenander, 1969;
Grenander, 1981), but it was not until the early 90s advances in computer
hardware and stochastic simulation algorithms made the methods applicable in
practice (Grenander et al., 1991; Grenander and Miller, 1994). This has opened
up for a whole range of applications: By augmenting the imperfect image data
with the prior information provided by the high-level model, it becomes possible
to locate and characterise the objects present in the image.

The information contained in a high-level model can range from local — eg.
imposing smoothness and connectivity constraints — to global: representing the
variation in a specific class of shapes. The nature of the model will depend on
the application of interest, but in general we are often interested in models that
have a generic parameterisation, and are expressive enough to represent a large
range of potential shapes, while at the same time constraining the problem to lie
within the bounds defined by our prior knowledge. Especially appealing are the
so-called prototype-, or deformable template-, models. Here prior knowledge is
represented through a reference object Iy. One then assumes that all objects
of interest lies in the orbit GIy of Iy under some transformation group G. This
group is chosen so as to represent the natural variability in object shape, and
is equipped with a probability distribution describing the relative frequency of
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shapes. Alternatively, a probability distribution could be be assigned to the
parameters of the prototype directly, in which case it is called a geometric
template model (Jain, Zhong and Dubuisson-Jolly, 1998).

It should be noted that high-level models to a much larger extent than
pixel-based models allow structured understanding of the images. For instance
does the estimated transformation from template to observed object make clas-
sification and detection of pathologies highly possible. An important concept
in this respect is the definition of distances between objects in terms of min-
imal group actions (Grenander, 1993, chap. 12). A further characteristic of
high-level models is their capability of including uncertainty over the number of
objects in view, requiring more complex sampling algorithms than traditional
fixed-dimension approaches.

High-level models have been used for object recognition in many appli-
cations, for instance for recognising hands (Grenander et al., 1991), galaxies
(Ripley and Sutherland, 1990), pellets (Baddeley and Van Lieshout, 1993), pota-
toes (Grenander and Manbeck, 1993), cells (Grenander and Miller, 1994; Rue
and Hurn, 1999), mushrooms (Mardia, Qian, Shah and de Souza, 1997), fish
(de Souza, Kent and Mardia, 1999), roads (Stoica, Descombes and Zerubia,
2000), and blood vessels (Hansen et al., 2000). Other applications include such
diverse tasks as target recognition (Miller, Srivastava and Grenander, 1995),
object tracking (Blake, Bascle, Isard and MacCormick, 1998; Kervrann and
Heitz, 1999), database retrieval (Zhong and Jain, 1997), and disease testing
(Grenander and Miller, 1998), to site just a few.

In the rest of this chapter we will give a survey of some of the high-level
models in use. The survey is by no means complete; we will focus on work in a
statistical setting, excluding much of the computer vision literature. We will also
restrict ourselves to 2D applications. Please refer to McInerey and Terzopoulos
(1996) and Grenander and Miller (1998) for other reviews of high-level models
in biomedical applications.

5.2 AcTivE CONTOUR MODELS

Active contour models were introduced in Kass, Witkin and Terzeopoulos (1988),
who considered curves controlled by an internal energy enforcing smoothness
and connectedness, and an external energy attracting the curve to desired im-
age features. Active contour models are mostly considered in a non-statistical
setting, but we include a brief introduction since they are widely used, especially
in applications where there is no underlying shape information.

Taking a variational approach, Kass et al. (1988) define the internal energy

for a curve v(s) € C as
2
> ds, (5.1)

Bo) =3 [ 1 <a(s>

where the functions a and 3 control the degree of elasticity and stiffness, respec-

2
9%v
+ B(s) ‘@

@
0s
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tively. After an appropriate initialisation, the energy is minimised using some
optimisation methods, eg. gradient descent. However, because the model con-
tains no global information, the need for a good initialisation is important, lest
the contour get stuck in a local minimum. There have been numerous attempts
at improving the active contour models, notably Cohen (1991) introduced a
“balloon” force that can either inflate or deflate the contour. This will make it
easier to escape global minima caused by noise and image artifacts. We refer
to Blake and Isard (1998) for a comprehensive introduction to active contour
models.

5.3 PARAMETRIC MODELS

Parametric models are used when there exists prior information about the ob-
jects under study. In contrast to the local and rather weak information carried
by the active contour models, the parametric models encode global information
that in some sense constrains the shape of the modelled objects. For instance,
one can assume shapes to lie within the class of closed and simple curves, and
then impose further structure by penalising deviations from some mean shape,
eg. a circle.

We divide the models into four classes: Geometrical models, polygonal
models, continuous models, and landmark models. This is not the only possible
subdivision, and we do not claim that the different approaches are fundamentally
different, nor that all models fit into one of these four groups. However, as a
means of organising the material, the subdivision is practical.

5.3.1 Geometrical models

Geometrical template models are defined through parametric curves such as cir-
cles, ellipses, and parabolas. Variability is introduced by assigning probability
distributions to the parameters of the curves. For instance, Ripley and Suther-
land (1990) and Baddeley and Van Lieshout (1993) use circles to model galaxies
and pellets, respectively. Yuille, Hallinan and Cohen (1992) and Phillips and
Smith (1994) have used geometrical templates for locating facial features. Their
model for an eye consists of two parabolas tracing out the top and bottom eye-
lids, and a circle representing the iris. The parameters are the centre and radius
of the circle, together with the parameters of the parabolas.

The model of Phillips and Smith (1994) is designed in a hierarchical fashion
with global shape features constraining local features. The distributions for the
local variables are given conditional on the global variables in the following
hierarchy:

Boundary for the head

Boundary for the face, inside the head boundary

Spatial arrangement of facial features, within the face boundary

Scaling of facial features, given their positions
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e Shapes of the facial features, given location and size.

The use of geometrical templates is restricted to applications where shapes
are well defined and can be represented consistently by a low number of curves.
However, for well structures objects such as the face, models as the one above
give rise to very compact and precise representations.

5.8.2  Polygonal models

One of the most studied applications of high-level models is the detection of
featureless planar objects in images, see e.g. (Grenander et al., 1991; Grenan-
der and Manbeck, 1993; Grenander and Miller, 1994; Qian, Titterington and
Chapman, 1996; Rue and Syversveen, 1998; Rue and Hurn, 1999). To fix ideas,
consider a solid object in the plane, and suppose that its shape can be ap-
proximated by an m-sided simple polygon with vertices v3,...,v% | placed
counterclockwise around the outline. This polygon is the template, represent-
ing the shape of a typical object. The set of all object shapes is generated by
applying stochastic transformations to the template, and thus the most impor-
tant modelling issue is to specify the transformation group and the probability
distribution on this group.

Most work has concentrated on applying transformations to the edges
rather than to the vertices directly, but see Kent, Mardia and Walder (1996) for
review of different ways of modelling templates. The edges of the outline are

62:v2+1—vg, k=0,...,m—1, (5.2)

where the indices are interpreted modulo m. Following the original work (Grenan-
der et al., 1991), the usual approach is to consider the edge transformation

0 cos 0y, sin 6y, 0 _ 1+tox b1k 0
k= e T Tk ( —sinf; cosfy ) €k = < —tix  l+tox Ck> (5.3)

where the variables r and 6 control the scale and angle in the change of edge ey.
The parametrisation in terms of ¢y and ¢; is used for the following reason: If ry
is proportional to a Rayleigh random variable and 6y, is uniformly distributed on
[0,27), then to ; and t; j are independent and identically distributed zero mean
Gaussian random variables. Note that in order to ensure that the deformed
polygon is closed, we have to impose the constraint

m—1
> er=0. (5.4)
k=0

This will introduce a dependency between the vectors to = (t0,0,- .- ,t0,m—1)

and tl = (tLO; e ,tlymfl).
Vertex transformation models are often considered when the objects are
star-shaped, for instance Mardia et al. (1997) considers vertices v = u® +
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9 (cos#?,sin#9)7 that are shifted, scaled, and rotated by the transformation

cos (69 + 0k)>

sin (80 + 6) (5-5)

vp = vp = p0 + gt pery, <
There is a linear relationship between the edge and vertex transformation vec-
tors, so it is easy to go back and forth between the representations. Hobolth,
Kent and Dryden (1999) derives the relation for the special case when the tem-
plate is a circular polygon, ie. having vertices v) = (cos(2rk/m),sin(27k/m)).

Letting p cosfy = 1 4+ ug x and py, sin 0, = —uy , they arrived at
2t = u + ugp i + u —u 5.6
0,k 0,k+1 + U0k tamr/m( Lkl — Ui k) (5.6)
1
2t1 1 = U —u —u —u 5.7
1,k tanﬂ/m( 0,k-+1 0,k) 1,k+1 1,k (5.7)

fork=0,... ,m—1.

Rue and Syversveen (1998) and Hansen et al. (2000) consider additive mod-
els for vertices and edges, respectively; this type of models is also discussed in
Kent et al. (1996). Additive models are simpler and easier to parametrise then
the multiplicative models described above, but are somewhat less flexible. A
nice feature of the additive edge model in Hansen et al. (2000) is that the clo-
sure condition Eq. (5.2) is automatically satisfied by letting the edges follow a
certain improper cyclic Gaussian distribution, see details below.

Note that representing the object through the edge vector e removes any
location information. This translation invariance is sensible when the locations
of objects are unknown. In order to locate the template we place the first vertex

vo at some location ¢ € R? usually assumed to be uniformly distributed over
R2.

Probability distributions Grenander et al. (1991) let the unconstrained
to and t; be first order cyclic Gaussian Markov random fields, i.e. they let
tT = (t7,t]) be Gaussian with inverse covariance matrix Q; = I, ® Q, where
@ is a Toeplitz circulant matrix with entries

Qk,k = ﬂ: Qk,k+1m0dm = Qk,k—lmodm =4. (58)

It is well known, see eg. Lauritzen (1996), that under the above model the
conditional distribution for ¢ j, say, is Gaussian with mean and variance

1) 1
E (tox |to,—i) = 3 (to,e—1 + to,k+1) Var (tor | to,—i) = = (5.9)

3
Thus 1/ can be seen as controlling the deviation from the identity transforma-

tion, while —§/3 controls the smoothness of the configuration. The conditions
B > 0 and 8+ 2|6 > 0 are sufficient to ensure positive definiteness of @), and
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hence of ;. Note that the circulant representation means that the model is
invariant under cyclic permutations of the edges; this is a natural choice when
the objects have no apparent landmarks.

Imposing the closure constraint ), ex = 0 reduces the dimension to 2m—2,
and destroys the simple Markov structure of the model. Strictly speaking we also
have to introduce an additional constraint, namely that the deformed template
be simple. The conditioning only affects the normalising constant, and thus
Rue and Hurn (1999) argues that the constraint is not a problem if the model
is sampled using Markov chain Monte Carlo methods. One just rejects all non-
simple proposals, and uses the unconditional density in the acceptance ratio for
the others.

Kent et al. (1996) discuss a similar structure for additive edge models,
letting e ~ N(e°,Q;), where e = (el’,... el _;), and € is defined similarly.
Again conditioning on closure destroys the Markov structure, but this could be
alleviated by expressing the model in terms of the vertices v. Letting the first
vertex vp have an uniform distribution over R?, Kent et al. (1996) show that the
conditional model for e corresponds to an improper second order cyclic Gaussian
Markov random field model for v. This distribution has precision matrix Ir ® P,
where P has entries

286-26 1=k
Py=<¢-08+2 l=k—1,k+1modm
=4 l=k—2,k+2modm

Hansen et al. (2000) notes that the closure constraint can be automatically
satisfied by considering a special case of the additive edge model. Using the same
circular template as above, they introduce the m x m discrete Fourier transform
matrix F = {m™1/2 exp(?wikl/m)}0<k7l<m71, and diagonalise Q as Q = F*AF,

where F* = FT and A is a diagonal matrix containing the eigenvalues
A = B+ 20cos2wik/m, k=0,...,m—1.

Denoting the columns of F' by fo,..., fm—1, and noting that ), e, = 0 &

el fo = 0, we see that the eigenvectors fi,..., fm_1 span the subspace where
closure is satisfied. Thus by setting the first eigenvalue to zero, ie. setting
0 = —3/2, closedness is automatically guaranteed.

The model in Eq. (5.8) is perhaps too simplistic in some applications, since
it restricts the normal and tangential components of the edge transformation
vector to be independent and identically distributed. Kent, Dryden and Ander-
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son (2000) use a more general model, with block circulant covariance matrix

K0) K1) K(n—1)
K(n—1) K(0) K(n—2)
K = : )
K1) K@) K(0)

having blocks

K(k) =E Ktov’) (toisk  trisk)

1,

= <‘z: 2’;) : (5.10)

Again the circulant structure implies cyclical invariance. Kent et al. (2000)
discusses the statistical properties of this model in detail, and explores the
eigenstructure of the covariance matrix. In its full generality the model has 2m —
2 free parameters, and is thus rather complicated. However, Kent et al. (2000)
discusses simplifications such as assuming variability in the normal component
only, or using parametric functions for the eigenvalues. An approach somewath
similar in spirit is found in Hobolth and Jensen (2000), who model contonuous
deformations as the limit of a second order Gaussian Markov random field.
Finally, Hobolth, Pedersen and Jensen (2000) and Hobolth, Pedersen and Jensen
(2001) consider continuous models using truncated Fourier series to describe
the radius vector function of start-shaped objects. Such continuous models are
perhaps not well suited for object recognition in blurred and noisy images, but
are very useful for eg. describing and classifying objects.

5.3.83 Model parameterisation

As mentioned above, the precision matrix @ is usually chosen to be a band
matrix with bandwidth corresponding to the order of the Markov field. It is often
of interest to choose a model which behaviour is approximately independent of
the number of edges, for instance when considering templates with a variable
number of edges, as in Rue and Hurn (1999). Grenander (1993, chap. 11)
considers the limit of the cyclic Markov random field model as the the number
of edges grows and the coupling between the edges grow stronger, and shows
that for a certain parameterisation the limit is a zero mean cyclic stationary
Gaussian process. For the second order model the parameterisation chosen by
Grenander (1993) is

L 6pm® 1=k
Qu = { —4nm? l=k—-1,k+1modm (5.11)
nm? l=k—-2,k+2modm

where k,7 are positive parameters. For simplicity we use the notation @ =
circl(k/n+6nm?, —4nm3,nm?3). Hobolth and Jensen (2000) derives the variance
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72 and correlation p(h) function of the limiting process; these are given by

2 Y s+ Yst
26 (21p3)? + (h11pa)?
p(h) = (21h3 + h12hg) 1 ()3 (h) + (Pat)s — h19p4) ha(h)iba(h)
P1eha + P31y

for 0 < h <1, and with the notation

(k) = costb(h—1/2), () =sin(h — 1/2)
(k) = coshp(h — 1/2)  ¢u(h) = sinhp(h — 1/2)

4¢4=§ Ui =i(1), =1, 4

(5.12)

. (5.13)

Note that the correlation function only depends on the ratio x/n, whereas the
variance decreases for increasing . Figure 5.1 shows plot of the correlation and
variance for various values of k/n and k.

04r K =0.1e+04

¥ = 1e+04

= 250404

Kl = 1508404

Figure 5.1: (a) Limiting correlation function for the second order
Markov random field model in Eq. (5.11) for different values of
k/n. (b) Limiting variance for the same model and for different
values of k, plotted as a function of 7.

To get a further feel for the parameters we have drawn samples from the
model, see Figure 5.2. As discussed above they indicate that /7 measures the
smoothness, while £ measure deviances from the original configuration.

Concerning the choice of parameters, Kent et al. (2000) and Hobolth and
Jensen (2000) considers maximum likelihood estimation of the deformation pa-
rameters based on training samples of data. Hurn, Steinsland and Rue (2001)
goes a step further and assumes that the training data are generated as noisy
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Figure 5.2: Samples from the edge transformation template model
with precision matrix (5.11), and with different values of the pa-
rameters k£ and 7.



observations of deformable templates. However, in many cases the best ap-
proach is to integrate out the effect of the parameters by doing a fully Bayesian
analysis as in Hurn (1998) and Hansen et al. (2000). We will follow this line
and specify hyperpriors for the parameters of the template model. The analysis
above gives hint on how to specify the hyperpriors for the parameters, but we
have carried out a preliminary experiment to investigate the range of the pa-
rameters, and see if there is a need for different parameters for the normal and
tangential components of the edge transformation vector.

We have used a template with m = 20 edges to locate the object in a
simple image containing one object. We used a simple likelihood model assuming
independent, additive Gaussian noise, see Section 8.2.4 below for details, and
let the parameters xk and 7 of the precision matrix @ (Eq. (5.11)) be uniformly
distributed on [0,400] and [0, 10], respectively. We tried both using different
parameters for the tangential and normal components, and having common
parameters. The results are summarised below in Table 5.1, and show that n
is fairly concentrated on values of the order 1072, while & is spread out over
a large range, but with mean approximately 100. For the model with four
parameters there seems to be a significant difference between the parameters
of the normal and tangential components. However, visually there was little
difference between the samples from the models with two and four parameters,
and we will in the following use the simplest model with just two parameters.

Table 5.1: Posterior mean estimates of the model parameters &
and 7 in Eq. (5.11), using uniform prior distributions. In the left
column we have used different distributions for the normal and
tangential components of the edge transformation model; in the
right column the distribution is the same.

Mean | Sdev. Mean Sdev.
Ko | 214.5 | 131.2
Kt 87.0 86.1

mu | -00956 | .0126
ne | -00313 | .0056

Kk | 92.7 61.1

n | .00385 | .00814

5.4 CONTINUOUS MODELS

In many situations the outline-based models are too simplistic to be able to
capture the details and internal structure of the modelled objects. This is for
instance the case in many biomedical applications, where one need models that
can capture the detailed structure of the human anatomy. Objects are therefore
more easily represented as images (Bajcsy and Kovacic, 1989; Amit, Grenan-
der and Piccioni, 1991; Grenander and Miller, 1994; Christensen, Rabbitt and
Miller, 1996; Thompson and Toga, 1996; Gee, 1999), or as non-parametric curves
and surfaces (Bookstein and Green, 1992; Joshi, Miller, Christensen, Baner-
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jee, Coogan and Grenander, 1995; Davatzikos, 1996; Younes, 1998; Bakircioglu,
Grenander, Khaneja and Miller, 1998), sometimes with additional information
in the form of anatomical landmarks (Bookstein, 1989; Mardia, Kent, Goodall
and Little, 1996); see e.g. Grenander and Miller (1998) for further references.
Again, one does not model the objects themselves, but rather the transforma-
tions acting on a template object. For instance, if the object is an image, trans-
formations could be taken from the collection of smooth coordinate transforms
of the image domain. Important modelling issues would then be the choice of
boundary conditions, and the choice of prior on the set of transformations. Note
that image matching is another application of the same methodology, see e.g.
Glasbey and Mardia (1998) and, more recently, Glasbey and Mardia (2001) for
a review, and Sampson and Guttorp (1992) and Perrin and Senoussi (1999) for
matching in different contexts.

One of the fist works in a statistical setting was Amit et al. (1991), who
consider reconstruction of X-ray images of hands. Images are defined as map-
pings I : Q@ — T from some fixed background space 2 to a range space 7. The
space of mappings is denoted Z, and a particular image Iy € Z is chosen as the
template. Variability in image appearance is modelled thorough the group A of
diffeomorphic transformations h : Q@ 3 z — h(z) = x —u(z) € Q. The mappings
should be 1 — 1, onto and differentiable with a differentiable inverse so as to
preserve certain topological properties of the images, e.g. that connected sets
remain connected and critical points are mapped to critical points. Sometimes
it is natural to let the template be the orbit Iemp = E(3)/o under the special
Euclidean group E(3) = R® x SO(3). Then the maps in H are defined modulo
the rigid motions.

Amit et al. (1991) assume the displacement field u(z) to be Gaussian dis-
tributed with covariance kernel equal to the Greens function of a squared dif-
ferential operator

Lu = aAu, (5.14)

where A is the Laplacian and « some constant. Boundary conditions for
Eq. (5.14) is chosen so that the boundary is mapped onto itself. To be able
to do inference the infinite-dimensional random variable v is approximated by
the truncated orthonormal expansion

h
un(z) =Y & Pi(x) /A, (5.15)
k=0

where \j, are the eigenvalues and ®; the matrix of eigenvectors for the (dis-
cretized) linear operator L, and the coefficients & are i.i.d. N(0, I5). Amit and
Piccioni (1991) show that the distribution of uj converges weakly to the distri-
bution of u on the space of continuous functions on 2. Assuming the target im-
age to be observed with the addition of independent and identically distributed
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Gaussian noise, the posterior distribution for the coefficients becomes

h
7(€) o exp {—% > &e|” — Ti? > (I(wy) = Io(a + Uh(:vl)))2} , (5.16)
k=0

l

where the z; are the nodes of a grid ,. Note that Amit et al. (1991) use a
Fourier basis in Eq. (5.15), thus getting a posterior where the terms all have
global support. To be able to do local updates in areas with high variability,
Amit (1994) uses a wavelet basis in the expansion (5.15).

In the above framework Amit et al. (1991) implicitly assume that the de-
formations are small so that u can be approximately assumed to be in a Hilbert
space U with norm ||ul|?, = ||Lu||>. In reality the group H of diffeomorphism
is a curved manifold, and assuming a vector space structure leads to inconsis-
tencies. In particular, as pointed out by Dupuis, Grenander and Miller (1998),
the quadratic penalties ||Lu||? in amongst others Amit et al. (1991), Bajcsy and
Kovacic (1989) and Miller, Christensen, Amit and Grenander (1993) implies
restoring forces that are proportional to the displaced distance. Thus large de-
formations are severely penalised. Whether this is undesirable or not depends
on the application, but the lack of symmetry — since the inverse A~! is not nec-
essarily a diffeomorphism — means that the minimiser of Eq. (5.16) cannot be
considered a distance on Z. In situations where no obvious choice of template
and images need to be interchangeable, symmetry is natural.

To construct large-deformation maps Christensen et al. (1996) and Dupuis
et al. (1998) let h(z) be the output h(z,1) of a flow h(z,t) generated by a
velocity field v(z, t):

Oh(z, 1)
ot

= —((vg’h) (:E,t))v(a:,t), h(z,0) = z. (5.17)

In this case the deformation stress is not accumulated, hence the term viscous
deformations (Christensen et al., 1996). A similar approach can be found in
Trouvé (1998) and Piccioni, Scarlatti and Trouvé (1998). Since v is tangent to
H we can assume it to be in a Hilbert space V with norm ||-||y. Asin Amit et al.
(1991) the norm is induced by a linear differential operator L. In most image
matching applications the operator is of the form L = aV? + bVV - +¢; chosen
so as the solution obeys certain laws from continuum mechanics for deformable
bodies, see Christensen (1994), Christensen et al. (1996), and Grenander and
Miller (1998). The posterior energy for v becomes

1/t 1
—//|Lv(x,t)|2dxdt+f/ 1o o h(z,1) — I()[* dz, (5.18)
2 Jo Ja 20% Jq

from which an estimate v* can be found. The optimal match is then given by
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the integral equation

W 1) = o — /01 (V28 (@.0) o (2. ) (5.19)

These equations can be solved using expansions similar to Eq. (5.15); see Grenan-
der and Miller (1998) for details. Note that taking the minimum of the prior
energy subject to Iy o h(0) = Iy and Iy o h(1) = I defines a distance on Z, see
e.g. (Younes, 1998; Younes, 1999; Trouvé, 1998). This enables us to compare
images quantitatively, which is relevant for inference (see Chapter 6).

Sometimes is is natural to constrain the solution to match given landmarks.
This can be treated in the same manner, replacing the likelihood in Eq. (5.18)
with

L
m(y|h) o exp {—% > = hz, 1) S (= hia, 1))} o (520)

=1

where taking the limit ¥ — 0 results in exact matching (Joshi, 1997). In the
small-deformation setting landmark matching has been done using thin-plate
splines (Bookstein, 1989) and kriging (Kent and Mardia, 1994; Mardia et al.,
1996). This is closely related to the shape theory (Kendall, 1984; Dryden and
Mardia, 1998) which considers statistical analysis of n-tuples of points, including
distributions and distances. Younes (1998) shows an interesting relation between
distances in Kendall’s shape space and geodesic distances defined on infinite
dimensional transformation groups.

5.5 LANDMARK MODELS

In most applications an useful model needs to be specific: it must only represent
certain legal shapes. At the same time it must allow for natural variability.
One attractive way of building such models is by learning from representative
training samples. In such a procedure, both mean shape and variability within
the object class is learned. For instance, Cootes, Hill, Taylor and Haslam (1994)
and Cootes, Taylor, Cooper and Graham (1995) computes a mean shape after
aligning the training sets into some suitable coordinate system, and then use
principal component analysis to extract the important modes of variation. Their
models are called Point Distribution models; see below for further details.

In this approach the template is specified by a set of m landmarks collected
along the outline. For two-dimensional applications one often uses complex
arithmetic, and we denote the vector of landmarks by v € C™. For this to be
useful, each landmark must represent a distinguishable feature present in all
samples of the shape; thus amorphous objects such as cells and (often) blood
vessels do not fit well into this methodology. For such objects the polygonal
models in Section 5.3.2 are most suitable.

Landmarks models usually consider the shape of such m-point configura-
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tions, ie. the geometrical information that remains when location, scale, and ro-
tational effects are filtered out (Dryden and Mardia, 1998). There are two com-
mon ways of doing this (Kent, 1994). The first representation, called Kendall
coordinates Kendall (1984), are constructed as follows. Let H be a (m —1) xm
row orthonormal matrix with row sums equal to zero, H1,, = 0. Setting
z = Huz[||Hz|| removes location and scale effects. Note that z lies on the
unit sphere CS™~2. The final standardisation is achieved by representing z by
the equivalence class [z] = {exp(if)z; V8 € [0,27)}. The second representation
uses coordinates z obtained by translating, scaling, and rotating the landmarks
such that the two first landmarks are placed at the points (—1/2,0) and (1/2,0).
This representation was suggested by Bookstein (1986).

One way of proceeding is by specifying a probability distribution for the
shape coordinates z. Dryden and Mardia (1991) derive the distribution for z
given that the landmarks are circular complex Gaussian, v ~ CN(u,X), but
this distribution is very complicated. A more feasible approach is to use the
complex Bingham distribution (Kent, 1994), which basically is constructed by
conditioning a zero mean complex normal vector to have unit norm. Even
simpler is the complex Watson distribution

m(z) ocexp (§lz"pl)

which is obtained by assuming that the landmarks are independent and isotropic
with equal variances (Mardia and Dryden, 1999). The parameter £ > 0 is called
the concentration parameter. Both distributions exhibit complex symmetry,
and have thus some of the same limitations as the cyclical Gaussian Markov
random field models in Section 5.3.2. We refer to Dryden and Mardia (1998)
for a thorough discussion of shape analysis and shape distributions.

In stead of specifying a distribution, Cootes et al. (1994) use principal com-
ponent analysis for modelling shape variation. They essentially use coordinates
v in the tangent space of the unit sphere (Kent, 1994), and assume

v =17+ ®b, (5.21)

where 7 is the mean of K training samples, and ® contains the M eigenvectors
corresponding to the M largest eigenvalues of the sample covariance matrix

1 K

S:HZ(vk—ﬁ)T(vk—ﬁ).

k=1

The vector b contains the K shape parameters that together with the 4 global
parameters (corresponding to global translation, scaling, and rotation) control
the deformable model. In general only 5 — 7 modes are sufficient to account for
most of the variations in a shape class (Cootes et al., 1994), and thus the method
is very effective in reducing the model dimension. Since variation is divided into
orthogonal components, the parameters are often easily interpretable.
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This model is often called the Point Distribution model (PDM), and has
proved to be very effective in modelling variable shapes, see eg. Glasbey (1998),
Kervrann and Heitz (1999), and de Souza et al. (1999). One drawback is per-
haps that the model deforms in a way that reflects the variation inherent in the
training sample, and is thus not very robust with respect to “unexpected” de-
formations. Several non-linear extensions exists that are more flexible. Sozou,
Cootes, Taylor and Mauro (1995) use polynomial regression, while Heap and
Hogg (1996) use polar coordinates for sub-parts of the model. Finally, Cootes
and Taylor (1999) use a mixture of Gaussian distributions to model the shape
distribution.

5.6 MODELS FOR AN UNKNOWN NUMBER OF OBJECTS

Deformable template models such as such as polygon models and point distri-
bution models fit nicely into a framework for analysing images with an unknown
number of objects. Baddeley and Van Lieshout (1993) present a marked point
process model where each object xj consist of a point specifying its location,
and a mark containing information about shape and object type. The points
lie in a window © C R?, and the marks in some mark space M determined by
the particular template model. An object configuration is a finite unordered set
x = {x1,... ,2,} of objects z;, €  x M, and a random object process is an
element of the set UX_, {1,... 2y} U(. Baddeley and Van Lieshout (1993)
use a Poisson object process on 2 x M as their reference process, and define

the density of a configuration {z1,... ,z, } as a pairwise interaction model
w(z,m) o 8™ ] hlaw, ) (5.22)
Tp~I]

with respect to the Poisson object process. Here ~ is some symmetric and reflex-
ive relation. Baddeley and Van Lieshout (1993) discusses different interaction
models, for instance the area interaction model

(g, m)) = o/ BlrennBleenl

where B(x,r) is the ball with radius r centred at z. A similar model for line
processes is discussed in Stoica et al. (2000), while Rue and Syversveen (1998)
and Rue and Hurn (1999) use hard-core object processes in applications where
objects are not allowed to overlap.

Models of this type can be sampled using the reversible jump MCMC al-
gorithm (Green, 1995), but convergence can be very slow unless great care is
taken in designing the required split and merge moves, see Rue and Hurn (1999)
for a discussion. Grenander and Miller (1994) uses a different approach, called
jump-diffusion dynamics. They construct a single posterior distribution over
the union of all configurations, and then sample from the distribution using a
Markov process that at random times jumps between configurations of different
size. In between jumps the process follows a Langevin diffusion on the relevant
fixed-dimension subspace.
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CHAPTER 6

Inference in High-Level
Models

6.1 INTRODUCTION

In this section we briefly discuss inference in image analysis, with a special focus
on problems in object recognition. In practical Bayesian inference, estimators
for the quantity of interest, # say, must be based on samples from the posterior
distribution (0 |y) for 6 given the observed data y. Using a decision-theoretic
approach, the estimators should be based on a loss function L(f, é) representing
the loss incurred by estimating 6 with 6. The optimal Bayes estimator (OBE)
is then selected as the minimiser of the posterior loss,

0* = argmin E9|yL(0,é) = argmjn/L(O,é)w(O |y)de. (6.1)
9 9

Common choices of loss functions are Lyap = H[e;eé] and Lpy = >, (6 — éi)2
with corresponding OBE’s the posterior mode and mean, respectively. These
estimators are easy to compute, but in general no explicit formulas exists, and
the OBE must be based on a direct minimisation of the posterior loss (6.1).
For all their advantages, the above mentioned loss functions are too sim-
plistic for many imaging problems since they are based on element-by-element
errors, ignoring the global structure of the quantities. Consider for instance
the case of object recognition: the posterior mean is obviously not well suited
for estimating quantities such as object shape, location, and type. Not much
work has been done on exploring other loss functions, but Rue and Syversveen
(1998) and Rue and Hurn (1999) has successfully applied loss functions based
on Baddeley’s delta metric (Baddeley, 1992) to object recognition problems,
and have demonstrated that they in many respects perform better than stan-
dard loss functions. We review this approach in Section 6.2. Baddeley’s delta
metric compares images of objects, giving a natural embedding of the object in
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the coordinate system of the image. In other situations it might be natural to
consider image and object separately, and we briefly review some approaches
to defining distances between grey-level images (Section 6.4) and planar curves
(Section 6.3).

6.2 BADDELEY’S DELTA METRIC IN OBJECT RECOGNITION

Baddeley’s delta metric was introduced in Baddeley (1992) (see also Rue (1999)),
and has been used for image classification (Frigessi and Rue, 1997) and object
recognition (Rue and Syversveen, 1998; Rue and Hurn, 1999). The material in
this section is based on these references.

The delta metric was introduced for comparing discrete images with a small
number of colours, and was motivated by the need for a measure of discrepancy
(between two images) that agrees with the human visual system. Let x; and
x2 be two binary images defined on grid S C Z2, and let X; and X> be the
corresponding foreground sites, X = {s € S : zp s = 1}. Let p be a metric on
S. The distance from a site s € S to a set 7' C S is defined as

d(s,T) = Hél%lp (s,t). (6.2)
Let w be a strictly increasing concave function defined on [0, co] and satisfying
w(0) = 0. Then the delta metric between z; and z» is

1/p
AP (21,22) = <|S|Z|w (5,X1)) (d(s,Xg))|p> , 1<p<oo.

sES
(6.3)

We see that the metric is the LP average of the differences between the distances
w(d(+,+)) from each pixel to the nearest foreground pixel. One usually assumes
w(t) = min(t, ¢) so that the contribution from pixel 7 will only depend on the
sites in x; and z, contained in the ball B(s,c). One then uses the notation AZ.

The delta metric has two other metrics as its limits. If we use w(t) = ¢
and let p — 0o, we obtain the Hausdorff metric maxseg |d(s, X1) — d(s, X2)|.
Secondly, if ¢ is smaller than the smallest distance between two distinct sites,
(A?/c)? is the average marginal misclassification,

(Az(mha72 /C = |S| Z [T1,s#w2,s]"

seS

Moreover, we note that the metric is more sensitive to add-on components than
to errors in the interior of an object, see Rue and Syversveen (1998) for an
example. We refer to Baddeley (1992) for further properties and examples.
Rue and Syversveen (1998) and Rue and Hurn (1999) applies the metric
for recognising and identifying an unknown number of objects of different type.
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Recall from Section 5.6 that an object configuration x is defined as an unordered
collection {z1,...,x,} of objects z; € & x M, where O C R?> and M is the
mark space. We assume that Q is bounded and covers the lattice S on which
the data is observed. For each object xy, let X;, C R? be the set enclosed by its
contour, and let X = Uy Xy. Furthermore, let p be the Euclidean metric on R?,
and let d(&,z) = inf {p(¢,n) : n € X}. Then Rue and Syversveen (1998) use
the squared delta metric as a loss function. This loss function implicitly gives
the loss for the number of objects and their outline, but not for other object
properties such as grey-level or type. However, Rue and Hurn (1999) notes that
because of the variable dimension of the model, it is not possible to simply add
terms that specify the loss if we estimate one object type by another. Instead
they associate the loss with the underlying space, adding a loss if point £ is
covered by wrong object, ie.

Ltype(xaxl) :/thpe(f,x,xl) dg,
Q

where Liype(€, ©, ") takes the value one if location ¢ is covered by an object of
wrong type, and zero otherwise. The total loss function is then

Liz,a') = /Q (w (d(€, 2) — w (d(E, ') de + /Q Liype(€, 7, 2') dE,

for some v > 0.

The optimal estimator in Eq. (6.1) cannot be found explicitly, but Rue
(1995) has described a MCMC algorithm for computing the estimator of a wide
class of loss functions. He notes that the expected loss can be written as (up to
an additive constant)

BapyLieo!) = [ wldee) (w (d(€, ) — 2B, | yw <d(5,:c'>>) e

Q

oy /Q Pr, | Liype(€, 7,2') dE. (6.4)

The algorithm then proceeds as follows. Estimate the posterior expectation
E,|yw (d(§,2")) by using the empirical average of samples form the posterior

distribution m(z |y). The resulting estimate E,|,L(xz, ) is then a function of
z' only, having the optimal estimator as its minimiser. This minimiser is found
by interpreting

ma (') o exp(~E, |, L(z,1"))
as a density and using simulated annealing (Robert and Casella, 1999). Rue and

Syversveen (1998) give details on implementation, and reports good performance
even with fast cooling schemes.
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In conclusion, Baddeley’s delta metric has proved to be well suited as a loss
function for object recognition. The corresponding estimators shows improved
performance compared to traditional estimators (Rue and Syversveen, 1998),
and the additional computational effort is moderate.

6.3 METRICS FOR CLOSED CURVES

In this section we discuss a few other approaches to estimating shapes of objects.
The framework in the last section is very powerful in the sense that it makes
it possible to the estimate the number of objects in an image, as well as their
shape, location and type. However, in some situations simpler approaches will
do, and in this section we consider the following problem. Suppose we have n
samples z1, ... , T, of closed planar curves from a posterior distribution 7(z | y).
We want to produce a single curve representing the “average” of the sampled
curves. Moreover we might want to compare this average curve or the individual
curves to a known “true” curve. Note that these two tasks are related, for if we
have define a distance function d on the set of closed curves, the average curve
could be obtained as

i = argigf2d2 (x5, pt) -

i=1

We shall review two approaches for solving the first task. In Section 6.3.1
we review how Grenander’s “least action principle” (Grenander, 1993, Chap. 12)
can be used for defining distances between curves. Secondly, in Section 6.3.2 we
review another approach based on the theory for random closed sets (Baddeley
and Molchanov, 1998).

6.3.1 Metrics for closed curves

We start with a comment on representation. In many applications there is
no natural intrinsic representation of the outlines. Thus, even if an outline
in practice must be represented by a finite number of vertices, constructing a
distance by matching vertices is only natural when the vertices corresponds to
identifiable points on the outline, eg. some anatomical feature or extremal point.
If this is the case, one often uses Procrustes methods, in which distances are
based on matching the vertices using the Euclidean similarity transform. For
instance, if x1,z2 € C* are two planar point configurations, the full Procrustes
distance between the configurations is given by

dp(z1, 1) = inf 0o T Bet? —q
ocfo,2m),BeR,acC|| [[1||  [|z2|
_ <1 3 wfﬂ:z:USm)l/z (6.5)
- * * Y .
T1T1ToT2
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where z* = 7. We shall not discuss such methods further, and refer to Dryden

and Mardia (1998) for a comprehensive treatment of Procrustes methods and
shape analysis.

Now we briefly review how one can define distances in terms of the least
action principle, and thereafter discuss a particular distance derived for plane
curves (Younes, 1998). The following discussion is sketchy; for more details,
please refer to eg. Grenander (1993, Chap. 12) and Younes (1998). Assume that
we are given a set C of objects (eg. curves), and a group G of deformations
acting transitively on C. That is, for all ¢;,co € C there exists an g € G so
that gc; = co. The idea of the least action principle is to let the distance on
C by induced by a distance on G. Loosely speaking, for ¢;1,c2 € C, we find the
closest g1, g2 such that ¢g; ley = gy Ley and use the distance between g1 and go.
By using such a construction one hopes to fulfil a very natural requirement: If
g € GG is in some sense a “small” deformation, then the distance between ¢ and
gc should also be small.

To be more specific, we start by defining a distance.

DEFINITION 3
A distance over a set E is a mapping d : E x E — [0,00] such that for all
T1,T2,23 € E

(’L) d(:l?l,ZEQ) = 0
(’Ll) d(:l?l,ZEQ) = d(:l?g,l’l)
(ZZZ) d(ﬁ?l,mg) S d(ﬁ?l,ﬂfz) + d(ﬁ?g,mg).

< T1 = T2

If (i) is replaced by d(z,x) = 0,Vz, we call d a pseudo-distance.

Let dg be a distance on G. We will require this distance to be right-invariant
with respect to the action of G on itself, that is, for all g1, g2, h € G, dg(g1h, g2h)
= d(g1,92). Then we have the following result, which is a simplification of a
result in Grenander (1993, Chap. 12),

PROPOSITION 5
Let dg be a distance on G that is invariant by the right action of G. The
function d : C x C — [0, 00| defined by

d(c1, ) = inf {dg(g1,92) = g1 'c1 = g5 '} (6.6)
is a pseudo-distance on C.

Proof. Conditions (i) and (i¢) are obvious. To prove the triangle inequality,
note that as a consequence of the right-invariance and the triangle inequality
for d¢g, we have for all g1, ¢2, 93,94 € G:

da (g1, 92) + da (g3, 94) = da (g1, 92) + d(g2, 9495 - g2)
> dg(h1, hs)
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with hy = g1 and hg = g4g§1g2. Now fix ¢1,c2,c3 € C and choose g1, g2, 93, g4
such that gl_lcl = g{lcg and g{lcg = g4_1(:3. Then

hytes = g5 9395 b3 = g5 19395 e = hyter.
Thus

d(cr,e2) +d(ca,c3)
_ inf{dc(g1,g2) : 91_101 _ 92—102} + inf {dG(g3ag4) : g3—102 = 94_103}
> inf {d(hy,hs) : hi'er = h3'es)
=d(c1,c3).

]

The problem is now to compute a suitable distance on G. One usually
assumes that G is a Lie group so that one can construct a metric in the standard
way: If g : [0,1] — G is a path on G we can define the speed ¢'(t) as the tangent
vector to G at g(t). Choosing an inner product (-,-), on the tangent space, the
length of the path g is given by

1
2
E(g) = / lg' ()1,

and the corresponding Riemannian distance between two elements g; and g, is
defined by

d(91,92) = inf { VE(g), 9(0) = g1, 9(1) = g2 } . (6.7)

ie. the length of the shortest path connecting g; and g,. We refer to Younes
(1998) for details on how to determine a right-invariant inner product on a
general group G, and instead give a simple finite dimensional example.

EXAMPLE 6.3.1 We consider again two n-dimensional point configurations z;,z-
€ R?", being for instance the vertices of two polygons. We assume the point

sets to be scaled to have unit size and centroid in origin. The polygons are
deformed using global rotations in the plane, whence G = SO(2) with elements

_ (cosf —sinf
9= \sin® cosh

> , 6€]0,2m).

We can define a path from the identity I» to g, say, by using the matrix expo-

nential
g(t) = exp (£X) = exp (t (2 ‘09)) ,

and this path can in fact be shown to be the shortest path (see eg. Boothby
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(1986, chap. 9). Furthermore it is well known (see eg. example 8.6, p. 353
Boothby (1986)) that (X, X5) = trace(X; X]) defines a bi-invariant metric on
SO(2), and thus

1
0

%@mﬂaéwﬁwﬂz/tmﬂﬂm%ﬁﬁ
= trace (XX7),

where X satisfies g, = g1 exp X. Consequently dg(g1,92) = /260 for some
0 € (—m,w]. Since x; and x» are both of unit size, the minimum rotation angle
between them must be given by arccos(z! ), so by using Eq. (6.6) we get

d(z1,72) = V2arccos (z] ) .

While this framework reduces to simple calculations in the finite-dimensional
case, for infinite-dimensional groups the calculations often becomes intractable.
However, by considering a certain deformation group, Younes (1998) derives a
closed form expression for the distance between continuous plane curves.

Younes (1998) represents a curve C' = {z(t),y(t),t € [0,1]} through the
function e®(®) = ¢ : [0,1] — CS' satisfying z'(t) = R¢ and y'(t) = S¢. Defor-
mation of the curve is defined through the (infinite dimensional) group action

(@,7).(1,¢) = (rCo9), (6.8)

where ¢ is a diffeomorphism on [0, 1], and r is a function r : [0,1] = CS!. One
can think of r(t) as a torsion of C' at ¢, and ¢'(t) as a tangential stretching. Using
the above framework he derives the following translation and scale invariant
distance between two plane curves C; and Cs:

0000 = 0:()
2

1
da(Ch,Cs) = 2i2f arccos/ Vo' (t) dt, (6.9)
0

where g = (¢,r). Note that in this derivation it is assumed that the starting
point of the curves are known. For open curves there are only two choices,
but for a closed curve the starting point may be any point in the curve. The
distance (6.9) should therefore be minimised over all possible starting points.
This complicates the computations, see Younes (1998) for details on this and
how to implement the distance using polygonal approximations.

6.5.2 Averaging closed curves using the distance transform

In this section we suggest a simpler method for obtaining the average of a
collection of closed curves. The method is appealing in the sense that it is
independent of the particular representation of the curves, so eg. templates of
different resolution could be used in computing the average. This invariance is
obtained by viewing the curve as the boundary of a connected random closed
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set, and then using theory for random closed sets for computing the expectation.
We start by reviewing some facts about random closed sets, and then describe
how Baddeley and Molchanov (1998) construct expectations of random closed
sets using representations of sets by distance functions. Finally, we show how
this could be straightforwardly extended to obtaining expectations of random
closed curves.

Preliminaries We start with some definitions related to random closed sets
and distances.

DEFINITION 4

A Random closed set is random element in the space F of all closed subsets of
a metric space (I, p), measurable in the sense that {X N K # 0} is a random
event for all compact K.

The distance from a point to a set F' C E can be defined using a distance
function:

DEFINITION 5

Let F' = F\ D be the space of all nonempty closed sets. A functiond: Ex F' —
R is said to be a distance function if it is lower semi-continuous with respect
to its first argument, measurable with respect to the second, and satisfies the
following conditions

(D1) If Fy C F», then d(x, Fy) > d(x, F») for all z € E.

(D2) F ={z : d(z,F) <0}.

In addition, it is often desirable to impose the following conditions.
(D3) d(z, F) < d(z,{y}) +d(y,F) for all z,y € E and F € F.

(D4) d(z, F) = d(z,{y}) for some y € F.

(D5) d(w, {y}) = d(y,{}, Va,y € E.

(D6) d(z, Fy U F>) = min (d(z, F1),d(z, F»)) for all x € E and Fy, F> € F'.

One simple example is the metric distance function d(z, F') that we have
previously used. We recall that it is equal to the shortest distance between
x € E and F € F in the metric p,

d(z,F) = p(z,F) = inf {p(z,y) : y€ F}, z €k (6.10)

In R® with it usual metric this is the Euclidean distance. In the following we
will use the related signed distance function

p(z,F), x¢&F,

. 6.11
—p(z,FY), z€F. (6.11)

d(:r;,F):{
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Note that both the metric and the signed distance functions satisfy the condi-
tions D3-D6.

Baddeley and Molchanov (1998) use the distance function d to define dis-
tances between sets. The embedding F' — d(-, F') takes the family F' of non-
empty closed sets into the space F = {d(-,F) : F € F'} of distance functions.
This space is equipped with a pseudo-distance dr which can be used for defining
distances between sets. For instance, when d is the metric distance function,
the Hausdorff distance between compact sets K and L is

pu(K, L) = suE|d(:C,K) —d(z,L)|
FAS

= dp (d( K),d(-, L)), (6.12)

where dp is the uniform metric. Alternatively, one can define distances using
LP-metrics and obtain the delta metric described above (Section 6.2) and in
Baddeley (1992).

Distance averages of random closed sets The main idea in Baddeley and
Molchanov (1998) is to employ the above embedding and work with the distance
function d(-, X) instead of the random set X. This is convenient because it is
possible to find the mean value of d(z,X),z € E. Moreover, if d(z,X) is
integrable for all € E, we can define the mean distance function

d(z) = Ed(z, X). (6.13)

Note that this mean may not itself be a distance function. Baddeley and
Molchanov (1998) now proceeds by defining the mean of the random closed
set X as a certain level set of the mean distance function: Fix a closed set W
and let dpw be the restriction of dp to W. Furthermore define an increasing
family of sets

X(e)={zeW :d(z)<e},ceR (6.14)
It is easy to show that X (¢) is a closed set.

PROPOSITION 6 (BADDELEY AND MOLCHANOV (1998))
X(e) is a closed set for all € € R.

Proof. Since d(-, X) is lower semi-continuous we get from Fatou’s lemma:

d(z) = Ed(z, X) < Elim inf d(y, X)

y—x
< lim inf Ed(y, X) = lim inf d(y).

y—z y—x

Hence d(-) is lower semi-continuous and X (¢) is closed. O
Then Baddeley and Molchanov (1998) use a suitable distance dp in the
function space F to find the optimal threshold:
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DEFINITION 6 (BADDELEY AND MOLCHANOV (1998))
Let € be the minimum point of the dp-distance between the distance function
of X (g) and the mean distance function of X,

E= argirslf dp (d(z, X (g)),d(z)) . (6.15)
Then the set
X =X(8) (6.16)
is called the distance average of X.

The distance average computed using the metric distance function has been
successfully applied for averaging images (Baddeley and Molchanov, 1998) and
feature maps (Lewis, Owens and Baddeley, 1999). The method seems to be
well adept in preserving the geometrical and topological properties of the input
objects, and insensitive to reasonably small misregistrations. In that respect
Lewis et al. (1999) provides the following result

PROPOSITION 7 (LEWIS ET AL. (1999))
Let x1 and x2 be two binary images on the same lattice S, and assume there
exists a mapping w : S — S such that x5 = 1 ow. Let

h= max d(i,w(i))
be the maximum distance over which any pixel is displaced by w. Then the
distance transforms of x1 and xo differ by at most h:

max |d(i, X;) — d(i, X2)| < h.
€S
Still, the objects must not undergo too large rotations and translations for
the distance average to be meaningful, but this is of course a concern for all
averaging techniques.
In practice we compute the empirical distance average using n independent
samples X1,...,X, form the random set X:

n

a() = =3 d(z, X)),

n <
i=1

and then proceeds as above. Baddeley and Molchanov (1998) shows that the
empirical distance average is a consistent estimator. Concerning implementa-
tion, the distance transform of a binary image can be computed in linear time
using a discrete approximation of the Euclidean distance. We have used the
chamfer(5,7,11) transform (Borgefors, 1986) in our experiments.
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Distance averages of random closed curves The above framework can
obviously be extended to compute the distance average of closed curves in R2.
A closed curve drawn from some distribution can be seen as the boundary 0X
of a connected random closed set X. Note that 0X is also a random closed set,
but we will from now on identify a curve with its interior set X.

We will use the signed distance function, since it uniquely identifies the
boundary of a set X as the subset whose distance to X is zero, 0X = {z € X :
d(z,X) = 0}. For a thorough discussion on the use of the signed distance
function in shape analysis, see Delfour and Zolesio (1994).

The following examples illustrates some interesting facts about the signed
distance average.

EXAMPLE 6.3.2 (BADDELEY AND MOLCHANOV (1998)) Let £ be a random vari-
able on [0, R] C RT, and let X; = B(0,£) C R? be the closed ball with radius
& and centre at the origin. Then the mean signed distance function is

d(z) = E (||lz[| - §) = [l - E¢,
which is exactly the signed distance function for the the ball B(0,E{). Now by
Eq. (6.14) and (D1),
X(0) ={z : d(z, B(0,E¢)) < 0} = B(0,E¢),
and thus X = B(0, E¢).

Note that this is not true if we use the metric distance function. In fact,
if one uses a non-negative distance function, the mean distance function is in
itself a distance function if and only if X is deterministic.

ExXaMPLE 6.3.3 Let X = B(§,r) C R, where £ is a random variable uniformly
distributed on [0,1]. Using the signed distance function we get that d(z, X) =
|z —&|l —r and

1
e) = Bd(e,X) = [ o= glds—r =" ~a45 -,

whence X (g) = [% —1/1+4(r+¢),: +1 1+4(r+5)]. We let dr be the

Hausdorff metric, so that

1 1 1
2 _ _ _ .2
T a;+2 r+x 2+2 1+4(r+e¢)

’

):0.

¢ = arginf max [ sup
£z z<1/2

1 1 1
P-4+ —r—z+-+=\1+4(r+¢)

Sub 2 272

z>%

Thus X = B(3, /1 +4r), a ball with radius different from r.
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From these examples we can conclude that while E B(0,¢) = B(0,E¢), the
same is not true for fixed objects with random centre points, eg. EB(&,r) #
B(E¢,r). In general, if X is a deterministic set and £ € R? is a random position,

X+E£X+E

Examples We have performed some experiments to get a feel for the perfor-
mance of the method. The first experiment considers a deformable template
model where samples are obtained by performing random translations, scalings
and rotations of the circular polygon template. This is obviously a situation
where the pointwise mean fails, and the results confirm this. Figure 6.1(a)
shows some of the samples, while Figure 6.1(b) and (c) shows the distance aver-
age and the pointwise average, respectively. The advantage of constructing the
mean independent of the representation is evident.

The second experiment illustrates that the method is sensitive to too large
variations in shape. The setup is as above, but with an ellipsis as a template,
deformed by applying rotations in the range [0,7/2]. The distance average in
Figure 6.2(b) is slanted at an angle being approximately 7 /4, but is smaller and
more roundish than the samples. To get a feel for the variation in the sample we
may plot the pixelvise mean of the absolute valued distance transform for each
object, see Figure 6.2(c). This might be of interest for instance in situations
where one wants to known how often an objects covers a certain subset of the
plane.

Throughout this report we have used the distance average for computing
the average shape of samples from our template models, and the method has
proven to give a very reasonably summary of the samples.

(a) (b) (c)

Figure 6.1: Average of circular polygons transformed by Euclidean
similarities. (a) Samples of the polygons. (b) The distance average
of the polygons, and (c) the pointwise average of the polygons.

54



(a) (b) ()

Figure 6.2: (a) Samples made by random rotations of a template
elliptical polygon. (b) The distance average of the polygons. (c)
Pointwise mean of the absolute value of the distance transforms
of each polygon.

6.4 METRICS FOR GREY-SCALE IMAGES

Measuring the similarity between two images is important in image analysis,
for instance to measure the fit of an image estimate to a true image. It is
often convenient that the measure is a metric on the space of images, and we
will briefly discuss such metric for grey scale images, which we for now view as
mappings ¢ : S — [0,1] from some image domain S C Z2. Ideally an image
metric should correspond to the human notion of “distance” between images,
but such images are notoriously difficult to construct. Certainly, the widely
used L,-metrics

1/p
1
||.’I,'1 — .’I,'g”p = (E Z (.’13173 — $273)p> (617)

ses

are not well suited for all imaging applications. Their main drawback is that they
compare images pixel by pixel, without taking into account global structures.
A 7good” and useful metric should account for the spatial distributions in the
image, while at the same time being practically computable.

Rue (1995) and Rue (1997) uses the local correlation structure of the resid-
uals e = ||z; — z2||2 to construct image metrics that measure spatial structures.
In its simples form the metric is

dg (21,25) = »_ L) (@16, 22.6) + XY Y R2 (k),

seS seS kel
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where L ;) is a pixel by pixel distance, ws is the 3 x 3 neighbourhood centred
ins, I' ={(1,0),(0,1),(1,1),(-1,1)}, and

1
R, (k) G lewsmzws_k (er — o) (er4k — &ay) -

Friel and Molchanov (1998) take a different approach, using the theory for
random sets. They represent images as random sets, and construct an image
metric via a probability metric for their corresponding random variables. For
simplicity we now treat images as mappings x : R2 D Q — [0,1]. To describe an
image through random sets, note that we can represent an image x as a family
of sets,

Xe={€eqQ x(®)>t), 0<t<1,

and that if u ~ U[0, 1], X, is a random set. One metric for random sets is the
integral metric

d[(l’l,l’z) - dI(Xl,uaXZ,u) = sup
heH

?

| swpm@dt- [ sup @)
0 0

§EH, §€H,

where H is a family of non-negative functions and Hy = {¢ : h(z) > t}. For
the case of binary images Friel and Molchanov (1998) show that the integral
metric is equivalent to the Hausdorff metric Eq. (6.12) if # = {h¢ : ¢ € Q},
and h¢(§) =1 — ||€ = ¢||/e. Using the same family H for grey scale images, the
metric writes as

dr(z1,x2) = sup
CeEQ

/ ( sup () — sup x2(s)> dt
0 £eB((,t) £eB((,t)

They now proceed by generalising the above distance in much the same way as
Baddeley (1992) generalises the Hausdorff metric to construct the delta metric.
Thus Friel and Molchanov (1998) defines the double integral (pseudo)-metric as

1 p 1/p
dpr(xi,xs) = // sup z1(§) — sup x2(§) | dt| d¢ . (6.18)
Q1J/0 £EB(()t) §EB(C,t)

Smaller values of ¢ make the metric more local; note in particular that if ¢ =0
the metric reduces to the L,-metric, while dp(z1,22) — | sup z1 —sup 2| when
¢ — 00.

Below inn Chapter 7 we will use the metric distance function for computing
distances between grey-level images, both as a means for monitoring convergence
of MCMC samplers, and for comparing the fit of image estimates to a true image.
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CHAPTER 7

Block Sampling in
Restoration of Images

7.1 INTRODUCTION

In this section we will consider block sampling of spatial models with edge-
preserving priors; with a particular view towards restoration of ultrasound
images. It is well known that single site updating schemes might have poor
convergence and mixing properties, especially for models with long-range spa-
tial interactions. However, although block updating schemes long have been
used for temporal Markov field models (Friiwirth-Schnatter, 1994; Carter and
Kohn, 1994), block sampling of spatial Markov fields is more difficult due to
the lack of ordering of the sites. In the case of Gaussian Markov random fields
(GMRFs), Rue (2001) has recently described an efficient block sampling algo-
rithm based on sparse matrix methods. The algorithm has been shown to work
well for a range of spatial models with Gaussian or near-Gaussian distributions
(Rue, 2001; Knorr-Held and Rue, 2002). The ability to handle near-Gaussian
distributions is especially important, as such distributions often occur in spatial
models, eg. in imaging and spatial epidemiology.

The main contribution of this section is the use of block sampling for edge-
preserving models of the form Eq. (4.5). Block sampling in this class of models
was first used by Geman and Yang (1995), who introduced the dual formulation
in Eq. (4.10), and did MAP estimation using Fast Fourier Transforms. Later
other algorithms for optimisation have been introduced eg. by Charbonnier et al.
(1997) and Barone (1999). However, all these attempts assume stationary Gaus-
sian likelihoods and toroidal boundary conditions. We propose instead to use
the GMRF algorithm of Rue (2001), thus allowing for non-stationary Gaussian
likelihoods and to some extent non-Gaussian likelihoods. To our knowledge
no comparison between single site and block samplers has been performed for
edge-preserving models, and so we want to investigate whether the dual model
formulation leads to better sampling properties. For even if the dual formulation
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allows for block sampling, it is not certain that the augmented model 7*(xz,b)
(see Section 4.3) is easier to sample from; it might be inherently more resistant
to sampling. We describe the block sampling approach in Section 7.2, together
with a short example comparing block and single site samplers.

We then extend the block sampling approach to edge-preserving prior mod-
els with non-Gaussian likelihoods and consider restoration of radio frequency
ultrasound images. The restoration is based on the imaging model described in
Chapter 3. This model was first used for image restoration and segmentation
in Hokland and Kelly (1996), and extended in Husby et al. (2001) and Langg
et al. (2001). The Bayesian model is formulated in Section 7.3, and results of
the experiments are given in Section 7.4.

7.2 BLOCK SAMPLING IN EDGE-PRESERVING MODELS

We start with two simple examples performing restoration of a piecewise con-
stant toy image and a confocal microscopy image of a human melanoma cancer
cell. The purpose of the experiments is to compare block sampling with standard
single site sampling for an edge-preserving model.

The piecewise planar image is very well described by an edge-preserving
prior model with only first order cliques. The image x is shown in Figure 7.1
(a), and is degraded by applying a flat 5x5 blur mask and adding Gaussian noise.
The resulting image is shown in Figure 7.1 (b). Using the dual formulation of
Section 4.3.1 the conditional density for x and the auxiliary variable b is

M 1 )
7(z,b|y) o< exp (—Zﬁ Z Wi <§ (ng)m - bgm)) + 1 (bgm))>

seS m=l1
1 2
+§ (ys - Z hkx§+k> (7'1)
k

Let DU™ be matrices representing the difference operators {ng)}, DT =
(DWOT . D) and let b7 = (b1, ... ,b(M)). Furthermore, define W =
diag(wi, ... ,wn) ® I, and let H be a matrix representing the point spread
function h. Then it is easy to see that the full conditional distribution for the
true image z has density

m(z |y, b) o exp (—%wT <6DTWD + %HTH> T+ bTWDm> : (7.2)

which is a Gaussian Markov random field with inverse covariance matrix @ =
BDTWD + 07 2HTH and mean vector u?' = bTWD Q~!. Assuming toroidal
boundary conditions = can be sampled very efficiently using FFTs as detailed
in Geman and Yang (1995). In the general situation one can use Cholesky
decomposition and sparse matrix methods as in Rue (2001). Also note that if the
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likelihood is non-Gaussian, the methods in Rue (2001) can be used to construct
a Gaussian approximation of the aposteriori distribution; this approximation
can be used as a proposal distribution in a Metropolis-Hastings algorithm.

Figure 7.1: Piecewise planar image. (a) original image. (b) The
image in (a) degraded by a constant 5 x 5 blur and Gaussian noise
with standard deviation 2.

We sampled from the posterior distribution for  using both the augmented
model Eq. (7.1) and the original model Eq. (4.5). In both cases we used 8 = 50
and § = 10, and the samplers were initialised with flat images having value
zero. The block sampler converged very quickly; Figure 7.2 (b) shows a cross
section through the true image, together with the 10th sample of the block
sampler. For comparison we have displayed the data y in Figure 7.2 (a), and
the 100th sample of the single site sampler in Figure 7.2 (c). The block sampler
seems to be very efficient; a few iterations seems to be enough to get a good
restoration. It compares very well with the single site sampler that uses far
more iterations to obtain the same results. It should be noted that while in the
current implementation both samplers use approximately the same amount of
time for each iteration, the single site sampler should be slightly faster in an
optimal implementation.

Next we consider the cell images, one of which is shown in Figure 7.3 (a).
This problem is slightly more challenging, and it is also of interest to see how
well the model can handle images that are not planar. To get quantitative
measurements we degrade the true image x by blurring with a Gaussian kernel
with standard deviation 3, and adding independent zero mean Gaussian noise
with ¢ = 15. The resulting image y is shown in Figure 7.3 (b). Figure 7.3 (c)
shows a posterior mean estimate of the cell image based on 1000 iterations of
the block sampler with parameters § = 200 and ¢ = 50, and ¥(u) = |u|/(1 +
|u]). Visually the restoration is quite close to the original image, although
some smoothing has taken place. The results were similar for a wide range
of parameters, but smaller values of the ratio 3/6% led to smoother images.
Since the truth is known, a qualitative comparison between the restoration and
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20 a0 60 50 100 1z0

Figure 7.2: Piecewise planar image. (a) Cross section through
the image. The dashed line is the truth, and the full line is the
data. (b) The tenth sample of the block sampler with 8 = 50
and 6 = 10, overlaid the truth. (c) The 100th sample of the
corresponding single site sampler.
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the true image can be made. Figure 7.3 (d) plots the double integral distance
(Section 6.4) between the Markov chain samples and the true image Figure 7.3
(a), both for the block sampler (lower curve) and a single site sampler run
for comparison. A constant image was used as an initial point, and the block
sampler seems to reach a stable state within a few iterations. In comparison,
the single site sampler seems to converge much slower. In conclusion, the dual
model formulation combined with a good block sampling algorithm seems to
well suited for recovering discontinuities in piecewise smooth images, and seems
to be more efficient than the original model combined with a single site sampler.

ooooo

o a0 s00 600

Figure 7.3: Edge preserving restoration. (a) Confocal microscopy
image of a human melanoma cancer cell. (b) Data obtained by
blurring and adding Gaussian noise. (c) Restoration of the image
using the Geman & Yang model and the GMRF algorithm of Rue
(2001). (d) Trace plot of the double integral distance between
the true image and the Markov chain samples from a single site
sampler (top curve) and a block sampler (bottom curve), both
with the same initial image.

7.3 A BAYESIAN MODEL FOR ULTRASOUND IMAGES
7.8.1 Introduction

In this section we derive the Bayesian Markov random field formulation of the
ultrasound imaging model in Chapter 3. We represent the imaged region as a
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grid S C Z2 with n = niny nodes, and index the nodes or pixels by lateral index
s1 and radial index s», and write s = (s1, s2) when appropriate.

Let y = {ys, s € S} be the observed radio frequency image, modelled as
resulting from a convolution of the true radio frequency image = = {z,, s € S}
with the imaging system point spread function h, with the addition of noise
consisting of independent and identically distributed Gaussian random variables.
The goal in this section is to estimate = from y. We follow standard practice
and assume the pulse function h to be spatially invariant (Christensen, 1988;
Angelsen, 2000), in which case we can write

—1
Ysi,s2 | T, h ~N E hk17k2m81+k1782+k2 ) A ’ (73)
k1,k2

where X is the unknown precision of the noise process. We assign a I'(a, b) prior
to A, ie. a Gamma distribution with mean a/b and variance a/b?. We assume
the pulse function to be a separable Gaussian function with a sine oscillation in
the radial direction, ie.

(7.4)

k? k3 2k
Py ks o<exp< L 2 )cos Ly

202, 207, w
Empirical studies indicates that this is a good approximation (@degard, 1995)
which seems to be quite robust with respect to misspecification of the parame-
ters, see Langg et al. (2001). Whether the stationarity assumption is reasonable
or not, depends on properties of the imaged tissue; see eg. Odegéard (1995) for
a discussion. Certainly having a non-stationary pulse will introduce additional
computational costs, and should thus be avoided if possible. Our result did not
seem to justify such an increase in computation time.

7.3.2 A model for diffuse scattering

Recall from Section 3.2 that in the model for diffuse scattering, the radio fre-
quency echoes are apriori independent zero mean Gaussian variables with vari-
ance dependent on the acoustical properties of the underlying tissue, ie.

zs|o2 ~N(0,02), Vse€S. (7.5)

The independence assumption may not be realistic in all applications, and the
prior could be replaced by a distribution with some simple dependency struc-
ture. We have not tried this. The variance o2 is given by the expression in
Eq. (3.4), and depends on the scattering intensity of the tissue region imaged
at site s. Usually the variance has been assumed to be constant over the whole
image, and an important contribution in Hokland and Kelly (1996) and Husby
et al. (2001) is to let the variance vary throughout the image, acknowledging

that this particular parameter contains information about the anatomy of the
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imaged tissue. In fact, the radio frequency field = contains no additional infor-
mation, and can thus be seen as a nuisance parameter. However, as argued in
Husby et al. (2001), a model formulation containing x has great computational
advantages, since the distribution for the variance field o2 given the data has
no Markov structure, whereas the distribution for o2 given the data y and the
radio frequency field = has a neighbourhood structure depending on the support
of the point spread function h.

To avoid problems with positivity we reparameterize the model and define
a log-variance field v = {Ino, : s € S}. The choice of prior model for this field
should be justified from physical considerations about the imaged tissue, and
we use the following assumptions:

e scattering intensity tend to be approximately constant within regions of
homogeneous tissue,

e abrupt changes in scattering intensity may occur at interfaces between
different tissue types.

Based on these assumptions it is reasonable to model the log-variance field v
as being piecewise smooth with homogeneous subregions corresponding to the
different tissue types in the imaged region. As explained in Section 4.2, edge-
preserving functionals are well suited for modelling such fields. Thus we define
the prior distribution for v as

m(v) x exp (—ﬂ z]\i: Wm Z ) (ng)y)> , (7.6)

seSs

where ¢(-) is a functional from the edge preserving class defined in Eq. (4.6),
wi,... ,wpr are positive constants, § is a positive scaling factor, and ng) are
the discrete derivatives defined in Eq. (4.2). Unless otherwise stated, we will
use the four first order cliques displayed in Figure 4.1, with the corresponding
constants w; = ws = 1, w3 = wy = 1/\/§ The scaling parameters 8 and §
are discussed below, in Section 7.3.4. Finally, we note that other approaches
are also feasible, for instance using line processes (Geman and Geman, 1984;
Higdon et al., 1997). However, line processes introduce additional complexity,
and experiments suggests that they introduce too much smoothing in blurred
images (Higdon et al., 1997).

Note that this diffuse scattering model rests on a number of conditions,
notably that there is a large number of diffuse scatterers in the regions imaged
by each pixel, and that there is a negligible coherent scatter component, see
Section 3.2. These conditions do not apply to all tissue types, but there exists
statistical tests for identifying the regions of an image for which the conditions
apply (Georgiou and Cohen, 1998).
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7.3.83 Posterior distribution

Combining the Gaussian likelihood Eq. (7.3), the model for the true radio
frequency signal Eq. (7.5), and the prior for the underlying log-variance field
Eq. (7.6), we obtain the posterior density

2
. 1
m(x, v, \|y) x A2 exp —5)\2 (y — Z hkms+k>

seES k

X exp (—% Zx? exp(—2v;) — Z I/s> (7.7)

SES seS

M
X exp (—6 S wm Y ¢ (ng>u)> x A% Lexp (=bA).

m=1 seS

In Husby et al. (2001) the precision A was assumed constant, and the rest of
the parameters where updated using single site Metropolis - Hastings samplers.
Note that they used a slightly different formulation of the model. The best is
perhaps to use random walk samplers, but both z and A can be updated directly
from their full conditionals

-1
AD hi—s Ty
s 78777A ~ N ‘k ) AE h2+ —2v;
To|—ssy,v MY he + exp(—2v;) l - &+ expl V)]

2
1 1
Aly ~ T G+§n;b+§zs:<ys—2k:hk$s+k>

Here Yy = yp — Z#k_s hizr—;. To summarise, sampling from the full model
where done as follows in Husby et al. (2001).

ALGORITHM 1
STEP 1. Select initial values for x and v.

STEP 2. Select a random ordering of S, and for each s € S, do
STEP 3. Propose a new v., from Ulvg/f,vsf], f > 0.
STEP 4. Accept the proposed sample with probability

!
a:mm{l,w}_ (75)

w(vs |z, v_s) V}

! 2
STEP 5. Propose a new !, from N(xs,07,,)
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STEP 6. Accept the proposed value with probability

a:min{l,w}. (7.9)

m(xs |T_s,V)
STEP 7. Repeat steps 2 — 6.

However, Husby et al. (2001) observed quite slow convergence of the single
site sampler, and it is thus of interest to investigate whether block sampling
will lead to computational improvements. For the radio frequency field x block
sampling is easily implemented. For simplicity we assume the parameters 3,6,
and A to be fixed in the following discussion. Let H be a matrix representing
the point spread function h, ie. having entries

Hsr = h|sfr|7 1<s,r<n

In practice the point spread function is truncated so that hy = 0 if k is
greater than some threshold K. Furthermore, let V' be the diagonal matrix
V = diag(exp(—2v1), ... ,exp(—2v,)), then it is easy to see that the conditional
distribution for z may be written as

1
m(x| A, v) xexp <—§mT (AHTH +V)z+ yTHa:> , (7.10)
which is of the form Eq. (2.5) with b, = >, hiystx and

Dok hi +exp(—2vs) s=r
er = Zk h\s—k|h\r—k| |S - 7“| < 2K +1
0 otherwise.

Hence we can efficiently sample « in one single block using the GMRF algorithm
of Rue (2001) (see Section 2.2.1).

The conditional distribution for the log-variance field v is non-convex, and
therefore block sampling is not straightforward to implement. On the other
hand, because of the non-convexity, this part of the model might benefit the
most from going from single site to block updating. By using the dual model
formulation of Geman and Yang (1995) (Section 4.3.1) it is at least in theory
possible to construct a block Metropolis-Hastings scheme as follows. Remember
from Section 4.3.2 that we can substitute the prior distribution Eq. (7.6) with
a dual distribution

M 1 )
7 (v,b) x exp (—,6’ Z Win, Z <§ (ng)l/ — bgm)) + (bg"”))) , (7.11)

m=1 seS
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where {bgm)}, m = 1,...,M are auxiliary fields, and the functional () is
related to ¢(-) by Eq. (4.11). The corresponding full conditional distribution
for v is given by

M
(v |z, b) o< exp (— Z (%ﬁ Z Win, <(ng),/)2 _ 2bgm)ng)l/>
m=1

seES

—l—%mz exp(—2vs) + 1/5>> , (7.12)

which is quadratic in v except for the term involving exp(—2v;). Since there
exists efficient methods for block sampling Gaussian Markov random field mod-
els, it is tempting to try to construct a Gaussian approximation of the density
(7.12). In a neighbourhood around the current value v, we can approximate the
exponential as

exp(—2v,) & As + 2Bgvl + Csv'?,

where the coefficients depend on v,. Then we get an inhomogeneous Gaussian
Markov random field that approximates the distribution (7.12) and that can be
used as a proposal distribution in a block Metropolis-Hastings sampler:

M 2
q(’/l | v, b7$) = Z(ll/) exp <_ Z (g Z Wm ((ng)yl) — ngm)ng)Vl>

sES m=1

1
+§m§Csl/'§ + (22Bs + 1) I/;)) . (7.13)

This is again a distribution of the form Eq. (2.5) with

B < (m)

- £ (m) _ plm _ 2B _

bs 5 m;wm (bl = b)) — 228 -1
23/4° 2%21 W +Cs22 r=35

QTS = ﬂ/62wm(s,7‘) r~s

0 otherwise,

where m(s,r) the clique type for sites s and r, and r(s,m) is the unique site
belonging to the m-clique of site s. This kind of approximation is used in Rue
(2001) and Knorr-Held and Rue (2002), which also discuss different ways of
obtaining the approximation Eq. (7.13).
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The auxiliary variable b has conditional distribution

M
7" (b|v) ox exp (—/3 Z W Z <%(bgm))2 _ bgm)ng)l/ +9 (bgm))>> .
m=1 sesS
) (7.14)

Note that all the components are independent, so that this distribution can
easily be sampled using eg. envelope rejection sampling (Robert and Casella,
1999). Alternatively one can use a random walk Metropolis sampler.

Sampling from the full model can now be done as follows.

ALCORITHM 2
STEP 1. Select initial values for x, v, and b.
STEP 2. Draw a sample v' from q(v' |v,b, ).
STEP 3. Accept the proposed sample with probability

(' |z,b) q(v |V, b,T)
m*(v|z,b)qv' |v,b,x) |

a :min{l, (7.15)

STEP 4. Generate a sample b from 7*(b| v) using envelope rejection sampling.
STEP 5. Draw z from the conditional distribution w(x |v,y).

STEP 6. Repeat steps 2 — 5.

Note that the normalising constant of ¢ does not cancel in the ratio Eq. (7.15);
but this constant can be computed efficiently as in Rue (2001). We will return
to this model later, in Section 7.4, where it is applied for restoration of simulated
and real ultrasound images.

7.8.4 Treatment of hyperparameters

The edge preserving prior model in Eq. (7.6) contains two unknown hyperpa-
rameters, 4 and §. The value of these parameters greatly affects the properties
of the restored images: a large value of 3 yields smooth images, whereas a small
value gives too much noise; likewise would a too large value of § smooth out
edges. Consequently there has been a great deal of interest in estimating these
parameters. Geman and Reynolds (1992) and Hurn and Jennison (1996) use
heuristics to find an upper bound for 3 given §, while Jalobeanu, Blanc-Feraud
and Zerubia (1998) use Markov chain Monte Carlo maximum likelihood to esti-
mate the hyperparameters. Perhaps more interesting is the use of fully Bayesian
methods to integrate out the effect of the hyperparameters altogether. Notable
examples are Higdon et al. (1997) and Weir (1997), the last of which considers
a model similar to the one discussed above, but with only one parameter. The
problem is to evaluate the normalising constant of the prior Eq. (7.6), and Weir
(1997) uses reverse logistic regression (Geyer, 1991). This method is highly
computer intensive, and Chen, Shao and Ibrahim (2000) reviews other ways
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of approximating the normalising constant. A particularly simple and elegant
method proceeds by considering the derivative of the normalising constant. If
we let 7(z) o< exp(8P(x)), then

Z(B) = exp(B®(z)), (7.16)

and

Solving this differential equation one obtains

8’ -
l0g (2(9)/2(9) = [ B, 305, (7.17)

where the integral can be approximated by estimating the expectation for a
range of [-values and using a smoothing spline to construct a function that
can be integrated numerically. The method seems to be stable and reasonably
efficient, but the computational burden increases sharply with the number of
unknown parameters. In our experiments we have for simplicity set appropriate
values of the hyperparameters by trial and error.

7.4 BLOCK SAMPLING IN RESTORATION OF ULTRASOUND
IMAGES

The examples in this section concerns a slightly harder problem than the one
in Section 7.2, namely estimation of a true radio frequency image x based on
observed ultrasound images, and using the Bayesian model described in Sec-
tion 7.3. This has previously been done in Husby et al. (2001), but the goal now
is to investigate if block sampling will lead to improved mixing and faster con-
vergence than the single site random walk sampler used in Husby et al. (2001).
One problem is that the full conditional for the log-variance field v (Eq. (7.6))
is not Gaussian, hence we need to use a Gaussian approximation of the density
as a proposal in a Metropolis-Hastings sampler. This approximation most be
reasonably good in order to get decent acceptance rates.

We first use a synthetic dataset to get quantitative measures on the perfor-
mance of the method, and to find appropriate ranges for the unknown hyperpa-
rameters 3 and 0. Secondly, we try to use the method for restoration of a real
ultrasound image,
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7.4.1 Simulated image

The dataset was constructed to have a structure similar to the real images
considered in Section 8.4.2, and is based on the 64 x 64 binary two region
image in Figure 7.4 (a). The area of the foreground region is 625 pixels. We
then generated two log-variance fields using a Gaussian Markov random field
approximation to a Gaussian field having an exponential correlation function
with range 36. Whether this choice of correlation structure corresponds to the
one found in real ultrasound images is if course hard to say, but it corresponds
well with the assumption of smoothly varying scatter properties. The Gaussian
fields were combined to yield the log-variance field in Figure 7.4 (b), with the
background field having mean zero, and the foreground field having mean value
equal to 1/2. A radio frequency field z was generated using Eq. (7.5) (Figure 7.4
(c)), and finally a simulated ultrasound image was generated using Eq. (7.3),
with the point spread function having wavelength 1, and standard deviations
3/2 in both the radial and lateral directions. The image is shown in Figure 7.4
(d) after taking the absolute value and doing a log compression to enhance
contrasts.

To find plausible values of the hyper parameters 8 and ¢, the model in
Eq. (7.6) has been used for estimating the true radio frequency and log-variance
images for different values of the pair (3,4). Figure 7.5 show posterior mean
estimates of the log-variance field for the different parameter values, and we
can clearly see that the parameters affect the properties of the model, as higher
values of 8 and § yield smoother images. However, the corresponding radio
frequency images were visually very similar, and this indicates that variations
of # and § within the given range does not have any significant impact on the
quality of the image restoration. To get a quantitative comparison between the
models, we have used the double integral distance (Section 6.4) with ¢ = 10
and p = 2 to measure the distance between the different image estimates and
the true images. The results are shown in Table 7.1, indicating the the highest
value of 3 gives the best estimate for v. For z the differences are small, but the
same conclusion seems to hold. Different values of ¢ led to the same ranking
between the images.

Moving on to the main experiment, we tried restoration using both the
dual model Eq. (7.11) and Algorithm 2, and the original model Eq. (7.6) and
Algorithm 1. We used 8 = 10 and 6 = 1/2 in both cases, and ran the block
sampler for 1000 iterations and the single site sampler for 5000 iterations, since
the block sampler used approximately 5 times more CPU time to do each up-
date. To get reasonable acceptance rates for the block sampler, we updated the
image in smaller blocks containing 50 — 100 pixels. To avoid unwanted edge
effects we used different, and over-lapping blocks for each iteration. Figure 7.6
(b) and (c) show the posterior mean estimates obtained from the output of the
block sampler and single site sampler, respectively. Figure 7.7 shows the dou-
ble integral distance between the samples and the truth for the block sampler
(bottom curve), and for the first 1000 iterations of the single site sampler (top
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Figure 7.4: Simulated ultrasound image. (a) The binary image
describing the anatomy. (b) The log-variance field representing
the variations in acoustic properties. (c) The simulated true radio
frequency image. (d) The corresponding observed image.

Table 7.1: The double integral distance between the true images

and posterior mean estimates in Figure 7.5.

(8,0) v X
(10,1/2) | 553 4590
(10,1) | 6.79 459.7
(10,4) | 9.33 4633
(5,1/2) | 6.74 4615
(5,1) | 813 4627
(5,4) | 10.34 4642
(1,1/2) | 12.36 462.2
(1,1) | 1238 4639
(1,4) | 1268 464.7

70




Figure 7.5: Posterior mean estimates of the log-variance field using
different parameters $ and 4. Row-wise from the top: § = 10,
B =5, and 8 = 1. Column-wise from the left: 6 = 1/2, =1, and
0 =4.

71



Figure 7.6: Restoration of simulated ultrasound image. (a) The
true image. (b) Posterior mean estimate obtained using the dual
model and block sampling. (c) Posterior mean estimate obtained
using single site sampling.

We again see that the block sampler reaches a stable state very quickly,
while the single site sampler seems to be moving very slowly in the same direc-
tion. Moreover, the posterior mean estimate from the block sampler (Figure 7.6
(b)) seems to be visually better than the estimate from the single site sampler

(Figure 7.6 (c)).
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Figure 7.7: Restoration of simulated ultrasound image. A distance
measure between the true image and the samples of the single site
sampler (top curve) and the block sampler (bottom curve).

7.4.2 Real ultrasound image

In this last example we consider restoration of a radio frequency ultrasound
image of a cross section through the carotid artery, shown plotted in polar
coordinates in Figure 7.8 (a). We use the model in Eq. (7.7), where we for
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simplicity have set A = 1/2 and kept 8 and ¢ fixed. We assume that the true
image is degraded by the blur function in Eq. (7.4), and we have estimated the
parameters as follows. The wavelength w is found by inspecting the data, as the
intensity peaks are regularly separated in most of the image. The parameters
orq and oy, can be estimated in the frequency domain as in Hokland and Kelly
(1996). The effect of mis-specifying the parameters of the point spread function
is discussed in Langg et al. (2001).

We have again tried both block and single site sampling, but we have so far
had limited success with the former approach. The acceptance rate (7.15) tends
to get too low, and we suspect the reason might be the large local variations in
the radio frequency field z. Because of these variations, the posterior density
(7.12) might be too skewed to be well approximated by the Gaussian density
(7.13). Thus one needs methods for constructing better approximations, and
recently there has been some promising work in that direction (Rue, Steinsland
and Erland, 2001).

The following results are thus obtained using the single site sampler, that,
although slow, seems to yield reasonable results. Posterior mean estimates of
the radio frequency and log-variance images are shown in Figure 7.8 (a) and
(b), respectively. The results are for § = 5 and 6 = 2, but other values in the
range 1 < 3 < 10,1/2 < § < 5 gave similar results. Convergence diagnostics
are shown in Figure 7.9, indicating good mixing. Obviously there is no way of
comparing the restoration with the unknown true image, but the restoration
seems to be less noisy and blurred, and with the important anatomical features
still intact. However, for restorations to be more reliable, the hyperparameters
3,4, and A should be integrated out in a fully Bayesian approach.

Figure 7.8: Image restoration using the edge-preserving model in
Section 7.3 with parameters 8 =5, § = 2, and A = 1/2. (a) Log-
compressed radio frequency image of a cross section through the
carotid artery in polar coordinates. (b) A posterior mean estimate
of the true radio frequency image. (c) The corresponding posterior
mean estimate of the underlying log-variance field.
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Figure 7.9: Convergence diagnostics for the experiment in Fig-
ure 7.8. Panels (a) and (b) show trace plots of the log-variance
at different positions, while panel (c¢) shows a trace plot of the

functional f(v) =683, wm 2, ¢(D§m)1’)-

Finally, we note on a limitation of our approach. It is well known that
point spread functions in ultrasound do not have exactly Gaussian shapes, and
that they vary both laterally and radially in images (@Odegard, 1995). This
is particularly a problem when the imaged tissue lies deep into the body. So
even if the Gaussian approximation works reasonably well in our examples, the
error introduced places limitations on the accuracy of the estimates, and on
the quality of the restorations. Some attempts on estimation of 2D ultrasound
pulse functions exist (Jensen and Leeman, 1994; Taxt and Strand, 2001), but
this is an area that need further study. Incidentally, we tried to let some of the
pulse function parameters vary spatially, but the results were not promising.
There is always a danger of trying to model too many factors; this might lead
to identifiability problems, and to severe sampling problems.
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CHAPTER 8

A Model for Contour
Detection in Ultrasound
Images

8.1 INTRODUCTION

In this second example we consider contour detection in ultrasound images. We
will restrict ourselves to images with one object, and consider estimation of
the outline and cross-sectional area of the carotid artery. Images of the carotid
artery are used in detection of atherosclerosis using the fact that diseased arteries
are less likely to dilate in response to infusion of acetylcholine. Estimating the
cross-sectional area of the artery before and after infusion is difficult because
changes can be masked by blur, edge reflections, and image artifacts (speckle)
introduced in the imaging process. An automated procedure should be able
to assess these problems properly, as well as quantifying the uncertainty of the
given answer, for instance by means of an interval estimate. Thus there is a real
need for Bayesian methods with emphasis on realistic modelling of both object
and data. Our approach will be fully Bayesian, since fixed parameter values
might affect the interval estimates in unknown ways. Extension of our model to
allow for an unknown number of objects is straightforward in principle, although
it severely affects the computational complexity (Rue and Hurn, 1999).

The reasons for using an explicit shape model are twofold. Of course, when
we are interested in the shapes of the imaged objects per se, it makes sense
to model them explicitly, instead of eg. defining them through morphological
operations on the texture Markov random fields. Unlike implicit models, for
instance the one used in the previous section, an explicit shape model allows
us to model apriori information on the structure of the imaged tissue. For
instance, the number of objects, and their type, shape, and texture can be
given informative prior distributions with appropriate variability.
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In addition, shape models can be useful in restoration of ultrasound images,
just because of the ease with which we can model a priori knowledge about the
imaged tissue. The template or templates will define a partitioning of the imaged
region, hopefully corresponding to the different organs and tissue types. Thus we
have an explicit division of the imaged region into different scattering regimes,
avoiding the computational difficulties of the implicit edge models in Chapter 4.
Furthermore, the specular reflection along tissue interfaces (see eg. Figure 1.1)
can be dealt with explicitly, and this will prove to be a great advantage. Of
course, the use of explicit shape models introduces strong prior constraints, and
is thus dependent on reasonable prior information.

There are two important aspects of this chapter. First, it shows the use of
Bayesian methods for a rather complicated, real application, and demonstrates
the importance and feasibility of using realistic models for both objects and data.
A particularly important feature of our model is that the deformable template
can be used for modelling the strong reflections occurring at tissue interfaces
normal to the ultrasound beam. Secondly, the experiments we have performed
indicate that it is important to take great care in designing the Markov chain
sampler for complicated, hierarchical models. We have previously shown that
block sampling in many situations performs better than single site sampling, but
for our model it turns out that block sampling performs best when we update
all or nearly all variables jointly. In fact, algorithms updating the variables
sequentially sometimes seem to be mixing very slowly, and might thus give
misleading results.

The chapter is organised as follows. We start by defining the deformable
template model in Section 8.2.1, also discussing different parameterisations. The
ultrasound likelihood model is redefined in Section 8.2.2, where we also briefly
describe the standard likelihood model often used in imaging. This model will be
used as a benchmark model. Sampling of the model is discussed in Section 8.3,
while the largest part of the chapter, Section 8.4, shows experiments using both
simulated and real ultrasound images. Here we discuss the effect of modelling
edge reflections, and compare different sampling schemes.

8.2 BAYESIAN MODEL FORMULATION
8.2.1 Prior distribution for the contour

Our aim is to estimate the boundary of a blood vessel or an other elliptically
shaped object such as an aneurism (see Figure 1.1). Objects with different
shapes can be treated similarly, although in practice there is a limit to how
complex the shapes can be.

We use the deformable template model defined in Section 5.3.2; we let the
template €® be the m-sided polygon with vertices (cos 2rk/m, sin 2wk/m), k =
0,...,m — 1, and let ¢ be the vector of transformations, tI' = (tI,tf) =
(to,0,--- s to,m—1,t1,05--- st1,m—1). We assume that t, and ¢; are a priori in-
dependent, and for simplicity we let both be Gaussian with mean zero and a

76



common tridiagonal precision matrix ). Denote by Q; = I, ® ) the precision
matrix for ¢. To keep the behaviour of the model approximately independent
of the the number of edges, () is parameterised as in Eq. (5.11). The unknown
parameters k£ and 7 are given hyperpriors I'(as, b.) and [(a,, by,), respectively.
The closure constraint Eq. (5.2) can be written as At = 0, where

0 0
A= (% ). 5.1)

y "€

and we write 7(t| At = 0) for the corresponding conditional distribution, which
is also Gaussian with zero mean and covariance matrix

o= Q7" (1- AT (4971 A7) Q7). (8.2)

As noted in Section 3.3, in some images there are large variations in signal
magnitude along the outline, due to the way the ultrasound beam is reflected. To
avoid bias in estimates of the cross sectional area, it is important that the model
is robust with respect to such image features. One simple solution would be to
penalise interior angles that differ too much from (m — 2)x/m, the interior angle
of a circular polygon. This is easy to implement, but is somewhat ad-hoc, and
works best when the contour is known to be close to a circle. Another approach
is to modify or ignore the likelihood on the parts where data is spurious. Rue
and Husby (1998) uses a binary Markov field &, called a destructive deformation
field, living on the edges of the template, and having value 1 if data is missing
on the edge, and 0 otherwise. The field is given a simple prior

m—1 m—1
ﬂ-(é) X €xp (50 Z H[§k=1] + 61 Z H[§k=5k+1]> )
k=0 k=0

with subscript addition taken modulo m. On the parts of the contour where the
destructive deformation field has value unity, the contour shape is essentially
determined by the prior. The method proved to be well suited for modelling
partly destroyed edges.

In this report we will try to model how specular reflection occur. As men-
tioned in Section 3.3, the ultrasound wave is partially reflected at interfaces
between tissue types with different acoustic impedances, and this specular re-
flection may at least partly explain the weak echo at some parts of the artery
wall. We model the total radio frequency signal as

Ts+ prs, SES,

where x4 is the diffuse component, r; is the specular component, and the con-
stant p is the relative magnitude of the specular and diffuse components. p can
be estimated from the generalised spectrum of the data (Varghese, Donohue
and Chatterjee, 1995), but this is computer intensive and we find it easier to
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treat it as an unknown parameter. where p is a scaling parameter.The specular
component is non-zero at tissue interfaces only, where it follows the law

Zy  _ _ 4
__ cosf2 cos 01 %
Te = —p 27— s cos” 6y, (8.3)
cos f2 cos 01

where we set the reflection exponent to v = 2 (Hokland and Kelly, 1996), and use
the acoustic impedances Z = 162.0 kg/(s-cm?) for muscle and Z = 166.6 kg/(s-
cm?) for blood (Christensen, 1988).

Finally we note that it is not a contradiction to use piecewise linear curves
to model a general continuous curve. The polygons are just a means of repre-
senting the (intractable) class of closed curves, and we can safely use polygons as
approximations of the “true” curves as long as integrals calculated over the ap-
proximate model are close to integrals obtained from the true model. This point
is made in Andreev and Arjas (1996) and Arjas (1996) who consider histogram
approximations of probability densities. In fact, Andreev and Arjas (1996) show
that if 7(+) is a (prior) distribution on the space of density functions, then there
exists a sequence {m,(-)}, of distributions on the space of piecewise constant
densities, converging weakly to 7, such that the corresponding posterior distri-
butions 7, (- |y) converge weakly to the posterior 7 (-|y) corresponding to .

8.2.2  Prior distribution for the log-variance field

Recall from Section 3.2 that under the diffuse scattering model, the radio fre-
quency image consists just of zero mean Gaussian noise with a variance pa-
rameter determined by the acoustical properties of the imaged tissue. Thus we
define a log-variance field v that is piecewise smooth with homogeneous patches
corresponding to the different tissue regions. In Chapter 7 we used an edge
preserving smoothing prior for modelling v, but in the present situation we use
an explicit model for the tissue interface, hence there is no need for an implicit
edge model such as the Geman & Yang model Eq. (4.10). The deformed tem-
plate partitions the imaged region into two parts corresponding to the in- and
outside of the artery wall, and it is natural to assume that this partitioning also
corresponds well to the underlying subdivision of the log-variance field v. Thus
we can define two such fields, vy and v; corresponding to the outside and inside,
respectively.

In the blood vessel images, the interior of vessel wall contains blood, which
is certainly homogeneous and well represented by the diffuse scattering model in
Section 3.2. For simplicity we assume the muscle tissue surrounding the vessel to
be homogeneous as well, but with different scattering characteristics. Because
of the homogeneity we believe the log-variance fields to be quite smooth, and
we model them as Gaussian fields with exponential correlation functions, ie. we
let v; ~ N(/j,l, El), where

Yrs :a}2 exp (=3||r —s||/a), (=0,1, (8.4)
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where g; is the range. Although Gaussian fields are natural candidates for
smooth log-variance fields, they are not computationally convenient due to full
matrices giving complexity of order O(n?) for vital operations. We make use
of the results in Rue and Tjelmeland (2001) to fit a GMRF with a covariance
function very close to the exponential. The GMRF has only a 5 x 5 neighbour-
hood around each site, thus the computational complexity for the fitted GMRF
is only O(n?)(Rue, 2001), giving a speed-up of O(n). The prior density for v; is

-
(v | 71, ) oc exp (—51 (v — la)" Qi (v — Hlln)) , 1=0,1, (8.5)

where 1,, = (1,...,1)", and y4 and 7; are unknown mean and precision pa-
rameters. The parameters g, 1 are given uniform distributions on appropri-
ate ranges [L;,U;], | = 0,1, while the precision parameters 79,7 are given
vague I'(¢;,d;) hyperpriors. For simplicity we will in the following assume
Qo =01 = Q.

The surfaces vy and v; are only observed within their respective subsets
of the image domain. Let 7; C S be the vertices enclosed by the template
deformed by the transformation vector ¢, then the diffuse scattering signal z
has conditional density

1
(x| vo,v1,t) ox exp (—5 Z (22 exp(—2v1 ) + 211 )
seTyNS
1 2
-3 (23 exp(—2wvo,5) + 210,5) | . (8.6)
s€TinsS

This is similar to the somewhat simpler model used in Qian et al. (1996). For
simplicity we will sometimes use the notation v = (vp, v1).

8.2.8 Observation model

As is in Chapter 7, we assume the data ys at site s to be the superposition
of signals from a small neighbourhood around s, and hence we model y as a
convolution of z + pr with the imaging system point spread function h, with
additive independent zero mean Gaussian noise having precision A:

2
A
W(y | z,T, )‘) X /\n/2 exp _5 Z (ys - Z hk (merk + prs+k)> ) (87)

seES k

We assign vague hyperpriors I'(cy,dy) and I(c,,d,) to A and p, respectively.
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8.2./ Benchmark likelihood

For reference we present the likelihood model usually used together with shape
models in ultrasonic imaging (Glasbey, 1998; Lefebvre, Berger and Laugier,
1998; Mikic, Krucinski and Thomas, 1998; Hansen et al., 2000). This model
does not take into account the physics of the imaging process, instead using
the intensity value of the pixels directly. The pixel values are assumed to be
independent and Gaussian distributed with mean and precision being location
dependent, ie.

N (fi,75"), seTENS,

8.8
N (u,77"), s€TinS, ®8)

Ys | flo, fi1, To, T1 ~ {

where the parameters i = (fio, fi1) and 7 = (7o, 71) are given hyperpriors as
above. For later reference we note that the likelihood density can be written as

1
~ o~ ~ M ~N 1 ~ — ~
ly |t i, 7) o 73 PH 2 exp (—5 > oA (Sz +n (7 —Hz)2)> : (8.9)
=0
where
_ 1 _
m=IT0Sl =— Y ¥k Si= Y 4e-m)’,
L seTins sETiNS

and ng, Yy, and Sy are defined similarly.
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8.3 SAMPLING OF THE POSTERIOR DISTRIBUTION
8.3.1 Introduction

A graphical representation of the model is shown in Figure 8.1. The full posterior
distribution for all unknown parameters conditioned on the observed data has
density

7T(£7Voaylataﬁanauoauh’ro;’rl;Aap|y)

A

xexp | —3 Z (ys th (T + prsse) )

sES k

X exp ( xﬁ exp(—2v1 ) + V1 >
sETtﬂS

xexp( —22 exp(—2uo,s) + 1o, )
seTh s
ren (8.10)

1
XeXP( §Tl — 1) Qi (v — ml,) )
— m/2 re
X ‘Et exp <__t Xy t> [t is simple]

x XVl pes =L oxp(—dy X — d,p)

XH P/ lexp(_lel)H[Lz<Hl<Ul]

x k% L exp(—byk) x 0 exp(—byn).
This distribution is clearly analytically intractable, and so we have to resort
to Markov chain Monte Carlo (McMC) methods to be able to do inference.
Below we will briefly review the commonly used Metropolis-Hastings (MH) and
Langevin-Hastings (LH) algorithms; for details and references we refer to Robert
and Casella (1999).

The most common method is to update one parameter at a time in either
a systematic or random scan, but it is well known that such algorithms have
poor convergence and mixing properties compared to algorithms that update
parameters in blocks (Carter and Kohn, 1994; Liu, Wong and Kong, 1994). In
fact, Knorr-Held and Rue (2002) argue that updating all or nearly all parameters
in one block may be necessary to get sufficient mixing and avoid estimation bias.
However, such full block algorithms may be difficult to construct, and may be
heavily computer intensive. Thus it is important to be careful when designing
the sampling algorithms, while at the same time keeping and eye on the efficiency
of the proposed algorithm. We will in the following discuss different algorithms
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Figure 8.1: Graphical representations of the contour detection
model. The double arrow in (a) denotes a deterministic relation-
ship.

for sampling from the posterior distribution Eq. (8.10), and try to compare their
relative merits with respect to mixing and efficiency.

Metropolis-Hastings algorithm The Metropolis-Hastings algorithm pro-
ceeds as follows for a posterior distribution 7(z|y). Given the current state
we generate a new state x’ from a proposal distribution g(«’ | ). The new state
is accepted with probability

a(z,z') = min (' [y)a(z]|2)
(z,z") {1, me)q(x,m},

otherwise the old state is retained.

We will in particular consider two special cases. If ¢(2' | z) is a distribution
with mean z we call the algorithm Random walk Metropolis-Hastings. On the
other hand, if the proposal distribution ¢ is independent of the current state z,
the algorithm is called the Independence Metropolis-Hastings algorithm.

Langevin-Hastings algorithm An algorithm similar in spirit is obtained

by using gradient information in the proposal distribution. If z is the current
state, a new proposal is generated from a Gaussian distribution with mean
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2+ 2VIn7(z|y) and variance h. The acceptance probability becomes

a(z,z') = min {1, m(@’ ] y) exp (—ﬁ“fﬂ —r - %VIHW(:{;I | y)||2) } .

(@ |y)exp (—g5lla’ — @ — 5V Ina(z|y)|?)

It is shown in Roberts and Rosenthal (1998) that the number of iterations re-
quired to obtain convergence is O(n /), compared with O(n ") for the random
walk Metropolis-Hastings algorithm, so the Langevin-Hastings algorithm may
be preferable, for high-dimensional problems. Note however that the gradient
of the log posterior density should be readily available, a condition that is not
always fulfilled.

8.83.2 Updating the edge transformation vector t

The most common way of sampling a deformable template model is to use the
random walk Metropolis-Hastings algorithm. A change in shape is proposed
by moving one or more vertices, and one then calculates the corresponding
transformation vector, and accepts or rejects the move using the Metropolis-
Hastings ratio. Other types of moves might be translation, rotation, or scaling
of the whole template, or reordering of the vertices. See eg. Rue and Hurn
(1999) for details on the different move types.

However, other algorithms are possible, for instance, Grenander and Miller
(1994) use a discrete approximation of the Langevin diffusion to sample the
template parameters. The advantage is that the use of data information might
help to generate more efficient moves. On the other hand, the incremental
construction of the algorithm makes it difficult to construct the large jumps
that sometimes can be very efficient for escaping local minima.

For the reminder of this section we will discuss sampling of ¢ using the
Langevin-Hastings algorithm.

Updating the template using Langevin-Hastings The discrete Langevin
equation for the posterior distribution 7 (¢ | At = 0, z, v, k,n) is given by

h
t'=t+ §Vln7r(t|At:0,:E,1/,/i,n)—l—\/Eﬁgm,

where h is a scaling parameter, and 95, consists of 2m independent standard
normal variables. This equation needs to be defined on the null-space of A4, and
we have therefore found it easier to reparameterize the equation as in Grenan-
der and Miller (1994). Moreover, Mgller, Syversveen and Waagepetersen (1998)
argue in a similar problem that the reparameterisation given below often leads
to better mixing, possibly because we remove the correlations between the com-
ponents in the proposal.
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The reparametrisation is done as follows: For £k = 0,... ,m — 1, define

¢, = (cos2mk/m, ... cos2nk(m —1)/m)
s = (sin2xk/m, ... ,sin27k(m — 1)/m),

and let 79 = (1 0)T and = (0 1)T. Let F be a matrix having columns

k=7 ®c+7 s fiom =105+ ®ck, k=0,...,m—1.
(8.11)

Then the matrix F' diagonalises the precision matrix Q;, ie. FTQ.F = A, where
A is a diagonal matrix containing the eigenvalues {A\;} of Qy:

2rk 4drk
Ak = Agtm = i—|—6nm3—8nm3cosi+2nm3cosi, k=0,...,m—1
" " " (8.12)

To enforce the closure constraint At = 0, note that the row space of A (Eq. (8.1))
is spanned by the vectors 7o ® ¢; + 71 ® s; and 7y ® s; — 71 ® ¢1, which are
exactly the columns f; and fs,,_1 of F. Thus closure is enforced by setting
A1 = Aom—1 = 0, and we can draw a sample ¢ from the conditional distribution
7(t | At = 0) by setting ¢ = F Dz, where z consist of 2m—2 independent standard
normal variables, and

/v 0 ... 0
0 0 ... 0

0 1/VA ... 0

0 0 coo 1/ A2m—2
0 0 .. 0
Thus posterior simulations from the conditional distribution = (t| At = 0,z,v,
k,1n) can be obtained by transforming samples from the conditional distribution
w(z|z,v, k,n).

To simplify the discussion, write T'(x,n) = F D, and assume for the moment

that x and 7 are fixed. The Langevin-Hastings algorithm for z is then as follows.
Set

2=z— gz + gT(n,n)Tvt Inm (z|t,v) + Vhdan_» (8.13)
t'=T(k,m)2', (8.14)

84



and accept the proposed state z' with probability

m(2")q(z | 2")7 (x|, v) }

m(2)q(z' | 2)m (z[t,v)

a(z,2') = min {1, (8.15)
where ¢(z'| z) is the density defined by Eq. (8.13). This will generate an aperi-
odic and irreducible Markov chain with the posterior as its stationary distribu-
tion.

Note that the algorithm above keeps the position ¢ of the vertex vy fixed.
To ensure proper mixing we let (do,d;) : ¢ = ¢+ (dy do)? define a translation
of ¢. The parameters (dp,d;) = d are updated using the Langevin equation
d = d+ (h/2)V4Inn(z|t,v) + vVh2. For notational convenience we suppress
the use of d in the following discussion.

Concerning the gradient of the likelihood, Grenander and Miller (1994)
states a result in the case of a continuous curve and continuously observed data.
The following result is similar, but with the number of edges fixed. As a matter
of notation, we parameterise each edge by 7 so that e;(7) = vj+7(vj41—v;), T €
[0, 1].

PROPOSITION 8
For the model defined in Eq. (8.6), let Hy(z;) = (1/2) z? exp(—2v;,;) + vi4, | =
0,1. Then for k =0,... ,m—1andl = 0,1,

9 m—1 1
snrltn = > At [ (i (en) - Ho(e)dr (816)
1,k Pl 0
with the Jacobians
eV e —e e
A. t — k,ﬂ: 1,z A t — ‘ k7y 7,z
j(to,k) & ey i (t1e) &’ e,
Furthermore, for | = 0,1,
(3 m—1 1
6—dlln7f(93|t;'/) = Jj(dz)/o (Hi(ej(7)) — Ho (e;(7))) dr
j=0

where Jj(do) = €4,y and Jj(dl) = —€jz-

)

Proof. We sketch a proof. As before, let € be the template, and e be the
template deformed by t, having vertices v and edges e. Fixing the first vertex
Vg, the others are given by

k—1

k—1 —
1+t —t1,; > (CQ >
'Uk:’UO—FE e':vo—f—z ( ’ ’ Sl I 8.17
iz J =0 tlvj 1+ t(),j 66 ( )

7y
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For notational convenience, denote the log-posterior In7(z | ¢,v) by f(t). For a
small perturbation t. of ¢, the difference f(t.)— f(t) must be computed over the
m parallelograms with edges e, and V,vg. Using Eq. (8.17), the gradients are
given by

0 el 0 -
= 7, I . N — 1,Y T .
Bto g * <%) Bl <e%>[bﬂ

T g
ody ¥\ 0 od, F \dy )’

and the expression for the Jacobians follows. [0

As mentioned above, in Section 8.3, it is often desirable to update a variable
jointly with its hyperparameters. In the case of the edge transformation vector
t, this can be done as follows: We propose new values for £ and 7 by scaling
the current values by numbers drawn from the distribution U[1/f, f], for some
f > 1. We then set

h h
d=z—ozt ET(n,n)TVt Inm (z|t,v) + Vhda, » (8.18)

' =T(x',n')7, (8.19)
and accept the proposed state (z',«',n') with probability

alz', &'\ |z, k,1m) =

. w(2)q(z| 2, k', n)m (x|t ,v) (k") w(n") kY
A Ml r e iy d S

where ¢q(z'| z, k,7) is the density defined by Eq. (8.18). Note that the normal-
ising constants still cancel even if the transformation matrix 7' changes.

8.3.3 Updating the diffuse scattering field x

The full conditional distribution for the diffuse scattering parameter x is given
by

m(x|y,v,t, A p)

1
exp (—amT (/\HTH + V) z+ T (Hy — pHTHr)> , (8.21)
where V is a diagonal matrix with elements

Vss = exp (—2vp,s) ]I[seﬁmS] +exp (—2v5) IseTins)-
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Thus x given all other parameters is a GMRF which can be Gibbs sampled
using the methods in Rue (2001).
The hyperparameters A and p can be drawn from their full conditionals

/\|...~F(CA+ dx+—||y (w+pr)ll2>
p|...~I‘(cp,dp+(y—Ha:) Hr)

Alternatively, all three parameters can be updated jointly. We then pro-
pose new values for the hyperparameters by scaling the current values by ran-
dom numbers uniformly distributed on the interval [1/f, f] for some f > 1. A
proposal for z is then draw from the distribution Eq. (8.21) conditional on the
new values A" and p’. The new set (z',\',p') of parameters is accepted with
probability

a(x,xp,mp)_mm{ X |l g )10 L))
) ) Y - T

7(
(z,A pl (" | N, p's ) g N [ N)g(p' | p)
m(\)w(p")

)
)

otherwise the old state (z, A, p) is retained.

8.8.4 Updating the log-variance field v

The conditional distribution for the log-variance field v; is given by
m (Vl |m7t77—luul) X

1
exp <_§Tl (vt — uln ) Qv (i — puln) Zf (V1,5 7s) )’ (8.23)

SES]

where
1.
So = 7t n S, & =T7TnS, and f(v,z)= 5232672” +v.

It is not possible to sample directly from this distribution, so we use either a
Random walk Metropolis-Hastings algorithm with a Gaussian proposal distri-
bution with covariance matrix 021, or a Langevin-Hastings algorithm.

A third option, using a Gaussian approximation of the density Eq. (8.23)
as a proposal distribution in a Metropolis-Hastings algorithm did not work very
well. This idea has been used in Rue (2001) and Knorr-Held and Rue (2002), but
we suspect that the distribution in Eq. (8.23) is to skewed in some directions
to be well enough approximated by a Gaussian distribution. This might be
due to the large variations in the magnitude of the z;’s, see the discussion in
Section 7.4.2.
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The hyperparameters 7; are either drawn from their full conditionals

n 1
Tl| ...~T <al + 5, b + 5 (I/l —/l,lln)TQ,, (Vl —,u,lln)> ,

or updated jointly with s and v, in which the new state (v}, 7/, p17) is accepted
with probability

. w(v) |z, t, 7, wy)w ()7
a(vl’,n’,uilw,n,m)zmm{l, bilz, by 7i 1) (l), : (8.24)
(v | @, t, 7, ) ()7

8.8.5 Sampling schemes

We have implemented three schemes for sampling from the posterior distribution
(8.10), with the intention of investigating whether the choice of sampling scheme
can affect the robustness and performance of our proposed method. In Scheme
1 each of the parameters ¢, x, v9 and v, are updated jointly with their hyperpa-
rameters as described above in Section 8.3.2, Section 8.3.3, and Section 8.3.4,
respectively. The parameters were updated with only one hyperparameter at a
time; this enables us to tune the scaling f to obtain acceptance rates around
25%.

Scheme 2 differs from Scheme 1 in that we update the template ¢ and the
diffuse scattering field x in one block jointly with one of the hyperparameters
Kk,m, A, and p in turn. The parameters vy and v; are updated as in Scheme
1. Finally, in Scheme 3 all parameters t,x,vy and v; are updated jointly in
a single block, again jointly with one of the hyperparameters in turn. The
purpose of the last two schemes is to reduce the effect of the possibly strong
correlations between the parameters. Grouping the parameters also simplifies
the computation of acceptance rates, hence for an image having 64 x 128 pixels
an 550 MHz PC used approximately 0.18 seconds per iteration for Scheme 1,
and 0.16 seconds per iteration for Scheme 2 and Scheme 3.

8.4 EXPERIMENTS

In this section we evaluate the performance and robustness of the model from
Section 8.3 by applying it to both simulated and real data sets. Of course, for
the simulated image the diffuse scattering model holds by construction, but the
experiments are useful for testing different sampling strategies, and to get a feel
for their efficiency and robustness. The real data sets are ultrasound images of
cross sections through the carotid artery.

8.4.1 Contour detection in simulated ultrasound images

In the first section we present some preliminary experiments performed on the
simulated ultrasound image in Figure 7.4. The experiments include comparison
between the random walk and Langevin-Hastings algorithms for sampling the

88



deformation parameter ¢ and the log-variance field v.

Sampling of the deformable template Our first experiment considers
sampling of the edge transformation vector ¢t. The deformable template model
and the posterior distribution of the edge transformation vector are described in
Section 8.2.1, and the different sampling strategies are presented in Section 8.3.
We want to compare the random walk and Langevin-Hastings algorithms for
sampling of the template ¢, and have kept all other variables fixed to exclude
other sources of variation.

The table below shows results from 20000 iterations of the random walk
(RW) and Langevin-Hastings (LH) algorithms, with hyperparameters updated
jointly with the transformation vector. We have used a burn in of 3000 itera-
tions, after which every 10th sample is stored.

Table 8.1: Summary results based on 20000 iterations from the
posterior distribution for the edge transformation vector ¢t. The
estimated autocorrelations A(k) are based on every 10th sample
of the Markov chain, and the empirical variance EV is based on
the initial positive sequence estimator (Geyer, 1996). « denotes
the acceptance rate.

Mean Sdv A(1) | A(5) | A(10) EV !
n | RW | 67-107* | 48-10=* | .914 | .683 | .542 10=¢ | .310
m | LH | 1.47-107% | 66-10~% | 994 | .971 | .942 | 10-¢ | .131
k | RW 89.4 6.78 444 | 078 | .074 55.5 | .175
K LH 100.2 6.85 997 | .988 | 974 | 11785 | .134
area | RW 628 4.11 943 | 775 .625 616.8 | .243
area | LH 622 5.41 978 | 938 | .895 | 1956.0 | .133

The results indicate that the random walk algorithm is superior to the
Langevin-Hastings algorithm for this problem. We believe that the reason might
be found in the implementation of the Langevin algorithm. One needs to eval-
uate the likelihood gradient (8.16), and for the gradient to be continuous we
need a differentiable interpolation of the data over the image domain. We have
chosen to use the data without interpolation, and this might lead to discontinu-
ities in the gradient causing the sampler to get stuck in local minima. However,
for this simple object model the random walk algorithm seems to be very effi-
cient, and much simpler to implement. Also note that the Langevin algorithm is
most useful for high-dimensional parameter vectors, see Roberts and Rosenthal
(1998).

Hyperpriors for x and n We have tried different hyperpriors for x and 7

to investigate to what extent hyperpriors affect the result. The experiments
were run on the data set in Figure 7.4(d), and the results are based on 15000
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iterations after a burn in of 5000 iterations.

We recall that n and k are given Gamma hyperpriors with parameters
€y, 0y and €, J,, respectively. An interpretation of the parameters is given in
Section 5.3.3, on which we base the choice of hyperparameters. The different
choices for €, and §,; are given in Table 8.2, along with summary statistics from
the different Markov chains. The results indicate that our model is stable over
the chosen range of hyperparameters; the behaviour of the template does not
change even if the posterior distribution for x changes significantly (see Fig-
ure 8.2 for the marginal posteriori distributions for ). The choice of hyperprior
does however seem to have an effect on mixing, as the autocorrelation plots
in Figure 8.4 indicate. It is likely that the least informative prior allows the
sampler to move more freely, hence we will use the hyperprior I'(3,1/30) in the
subsequent experiments.

Table 8.2: Parameter estimates using different hyper-priors for
and having €, = 1/2 and §,, = 1/2 fixed. The results are based
on 15000 iterations of the random walk sampler after a burn in 0f
5000 iterations.

(€x,0r) | mean | sd || mean area | CI area a
(90, 1) 91.8 | 9.05 631 (623, 643) | .274
(30,1/3) | 91.4 | 14.8 626 (617, 635) | .301
(9, 1/9) 77.8 | 21.6 629 (620, 639) | .215
(3, 1/30) | 100.9 | 30.6 627 (617, 636) | .291

Table 8.3: Parameter estimates using different hyper-priors for n
and having ¢, = 3 and 0, = 1/30 fixed. The results are based on
15000 iterations of the random walk sampler.

(€n, 0n) mean sd mean area | CI area !
(1/10, 1/10) | 17.7-107° | 7.0- 107 629 (618, 640) | .285
(1/2,1/2) | 4.12-107% | 2.3 1075 627 (620, 635) | .247

For n we tried two different sets of hyperparameters, shown in Table 8.3.
Again, the results indicate that while the choice of hyperparameters affects the
marginal posterior for n, inference about the template itself is not affected.
Choosing the I'(1/2,1/2)-prior seems to lead to a better-mixing chain, see the
autocorrelation plots in Figure 8.4 (e) and (f), and is thus the one we will use
throughout.

Finally we note that there is a limit to how un-informative the hyperpriors
for k and n might be. Especially for real data carrying sparse information about
the shape of the imaged object, the template needs to be constrained to avoid
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Figure 8.2: Estimated marginal posterior densities for k. The
curves shown are the prior distributions (a) I'(90,1), (b)
I'(30,1/3), (c) I'(9,1/9), and (d) T'(3,1/30).
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Figure 8.3: Estimated marginal posterior densities for 1 using
prior distributions (a) I'(1/2,1/2), and (b) I'(1/10,1/10).
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(b)
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Figure 8.4: Estimated autocorrelations for the area of the object
in Figure 7.4, based on every 10th scan of the random walk al-
gorithm, and with different hyper-priors for £ and . Two up-
per rows: 1 ~ I'(1/2,1/2), and k having priors (a) I'(90,1),
(b) T'(30,1/3), (c) I'(9,1/9), and (d) T'(3,1/30). Bottom row:
k ~T(90,1), and (e) n ~T(1/2,1/2), (f) n ~ T'(1/10,1/10).
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problems. The constraint encode in the hyperpriors of course reflect prior belief
that the object is close to having a circular or elliptic shape.

Sampling of the log-variance field This experiment compares random
walk (RW) and Langevin-Hastings (LH) sampling for the log-variance fields v
and v;. The results are based on 5000 iterations with a burn in of 500 iterations,
starting with flat images with all zeros. The hyperparameters where updated
jointly with the fields, as described in Section 8.3.4. The summary results
in Table 8.4 show that there is not much difference, although the Langevin
algorithm seems to give slightly better mixing. It should however be noted
that it uses approximately 50% more CPU time, and is thus less efficient. We
will still use the Langevin algorithm in the following examples, since mixing is
especially important in real applications.

Table 8.4: Summary results based on 5000 iterations from the
posterior distribution for the log-variance fields vy and v;. The
true values are given below in Table 8.5.

Mean Sdv | A(1) | A(5) | A(10) EV «

o | LH 435 .0686 | .302 | .00789 | .0299 | .000003 | .543
o | RW 437 0714 | .297 .0276 .0045 | .000380 | .490
w1 | LH | -.000427 | .0552 | .269 | -.0223 | -.0312 | .000099 | .496
w1 | RW | .00647 | .0581 | .400 .0159 .0126 | .000190 | .471
70 | LH 748 .0163 | 413 | -.00299 | .0344 | .00002 | .183
70 | RW 734 .0160 | .310 .0233 .0121 .00168 | .161
nn | LH 1.075 .0238 | .344 .0423 | -.0390 | .000024 | .172
1 | RW 1.070 .0240 | .347 .0663 .0283 | .000202 | .169

Performance of sampling schemes We tried sampling schemes 1 and 3
(Section 8.3.5), and in addition a fourth scheme where all parameters and hy-
perparameters where updated by themselves in a sequential fashion. The re-
sults did not differ much for this data set, but the full block sampler (Scheme
3) seemed to mix faster; see the autocorrelation plots in Figure 8.5. We state
the results for this sampler only. Table 8.5 shows estimates for all parameters of
the model; they seem to be in good agreement with the true values. The object
outline was estimated consistently well for all sampling schemes, and Figure 8.6
shows the distance transform average of the samples collected after a burn-in
period.

8.4.2 Contour detection in ultrasound images of the carotid artery

To test the feasibility of the model in real applications, we consider recorded
radio frequency ultrasound images of the carotid artery. The images are shown
in Figure 1.1(d) and (e), and the primary goal is to obtain interval estimates
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Table 8.5: Simulated ultrasound image. Estimates for the area of
the object and for the model parameters.

Par. Mean Credibility interval | Truth | Initialisation
Area 628 (598, 658) 625 470

o 447 (.310, .581) 0.5 0.0

1 —6.270 - 104 (—.114,.112) 0.0 0.0

To .746 (.716,.777) 0.75 1.0

L 1.073 (1.037,1.129) 1.0 1.0

A 741 (.051,2.724) 1.0 1.0

K 182.00 (52.00, 391.29) - 90.0

n 1.681-1073 (.513,3.531) - 1073 - 0.007

Figure 8.5: Estimated autocorrelations for the cross-sectional ves-
sel area using every 100th sample. From top to bottom: Scheme
4, Scheme 1, and Scheme 3.
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Figure 8.6: Contour estimate. The distance transform estimate
based on samples from the posterior distribution shown together
with (a) the data, and (b) the underlying truth.

of the cross sectional vessel areas. Compared to the simulated image, the effect
of blurring and noise seems to be much more pronounced. The strong reflec-
tions at tissue boundaries approximately perpendicular to the incoming pulse
are particularly striking, as are the correspondingly weak signal at boundaries
parallel to the beam. These effects pose an additional challenge compared to
the “ideal” image in Figure 7.4.

We chose to use essentially the same hyper-priors as above, except for k,
which we gave a slightly more informative I'(9,1/9) prior, reflecting the prior
knowledge that the blood vessels have a fairly regular shape, and partly ac-
counting for missing data in the images. The hyperparameter n was given a
I'(1/2,1/2) prior as above, and the precision parameters 75 and 7; of the log
variance fields were given I'(1,1)-priors, while the means were taken to be uni-
formly distributed on the interval [—5,5]. Finally, we chose a I'(1,1) prior for
the noise precision A, and a I'(1,1/2) prior for the specular reflection parameter
p. Our results are of course conditional on the chosen hyperparameters, but we
found the interval estimate for the vessel area to be insensitive to different but
sensible choices of the hyperparameters. In all experiments the template was
initialised as a circle located in the centre of the image. Better initialisations
could of course be found using some pre-processing technique, but in most cases
convergence was fast enough for the chosen initialisation to be sufficient.

Performance of the sampling schemes Performance of the different sam-
pling schemes was monitored by inspecting trace plots and autocorrelations
for the parameters; especially the cross-sectional area, which is the quantity
we are most interested in. The estimated autocorrelation functions for the
hyper-parameters decay rapidly, while the autocorrelation function for the cross-
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sectional area reveal slow convergence for this particular quantity. This is not
surprising given the complexity and high dimension of the model. More inter-
estingly, we found the interval estimate to depend on the choice of sampling
scheme. Scheme 1, in particular, performed poorly, exhibiting slow convergence
and poor mixing. Repeated runs revealed that the Markov chain is prone to
get stuck in local minima, or even drifting off. This behaviour is not surprising,
as there is considerable interdependency between the diffuse scattering field =
and the template ¢t. Thus updating one parameter conditional on the other may
cause the chain to move very slowly.

The other two schemes perform better in that their behaviour is consistent
over repeated runs, and that the estimated contour seems reasonable. How-
ever, inspection of autocorrelation plots reveal that Scheme 2 mixes better than
Scheme 3, where all parameters are updated jointly, see Figure 8.7. In the last
scheme the number of parameters to update is more than doubled and the de-
pendency between the v-fields and the other fields does not seem to be strong
enough to counterbalance the increase in complexity. In conclusion, blocking =
and t together seems to give a huge improvement in sampling robustness, while
blocking all variables does not seem to give an additional gain. The estimated
autocorrelation function for the Scheme 2 is shown in Figure 8.7, indicating
reasonable good mixing of the chain.

Figure 8.7: Estimated autocorrelation function for the cross-
sectional area using Scheme 2 (top) and Scheme 3 (bottom). The
functions are calculated using every 100th sample after a burn-in
of 25,000 iterations.

Effect of the specular reflection The specular reflection component, (8.3)
is important for obtaining robust contour estimates. Comparing runs without
the specular reflection component (p = 0) with those with specular reflection,
the former seems to lead to wider interval estimates for the cross-sectional vessel
area. This is due to greater uncertainty in the sections of the contour where
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the data is spurious. Figure 8.8 shows why: We have plotted approximately 50
samples taken with a separation of 100 iterations collected late in runs without
specular reflection (left image) and with specular reflection (right image). The
images clearly demonstrate the gain in modelling the reflection effect occurring
at tissue interfaces.

Figure 8.8: Samples from the posterior distribution for the vessel
wall. The samples are collected with a separation of 100 iterations
late in the MCMC run.

Results Figure 8.10 show histograms of the vessel areas for the images in
Figure 1.1, using the model for specular reflection and the prior settings de-
scribed above. The corresponding 95% credibility intervals are [2690, 3086] for
Figure 1.1 (d) and [1062, 1530] for Figure 1.1 (e). We have also computed mean
estimates of the vessel walls by using the distance average for random closed
sets Section 6.3.2. To get a feel for the uncertainty we have also plotted ap-
proximately 50 samples taken with a separation of 100 iterations late in the
MCMC run, see Figure 8.8(b) and Figure 8.11(a). The results have been evalu-
ated by cardiologists, who have found them to be in good agreement with their
knowledge of vessel shapes.

Benchmark likelihood For comparison we tried contour detection using
the standard likelihood model described in Section 8.2.4. In stead of the radio
frequency image we used the log compressed intensity image as the data. The
model did not prove to be robust for this kind of data. Figure 8.11 shows a
sample from the posterior distribution taken after 200,000 updates. For the
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Figure 8.9: Mean estimates of the vessel wall.

" (b)

Figure 8.10: (a) and (c) show histograms of the cross-sectional
vessel areas for the images in Figure 8.9 (a) and Figure 8.9 (b),
respectively.
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hyper-priors we used the same parameters as above in Section 8.4.2, and even
fixing the parameters x and 7 at values giving strong prior information did not
affect the behaviour of the sampler. Using a destructive deformation field as
described in Section 8.2.1 and Rue and Husby (1998) would possibly amend
the problem, but that is more of sampling “trick” than a physically justifiable
model feature. Also, with no prior information on the intensities of the back-
and foreground regions, we would expect the mode of the distribution to be
represented by a curve lying strictly at the interior of the bright regions in the
image, thus underestimating the true area.

Figure 8.11: Sample from the posterior distribution using the sim-
ple intensity likelihood in Section 8.2.4.
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CHAPTER 9

Discussion

This report describes Bayesian inference in medical image models, but many of
the conclusions have implications for other spatial models. We have discussed
non-linear, or edge-preserving, models, and shown how to block sample such
models when the observation model is Gaussian or close to Gaussian. We have
done experiments indicating that block sampling gives consistently better esti-
mates than single site sampling, and should therefore be the preferred way of
sampling for such models.

The second theme describes a Bayesian hierarchical model for contour de-
tection in ultrasound images. We take a fully Bayesian approach, and present
interval estimates for the cross-sectional area of an imaged blood vessel. An
essential feature of the approach is a physically justifiable Markov random field
model for the radio frequency ultrasound data. Previous work and the experi-
ments in this report indicate that the model gives a reasonably good description
of the data, and we firmly believe that having a good likelihood is the key for
obtaining reliable and reasonably accurate estimates of the quantities of in-
terest. Experiments using a simpler likelihood model seems to support this
claim. As object model we use a deformable template, which is well known
from other applications. Note that deformable templates are a natural choice
when we want to assess the uncertainty of our estimates. Standard methods
such as segmentation and deterministic edge detecting algorithms do not pro-
vide a natural framework obtaining such uncertainty estimates. Moreover, the
combination of the likelihood and object model seems to be particularly fruitful
in ultrasound applications, as the the template helps us to directly model the
strong reflections occurring at tissue interfaces. This mode of reflection can be
very dominant in some images, but is hard to model without having an explicit
edge model. Besides being used for object recognition, template models may
therefore be helpful in speckle reduction algorithms.

To our knowledge this is the first attempt of using complex hierarchical
likelihood models together with deformable template priors, and we have shown
that the combination is indeed feasible, although the sampling tends to get
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involved and time consuming. We have furthermore demonstrated that block
sampling is possible for the model, and our results indicate that updating all or
nearly all variables in a single block leads to better mixing and hence to more
reliable parameter estimates. This is an important point, which is consistent
with the results in Knorr-Held and Rue (2002).
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Abstract

This paper discusses a deformable template approach to the problem of
recognising three dimensional, non-dense objects in high-resolution laser
range images. To model the infinite variability in object appearance we
develop an imaging model based on a Poisson object process, assuming ob-
jects to consist of primitives distributed according to a non-homogeneous
Poisson point process. We discuss some computational aspects of the
model, and show how we can use the Metropolis-adjusted Langevin Algo-
rithm (MALA) to generate samples from the posterior distribution. We
show results applying the model to real laser range images of forest.

1 INTRODUCTION

Recognition of three-dimensional objects from remotely sensed scenes has re-
ceived considerable attention over the last few years, especially in connection
with automated target recognition (ATR). Laser radar imagery is particularly
well suited for such tasks, as the need for modelling light-sources and reflectance
is much less pronounced than is the case for intensity images. A laser range im-
age is a collection of distances measured along rays emanating from the laser
and indexed by azimuth and elevation angles,

r={r0,¢) ; 01 <0< 6 ¢ << P} (1)

So far, much of the work has focused on detection based on non-contextual
models (Green and Shapiro, 1994) and on classification based on the matching
of range profiles (Koksal, Shapiro and Wells, 1999; Zhou, Liu and Wang, 2000;
Webb, 2000; Nair and Aggarwal, 2000; Jacobs and O’Sullivan, 1997). The use
of contextual models for more advanced tasks has been advocated by the group
centred at Washington University, focusing on recognition of rigid objects in
radar (Miller, Srivastava and Grenander, 1995; Srivastava, Miller and Grenan-
der, 1997; Jacobs, O’Sullivan, Faisal and Snyder, 1997) and forward-looking
infrared (Lanterman, Miller and Snyder, 1997) images.

We adopt the approach of the above-mentioned group, using the deformable



template models introduced in Grenander, Chow and Keenan (1991) and Grenan-
der (1993). These are highly structured probability models based on physical
knowledge of the imaged objects, and containing significant contextual infor-
mation. Objects are divided into classes taken from a finite alphabet, and
for each class a priori knowledge on object shape is represented via a tem-
plate Iy, a parametric model of a typical object. Natural variability in ob-
ject shape is then modelled by applying a transformation group S to the tem-
plate, generating a set {slp; s € S} of objects. Deformable template models
have successfully been applied in two-dimensional applications, eg. for recog-
nising hands (Grenander et al., 1991), locating and classifying cells (Rue and
Hurn, 1999), and for estimating the outline of blood vessels (Hansen, Mgller
and Tggersen, 2000; Husby, 2001). In 3D applications focus has been on esti-
mating location and pose of rigid objects, ie. finding parameters in the special
Euclidean group SO(3) x R?® corresponding to rotations and translations of the
template CAD surfaces representing the various objects present in the images,
see eg. Srivastava (1996) for an overview.

However, lately there has been an increasing interest in modelling non-
rigid objects and objects with a high degree of shape complexity (Jain and
Dorai, 2000). This paper represents a step in that direction, since we are con-
cerned with objects having highly variable shapes. This has implications both
for the way objects need to be represented, and for the choice of transforma-
tion groups. The representation should be flexible enough to be able to capture
the shape differences needed, while at the same time lend it self to efficient
computations. Ideally, a representation should also possess certain invariances,
such as being viewpoint independent. There exists a wealth of different repre-
sentation (see Jain and Dorai (2000) for a review), and there is unlikely to be
one representation being suitable for all object types and sensors. We follow
a slightly non-standard path, letting a triangulated surface represent the main
outline or envelope of the object, and modelling variation on a finer scale by
assuming the object to consist of primitives placed at random positions within
the region defined by the outline. We believe that this is an useful approach
when dealing with objects that have a high degree of shape complexity or are
otherwise non-standard, since it allows us to separate the two sources of shape
variability, thus reducing the complexity of the recognition problem. We espe-
cially have in mind objects that are porous, having holes at random positions.
The small scale variability due to the porosity will effect the performance of
the recognition method, but is not of primary concern for us, as only the global
shape features are relevant for comparison and classification of objects.

To our knowledge there has been little work on modelling of objects with
high variability in density and appearance, although Larsen and Rudemo (1998)
explicitly models the density of needles and branches in tree templates. However,
when using range data it is sufficient to consider binary object models, since we
assume the transmitted beam to be reflected fully when hitting the first object
along its path. Thus we can assume an object to consist of geometric primitives
placed at the positions of an inhomogeneous Poisson point process. This allows



us to treat the small-scale variability pixel-wise instead of object-wise, inducing
a probability density function 7 for the range at pixel i

T (ri|A) = A (0, i, 7i) exp <— /0” A(0:, ¢i,7) dr) . (2)

The function A is crucial, as it models the appearance of the objects. To reduce
complexity and allow for efficient computations, we will assume the intensity
function A to be piecewise constant, with high intensity in regions occupied by
the template objects.

We take a Bayesian approach, defining a posterior distribution on the trans-
formation group S, and using Markov chain Monte Carlo methods to explore
it. In particular, we use the Langevin-Hastings algorithm suggested by Besag
(1994). The algorithm is based on Langevin’s stochastic differential equation
(SDE)

dX (t) = VH (X (b)) dt + V2dW (¢), (3)

which generates a Markov process with a stationary distribution proportional
to exp(H (z)), and which is shown to be superior to the Random-walk algo-
rithm in many situations (Roberts and Tweedie, 1996; Christensen, Mgller and
Waagepetersen, 2000). However, additional complexity is introduced when the
posterior distribution takes values on curved manifolds lacking the familiar vec-
tor space structures, as is often the case when the posterior is parametrised in
terms of Lie groups. The theory for constructing SDEs on manifolds is well
established (Kunita, 1984; Gliklikh, 1996), but only recently has it been put to
use in a statistical setting for sampling Lie-group valued probability measures by
means of Langevin’s SDE (Piccioni and Scarlatti, 1994; Srivastava, Grenander,
Jensen and Miller, 1999). These methods are described briefly in Section 4.

The range laser sensor is described in Section 3.2. Object representation
using deformable templates is discussed in Section 2, while we present our point
process imaging model in Section 3. In Section 5 we present some results using
real range laser data of forest.

2 OBJECT REPRESENTATION

We will use the global shape models developed from Ulf Grenanders pattern
theory (Grenander, 1993) to analyse the imaged scenes. The concept of de-
formable templates presents an unifying way to analyse the variability on shape
and occurrence of imaged objects. Let A be the finite set of possible object
types. For each object type a € A we define a template Ip(a) constituting all
object features affecting the imaging sensor, and representing a typical object
in the class. For example, in target recognition the template can be a surface
manifold representing the target shape. The variability in object shape within
a class is accommodated by applying a transformation group S to the template.



For each s € S, let sIp(a) denote the action of s on the template; then the orbit
0% ={sly(a) ; s € S}

contains all possible object occurrences. We shall assume the group S to act
transitively on O%, so that each object occurrence can be uniquely represented
by an element s € S.

When modelling objects with a high degree of shape complexity the trans-
formation group needs to be very high-dimensional to be able to capture the
variability. This has implications for the computational complexity of the recog-
nition algorithm, while not necessarily leading to a higher classification accu-
racy. This is indeed the case in our example, where the objects have local
shape features that affect the sensor, but that are otherwise of no interest. To
get a compact and computationally efficient representation, we separate the
two sources of variability and represent the global shape by a closed, piecewise
smooth surface ¢y approximated via m triangular patches, each identified with
a set of three vertices and a surface normal, see Fig. 1 for an example. By global
shape we shall mean the features used for discriminating between different ob-
ject types, and not features on a finer scale such as holes, irregularities at the
boundary and so on. The surface encloses a region Gy C R?, and the object
itself is modelled as the collection of geometric primitives placed at the random
positions of an Poisson process on GGy as follows.

Let the region of interest be W C R?, and let ® be an inhomogeneous
Poisson process with intensity function A(z1,x2,23) = ABlw\q, + Aola,, where
[ 4(z) is the indicator function having value one if z € A, and zero otherwise.
Furthermore, let {x;};"] be the collection of random positions of ® in W, and
associate with each point a geometric primitive P, inducing an Poisson object
process

1= Pl (@

Thus the template is a collection Ip(a) = (co, Ag) of a closed surface ¢y repre-
senting the global shape of the object, and an intensity function A9 describing
the density.

Next we introduce the transformation group S generating the object space.
In our example, concerning recognition of trees, we have found it sufficient to
consider simple, low-dimensional groups, letting S = A(3) x US(1), the product
of the affine group and the group of uniform scaling in one dimension. By a
deformed template

sly(a) = (s1 0¢g, $2X0), (s1,82) € A(3) x US(1) (5)

we shall mean the surface s ocg formed by transforming all vertices and normals
by s1, together with the function ss)\g obtained by scaling Ag.

Taking a Bayesian approach we define conditional prior probability densities
7(s | @) on the transformation groups, and a probability distribution 7 (a) on the



set A of object classes. We choose the elements of the scale group US(1) to be
Gamma distributed with hyperparameters p and ¢q. The affine group

r— Az +a, A€GL(3),a€R3 (6)

represents translation, scaling, rotation, bending and skewing. We chose the
elements to have independent, Gaussian distributed components, ie. s € A(3)

has density
12 si— s 2
7(s) o exp (—§§i( = ) ) (7)

i=1

with respect to Lebesgue measure. The means pu; are chosen so that the distri-
bution has the identity transformation as its mode.

3 IMAGE FORMATION AND SENSOR MODELLING

When an object described by an deformed template sIy(a) is mapped to an im-
age 1, two sources of variability is introduced. One is due to the description of
the template as a random Poisson object process I, together with the projection
of I onto an abstract true range image r*. The second is measurement noise
introduced when collecting the data, and is sensor dependent. We begin by de-
scribing the imaging formation model 7(r* | s) and its properties in Section 3.1.
The sensor likelihood 7(r | r*) is described in Section 3.2.

3.1 Image formation

Throughout this section we will assume orthographic projection, although an
extension to perspective projection is possible. Assuming the sensor to be far
from the imaged objects, and the imaged region to be small, this assumption is
reasonable. We identify the imaging plane of the sensor with the set Q C R?,
and assume for simplicity continuously observed measurements. The ideal data
is then r* = {r*(z1,z2); (x1,z2) € Q}. Denote the axis orthogonal to the
imaging plane by z3, and consider a ray p(z1,z2) emanating from the point
(z1,z2) and going in the positive zs-direction . The probability of observing a
particular range r*(z1, z2) is then the probability of 7*(z;,x2) being the site of
the first event of the Poisson process ® along the ray p(z1, z2):

Toyas (17 (71, 42) | 5) =

r*(z1,z2)
A(z1, 22, 7" (21, T2)) exp (—/ )\(371,1’2,273)d$3> . (8
0



By integrating over the imaging plane {2 we get the density for the whole image

*

T

r*(z1,z2)
w(r*|s) =exp | — /// A1, T2, x3) dxg dzs dy
0
Q

—|—//ln)\(ml,mg,r*(ml,mz))d:rz dey | . (9)
Q

This can be further simplified by assuming the density function to be piece-
wise constant. Then, letting F' = {(z1,22,73) € R® ; (21,22) € Q, 0 < 23 <
r*(x1,x2)} denote the part of the world W that is observed under the sensor,
and letting R® D G, = socy be the set occupied by the template, we define the
intensity function as

AB, (@1,x2,x3) € GE aya

10
Ao, (1171,372,1’3) EGSHF. ( )

)\(2131,.1'2,2?3) = {

The density (9) then simplifies as follows.

PROPOSITION 1
Let the density (9) have an intensity function as defined in (10). The density
can then be written as

7 (| 8) o< exp (= (Ao = AB) m (G N F) +In (o/Ag) m (P (G5 NOF)) ), (11)

where OF = {(x1,22,23) € F; &3 = r*(x1,x2)}, P represents the orthographic
projection (1,2, x3) — (x1,22), and m(-) is Lebesgue measure.

Evaluation of the density does in other word amount to calculating the
volume and projected area of the deformed templates. This might be compu-
tationally expensive, especially calculating the area P (Gs N F') which may be
highly irregular. Effort should be put into designing efficient ways of doing this.

The simulation algorithm described in Section 4 depends on gradient in-
formation in the posterior density. When the intensity function is as defined in
(10), we can derive an explicit formula for a part of the gradient VInz(r* | s).
The result is as follows.

PROPOSITION 2
Assume the deformed template shape s o ¢y to be a closed, piecewise smooth
surface with outward normal n, and let G be the region bounded by it. Denote

by ai,...,a12 a basis for the Lie algebra a(3) of left-invariant vector fields on
A(3). Then
i///daz—//(na ox)dx (12)
88k - s Ok )
G,NF 8G NF



where (-, ) is the usual inner product on R?.

Proof. We sketch a geometric proof. Let s, be equal to s, except for a small
variation ¢ in the kth component, and let G- be the volume enclosed by the
corresponding deformed template. Then the gradient is proportional to the
limit € | 0 of the volume (G5 \ G:x) U (G- \ G5). Represent the template
surface ¢y by a triangulation ¢y ~ UL T}, with each triangle having area 4;,
outward unit normal n; and centre point p;. The integral on the left hand
side of (12) can then be approximated by the sum of parallelogram volumes

X <m, %ss’;’ > Ay =37, (ni,ax o pr) Ay, which in the limit € | 0, L — oo becomes

the surface integral in (12). O

3.2 Laser radar range images

A coherent laser radar collects a range image by scanning a field of view, trans-
mitting a single laser pulse for each pixel in a raster scan. The value at each pixel
represents the time-of-flight between the peak of the transmitted pulse and the
peak intensity of the video-detected intermediate frequency return waveform.
The data used in this study were collected using a Riegl LMS-Z210 laser range-
finder with a rotating mirror and an angular separation of 0.18 deg. The images
contain 440 x 1440 pixels, and thus represents a field of view of 80° vertically
and 259° horizontally. The operational range of the apparatus is approximately
2 — 200 m. An image is represented as an array r defined on a lattice A C Z2.

Range images are subject to additive measurement noise and range fluc-
tuations due to laser speckle (Goodman, 1975). The latter effect causes mea-
surements far off the true range when a speckle fade occurs in conjunction with
a noise peak (Green and Shapiro, 1992). To counter these effects we use the
observation model of Green and Shapiro (1992), assuming the probability den-
sity of the measured range image r given the the true range image r* to be a
product of mixtures

w1 =] (=D e (gt -ri?) + 7). 13)

€A

where o is a measure of the local range uncertainty, R is the operational range
R = rmax — Tmin, and p is the probability of an anomalous measurement. The

parameters o and p are system dependent, and approximate formulas are given
in Shapiro, Reinhold and Park (1986).

4 POSTERIOR SAMPLING USING THE LANGEVIN-HASTINGS
ALGORITHM

The a priori object model and the imaging models are combined to yield the a
posterior distribution for the scene parameters s given the data r,

w(s|r) cnw(r|r*)m(r* | s)m(s). (14)



We will restrict attention to a single object, so s takes values in the product Lie
group A(3) x US(1), while r is defined on the lattice A. The Langevin-Hastings
algorithm presents a generic way of updating all parameters of a d-dimensional
random vector S simultaneously, using gradient information to explore the pa-
rameter space. It is based on a discretization of the Langevin SDE which on
vector spaces takes the form

1
ds(t) = §V1n7r (S(t) |r)dt + dW (¢), (15)
where W (t) is a standard d-dimensional Wiener process. Assuming that the
parameter vector S is defined on a vector space, and that the current state of

the Markov chain is S, the algorithm proceeds by proposing a new state S’ by
going a distance along the gradient and adding Gaussian noise,

s’ ~N <St + %hv log7(Se |r), hId> . (16)

We denote the density of this proposal by ¢(S;, S’). The new state S’ is accepted
with probability

N N CIEYCA)
(58 =min {1, SIS 5 | o

otherwise the old state S; is retained. The Markov chain then converges to the
posterior distribution , ||Pr(Sy € - |[So = s9) — 7(+)||Tv — O for m-a.e. sq.

Note: The affine group A(3) = GL(3) x R? is strictly speaking not a vector
space, it is not closed under addition. Translation on matrix Lie groups is
defined by matrix multiplication, and the Langevin equation should be modified
accordingly. In general, let G be a d-dimensional matrix Lie group, and let
Ey,...,E4 be a basis for the Lie algebra g of left-invariant vector fields on G
(refer to eg. Boothby (1986) for details). For any point g € G, E; ,f is the
directional derivative of the function f € C°°(G) in the direction of E;. The
vector ), (Ej 4 f) Ei 4 is the gradient vector of f at g. Now, by the existence
theorem for ordinary differential equations, there exists a flow £(t) € G which
is generated by the gradient field

d
% = Z (Ei,ﬁ(t)f) Eicw) = Z (Ei{(t)f) () E;,

i i

and thus

£(t) = £(0) exp (t Z (Bigyf) Ei> ,

i



where exp(-) is the matrix exponential. This can be extended to stochastic flows
by adding noise terms (Kunita, 1984), setting

t d d
£(t) = £(0) + /0 (Z (Big(s)f) Eig(s)ds + ZEi,g(s) o dWi(S)> ) (18)
i=1 i=1
where Wy (t),...,Wy(t) are independent, standard Wiener processes and o de-

notes the Stratonovich integral.

Since GL(3) has a “flat” geometry this simplifies, and we can use the gra-
dient computed above. The Metropolis-Hastings algorithm becomes as follows.
For each step, set

d
S’ = S;exp (ngnﬂ (Se|r) + \/EZwiEl) , (19)
i=1

where the w; are independent standard normals and E1,... E,; is a basis for the
Lie algebra gl(3). The acceptance probability becomes

d
exp (ngnw(StM) + \/Ezszz> ‘} ,
- (20)

N
a(St,S)—mm{l, -

where ¢(-) is the density of the standard normal distribution.

The theory for constructing stochastic differential equations (SDEs) on
manifolds can be found in eg. Kunita (1984). For examples on random sampling
on curved manifolds, see eg. Piccioni and Scarlatti (1994) and Srivastava et al.
(1999).

5 EXAMPLES AND FURTHER WORK

As an example we have estimated locations of trees in range images of forest.
This is motivated from target recognition applications, in which clutter objects
such as trees poses a significant challenge. The most tractable way of dealing
with clutter is to use Markov random field models (Zhu and Mumford, 1997)
or pixel models based on projections of primitive geometric objects (Lee and
Mumford, 1999), but computational aspects aside, the most natural way is
to use physical models of clutter objects in the same manner as for targets.
Furthermore, trees have highly variable shapes and might have very different
sensor signatures depending on tree type and time of year. In that respect trees
are suitable for the object model presented in this paper.

Fig. 2 shows estimated shape and location of a tree in a simple image. We
used the template in Fig. 1 initially located in the centre of the imaged region.
The parameters of the likelihood model were considered fixed, but the results
did not vary much over a suitable range of parameters. The parameters of the
Poisson object process were fixed at A\g = 1073 and A\; = 5-1073.



To investigate the methods sensitivity to occlusion we considered estima-
tion of the shape and location of a partially occluded tree. To simplify the
computations we used a sequential algorithm, first locating the foremost tree,
then the occluded one. This method requires good initial guesses of the posi-
tions. We used a crude, but effective method, assuming trees to have a fixed
depth and then convolving the image with a three-dimensional Gaussian kernel.
Fig. 3 shows estimated locations of the two trees. The results demonstrate that
the method tackles occlusion, relying on prior information in the regions not
observed.

The object recognition problem could be handled in full generality using
the reversible jump MCMC as in Rue and Hurn (1999), assuming an unknown
number of objects of varying type.
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A FIGURES

Figure 1: A tree template represented by a triangulated surface



Figure 2: Estimated tree shape using the template in Fig. 1. Fig-
ure (b) shows the estimated location in space.
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Figure 3: Estimation of occluded tree shape using the template in
Fig 1. Figure (b) shows the estimated locations in space.
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1 INTRODUCTION

Statistical interest in data in the form of images really took off in the 1980s fol-
lowing the papers by Geman and Geman (1984) and Besag (1986), although in
fact Grenander had been working in the area of pattern recognition for some con-
siderable time by then (Grenander, 1976; Grenander, 1978; Grenander, 1981a).
At that stage, the work leaned towards pixel-based models and the restoration of
images to remove degradation and provide a sharper picture. The past few years
have seen changes in the emphasis and application of statistical image analy-
sis techniques; the range of problems tackled has diversified and now encom-
passes more interpretation tasks such as object recognition and measurement
(the so-called high-level tasks). New possibilities for Bayesian image analysis,
and particularly object-based approaches, have opened up with the advances
made in object modelling (Grenander, Chow and Keenan, 1991; Grenander and
Miller, 1994) and the corresponding MCMC sampling of variable dimension dis-
tributions (Green, 1995). It is now possible, in theory, to sample from a model
which jumps around between various image interpretations (in terms of image
content), although in practice models and algorithms must often be carefully
tuned in order to attain reasonable levels of mixing (Rue and Hurn, 1999).

We will attempt to provide an overview of recent work, highlighting the
main directions particularly in modelling in section 2 and inference in sections
3 and 4. Many of the ideas will be illustrated in an ultrasound application
requiring careful physical modelling and recently devised sampling techniques
(section 5).

2 MODELLING

Since we are taking a Bayesian approach, our modelling takes two parts: defining
a prior for a suitable representation of the scene being imaged, plus a likelihood
model to capture the data acquisition process. We begin with the former.



2.1 Prior modelling

In this subsection we describe three different approaches to modelling images;
the distinctions arise in terms of the level of global or local information which one
wishes to put into the model via the representation of the scene being studied.
There is also an issue of what can be expected of a prior in a high-dimensional
image problem; often people use local and generic (low-level) priors merely as
regularisation terms. It is unrealistic for us to expect realisations from such
priors to resemble typical images, but hopefully the local features are adequate
for our purposes. This is reflected in what kind of inference can be drawn from
such models. On the other hand, high-level priors try to capture important
features of the images, and carry significantly more structure and can answer
more global questions about the scene. Intermediate-level models fall between
the two.

2.1.1 Pizel-level modelling Pixel-level models are defined on the pixels in the
image, most often using Markov random fields (MRF). Traditionally, their use
has been in restoration from imperfect and indirect observations, but they have
also found applications as a part of a hierarchical model; there are connections
with the chapter in this volume on spatial epidemiology.

Categorical MRF models Categorical Markov random field models such as
the binary Ising model, and its multicolour extension the Potts model, are fre-
quently used as priors in tasks such as segmentation and classification. Although
such models can contribute to visually acceptable posterior restorations, they
do not provide good prior models for real scenes, and estimates of attributes
such as the number of connected components may be poor. The difficulty is to
design a MRF with a small neighbourhood in such a way that global behaviour
of samples, such as the size, shape and number of compact objects against a
background is controlled. Recent progress has been made by Tjelmeland and
Besag (1998), who also move away from the constraints of a square pixel lattice
structure, using instead an hexagonal grid (which has benefits in terms of hav-
ing fewer directional artifacts). The main idea in their approach is the careful
definition of clique types, and the 26 possible configurations (up to rotation)
are shown in their paper. Fig. 2.1.1 shows some MCMC realisations from the
model with three different sets of parameters. By blurring realisations like those
in Fig. 2.1.1 and adding Gaussian noise, the posterior using the correct prior
was compared to that using an Ising model. Considerations such as the pos-
terior number of misclassified pixels (given the known true image), and visual
appearance were slightly superior using the new model, but the real benefits
came when studying more complex image functionals such as the number of
distinct foreground objects, number of objects larger than four pixels or edge
length, with the Ising model performing much worse. It seems that it is pos-
sible to model binary fields using local cliques and to control to some extent
the global properties; modelling is more delicate but it remains reasonable for



design, coding and computational efforts.

-
@ .
(a) (b) (c)

Figure 1: Realisations from the fourth-order model of Tjelmeland
and Besag (1998) with the three different set of parameter values
as in their Table 4.

Grey-level models Grey-level models are often used in the context of visual
restoration. To gain some insight into their behaviour, we consider the prior
model described by Geman and Reynolds (1992), Geman and Yang (1995), and
others:

(@) o exp (—ﬂ Y un Y ¢(ng>w>> (1)

where 3 is a smoothing parameter, {w,,} is a set of positive weights, and the

ng)w are discrete approximations to derivatives of the grey level for clique ¢
(for example for m = 1 this is a simple pixel difference, for m = 2 this is the
difference between first order differences, and so on). The potential function
¢(-) is usually a symmetric function increasing on [0, c0) and such that ¢(0) =0
and ¢(oc0) < oco. A common choice is ¢(u) = |u|/(1 + |u|). The motivation
behind these conditions is to recapture discontinuities (in grey-level or higher
derivatives of grey-level) without over-smoothing.

Further insight into the model’s behaviour comes from considering Eq. (1)
as the marginal of a model augmented with continuous “edge variables” (Geman
and Reynolds, 1992). These edge variables play a similar, although implicit
rather than explicit, role to the edge variables used in the seminal 1984 paper
by Geman and Geman. However in addition, this new augmented model also
possesses some useful properties which allow for increased sampling speed. We
will discuss this model further in Section 5, where we also explore the augmented
model.

Gaussian MRF models Another important type of MRF are Gaussian
MRF's which are particularly convenient both theoretically and computation-



ally. Let & be Gaussian with zero mean and precision matrix @, then

E(:I?i | CIT_i) = — Z gl”xj, and Var(:ci | CIT_i) = I/Qii.
. 2
J
Hence, we can associate the zero-patterns in @ with the conditional indepen-
dence structure for x. In imaging, « is usually defined on a lattice with neigh-
bours those other pixels within a 3 x 3, 5 X 5 window and this defines the graph.
In disease mapping applications, say,  is defined on a map of counties with
neighbours those counties which share a common edge. Early references on
GMRFs are e.g. Besag, York and Mollié (1991) and Clayton and Bernardinelli
(1992). A popular GMRF model for use in imaging and spatial statistics in
general was considered by Kiinsch (1987) and Besag and Kooperberg (1995):

w(z | k) oc k(D2 exp(—g 3 (@i —2))?). 2)

inj

Note that Eq. (2) is improper but this is a strength (Besag and Kooperberg,
1995), as we do not need to fix the overall level for example. The precision
matrix is @);; = —k if ¢ ~ j and Qs = n;x where n; is the number of neigh-
bours of i. The conditional mean is simply the average of the neighbours,
while the conditional variance is 1/(n;x). Hence Eq. (2) will favour locally con-
stant surfaces, with extensions to higher order surfaces also possible (Besag and
Kooperberg, 1995; Besag and Higdon, 1999).

GMRF models are computationally convenient as their local characteristics
are easy to compute and fast general simulation algorithms exists (Rue, 2000),
but again the question arises: is it possible to construct a local GMRF in such a
way that the global properties of the model are controlled? Here we have in mind
smooth realisations with a given correlation function, such as the commonly
used exponential, Gaussian and members of the Matern family (Cressie, 1993).
If we can approximate such models well enough on a lattice using a GMRF with
a small neighbourhood structure, then we have a model for which sampling
is computationally fast, but which at the same time has nice global properties.
Rue and Tjelmeland (1999) have recently demonstrated that it is indeed possible
to derive GMRF substitutes for Gaussian fields on a lattice.

2.1.2 Intermediate-level modelling Intermediate-level models fall between pix-
el based descriptions and object-based methods; these models have the ability to
capture some global features of the image without the need to specify the scene
too exactly. Their role is to give a more compact representation of the image
itself, for example a polygonal segmentation of a satellite image where the re-
gions are interpreted as crops and houses. We will now discuss models based on
some (continuous) random partition of the plane into regions, with each of these
regions given an intensity (or colour) to produce binary, unordered colourings,
and continuous models. The idea can be traced back to Arak, Clifford and Sur-
gailis (1993). Other references are Clifford and Nicholls (1994), Green (1995),



Mpgller and Waagepetersen (1996), Nicholls (1997), Nicholls (1998), Heikkinen
and Arjas (1998), Mgller and Skare (2000).

One simple way to construct a random partition of a plane is the Voronoi
tessellation. Let A be the bounded region of interest, and let € = (&1,...,&,)
be a set of points from a homogeneous Poisson process on A. The Voronoi
tessellation V(&) = {Vi(€)} is constructed by letting each tile V} (&) consists
of those parts of A which are closer to & than to any other point of £ (see
Fig. 2 (a)). This defines a neighbourhood structure ~ between contiguous tiles.
As an alternative, Nicholls (1998) used a triangulation of the £ and also points
&5 on the boundary of A. The triangulation is formed by joining points with
straight edges until no more can be added without intersecting an edge already
in place. The Voronoi tessellation is relatively easy to manipulate being Markov
(with respect to ~ and €) in the sense that adding a new point only requires
the tiles around the new point to be recomputed. Similarly, removing a point &
involves only the contiguous tiles. Similar comments apply for the triangulation
approach. This property is convenient for constructing MCMC algorithms.

(©) @

Figure 2: (a) shows an example of a Voronoi tessellation, and (b)
a random colouring of (a). (c) shows an example of a triangulation
of the image in (d).

Once a partitioning scheme is set up, a model is defined for the colourings
of the tiles. For example, we can colour the tiles at random, black or white, to
produce realisations like Fig. 2 (b). The base measure for the Voronoi case is
Poisson for € and uniform and independent colouring for the colours. Relative to



this, we define densities which tend to give neighbouring tiles similar colourings.
Two natural choices are:

fil@; € ccexp(=8) Izi =), and  fo(@; €) o exp(—BL(x,£))
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where L(z,£) is the length of edge between differently coloured neighbouring
tiles. Both densities are similar in spirit to the Potts model, with f, allowing
larger tiles more influence. A continuous colouring scheme is given by Heikki-
nen and Arjas (1998) using a GMRF with precision matrix 8Q, where —Q;;
is the length of the edge between tiles ¢ and j and @Q;; the area of tile ¢; this
structure encourages rapid changes when the tiles are small, and strong corre-
lation between tiles sharing a long edge. If the normalisation constant of the
colouring with respect to & is known, we can include it in the density to obtain
a joint model with known marginals. This is possible with continuous GMRF
colourings using the approach in Rue (2000), but not when using f; or f.

In combination with the likelihood, intermediate-level models can produce
impressive restorations and reasonable interpretations of the data, even for quite
high noise levels, see for example Fig. 2(c,d) and the experiments in Nicholls
(1998) and Mgller and Skare (2000). The implementation of this type of model
can be eased by the existence of a huge variety of clever algorithms from com-
putational geometry, for example computing triangulations and Voronoi tes-
sellations. However, the coding remains significantly more complex than that
required for pixel-based MRF models.

2.1.8 High-level modelling High-level models make bold statements about
the image under study in the sense that it is the objects, or their shapes, which
are directly modelled. The idea of using compact, parametric models of object
shape was pioneered by Ulf Grenander in the late 60s (Grenander, 1967; Grenan-
der, 1981b), but it was not until the early 90s that advances in computing
and stochastic simulation algorithms made the methods applicable in practise
(Grenander et al., 1991; Grenander and Miller, 1994). High-level models allow
structured understanding. The transformation from template to observed object
makes tasks such as classification and detection of pathologies possible. High-
level models also have the capacity to include uncertainty over the number of ob-
jects in view, requiring more complex sampling algorithms than traditional fixed
dimension approaches. We will discuss just two classes of model; this field is huge
with a wide variety of applications, see http://www.cis.jhu.edu/research.html
for examples.

Deformable templates: Polygonal models One of the most studied ap-
plications of high-level models is the detection of featureless planar objects
in images (Grenander and Manbeck, 1993; Baddeley and Van Lieshout, 1993;
Grenander and Miller, 1994; Qian, Titterington and Chapman, 1996; Rue and



Syversveen, 1998; Rue and Hurn, 1999; Stoica, Descombes and Zerubia, 2000).
Consider an object in the plane and suppose that its shape can be approximated
either by a simple geometric shape such as an ellipse, or by an n-sided simple
polygon with vertices vy, ...v,_1 placed counterclockwise around the outline.
This representation is the template for the object, and is allowed to deform
stochastically in order to describe the population variation of shape. There are
two aspects to this type of model; first, how to allow for stochastic deformation,
and secondly how to construct a model which allows for an unknown number of
objects.

We concentrate first on the deformations of a single object. Considering a
geometric object such as an ellipse which is defined by a small number of shape
parameters, it is possible to specify prior distributions for these parameters.
The situation with a polygonal outline is more complicated, and generally work
has concentrated on modelling the edges rather than the vertices directly: e; =
vy1 —vj for j =0,... ,n—1, where the indices are interpreted modulo n. The
usual approach is to consider an edge transformation matrix s acting on the
template edge vector e°:

_ . 0_0 ' cosfl; sinf; o_ [ 14+t 1, 0
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where the variables r; and 8; control the scale and angle in the change of edge
ej. Imposing the condition that the deformed template is closed > j sje? =
0 will introduce a dependency structure for the ¢y ; and ¢; ;. Assuming this
Gaussian structure, the modelling issue becomes that of specifying the precision
matrix Q. Grenander et al. (1991) let the unconstrained ¢ and ¢; be first order
cyclic Gaussian Markov random fields; then ¢ = (to, ¢1) is Gaussian with inverse
covariance matrix Q, = I ® @, where @ is a circulant matrix with entries

Qjj =B, and Qjj+1 =Qj,j—1 =0.

The circulant representation means that the model is invariant under cyclic
permutations of the edges, a natural choice when the objects have no apparent
landmarks. Hobolth and Jensen (2000) consider second order Gaussian Markov
random fields. Kent, Dryden and Anderson (2000) consider the statistical prop-
erties of this model under a more general covariance structure. They also discuss
alternative modelling strategies, treating scale and rotation conditionally rather
than jointly.

Note that representing the object through the edge vector e does not con-
vey any location information, and so in order to locate the template we must
place the first vertex vy (or some other designated vertex) at some point ¢ € R?.
A similar comment applies when using a geometrical template such as the el-
lipse, the centre must be specified to locate the object. Hence we could think of
the placement of the object as the “point” and the parameters describing the
object itself as a “mark”. This aspect motivates the way in which a model can
be constructed for an unknown variable number of objects, namely by using a



marked point process (Baddeley and Van Lieshout, 1993) (although note that
Grenander and Miller (1998) adopt an alternative formulation, see some related
comments in Green (1995)). Here the points, representing object locations, have
a density defined with respect to a Poisson point process defined in the plane.
The marks carried by each point are the values of the parameters describing that
object’s deformation (plus any other information required, for example Rue and
Hurn (1999) also use a label variable in order to distinguish two different types
of object). Models of this type require the reversible jump MCMC algorithm
of Green (1995) to deal with the dimensionality change associated with dif-
ferent numbers of objects. Often sophisticated moves which merge and split
objects are required (Grenander and Miller, 1994; Rue and Hurn, 1999; Rue
and Syversveen, 1998; Descombes, Stoica and Zerubia, 1999), but such moves
are hard to construct and the convergence rate can be painfully slow.

Deformable templates: Continuous models In many situations the above
mentioned models are too simplistic to capture the detail and internal struc-
ture of the modelled objects. For instance this is the case in many biomed-
ical applications such as automatic computation of areas and volumes, and
detection of pathologies, where one needs models which capture the detailed
structure of anatomy. Objects are therefore more easily represented as images
(Grenander and Miller, 1994; Christensen, Rabbitt and Miller, 1996), or as non-
parametric curves and surfaces (Younes, 1998; Bakircioglu, Grenander, Khaneja
and Miller, 1998); see e.g. Grenander and Miller (1998) for further references.
Again, one does not model the objects themselves, but rather the transfor-
mations acting on a template object. For instance, if the object is an image,
transformations could be taken from the collection of smooth coordinate trans-
forms of the image domain. Important modelling issues would then be the choice
of boundary conditions, and the choice of prior on the set of transformations.
Note that image matching is another application of the same methodology, see
e.g. Glasbey and Mardia (1998) for a review, and Sampson and Guttorp (1992)
and Perrin and Senoussi (1999) for matching in different contexts.

One of the first works in a statistical setting was Amit, Grenander and
Piccioni (1991), who consider reconstruction of X-ray images of hands. Images
are defined as mappings I from some fixed background space €2 to a range space
T. A particular image Iy € 7 is chosen as the template, and variability in image
appearance is modelled thorough the group # of diffeomorphic transformations
h:Q>3x — hix) = —u(x) € Q. The displacement field is assumed to
be Gaussian distributed with covariance kernel equal to the Greens function
of a squared differential operator L. To be able to do inference the infinite-
dimensional random variable w is approximated by an truncated orthonormal
expansion of the eigenvectors of L. In this framework Amit et al. (1991) im-
plicitly assume that the deformations are small so that u can be approximately
assumed to be in a Hilbert space ¢ with norm ||ul|?, = ||Lul|?. In reality the
group H of diffeomorphisms is a curved manifold and assuming a vector space



structure leads to inconsistencies. In particular, as pointed out by Dupuis,
Grenander and Miller (1998), the quadratic penalties ||Lu||* imply restoring
forces which are proportional to the displaced distance. this is called elastic
deformation, since large deformations are severely penalised, being drawn back
towards towards the template image. Whether this is undesirable or not de-
pends on the application, but certainly the lack of symmetry is unnatural in
applications where there is no obvious choice of template, and where images
need to be interchangeable.

To construct large-deformation maps Christensen et al. (1996) and Dupuis
et al. (1998) let h(x) be the output h(z,1) of a flow h(z,t) generated by a
velocity field v(x, t):

Oh(zx,t)
ot

In this case the deformation stress is not accumulated, hence the term viscous
deformations (Christensen et al., 1996). A similar approach can be found in
Trouvé (1998). Since v is tangential to H we can assume it to be in a Hilbert
space V with norm || - [|y. As in Amit et al. (1991) the norm is induced by a
linear differential operator L. In most image matching applications the operator
is of the form L = aV? +bVV +¢; chosen so that the solution obeys certain laws
from continuum mechanics for deformable bodies, see (Christensen et al., 1996)
and (Grenander and Miller, 1998). The posterior energy for v becomes

_ _((vih) (m,t))v(w,t), h(z,0) = .

1t 1
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from which an estimate v* can be found. The optimal match is then given by
the integral equation

h*(z,1) = 2 — /01 ((vg’h*) (w,t))v*(a:,t)dt.

Note that taking the minimum of the prior energy subject to Iy o h(0) = Iy and
Iyoh(1) = I defines a distance on Z (Younes, 1998; Trouvé, 1998). This enables
us to compare images quantitatively, which is relevant for optimal estimation
(see Section 4).

2.2 Data modelling

As the emphasis has moved towards real applications, the need for realistic
modelling of how the data are formed has increased. Particularly in studies
where interval estimates of image attributes are of interest, having a believable
likelihood model may underpin the credibility of the results. Unfortunately, this
is a rather neglected area in comparison to the effort which has gone into the
development of new prior models (and the authors certainly would not claim to
be an exception to this!). Some interesting work along these lines are found in



microscopy (Qian et al., 1996; Higdon and Yamamoto, 2000), impedance imag-
ing (Nicholls and Fox, 1998; Andersen, Brooks and Hansen, 2000), ultrasound
imaging (Husby, Lie, Langg, Hokland and Rue, 2001) and in much of the work
in emission tomography, for example Green (1990), Weir (1997) and Higdon,
Bowsher, Johnson, Turkington, Gilland and Jaszczak (1997).

3 TREATMENT OF PARAMETERS

This section discusses various approaches to the parameters of the models used;
generally it is not these parameters which are of interest and so the issue may
be whether to estimate them or to integrate them out in a fully Bayesian way.

3.1 Estimation techniques for low-level models

The most notable development in this area has been the use of Markov chain
Monte Carlo maximum likelihood (MCMCML) (Geyer, 1991; Geyer and Thomp-
son, 1992; Tjelmeland and Besag, 1998; Descombes, Morris, Zerubia and Berthod,
1999; Jalobeanu, Blanc-Feraud and Zerubia, 1999). This approach makes it
possible to do (approximate) likelihood estimation of hyperparameters where
MCMUC is used to estimate (locally) the influence of the hyperparameters of the
normalisation constant. However, care is needed to tune the algorithm to make
it work properly: suggestions are found in the above references. A compari-
son with pseudolikelihood estimation is found in Tjelmeland (1996), Forbes and
Raftery (1999), and Dryden, Ippoliti and Romagnoli (2000), among others.

Although likelihood estimation is natural when the model is correct, it
might not be so when trying to fit an approximate, computationally tractable
model to a set of training data. Rue and Tjelmeland (1999) discuss this for
fitting GMRFs, but more research along these lines is needed.

Finally, we mention that there has been some interesting statistical work
in the computer vision literature that we were unable to include for reasons
of space, for instance Jain, Zhong and Lakshmanan (1996), Zhu and Mumford
(1997), Zhu, Wu and Mumford (1998) and Blake and Isard (1998) for further
references and applications.

3.2 Estimation techniques for high-level models

Much of the recent work investigating various of the deformable template models
available has been quite theoretical and intertwined with the model formulation
itself (Hobolth, Kent and Dryden, 1999; Kent et al., 2000). Usually it is as-
sumed that a training sample of data is available in the form of traced outlines,
to which vertices are assigned according to some rule. An alternative approach
is used in Godtliebsen (1991), who use principal component analysis to estimate
the probability density function for a class of shapes represented by landmarks.
Extensions to non-linear methods can be found in e.g. Cootes and Taylor (1999).
Finally, Hurn, Steinsland and Rue (2001) assume that the training data are gen-
erated as noisy observations of deformed templates; this particular framework
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was intended to provide a black-box estimation procedure for estimation which
could be driven by a purely graphical user-interface.

3.8 Fully Bayesian approaches

One of the notable recent changes in image anaylsis has been the increasing
use of interval estimates of image attributes. There are issues, in terms of the
propagation of uncertainty through to the posterior, of fixing parameter values
as well as of model adequacy. Higdon et al. (1997), Higdon (1998) and Weir
(1997) use fully Bayesian approaches in computed tomography using pairwise
MRF prior models; these models are acknowledged to be somewhat unrealistic
for this type of application, and likelihood or other estimation techniques which
fix the parameter values do not allow for this. Hurn (1998) and Hansen, Mgller
and Tggersen (2000) work in a high-level framework, where the prior models are
rather more tailored for the application in hand. However as techniques have
developed in this area, it has again become more important to provide uncer-
tainty estimates rather than just point values. In addition in either case there
may well be parameters of the specified likelihood model which are very diffi-
cult to estimate well, for example Hurn (1998) considers a blind deconvolution
problem.

One of the biggest impediments to using a fully Bayesian approach has
been that often it becomes necessary to evaluate complex normalising func-
tions. For example, suppose the Ising model is being used, so that 7(z|8) =
2 i OXP(—BI[z;£2;))/ Z(B), where the normalising constant Z() is a function
of the hyperparameter 3 . That Z(f3) is not known is not an issue when sampling
for fixed 8 because it will cancel out in the acceptance ratio of a Metropolis-
Hastings algorithm. However, as soon as (3 is allowed to vary, Z(() can no
longer be ignored. Similar problems occur with the parameters of many other
spatial prior models (although less so with parameters of the likelihood terms).
Ratios of normalising constants have to be estimated off-line by computation-
ally intensive methods some of which require the generation of samples from
the density at a grid of different values of the hyperparameter. A nice review
of methods of estimating ratios of normalising constants is given by the recent
book Chen, Shao and Ibrahim (2000, Chap. 5).

4 POINT ESTIMATION FOR IMAGES

As models and techniques have become more advanced and applicable to real
data problems, attention has moved away from MAP and MPM point estima-
tion. There has been greater use of credible intervals of image attributes partic-
ularly in conjunction with fully Bayesian approaches. For examples see Higdon
et al. (1997), Weir (1997), Hansen et al. (2000) and Hurn (1998). A second,
more radical, change has been in the choice of estimator itself. It had long been
argued that neither MAP nor MPM were well-suited to image applications, one
being insensitive to detail and the other too local; MAP corresponds to using a
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zero-one loss function, while MPM is the estimator for the loss function which
counts the number of misclassified pixels. Unfortunately there are few other loss
functions for which the estimator is known. However Rue (1995) noted that for
certain general forms of loss function L(x, ) it is possible to approximate the
corresponding estimate: Suppose, as simple case, that L(x,Z) can be written
in the form L;(x) + La(x)L3(2) + La(Z), then in finding the estimator

Ak
T

= argmin E,|,L(x,Z)

= arg méin (Baly(L1(2)) + L3(&) Eg)y (L2 (2)) + La(Z)) ,

since the expectation is with respect to the posterior distribution of & under
which & behaves like a constant. The terms Eg,(L1(z)) and Eg)y(L2(x)) can
be estimated in the usual way by simulation from the posterior w(x|y). This
leaves an estimated posterior loss which is minimised over & using an appropriate
optimisation technique. The only restriction on the form of L(x,&) for which
this approach is computationally viable, is that L is separable into (a linear
combination of) functions of & and &. In his initial work Rue (1995) and Rue
(1997) built spatial structure into the loss function by penalising configurations
of discrepancies between x and #. Higher order tasks such as segmentation
(Frigessi and Rue, 1997) and object recognition (Rue and Syversveen, 1998)
are tackled with a function of Baddeley’s A image metric as the loss function
(Baddeley, 1992; Rue, 1999). This metric between two binary images & and z
is defined as

1/2
A, z) = (ﬁ > 1d(i, b(x)) — d(, b(Z))|2>

i€EA

where i indexes the pixels in grid A, b(x) represents the set of foreground pixels
in @, and the distance d(i,b(x)) measures the shortest distance between pixel i
and the nearest foreground pixel. If & is used to denote the image x with fore-
ground and background reversed, then the symmetrised loss function is defined
as

L(z,2) = Az, 2)* + A(Z, 2)°.

The terms ), x d(i,b(x))?, Yo p d(i,b(x)), D,cp d(i,b(Z))? and Y, -, d(i, b(E))
can be estimated by sampling from 7 (x|y); all other terms in the expected loss
are a function only of z. This leaves an estimated expected loss to be minimised
over images z using simulated annealing. The idea can be generalised beyond
binary images by considering an additional labelling term in the loss function.

Similar ideas are now crossing over into areas other than image analysis
using a number of different forms of loss function (for examples in mixture
modelling see Celeux, Hurn and Robert (2000) and Hurn, Justel and Robert
(2001)).
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5 EXAMPLE

In this example we will collect many of the ideas presented, and discuss semi-
automatic contour detection in ultrasound images of the carotid artery. Such
images are used in detection of atherosclerosis using the fact that diseased ar-
teries are less likely to dilate in response to infusion of acetylcholine. However,
estimating the cross-sectional area of the artery before and after infusion is
difficult because changes can be masked by blur and image artifacts (speckle)
introduced in the imaging process. An automated procedure should be able
to assess these problems properly, as well as quantifying the uncertainty of the
given answer, for instance by means of an interval estimate. Thus there is a real
need for Bayesian methods with emphasis on realistic modelling of both object
and data. Previous attempts at high-level modelling in ultrasound images have
not focused on the issue of data modelling, but there is a concern that the ar-
tifacts can seriously affect the performance of algorithms for contour detection,
and we feel that proper modelling of the data formation can lessen the effect
of blur and speckle. Previous works on contour detection in ultrasound images
can be found in Glasbey (1998) and Hansen et al. (2000), but neither of these
focus on the issue of data modelling.

5.1 A model for diffuse scattering in ultrasound scattering

The imaging model used in this example is presented in Husby et al. (2001)
and Langg, Lie, Husby and Hokland (2001): In ultrasound imaging a short
pulse of ultra high frequency sound is sent into the body and the backscattered
echo is measured after some time delay corresponding to the distance from
the transducer. The reflected signal consists of two parts, one resulting from
the pulse being reflected at interfaces between different tissue types, and the
other from the random distribution of scatterers within homogeneous tissue.
We concentrate on this second part, called diffuse scattering. The resolution
cell Q; corresponding to pixel 7 is assumed to consist of a large number N; of
uniformly distributed cells or scatterers, and the received signal A; is the sum
of the reflections from all the scatterers:

N;
Ai = Z |ak|6]¢k7
k=1

where ap and ¢ are the amplitude and phase of the signal from scatter k
(Goodman, 1975), and j = v/—1. We assume that all amplitudes and phases are
independent, and that the phases are uniformly distributed on [0, 27); and thus,
by using the central limit theorem the resulting complex amplitude is assumed
to be a complex Gaussian random variable with independent and identically
distributed real and complex part, both with zero mean and variance

]V'v
1 : E|ak|2
2 _
7= Nikz_:1 2
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given by the mean square scattering amplitude of the scatterers within the
resolution cell. The resulting radio-frequency (RF) image x is obtained by taking
the real value of the received signal, thus for all ¢ on some lattice Z, z; | o; is
Gaussian with mean zero and variance o7. Since the variance of the RF-signal
depends on the scattering properties of the underlying tissue and since those
variances are believed to vary little within homogeneous tissue, we use a latent
piecewise smooth log-variance field v = log o to model the anatomical structure
of the imaged tissue. For the reasons given in section 2.1.1, a Geman-Reynolds
model of the form of Eq. (1) is used as a prior «(v).

The observed image is then modelled as resulting from a convolution of the
imaging system point spread function h and the true RF-image. We assume the
point spread function to be spatially invariant (see e.g. Langg et al. (2001) for a
discussion of this choice), and thus y; | z; is Gaussian with mean ), hgz;—j and
variance 72. Combining the above representations we get the full conditional
for the true RF signal and the log-variance field

2
n(z,v| .. ocHexp — (yz thfﬂz Ic)

€L
_%126—21/i — v — 5zwm¢ (Dz(m)y) } . (4)

5.2 Image restoration and MCMC-algorithms

A point estimate & of the true unknown RF image x* can be constructed using
the output from the MCMC-algorithm, and a natural first choice is the posterior
mean (Husby et al., 2001). Unfortunately, sampling from the posterior is not
trivial, and the single-site algorithm of Husby et al. (2001) demonstrated slow
convergence and poor mixing. This is not surprising given the strong spatial
interactions in the model. A natural way out of this is to consider block sam-
pling. It is not straightforward to construct block updates from the posterior
directly; however, after augmenting the model with suitably chosen parameters,
block sampling is indeed possible and can profit from the fast algorithm for
sampling GMRFs (see Section 2.1.1). The augmentation is done using an idea
from Geman and Yang (1995) as follows: We assume m(v) to be the marginal of
a model 7*(v, b) augmented by M real valued auxiliary fields b(l), ey M)
is chosen so that the conditional distribution 7*(v | b) is a GMRF. The posterior
density v under the dual model is

(v |x,b) ocexp{ ﬁzwmz< ( plm) ) bl(m)Dl(m)V>

_% (m3672w + 21/2,) } ,

i
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which can be block sampled using a Gaussian proposal distribution in a Metropolis-
Hastings scheme; see Husby (2001) for details. Furthermore, the conditional
distribution for the RF field  given all other variables is a GMRF, while the
auxiliary fields b are conditionally independent; hence, our MCMC-algorithm
block-updates each of the three fields conditionally on the rest: @|..., b|... and
v|.... This certainly improves mixing compared to single site updating, but
further improvements can be made, for instance by updating all variables jointly.
As indicated in Knorr-Held and Rue (2000) the bottle-neck causing poor mix-
ing can be high dependency between fields rather than within fields. Still, in
our example the blocked sampler shows improved mixing over the single site
algorithm and is reasonably fast. Ways of improving the between field mixing
are currently being investigated.

Figure 3 (b) shows an estimate of the posterior mean of x for fixed values
of the parameters 38, and 72. Note that the image looks less smooth than the
data in Figure 3 (a); this is a feature of the model since we assume the pixel
values x; to be a priori independent. This assumption is perhaps too simplistic,
and can be relaxed by assuming apriori dependencies between the elements of x.
Compared to the filtering methods usually applied our reconstruction method
is successful at removing speckle and image artifacts. However, more work
needs to be done on quantitatively comparing methods and on estimation of
hyperparameters.

5.3  Contour detection

We will now move to a high-level model for detecting the outline of the artery
wall. A low-level procedure producing e.g. a segmentation of Figure 3 (a) would
not be robust with respect to image artifacts such as the missing edge at the
lower right of the artery wall. The edge is missing because of strong rever-
berations at the parts being orthogonal to the incoming ultrasound pulse, and
artifact of this kind is best dealt with using high-level models that constrain the
solution to lie within some predefined set, in this case the set of smooth, closed,
non-intersecting curves. Referring to section 2.1.3 we model the artery outline e
as being the result of applying an edge transformation vector s to a predefined
circular template €, and let the edge transformation vector be Gaussian with
mean zero and a circulant precision matrix Q,. To model the fact that data is
missing along parts of the artery wall, we use a destructive deformation field
acting on the template and indicating along which edges data is missing, see
Rue and Husby (1998) for details. The deformation field is assumed a priori
independent of s, and given a simple Ising prior.

Having an explicit model for the artery wall we no longer need the implicit
edge model Eq. (4) but models for the two log-variance fields are still needed. We
model these as two smooth Gaussian fields vy and v, associated with back- and
foreground, respectively. This is somewhat akin to the approach taken in Qian
et al. (1996). The fields are only observed within their respective regions; letting
d = {d;; i € T} be an indicator variable having value 1 inside the template and

15



(b)

Figure 3: (a) Observed 128 x 128 image of the carotid artery. (b)
Posterior mean estimate of the RF field . (c¢) Estimated artery
outline using a circular template.

0 otherwise, the conditional distribution for the radio frequency signal z; at site
i is Gaussian with mean zero and variance exp (2vy, ;).

We assume the two log-variance fields have unknown spatially constant
means, unknown variance and an exponential correlation function with unknown
range. We use GMRF proxies as discussed in Section 2.1.1 to derive a compu-
tational efficient model. The fit is excellent even for a 5 x 5 neighbourhood.
The full posterior density can be sampled using a combination of Gibbs and
Metropolis-Hastings updates (Husby, 2001), where we make use of the fast sam-
pling algorithms available for GMRF to construct block updates of the variance
fields.

Figure 3 (c) show estimate of the outline of the artery with a fixed number
of vertices. Note how nice the artifact at the lower right of the artery wall is
recovered using knowledge of the global shape of the carotid artery. Further,
estimates and credibility intervals of global statistics like the area of the artery
is directly available (we obtained [2690, 3086] as the 95% credibility interval for
the area). The results are rather stable for different starting values and choices
of hyperparameters. More work is needed to investigate further the properties
of the model and sampling algorithm, and their practical properties over a wider
range of similar images.
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