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Abstract 

 
In the dry cleaning of the exhaust gas from the aluminium cells 
impurities are accumulated in the finer fractions of secondary 
alumina from the dry scrubbers. The present work describes new 
methods for the determination of dust composition, aiming at 
increasing the understanding of the effect of cell operation on the 
amount and the composition of dust in the fume. New and 
advanced analysis methods are used to characterize a broad 
specter of emissions. An Electrical Low Pressure Impactor is used 
to sample and analyze the dust from the cells. The equipment 
enables real-time particle size distribution analysis of 12 particle 
classes in the range 30 nm - 10 µm. The size classified samples 
are analyzed by means of SEM/EDS and XRD to determine the 
characteristic chemical composition of the different fractions. 
Understanding the evolution, evaporation, and condensation of 
particulates in the cell emissions under different operational 
conditions may facilitate new standards for environmental 
friendly and energy efficient high amperage electrolysis cells. 
 
 

Introduction 
 
An understanding of formation, evaporation and condensation of 
gas compounds in the aluminium electrolysis cell and the off-gas 
duct system under various operational conditions and current 
densities are of interest both for setting new standards for 
environmental friendly production and for efficient operation of 
high productivity electrolysis cells. 
 
It is commonly accepted that beside the bath chemistry the 
operational practice has a considerable effect on the gas 
composition and condensation products in the off gas [1, 2]. Large 
current density increases may only be realized by increasing the 
heat losses to maintain the heat balance of the cell. As most of the 
surplus heat has to be released with the exhaust, it is likely that the 
particulates formation in the cell will be affected. A higher 
temperature may affect the cell superstructure and the subsequent 
gas treatment [3, 4], however, it may be a requirement for 
economical heat recovery [5, 6]. Also, cost effective CO2 capture, 
if developed, requires less draught air to increase the CO2 
concentration, resulting in higher off-gas temperature. Hence, the 
composition of the finer particulates is of interest, both from a 
dust recovery perspective and scale buildup in the duct and in heat 
recovery units. 
 
Fume emitted by aluminum reduction cells with prebaked anodes 
have been investigated by Less and Waddington [7]. The fume 
and dust particles sampled under varying operational conditions 
were examined by chemical analysis, X-ray crystallography, and 
optical and scanning electron microscopy. Approximately 50 % of 
the fluoride emissions were in form of particulates. The fine 
fraction < 2 µm, consisting of condensed fluorides approximating 

the chiolite composition, contributes about 35 % of the total 
fluoride emissions. The coarse faction > 6 µm, consisting of 
alumina, carbon and frozen cryolite droplets, represents about 
20 % of the total fluorine emissions. Exact particle size 
distribution was difficult to determine due to the many different 
components and the wide range of particle sizes.   
 
In 2000 Hyland, Welch, and Metson [8] reviewed the current 
knowledge on fluoride and sulfur emissions from aluminum 
reduction cells. The emissions were classified in two main 
categories; gaseous emissions as HF, CF4, C2F6, SO2 and COS 
and particulates as Na3AlF6 (cryolite), Na5Al3F14 (chiolite), 
NaAlF4, AlF3 and CaF2. The following mechanisms are 
suggested: 
 Vaporization of electrolyte and subsequent condensation as 

fine particles 
 Mechanical entrainment of liquid electrolyte or fines from 

crust cover material 
 HF generation due to reaction of electrolyte with hydrogen 

from the anodes, vapour or particulates with moisture from 
air and/or alumina 

 
Based on models assuming that particulates are mainly 
condensation and hydrolysis products from evaporated NaAlF4, 
according to Equation 1, different reactions are considered 
[9,10,11]. The gaseous NaAlF4 may disproportionate to solid 
chiolite, Na5Al3F14, and AlF3 according to Equation 2 and/or 
undergo hydrolysis as described in Equation 3. 
 
Na3AlF6(l) = NaAlF4(g) + 2NaF(l) (1) 
 
5NaAlF4(g) = Na5Al3F14(g) + 2AlF3(s) (2) 
 
3NaAlF4(g;s) + 3H2O(g) = 6HF(g) + Na3AlF6(s) + Al2O3(s) (3) 
 
Hydrolysis of AlF3, Na3AlF6 and Na5Al3F14 may occur in contact 
with moisture in the draught air, Equations 4 and 5. 
 
2AlF3(diss) + 3H2O(g; diss) = 6HF(g) + Al2O3(s; diss) (4) 
 
3Na5Al3F14(g;s) + 6H2O(g) = 
 12HF(g) + 5Na3AlF6(s) + 2Al2O3(s) (5) 
 
Höflich et al. [12] collected potroom fumes from Søderberg and 
prebake smelters in a five stage impactor (0.18–0.35 µm, 0.35–
0.65 µm, 0.65–1.2 µm, 1.2– 3.5 µm and 3.5–10 µm). The electron 
microscopy approach to determine the particle distribution 
substantially underestimates the particle concentrations in the size 
range below 300 nm as shown elsewhere [13]. With 45–65 % 
particles containing O, F, Na and Al, a mixture of aluminium 
oxide and cryolite are most abundant in the potroom air. The 
ultrafine particles are considered to be condensation and 
hydrolysis products of vapor compounds from the electrolyte. 
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Figure 2. Impactor recordings of particulates in the raw 
gas using aluminium substrates. Measured current [pA] is 
proportional to the number of particles collected on each 
impactor stage. 
 

 

 
Figure 3: Effect of initial and final period versus total 
calculation of particles hitting the impactor plates. 

 
Compared to electron microscopy data published by Höflich [9], a 
significant higher number of smaller particles than 0.5 µm are 
observed with the present impactor method, making the method 
well suited for extracting on-line information on the state of the 
particulates in the off-gas from the cell and in the potroom air. 
 
Scrubber 
To obtain recordings of dry scrubber performance, gas samples 
for one filter line were drawn from the stack between the dry and 
wet scrubbers. For comparison, also ambient air at the same 
location is measured. The results, calculated by Dekati ELPI 
software assuming particle density equal 1 g/cm3, are shown in 
Figure 4. 
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Figure 4. The particle weight as function of time sampled 
between the dry and wet scrubbers and in ambient air. Weights 
are calculated based on assumed particle density of 1 g/cm3. 
Marked window is shown in Figure 5. 
 

Compared to the ambient air at the sampling location, the 
concentration in the duct for the different particle classes varies 
from 0.4 to 4.7 times the mg/m3 concentrations of the ambient air. 
Wind gusts gave a temporary and significant increase in recorded 
particle concentrations at the sampling location, especially 
noticeable for the finer fractions below 1 µm. Average particle 
concentrations are given in Table II.  
 

Table II. Calculated weight on the impactor plates after the 
dry scrubber and ambient air for the given average particle 
sizes. 

Di Duct Air Ratio 
µm µg/m3 µg/m3 (Duct/Air) 

0.0279 0.044 0.108 0.41 
0.0541 0.175 0.384 0.46 
0.0908 0.48 1.10 0.44 
0.153 1.22 2.62 0.46 
0.259 4.32 4.45 0.97 
0.378 17.4 4.28 4.07 
0.609 12.7 2.74 4.66 
0.942 5.11 1.39 3.67 
1.59 4.76 1.48 3.21 
2.38 7.68 3.18 2.41 
6.64 3.30 4.07 0.81 
9.85 66.1 36.6 1.81 

Concentration 37.2 19.8 1.88 
Number of data points 1441 2211  

Density g/cm3 1 1   
 
The measured period after the scrubber is extracted to Figure 5. 
Cyclic changes in the particle recordings are in phase with the 
filter-bag regeneration pulses. The leakage through the filter 
varies between 0.01 to 0.07 mg/m3 during each cycle. The coarser 
particles have sharper peaks than the finer particles as shown in 
Figure 6. This is expected as the new filter cake build-up after 
cleaning initially captures coarser particles more effectively than 
finer particles. The measurements show that it is possible to 
determine the effect of the cleaning cycle and the state of the filter 
bags. Although not investigated in the present work, it is believed 
that the method is well suited for improving bag performance and 
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determining optimal conditions for efficient cleaning with lowest 
possible dust leakage through the filter bags. 
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Figure 5. Particles in the gas duct after the dry scrubber. 
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Figure 6. Particle distribution on the various impactor 
plates over some of the bag cleaning periods; particle sizes 
corresponding to the impactor plates can be read from 
Table II. 

 
Duct 
Results from sampling of the finer fractions of the raw gas in the 
duct at two plants are presented in Figure 7. Subject to normal 
operations, the distribution of finer particles is comparable 
between the plants. 
 
In Figure 8, the calculated weight distribution is compared with 
gravimetric determination of each individual impactor plate. The 
calculated values are slightly shifted to higher values. This may be 
due to variations in real density of the particles as the impactor 
software assumes a constant density, in this case set to 1 g/cm3, or 
errors due to the bouncing effect. For all substrate types the 
particle classes with 0.032 m ≤ Di ≤ 3.078 m the computed 
values differ approximately 0.7 to 2.4 times from the 
concentrations determined by weighing. This will be addressed in 
future work, e.g. by using longer sampling times. Due to a high 
standard deviation of the weight of the impactor plates for the 
finest particles, the values of the finer fractions must be 
interpreted with caution.  

 
Figure 7. Distribution of finer particles in the raw gas 
sampled in the main duct of a production line before the 
dry scrubber at two different smelters (as recorded on 
substrates). 

 

  
Figure 8. Gravimetric analysis of particulates collected on 
aluminium or polycarbonate substrates compared to 
computed weight based on measured number of particles 
with assumed density of 1 g/cm3. 
 

 
Figure 9. Cumulative particle distribution determined by Malvern 
Mastersizer. 
 
The number concentration computed by the impactor software 
given in Figure 6 is compared to filter samples analyzed using a 
Malvern Mastersizer, Figure 13. The Malvern does not account 
for a significant number of the particles with median diameter < 
0.5 µm. This is most likely due to agglomeration of the particles 
on the filter, which is not dissolved in the water during ultrasonic 
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the finer particulates with D50 below 1.59 µm, sampled on silver 
substrates, the XRD shows that the dominating compound is 
NaAlF4. The XRD identification of NaAlF4 is in accordance with 
Gylseth et al. [15] and Heiberg et al. [16] who reported fibrous 
NaAlF4 in the potroom air. Also Kirik and Zaitseva [17] report the 
formation of metastable fibrous crystals and colorless NaAlF4 
powder by condensing vapors arising from chiolite heated to 
800 °C. The condensed NaAlF4 was stable up to 390-400 °C 
before disproportionating exothermally into solid Na5Al3F14 and 
AlF3 and into solid Na3AlF6 and gaseous NaAlF4 at higher 
temperatures. The high amount of NaAlF4 on the substrates with 
the finer particles indicates that most of the finer particulates are 
rapidly quenched to low temperatures by the draught air in the 
cell. 
 
Dando and Lindsay [18] found that hard gray scale (HGS) in dry 
scrubbing consisted of an amorphous reaction product formed 
from the attrition-induced reaction of bath superfines, alumina 
fines and water. HGS could be artificially created by co-grinding 
these three components. It is postulated that the energy release by 
“new alumina surface” re-hydration is the principal energy driver. 
If any of the three ingredients was left out, scale was not formed.  
 
The present work indicates that the particulate fines in the raw gas 
may possess fouling properties. Chemical composition and origin 
of different particle size classes will be studied further and 
compared to deposition mechanisms in heat exchangers to identify 
particle groups having an effect on both the growth and removal 
of depositions. 
 
 

Conclusions and Further Work 
 
On-line sampling and monitoring of changes in composition of 
particulate fines in the off-gas from aluminium cells are 
established and will be used in future work to compare the effects 
of various operational parameters. 
 
Larger numbers of particles in the sub-micron range are measured 
with the impactor equipment than previously reported. The SEM 
pictures of the size classified particulates reveal a change in 
agglomerate morphology for the different particle size classes. 
Further work will also focus more on formation mechanisms of 
the observed compounds and agglomeration products. Also, 
samples will be collected on silver substrates for better EDS and 
TEM analysis of the different particle size classes. 
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