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BACKGROUND

Latent (or hidden) Gaussian models are a large and flexible class of statistical models
often encountered in applications. The core of such models is an unobserved multivariate
Gaussian random variablex, whose densityπ(x|θ) is controlled by a vector of parameters
θ. Some of the elements in the random vectorx are indirectly observed through the
datay. These are assumed to be conditionally independent given the latent fieldx, i.e.
π(y|x) =

∏
π(yi|xi).

The elements of a latent Gaussian model are then i) the likelihood of the dataπ(y|x), ii)
the Gaussian density of the random vectorx, π(x|θ) and iii) the prior distribution of the
parameter vectorπ(θ). The posterior distribution then reads:

π(x,θ|y) ∝ π(θ)π(x|θ)
∏

i

π(yi|xi)

We assume throughout that the main inferential interest is in the posterior marginals for
xi and, possibly, in the posterior marginals forθ or for someθj.
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The latent Gaussian fieldx provides a flexible tool to model time and spatial dependence
within data and among data and potential covariates. A wide range of models well known
from the literature can be formulated as special cases of latent Gaussian models, for ex-
ample: generalised additive models (Hastie and Tibshirani, 1990), generalised additive
mixed models (Lin and Zhang, 1999), geoadditive models (Kammand and Wand, 2003),
univariate and multivariate stochastic volatility models (Durbin and Koopman, 1997; Yu
and Mayer, 2006). Model-based geostatistics (Diggle et al., 1998, 2003) and models for
log-Gaussian Cox processes (Møller et al., 1998) also belong to this class. See also Rue
and Held (2005) for several references to different application of latent Gaussian models.
Typical examples of latent Gaussian models present a high dimensional latent fieldx and
a low dimensional vector of parametersθ.

At present, the standard tool for Bayesian inference on such models is Markov Chain
Monte Carlo (MCMC). However, the hierarchical structure of the model, the (often) high
dimensionality of the latent fieldx, and the strong correlation withinx and between
x andθ create problems for the convergence and the mixing properties of the Markov
chain. Block update strategies have been developed to try to overcome such problems
(see for example Knorr-Held and Rue (2002) and Rue and Held (2005)) but in many
cases, MCMC algorithms remain remarkably slow.

The work of this thesis is driven by the idea that, for a large subset of latent Gaussian mod-
els, MCMC simulations can be entirely bypassed in favour of a new approach based on
deterministic approximations to the posterior marginals of interest. The main advantage
of such simulations-free approach is computational: answers can be obtained in seconds
and minutes when MCMC algorithms would require hours and days. Moreover the ap-
proximations described in this thesis appear to be extremely accurate so that, in order for
any bias to be detected, the MCMC algorithm would have to run for much longer time
than it is usually done in practice.

The core of the approximation techniques presented in this thesis is a Gaussian appro-
ximation to the full conditional of the latent fieldπ(x|θ,y) built by matching the mode
and the curvature at the mode. This is indicated asπ̃G(x|y,θ). An approximation to the
posterior marginal of the parametersθ is then built as

π̃(θ|y) ∝ π(x,y,θ)

π̃G(x|y,θ)

∣∣∣∣
x=x?(θ)

(1)

wherex?(θ) is the modal configuration ofπ(x|y,θ). The approximation in (1) is equiv-
alent to Tierney and Kadane (1986)’s Laplace approximation of a marginal posterior dis-
tribution. Finally, posterior marginals for the latent field are approximated as

π̃(xi|y) =
∑

k

π̃(xi|y,θk)× π̃(θk|y)×∆k (2)

where the sum is over values ofθ with area weights∆k andπ̃(xi|y,θk) are appropriate
approximations to the densities ofxi|y,θ. Clearly the performance of̃π(xi|y) will depend
on the accuracy of̃π(xi|y,θk) and on the integration scheme used to compute (2).
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Most of the latent Gaussian models in the literature admit conditional independence prop-
erties, hence the latent variablex is a Gaussian Markov random field (GMRF). A typical
feature of GMRF is that the precision matrix (inverse of the covariance matrix) is sparse.
Therefore, approximations for latent GMRF models are based on sparse matrices compu-
tations which are much quicker than dense matrices ones. One exception are geostatis-
tical models where the latent variablex admits no conditional independence properties.
Anyway, approximate inference is still possible for such models using a different com-
putational approach. In this thesis, approximation methods for latent GMRF models are
described in Papers I, II, IV and V, while approximations for geostatistical models are
discussed in Paper III.

SUMMARY

This thesis consists of five papers, presented in chronological order. Their content is
summarised in this section.

Paper I introduces the approximation tool for latent GMRF models and discusses, in
particular, the approximation for the posterior of the hyperparametersθ in equation (1). It
is shown that this approximation is indeed very accurate, as even long MCMC runs cannot
detect any error in it. A Gaussian approximation to the density ofxi|θ,y is also discussed.
This appears to give reasonable results and it is very fast to compute. However, slight
errors are detected when comparing the approximation with long MCMC runs. These are
mostly due to the fact that a possible - skewed density is approximated via a symmetric
one. Paper I presents also some details about sparse matrices algorithms.

The core of the thesis is presented inPaper II . Here most of the remaining issues present
in Paper I are solved. Three different approximation forxi|θ,y with different degrees of
accuracy and computational costs are described. Moreover, ways to assess the approxima-
tion error and considerations about the asymptotical behaviour of the approximations are
also discussed. Through a series of examples covering a wide range of commonly used
latent GMRF models, the approximations are shown to give extremely accurate results in
a fraction of the computing time used by MCMC algorithms.

Paper III applies the same ideas as Paper II to generalised linear mixed models wherex
represents a latent variable atn spatial sites on a two dimensional domain. Out of these
n sitesk, with n � k, are observed through data. Then sites are assumed to be on a
regular grid and wrapped on a torus. For the class of models described in Paper III the
computations are based on discrete Fourier transform instead of sparse matrices. Paper III
illustrates also how marginal likelihoodπ(y) can be approximated, provides approximate
strategies for Bayesian outlier detection and perform approximate evaluation of spatial
experimental design.

Paper IV presents yet another application of the ideas in Paper II. Here approximate
techniques are used to do inference on multivariate stochastic volatility models, a class of
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models widely used in financial applications. Paper IV discusses also problems deriving
from the increased dimension og the parameter vectorθ, a condition which makes all
numerical integration more computationally intensive. Different approximations for the
posterior marginals of the parametersθ, π(θi|y), are also introduced. Approximations to
the marginal likelihoodπ(y) are used in order to perform model comparison.

Finally, Paper V is a manual for a program, namedinla which implements all approxi-
mations described in Paper II. A large series of worked out examples, covering many well
known models, illustrate the use and the performance of theinla program. This pro-
gram is a valuable instrument since it makes most of the Bayesian inference techniques
described in this thesis easily available for everyone.
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Paper I

Approximate Bayesian Inference for Hierarchical Gaussian Markov

Random Fields Model.





Approximate Bayesian Inference for
Hierarchical Gaussian Markov Random Fields

Models

H̊avard Rue and Sara Martino
Department of Mathematical Sciences

NTNU, Norway

Abstract

Many commonly used models in statistics can be formulated as (Bayesian)
hierarchical Gaussian Markov random field models. These are characterised
by assuming a (often large) Gaussian Markov random field (GMRF) as the sec-
ond stage in the hierarchical structure and a few hyperparameters at the third
stage. Markov chain Monte Carlo is the common approach for Bayesian infer-
ence in such models. The variance of the Monte Carlo estimates is Op(M−1/2)
where M is the number of samples in the chain so, in order to obtain precise
estimates of marginal densities, say, we need M to be very large.

Inspired by the fact that often one-block and independence samplers can
be constructed for hierarchical GMRF models, we will in this work investi-
gate whether MCMC is really needed to estimate marginal densities, which
often is the goal of the analysis. By making use of GMRF-approximations, we
show by typical examples that marginal densities can indeed be very precisely
estimated by deterministic schemes. The methodological and practical con-
sequence of these findings are indeed positive. We conjecture that for many
hierarchical GMRF-models there is really no need for MCMC based inference
to estimate marginal densities. Further, by making use of numerical methods
for sparse matrices the computational costs of these deterministic schemes are
nearly instant compared to the MCMC alternative. In particular, we discuss
in detail the issue of computing marginal variances for GMRFs.

Keywords: Approximate Bayesian inference, Cholesky triangle, Conditional auto-regressions,
Gaussian Markov random fields, Hierarchical GMRF-models, Laplace-approximation, Marginal
variances for GMRFs, Numerical methods for sparse matrices.
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1 Introduction

A Gaussian Markov random field (GMRF) x = {xi : i ∈ V} is a n = |V|-dimensional
Gaussian random vector with additional conditional independence, or Markov prop-
erties. Assume that V = {1, . . . , n}. The conditional independence properties can
be represented using an undirected graph G = (V , E) with vertices V and edges E .
Two nodes, xi and xj, are conditional independent given the remaining elements in
x, if and only if {i, j} 6∈ E . Then, we say that x is a GMRF with respect to G.
The edges in E are in one-to-one correspondence with the non-zero elements of the
precision matrix of x, Q, in the sense that {i, j} ∈ E if and only if Qij 6= 0 for i 6= j.
When {i, j} ∈ E we say that i and j are neighbours, which we denote by i ∼ j.

GMRFs are also known as conditional auto-regressions (CARs) following seminal
work of Besag (1974, 1975). GMRFs (and their intrinsic versions) have a broad use
in statistics, with important applications in structural time-series analysis, analysis
of longitudinal and survival data, graphical models, semiparametric regression and
splines, image analysis and spatial statistics. For references and examples, see Rue
and Held (2005, Ch. 1).

One of the main areas of application for GMRFs is that of (Bayesian) hierarchical
models. A hierarchical model is characterised by several stages of observables and
parameters. The first stage, typically, consists of distributional assumptions for the
observables conditionally on latent parameters. For example if we observe a time
series of counts y, we may assume, for yi, i ∈ D ⊂ V a Poisson distribution with
unknown mean λi. Given the parameters of the observation model, we often assume
the observations to be conditionally independent. The second stage consists of a
prior model for the latent parameters λi or, more often, for a particular function
of them. For example, in the Poisson case we can choose an exponential link and
model the random variables xi = log(λi). At this stage GMRFs provide a flexible
tool to model the dependence between the latent parameters and thus, implicitly,
the dependence between the observed data. This dependence can be of various kind,
such as temporal, spatial, or even spatiotemporal. The third stage consists of prior
distributions for the unknown hyperparameters θ. These are typically precision
parameters in the GMRF. The posterior of interest is then

π(x,θ | y) ∝ π(x | θ)π(θ)
∏
i∈D

π(yi | xi). (1)

Most hierarchical GMRF-models can be written in this form. If there are unknown
parameters also in the likelihood, then also the last term in (1) depends on θ. Such
an extension makes only a slight notational difference in the following.

The main goal is often to compute posterior marginals, like

π(xi | y) =

∫
θ

∫
x−i

π(x,θ | y) dx−i dθ (2)

for each i and (sometimes also) posterior marginals for the hyperparameters θj.
Since analytical integration is usually not possible for the posterior π(x,θ|y), it is
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common to use MCMC-based inference to estimate the posterior marginals. These
marginals can then be used to compute marginal expectations of various statistics.
Although single-site schemes, updating each element of (x,θ) individually, are al-
ways possible, they may converge slowly due to the hierarchical structure of the
problem. We refer to Rue and Held (2005, Ch. 4) for further discussion. (In some
cases reparametrisation may solve the convergence problem due to the hierarchical
structure (Gelfand et al., 1995; Papaspiliopoulos et al., 2003), but see also Wilkin-
son (2003).) In the case of disease mapping, Knorr-Held and Rue (2002) discuss
various blocking strategies for updating all the unknown variables to improve the
convergence, and Rue and Held (2005, Ch. 4) develop these ideas further. Even
if using blocking strategies improves the convergence, MCMC techniques require a
large number of samples to achieve a precise estimate. In this paper we propose
a deterministic alternative to MCMC based inference which has the advantage of
being computed almost instant and which, in our examples, proves to be quite accu-
rate. The key for fast computing time lies in the sparseness of the precision matrix
Q due to the Markov properties in the GMRFs. This characteristic allows the use
of efficient algorithms and, as explained in Section 2, makes it possible to compute
marginal variances without the need to invert Q.

One way to introduce our approximation technique is to start from the blocking
strategies proposed in Knorr-Held and Rue (2002) and Rue and Held (2005, Ch. 4).
The main idea behind these is to make use of the fact that the full conditional for
the zero mean GMRF x,

π(x | θ,y) ∝ exp

(
−1

2
xT Qx +

∑
i∈D

log π(yi|xi)

)
(3)

can often be well approximated with a Gaussian distribution, by matching the mode
and the curvature at the mode. The resulting approximation will then be

π̃(x | θ,y) ∝ exp

(
−1

2
(x− µ)T (Q + diag(c))(x− µ)

)
(4)

where µ is the mode of π(x | θ,y). Note that µ and Q (and then (4)) depend on
θ but we suppress the dependence on θ to simplify the notation. The terms of the
vector c are due to the second order terms in the Taylor expansion of

∑
log π(yi|xi)

at the modal value µ, and these terms are zero for the nodes not directly observed
through the data. We call the approximation in (4) the GMRF-approximation.
The GMRF-approximation is also a GMRF with respect to the graph G since, by
assumption, each yi depends only on xi, a fact that is important computationally.

Following Knorr-Held and Rue (2002) and Rue and Held (2005, Ch. 4), we can often
construct a one-block sampler for (x,θ), which proposes the new candidate (x′,θ′)
by

θ′ ∼ q(θ′ | θ), and x′ ∼ π̃(x | θ′,y) (5)

and then accept or reject (x′,θ′) jointly. This one-block algorithm, is made pos-
sible, in practise, by the outstanding computational properties of GMRFs through
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numerical algorithms for sparse matrices (Rue, 2001; Rue and Held, 2005). GMRFs
of size up to 105 are indeed tractable.

In those cases where the dimension of θ is small (less than three, say) it is possible
to derive an independence sampler by reusing (4) to build an approximation of the
marginal posterior for θ. The starting point is the identity

π(θ | y) =
π(x,θ | y)

π(x | θ,y)
. (6)

By approximating the denominator via expression (4) and evaluating the right-
hand side at the modal value for x (for each θ), we obtain an approximation for
the marginal posterior, which we denote by π̃(θ|y). This approximation is in fact
the Laplace-approximation suggested by Tierney and Kadane (1986), who showed
that its relative error is O(N−3/2) after renormalisation. (Here, N is the number
of observations.) The approximation π̃(θ′|y) then replaces q(θ′|θ) in the one-block
algorithm above. The independence sampler uses the approximation

π̃(x,θ | y) = π̃(θ | y) π̃(x | θ,y). (7)

A natural question arises here. If we can use π̃(x,θ|y) to construct an independence
sampler to explore π(x,θ|y), why not just compute approximations to the marginals
from π̃(x,θ | y) directly?

Since (4) is Gaussian, it is, theoretically, always possible to (approximately) compute
the marginal for the xi’s as

̂̃π(xi | y) =
∑

j

π̃(xi | θj,y) π̃(θj | y) ∆j (8)

by simply summing out θ by some numerical integration rule where ∆j is the weight

associated with θj. The approximated marginal posterior ̂̃π(xi | y) is a mixture of
Gaussians where the weights, mean and variances, are computed from (7). How-
ever, the dimension of x is usually large, thus obtaining the marginal variances for
xi|θ,y is computationally intensive (recall that only the precision matrix Q is ex-
plicitly known). Therefore the marginals in (8) are, in practise, possible to compute
only for GMRFs since in, these cases, efficient computations are possible. A recur-
sion algorithm to efficiently compute marginal variances for GMRFs is described
in Section 2.

Although any MCMC algorithm will guarantee the correct answer in the end, the
question is what happens in finite time. The Monte Carlo error is Op(M

−1/2) where
M is the (effective) number of samples, hence, the strength of the MCMC approach
is to provide rough (near) unbiased estimates rather quickly, on the other side, pre-
cise estimates may take unreasonable long time. Any (deterministic) approximated
inference can in fact compete with a MCMC approach, as long as its squared “bias”,
or error, is comparable with the Monte Carlo error. The most interesting aspect
of approximation (8), is that it can be computed almost instantly compared to the
time any MCMC algorithm will have to run to obtain any decent accuracy.
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The aim of this paper is to investigate how accurate (8) is for some typical examples
of hierarchical GMRF models. In Section 3 we report some experiments using models
for disease mapping on a varying scale of difficulty. We compare the marginals of
interest as approximated by (8) and as estimated from very long MCMC runs. The
results are very positive. Before presenting the examples, we will, in Section 2,
discuss how to efficiently compute marginal variances needed in expression (8) for
GMRFs. This Section also explains (implicit) why fast computations of GMRFs
are possible using numerical methods for sparse matrices. Section 2 is unavoidably
somewhat technical, but it is not necessary to appreciate the results in Section 3.
We end with a discussion in Section 4.

2 Computing marginal variances for a GMRF

GMRFs are nearly always specified by their precision matrix Q meaning that the
covariance matrix, Σ = Q−1 is only implicitly known. Although we can formally
invert Q, the dimension n is typically large (103 − 105) so inverting Q directly is
costly and inconvenient. In this section we discuss a simple and fast algorithm
to compute marginal variances, applicable for GMRFs with large dimension. The
starting point is the not-well-known matrix identity which appeared in a IEEE
conference proceedings (Takahashi et al., 1973). In our setting, the identity is as
follows. Let LLT = V DV T be the Cholesky-decomposition of Q where L = V D1/2

is the (lower triangular) Cholesky triangle, D is a diagonal matrix and V is a lower
triangular matrix with ones on the diagonal. Then

Σ = D−1V −1 + (I − V T )Σ. (9)

(The proof is simple; Since QΣ = I then V DV TΣ = I. Multiplying from left
with (V D)−1 and then adding Σ on both sides gives (9) after rearrangement.) A
close look at (9) will reveal that the upper triangle of (9) defines recursions for Σij

(Takahashi et al., 1973), and this provide the basis for fast computations of the
marginal variances of x1 to xn.

However, the identity (9) gives little insight in how Σij depends on the elements
of Q and on the graph G. We will therefore, in Section 2.1, derive the recursions
defined in (9) “statistically”, starting from a simulation algorithm for GMRFs and
using the relation between Q and its Cholesky triangle given by the global Markov
property. We use the same technique to prove Theorem 1, given in Section 2.1.
This theorem locates a set of indexes for which the recursions are to be solved to
obtain the marginal variances. A similar result was also given in Takahashi et al.
(1973), see also Erisman and Tinney (1975). We also generalise the recursions to
compute marginal variances for GMRFs defined with additional soft and hard linear
constraints, for example under a sum-to-zero constraint. Practical issues appearing
when implementing the algorithm using the Cholesky triangle of Q computed using
sparse matrix libraries, are also discussed.
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The recursions for Σij are applicable to a GMRF with respect to any graph G and
generalise the well known (fixed-interval) Kalman recursions for smoothing appli-
cable for dynamic models. The computational effort needed to solve the recursions
depends on both the neighbourhood structure in G and the size n. For typical spatial
applications, the cost is O(n log(n)2) when the Cholesky triangle of Q is available.

2.1 The Recursions

The Cholesky triangle L (of Q) is the starting point both for producing (uncon-
ditional and conditional) samples from a zero mean GMRF and for evaluating the
log-density for any configuration. Refer to Rue and Held (2005, Ch. 2) for algo-
rithms and further details. In short, unconditional samples are found as the so-
lution of LT x = z where z ∼ N (0, I). The log-density is computed using that
log |Q| = 2

∑
i log Lii.

Since the solution of LT x = z is a sample from a zero mean GMRF with precision
matrix Q, we obtain that

xi | xi+1, . . . , xn ∼ N (− 1

Lii

n∑
k=i+1

Lkixk, 1/L
2
ii), i = n, . . . , 1. (10)

Eq. (10) provides a sequential representation of the GMRF backward in “time” i,
as

π(x) =
1∏

i=n

π(xi | xi+1, . . . , xn).

Let Li:n be the lower-right (n − i − 1) × (n − i − 1) submatrix of L. It follows
directly from LT x = z that Li:nLT

i:n is the precision matrix of xi:n = (xi, . . . , xn)T .
The non-zero pattern in L is important for the recursions, see Rue and Held (2005,
Ch. 2) for further details about the relation between Q and L. Zeros in the i’th
column of L, {Lki, k = 1, . . . , n}, relates directly to the conditional independence
properties of π(xi:n). For i < k, we have

−1

2
xT

i:nLi:nLT
i:nxi:n = −xixkLiiLki + remaining terms

hence Lki = 0 means that xi and xk are conditional independent given
xi+1, . . . , xk−1, xk+1, . . . , xn. This is similar to the fact that Qij = 0 means that xi

and xj are conditional independent given the remaining elements of x. To ease the
notation, define the set

F (i, k) = {i + 1, . . . , k − 1, k + 1, . . . , n}, 1 ≤ i ≤ k ≤ n

which is the future of i except k. Then for i < k

xi ⊥ xk | xF (i,k) ⇐⇒ Lki = 0. (11)
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Unluckily it is not easy to verify that xi ⊥ xk | xF (i,k) without computing L and
checking if Lki = 0 or not. However, the global Markov property provides a sufficient
condition for Lki to be zero. If i and k > i are separated by F (i, k) in G, then
xi ⊥ xk | xF (i,k) and Lki = 0. This sufficient criterion depends only on the graph G.
If we use this to conclude that Lki = 0, then this is true for all Q > 0 with fixed
graph G. In particular, if k ∼ i then Lki is non-zero in general. This imply that the
Cholesky triangle is in general more dense than the lower triangle of Q.

To obtain the recursions for Σ = Q−1, we note that (10) implies that

Σij = δij/L
2
ii −

1

Lii

∑
k∈I(i)

LkiΣkj, j ≥ i, i = n, . . . , 1, (12)

where I(i) includes those k larger than i and where Lki is non-zero,

I(i) = {k > i : Lki 6= 0} (13)

and δij is one if i = j and zero otherwise. Note that (12) equals the upper triangle
of (9). We can compute all covariances directly using (12) but the order of the
indexes are important. In the outer loop i runs from n to 1 and the inner loop
j runs from n to i. The first and last computed covariance is then Σnn and Σ11,
respectively.

It is possible to derive a similar set of equations to (12) which relates covariances to
elements of Q instead of elements of L, see Besag (1981). However, these equations
does not define recursions.

Example 1 Let n = 3, I(1) = {2, 3}, I(2) = {3}, then (12) gives

Σ33 =
1

L2
33

Σ23 = − 1

L22

(L32Σ33)

Σ22 =
1

L2
22

− 1

L22

(L32Σ32) Σ13 = − 1

L11

(L21Σ23 + L31Σ33)

Σ12 = − 1

L11

(L21Σ22 + L31Σ32) Σ11 =
1

L2
11

− 1

L11

(L21Σ21 + L31Σ31)

where we also need to use that Σ is symmetric.

Our aim is to compute the marginal variances Σ11, . . . , Σnn. In order to do so, we
need to compute Σij (or Σji) for all ij in some set S, as evident from (12). Let the
elements in S be unordered, meaning that if ij ∈ S then ji ∈ S. If the recursions
can be solved by only computing Σij for all ij ∈ S we say that the recursions are
solvable using S, or simply that S is solvable. A sufficient condition for a set S to
be solvable is that

ij ∈ S and k ∈ I(i) =⇒ kj ∈ S (14)

and that ii ∈ S for i = 1, . . . , n. Of course S = V × V is such a set, but we want
|S| to be minimal to avoid unnecessary computations. Such a minimal set depends,
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however, on the numerical values in L or Q implicitly. Denote by S(Q) a minimal
set for a certain precision matrix Q. The following result identifies a solvable set S∗
containing the union of S(Q) for all Q > 0 with a fixed graph G.

Theorem 1 The union of S(Q) for all Q > 0 with fixed graph G, is a subset of

S∗ = {ij ∈ V × V : j ≥ i, i and j are not separated by F (i, j)}

and the recursions in (12) are solvable using S∗.

Proof. To prove the theorem we have to show that S∗ is solvable and that it con-
tains the union of S(Q) for all Q > 0 with fixed graph G. To verify that the
recursions are solvable using S∗, first note that ii ∈ S∗, for i = 1, . . . , n since i and
i are not separated by F (i, i). The global Markov property ensures that if ij 6∈ S∗
then Lji = 0 for all Q > 0 with fixed graph G. Using this feature we can replace
I(i) with I∗(i) = {k > i : ik ∈ S∗} in (14). This is legal since I(i) ⊆ I∗(i) and the
difference between the two sets only identifies terms Lki which are zero. Then, we
have to show that

ij ∈ S∗ and ik ∈ S∗ =⇒ kj ∈ S∗ (15)

Eq. (15) is trivially true for i ≤ k = j. Fix now i < k < j. Then ij ∈ S∗ says that
there exists a path i, i1, . . . , in, j, where i1, . . . , in are all smaller than i, and ik ∈ S∗
says that there exists a path i, i′1, . . . , i

′
n′ , k, where i′1, . . . , i

′
n′ are all smaller than i.

Then there is a path from k to i and from i to j where all nodes are less than or
equal to i. Since i < k then all the nodes in the two paths are less than k. Hence,
there is a path from k and j where all nodes are less than k. This means that k and
j are not separated by F (k, j), so kj ∈ S∗. Finally, since S∗ only depends on G,
it must contain all S(Q) since each S(Q) is minimal, and therefore contains their
union too. �
An alternative interpretation of S∗, is that it identifies only from the graph G, all
possible non-zero elements in L. Some of these might turn out to be zero depending
on the conditional independence properties of the marginal density for xi:n for i =
n, . . . , 1, see (11). In particular, if j ∼ i and j > i then ij ∈ S∗. This provides the
lower bound for the size of S∗: |S∗| ≥ n + |E|.

Example 2 Let x = (x1, . . . , x6)
T be a GMRF with respect to the graph

1

2

3

4

5

6
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Then, the set of the possible non-zero terms in L are

S∗ = {11, 22, 33, 41, 42, 43, 44, 54, 55, 64, 65, 66}. (16)

The only element in S∗ where the corresponding element in Q is zero, is 65, this
because 5 and 6 are not separated by F (5, 6) = ∅ in G (due to 4), so |S∗| = n+|E|+1.

The size of S∗ depends not only on the graph G but also on the permutation of the
vertices in the graph G. It is possible to show that, if the graph G is decomposable,
then there exists a permutation of the vertices, such that |S∗| = n + |E| and S∗ is
the union of S(Q) for all Q > 0 with fixed graph G. The typical example is the
following.

Example 3 A homogeneous autoregressive model of order p satisfies

xi | x1, . . . , xi−1 ∼ N (

p∑
j=1

φjxi−j, 1), i = 1, . . . , n,

for some parameters {φj} where for simplicity we assume that x−1, . . . , x−p+1 are
fixed. Let {yi} be independent Gaussian observations of xi such that yi ∼ N (xi, 1).
Then x conditioned on the observations is Gaussian where the precision matrix Q is
a band-matrix with band-width p and L is lower triangular with the same bandwidth.
When {φj} are such that Qij 6= 0 for all |i− j| ≤ p, then the graph is decomposable.
In this case the recursions correspond to the (fixed-interval) smoothing recursions
derived from the Kalman filter for (Gaussian) linear state-space models.

Although the situation is particularly simple for decomposable graphs, most GMRFs
are defined with respect to graphs that are not decomposable. This is the case for
GMRFs used in spatial or spatio-temporal applications, but also for GMRFs used
in temporal models outside the state-space framework. In addition to be able to
identify the set S∗ efficiently, we also need to compute the Cholesky triangle L. It
is important to have efficient algorithms for these tasks as the dimension of GMRFs
is typically large. Fortunately, algorithms that compute L efficiently also minimise
(approximately) the size of S∗ and then also the cost of solving the recursions.
We return to this and other practical issues in Section 2.3, after discussing how to
compute marginal variances for GMRFs with additional linear constraints.

2.2 Correcting for hard and soft linear constraints

We will now demonstrate how we can correct the marginal variances computed
in (12) to account for additional linear constraints, for example a simple sum-to-
zero constraint. Let A be a k×n matrix of rank k. The goal is now to compute the
marginal variances of the GMRF under the linear constraint Ax = e. If e is fixed
we denote the constraint as hard, and if e is a realisation of N (µe,Σe), Σe > 0, we
denote the constraint as soft.

9



A constrained GMRF is also a GMRF, meaning that the recursions (12) are still
valid using the Cholesky triangle for the constrained GMRF. Since linear constraints
destroy the sparseness of the precision matrix they will not allow fast computation
of the marginal variances. However, the covariance matrix under hard linear con-
straints, Σ̃, relates to the unconstrained covariance matrix Σ as

Σ̃ = Σ−Q−1AT
(
AQ−1AT

)−1
AQ−1. (17)

There is a similar relation with a soft constraint (Rue and Held, 2005, Ch. 2). In
the following we assume a hard constraint. It is evident from (17) that

Σ̃ii = Σii −
(
Q−1AT

(
AQ−1AT

)−1
AQ−1

)
ii

, i = 1, . . . , n.

Hence, we can compute the diagonal of Σ and then correct it to account for the
hard constraints. Define the n×k matrix W as Q−1AT which is found from solving
QW = AT for each of the k columns of W . As the Cholesky triangle to Q is
available, the j’th column of W , W j, is found by solving Lv = AT

j and then

solving LT W j = v. We now see that Σ̃ii = Σii − Cii where C = W (AW )−1 W T .
We only need the diagonal of C. Let V = W (AW )−1, and then C = V W T and
Cii =

∑k
l=1 VilWil. The cost of computing V and W is for large k dominated by

factorising the (dense) k × k matrix AW , which is cubic in k. As long as k is not
too large it is nearly free to correct for linear soft and hard constraints.

A special case of hard constraint is to condition on a subset, B say, of the nodes
in G. This is equivalent to computing the marginal variances for xA|xB where
x = (xA,xB) is a zero mean GMRF. In most cases it is more efficient not to
use (17), but utilise that xA|xB is a GMRF with precision matrix QAA and mean µ
given by the solution of QAAµ = −QABxB. (Note that solving for µ require only
the Cholesky triangle of QAA which is needed in any case for the recursions.) The
marginal variances are then computed using (12), possibly correcting for additional
linear constraints using (17).

2.3 Practical issues

Since the precision matrix Q is a sparse matrix we can take advantage of numerical
algorithms for sparse symmetric positive definite matrices. Such algorithms are very
efficient and make it possible to factorise precision matrices of dimension 103 − 105

without too much effort. A major benefit is that these algorithms also minimise
(approximately) the size of S∗, and hence the cost of solving the recursions described
earlier. Rue (2001) and Rue and Held (2005) discuss numerical algorithms for sparse
matrices from a statistical perspective and how to apply them for GMRFs.

An important ingredient in sparse matrix algorithms is to permute the vertices to
minimise (approximately) the number of non-zero terms in L. The idea is as follows,
if Lji is known to be zero, then Lji is not computed. It turns out that the set S∗
is exactly the set of vertices for which Lji is computed, see Rue and Held (2005,
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Sec. 2.4.1). A permutation to efficiently compute L minimise (approximately) |S∗|,
hence is also an efficient permutation for solving the recursions. However, this
implies that we have little control over which Σij’s are computed in the recursions,
apart from the diagonal and those elements where i ∼ j.

Permutation schemes based on the idea of nested dissection are particularly useful
in statistical applications. The idea is to find a small separating subset that divides
the graph into two (roughly) equal parts, label the nodes in the separating set
with the highest indexes, and continue recursively. For such a permutation, the
computational complexity to compute L for a GMRF on a square m × m lattice
with a local neighbourhood, is O(n3/2) for n = m2. This also gives the optimal
complexity in the order sense. The number of possible non-zero terms in L is
O(n log(n)) which corresponds to the size of S∗. The complexity of solving the
recursions can be estimated from these numbers. We need to compute O(n log(n))
covariances, each involving on average O(log(n)) terms in I∗(i), which in total gives
a cost of O(n log(n)2) operations. For a local GMRF on a m × m × m cube with
n = m3 the size of S∗ is O(n4/3), and the cost of solving the recursions is then
O(n5/3). This cost is dominated by the cost of factorising Q, which is O(n2).

A practical concern arises when numerical libraries return a list with the non-zero
elements in L, but the set S∗ or S(Q) is needed by the recursions. In fact, any easily
obtainable solvable set S(Q)+, where S(Q) ⊆ S(Q)+ ⊆ S∗, is acceptable. A simple
approach to obtain a S(Q)+ is the following. Let S0 = {j ≥ i : Lji 6= 0}. Traverse
the set S0 with i from n to 1 as the outer loop, and j from n to i such that ij ∈ S0.
For each ij, check for each k ∈ I(i) if kj ∈ S0. If this is not true, then add kj to S0.
Repeat this procedure until no changes appear in S0. By construction, S0 ⊆ S∗ and
S0 is solvable, hence we may use S(Q)+ = S0. Two iterations are often sufficient
to obtain S(Q)+, where the last verify only that S0 is solvable. Alternatively, S∗
can either computed directly or extracted from an intermediate result in the sparse
matrix library, if this is easily accessible.

Needless to say, solving the recursions efficiently requires very careful implementa-
tion in an appropriate language, but this is the rule, not the exception when working
with sparse matrices. The open-source library GMRFLib (Rue and Held, 2005, Ap-
pendix B) includes an efficient implementation of the recursions as well as numerous
of useful routines for GMRFs. All the examples in Section 3 make extensive use of
GMRFLib, which can be downloaded from the first author’s www-page.

3 Examples

In this section, we will present some results for the approximations for the marginal
posteriors computed from (7), and their comparison with estimates obtained from
very long MCMC runs. We will restrict ourself to the well-known BYM-model for
disease mapping (Section 3.1). The BYM-model is a hierarchical GMRF model with
Poisson distributions at the first stage. We will use two different datasets, which
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we describe as “easy” (many counts) and “hard” (few counts). The comparison of
the marginal posteriors for the hyperparameters (in this case, the precisions) are
presented in Section 3.2, while the posterior marginals for the latent GMRF are
presented in Section 3.3. In Section 3.4 we present some results for an extended
BYM-model, where we include a semi-parametric effect of a covariate and where
the latent GMRF has to obey a linear constraint.

Note that the computational speed in the following experiments is not optimal due
to rather brute-force approach taken while integrating out the hyperparameters θ.
However, this step can be improved considerably, as we discuss in Section 4, while
the approximation results themselves remain unaffected.

3.1 The BYM-model for disease mapping

We will now introduce the BYM-model for analysing spatial disease data (Besag
et al., 1991). This model is commonly used in epidemiological applications.

The number of incidents yi, i = 1, . . . , N , of a particular disease is observed over a
certain time period in a site of N districts. It is common to assume the observed
counts to be conditionally independent and Poisson distributed with mean ei exp(ηi),
where ηi is the log-relative risk and ei is the expected number of cases computed
on some demographic parameters. Further, ηi is decomposed as ηi = ui + vi where
u = {ui} is a spatially structured component and v is an unstructured component.
An intrinsic GMRF of the following form is often assumed for the spatially structured
component,

π(u | κu) ∝ κ(n−1)/2
u exp

(
−κu

2

∑
i∼j

(ui − uj)
2

)
(18)

where κu is the unknown precision parameter. Two districts i and j are defined to
be neighbours, i ∼ j, if they are adjacent. Further, v are independent zero mean
normals with unknown precision parameter κv. The precisions are (most commonly)
assigned independent Gamma priors with fixed parameters.

The BYM-model is of course a hierarchical GMRF model, with yi ∼ Po(ei exp(ηi))
at the first stage. At the second stage the GMRF is x = (ηT ,uT )T . The unknown
precisions κ = (κu, κv) constitute the third stage. Note that we have reparametrised
the GMRF using x = (ηT ,uT )T instead of x = (vT ,uT )T , in this way some of the
nodes in the graph, namely the η’s, are observed through the data y. The posterior
of interest if therefore

π(x,κ | y) ∝ κN/2
v κ(N−1)/2

u exp

(
−1

2
xT Qx

)
exp

(
N∑

i=1

yixi − ei exp(xi)

)
π(κ)

(19)
The 2N × 2N precision matrix for the GMRF, Q is

Q =

(
κvI −κvI
−κvI κuR + κvI

)
(20)
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Figure 1: (a) The standardised mortality ratio yi/ei for the oral cavity cancer counts
in Germany (1986–1990). (b) The graph associated with (a) where two districts are
neighbours if and only if they are adjacent.

where R is the so-called structure matrix for the spatial term, Rii is the number of
neighbours to district i, and Rij = −1 if i ∼ j (district i and j are adjacent) and
zero otherwise. We set the priors of the unknown precisions to be independent and
Gamma(a, b) distributed with a/b as the expected value. The values of a and b are
specified later.

The two datasets we will consider in Section 3.2 and Section 3.3 are classified as the
Easy-case and the Hard-case.

Easy-case The observed oral cavity cancer mortality for males in Germany (1986–
1990) was previously analysed by Knorr-Held and Raßer (2000). The data
have an average observed count of 28.4, median of 19, and the first and third
quantile are 9 and 33. For such high counts the Poisson distribution is not
too far away from a Gaussian. The observed standardised mortality ratio for
the different districts of Germany are shown in Figure 1a. The corresponding
graph is displayed in Figure 1b. It has n = 544 nodes with average 5.2,
minimum 1, and maximum 11 neighbours. The parameters in the prior for
the precisions are a = 1 and b = 0.01 following Rue and Held (2005, Ch. 4).

Hard-case The observed Insulin dependent Diabetes Mellitus in Sardinia. These
data were previously analysed by Bernardinelli et al. (1997) and also used by
Knorr-Held and Rue (2002) as a challenging case. The graph is similar to the
one in Figure 1b, and has n = 366 nodes with average 5.4, minimum 1 and
maximum 13 neighbours. This is a sparse dataset with a total of 619 cases and
median of 1. For such low counts the Poisson distribution is quite different
from a Gaussian. The parameters in the prior for the precisions are a = 1 and
b = 0.0005 for κu, and a = 1 and b = 0.00025 for κv following Knorr-Held and
Rue (2002).
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3.2 Approximating π(θ|y)

Our first task is to approximate the marginal posteriors for the hyperparameters
log κu and log κv, for the Easy-case and the Hard-case.

The joint marginal posterior for θ = (log κu, log κv) was estimated using the ap-
proximation to (6). This means using the GMRF-approximation (4) (depending
on θ) for the full conditional x in the denominator, and then evaluate the ratio at
the modal value for x for each θ. The evaluation is performed for values of θ on
a fine grid centred (approximately) at the modal value. This unnormalised den-
sity restricted to the grid is then renormalised so it integrates to one. The results
are shown in column (a) in Figure 2, displaying the contour-plot of the estimated
posterior marginal for θ.

The marginal posterior for the Easy-case is more symmetric than the one for the
Hard-case. This is natural when we take into account the high Poisson counts which
makes the likelihood more like a Gaussian. As mentioned in Section 1, this is the
Laplace-approximation as derived (differently) by Tierney and Kadane (1986). The
relative error in the renormalised density is O(N−3/2) where N is the number of
observations, hence it is quite accurate. Note that the quality of this approxima-
tion does not change if we consider the posterior marginal for (κu, κv) instead of
(log κu, log κv).This is, in fact, only a reparametrisation and the relative error is still
O(N−3/2).

By summing out log κv and log κu, respectively, we obtain the marginal posteriors
for log κu and log κv. These are displayed using solid lines in Figure 2 column (b)
and (c). To verify these approximations, we ran MCMC algorithms based on (5) for
a long time to obtain at least 106 near iid samples. The density estimates based on
these samples are shown as dotted lines in column (b) and (c). The estimates based
on the MCMC algorithms confirm the accuracy of the Laplace-approximation.

3.3 Approximating π(xi|y)

Our next task is to approximate the marginal posterior for each xi making use
of (8). Note that π̃(xi|θj,y) is a GMRF, hence we need to compute the marginal
variances for xn, . . . , x1. To do this, we make use of the recursions (12) and the
practical advises in Section 2.3 which are implemented in GMRFLib (Rue and Held,
2005, Appendix B).

The results in Section 3.2 indicate that the quality of (8) depends on how well
π̃(xi|θj,y) approximates π(xi|θj,y) for those θj where the probability mass is sig-
nificant. For this reason, we have compared this approximation for various fixed
θj with the estimates for π(xi|θj,y) computed from long runs with a MCMC algo-
rithm. The results are displayed in Figure 3 for the Easy-case and Figure 4 for the
Hard-case.
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Figure 2: Results for the Easy-case on the top row and the for Hard-case on the
bottom row. (a) Approximated marginal posterior density of (log κu, log κv), (b)
approximated marginal posterior density of log κu, and (c) approximated marginal
posterior density of log κv. In (b) and (c), the approximated marginals are shown
using solid lines, while the estimated marginal posteriors from a long MCMC run
are shown with dotted lines.
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3.3.1 Marginal posteriors for the spatially structured component for
fixed θ

Easy-case Column (d) in Figure 3 shows the value of (the fixed) θj relative to the
marginal posterior shown in Figure 2. The first three columns show marginals of
the GMRF-approximation for the spatial component u (solid lines) and the estimate
obtained from very long MCMC runs (dotted lines). Only three districts are shown.
They are selected such that the posterior expected value of ui for θj located at
the modal value, is high (a), intermediate (b) and low (c). The results in Figure 3
indicate that the GMRF-approximation is indeed quite accurate in this case, and
only small deviations from the (estimated) truth can be detected.

Hard-case Figure 4 displays the same as Figure 3 but now for the Hard-case.
The results for the three first rows are quite good, although the (estimated) true
marginal posteriors show some skewness not captured by the Gaussian approxima-
tion. The modal value indicated by the Gaussian approximation seems in all cases
a little too high, although this is most clear for the last row. In the last row, the
precisions for both the spatial structured and unstructured term are (relatively) low
and outside the region with significant contribution to the probability mass for θ.
With these (relatively) low precisions, we obtain a (relatively) high variance for the
non-quadratic term exp(xi) in (19), which makes the marginals more skewed. It
might appear, at a first glance, that the (estimated) true marginal and the Gaus-
sian approximation are shifted, but this is not the case. There is a skewness factor
that is missing in the Gaussian approximation, which has, in this case, nearly the
same effect of a shift. The results from this Hard-case are quite encouraging, as the
approximations in the central part of π(θ|y) are all relatively accurate.

3.3.2 Marginal posteriors for the spatially structured component

Figure 5 shows the results using (8) (solid line) to approximate the marginals for
the spatial term u in the same three districts that appear in Figure 3 and Figure 4.
The (estimated) truth is drawn with dotted lines. The top row shows the Easy-case
while the bottom row shows the Hard-case. The columns (a) to (c) relate to the
columns of Figure 3 and Figure 4 for the top and bottom row, respectively. Since the
accuracy of the Gaussian approximations was verified in Figure 3 and Figure 4 to
be quite satisfactory, there is no reason that integrating out θ will result in inferior
results. The approximation (8) is quite accurate for both cases but the marginals are
slightly less skewed than the truth. However, the error is quite small. The bottom
row demonstrates that (8), which is a mixture of Gaussians, can indeed represent
also highly skewed densities.
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Figure 3: Results for the Easy-case. Each row shows in (d) the location of the fixed θ,
and in the first three columns the (estimated) true marginal densities (dotted lines)
for the spatial component at three different districts. The solid line displays the
Gaussian approximation. The three districts in column (a) to (c) represent districts
with (a) high, (b) intermediate, and (c) low value of the posterior expectation of ui.

17



−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

−0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

0 2 4 6 8 10

2
4

6
8

10

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

0 2 4 6 8 10

2
4

6
8

10

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8
10

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8

0 2 4 6 8 10

2
4

6
8

10

−1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0 2 4 6 8 10

2
4

6
8

10

(a) (b) (c) (d)

Figure 4: Results for the Hard-case. Each row shows in (d) the location of the fixed
θ, and in the first three columns the (estimated) true marginal densities (dotted
lines) for the spatial component at three different districts. The solid line displays the
Gaussian approximation. The three districts in column (a) to (c) represent districts
with (a) high, (b) intermediate, and (c) low value of the posterior expectation of ui.
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Figure 5: Marginal posteriors for the spatial component in three districts. Easy-case
on the top row and Hard-case on the bottom row. Columns (a) to (c) corresponds to
the same columns in Figure 3 and Figure 4 for the top and bottom row, respectively.
The approximations (8) are drawn with solid line and the (estimated) truth with
dotted lines.
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Figure 6: Marginal posteriors for the log-relative risk ηi in three districts for the
Hard-case. Columns (a) to (c) corresponds to the same columns in Figure 4 and the
bottom row in Figure 5. The approximations (8) are drawn with solid line and the
(estimated) truth with dotted lines.

3.3.3 Marginal posteriors for the log-relative risk

We will now present the results for the marginal posteriors for the log-relative risk ηi

for the Hard-case. It is not clear how the accuracy for these approximations should
relate to those for the spatial component in Figure 5. It is ηi that is indirectly
observed through yi, but on the other hand, the difference between ηi and the
spatial component ui is only an additional unstructured component. The results
are shown in Figure 6 for the same three districts shown in Figure 4 and in the last
row of Figure 5. Again, the approximation (8) does not capture the right amount of
skewness, for the same reason already discussed for Figure 3 and Figure 4. However,
when θ is integrated out, also the marginal posterior for η is quite well approximated.

3.4 Semi-parametric ecological regression

We will now consider an extension of the BYM-model (19) given by Natario and
Knorr-Held (2003), which allows for adjusting the log-relative risk by a semi-parametric
function of a covariate which is believed to influence the risk. The purpose of this
example is to illustrate the ability of (8) to account for linear constraints, which
we discuss in more details shortly. Similarly to Natario and Knorr-Held (2003), we
will use data on mortality from larynx cancer among males in the 544 districts of
Germany over the period 1986− 1990, with estimates for lung cancer mortality as a
proxy for smoking consumption as a covariate. We refer to their report for further
details and background for this application.

The extension of the BYM-model is as follows. At the first stage we still assume
yi ∼ Po(ei exp(ηi)) for each i, but now

ηi = ui + vi + f(ci). (21)

The two first terms are the spatially structured and unstructured term as in the
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BYM-model, whereas f(ci) is the effect of a covariate which has value ci in district
i. The covariate function f(·) is a random smooth function with small squared
second order differences. The function f(·) is defined to be piecewise linear between
the function values {fj} at m = 100 equally distant values of ci, chosen to reflect
the range of the covariate. We have scaled the covariates to the interval [1, 100].
The vector of f = (f1, . . . , fm)T is also a GMRF, with density

π(f | κf) ∝ κ
(m−2)/2
f exp

(
−κf

2

m∑
j=2

(fj − 2fj−1 + fj−2)
2

)
(22)

This is a so-called second order random walk (RW2) model with (unknown) precision
κf , see for example Rue and Held (2005, Ch. 3). The density (22) can be interpreted
as an approximated Galerkin solution to the stochastic differential equation, f ′′(t) =
dW (t)/dt, where W (t) is the Wiener process (Lindgren and Rue, 2005). We further
impose the constraint

∑
i ui = 0 to separate out the effect of the covariate. Note

that the extended BYM-model is still a hierarchical GMRF-model but now x =
(η,u,f)T . It is easy to derive the corresponding precision matrix and posterior
density, but we avoid it here.

Adding a semi-parametric effect of a covariate extends directly the BYM-model
presented in Section 3.1. However, the fundamental change is not the addition of
the extra hyperparameter κf , but the introduction of the linear constraint imposed
to separate out the effect of the covariate. We need to make use of the correction
in Section 2.2 to adjust marginal variances for the constraint, moreover, we need
to do constrained optimisation to locate the mode in order to compute the GMRF-
approximations. Both tasks are easily done with GMRFs and a few constraints do
not slow down the computations.

We will now present the results focusing on the effect of the covariate. The other
marginal posteriors are, in fact, similar to those presented in Section 3.2 and Sec-
tion 3.3. The unknown precisions were all assigned Gamma-priors with parameters
a = 1 and b = 0.00005 following Natario and Knorr-Held (2003). Figure 7 shows
the approximated marginal posterior for f , represented by the mean, the 0.025, and
0.975 quantile. The approximations (8) are drawn with solid lines and the (esti-
mated) truth with dotted lines. The middle lines are the posterior mean, the lower
curves are the 0.025 quantile and the upper curves are the 0.975 quantiles. The
results show that the approximation is quite accurate. However, the approxima-
tion (8) does not capture the correct skewness, in a similar way to the last column
in Figure 4. This claim is also verified by comparing the marginal posteriors for
each fj (not shown).

4 Discussion

In this report we have investigated how marginal posterior densities can be approxi-
mated using the GMRF-approximation in (8). We apply the GMRF-approximation
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Figure 7: Marginal posteriors for the covariate effect, here represented by the mean,
the 0.025 and 0.095 quantile. The approximations (8) are drawn with solid lines and
the (estimated) truth with dotted lines. The middle lines are the posterior mean,
the lower curves are the 0.025 quantile and the upper curves are the 0.975 quantiles.

to the full conditional for the latent GMRF component in hierarchical GMRF mod-
els. We use this to approximate both marginal posteriors for the hyperparameters
and marginal posteriors for the components of the latent GMRF itself. We have
also discussed how to compute marginal variances for GMRFs with and without
linear constraints, and derived the recursion from a statistical point of view. The
main motivation for using approximations to estimate marginal posteriors, is only
computational efficiency. Computations with GMRFs are very efficient using nu-
merical methods for sparse matrices, and make it possible to approximate posterior
marginals nearly instant compared to the time required by MCMC algorithms. This
makes the class of hierarchical GMRF-models a natural candidate for nearly instant
approximated inference. The approximations were verified against very long runs of
a one-block MCMC algorithm, with the following conclusions.

• The results were indeed positive in general and we obtained quite accurate
approximations for all marginals investigated. Even for a quite hard dataset
with low Poisson counts, the approximations were quite accurate.

• All results failed to capture the correct amount of (small) skewness, whereas
the mode and the width of the density were more accurately approximated.
However, the lack of skewness is a consequence of using symmetric approxi-
mations.

The range of application of these findings is, to our point of view, not only re-
stricted to the class of BYM-models considered here but can be extended to many
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hierarchical GMRF-models. In particular, we want to mention hierarchical models
based on log-Gaussian Cox processes (Møller et al., 1998) and model-based Geo-
statistics (Diggle et al., 1998). Both these popular model-classes can be considered
as hierarchical GMRF-models, where Gaussian fields can be replaced by GMRFs
using the results of Rue and Tjelmeland (2002), or sometimes better, using intrinsic
GMRFs. The typical feature of these models is that the number of observations N
is quite small. The approximation techniques we have presented, will give at least
as accurate results than those presented in this paper. Another feature of these
models is that, working with Gaussian fields directly, MCMC based inference is in-
deed challenging to implement and computationally heavy. For these reasons, the
ability to use GMRFs and nearly instant approximated inference is indeed a huge
step forward. All these results will be reported elsewhere.

Our approach to compute marginal posteriors is based on GMRF-approximations
and the accuracy depends on the accuracy of the GMRF-approximation. Although
this approximation is sufficiently accurate for many and often typical examples, is
not difficult to find cases where such an approximation is not accurate enough, see
for example Figure 4 last row. An important task for future work, is to construct
methods that can go beyond the GMRF-approximation allowing for non-Gaussian
approximations to the full conditional. One such class of approximation was in-
troduced by Rue et al. (2004). This approximation can be applied to compute
marginals as well. Preliminary results in this direction are indeed encouraging, and
we are confident that improved approximation methods can be constructed without
too much extra effort. These improved approximations will also serve as a valida-
tion procedure for the class of approximations considered here. They may, in fact,
be used to detect if the approximations based on the GMRF-approximation are
sufficiently accurate.

It is quite fast to compute our approximations even with our brute-force approach
for integrating out the hyperparameters. This step can and need to be improved.
This will increase the speed significantly while keeping the results nearly unchanged.
There is a natural limit to the number of hyperparameters θ our approach can deal
with. Since we integrate out these numerically, we would like dim(θ) ≤ 3. However,
approximated schemes are indeed possible for higher dimensions as well, although
we admit that we do not have large experience in this direction. Automatic con-
struction of numerical quadrature rules based on the behaviour near the mode, is
also a possibility which we will investigate. The benefit here, is that the numeri-
cal integration is adaptive which is also a requirement for constructing black-box
algorithms for approximating marginal posteriors for hierarchical GMRF-models.

The results presented in this article imply that for many (Bayesian) hierarchical
GMRF-models, namely those with a small number of hyperparameters, at least,
MCMC algorithms are not needed to achieve accurate estimations of marginal pos-
teriors. Moreover, approximated inference can be computed nearly instant compared
to MCMC algorithms. This does not imply that MCMC algorithms are not needed,
only that they are not needed in all cases.
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Abstract

We are concerned with Bayesian inference for latent Gaussian models, that is
models involving a Gaussian latent field (in a broad sense), controlled by few param-
eters. This is perhaps the class of models most commonly encountered in applica-
tions: the latent Gaussian field can represent, for instance, a mix of smoothing splines
or smooth curves, temporal and spatial processes. Hence, popular smoothing-spline
models, state-space models, semiparametric regression, spatial and spatio-temporal
models, log-Gaussian Cox-processes, and geostatistical models, all fall in this cate-
gory.

We consider the case where the observational model is non-Gaussian, so that the
posterior marginals are not available in closed form. Prominent examples are Poisson
and Binomial count data. For such models, Markov chain Monte Carlo methods can
be implemented, but they are not with problems, both in terms of convergence and
computational time. In some practical applications, the extent of these problems is
such that Markov chain Monte Carlo is simply non feasible.

We show that, by using an integrated nested Laplace approximation and its sim-
plified version, we can directly compute very accurate approximations to the poste-
rior marginals. The main benefit of these approximations is computational: where
MCMC algorithms need hours and days to run, our approximations provide more
precise estimates in seconds and minutes. Another advantage is their ease of use,
which should facilitate and automate the analysis of data generated from latent Gaus-
sian models.

KEYWORDS: Approximate Bayesian inference, Gaussian Markov random fields, Hierarchical GMRF-

models, Laplace approximation, Numerical methods for sparse matrices, Parallel computing
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1 Introduction

1.1 Latent Gaussian models

Latent Gaussian models are widely used in Bayesian analysis. Such models assume a
latent Gaussian fieldx = (x1, . . . , xn)T , which is observed pointwise throughnd con-
ditional independent datay. In its simplest form, the covariance matrix of the latent
Gaussian field and the likelihood are governed by a few parametersθ = (θ1, . . . , θm)T ,
saym ≤ 6. Linear constraints of the formAx = e, where the matrixA has rankk, may
also be imposed. The posterior then reads

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi,θ).

In this paper, we assume that the main goal of the inference is to compute all, or some
of, then posterior marginals forxi plus possibly the posterior marginals forθ or some
θj. If needed, the marginal densities can be post-processed to compute posterior expec-
tations, variances, quantiles etc. We are concerned with the case whereπ(yi|xi,θ) is
well-behaved, albeit non-Gaussian, so that the posterior marginalsπ(xi|y) andπ(θj|y)
are not available in closed form.

A few examples will demonstrate the wide use of latent Gaussian models. We loosely
classify them with respect to their ‘physical dimension’, like 1D, 2D and 3D. In 1D, the
latent process is often a mix of unstructured Gaussian effects and smooth processes in
continuous or discrete ‘time’, such as integrated Wiener processes or random walk mod-
els. These can be used in a temporal context in various applications (Wecker and Ansley,
1983; Carter and Kohn, 1994; Fahrmeir and Tutz, 2001; Kitagawa and Gersch, 1996;
Durbin and Koopman, 2000), or to model semiparametrically the effect of covariates in a
regression setup (Lang and Brezger, 2004; Biller and Fahrmeir, 1997). In 2D, typical ex-
amples are model-based geostatistics (Diggle et al., 1998; Diggle and Ribeiro, 2006), and
more generic smoothing models similar to the well-known BYM model for disease map-
ping (Besag et al., 1991; Weir and Pettitt, 2000), see also Banerjee et al. (2004) for many
more examples. Models for spatial log-Gaussian Cox processes (Møller et al., 1998) are
also in this class. Spatial models can also include 1D structures, like splines which model
various covariate effects, see for example Natario and Knorr-Held (2003) and Fahrmeir
and Lang (2001). 3D examples are usually an extension of a spatial model to a tempo-
ral or depth dimension, e.g. Allcroft and Glasbey (2003); Carlin and Banerjee (2003);
Knorr-Held (2000); Knorr-Held and Besag (1998) and Wikle et al. (1998).

1.2 Inference: MCMC approaches

The common approach to inference for latent Gaussian models is Markov chain Monte
Carlo (MCMC). It is well known however that MCMC tends to exhibit poor performance
when applied to such models. Various factors explain this. First, the components of the
latent fieldx are strongly dependent on each other. Second,θ andx are also strongly
dependent, especially whenn is large. A common approach to (try to) overcome this
first problem, is to construct a joint proposal based on a Gaussian approximation to the
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full conditional ofx (Gamerman, 1997, 1998; Carter and Kohn, 1994; Knorr-Held, 1999;
Knorr-Held and Rue, 2002; Rue et al., 2004). The second problem requires, at least par-
tially, a joint update of bothθ andx. One suggestion is to (try to) use the one-block
approach of Knorr-Held and Rue (2002): make a proposal forθ to θ′, updatex from
the Gaussian approximation conditional onθ′, then accept/reject jointly; see Rue and
Held (2005, Ch. 4) for variations on this approach. Some models can alternatively be
reparameterised to overcome the second problem (Papaspiliopoulos et al., 2007). In-
dependence samplers can also sometimes be constructed (Rue et al., 2004). For some
(observational) models, auxiliary variables can be introduced to simplify the construction
of Gaussian approximations (Shephard, 1994; Albert and Chib, 1993; Holmes and Held,
2006; Fr̈uhwirth-Schnatter et al., 2006; Frühwirth-Schnatter and Frühwirth, 2007; Rue
and Held, 2005). Despite all these developments, MCMC remains painfully slow from
the end user’s point of view.

1.3 Inference: Deterministic approximations

Gaussian approximations play a central role in the development of more efficient MCMC
algorithms. This remark leads to the following questions:

• Can we bypass MCMC entirely, and base our inference solely on such closed-form
approximations?

• To which extent can we advocate an approach that leads to a (presumably) small ap-
proximation error over another approach giving rise to a (presumably) large MCMC
error?

Obviously, MCMC errors seem preferable, as they can be made arbitrarily small, for
arbitrarily large computational time. We argue however that, for a given computational
cost, the deterministic approach developed in this paper outperforms MCMC algorithms
to such an extent that, for latent Gaussian models, resorting to MCMC rarely makes sense
in practice.

It is useful to provide some orders of magnitude. In typical spatial examples where the
dimensionn is a few thousands, our approximations for all the posterior marginals can be
computed in (less than) a minute or a few minutes. The corresponding MCMC samplers
need hours or even days to compute accurate posterior marginals. The approximation bias
is in typical examples much less than the MCMC error and negligible in practice. More
formally, on one hand it is well-known that MCMC is a last resort solution: Monte Carlo
averages are characterised by additiveOp(N

−1/2) errors, whereN is the simulated sample
size. Thus, it is easy to get rough estimates, but nearly impossible to get accurate ones; an
additional correct digit requires100 times more computational power. More importantly,
the implicit constant inOp(N

−1/2) often hides a curse of dimensionality with respect to
the dimensionn of the problem, which explains the practical difficulties with MCMC
mentioned above. On the other hand, Gaussian approximations are intuitively appealing
for latent Gaussian models. For most real problems and datasets, the conditional posterior
of x is typically well-behaved, and looks ‘almost’ Gaussian. This is clearly due to the
latent Gaussian prior assigned tox, which has a non-negligible impact on the posterior,
especially in terms of dependence between the components ofx.
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1.4 Inference: The new approach

Our approach is based on the following approximationπ̃(θ|y) for the marginal posterior
of θ:

π̃(θ | y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

(1)

whereπ̃G(x|θ,y) is the Gaussian approximation to the full conditional ofx, andx?(θ) is
the mode of the full conditional forx, for a givenθ. The proportionality sign (1) comes
from the fact that the normalising constant forπ(x,θ|y) is unknown. This expression
is equivalent to Tierney and Kadane (1986)’s Laplace approximation of a marginal pos-
terior distribution and this suggests that the approximation error is relative and of order
O(n

−3/2
d ) after renormalisation. However, sincen is not fixed but depends onnd, stan-

dard asymptotic assumptions usually invoked for Laplace expansions, see for example
Schervish (1995, p. 453), are not verified here. We will discuss the error rate for this case
in more detail in Section 4.

Note thatπ̃(θ|y) itself tends to depart significantly from Gaussianity. This suggests
that a cruder approximation based on a Gaussian approximation toπ(θ|y) is not accurate
enough for our purposes; this also applies to similar approximations based on ‘equivalent
Gaussian observations’ aroundx?, and evaluated at the mode of (1) (Breslow and Clayton,
1993; Ainsworth and Dean, 2006). A critical aspect of our approach is to explore and
manipulatẽπ(θ|y) andπ̃(xi|y) in a ‘nonparametric’ way.

Rue and Martino (2007) used (1) to approximate posterior marginals forθ for various
latent Gaussian models. Their conclusion was thatπ̃(θ|y) is particularly accurate: even
long MCMC runs could not detect any error in it. For the posterior marginals of the latent
field, they proposed to start from̃πG(x|θ,y) and approximate the density ofxi|θ,y with
the Gaussian marginal derived from̃πG(x|θ,y), i.e.

π̃(xi | θ,y) = N {xi; µi(θ), σ2
i (θ)

}
. (2)

Here,µ(θ) is the mean (vector) of the Gaussian approximation, whereasσ2(θ) is a vector
of corresponding marginal variances. This approximation can be integrated numerically
with respect toθ using (1), to obtain approximations of the marginals of interest for the
latent field,

π̃(xi | y) =
∑

k

π̃(xi | θk,y) × π̃(θk | y) × ∆k. (3)

The sum is over values ofθ with area-weights∆k. Rue and Martino (2007) showed that
the approximate posterior marginals forθ were accurate, while the error in the Gaussian
approximation (2) was higher. In particular, (2) can present a slight error in location
and/or a lack of skewness. Another issue in Rue and Martino (2007) was the difficulty
to detect thexi’s whose approximation is less accurate. Friel and Rue (2007) made use
of similar ideas to perform approximate Bayesian inference for factorisable models (in
particular, binary Markov random fields) that allow for recursive computing (Bartolucci
and Besag, 2002; Reeves and Pettitt, 2004).

In this paper, we solve all the remaining issues in Rue and Martino (2007), and present
a fully automatic approach for approximate inference in latent Gaussian models which we
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nameIntegrated Nested Laplace Approximations(INLA). The main tool is to apply the
Laplace approximation once more, this time toπ(xi|y,θ). We also present a faster alter-
native which corrects the Gaussian approximation (2) for error in the location and lack of
skewness at moderate extra cost. The corrections are obtained by a series expansions of
the Laplace approximation. This faster alternative is a natural first choice, because of its
low computational cost and high accuracy. It is our experience that INLA outperforms
without comparison any MCMC alternative, both in terms of accuracy and computational
speed. We also derive tools for assessing the approximation error.

Most of the latent fields in the literature admit conditional independence properties,
hence the latent fieldx is a Gaussian Markov random field (GMRF). Thus, we base INLA
on sparse matrix calculations, which are much quicker than dense matrix calculations,
see Section 2. An exception are geostatistical models, but fast approximate inference is
still possible in this case, using a different approach (Eidsvik et al., 2006), or combining
the INLA approach with GMRF-proxies to Gaussian fields (Rue and Tjelmeland, 2002).

1.5 Plan of paper

Section 2 contains preliminaries on GMRFs, sparse matrix computations and Gaussian
approximations. Section 3 explains how to approximateπ(θ|y) andπ(xi|θ,y), using
the Integrated nested Laplace approximation (INLA) approach. For the latter distribu-
tions, three approximations are discussed: Gaussian, Laplace and simplified Laplace.
Section 4 discusses the error rates of the Laplace approximations used in INLA. Section 5
illustrates the performance of INLA through simulated and real examples, which include
multiscale analysis of non-Gaussian time-series data, stochastic volatility models, spatial
semi-parametric ecological regression and spatial log-Gaussian Cox processes. Section 6
discuss two extensions: approximations of the marginal likelihood and an alternative inte-
gration scheme for cases where the number of hyperparameters is not small but moderate.
We end with a general discussion in Section 7.

2 Preliminaries

We present here basic properties of GMRFs, and explain how to perform related com-
putations using sparse matrix algorithms. We then discuss how to compute Gaussian
approximations for a latent GMRF. See Rue and Held (2005) for more details on both
issues. Denote byx−i the vectorx minus itsith element, byN (µ, Σ) the Gaussian
distribution, and byN (x; µ, Σ), the Gaussian density at configurationx.

2.1 Gaussian Markov Random Fields

A GMRF is a Gaussian random variablex = (x1, . . . , xn) with Markov properties: for
somei 6= j’s, xi andxj are independent conditional uponx−ij. These Markov properties
are conveniently encoded in the precision (inverse covariance) matrixQ: Qij = 0 if and
only if xi andxj are independent conditional uponx−ij. Let the undirected graphG
denote the conditional independence properties ofx, thenx is said to be a GMRF with
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respect toG. If the mean ofx is µ, the density ofx is

π(x) = (2π)−n/2|Q|1/2 exp

{
−1

2
(x− µ)T Q(x− µ)

}
. (4)

In most cases onlyO(n) of then2 entries ofQ are non-zero, soQ is sparse. This allows
for fast factorisation ofQ asLLT , whereL is the (lower) Cholesky triangle. The sparse-
ness ofQ is inherited intoL, thanks to the global Markov property: fori < j, such thati
andj are separated byF (i, j) = {i+1, . . . , j− 1, . . . , j +1, . . . , n} in G, Lji = 0. Thus,
only non-null terms inL are computed. In addition, nodes can be re-ordered to decrease
the number of non-zero terms inL. The typical cost of factorisingQ into LLT isO(n)
for 1D,O(n3/2) for 2D andO(n2) for 3D GMRFs.

Solving equations which involveQ also makes use of the Cholesky triangle. For
example,Qx = b is solved in two steps. First solveLv = b, then solveLT x = v. If
z ∼ N (0, I) then the solution ofLT x = z has precision matrixQ. This is the general
method for producing random samples from a GMRF. The log density at anyx, log π(x),
can easily be computed using (4) sincelog |Q| = 2

∑
i log Lii.

Marginal variances can also be computed efficiently. To see this, we can start with
the equationLT x = z wherez ∼ N (0, I). Recall that the solutionx has precision
matrix Q. Writing this equation out in detail, we obtainLiixi = zi −

∑n
k=i+1 Lkixk for

i = n, . . . , 1. Multiplying each side withxj j ≥ i, and taking expectation, we obtain

Σij = δij/L
2
ii −

1

Lii

n∑
k=i+1

LkiΣkj, j ≥ i, i = n, . . . , 1, (5)

whereΣ (= Q−1) is the covariance matrix. ThusΣij can be computed from (5), letting
the outer loopi run fromn to1 and the inner loopj fromn to i. If we are only interested in
the marginal variances, we only need to computeΣij ’s for whichLji (or Lij) is not known
to be zero, see above. This reduce the computational costs to typicallyO(n(log n)2) in
the spatial case; see Rue and Martino (2007, Sec. 2) for more details.

When the GMRF is defined with additional linear constraints, likeAx = e for ak×n
matrixA of rankk, the following strategy is used: ifx is a sample from the unconstrained
GMRF, then

xc = x−Q−1AT (AQ−1AT )−1(Ax− e) (6)

is a sample from the constrained GMRF. The expected value ofxc can also be com-
puted using (6). This approach is commonly called ‘conditioning by Kriging’, see Cressie
(1993) or Rue (2001). Note thatQ−1AT is computed by solvingk linear systems, one for
each column ofAT . The additional cost of thek linear constraints isO(nk2). Marginal
variances under linear constraints can be computed in a similar way, see Rue and Martino
(2007, Sec. 2).

2.2 Gaussian Approximations

Our approach is based on Gaussian approximations to densities of the form:

π(x) ∝ exp

{
−1

2
xT Qx +

∑
i∈I

gi(xi)

}
. (7)
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wheregi(xi) is log π(yi|xi,θ) in our settings. The Gaussian approximationπ̃G(x) is
obtained by matching the modal configuration and the curvature at the mode. The mode
is computed iteratively. Letµ(0) be the initial guess, and expandgi(xi) aroundµ(0)

i to the
second order,

gi(xi) ≈ gi(µ
(0)
i ) + bixi − 1

2
cix

2
i (8)

where{bi} and{ci} depend onµ(0). A Gaussian approximation is obtained, with preci-
sion matrixQ + diag(c) and mode given by the solution of(Q + diag(c))µ(1) = b. This
process is repeated until it converges to a Gaussian distribution with, say, meanx? and
precision matrixQ? = Q + diag(c). If there are linear constraints, the mean is corrected
at each iteration using the expected value of (6).

Since the non-quadratic term in (7) is only a function ofxi and not a function ofxi and
xj, say, the precision matrix of the Gaussian approximation is of the formQ + diag(c).
This is computationally convenient, as the Markov properties of the GMRF are preserved.

Density (7) may seem restrictive: a more complex density is obtained if, say,y1 de-
pends on the sumx1 + x2. This happens for example when the observations are a blurred
version of the latent field. In such a case, we find it most convenient to alter the latent
field: x is augmented withxn+1, wherexn+1 is x1 + x2 plus a tiny Gaussian noise; then
y1 depends onxn+1 only, and (7) applies.

3 The Integrated Nested Laplace approximation (INLA)

In this section we present the INLA approach for approximating the posterior marginals
of the latent Gaussian field,π(xi|y), i = 1, . . . , n. The approximation is computed in
three steps. The first step (Section 3.1) approximates the posterior marginal ofθ using
the Laplace approximation (1). The second step (Section 3.2) computes the Laplace ap-
proximation, or the simplified Laplace approximation, ofπ(xi|y,θ), for selected values
of θ, in order to improve on the Gaussian approximation (2). The third step combines the
previous two using numerical integration (3).

3.1 Exploring π̃(θ|y)

The first step of the INLA approach is to compute our approximation to the posterior
marginal ofθ, see (1). The denominator in (1) is the Gaussian approximation to the full
conditional forx, and is computed as described in Section 2.2. The main use ofπ̃(θ|y)
is to integrate out the uncertainty with respect toθ when approximating the posterior
marginal ofxi, see (3). For this task, we do not need to representπ̃(θ|y) parametrically,
but rather to explore it sufficiently well to be able to select good evaluation points for
the numerical integration (3). At the end of this section, we discuss how the posterior
marginalsπ(θj|y) can be approximated.

Assume for simplicity thatθ = (θ1, . . . , θm) ∈ R
m, which can always be obtained by

reparametrisation;

Step 1 Locate the mode of̃π(θ|y), by optimisinglog π̃(θ|y) with respect toθ. This can
be done using some quasi-Newton method which builds up an approximation to the

7
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Figure 1: Illustration of the exploration of the posterior marginal forθ. In (a) the mode is
located, the Hessian and the coordinate system forz are computed. In (b) each coordinate
direction is explored (black dots) until the log-density drops below a certain limit. Finally
the grey dots are explored.

second derivatives oflog π̃(θ|y) using the difference between successive gradient
vectors. The gradient is approximated using finite differences. Letθ? be the modal
configuration.

Step 2 At the modal configurationθ? compute the negative Hessian matrixH > 0, using
finite differences. LetΣ = H−1, which is the covariance matrix forθ if the density
were Gaussian. To aid the exploration, use standardised variablesz instead ofθ:
let Σ = V ΛV T be the eigen-decomposition ofΣ, and defineθ via z, as follows

θ(z) = θ? + V Λ1/2z. (9)

If π̃(θ|y) is a Gaussian density, thenz isN (0, I). This reparametrisation corrects
for scale and rotation.

Step 3 Explorelog π̃(θ|y) using thez-parametrisation. Figure 1 illustrates the procedure
when log π̃(θ|y) is unimodal. Panel (a) shows a contour plot oflog π̃(θ|y) for
m = 2. Panel (a) also displays the location of the mode and the new coordinate axis
for z. We want to explorelog π̃(θ|y) in order to locate the bulk of the probability
mass. The result of this procedure is displayed in panel (b). Each dot is a point
wherelog π̃(θ|y) is considered as significant, and which is used in the numerical
integration (3). Details are as follows. We start from the mode(z = 0), and go in
the positive direction ofz1 with step-lengthδz sayδz = 1, as long as

log π̃(θ(0)|y)− log π̃(θ(z)|y) < δπ (10)

where, for exampleδπ = 2.5. Then we switch direction and do similarly. The other
coordinates are treated in the same way. This produces the black dots. We can now
fill in all the intermediate values by taking all different combinations of the black
dots. These new points (shown as grey dots) are included if (10) holds.
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Since we layout the pointsθk in a regular grid, we take all the area-weights∆k in (3) to
be equal.

Consider now the case where we want to compute the approximation for the posterior
marginals for some or all theθj ’s, π̃(θj|y). The rotation of the axis due toV in (9) is
inconvenient when summing out the remaining variablesθ−j. We can then replace the
negative HessianH by its diagonal, in order to suppress the rotation while retaining the
scaling.

3.2 Approximating π(xi|θ, y)

We have now a set of weighted points{θk} to be used in the integration (3). The next
step is to provide accurate approximations for the posterior marginal for thexi’s, condi-
tioned on selected values ofθ. We discuss three approximationsπ̃(xi|y,θk), that is the
Gaussian, the Laplace, and a simplified Laplace approximation. Although the Laplace
approximation is preferred in general, the much smaller cost of the simplified Laplace
generally compensates for the slight loss in accuracy.

3.2.1 Using Gaussian Approximations

The simplest (and cheapest) approximation toπ(xi|θ,y) is the Gaussian approximation
π̃G(xi|θ,y), where the meanµi(θ) and the marginal varianceσ2

i (θ) are derived using the
recursions (5), and possibly correcting for linear constraints. During the exploration of
π̃(θ|y), see Section 3.1, we already computeπ̃G(x|θ,y), so only marginal variances need
to be additionally computed. The Gaussian approximation gives often reasonable results,
but there can be errors in the location and/or errors due to the lack of skewness (Rue and
Martino, 2007).

3.2.2 Using Laplace Approximations

The natural way to improve the Gaussian approximation is to compute the Laplace appro-
ximation

π̃LA (xi | θ,y) ∝ π(x,θ,y)

π̃GG(x−i|xi,θ,y)

∣∣∣∣∣
x−i=x?

−i(xi,θ)

. (11)

Here, π̃GG is the Gaussian approximation tox−i|xi,θ,y, andx?
−i(xi,θ) is the modal

configuration. Note that̃πGG is different from the conditional density corresponding to
π̃G(x|θ,y).

Unfortunately, (11) implies that̃πGG must be recomputed for each value ofxi andθ,
since its precision matrix depends oni andθ. This is far too expensive, as it requiresn
factorisations of the full precision matrix. We propose two modifications to (11) which
makes it computationally feasible.

Our first modification consists in avoiding the optimisation step when computing
π̃GG(x−i|xi,θ,y) by approximating the modal configuration,

x?
−i(xi,θ) ≈ EeπG(x−i | xi). (12)
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Figure 2: Illustration of the region of interestRi(θ). The outer circle illustrates the graph
of the GMRF, whereas the black dot indicates the node of interest. The conditional ex-
pectation (13) locates the nodes that are affected by a change inxi, that is all the nodes in
the grey region.

The right-hand side is evaluated under the conditional density derived from the Gaussian
approximatioñπG(x|θ,y). The computational benefit is immediate. First, the conditional
mean can be computed by a rank one update from the unconditional mean, using (6). In
the spatial case the cost isO(n log n), for eachi, which comes from solvingQv = 1i,
where1i equals one at positioni, and zero otherwise. This rank one update is computed
only once for eachi, as it is linear inxi. Although their settings are slightly different,
Hsiao et al. (2004) show that deviating from the conditional mode does not necessarily
degrade the approximation error. Another positive feature of using (12) is that the con-
ditional mode is continuous with respect toxi, a feature which does not hold in practice
when numerical optimisation is used to computex?

−i(xi,θ).
Our next modification materialises the following intuition: only thosexj that are

‘close’ to xi should have an impact on the marginal ofxi. Figure 2 illustrates this idea.
The graph ofx is represented by the larger circle. The nodei is marked with a black
dot. If the dependency betweenxj andxi decays as the distance between nodesi andj
increases, only thosexj ’s in the grey region are of interest regarding the marginal ofxi.
Denote byRi(θ) the ‘region of interest’ regarding the marginal ofxi. The conditional
expectation in (12) implies that

EeπG(xj|xi)− µj(θ)

σj(θ)
= aij(θ)

xi − µi(θ)

σi(θ)
(13)

for someaij(θ) whenj 6= i. Hence, a simple rule for constructing the setRi(θ) is

Ri(θ) = {j : |aij(θ)| > 0.001} . (14)

The most important computational saving usingRi(θ) comes from the calculation of the
denominator of (11), where we now only need to factorise a|Ri(θ)| × |Ri(θ)| sparse
matrix.

Expression (11), simplified as explained above, must be computed for different values
of xi in order to find the density. To select these points, we use the mean and variance
of the Gaussian approximation (2), and choose, say, different values for the standardised
variable

x
(s)
i =

xi − µi(θ)

σi(θ)
(15)
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according to the corresponding choice of abscissas given by the Gauss-Hermite quadra-
ture rule. To represent the densityπ̃LA (xi|θ,y), we use

π̃LA (xi | θ,y) ∝ N {xi; µi(θ), σ2
i (θ)

}× exp {cubic spline(xi)} . (16)

The cubic spline is fitted to the difference of the log-density ofπ̃LA (xi|θ,y) andπ̃G(xi|θ,y)
at the selected abscissa points, and then the density is normalised using quadrature inte-
gration.

3.2.3 Using a Simplified Laplace Approximation

In this section we derive a simplified Laplace approximationπ̃SLA(xi|θ,y) by doing a se-
ries expansion of̃πLA (xi|θ,y) aroundxi = µi(θ). This allows us to correct the Gaussian
approximatioñπG(xi|θ,y) for location and skewness. For many observational models in-
cluding the Poisson and the Binomial, these corrections are sufficient to obtain essentially
correct posterior marginals. The benefit is purely computational: as most of the terms are
common for alli, we can compute all then marginals in onlyO(n2 log n) time.

Define

d
(3)
j (xi,θ) =

∂3

∂x3
j

log π(yj | xj,θ)

∣∣∣∣∣
xj=EeπG

(xj |xi)

which we assume exists. The evaluation point is found from (13). The following trivial
Lemma will be useful.

Lemma 1 Letx = (x1, . . . , xn)T ∼ N (0, Σ), then for allx1

−1

2
(x1, E(x−1|x1)

T ) Σ−1

(
x1

E(x−1|x1)

)
= −1

2
x2

1/Σ11.

We expand the numerator and denominator of (11) aroundxi = µi(θ), using (12) and
Lemma 1. Up to third order, we obtain

log π(x,θ,y)

∣∣∣∣∣
x−i=EeπG

(x−i|xi)

= −1

2
(x

(s)
i )2

+
1

6
(x

(s)
i )3

∑
j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3 + · · ·

(17)

The first and second order terms give the Gaussian approximation, whereas the third order
term provides a correction for skewness. Further, the denominator of (11) reduces to

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x−i=EeπG

(x−i|xi)

= constant+
1

2
log |H + diag{c(xi,θ)}| (18)

whereH is the prior precision matrix of the GMRF withith column and row deleted,
andc(xi,θ) is the vector of minus the second derivative of the log likelihood evaluated at
xj = EeπG(xj|xi), see Section 2.2. Using that

d log |H + diag(c)| =
∑

j

[{H + diag(c)}−1]
jj

dcj
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we obtain

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x−i=EeπG

(x−i|xi)

= constant

− 1

2
x

(s)
i

∑
j∈I\i

VareπG(xj|xi) d
(3)
j (µi(θ),θ) σj(θ) aij(θ) + · · · .

(19)

For Gaussian data (18) is just a constant, so the first order term in (19) is the first correction
for non-Gaussian observations. Note that

VareπG(xj|xi) = σ2
j (θ)

{
1− CorreπG(xi, xj)

2
}

but the correlation betweenxi andxj is only available for some of thei’s andj’s. This
is because the marginal variances are computed using (5). We approach this problem by
simply replacing all correlations not computed by a default value, say0.05.

We now collect the expansions (17) and (19). Define

γ
(1)
i (θ) =

1

2

∑
j∈I\i

σ2
j (θ)

{
1− CorreπG(xi, xj)

2
}

d
(3)
j (µi(θ),θ) σj(θ) aij(θ)

γ
(3)
i (θ) =

∑
j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3

(20)

then

log π̃SLA(xs
i |θ,y) = constant− 1

2
(x

(s)
i )2 + γ

(1)
i (θ)x

(s)
i +

1

6
(x

(s)
i )3γ

(3)
i (θ) + · · · . (21)

Eq. (21) does not define a density as the third order term is unbounded. A common way
to introduce skewness into the Gaussian distribution is to use the Skew-Normal distribu-
tion (Azzalini and Capitanio, 1999)

πSN(z) =
2

ω
φ

(
z − ξ

ω

)
Φ

(
a
z − ξ

ω

)
(22)

whereφ(·) andΦ(·) are the density and distribution function of the standard normal distri-
bution, andξ, ω > 0, anda are respectively the location, scale, and skewness parameters.
We fit a Skew-Normal density to (21) so that the third derivative at the mode isγ

(3)
i , the

mean isγ(1)
i and the variance is1. In this way,γ(3)

i only contributes to the skewness
whereas the adjustment in the mean comes fromγ

(1)
i ; see Appendix for details.

We have implicitly assumed that the expansion (17) is dominated by the third order
term. This is adequate when the log-likelihood is skewed, but not for symmetric distribu-
tions with thick tails like a Student-tν with a low degree of freedom. For such cases, we
expand only the denominator (19) and fit the spline-corrected Gaussian (16), instead of a
skewed Normal. This is slightly more expensive, but is needed.

The simplified Laplace approximation appears to be highly accurate for many obser-
vational models. The computational cost is dominated by the calculation of vectorai·(θ),
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for eachi; thus the ‘region of interest’ strategy (14) is unhelpful here. Most of the other
terms in (20) do not depend oni, and thus are computed only once. The cost for com-
puting (21), for a giveni, is of the same order as the number of non-zero elements of the
Cholesky triangle, e.g.O(n log n) in the spatial case. Repeating the proceduren times
gives a total cost ofO(n2 log n) for each value ofθ. We believe this is close to the lower
limit for any general algorithm that approximates all of then marginals. Since the graph
of x is general, we need to visit all other sites, for eachi, for a potential contribution. This
operation alone costsO(n2).

4 Approximation error: Asymptotics and practical is-
sues

4.1 Approximation error of π̃(θ|y)

To simplify the discussion, we assume that the dimension of the observationsy, nd, equals
the dimension of the latent fieldx, n, so that each nodexi is observed asyi. Equation (1)
can be rewritten as
{

π̃u(θ | y)
π(θ | y)

}−1

∝ |Q?(θ)|1/2
∫

exp
[
−1

2 {x− x?(θ)}T Q? {x− x?(θ)}+ r(x; θ, y)
]
dx (23)

∝ EeπG
[exp {r(x; θ, y)}]

whereπ̃u(θ|y) is the unnormalised version ofπ̃(θ|y), x?(θ) andQ?(θ) are the mean and
variance of Gaussian distributioñπG, r(x; θ,y) =

∑
i hi(xi), andhi(xi) is gi(xi) minus

its Taylor expansion up to order two aroundx?
i (θ), see (7) and (8). The approximation

π̃(θ|y) is based on a Taylor expansion of order 2, but higher orders can also be computed.
Denote byS(θ) = (sij(θ)) the inverse ofQ?(θ). Straightforward calculations show that

˜̃πu(θ | y) = π̃u(θ | y)

[
1 +

1
8

n∑
i=1

sii(θ)2
∂4gi(x?

i (θ))
∂x4

i

+
5
24

n∑
i=1

{
∂3gi(x?

i (θ))
∂x3

i

}2

sii(θ)3

+
1
24

n∑
i6=j

∂3gi(x?
i (θ))

∂x3
i

∂3gj(x?
j (θ))

∂x3
j

sij(θ)
{
2sij(θ)2 + 3si(θ)sj(θ)

}


−1

corresponds to an expansion up to order 7: odd orders produce null coefficients, and order
4 and 6 give the second term, and the two last terms, respectively. The density above is
not necessarily positive, but if both approximations are close, this seems an indication
that both are accurate. We discuss onlyπ̃(θ|y) from now on.

For sake of exposition, denotep the dimension of integral (23), althoughp = n in
our case. Under standard assumptions, in particular whenp is fixed, this integral is1 +
O(n−1); see e.g. Tierney and Kadane (1986). Shun and McCullagh (1995) consider the
case wherep grows withn, but do not establish rigorously the error rate. It does not seem
possible in our settings to prove that the multiplicative error is alwayso(1) with respect to
n. For instance, if thexi’s are independent, it is possible to exhibit cases where the error,
for any expectation evaluated with respect to the marginal posterior, isO(1) but noto(1).
(More details are available on request.) This discussion is complicated by the difficulty
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of defining asymptotics in spatial models: observations may be generated in a larger and
larger domain (increasing domain asymptotics), in a fixed volume (infill asymptotics),
and other asymptotic schemes could be devised. Instead, we propose heuristic arguments
for explaining the good accuracy observed in practical applications.

Remark 1 The ‘actual’ dimensionality of (23) is typically much smaller thann. Because
of the dependency withinx, x is well approximated by itsq principal components,
with q � n. A convenient measure of the dimensionality of (23) is Spiegelhalter
et al. (2002)’s measure for theeffective number of parameters, pD. In the case of
approximately Gaussian models, then

pD(θ) ≈ Trace
{
Q(θ) Q?(θ)−1} , (24)

the trace of the prior precision matrix times the by posterior covariance matrix of
the Gaussian approximation. The quantitypD(θ) indicates how informative the data
is, and to which extent the Gaussianity and the dependence structure of the prior are
preserved in the posterior ofx, givenθ. The calculation ofpD(θ) is cheap, since
the covariances of neighbours are obtained as a by-product of the computation of
the marginal variances in the Gaussian approximation based on (5).

Remark 2 The approximation error is reduced through normalisation, provided (23) is
roughly constant with respect toθ within the support of the true marginal. For the
Laplace approximation with standard assumptions, renormalisation improves the
relative error fromO(n−1) toO(n−3/2) (Tierney and Kadane, 1986).

Remark 3 The high accuracy of our approximation which we obtain in the experiments
in Section 5, seems to be due both to the Gaussian latent field and the well-behaved
observational models usually considered in applications, e.g. an exponential family
distribution forπ(yi|xi,θ).

Following these remarks, a more direct way to assess the approximation error is simply to
evaluate the order of magnitude ofr(x; θ,y): simulate independent samples{xj} from
π̃G(x|θ,y), and compute the0.025 lower and upper quantiles of the empirical distribu-
tion of ther(x; θ,y)’s. This is a rather quick procedure. The first term in the exponential
defining the integrand in (23) is distributed according toχ2

n/2, so we consider the re-
mainderr(x; θ,y) to be small if quantiles are in absolute value much less thann. In the
same way, empirical averages of ther(x; θ,y), for different values ofθ, can be used to
determine the variability of (23) with respect toθ.

4.2 Approximation error of π̃LA (xi|θ, y)

The approximation error of̃πLA (xi|θ,y) admits a similar expression to that ofπ̃(θ|y). To
see this, consider an alternative structure for the model, where the nodexi becomes an
additional component of the parameterθ, and the latent field is thereforex−i; then, the
same manipulations as for (23) leads eventually to

{
π̃LA,u(xi|θ,y)

π(xi|θ,y)

}−1

∝ EeπGG [exp {r(x; θ,y)}]
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whereπ̃LA,u(xi|θ,y) is the unnormalised version of̃πLA (xi|θ,y). Thus, we essentially
obtain the same result as in Section 4.1; before normalisation, the approximation error
of π̃LA (xi|θ,y) is comparable to that of̃π(θ|y), and the assessment criteria proposed in
the previous section are also good indicators of the accuracy ofπ̃LA (xi|θ,y). Note how-
ever that normalisation has a different effect onπ̃LA (xi|θ,y). Under increasing domain
asymptotics, new componentsxi′ are generated further and further fromxi, so at some
point the additional termshi′(xi′) in the expression of the remainderr(x; θ,y) should be
a constant with respect toxi, and therefore should be cancelled by normalisation. Thus,
we conjecture that the error is at worstO(1) under increasing domain asymptotics.

4.3 Assessing the approximation error

Obviously, there is only one way to assess with certainty the approximation error of our
approach, which is to run an MCMC sampler for an infinite time. However, we propose
to use the following two strategies to assess the approximation error, which should be
reasonable in most situations.

Our first strategy is to verify the overall approximationπ̃G(x|θ,y), for eachθk used in
the integration. We do this by computingpD(θ) (24), and the lower and upperα/2 quan-
tiles in the empirical distribution for the remainderr(x; θ,y). If pD is small compared
to n, and the quantiles ofr(x; θ,y) are in absolute value much less thann, this provides
strong confidence that the Gaussian approximation is an adequate approximation.

Our second strategy is based on the simple idea of comparing elements of a sequence
of more and more accurate approximations. In our case, this sequence consists of the
Gaussian approximation (2), followed by the simplified Laplace approximation (21), then
by the Laplace approximation (11). Specifically we compute the integrated marginal (3)
based on both the Gaussian approximation and the simplified Laplace approximation, and
compute their (symmetric) Kullback-Leibler divergence (KLD). If the divergence is small
then both approximations are considered as acceptable. Otherwise, compute (3) using the
Laplace approximation (11) and compute the divergence with the one based on the sim-
plified Laplace approximation. Again, if the divergence is small, simplified Laplace and
Laplace approximations appear to be acceptable; otherwise, the Laplace approximation is
our best estimate but the label ‘problematic’ should be attached to the approximation to
warn the user. (This last option has not yet happened to us.)

To assess the error due to the numerical integration (3), we can compare the KLD
between the posterior marginals obtained with a standard and those obtained with a higher
resolution. As a such approach is standard in numerical integration, we do not pursue this
issue here.

5 Examples

This section provides examples of applications of the INLA approach, with comparisons
to results obtained from intensive MCMC runs. Comparisons are expressed in terms of
computational time; computations were performed on a2.1GHz laptop, and programmed
in C. We start with simple examples with fixedθ in Section 5.1 and Section 5.2, to verify
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the (simplified) Laplace approximation forxi|θ,y. We continue with a stochastic volatil-
ity model applied to exchange rate data in Section 5.3 and a spatial semi-parametric eco-
logical regression problem in Section 5.4. The dimensions gets really large in Section 5.5,
in which we analyse some data using a spatial log-Gaussian Cox process.

5.1 Simple simulated examples

We start by illustrating the various approximations ofπ(xi|θ,y) in two quite challeng-
ing examples. The first model is based on a first order auto-regressive latent field with
unknown mean,

ηt − µ | η1, . . . , ηt−1, µ ∼ N {φ(ηt−1 − µ), σ2
}

, t = 1, . . . , 50 (25)

whereµ ∼ N (0, 10), φ = 0.85 and Var(ηt) = 1. As our observations we take

yt − ηt | (η, µ) ∼ Student-t3 and yt | (η, µ) ∼ Bernoulli
{

logit−1(ηt)
}

for t = 1, . . . , 50, in both experiments. Note that the Student-t3 is symmetric so we use
the full numerator in the simplified Laplace approximations as described in Section 3.2.3.

To create the observations, we sampled firstx = (ηT , µT )T from the prior, then
simulated the observations. We computedπ̃(ηt|θ,y) for t = 1, . . . , 50 andπ̃(µ|θ,y) us-
ing the simplified Laplace approximation and located the node with maximum Kullback-
Leibler divergence (KLD) between the Gaussian and the simplified Laplace approxima-
tions. This process was repeated100 times, and the realisation with the largest maximum
KLD was selected. Figure 3 displays the results for the Student-t3 data (first column)
and the Bernoulli data (second column). Panel (a) and (b) displayη (solid line) and the
observed data (circles). In (a) the node with the maximum KLD is marked with a ver-
tical line and solid dot. In (b) the node with the maximum KLD isµ hence not shown.
Panel (c) and (d) display the approximated marginals for the node with maximum KLD
in the standardised scale (15). The dotted line is the Gaussian approximation, the dashed
line is the simplified Laplace and the solid line is the Laplace approximation. In both
cases, the simplified Laplace and the Laplace approximation are very close to each other.
The KLD between the Gaussian approximation and the simplified Laplace one is0.20
and0.05, respectively. The KLD between the simplified Laplace approximation and the
Laplace one is0.001 and0.0004. Panel (e) and (f) show the simplified Laplace approxi-
mation with a histogram based on10, 000 (near) independent samples fromπ(η, µ|θ,y).
The fit is excellent.

The great advantage of the Laplace approximations is the high accuracy and low com-
putational cost. In both examples, we computed all the approximations (for each experi-
ment) in less than0.08 seconds, whereas the MCMC samples required about25 seconds.

The results shown in this example are rather typical and are not limited to simple
time-series models like (25). The Laplace approximation only ‘sees’ the log-likelihood
model and then uses some of the other nodes (see Figure 2) to compute the correction
to the Gaussian approximation. Hence, the form of the log-likelihood is more important
than the form of the covariance for the latent field. We expect similar results for spatial or
spatio-temporal latent Gaussian models, with Student-tν or Binomial observations.
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Figure 3: First row shows the true latent Gaussian field (solid line), the observed Student-
t3 data and Bernoulli data (dots). Second row shows the approximate marginal for a se-
lected node using various approximations; Gaussian (dotted), simplified Laplace (dashed)
and Laplace (solid). Last row compares samples from a long MCMC chain with the
marginal computed with the simplified Laplace approximation.
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5.2 Bayesian multiscale analysis for time series data

This example shows a situation where it is useful to have estimates of the marginals with
a relative error, so that even the tails can be evaluated accurately. We extend the Bayesian
multiscale tool for exploratory analysis of time series data by Øigård et al. (2006) to
allow for non-Gaussian observations. The fundamental problem is to detect significant
features and important structures of a signal observed with noise. Although a noisy signal
can be smoothed, often some of the features are visible only on certain scales, and may
disappear if the smoothing is too severe. The multiscale idea consists in considering
several levels of smoothing simultaneously. Chaudhuri and Marron (1999) introduced
such ideas in nonparametric function estimation in the form of the SIZer methodology
(SIgnificant ZERo crossings of derivatives), see also Eräsẗo (2005).

Let η(t) be the unknown continuous underlying signal with derivativesη′(t), and
level of smoothingκ. Let y = (y1, . . . , yn)T be observations ofη(·) at time-points
t = (t1, . . . , tn)T . The derivative is said to be ‘significant’ positive at time pointt, if

Prob(η′(t) > 0 | y, κ) > 1− α/2

and similarly significant negative, whereα is the level of significance. The SIZer map dis-
plays regions of significant positive and negative gradients for various levels of smoothing
κ.

We now illustrate how to use the simplified Laplace approximation to compute the
SIZer map. We use gamma ray burst intensity data previously analysed by Besbeas et al.
(2004); the observations are Poisson:

y(ti) ∼ Poisson{exp(η(ti)} , ti = i for i = 1, . . . , n = 512

whereη(t) is the latent Gaussian process. The data are displayed in Figure 4(a). We
follow Øigård et al. (2006), and model the continuous processη(t) as an integrated Wiener
process with precisionκ. Wecker and Ansley (1983) show that the integrated Wiener
process is Markov if augmented with the derivativesη′(t),
(

η(ti+1)
η′(ti+1)

)∣∣∣∣
{(

η(s)
η′(s)

)
, s ≤ ti

}
, κ ∼ N

{(
1 δi

0 1

)(
η(ti)
η′(ti)

)
,

1

κ

(
δ3
i /3 δ2

i /2
δ2
i /2 δi

)}

whereδi = ti+1 − ti. Hence, the discretely observed integrated Wiener processx =
({η(ti)}, {η′(ti)})T is a GMRF of dimension2n, see Rue and Held (2005, Sec. 3.5). Note
that the derivatives atti are a part of the GMRF, hence we can approximate their marginal
densities (for a fixedκ) and check whether they are significant negative or positive.

We use the simplified Laplace approximation and compute all the2n marginals for
log κ = 1, . . . , 15. This takes about0.35 seconds for each value oflog κ. The posterior
means of{η(ti)} and the SIZer map forα = 0.05 are displayed in Figure 4(b) and (c),
respectively. In the SIZer map, white indicates significant positive derivative, black indi-
cates significant negative derivative whereas grey indicates none. The vertical scale in the
SIZer map goes fromlog κ = 1 to log κ = 15.

To verify the results we ran a MCMC sampler for nine hours and estimated the proba-
bility for the chain to be below theα/2 (whereα = 0.05) quantiles as computed from our
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Figure 4: Results for the multiscale analysis example. Panel (a) displays the raw burst
data. Panel (b) displays the posterior means for varying degree of smoothing. Panel (c)
shows the SIZer map forα = 0.05. Panel (d) displays the ratios between the estimated
and the real probability of being below the approximate quantiles, lower quantiles on the
left and upper quantiles on the right.
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approximatioñπ(η′(ti)|κ,y). Panel (d) displays the ratios of these estimated probabili-
ties and the true valueα/2 for all the1024 nodes is the Markov field. Lower (resp. upper)
quantiles are displayed on the left (resp. right). In both cases the error is largest at the two
ends. The average ratio is1.01 for the lower quantiles and0.99 for the upper quantiles, so
the average absolute approximation bias is0.00025. This is indeed impressive; recall that
the simplified Laplace approximation fits the skew-Normal parametric density.

Hannig and Marron (2006) develop some theory for computing more accurately (asymp-
totically) the SIZer map for nonparametric regression. The Bayesian approach taken here
does not resort to asymptotic theory, can deal with non-Gaussian observations, can take
into account covariates and unstructured effects and so on. The calculations can be done
exactly for Gaussian observation models, and, as illustrated here, practically exactly for
common non-Gaussian observation models.

5.3 Stochastic volatility models

Stochastic volatility models are frequently used to analyse financial time series. Fig-
ure 5(a) displays the log of the daily difference of the pound-dollar exchange rate from
October1st, 1981, to June 28th, 1985. This dataset has been analysed by Durbin and
Koopman (2000), among others. There has been much interest in developing efficient
MCMC methods for such models, e.g. Shephard and Pitt (1997) and Chib et al. (2002).

Following Durbin and Koopman (2000), we consider a first order auto-regressive la-
tent Gaussian process

xt | x1, . . . , xt−1, τ, φ ∼ N (φxt−1, 1/τ) ,

where|φ| < 1 to ensure stationarity. The observations are taken to be

yt | x1, . . . , xt, κ ∼ N {0, exp(xt)/κ} (26)

whereκ is an unknown precision. The log-likelihood (with respect toκ) is quite far
from being Gaussian and is non-symmetric. There is some evidence that financial data
have heavier tails than the Gaussian, so a Student-tν distribution with unknown degrees
of freedom can be substituted to the Gaussian in (26); see Chib et al. (2002). We consider
this modified model at the end of this example.

We display the results for the simplified Laplace approximation of the posterior mar-
ginals of the three unknown hyperparameters (properly transformed so thatθ ∈ R

3):

θ1 = logit

(
φ + 1

2

)
, θ2 = log τ, and θ3 = log κ.

We use vague priors forθ, as strong priors make the approximation problem easier. For
the same reason, we display the results based on only the firstn = 50 observations
in Figure 5(a). The results for the full dataset are similar, but the posterior marginals
for theθj ’s are closer to Gaussians.

Figure 5(b)-(d) displays the approximate posterior marginals forθ1, θ2 andθ3. The
histograms are constructed from the output of a MCMC algorithm running for one day.
The approximations computed are quite precise and no serious deviance can be detected.
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Figure 5(e) displays the approximate posterior marginal forxt|y based on the simpli-
fied Laplace approximation, for the component ofx which maximises the KLD between
the posterior marginal based on the Gaussian approximation and based on the simplified
Laplace approximation. The KLD for all thext’s are quite small and roughly equal to
3 × 10−4, so there is no particular gain in using the simplified Laplace approximation
compared to the Gaussian one. The fit is quite good, although we slightly underestimate
the right hand side tail. The approximation error diminishes as the number of observa-
tions increases, but is still visible for the full dataset. A closer inspection reveals that the
underestimation is due to the (default) quite rough numerical integration (3). Improving
the accuracy of the numerical integration removes the underestimation.

We validated the approximations using all then = 945 observations at the modal value
θ?. The effective number of parameters (24) was about53, which is small compared
to n. A 95% interval for the remainderr(x; θ?,y)/n is [−0.002, 0.004] using 1, 000
independent samples. The computational cost for obtaining all the posterior marginals
was about0.32 seconds for each value ofθ, and32 seconds in total.

We also applied the stochastic volatility model to the full dataset, see Figure 5(a),
using a Student-tν instead of a Gaussian for the observational model in (26), and a uniform
prior for log ν. The number of hyperparameters is then4. Figure 5(f) shows predictions
for futurext’s using the full dataset.

5.4 Semi-parametric ecological regression

In this example we consider an ecological regression problem and analyse the spatial
variation of disease risk in relation to a proxy exposure variable available on the same
units. This is taken from Natario and Knorr-Held (2003), which is refereed to for a more
throughout background.

The data are male larynx cancer mortality counts in then = 544 districts of Germany
from 1986 to 1990:

yi | ηi ∼ Poisson{Ei exp(ηi)} , i = 1, . . . , n. (27)

The (fixed) ’district effect’Ei accounts for the number of people in districti, its age
distribution, etc., andη is the log-relative risk. The maximum likelihood estimator forηi

using (27) isyi/Ei and is displayed in Figure 6(a). The model forηi takes the following
form,

ηi = ui + vi + f(ci) (28)

whereu is a spatially structured term,v is a unstructured term (‘random’ effects) and
f(ci) is an unknown effect of the exposure covariate with valueci at districti. For the
exposure covariate we use the lung cancer rate as a proxy for smoking consumption,
see Figure 6(b). The spatially structured term is modelled as an intrinsic GMRF (Rue and
Held, 2005, Ch. 3)

ui | u−i, κu ∼ N
(

1

ni

∑
j∼i

uj,
1

niκu

)

whereni are the number of neighbour districts ofi andκu is the unknown precision.
The unstructured termv is taken as a vector of independentN (0, κv). The effect of
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Figure 5: Panel (a) displays the log of the daily difference of the pound-dollar exchange
rate from October1st, 1981, to June 28th, 1985. Panels (b)-(d) display the approximated
posterior marginals forθ1 toθ3 using only the firstn = 50 observations in (a). Overlaid are
the histograms obtained from a very long MCMC run. The fit is perfect. Panel (e) displays
the approximated posterior marginal for the location of the latent field with maximum
KLD, compared with the histograms from a very long MCMC run. Our approximation
underestimate slightly the behaviour on the right hand side, but this turn out to be an
effect of the default (quite rough) integration method. Panel (f) displays the predicted
posterior marginals for futurext’s conditioned on the full dataset, assuming in this case
that observations are Student-tν distributed.22



the covariatec is modelled as a smooth functionf(·), parametrised as unknown values
f = (f1, . . . , f100)

T for arguments1, . . . , nc = 100. The values of the covariate are scaled
to the interval[1, nc]. The vectorf is assumed to follow a second-order random walk,

π(f | κf) ∝ κ
(nc−1)/2
f exp

{
−1

2
κf

nc∑
i=3

(fi − 2fi−1 + fi−2)
2

}
(29)

with unknown precisionκf . To separate the spatial effect and the effect of covariate, we
impose

∑
i ui = 0.

Following Natario and Knorr-Held (2003), we assign independent vague Gamma pri-
ors toθ = (κu, κv, κf). We use the simplified Laplace approximation for the marginals
of x = (ηT ,uT ,fT )T with length1, 188. The computation took about52 seconds us-
ing 53 evaluation points for the numerical integration. The posterior mean of the spatial
termu is displayed in Figure 6(c) whereas the posterior mean of the unstructured effect
v is displayed in (d). The posterior mean of the covariate effectf is displayed in (e)
with lower and upper0.025 percentile, computed with the simplified Laplace approxima-
tion (solid) and the Gaussian approximation (2) (dotted). The two approximations nearly
agree, which is also confirmed by relatively small values of the KLD between the two
approximations shown in (f). The maximum KLD for all variables appears forf50 and
equals0.032. This indicates that the Gaussian approximation had been sufficient for this
example, so the computational cost could had been reduced to18 seconds (approximating
all the marginals). Long MCMC runs conform that the marginals computed using the
simplified Laplace approximation are essentially correct.

We validated the approximations by computingpD(θ?) ≈ 91 and estimated a95%
interval for the remainderr(x; θ?,y)/n as[−0.001, 0.001] using1, 000 independent sam-
ples.

5.5 Log-Gaussian Cox process

Log-Gaussian Cox processes (LGCP) are a flexible class of models that have been suc-
cessfully used for modelling spatial or spatio-temporal point processes, see for example
Møller et al. (1998), Brix and Møller (2001), Brix and Diggle (2001) and Møller and
Waagepetersen (2003). In this section we will illustrate how LGCP models can be anal-
ysed using our approach for approximate inference.

A LGCP is a hierarchical Poisson process:Y in W ⊂ R
d is a Poisson point process

with a random intensity functionλ(ξ) = exp(Z(ξ)), whereZ(ξ) is a Gaussian field at
ξ ∈ R

d. In this way, the dependency in the point-pattern is modelled through a common
latent Gaussian variableZ(·). In the analysis of LGCP, it is common to discretise the
observation windowW . Divide W into N disjoint cells{wi} located atξi each with area
|wi|. Let yi be the number of occurrences of the realised point pattern withinwi and let
y = (y1, . . . , yN)T . Let ηi be the random variableZ(ξi). Clearlyπ(y|η) =

∏
i π(yi|ηi)

andyi|ηi is Poisson distributed with mean|wi| exp(ηi); the same likelihood as for the
semi-parametric ecological regression example (27). A straightforward generalisation is
to allow for covariates:ηi can be decomposed in the same way as (28), say

ηi = β0 + β1c1i + β2c2i + ui + vi, (30)
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Figure 6: Semi-parametric ecological regression example: panel (a) displays the max-
imum likelihood estimator for the log relative risk. Panel (b) shows covariate values.
Panels (c) and (d) give the posterior mean of the structured (u) and unstructured (v) ef-
fects, respectively. Panel (e) displays the posterior mean of the covariate effect with lower
and upper 0.0025 percentiles. The solid line is the simplified Laplace approximation and
the dotted line is the Gaussian one. Panel (f) shows the KLD for the covariate effect.
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Figure 7: Data and covariates for the log-Gaussian Cox process example: (a) locations of
the3, 605 trees, (b) altitude, and (c) norm of the gradient.

whereu represent the spatial component, andv is an unstructured term.An alternative
would be to use a semi-parametric model for the effect of the covariates similar to (29).

We apply model (30) to the tropical rain forest data studied by Waagepetersen (2007).
These data come from a50-hectare permanent tree plot which was established in 1980 in
the tropical moist forest of Barro Colorado Island in central Panama. Censuses have been
carried out every5th year from1980 to 2005, where all free-standing woody stems at
least 10 mm diameter at breast height were identified, tagged, and mapped. In total, over
350, 000 individual trees species have been censured over25 years. We will be looking
at the tree speciesBeilschmiedia pendula Lauraceaeusing data collected from the first
four census periods. The positions of the3605 trees are displayed in Figure 7(a). Sources
of variation explaining the locations include the elevation and the norm of the gradient.
There may be clustering or aggregation due to unobserved covariates or seed dispersal.
The unobserved covariates can be either spatially structured or unstructured.

We start by dividing the area of interest into a200 × 100 regular lattice, where each
square pixel of the lattice represent25 square metres. Denote elevation and norm of the
gradient byc1 andc2, respectively. The scaled versions of these covariates are shown
in panel (b) and (c), forc1 andc2, respectively. For the spatial structured term, we use
a second order polynomial intrinsic GMRF (see Rue and Held (2005, Sec. 3.4.2)), with
following full conditionals in the interior (with obvious notation)

E(xi | x−i, κu) = 1
20

(
8

◦ ◦ ◦ ◦ ◦◦ ◦ • ◦ ◦◦ • ◦ • ◦◦ ◦ • ◦ ◦◦ ◦ ◦ ◦ ◦
− 2

◦ ◦ ◦ ◦ ◦◦ • ◦ • ◦◦ ◦ ◦ ◦ ◦◦ • ◦ • ◦◦ ◦ ◦ ◦ ◦
− 1

◦ ◦ • ◦ ◦◦ ◦ ◦ ◦ ◦• ◦ ◦ ◦ •◦ ◦ ◦ ◦ ◦◦ ◦ • ◦ ◦

)
,

Prec(xi | x−i, κu) = 20κu.

(31)

The precisionκu is unknown. The full conditionals are constructed to mimic the thin-
plate spline. There are some corrections to (31) near the boundary, which can be found
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Figure 8: LGCP example: (a) posterior mean of the spatial componentu, (b) Nodes
where the KLD between simplified Laplace and Gaussian approximations exceeds0.2,
(c)-(e) posterior marginals ofβ0, β1 andβ2 using simplified Laplace (solid) and Gaussian
approximations (dotted).

using the stencils in Terzopoulos (1988). We impose a sum-to-zero constraint on the
spatial term due toβ0. The unstructured termsv are independentN (0, κv), vague Gamma
(resp. Gaussian) priors are assigned toκu andκv (resp. toβ0, β1 andβ2). The GMRF is
x = (ηT ,uT , β0, β1, β2)

T with dimension40, 003, andθ = (log κu, log κv).
We computed the approximation for20, 003 posterior marginals using the simplified

Laplace approximation, thus ignoring the unstructured components. This task required
about4 hours of computing or about24 minutes for each value ofθ. The high computa-
tional cost is due to the large number of computed posterior marginals. The total cost can
be reduced to only10 minutes if using the Gaussian approximation (2). The results are
displayed in Figure 8. Panel (a) displays the estimated posterior mean of the spatial com-
ponent. In (b) we have marked areas where the KLD between the marginal computed with
the Gaussian approximation and the one computed with the simplified Laplace approxi-
mation exceeds0.2. These nodes are candidates for further investigation, so we computed
their posteriors using also the Laplace approximation; the results agreed well with those
obtained from the simplified Laplace approximation. Panel (c) to (e) display the poste-
rior marginals computed with the Gaussian approximation (dotted) and the one computed
with the simplified Laplace approximation (solid) forβ0, β1 andβ2. The difference is
mostly due to a horizontal shift, a characteristic valid for all the other nodes as well.

To validate the approximations, we computedpD(θ∗) ≈ 1714 and estimated a95% in-
terval for the remainderr(x; θ?,y)/n as[0.002, 0.005] using1, 000 independent samples.
Varying θ gave similar results. There are no indications that the approximations does
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not works well in this case. Due to the size of the GMRF, the comparison with results
from long MCMC runs were performed on a cruder grid, with excellent results. We also
compared the conditional marginals in the spatial field for fixed values ofθ, and again
obtained excellent results.

6 Extensions

6.1 Approximating the marginal likelihood

The marginal likelihoodπ(y) is a useful quantity for comparing models, as the Bayes
factor is its ratio for two competing models. It is evident from (1) that the natural appro-
ximation to the marginal likelihood is the normalising constant forπ̃(θ|y),

π̃(y) =

∫
π(θ,x,y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

dθ. (32)

whereπ(θ,x,y) = π(θ)π(x|θ)π(y|x, θ). An alternative, cruder estimate of the marginal
likelihood is obtained by assuming thatθ|y is Gaussian; then (32) turns into some known
constant times|H|−1/2, whereH is the Hessian matrix in Section 3.1, see Kass and
Vaidyanathan (1992). Our approximation (32) does not require this assumption, since we
treatπ̃(θ|y) in a ‘nonparametric’ way. This allows for taking into account the departure
from Gaussianity which, for instance, appears clearly in Figure 5. We have limited ex-
perience with using (32) for computing Bayes factors, and for this reason, we have not
stressed this issue in the examples. Friel and Rue (2007) use a similar expression as (32)
to approximate the marginal likelihood in a different context.

6.2 Moderate number of hyperparameters

Integrating out the hyperparameters as described in Section 3.1 can be quite expensive
if the number of hyperparameters,m, is not small but moderate, say, in the range of
6 to 12. Using, for example,δz = 1 and δπ = 2.5, the integration scheme proposed
in Section 3.1 will require, ifθ|y is Gaussian,O(5m) evaluation points. Even if we
restrict ourselves to three evaluation points in each dimension, the costO(3m) is still
exponential inm. In this section we will discuss an alternative approach which will
reduce the computational cost dramatically for highm, but, at the same time, it will also
reduce the accuracy of the numerical integration overπ̃(θ|y). The aim is to be able to
provide useful results even when the number of hyperparameters is so large that the more
direct approach in Section 3.1 is unfeasible.

Although many hyperparameters make the integration harder, it is often the case that
increasing the number of hyperparameters increases also variability and the regularity, so
that the integrand simplifies. Meaningful results can sometimes be obtained even using
an extreme choice, that is using only the modal configuration to integrate overπ(θ|y).
This ‘plug-in’ approach will obviously underestimate variability.

We can consider the integration problem as a design problem where we layout some
‘points’ in a m-dimensional space. Based on the measured response, we estimate the
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response surface at each point. As a first approximation, we can consider only response
surfaces of second order, and use a classical quadratic design like the central-composite
design (CCD) (Box and Wilson, 1951). A CCD contains an embedded factorial or frac-
tional factorial design with centre points augmented with a group of2m + 1 ‘star points’
which allow for estimating the curvature. Form = 5, the design points are chosen (up to
an arbitrary scaling) as

(1, 1, 1, 1, 1, 1), (−1, 1, 1, 1,−1), (1,−1, 1, 1,−1), (−1,−1, 1, 1, 1),

(1, 1,−1, 1,−1), (−1, 1,−1, 1, 1), (1,−1,−1, 1, 1), (−1,−1,−1, 1,−1),

(1, 1, 1,−1,−1), (−1, 1, 1,−1, 1), (1,−1, 1,−1, 1), (−1,−1, 1,−1,−1),

(1, 1,−1,−1, 1), (−1, 1,−1,−1,−1), (1,−1,−1,−1,−1) and(−1,−1,−1,−1, 1).

They are all on the surface of them dimensional sphere with radius
√

m. The star points
consist of2m points located along each axis at distance±√m and the central point in
the origin. Form = 5 this makesnp = 27 points in total, which is small compared to
55 = 3, 125 or 35 = 243. The number of design-points is8 for m = 3, 16 for m = 4 and
5, 32 for m = 6, 64 for m = 7 and8, 128 for m = 9, 10 and11, and256 from m = 12
to 17; see Sanchez and Sanchez (2005) for how to compute such designs. For all designs,
there are additional2m + 1 star-points.

To determine the integration weights∆k in (3) and the scaling of the points, assume
for simplicity thatθ|y is standard Gaussian. We require that the integral of1 equals1,
and that the integral ofθT θ equalsm. This gives the integration weight for the points on
the sphere with radiusf0

√
m

∆ =

[
(np − 1)

(
f 2

0 − 1
){

1.0 + exp

(
−mf 2

0

2

)}]−1

wheref0 > 1 is any constant. The integration weight for the central point is1−(np−1)∆.
To validate the CCD integration, we recomputed the posterior marginal for the stochas-

tic volatility model in Section 5.3 using Student-tν distributed observations, and for the
semi-parametric ecological regression example in Section 5.4 using this integration me-
thod instead of the grid search in Section 3.1. The results were indeed positive. The
predictions in Figure 5(f) for futurext’s using the full dataset were nearly indistinguish-
able from those obtained using the CCD integration using only1/15 of the computational
cost. Same remarks apply for the results shown in Figure 6. The number of hyperparam-
eters in these two cases is4 and3 respectively. Although this is not a large number, we
should still be able to detect if the CCD integration is too rough, and this does not seem
to be the case. Although the CDD integration is not as thoroughly verified as the INLA
itself, the results obtained can be viewed as a ‘proof of concept’ at this stage. We hope to
provide further empirical evidence that the CCD integration is adequate when the number
of hyperparameters is moderate.

7 Discussion

We have presented a new approach to approximate posterior marginals in latent Gaussian
models, based on integrated nested Laplace approximations (INLA). The results obtained
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are very encouraging: we obtain practically exact results over a wide range of commonly
used latent Gaussian models. We also provide tools for assessing the approximation error,
which are able to detect cases where the approximation bias is non-negligible; we note
however that this seems to happen only in pathological cases.

We are aware that our work goes against a general trend of favouring ‘exact’ Monte
Carlo methods over non-random approximations, as advocated for instance by Papaspiliopou-
los et al. (2006) in the context of diffusions. Our point however is that, in the specific case
of latent Gaussian models, the orders of magnitude involved in the computational cost of
both approaches are such that this idealistic point of view is simply untenable for these
models. As we said already, our approach provides precise estimates in seconds and min-
utes, even for models involving thousands of variables, in situations where any MCMC
computation typically takes hours or even days.

The advantages of our approach are not only computational. It also allows for greater
automation and parallel implementation. The core of the computational machinery is
based on sparse matrix algorithms, which automatically adapt to any kind of latent field,
e.g. 1D, 2D, 3D and so on. All the examples considered in this paper were computed using
the same general code, with essentially no tuning. In practice, INLA can be used almost as
a black box. The code is now part ofGMRFLib- library (Rue and Held, 2005, Appendix)
and available from the first author’s web page. With respect to parallel implementation,
the INLA approach computes the approximation ofxi|θ,y independently for alli for
fixed θ. Hence, parallel computing is trivial to implement. This is particularly important
for spatial or spatio-temporal latent Gaussian models.

The main disadvantage of the INLA approach is that the computational cost is ex-
ponential in the number of hyperparametersm. In most applicationsm is small, but
applications wherem goes up to10 do exist. This problem may be less severe that it
appears at first glance: the central composite design approach seems promising, and pro-
vides reasonable results whenm is not small, but this track needs more research. In fact,
we doubt that any MCMC algorithm which would explore them-dimensional space ofθ
in a random fashion would provide more accurate results for the same cost.

It is our view that the prospects of this work are more important than this work itself.
Near instant inference will make latent Gaussian models more applicable, useful and ap-
pealing for the end user, which has no time or patience to wait for the results of an MCMC
algorithm, or has to analyse many different dataset with the same model, or both. Further,
near instant inference makes it much easier to challenge the model itself: Bayes factors
can be computed through the normalising constant forπ̃(θ|y), the model can be assessed
through cross-validation, residual analysis, etc., in a reasonable time.
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A Fitting the skew-Normal distribution

We explain here how to fit the skew-Normal distribution (22) to an expansion of the form

log π(x) = constant− 1

2
x2 + γ(1)x +

1

6
γ(3)x3 + · · · . (33)

To second order, (33) is Gaussian with meanγ(1) and variance1. The mean and the
variance of the skew-Normal distribution areξ+ωδ

√
2/π andω2(1−2δ2/π), respectively,

whereδ = a/
√

1 + a2. We keep these fixed toγ(1) and1, respectively, but adjusta so the
third derivative at the mode in (22) equalsγ(3). This gives three equations to determine
(ξ, ω, a). The modal configuration is not available analytically, but a series expansion of
the log skew-Normal density aroundx = ξ gives:

x? =
( a

ω

) √2π + 2ξ( a
ω
)

π + 2( a
ω
)2

+ higher order terms.

We now compute the third derivative of the log-density of the skew-Normal atx?. In order
to obtain an analytical (and computationally fast) fit, we expand this third order derivative
with respect toa/ω:

√
2(4− π)

π3/2

( a

ω

)3

+ higher order terms. (34)

and imposes that (34) equalsγ(3). This gives explicit formulae for the three parameters of
the skewed-normal.
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Abstract

In this paper we propose fast approximate methods for computing posterior mar-
ginals in spatial generalised linear mixed models. We consider the common geosta-
tistical case with a high dimensional latent spatial variable and observations at known
registration sites. The methods of inference are deterministic, using no random sam-
pling.

The first proposed approximation is fast to compute and is ’practically sufficient’,
meaning that results do not show any bias or dispersion effects that might affect de-
cision making. Our second approximation, an improvement of the first version, is
’practically exact’, meaning that one would have to run MCMC simulations for very
much longer than is typically done to detect any indication of error in the approx-
imate results. For small count data the approximations are slightly worse, but still
very accurate. Our methods are limited to likelihood functions that give unimodal
full conditional for the latent variable.

The methods help to expand the future scope of non-Gaussian geostatistical mod-
els as illustrated by applications of model choice, outlier detection and sampling de-
sign. The approximations take seconds or minutes of CPU time, in sharp contrast to
overnight MCMC runs for solving such problems.

KEYWORDS: approximate inference, spatial GLM, spatial design, Bayesian outlier detection, circulant co-

variance matrix, geostatistics, Newton–Raphson
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1 Introduction

Several data are acquired at different geographical locations and require models for the
spatial variation. In geostatistics one typically treats these data as indirect measurements
of a smooth latent spatial variable. Among the popular applications are geophysics,
mining, meteorology and disease mapping, see e.g. Cressie (1993), Diggle et al. (1998)
and Banerjee et al. (2004). For analysis of spatial data there are mainly two objectives;
i) inference of model parameters, which are regression parameters for explanatory vari-
ables, and the standard deviation and range of the latent spatially correlated variable, and
ii) prediction of the latent variable at any spatial location.

One topic that has received much attention lately is inference and prediction for the spatial
generalised linear mixed model (GLMM), see for instance Diggle et al. (1998) and Chris-
tensen et al. (2006) for a Bayesian view, Breslow and Clayton (1993) and Zhang (2002)
for a frequentist analogy, and Paciorek and Ryan (2005) and Ainsworth and Dean (2006)
who compare penalised likelihood methods with Bayesian solutions using Markov chain
Monte Carlo (MCMC) simulations. The common model can briefly be described as fol-
lows: Let x represent a latent variable atn spatial sites on a two dimensional domain.
Supposex has a Gaussian prior distribution specified by a mean with regression param-
eters for explanatory variables, and a covariance matrix. We collectively denote these
model parameters byθ. Observationsy are made atk of then sites. These observations
are modeled by an exponential family distribution with parameters given by the latent
variablex at the sites where the data is acquired. Typical examples of this model include
Poisson counts or binomial proportions registrered at some known locations in space,
with the objective of predicting the underlying intensity or (log odds) risk surface across
the spatial domain of interest, and inferring model parameters. The most common case
is probably the situation where one wants to predict across a large spatial domain, but
a moderate number of locations register data, i.e.n � k. For example, this situation
occurs in spatial data acquisition for weather forecasting (Gel et al., 2004) and in reserve
site selection for predicting the presence of a certain type of species (Polasky and Solow,
2001). One approach for inference and prediciton in such applications is to construct a
large regular grid of sizen for the latent variable, and then index the grid locations of the
k registration sites.

Bayesian methods in spatial GLMMs have been considered difficult because of high di-
mension and the lack of closed form solutions. The current state of the art is to gener-
ate realisations of parameterθ and latent variablex using Markov chain Monte Carlo
(MCMC) algorithms. Since MCMC algorithms have grown mature over the last few
decades, see e.g. Robert and Casella (1999), there are a number of fit-for-purpose algo-
rithmic techniques for doing iterative Markov chain updates. Some of these algorithms
are more relevant for spatial GLMMs (Diggle and Ribeiro, 2006), but problems remain
with convergence and mixing properties of the Markov chain, which in some cases are
remarkably slow. Because of these challenges fast inference methods suitable for special
cases are needed, possibly avoiding the problems with sampling methods.

The main contribution of this paper is a new method for approximate inference in spa-
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tial GLMMs. In particular, this paper provides a recipe for fast approximate Bayesian
inference using posterior marginalsπ(θ|y) andπ(xj|y), j = 1, . . . , n. The core of our
method is to build a Gaussian approximation forπ(x|y,θ). This is used in i) the Laplace
approximation to fitπ(θ|y), and ii) as an element in a mixture density approximation
for π(xj|y). Fast approximate inference helps to expand the scope of geostatistical mod-
elling with the possibility of performing spatial design (Diggle and Lophaven, 2006),
outlier detection (O’Hagan, 2003), and model choice (Clyde and George, 2004) or model
assessment (Johnson, 2004) in a geostatistical setting. In this paper we illustrate how the
marginal likelihoodπ(y) can be approximated within our framework, provide approx-
imate strategies for Bayesian outlier detection, and perform approximate evaluation of
spatial experimental designs.

Another contribution of this paper is an improved approximation for prediction in spatial
GLMMs, going beyond our direct solution. While the direct approximation uses the joint
full posterior mode ofπ(x|y,θ) as the core in spatial prediction, the improved approxima-
tion usesπ(x−j|y, xj,θ), for fixedxj, when constructing the marginalπ(xj|y), see Rue
et al. (2007). Improvements become important at spatial locationsj where the direct ap-
proximation is slightly biased, typically near registration sites for the non-Gaussian data.
We study differences between direct and improved approximations, and MCMC results
in a sensitivity study.

The outline is as follows: In Section 2 we define the special case of spatial GLMMs con-
sidered in this paper. The proposed method of approximate inference and prediction is
described in Section 3, along with methods for spatial model choice, outlier detection and
spatial design. In Section 4 the direct approximation is applied to the Rongelap radionu-
clide dataset and a rainfall dataset from Norway. We describe the improved approximation
for spatial prediction in Section 5, and demonstrate the improved approximations on the
Lancashire infection dataset and the rainfall data in Section 6. The computational aspects
of our methods are postponed to the Appendix.

2 Spatial GLMM

Let x = (x1, . . . , xn)′ represent the latent field atn spatial sites. In an application with
binomial proportions data, this spatial variable would denote the latent risk or log odds
surface, while it would denote the latent log intensity surface for Poisson count data. We
denote the subset ofk sites where data is acquired byxs = (xs1 , . . . , xsk

)′ = Ax and the
k × n matrixA has entries

Aij = I(si = j) =

{
1 if si = j
0 else

, i = 1, . . . , k, j = 1, . . . , n, (1)

i.e. si is the latent field location index of measurementi. With n � k the matrixA
consists mostly of0 elements, but it has one1 value for each row / observation.

The spatial GLMM is specified by the following steps:

3



1. The latent variable is Gaussian withπ(x|β0,β,α) = N [x;1nβ0 + Hβ,Σ(α)],
whereβ0 is a constant term,1n a sizen × 1 vector of ones,H ann × p matrix of
covariates, andβ a p× 1 vector of regression parameters. Further,Σ = Σ(α) is a
positive definite covariance matrix withα indicating covariance model parameters.

2. The datay = (y1, . . . , yk)
′ have conditionally independent likelihoodπ(y|x) =∏k

i=1 π(yi|xsi
). The meanE(yi|xsi

) = f−1(xsi
), wheref(·) denotes the chosen

link function.

We use a Bayesian model with priors for model parametersπ(α)π(β0)π(β).

The regression parametersβ are important as they capture the variability in data caused by
explanatory variables. Many applications of GLMMs focus on estimatingβ, also called
the fixed effects. In some spatial applications the explanatory variables such as east, west
or altitude are not significant, and the trend surface is described using only the constant
termβ0. The residual (random effect) with zero mean and covarianceΣ is then of focus
for spatial modelling.

As a simple example of spatial covariance function we give the exponential defined by

Σh(α) = σ2 exp(−h/ν), α = (σ, ν), h =
√

h2
1 + h2

2, (2)

where(h1, h2) are the (North, East) distances between two spatial sites. Many other co-
variance functions are possible, such as the Matern types which are often recommended,
see e.g. Cressie (1993) and Stein (1999). We discuss this more general class of covariance
functions in an example in Section 4.1.

If π(β0) = N(µ, τ 2) the constant term can be integrated out to obtainπ(x|θ) = N(x;1nµ+
Hβ,C), C = 1nτ

21′
n + Σ, whereθ = (α,β). Computational advantages are possible

if the n sites are on a regular grid and wrapped on a torus. The covariancesΣ andC
are then block circulant matrices, see Appendix, and the fast discrete Fourier transform
(DFT) can be applied as an efficient computational tool. If the priorπ(β) is multivariate
Gaussian, the regression parametersβ can similarly be integrated out, but we then lose
the computational advantages with DFT sinceC is no longer block circulant.

The likelihood function can in general be written as

π(yi|xsi
) = exp[g(yi, xsi

)], i = 1, . . . , k. (3)

Certain restrictions apply for maintaining within the exponential family (McCullagh and
Nelder, 1989). For an exponential family and a canonical link functionf(·) we have

π(yi|xsi
) = exp{yixsi

− b(xsi
) + c(yi)}, i = 1, . . . , k, (4)

whereb(xsi
) =

df−1(xsi)

dxsi
is the cumulant function. For Poisson likelihodb(xsi

) = mi exp(xsi
),

for binomialb(xsi
) = mi log[1+exp(xsi

)]. Here,mi is a fixed parameter representing the
number of trials in the binomial and the time duration or aggregation interval in the Pois-
son distribution. This entails log link function for Poisson data, and logit link function for
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binomial data. We demonstrate our approximative methods for canonical link functions,
but consider a non-canonical link in Section 4.

The likelihood model could be extended to depend on other model parameters, not just
the latent variable. For instance, Poisson overdispersion, i.e. Var(yi|xsi

) = ξE(yi|xsi
),

ξ ≥ 1, can be obtained by a negative binomial likelihood

π(yi|xsi
, ξ) ∝ exp(log Γ(yi + λmi exp(xsi

))− log Γ(λmi exp(xsi
)) (5)

+ λmi exp(xsi
) log λ + (yi + λmi exp(xsi

)) log(1 + λ)), ξ =
1 + λ

λ

We then assign a prior toξ and add this parameter toθ. Other types of overdispersion are
possible, for instance the generalised Poisson distribution (Scollnik, 1995).

Note that our model looks at allx jointly and picks out the subsetxs in the likelihood
via theA matrix. Another view is to model onlyxs and then predict latent variables
at other relevant sites in a separate prediction step afterwards, see Zhang (2002). These
relevant sites for prediction may for example be on a grid covering the spatial region.
Both methods achieve the same goal when the latent field is Gaussian. We prefer to treat
them jointly here since this unifies prediction and inference in a one-step procedure, and
apply the computational advantages of DFT.

3 Approximate Bayesian inference

The core of our method is to use a Gaussian approximation at the mode of the conditional
densityπ(x|y,θ). The full conditional density of the latent spatial variable is

π(x|y,θ) ∝ exp{−1

2
x′C−1x + x′C−1(1nµ + Hβ) +

k∑
i=1

[yixsi
− b(xsi

)]}. (6)

The Gaussian approximation̂π(x|y,θ) is constructed by locating the mode of equa-
tion (6) using Newton–Raphson optimisation, and from fitting the covariance matrix
at this mode. At each iteration step we linearise the likelihood part of equation (6)
at a fixed value of the latent variablex0

s = Ax0. This involves linearising the cu-
mulant functionb(x0

si
) for eachi = 1, . . . , k. The Gaussian approximation becomes

N [x; µ̂x|y,θ(y,x0), V̂ x|y,θ(x0)]. The conditional covariance

V̂ x|y,θ(x0) = C −CA′R−1AC, R = ACA′ + P , (7)

whereP = P (x0
s) is diagonal with entriesPi,i = 1/b′′(x0

si
), i = 1, . . . , k, andb′′(x) > 0

for all x in our case. The conditional mean

µ̂x|y,θ(y,x0) = [C−1 + A′P−1A]−1[C−1(1nµ + Hβ) + A′P−1z(y,x0
s)],

= (1nµ + Hβ) + CA′R−1[z(y,x0
s)−A(1nµ + Hβ)], (8)

zi(yi, x
0
si
) = [yi − b′(x0

si
) + x0

si
b′′(x0

si
)]/b′′(x0

si
), i = 1, . . . , k. (9)
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The bottomost version in equation (8) is easiest in our case withn � k. For another
link function or the more general likelihood formulation in equation (3) these equa-

tions are modified to getPi,i = −1/g′′(yi, x
0
si
) andzi(yi, x

0
si
) = −g′(yi,x

0
si

)−x0
si

g′′(yi,x
0
si

)

g′′(yi,x0
si

)
,

g′′(yi, x
0
si
) < 0. Differentiation is here with respect toxsi

. After a few iterations we have
fitted the Gaussian approximation̂π(x|y,θ) at the argument of the posterior mode de-
noted bym̂x|y,θ, see Appendix. These Newton-Raphson calculations are similar to the
traditional ones used for generalised linear models (McCullagh and Nelder, 1989), except
the dimensionn is usually huge in our case. Nevertheless, effective computation based
on DFT applies to our case with block circulant prior covariance matrix, see Appendix.
This indicates that large problems of this common type can be handled with modest cost.

The quality of the Gaussian approximation depends on the particular situation. Intuitively
one would expect it to be quite good since it is fitted at the posterior mode. Further,
we have thatn � k and the smooth Gaussian prior has much influence. Problems would
occur if the likelihood under the general case is such thatg′′(yi, x

0
si
) ≥ 0, which indicates a

saddle point or non-positive definite covariance. For instance, a bimodal posterior appears
if g(yi, xsi

) = −(yi−x2
si
)2, since we cannot detect the sign ofxsi

from data. In the class of
spatial GLMMs such cases are excluded. If counts are very small, the likelihood is skewed
and the Gaussian approximation might have some bias. For large (repeated) counts the
central limit theorem applies to the likelihood and the approximation is better. We check
this aspect in a sensitivity study in Section 6.

3.1 Parametric inference usingπ(θ|y)

The posterior marginal for model parametersθ is

π(θ|y) =
π(y|x)π(x|θ)π(θ)

π(y)π(x|y,θ)
∝ π(y|x)π(x|θ)π(θ)

π(x|y,θ)
, (10)

which is valid for any value of the spatial variablex, for examplex = m̂x|y,θ, the
argument at the posterior mode for fixedθ. The challenging part of equation (10) is the
denominatorπ(x|y,θ) which we next approximate using the fitted Gaussian density. The
approximate density for the model parameters is then

π̂(θ|y) ∝ π(y|x)π(x|θ)π(θ)

π̂(x|y,θ)

∣∣∣∣
x=m̂x|y,θ

. (11)

Equation (11) is the Laplace approximation, see e.g. Tierney and Kadane (1986) who
show that for fixed dimensionn of variablesx, and dimensionk of observations increas-
ing, the relative error of this marginal density approximation isO(k−3/2), after renor-
malisation. Relative error can be advantageous, especially in the tails of the distribution.
Monte Carlo error, on the other hand, is additiveOp(B

− 1
2 ), whereB is the number of

Monte Carlo samples.

For spatial models of our type asymptotic results of orderO(k−3/2) are not that easily
established sincen � k, and even though we can use onlyxs = Ax in constructing
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π̂(θ|y), the dimension of the latent variable is of the order of the data. It is unclear which
type of asymptotics to use in this case, see Rue et al. (2007). A heuristic argument for the
approximation in our case goes as follows: The data are counts at each registration site and
can be considered as sums of several Bernoulli trials in the binomial case, or as a sequence
of small independent time duration events in the Poisson case. I.e. the count data are used
as repeated measurements. Hence, as these intervals or trials increase, the number of
data increases while the number of spatial sites remains constant, and the argument for
the Laplace approximation in equation (11) holds. Moreover, the non-Gaussian data have
influence for all sites in̂π(x|y,θ) via the smooth prior. Evidence for good quality of
the approximation is further provided in our examples below. See also Rue and Martino
(2006) and Rue et al. (2007) who used the Laplace approximation that we use here, but
with a Gaussian Markov random field and withk = n. Their examples show that the
Laplace approximation works well, even for very small counts.

The Laplace approximation has been used extensively in GLMMs, but mostly for approx-
imate integration over the latent variables (random effects) in marginal likelihood esti-
mation, and not so much for approximating posterior marginals, see Tierney and Kadane
(1986).

For frequentist models Vidoni (2006) provides an extensive overview with an example
of Gaussian random effects and GLMMs, particularly focusing on predicting future out-
comes. Ng et al. (2006) present methods for marginal and penalised quasi likelihood
inference along with bias correction techniques. They compare results with simulated
maximum likelihood where the latent variables are sampled from the density with the
current parameter estimate. This is an Expectation-Maximisation algorithm, which is
also applied in French and Wand (2004) who use the Laplace approximation in the expec-
tation step of their algorithm, see also Booth and Hobart (1999). French and Wand (2004)
use a small spatial example. Skaug and Fournier (2006) use the Laplace approximation
with automatic differentiation to find approximate maximum likelihood estimates with a
small spatial simulation example.

For Bayesian models the Laplace approximation can be used with Gaussian priors for
regression parameters in a GLMM setting, see Raftery (1996). Lewis and Raftery (1997)
use the Laplace approximation with a MCMC sampler to compute Bayes factors. In
Bayesian model choice the marginal likelihood is sometimes evaluated using an identity
similar to equation (11), see e.g. Chib (1995). Since the Gaussian approximation in the
denominator can then be quite poor, the common practice is to draw MCMC realisations
to approximate the denominator, see e.g. Chib (1995) and Hsiao et al. (2004). In our
case we use a Gaussian approximation for the full conditional ofx only, to calculate the
posterior marginal forθ, which is very different from fitting a Gaussian approximation to
x andθ jointly.

When computing the approximation in equation (11), we first locate the mode ofπ̂(θ|y)
and fit the dispersion from the Hessian. In the relevant domain of the sample space for
θ we then evaluate equation (11) for a regular set of parameter valuesθl, l = 1, . . . , L,
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normalised so that ∑
l

∆θπ̂(θl|y) = 1. (12)

In this equation∆θ is the cell volume in the defined grid forθ values. The approximate
marginal densities for elements ofθ can be obtained by summing out dimensions in the
grid of l = 1, . . . , L parameter values. Note that accurate such numerical approximation
of π(θ|y) requires quite small dimension ofθ. In our case we always use two parame-
ters of the covariance function, and we add a regression parameter for one explanatory
variable or a parameter for overdispersion. At most we get dimension three for the model
parameters and this is numerically tractable. The density functionπ̂(θ|y) could also be
approximated differently, for example by a parametric fit to the density or by numerical
quadrature (Press et al., 1996).

3.2 Spatial prediction usingπ(xj|y)

For approximate Bayesian spatial prediction we use marginalsπ̂(xj|y) =
∑

l π̂(xj|y,θl)π̂(θl|y),
j = 1, . . . , n. This is a mixture of Gaussian distributions where weights denote the ap-
proximate posterior for model parameters as presented in Section 3.1. The approximate
marginal means become

µ̂xj |y ≈
∑

l

m̂
xj |y,θl

π̂(θl|y), j = 1, . . . , n, (13)

where we pick elementj of the joint conditional mode. The approximate marginal vari-
ances are

V̂xj |y ≈
∑

l

V̂
xj |y,θl

π̂(θl|y) +
∑

l

(m̂
xj |y,θl

− µ̂xj |y)2π̂(θl|y), j = 1, . . . , n, (14)

whereV̂
xj |y,θ = V̂

xj |y,θ(m̂x|y,θ) denotes diagonal elementj of the conditional covari-
ance in equation (7), evaluated at the argument of the posterior mode. For these variance
terms we need to calculate the diagonal entries ofCA′R−1AC given by

(CA′R−1AC)jj =
k∑

i=1

k∑
i′=1

Cj,si
R−1

ii′ Csi′ ,j, j = 1, . . . , n. (15)

Block prediction (Cressie, 1993) is also possible using that any linear combination of el-
ements inx is Gaussian when the joint̂π(x|y,θ) is Gaussian. For a linear combination
b =

∑B
i=1 dixb,i = Dx for size1×n vectorD containing mostly zeros for small or mod-

erate blocks, we have thatπ̂(b|y,θ) = N(Dm̂x|y,θ,DV̂ x|y,θ(m̂x|y,θ)D′). Instead

of computing just diagonal elements of the posterior covarianceV̂ x|y,θ(m̂x|y,θ), we
must compute all the(B + 1)B/2 elements.
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3.3 Estimation of marginal likelihood π(y)

For assessing the model one often uses the marginal likelihoodπ(y), see e.g. Clyde and
George (2004). The marginal likelihood is given by

π(y) =
π(y|x)π(x|θ)π(θ)

π(θ|y)π(x|y,θ)
. (16)

This approximate marginal likelihood can be evaluated as the normalising constant re-
quired for computing the approximate densityπ̂(θ|y) in equation (11). We denote this
estimate of the marginal likelihood bŷπ(y). Recall that no Gaussian assumptions are
made forπ̂(θ|y), and hence equation (16) is not the Laplace approximation.

For spatial models one natural model assessment is related to the choice of covariance
function, another to the significance of explanatory variables.

3.4 Cross-validation for outlier detection

As a quality check of the data or the model one can use cross-validation. Zhang (2003)
points out that cross-validation is not useful for checking the covariance function. In this
Section we instead consider the prediction of data at one registration site conditional on
all other data, and use this for detecting outliers, see e.g. O’Hagan (2003).

Let y−i be the vector of all observations, butyi excluded. The approximate predictive
probability function or density

π̂(yi|y−i) =
∑

l

∫
xsi

π(yi|xsi
)π̂(xsi

|y−i,θl)π̂(θl|y−i)dxsi
, i = 1, . . . , k, (17)

is relevant for crossvalidation in this case. Note that the rightmost densities in equation
(17) are the Gaussian approximation and the posterior marginal for model parameters in
Section 3.1, but now calculated using the reduced datasety−i. When quality checking all
measurements, we recalculate these different approximationsk times in total.

Based on equation (17) we first compute theφ and1 − φ percentiles of the predictive
distribution, denotedcφ andc1−φ, respectively. We then tagyi as an outlier or gross error
if yi < cφ or yi > c1−φ. Typically φ = 0.01 or another small number, depending on the
application.

We solve equation (17) for anyyi by direct Monte Carlo integration with sampling from
π̂(xsi

|y−i,θl) for everyθl parameter.

3.5 Spatial design

The spatial design of registration sites is important for reliable spatial prediction and
for parameter estimation. For prediction spatial regularity is wanted, while some non-
regularity is useful for estimation of model parameters, see Diggle and Lophaven (2006).
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The objective in planning the spatial design is typically to minimise some criterion, most
notably the spatially integrated predictive standard deviation,

∑n
j=1

√
V(xj|y). Quite of-

ten there is some datay available, but it is debated whether one should purchase more
dataya, i.e. augment the dataset to improve prediction and make better decisions. This
entails selectingka extra sites in addition to thek registration sites that we already have.
Before this augmented dataset is acquired one can estimate, in a prospective setting, the
integrated predictive standard deviation as

I =
∑
ya

n∑
j=1

√
V(xj|ya,y)π(ya|y). (18)

Of course, for continuous dataya the outmost sum in equation (18) is replaced by an inte-
gral. This prospective design will always decrease the integrated predictive standard de-
viation, but two different designs, both of sizeka, will decrease it with different amounts.
The reduction could provide valuable insight when planning experiments.

We solve for the integrated predictive standard deviation in equation (18) by direct Monte
Carlo integration. Evaluation of design criterions is very hard to do with the standard tool
of MCMC since one would have to rerun the Markov chain for each new dataset. Clearly,
this shows an area of application for approximate Bayesian inference.

4 Examples of approximate inference

In the first example we demonstrate the accuracy of our fast approximate method by
comparing it with time consuming MCMC sampling. We also discuss model choice for
this example. The second example illustrates approximate Bayesian inference applied to
outlier detection and spatial design.

4.1 Rongelap dataset of radionuclide counts

We redo one of the examples used in Diggle et al. (1998). The data are made at a moderate
number of registration sites and the latent spatial variable is modeled by a stationary prior
distribution. The dataset consists ofk = 157 measurements ofyi = radionuclide counts
for various time durationsmi, i = 1, . . . , k. All 157 registration sites are displayed in
Figure 1. The data are modeled by a spatial GLMM with a Poisson distribution in equation
(4). No explanatory variables have been used previously for this dataset and we simply
assign hyperparameters for the constant termβ0. These areµ = 1.5, directly calculated as
the logarithm of all data scaled with the individual time intervals, andτ = 1. For the latent
spatial variable we construct a regular grid with interval spacing40m covering the island.
The gridsize is thenn1 = 103 (North) andn2 = 187 (East). Following Christensen et al.
(2006) we use an exponential covariance function, see equation (2). Alog link function
is used. We use a flat prior forθ = (σ, ν). We tested with other priors, but it did not have
much effect. We used about five-ten Newton-Raphson iterations to locate the mode of the
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Figure 1: Rongelap island with the 157 registration sites for observations of radionu-
clide concentrations. The selected prediction sites near registrered data and far away are
indicated by arrows.

Gaussian approximation̂π(x|y,θ), after which the machine precision is reached. This
optimisation and all evaluations associated with it takes about0.5 seconds of CPU time
using MATLAB code.

The set of parameter values defined in equation (12) coversσ ∈ {0.3, 1} and ν ∈
{50, 300} with L = 2500. The approximate densitŷπ(θ|y) is shown in Figure 2 (up-
per) along with marginalŝπ(σ|y) andπ̂(ν|y) in Figure 2 (lower, solid curve). Figure 2
(lower, dashed curves) displays estimates of the marginals using MCMC sampling. Since
the solid and dashed curves in Figure 2 (right) are hard to distinguish, the Laplace ap-
proximation appears to be very good. The MCMC sampler was an independent proposal
Metropolis–Hastings (MH) scheme defined by i) Proposingθ? from π̂(θ|y), ii) Proposing
x? from π̂(x|y,θ?), and iii) Accepting or rejecting them jointly.

In Figure 3 we show the marginal predictions in equation (13) and standard deviations
given by equation (14). We recognise the registration sites in the standard deviation map
and see that climb to about0.6 as one goes about500m away from these. Similarly, the
spatial predictions in Figure 3 (upper) are near the prior mean as we go away from the
island. The main trends are similar to the ones obtained by MCMC sampling in Diggle
et al. (1998). The direct approximation takes a few minutes to compute using MATLAB
code.

We go on to check the Gaussian approximation that we use for the latent variable via
π̂(x|y,θ). For this purpose we use importance sampling and MH methods. In both these
Monte Carlo methods we draw independent proposals from the Gaussian approximation
π̂(x|y,θ), keeping the parameter fixed atθ = (0.6, 152), regarded to be a likely parame-
ter value (Figure 2). We choose to evaluate the three approximations (direct Gaussian ap-
proximation, MH and importance sampling) at (North,East) coordinates(−1800,−600)
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Figure 2: Rongelap dataset. Upper) Direct approximation of posterior for parameters
θ = (σ, ν). Lower) Direct approximation of posterior marginals for standard deviation
σ and spatial correlation rangeν (solid). MCMC approximation of posterior marginals
(dashed).

and(−1850,−1000), see Figure 1. These two are chosen since they represent locations
near and far from registration sites. In Figure 4 (solid) we show the approximate densities
π̂(xj|y,θ), wherej correponds to these two spatial grid locations. Also displayed in Fig-
ure 4 are the approximations based on MH (dashed) and importance sampling (dotted).
We do not see clear discrepancies between direct approximation and Monte Carlo results,
for neither near nor far prediction site. Specifically we note that the results of direct
Gaussian approximate inference are hardly distinguishable from the Monte Carlo appro-
ximations. The small fluctuations in Figure 4 (solid and dashed) are caused by Monte
Carlo error. This error itself is larger than the differences between the direct approxima-
tion and the Monte Carlo estimates. Approximate inference is sufficiently accurate for
all practical purposes in this example. Possible bias effects are so small that it would
have no impact on the decisions made concerning this application. We hence use the
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Figure 3: Rongelap dataset. Upper) Predicted spatial variable. Lower) Marginal standard
deviation of spatial variable.

term ’practically sufficient’ for our approximation. The counts are large in this example,
ranging from75 to 21.000 with varying mi, and this might help us in constructing the
approximations. Nevertheless, a histogram of the data is very skewed and this example
has been used before to demonstrate non-Gaussian behaviour in spatial GLMMs (Diggle
et al., 1998).

The Monte Carlo algorithms used100.000 proposals. The acceptance probability of the
MH algorithm with joint updating ofθ andx was about0.8, indicating that the approxi-
mation is very good. In fact, this shows that the approximate posteriors have potential as
good proposal distributions in MH algorithms. But, then again, this is not needed, since
the direct approximation is very accurate. The Monte Carlo run requires several hours.
Further, this takes place after the good independent proposal distributionπ̂(θ|y)π̂(x|θ,y)
has been constructed with fast approximate methods. Importance sampling resulted in an
effective sample size of90.000, indicative of small variability in the importance weights
for different proposals. For the plotting of Monte Carlo approximations in Figure 4 we

split the sample space ofxj into 100 disjoint regions in the interval̂µ
xj |y,θ ± 4

√
V̂

xj |y,θ,

and thus created the estimated density curves (dashed and dotted).

We next study marginal likelihood valuesπ(y) for various spatial covariance functions.
For this purpose we implement the more general Matern class of covariance functions
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Figure 4: Rongelap dataset. Conditional densityπ̂(xj|y,θ) obtained by approximate
inference at two spatial locations and for parameter values fixed at (σ = 0.6, ν = 152m).
Solid is Gaussian approximation, dashed is approximation obtained by MCMC sampling,
and dotted is approximation from importance sampling.

which is defined by

Σh(σ, ν, κ) = σ2 τκK(τ, κ)

2κ−1Γ(κ)
, τ = ακh/ν, h =

√
h2

1 + h2
2, (19)

whereK(·, κ) denotes a modified Bessel function of orderκ andΓ(·) is the Gamma func-
tion. In equation (19) theακ parameter is set so that the correlation is approximately
0.05 at spatial distanceh = ν. The Matern family contains the exponential covariance in
equation (2) as a special case whenκ = 0.5, while it reduces to the Gaussian (squared
exponential) covariance function whenκ = ∞. We calculate the marginal likelihood
estimatêπ(y) in Section 3.3 for four different Matern covariance models. These models
are i) exponential covariance (κ = 0.5), ii) κ = 1, iii) κ = 2, and iv) Gaussian covariance
(κ = ∞). The difference in log marginal likelihood is5.6 when comparing the expo-
nential with case ii),9.9 when comparing the exponential with case iii), while it is19.6
in favour of the exponential over the Gaussian covariance. Hence, there is evidence of a
steep exponential decline in covariance at zero distance for this dataset.

We finally consider a different likelihood model of a negative binomial type, see equation
(5). If the additional overdisperionξ = 1, the variance equals the mean. We use an
exponential prior forξ with mean2, truncated at1. The maximum a posteriori estimate is
ξ = 3, i.e. Var(yi|xsi

) = 3E(yi|xsi
). Posterior5 percentile is1.5 and95 percentile is7.5.

The difference in log marginal likelihood is4 in favour of this model with overdispersion.
In this situation the results seem somewhat sensitive to the exponential prior forξ.
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4.2 Precipitation data in middle Norway

We study data of rainfall in September-October2006 in the middle part of Norway (Møre
and Romsdal, North Trøndelag and South Trøndelag). The data are number of rainy days
and the number of days in operation (mi = 61) for i = 1, . . . , 92 registration sites, see
Figure 5. The filled and open circles in this Figure indicate the proportion of rainy days at
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Figure 5: Precipitation data shown in a map of middle Norway. Filled circles are88
registration sites of rainfall, open circles are4 sites tagged as outliers. Sizes of circles
indicate the proportion of days with rain. Triangles are other registration sites used to
evaluate a spatial design of experiment.

each site. Each longitude is about47.5km and each latitude about114km in this area. Data
are available from the Norwegian Meteorological Insitute (http://www.met.no). Analysis
of such precipitation data are important for local weather forecasting and for operating
hydroenergy plants. Here we use these data as binomial counts.

We first try to explain the variability in the data using only a constant term and spatial cor-
relation in the latent variable. We use an exponential covariance function in this example,
with flat priors for rangeν and standard deviationσ. We tested with other priors without
much effect. The posterior mode ofπ̂(θ|y) is atσ = 0.3 andν = 35km. We define a

15



grid of L = 2500 parameter values around this mode. The hyperparameters forπ(β0) are
µ = 0.8 andτ = 1. Results are obtained with logit link. The difference in log marginal
likelihood is0.4 in favour of the logit link compared with the probit link.

We next consider adding the distance to the ocean as an explanatory variable. The95 cred-
ibility interval for the corresponding regression parameterβ1 is (−0.005, 0.004), which
means that the covariate ’distance to ocean’ is not significant. The log marginal likelihood
of 0.3 in favour of model with trend is not significant. Of course, other covariates could
provide better interpretation, especially for short forecasts, but these are not available to
us.

In the following we consider the model with logit link and no regression parameters. Four
of the sites in Figure 5 are displayed in open circles because they were tagged as outliers
using the method described in Section 3.4. For the south-easternmost of these sites (N=
62.9, E= 11.2) the registered number of rainy days is25 out of 61 days of operation.
Using Bayesian cross-validation based on all other data as in equation (17) we estimate
the lower and upper1 percentiles ofπ(yi|y−i) to be30 and50, respectively. Hence, it rains
too few days at this site and the observation is tagged as an outlier. Based on circle sizes in
Figure 5 this is reasonable as the surrounding sites have higher proportions of rainy days.
This result might indicate that the measurement at site (N= 62.9, E= 11.2) was a gross
error or that there exists local topology that is hard to capture by our model. Moreover,
the registration sites do not all use the same equipment for measuring precipitation, and
according to meteorologists there is a lower threshold on the amount some types can
measure on days with very little rain. For the other outliers: the site at (N= 64.2, E= 12.4)
also registered too few rainy days, while the sites at (N= 62.7, E= 8.4) and (N= 63.8,
E= 11.0) registered too many days with rain.

In Figure 5 six sites are displayed as triangles. These are sites that had much down-
time or did not registrer data in September-October2006. To illustrate spatial design for
this dataset we imagine what would have happened if these sites had been registrering
data. We then integrate out the data at these sites using equation (18). We also include
the outlier locations in this calculation, making the total of extra design pointska = 10.
Using only the original design points without outliers (k = 88 sites), we obtained a
spatially integrated standard deviation of18.68. When we include the outlier sites and
sites marked with triangles, the prospective integrated standard deviation decreased to
17.94. The integrated standard deviation is calculated based on a large regular grid of
prediction sites covering the region.

As an alternative we test another design also based onka = 10 extra registration sites.
For this other design we place five registration sites randomly within50km radius of both
site (N= 63.0, E= 10.3) and site (N= 63.8, E= 11.7). This type of infill design seems
advantageous in Diggle and Lophaven (2006). The prospective integrated predictive stan-
dard deviation with this design is17.85, which is slightly smaller than the one based on
the currently installed registration sites. Of course, this seemingly better spatial design is
perhaps not possible in practice for economical or political reasons. For decision-making
of this kind it might be more reasonable to study other criteria than the integrated predic-
tive standard deviation. For instance, the value of information (Polasky and Solow, 2001),
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referring to the cost of experiments and the revenue one could expect.

5 Improved approximation for π(xj|y, θ)

We illustrate a method for constructing a more accurate approximation toπ(xj|y,θ). The
improved version, denoted̃π(xj|y,θ), is valuable for two reasons: i) It is more accu-
rate than the direct approacĥπ(xj|y,θ), and ii) If it is indistinguishable from the direct
approximation, this verifies the direct one without Monte Carlo sampling, see Rue et al.
(2007)

The improved version is based on

π(xj|y,θ) ∝ π(y|x)π(x|θ)

π(x−j|xj,y,θ)
, j = 1, . . . , n. (20)

For the improved approximation we use a Gaussian approximation in the denominator of
equation (20). The improved approximate marginal, denotedπ̃(xj|y,θ), can be evaluated
at a set ofxj values and normalised. Note that this marginal is based on conditioning onxj

in equation (20), and using a Laplace approximation to cancel out the remaining variables
x−j. It is hence more accurate than the direct approach which fits a joint Gaussian for all
variablesx. In the choice of evaluation points forxj in equation (20) we are guided by

m̂
xj |y,θ and

√
V̂

xj |y,θ available from the direct Gaussian approximation.

We fit π̃(x−j|xj,y,θ) by introducing a fictitious measurementx̃j defined byπ(x̃j|xj) =
N(x̃j; xj, ζ

2), whereζ = 10−6, a very small number. In practice this means thatxj is
fixed at the value of the fictitious measurementx̃j. The approximation becomes

π̃(x−j|xj,y,θ) = π̃(x|z̃,θ), z̃ = [z(y, m̂xs|y,x̃j ,θ), x̃j], (21)

where the first part of̃z consists ofzi(y, m̂
xsi |yi,x̃j ,θ), i = 1, . . . , k, defined in equation

(9), but now with the latent variable at sitej fixed when setting the linearisation point
m̂xs|y,x̃j ,θ. We choose to evaluate equation (20) at the mean of the density in equation
(21) given by

µ̃x|y,θ = (1nµ + Hβ) + CÃ
′
R̃

−1
(z̃ − Ã(1nµ + Hβ)), R̃ = ÃCÃ

′
+ P̃ , (22)

where the matrices̃A andP̃ are

Ã =

[
A
aj

]
P̃ =

[
P 0
0 ζ2

]
, (23)

andaj is a 1 × n vector of zeros except for entryj which equals one. The mean in
equation (22) is computed efficiently using DFT whenC is a block circulant matrix,
see Appendix. The computationally demanding part of the improved approximation is
factorising the term involving(k + 1)× (k + 1) covariance matrix̃R.
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Recall that the improved approximatioñπ(xj|y,θ) is an additional calculation after the
direct Gaussian approximation has been fitted at the joint mode. The additional calcula-
tions are i) finding the conditional mean for fixedxj, see equation (22), and ii) evaluating
the approximate marginal in equation (20) at this conditional mean. Alternatively, we
could evaluate the improved approximation at the new conditional mode, but using the
mean is faster and could be as accurate (Hsiao et al., 2004). An improved approximation
for the marginalπ(xj|y) can be obtained by integrating out the model parameterθ, like
we did in Section 3.2.

6 Example of improved approximation

For illustrating the improved approximation we consider another example in Diggle et al.
(1998) and the rainfall data with different number of days. A goodness-of-fit (GOF)
criterion is used to compare the direct and improved approximations toπ(xj|y,θ). As the
’truth’ we use an approximation obtained by a very long MCMC run. Our GOF criterion
is based on splitting the sample space ofxj into 10 bins and comparing the percentage of
the various approximate densities that fall in each of these bins. We use

GOFa =
10∑

q=1

(F̂a,q − Fq)
2

Fq

, (24)

whereFq is the ’true’ percentage in binq estimated by MCMC sampling. Further,̂Fa,q

denotes the percentage in binq for approximationa, wherea indicates either direct or
improved approximation. Such a GOF criterion is an quantitative index for checking the
approximation, and can be used along with qualitative plotting. In traditional GOF tests a
similar statistic has a chi-square distribution with degrees of freedom equal to the number
of bins minus one. For reference we hence giveχ2

0.95 = 16.9 andχ2
0.99 = 21.6 as upper

percentiles.

6.1 Infections in Lancashire

The campylobacter infection data in Lancashire district consists ofk = 238 registration
sites, see Figure 6. The observationsyi = number of campylobacter infection out of
enteric infectionsmi, i = 1, . . . , k. Each observation is tied to a postal code at a spatial
registration site. The countsmi are small, ranging from1 to 13 in this example. The
infection data are modeled by a spatial GLMM with a binomial distribution in equation
(4). For the spatial latent variable we use a regular grid of sizen1 = 135, n2 = 224
covering the region. Following Diggle et al. (1998) and Steinsland (2007) an exponential
covariance function is used, see equation (2). We fix the hyperparameterθ = (σ, ν) =
(1, 50) in this example. This corresponds to quite likely parameter values (Steinsland,
2007).

In Figure 7 we show plots of the marginal density forxj at two different spatial locations
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Figure 6: Lancashire county with 238 registration sites for campylobacter infection. The
selected prediction sites near registrered data and far away are indicated by arrows.

j. The two locations are(49250, 35225) and(48250, 38000), see Figure 6, representing
near and far away from registration sites. Figure 7 shows three approximations to the
marginal densityπ(xj|y,θ) for each of the two locations. In Figure 7 (top), which dis-
plays results of a location only one grid cell (30m) from registration sites, we see that the
direct Gaussian approximation (solid) is slightly biased to the left, while the improved
approximation (crossed) and the MCMC approximation (dashed) are very similar. In this
case the improved approximation does have some effect on the approximate marginal.
Site j is near registration sites and there is much non-Gaussian influence. Hence, the
joint Gaussian at the mode does not capture all features of the marginal density. In Figure
7 (below), which displays results of a location about800m from the nearest registration
site, the three plots are almost identical. This indicates that the direct approximation is
accurate when there is less non-Gaussian influence, which is quite natural.

We use the GOF criterion in equation (24) to assess the quality of the approximations.
For the direct Gaussian approximation the GOF is13 (near site) and2 (far site). For the
improved approximation the GOF is0.33 (near site) and0.2 (far site). This tells us that the
improved approximation gets only slightly worse as we move close to registration sites,
while the quality of the direct approximation is poorer with a6 times increase in GOF.

In this example the direct Gaussian approximation is again ’practically sufficient’, mean-
ing that for most purposes the moderate GOF values and the slight differences between
the solid and dashed curves in Figure 7 have no effect. The improved approximation has
very small GOF values and lies almost on top of the Monte Carlo solutions. We say that
the improved approximation is ’practically exact’, meaning that MCMC methods can-
not detect any possible differences between the improved approximation and the exact,
unknown solution.
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Figure 7: Lancashire dataset. Conditional densityπ(xj|y,θ) obtained by approximate
inference at two spatial locations and for parameterθ fixed at (σ = 1, ν = 50m). Solid is
direct Gaussian approximation, crossed is improved Gaussian approximation, and dashed
is approximation obtained by MCMC sampling.

6.2 Precipitation data in middle Norway

We re-analyse the rainfall data from Section 4.2. The number of trials,mi, i = 1, . . . , k,
in the binomial distribution is now varied from61 (two months), to14 (two weeks), and
to 2 (two days). We study the quality of the approximations toπ(xj|y,θ) for one sitej
that is near registration sites and one far from registrered data. The far site is at longitude
14.1 and latitude65.1, i.e. about66 km from registration sites, while the near site is
at longitude10.6 and latitude63.4, i.e. about8 km from the nearest registration site.
Finally, we choose two different sets of the parametersθ. These are i) rangeν = 22km
and standard deviationσ = 0.37 which is a parameter proximal to the mode from Section
4.2. ii) ν = 260km andσ = 0.54 which is a more distal parameter value.

In Table 1 we summarise the GOF criterion in equation (24) for the direct (left) and
improved (right) approximations. We see that the quality of the approximations decreases
as the number of days gets smaller. Nevertheless, the improved approximation stays very
good and is ’practically exact’. The direct approximation also has small GOF values, but
seems not so good for the two-day case with a GOF of44 for the near site. Yet, a visual
inspection looks very similar to the one in Figure 7 and we still claim that the direct
approximation is ’practically sufficient’. For the dataset with only two days there are3
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Table 1: Rainfall dataset. The direct approximation (left) and the improved approximation
(right) are compared with a long-run MCMC solution using the goodness-of-fit criterion.

Direct Gauss Improved Gauss
Near site Far site Near site Far site

m=61 Proximalθ 2.8 1.5 0.12 0.07
m=61 Distalθ 4.1 1.7 0.71 0.11
m=14 Proximalθ 20 13 0.28 0.12
m=14 Distalθ 19 7.5 1.2 0.22
m=2 Proximalθ 44 35 0.67 0.45
m=2 Distalθ 44 16 2.2 0.69

registration sites with no rain,28 with one day of rain, and61 with two days of rain.

For all cases in Table 1 the far-site approximations are better than the near-site ones. This
is caused by the skewed non-Gaussian data at registration sites. As we move away from
registration sites the smooth Gaussian prior has more influence.

For the direct approximation there seems to be no effect of proximal or distal parameter
valuesθ. For the improved approximation we notice that the approximations with prox-
imal parameters are always better. This might be due to a skewed trueπ(xj|y,θ), while
we use a Gaussian approximationπ̃(xj|y,θ). For distal parameters this Gaussian appro-
ximation might not be accurate enough and we could consider using morexj-values to fit
a non-Gaussian approximation. This last issue requires more research.

7 Conclusions

In this paper we present fast Bayesian approximations of posterior marginals for a very
common geostatistical model with a latent Gaussian field. The approximations are accu-
rate for non-Gaussian data, deterministic and fast to compute since they are based on DFT
calculations. We formulate two methods for approximate predictive inference. The first
is ’practically sufficient’ in all examples we studied, meaning that for purposes regard-
ing decisions or model assessment the approximation is accurate enough. The improved
version, which provides a correction to the first approximation, is ’practically exact’ in
all examples we studied, meaning that we only confirmed the approximation when us-
ing very long MCMC simulations. In our opinion one would have to run Markov chains
for very much longer than is typically done to verify any possible bias of the improved
version. Moreover, our methods of approximate inference allow us to perform high-level
inference tasks such as outlier detection and spatial design.

The core of the approximations is a Gaussian approximation to the full conditional for la-
tent spatial variable. If the likelihood has a shape that induces a bimodal full conditional,
the approximations will not work. Similarly for likelihood models that do not allow us to
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fit a positive definite covariance. For data with small counts the approximations become
slightly worse, but remain accurate because of the smooth Gaussian prior which in prin-
ciple means borrowing data from all registration sites. Approximate predictions are more
accurate far from registration sites. Near registration sites we recommend trying the im-
proved version. If this is very similar to the direct one, we trust the direct approximation
also when we go further from registration sites.

We briefly discuss the computational costs and limitations. Ifk becomes very large, say
k > 5000, the computational cost of matrix inversion seems too high. The dimension
of the parameterθ is a limitation of the method. If there exists several explanatory vari-
ables, numerical integration is not tractable and more research is needed to provide good
Bayesian solutions in this case. See Rue et al. (2007) for some tentative results in this
direction.
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A Appendix

A.1 Stationary Gaussian prior distribution on a regular grid

Letx = (x1, . . . , xn)′ be a Gaussian variable represented on a regularn1×n2 grid,n = n1n2. We
refer to then1 × n2 matrix xm = (xm

0,0, x
m
0,1, . . . , x

m
n1−1,n2−1) as the matrix associate of length

n vectorx. The covariance matrixC is defined by the covariance betweenxm
0,0 and all other

variables as they are positioned on a torus. In this wayC is a block circulant covariance matrix,
and we arrange then covariance entries in ann1 × n2 matrix which we denotecm. We further
collect then eigenvalues ofC in ann1 × n2 matrix λm = dft2(cm) (Gray, 2002). Here dft2
denotes the two dimensional discrete Fourier transform, i.e.

dft2(cm)j′1,j′2 =
n1−1∑
j1=0

n2−1∑
j2=0

cm
j′1,j′2

exp[−2πι(
j1j

′
1

n1
+

j2j
′
2

n2
)], j′1 = 1, . . . , n1, j

′
2 = 1, . . . , n2,

(25)
with ι =

√−1. The determinant ofC is the product of all entries inλm. We denote by idft2(dm)
the two dimensional inverse discrete Fourier transform ofn1 × n2 matrixdm.

Consider first matrixC multiplied with lengthn vectorv. Then1× n2 matrix associate of vector
w = Cv can be evaluated by

wm = Re{dft2[dft2(cm)� idft2(vm)]}, (26)

where� represents elementwise multiplication. Further,w = Cav is given by

wm = Re
(
dft2{[dft2(cm)]?a � idft2(vm)}) , (27)

where[·]?a means taking every element to the power ofa. This last relation is useful for evaluation
and sampling (Rue and Held, 2005). Forevaluationof the quadratic form we use thatv′C−1v =
v′w, wherewm is evaluated in equation (27) witha = −1. For samplingwe let vm denote
a n1 × n2 matrix of independent variables with mean0 and standard deviation1. A variable
w ∼ N(w; 0, C) can be obtained via its matrix associate using equation (27) witha = 1/2
(Chan and Wood, 1997).

A.2 Conjugate Gaussian posterior distribution:

Suppose we have prior distributionπ(x) = N(x; µ, C), µ = 1nµ0, and likelihoodπ(z|x) =
N(z; Ax, P ), z = (z1, . . . , zk)′, whereA denotes the sparsek × n matrix of 0s and1s in
equation (1) and assume thatn � k. The posterior isπ(x|z) = N(x; µx|z , V x|z), where

µx|z = µ + CA′R−1(z −Aµ), V x|z = C −CA′R−1AC, R = ACA′ + P . (28)

The mean is efficiently computed using equation (26) which now reads

µx|z = µ + u, um = Re{dft2[dft2(cm)� idft2(tm)]}, (29)

andtm is the matrix associate oft = A′R−1(z −Aµ) calculated by

tj =

{ ∑k
i′=1 R−1

i,i′(zi′ − µ0) if si ∈ j

0 else
, i = 1, . . . , k, j = 1, . . . , n, (30)
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using the properties ofk × n matrixA. The matrix inversion in equation (30) is fork × k matrix
R andk is of moderate size.

Forevaluationof this posterior we can use that

π(x|z) =
π(z|x)π(x)

π(z)
, π(z) = N(z; Aµ, R). (31)

The prior is evaluated using the relationship following equation (27), while the other expressions
only involvek × k matrices and with moderatek these are fast to evaluate. We cansamplefrom
the posterior as follows: i) Draw a sample from the unconditional density,v ∼ N(v; µ, C) using
the relationship following equation (27). ii) Draw a samplew ∼ N(w; z, P ). iii) Set

x = v + CA′R−1(w −Av) = v + u, (32)

whereu is computed from its matrix associate using equation (26). Taking the mean and covari-
ance of this expression, we get the correct values in equation (28).

Note that DFT isO(n log n), while the matrix inversion isO(k3). Finding all conditional variance
components isO(nk2), and the most time consuming part for us withn ∼ 10000, k ∼ 100.

A.3 Newton-Raphson optimisation for non-Gaussian likelihood:

For the case with non-Gaussian likelihood we find the posterior mode ofπ(x|y, θ) for fixedθ by
iterative linearisation using the Newton-Raphson algorithm. This is identical to repeated use of
equation (29) along with re-setting the transformed measurementz in equation (9) and diagonal
k × k matrix P to account for the non-Gaussian likelihood. The iteration is initiated at a fixed
linearisation pointx0

s.

Let x1
s denote the approximate posterior mean in equation (29) obtained by one Newton-Raphson

iteration. Define a new transformed measurement byz = z(y, x1
s) as in equation (9) andP =

P (x1
s). Use thisz andP to compute a new posterior meanx2 in equation (29). This iterative

process continues until reaching the argument at the posterior mode denoted bym̂x|y,θ.

A.4 Evaluation of the Laplace approximation:

We evaluate the approximate Gaussian posteriorπ(x|y, θ) using Bayes formula in a similar man-
ner as in equation (31). This gives

π̂(x|y, θ) = N(x; m̂x|y,θ, V̂ x|y,θ) =
π̂(z|x, θ)π(x|θ)

π̂(z|θ)
, z = z(y, m̂xs|y,θ), (33)

whereπ̂(z|θ) = N(z; Aµ, R), π̂(z|x) = N(z; Ax, P ). Thek × k matricesR andP are now
evaluated at the argument at the posterior modem̂x|y,θ from the last Newton-Raphson step. For
the Laplace approximation in equation (11) this means that

π̂(θ|y) ∝ π(y|x)π(x|θ)π(θ)
π̂(x|y, θ)

=
π(y|x)π(θ)π̂(z|θ)

π̂(z|x, θ)
, z = z(y, m̂xs|y,θ). (34)

The expression only involvesk × k matrices and with moderatek these are fast to evaluate.
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Abstract

In this report we apply Integrated Nested Laplace approximation (INLA) to a se-
ries of multivariate stochastic volatility models. These are a useful construct in finan-
cial time series analysis and can be formulated as latent Gaussian Markov Random
Field (GMRF) models. This popular class of models is characterised by a GMRF as
the second stage of the hierarchical structure and a vector of hyperparameters as the
third stage.

INLA is a new tool for fast, deterministic inference on latent GMRF models
which provides very accurate approximations to the posterior marginals of the model.
We compare the performance of INLA with that of some Markov Chain Monte Carlo
(MCMC) algorithms run for a long time showing that the approximations, despite
being computed in only a fraction of time with respect to MCMC estimations, are
practically exact.

The INLA approach uses numerical schemes to integrate out the uncertainty with
respect to the hyperparameters. In this report we cope with problems deriving from
an increasing dimension of the hyperparameter vector. Moreover, we propose differ-
ent approximations for the posterior marginals of the hyperparameters of the model.
We show also how Bayes factors can be efficiently approximated using the INLA
tools thus providing a base for model comparison.

1 Introduction

1.1 Stochastic volatility models

Financial time series, such as stock returns and exchange rates, present often a non station-
ary volatility. Volatility is not directly observable in the financial markets, but presents
some characteristics which are commonly seen in asset returns. For example, it shows
clusters over time, that is there are period of high volatility followed by periods of low
volatility. Moreover, it is often stationary and evolves in time in a continuous manner,
that is volatility jumps are rare. A typical time series of financial data is represented in
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Figure 1. The data are a time series of log-returns of pound-dollar daily exchange rates
from October 1st, 1981 to June 28th,1985. In Figure 1 are clearly visible the time varying
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Figure 1: Log-returns of Pound-dollar daily exchange rate from October 1st, 1981 to June
28th,1985.

nature of the volatility and the presence of clusters, for example in the right side of the
plot.

The issue of modelling returns accounting for time varying volatility has been widely
analysed in the literature. A common model used for returns is defined as:

yt = σtεt, εt ∼ IID(0, 1) (1)

In (1), εt, t = 1, . . . is a series of uncorrelated standardised random variable often (but
not necessarily) assumed to be Gaussian, andσt is the time varying volatility. Model (1)
could easily be generalised to allow for a non zero mean. Anyway, for asset returns the
behaviour of the conditional mean is, usually, relatively simple, in most cases it is just a
constant. Hence, we consider only mean-centred series.

A popular way to look at volatility, is to consider it as a non observed random variable
and model its squared logarithm,ht = log σ2

t , as a linear stochastic process, for example
an autoregressive model of order 1 (AR1),

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N (0, 1/τη) (2)

These kind of models, named stochastic volatility (SV) models, were introduced among
others by Taylor (1986) and since then have received much attention. Compared to the
other class of models for time varying volatility in finance time series, the generalised
auto regressive conditional heteroscedasticity (or GARCH) models, SV models are more
sophisticated and present some theoretical advantages. GARCH models treat the volatility
as a deterministic function of previous observation and past variances, so that the one step
ahead forecast is fully determined. The additional error term makes the SV models more
flexible than the GARCH ones, see for example Kim et al. (1998). Moreover SV models
represent the natural discrete time versions of the continuous time models upon which
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much of modern finance theory has been developed. SV models allow for the excess
positive kurtosis which is often observed in asset returns and for volatility clustering.
Conditions for stationarity of the volatility time series are also easily determined.

The main drawback of SV models is that they are difficult to estimate. Unlike GARCH
models where the covariance structure at timet is known given the information up to time
t − 1, the conditional variance is unobserved in SV models. Hence, SV models do not
have a closed form for the likelihood function. Maximum likelihood estimation is not
possible and, therefore, they require a more statistically and computationally demanding
implementation. Another way to understand the difficulty in estimating SV models is to
notice that for each datayt the model uses two innovations,εt andηt, instead of just one
as in the GARCH model.

Several estimation methods have been proposed for the SV models. They range from the
less efficient generalised methods of moments (Andersen and Sorensen, 1996), and quasi
likelihood method (Harvey et al., 1994) to more efficient methods such as simulated max-
imum likelihood (Danielsson, 1994) and Markov Chains Monte Carlo (MCMC). Much
attention has been devoted to the development of efficient MCMC algorithms for SV
models, e.g. Chib et al. (2002), and Shephard and Pitt (1997), since MCMC is considered
one of the most efficient estimation tools, see Andersen et al. (1999).

1.2 Multivariate Stochastic Volatility Models

There are several reasons, both economical and econometric, why multivariate volatility
models are important. Financial assets are clearly correlated and the knowledge of such
correlation structures is vital in many financial application such as asset pricing, optimal
portfolio risk management, and asset allocation. Compared with their univariate coun-
terpart, multivariate models for financial assets have to be able to capture some more
features than those mentioned in Section 1.1. Both returns assets and volatility can be
cross-dependent. Moreover, volatility can spill over from one market to another so that
the knowledge about one asset can help predicting another one. This form of dependency
is known as Granger causality.

Multivariate versions exist both for GARCH and SV models. Multivariate GARCH mod-
els enjoy a voluminous literature, see, for example Bauwens et al. (2006) for a review.
Even though multivariate stochastic volatility (MSV) models have a number of advan-
tages over multivariate GARCH models, the literature on MSV is more limited. This is
due to the fact that MSV models pose a series of serious challenges in formulation, estima-
tion and testing. Not only, in fact, they suffer from the inherent problems of multivariate
models, such as the high dimensionality of parameter space and the required positive def-
initeness of covariance matrices but, as for their univariate version, the likelihood has no
closed form. There is, however, an increasing interest in MSV models as showed, for
example, by Vol. 25 of Econometric Review completely devoted to these models.
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1.3 Latent Gaussian Models and Approximate Inference

SV models, as in (1) and (2), and their multivariate counterpart, belong to the larger family
of latent Gaussian models. These are a very common construct in statistical analysis and
assume a latent Gaussian fieldx = {x1, . . . , xn} to be indirectly observed throughnd

conditional independent datay. The covariance matrix of the latent Gaussian field and,
possibly, the likelihood are governed by a set of hyperparameters,θ = {θ1, . . . , θM}. We
use a Bayesian approach by considering the hyperparameters as random variables with
prior densityπ(θ). The goal of the inference is, in general, the posterior distribution

π(x,θ | y) ∝ π(θ) π(x | θ)
∏

t

π(yt | xt,θ).

This is used both for parameter estimation and for filtering or prediction of the latent field.

We are concerned with models where the latent Gaussian field admits conditional inde-
pendence properties, hence it is a Gaussian Markov random field (GMRF). MCMC is
the standard tool for inference in such models. It is, however, not without serious draw-
backs. The often large dimension of the latent field, the strong correlation withinx and
betweenx andθ, are all possible causes for slow convergence and poor mixing. Block
update strategies have been developed aiming to overcome such problems, see for exam-
ple Knorr-Held and Rue (2002) and Rue et al. (2004). Nevertheless in most cases MCMC
algorithms remain very slow.

Rue and Martino (2006) and Rue et al. (2007) propose a deterministic alternative, named
Integrated Nested Laplace Approximation (INLA), to MCMC for inference on latent
GMRF models. INLA allows fast and accurate approximations to the posterior marginals
for xt and posterior distribution forθ. In the INLA approach, the posterior distribution of
the hyperparameters is approximated as:

π̃(θ | y) ∝ π(x,θ|y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

(3)

In (3), π̃G(x|θ,y) is a Gaussian approximation to the full conditional for the latent fieldx,
andx?(θ) is the modal value ofπ(x|θ,y). Posterior marginals for the hyperparameters
π̃(θm|y) can, in principle, be easily fund via numerical integration of (3). This becomes
more involving if the dimension ofθ is large, say above4.

For the posterior marginals of the latent field Rue et al. (2007) propose to use

π̃(xt | y) =
∑

k

π̃(xt | θk,y) × π̃(θk | y) × ∆k. (4)

where the sum is overθ with area-weights∆k, π̃(xt|y,θ) is an approximation to the
density ofxt|y,θ and,π̃(θk | y) is the approximation in (3). The dimensionality of the
sum in (4) depends on the length of vectorθ. The approximatioñπ(xt|y,θ) can either be
the Gaussian marginal derived fromπG(x|y,θ) or an improved version.
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Using INLA it is also possible approximate the marginal likelihoodπ(y) as the normal-
ising constant of (3):

π̃(y) =

∫
π(x,θ|y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

dθ (5)

The marginal likelihood is a useful quantity for assessing statistical models, see e.g Clyde
and George (2004) and Kadane and Lazar (2004). Bayes factor is computed as the ratio
of π(y) for two competing models, therefore efficient computation of marginal likelihood
becomes important in model choice.

The computations used in INLA are based on sparse matrix calculations which are much
faster that dense matrix ones. The main advantage of INLA over MCMC is computa-
tional: results can be obtained in seconds and minutes instead of hours and days. Also,
INLA can easily be parallelised and automated.

Rue and Martino (2006) and Rue et al. (2007) provide several examples of applications of
INLA for various GMRF models comparing it with long MCMC runs. Their conclusion is
that INLA totally outperforms MCMC for both accuracy and speed. Eidsvik et al. (2006)
apply the same ideas to geostatistical models, using a different computational approach
based on fast discrete Fourier transform for block circulant matrices.

One of the examples used by Rue et al. (2007) to illustrate the performance of INLA is
a univariate SV model similar to the one in (1) and (2). In this report we apply INLA
to estimate marginal posterior densities for some multivariate SV models. We compare
the INLA performance with that of some MCMC algorithms. The main challenge with
multidimensional models is the increasing dimension of the hyperparameter vectorθ.
This, in fact, makes the numerical integration procedures more costly. In this report we
verify the CCD integration scheme proposed in Rue et al. (2007) which reduces the cost
of numerical integration and propose different way to approximateπ(θm|θ). We also
propose two different approximations for the marginal likelihood,π(y), and use them as
basis for model comparison.

1.4 Plan of the report

Section 2 presents the univariate and multivariate SV models we are interested in, and
discusses the choice of prior distributions forθ. Section 3 contains preliminaries about
GMRF, the Gaussian approximationπG(x|y,θ) to the full conditional ofx, and the ap-
proximation forπ(θ|y). Section 4 presents the INLA approach to computeπ̃(xt|y). Two
approximations forπ(xt|y,θ) are described. In Section 4 we describe how to approxi-
mate the marginal likelihoodπ(y), and how it can be used to compare models. Examples
of applications are presented in Section 6. The problem of approximating marginal poste-
riors for each hyperparameterπ̃(θm|y), is discussed in Section 7. Section 8 explains how
INLA can be applied to asymmetric stochastic volatility models. We end with discussion
in Section 9.
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2 Model description and choice of the prior distribution

Most financial studies involve returns of assets instead of their prices. Campbell et al.
(1997) give two main reasons for using returns. First, for average investors, the return is
a complete and scale free summary of the investment. Secondly, returns series are easier
to handle than price series because the former have more attractive statistical properties.
In the literature, there are several definitions of assets returns. LetPt indicate the price
of the asset, or the exchange rate, at timet. The simplest return is called “simple gross
return”, and defined as

1 + Rt =
Pt

Pt−1

In this report we use the continuously compounded return, orlog-return defined as:

yt = log(1 + Rt) = log
Pt

Pt−1

Continuously compounded returns enjoys more tractable statistical properties than simple
gross returns, see for example Ruppert (2004).

In this section we describe some SV models (both univariate and multivariate) for log-
returns and report some considerations about parametrisation. Finally, we discuss the
choice of the prior distribution forθ.

2.1 Univariate Models

Let the series of interest,y = {y1, . . . , yn}, be made up of a white noise process, with
unit variance, multiplied by a time dependent factorσt, the standard deviation. In a SV
model the logarithm of the standard deviation,ht = log(σt) is unobserved and modelled
as a linear stochastic process. A simple, and often used, model forh = {h1, . . . , hn} is
an auto regressive process of order 1 (AR1). The model is then defined as:

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ N (0, 1) (6a)

ht = µ + φ(ht−1 − µ) + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/τ). (6b)

with |φ| < 1 to ensure stationarity of the process. The parameterφ is sometimes called the
persistence parameter. We impose a Gaussian prior to the mean parameter of the latent
process,µ ∼ N (0, 1/τµ). Hence, by computing the joint densityπ(h1, . . . , hn, µ), the
mean parameter can be included in the latent field. We prefer to include the meanµ in the
latent field instead of in the vector of hyperparametersθ because this is computationally
more convenient.

An alternative parametrisation for the SV model in (6) is

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ N (0, 1/κ∗). (7a)

ht = φ∗ht−1 + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/τ ∗). (7b)
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with |φ∗| < 1 to ensure stationarity. This second parametrisation is used, for example in
Durbin and Koopman (2000) and Rue et al. (2007).

The two parametrisation are equivalent since we can writelog(κ∗) = −µ, so that the
precision term in the likelihood of model (7) corresponds to the mean term of the latent
Gaussian files in model (6). The main difference between the two lies in the number of
hyperparameters. While model (6), has two hyperparameters,(φ, τ), model (7) has three,
(φ∗, τ ∗, κ∗). If we use MCMC for inference no big advantage can derive from choosing
one or the other. On the other side, in the INLA approach model (6) is preferable since the
parameter space is of lower dimensionality. The difference in the hyperparameter space
dimensionality between the two parametrisation becomes bigger in the multivariate case.
Hence, we parametrise multivariate models in a way similar to (6).

The distribution ofεt in equations (6a) and (7a) does not necessarily have to be Gaus-
sian. If extra kurtosis is needed, we can choose, for example a Student-t distribution
with unknown degree of freedomν. In such case, the dimension of the hyperparameter
space becomes 3 and 4 in model (6) and (7) respectively. Considerations regarding the
parametrisation hold in exactly the same way.

2.2 Multivariate Models

We describe five different models for multivariate SV as introduced in Yu and Mayer
(2006). We focus on the bivariate case but all models presented are amenable to a multi-
dimensional generalisation.

Let I denote the bidimensional unit matrix. Let the observed log-returns at timet, our
data, be denoted byyt = (yt1, yt2)

T , for t = 1, . . . , n. Let εt = (εt1, εt2)
T , ηt =

(ηt1, ηt2)
T , µt = (µt1, µt2)

T andht = (ht1, ht2)
T . Moreover let

Φ =

(
φ11 φ12

φ21 φ22

)
, Σε =

(
1 ρε

ρε 1

)
,

Ση =

(
1/τη1 ρη/

√
τη1τη2

ρη/
√

τη1τη2 1/τη2

)
, Ωt =

(
exp(h1t/2) 0

0 exp(h2t/2)

)
,

In all model considered here we do not use a stationary distribution forht, rather we
assumeh0 = µ.

Model 1 (Basic MSV)

This is the simplest generalisation of the univariate model in (6). It is equivalent to stack-
ing two independent univariate SV models together. The two series are then analysed
independently from each other:

yt = Ωtεt, εt ∼ N (0, I)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))
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This model allows for leptokurtic returns distribution and volatility clustering. However,
it does not allow for correlations across returns or across volatility.

Model 2 (Constant correlation MSV)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

This is similar to the multivariate ARCH model proposed by Bollerslev (1990). The
returns are correlated but no cross-correlation of the volatility is allowed.

Model 3 (MSV with Granger causality)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + Φ(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

With φ12 = 0. This model was first proposed by Yu and Mayer (2006). It allows the
second asset to be Granger caused by the the volatility of the first asset. Volatilities are
therefore cross-correlated. The correlation between returns is due to both Granger causal-
ity and volatility clustering. The model allows alsoφ12 6= 0. In such case a bilateral
Granger causality between the two assets is allowed, we do not take this case into consid-
eration.

Model 4 (Generalised constant correlation MSV)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0,Ση)

This model was studied by Harvey et al. (1994) and Danielsson (1998) who used respec-
tively the quasi likelihood and the simulated maximum likelihood methods for estima-
tion. Both returns and volatility are correlated. Clearly, both model 3 and 4 can generate
cross-dependence in the volatility, using two different generating mechanisms. Which
specification is more appropriate is an interesting question which goes beyond the scope
of this report.

Model 5 (Heavy-tailed MSV)

There is some evidence that financial data have heavier tails than those resulting from
inserting conditional heteroscedasticity in a Gaussian process. This extra kurtosis can be
introduced by using a Student-t distribution instead of a Gaussian in the returns model.
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In a univariate context a Student-t distribution is used, for example, in Chib et al. (2002)
while in the multivariate SV context it was first used by Harvey et al. (1994) .

yt = Ωtεt, εt ∼ t(0,Σε, ν)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

In this model the volatilities are uncorrelated but cross-dependencies in the returns are
allowed. It would have been possible to use a different generalisation of the univari-
ate Student-t distribution in a multivariate context, that is assume each variable to be a
Student-t with its own degree of freedom. However, according to Yu and Mayer (2006)
this model performs empirically worse that the one presented above.

2.3 Choice of prior distributions

In a Bayesian framework, the hyperparameters of the model are considered random vari-
ables and assigned a prior distributionπ(θ). In this section we discuss prior choice for
the hyperparameters of the bivariate models presented in Section 2.2. The same consider-
ations hold also for univariate models.

In all models considered we assume a Gaussian prior for the mean parameterµ so that,
by computing the joint density ofx = (h1, . . . ,hn,µ), it can be included in the latent
field. The remaining hyperparameters can be divided into two groups: parameters in the
mean equation(ρε, ν) and in the variance equation(φ11, φ12, φ22, ρη, τη1 , τη2).

For computational reasons, it is convenient, when applying INLA, that all hyperparam-
eters are defined over the whole real line. Hence, when the original parameters in the
model are constrained, we consider a function of them.

We start by defining priors for the hyperparameters in the variance equation. We want the
volatility time series to be stationary. This holds if the roots of diag(I −Φz) lie outside
the unit circle. For theΦ matrix in Model 4 this corresponds to|φ11| < 1, |φ22| < 1 and
φ21 ∈ R. We choose a Gaussian prior forφ21. As for the two persistence parameters
φ11 andφ22, we note that in a univariate AR1 model with persistence parameterφ > 0,
the autocorrelation decays likeφκ, whereκ > 0. Define the range of the time series as
the distance where the autocorrelation drops belowα = 0.05. That isκ = log α/ log φ.
The range has a ”physical” meaning, therefore it is usually easier to interpreter than other
parameters. We define, hence, the range of our two time series asκ1 = log α/ log φ11 and
κ2 = log α/ log φ22 and assign each an exponential prior distribution.
A popular choice for the prior of the precision parametersτη1 andτη2 , is Gamma(a, b),
with meana/b and variancea/b2. We choose a quite vague prior witha = 0.25 and
b = 0.025.
The correlation parameterρη is constrained in the interval[−1, 1]. Consider the function

f(x) = logit

(
x + 1

2

)
; x ∈ [−1, 1]

which assumes values over the whole real line. We choose a Gaussian prior for parameter
ρ∗η = f(ρη) with precision0.4. This choice of the precision corresponds, roughly, to a
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uniform prior in[−1, 1] for the correlation parameterρη. A smaller value for the precision
corresponds to a less vague prior forρη. In fact, the distribution ofρη derived from a
vague Gaussian prior onρ∗η assigns most of the probability mass to values close to−1 or
1. A larger precision, on the other side, results in a prior forρη which assign most of the
probability mass to values closer to 0, see figure Figure 2.
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Figure 2: Distribution ofρη derived from a Gaussian distribution onρ∗η with different
values of the precision.

We treat the correlation in the mean equationρε in a similar way. Finally, for the degree
of freedom for the student-t distributionν, we considerν∗ = log(ν − 2) and assign a
Gaussian prior toν∗.

All hyperparameters are assumed independent apriori. The prior distributions are listed
below:

• ρ∗ε ∼ N (0, 0.4) whereρε = f(ρ∗ε)

• ν∗ ∼ N (0, 0.1) whereν∗ = log(ν − 2)

• κ∗
i ∼ exponential(0.5), whereκi = log α/ log φii andi = 1, 2 andα = 0.05

• φ∗
21 ∼ N (0, 0.01)

• ρ∗η ∼ N (0, 0.4) whereρη = f(ρ∗η)

• τηi
∼ Gamma(0.25, 0.025) for i = 1, 2

3 Gaussian Markov Random Fields

All models in Sections 2.2 and 2.1 can be thought of as different specifications of a gen-
eral latent GMRF model in three stages. The first stage is a likelihood model for the
observables, a two dimensional Gaussian or Student-t distribution. The data are inde-
pendent conditional on some latent parameters, which in our case consist in the volatil-
ity, and, possibly, some additional hyperparametersθ1. Let y = (yT

1 , . . . ,yT
nd

)T and
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h = (hT
1 , . . . ,hT

n )T be two column vectors. Each element ofh andy is indexed by two
numbersti wheret = 1, 2, . . . andi = {1, 2}; that is,t indicates time whilei indicates
the different assets. For the univariate case the indexi is omitted. We assume that eachyt

depends only on the corresponding bidimensional vectorht in the latent field, so that we
have:

π(y|h,θ1) =
∏

π(yt|ht,θ1) (8)

Note that we consider the whole vectoryt as one data point. We say, then, that we have
a multivariate model ifyt has dimension greater than one and a univariate model in the
other case.

The second stage is a model for the latent field. In the cases analysed here, this is a
bivariate autoregressive model of order 1 with an unknown mean and a covariance matrix
depending on some hyperparametersθ2:

ht|ht−1,µ,θ2 ∼ N (µ + Φ(ht−1 − µ),Ση) t = 1, . . . , n

With x0 = µ. Note that it is possible to haven > nd. This is the case, for example, if we
are interested in predicting future value of the volatility. We assume a Gaussian prior for
the mean termµ ∼ N (0,Σµ). The mean termµ can then be included in the latent field
by computing the density:

π(h,µ|θ1) = π(µ)
n∏

t=1

π(ht|ht−1,θ1) ∝ |Q|1/2 exp{−1

2
(hT ,µT )Q(hT ,µT )T} (9)

WhereQ is theN ×N precision (inverse of the covariance) matrix. HereN = 2n + 2 is
the length of the latent vectorx = (hT ,µT )

The third and last step of our latent Gaussian model is a prior distribution for the hyper-
parameter vectorθ = (θ1,θ2), π(θ).

The precision matrix in (9) is sparse, meaning that only few of its elements are non-zero.
This is a typical characteristic of GMRFs. There is in fact a one to one correspondence
between the Markov properties of the fieldx and the non-zero structure of the precision
matrix Q, meaning that a off diagonal elementQij 6= 0 if and only if the two random
variablesxi andxj are conditional independent given the rest of the variables inx. Great
computational efficiency can be achieved by exploiting the sparseness ofQ. In particular,
factorisingQ into its Cholesky triangleLLT can be done in a fast way. The Cholesky
triangleL inherits the sparseness ofQ thanks to the global Markov property, thus only
the non-null terms inL are computed. The nodes in the GMRF can be reordered in such a
way to minimise, or reduce, the number of non-null terms inL. The Cholesky triangle is
then the basis for solving linear equations involvingQ. For exampleQx = b is solved by
first solvingLv = b and theLT x = v. This is a typical way to produce random samples
from a GMRF. Ifz ∼ N (0, I) then the solution ofLT x = z has precision matrixQ.
Also the log of the density in (9) can easily be computed, for any configurationx, using
L sincelog |Q| = ∑

i log Lii.

If the GMRF is defined with additional linear constraints of the typeAx = e, whereA
is ak×N matrix of rankk ande is a vector of lengthk, it is possible to correct a sample
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x drawn from the unconstrained GMRF in the following way:

xc = x−Q−1AT (AQ−1AT )−1(Ax− e). (10)

xc is then a sample from the constrained density. This method is convenient when the
rank ofA is small. In factQ−1AT is computed by solvingk linear systems, one for each
column ofAT . The additional cost fork linear constraints isO(Nk2). This approach is
commonly referred to as “conditioning by Kriging”, see Cressie (1993) and Rue and Held
(2005). For more details about sparse matrix computation see, for example, Rue and Held
(2005).

In the GMRF defined in (9) the covariance matrix is only implicitly known. Inverting
the precision matrix can be extremely costly due to its dimension. The sparseness ofQ
comes to help again. To see this, we start withLT x = z wherez ∼ N (0, I). Recall
that the solutionx has precision matrixQ. Writing this out in detail, we obtainLiixi =
zi −

∑N
k=i+1 Lkixk for i = N, . . . , 1. Multiplying each side withxj j ≥ i, and taking

expectation, we obtain

Σij = δij/L
2
ii −

1

Lii

N∑
k=i+1

LkiΣkj, j ≥ i, i = N, . . . , 1, (11)

whereΣ (= Q−1) is the covariance matrix. ThusΣij can be computed from (11), letting
the outer loopi run from N to 1 and the inner loopj from N to i. If we are only
interested in the marginal variances, we only need to computeΣij ’s for whichLji (or Lij)
is not known to be zero. Marginal variances under linear constraints can be computed in
a similar way, see Rue and Martino (2006, Sec. 2) for more details.

All computations used by INLA for latent GMRF models are based on algorithms for
sparse matrices. The non-zero structure of the precision matrix in (9) is represented in
Figure 3. The size of the bandwidth depends on both the order of the AR model and on the
size of vectorht. Considering highly multidimensional models or high order AR models
makes the precision matrix more dense and therefore the computations less efficient.

Figure 3: Non zero structure of the precision matrix for a bidimensional AR1 model with
unknown mean
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3.1 Gaussian Approximation

The core of the INLA approach is a Gaussian approximation to the full conditional of the
latent field:

π(x|y,θ) ∝ exp

{
−1

2
xT Qx +

nd∑
t=1

gt(xt)

}
(12)

wherex = (hT ,µT ) andgt(xt) = log π(yt|xt,θ1). The approximation, which we denote
πG(x|y,θ), is computed by matching the mode ofπ(x|y,θ) and its curvature at the mode.
The mode ofπ(x|y,θ) is computed using an iterative procedure. Starting from an initial
guessm(0) we expandgt(xt) aroundm(0)

t for t = 1 . . . , nd

gt(xt) ≈ gt(m
(0)) + bT

t xt − 1

2
xT

t Ctxt (13)

where

Ct = −
[

∂2gt(xt)

∂x2
t1

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)

∂x2
t2

]

xt=m0
t

and the2× 1 vectorbt is a function of the gradient ofgt(xt) evaluated atxt = m0
t . Let

diag(C) indicate theN ×N matrix



C1 0 . . . 0
0 C2 0 . . . 0
...
0 . . . Cn 0
0 . . . 0




, (14)

that is, diag(C) is a band matrix with bandwidth2. For univariate models diag(C) re-
duces to a diagonal matrix. Moreover, letbT = (bT

1 , bT
2 , . . . ,0). We obtain a Gaussian

approximation with precisionQ + diag(C) and mean given by the solution of(Q +
diag(C))m(1) = b. The process is repeated until it converges to a Gaussian distribution
with precisionQG = Q + diag(C) and meanµG. Both the precision matrix and the
mean value of the Gaussian approximation depend of the value of the hyperparametersθ.
Algorithm 1 displays a naive version of the procedure. In practice some more care has to
be put into building the stopping criteria in order to avoid the optimiser to fail. The costly
part of Algorithm 1 is solving the linear system in line 7. This operation can be efficiently
performed using sparse matrix computations. Note that, since eachyt depends only on
xt, the Gaussian approximationπG(x|y,θ) preserves the Markov properties of the prior
distribution forx. This is convenient from a computational point of view.

3.2 Approximating the joint posterior of the hyperparametersπ(θ|y)

The joint posterior for the hyperparameters in the model,θ = (θ1,θ2), is

π(θ|y) =
π(y|x,θ)π(x|θ)π(θ)

π(y)π(x|θ,y)
∝ π(y|x,θ)π(x|θ)π(θ)

π(x|θ,y)
(15)
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Algorithm 1 Computing the Gaussian approximationπG(x|y,θ)

1: Given a value forθ and an initial guessm(0)

2: iter = 0, diff = 10
3: while diff > α do
4: for t = 1 to n do
5: Computebt andCt using (13)
6: end for
7: Solve(Q + diag(C))m(1) = b
8: Computediff = a distance measure betweenm(0) andm(1)

9: Setm(0) = m(1)

10: end while
11: Return xG = m(0) andQG = (Q + diag(C))

which is valid for any configurationx. INLA builds an approximation to the density in
(15), for each value ofθ, by substituting the denominatorπ(x|θ,y) with the Gaussian
approximationπG(x|θ,y) described in Section 3.1, and computing the right hand side of
(15) at the modal valueµG(θ). That is:

π̃(θ|y) ∝ π(y|x,θ)π(x|θ)π(θ)

πG(x|θ,y)

∣∣∣∣∣
x=µG(θ)

(16)

This expression is equivalent to Tierney and Kadane (1986)’s Laplace approximation of
a marginal posterior distribution. This suggests that the approximation error is relative
and of orderO(n

−3/2
d ) after renormalisation. However standard asymptotic assumption

usually invoked for Laplace approximations are not verified here, some considerations
about the error rate for the approximation in (16) can be found in Rue et al. (2007).

π̃(θ|y) can be used to solve three different tasks in the inference process. The main use
of π̃(θ|y) is to integrate out the uncertainty with respect toθ when computing approxi-
mations for the marginal posteriors of the latent fieldπ̃(xti|y) as in (4). Secondly,̃π(θ|y)
is used to compute an approximation to the marginal likelihood as in (5). Finally, some-
times we are also interested in marginal posteriors for the hyperparametersπ̃(θm|y). In
this case we have to compute the integrals

π̃(θm|y) =

∫
π̃(θ|y)dθ−m m = 1, . . . ,M (17)

whereθ−m indicates the vectorθ with elementm removed.

All these procedures involve numerical integration over a multidimensional domain and,
with increasing dimension ofθ, computations become soon unfeasible. Even if we are
able to locate the area with highest density forπ̃(θ|y) and compute the integral on a
grid consisting ind points in each direction, the cost of computing the integral isO(dM),
whereM is the dimension ofθ, that is, the cost grows exponentially inM .

It turns out that solving the first two tasks is an easier problem. In fact, we only need to
exploreπ̃(θ|y) sufficiently to be able to select good evaluation points for the numerical

14



integration in (4) and (5): only few points, accurately selected, are enough to achieve
satisfying accuracy in (4). With this we mean that the resulting density approximation is
indistinguishable from a density estimate obtained from a long MCMC run. We describe
this in Section 4.

On the other side, solving integral (17) is more involving. The shape ofπ̃(θm|y) can
be quite irregular and therefore we need more evaluation points to achieve satisfying
precision. Moreover the integration needs to be repeated possiblyM times. We return to
this task in Section 7.

4 Approximating posterior marginals for the latent field

In this section we present INLA for computing approximations for marginal posteriors of
the latent fieldπ(xti|y) with t = 1, 2, . . . andi = 1, 2. The general strategy is in Algo-

Algorithm 2 INLA strategy for computing̃π(xti|y)

1: Select a setΘ = {θ1, . . . , θK}
2: for k = 1 to K do
3: Computẽπ(θk|y)
4: Computẽπ(xti|θk,y) as a function ofxti

5: end for
6: Computẽπ(xti|y)

∑
k π̃(xti|θk,y)π̃(θk|y)∆k as function ofxti, for all indexesti

rithm 2: first, select a set of configurationsΘ = {θ1, . . . , θK} from the hyperparameters
space. For eachθk ∈ Θ computẽπ(θk|y) as in (16) and an approximatioñπ(xti|θk,y)
to the density ofxti|θk,y. Finally compute thẽπ(xti|y) via numerical integration. Note
that in Algorithm 2π̃(θk|y) is computed for fixed value ofθk and, therefore is a scalar,
while π̃(xti|θk,y) is the density distribution ofxti|θk,y.

For Algorithm 2 to be operative we should first solve two tasks:

1. how to select a (possibly small) set of pointsΘ = {θ1, . . . , θK}
2. how to build a good approximation toπ(xti|θk,y)

We discuss task 1 in Section 4.1 and task 2 in Section 4.2.

4.1 Exploring π(θ|y)

To compute approximations to the density ofxti|y we need to integrate out the uncer-
tainty with respect to the hyperparametersθ ∈ RM using numerical integration as in (4).
Rue et al. (2007) propose two different ways to explore the domain ofπ̃(θ|y). The first
consists in locating a grid over the area with higher density and evaluateπ̃(θ|y) at each
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point of this grid. This method is quite accurate. It is also efficient when the dimension
of θ is not too high, say less than 4. In cases, like those analysed in this report, where
the number of hyperparameters is higher, say between 4 and 11, they propose a different
strategy which comes from considering the integration problem as a design problem. This
second approach reduces dramatically the computational costs and, in our experience, still
gives results which are sufficiently accurate for inference purposes.

We describe the two strategies in Sections 4.1.1 and 4.1.2 respectively. Both strategies
assumeπ(θ|y) to be uni-modal. This is the case for most of the real case scenarios. In
both cases it is necessary to find the mode ofπ̃(θ|y), denoted asθ∗, and the negative
Hessian at the modal configurationH > 0. The mode can be found using a multidimen-
sional optimisation algorithm. If the dimension ofθ is high, this operation can be costly,
but it has to be done only once. We compute the Hessian using finite differences. The
inverse of the negative HessianΣ = H−1 would be the covariance matrix if̃π(θ|y) were
a Gaussian density.

4.1.1 Exploring π̃(θ|y) using a grid strategy

The idea is to construct aM dimensional grid of points which covers the region of the
domain where the majority of the probability mass ofπ̃(θ|y) is located. To do this we
start by computing the eigen-decompositionΣ = V Λ1/2V T . Define the variablez, such
that:

θ(z) = θ∗ + V Λ1/2z (18)

The variablez = (z1, . . . , zM) is standardised and its components are mutually orthog-
onal. We explorẽπ(θ|y) using thez-parametrisation. We start at the mode,z = 0 and
proceed along thez1 axes, in the positive direction, using a step length ofδz. We compute
π̃(θ(z)|y) at this new point and continue as long as

log π̃(θ(0)|y)− log π̃(θ(z)|y) < δπ (19)

whereδπ is a threshold value. Then, invert the direction and repeat. The same is done for
each of theM directions. Once we have located the region of highest probability density,
we fill in the grid by exploring all different combinations of the points on the axes. We
include these new points only if (19) holds. The procedure is described in Algorithm 3
where1i indicates a vector on lengthM whoseith element is 1 an all others are 0.

Since the points are layed out on a regular grid, when computing (4) we can take all the
area-weights∆k to be equal.

Algorithm 3 has two tuning parameters, the step lengthδz and the thresholdδπ. In general,
to obtain satisfying results it is enough to setδz = 1 andδπ = 2.5. This means that,
if π(θ|y) were Gaussian, we would select 5 points on each direction. The number of
points to be computed using the grid strategy grows exponentially with the dimensionM
of the hyperparameters space. This feature makes the grid approach fast only for small
hyperparameter spaces.
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Algorithm 3 Exploringπ̃(θ|y) using a grid strategy

1: Computeθ∗ andΣ = H−1

2: ComputeΣ = V Λ1/2V T

3: for i in 1 : M do
4: Start at the mode,z = 0
5: for dir in {−1, 1} do
6: while log π̃(θ(0)|y)− log π̃(θ(z)|y) < δπ do
7: z = z + dir ∗ 1i

8: Computeθ(z) = θ∗ + V Λ1/2z
9: Computẽπ(θ(z)|y)

10: end while
11: end for
12: end for
13: Compute fill in points

4.1.2 Exploring π̃(θ|y) using a central composit design strategy

The idea explained in this section comes from considering the integration problem as a
kind of response surface problem: we want to lie out points in aM dimensional space
in such a way to learn about the shape of a response surface. We consider second order
response surface and use the Box and Wilson (1951) central composit design (CCD).
A CCD contains an embedded factorial or fractional design with centre points (design-
points) plus an additional group of2M + 1 “circle” points which allow to estimate the
curvature. All the points in a CCD design lie on the surface of aM dimensional sphere
with radius

√
M times an arbitrary scalingσccd. There are always2M +1 “circle” points.

Out of them,2M are located along each axis at distance±√M σccd and one is located
at the origin. Figure 4 illustrates the location of the points in a CCD design forM = 2.
The number of design-points corresponding to the possible different dimensionsM is

+

=

Figure 4: Location of points in a CCD design forM = 2. The squares are factorial points
(design-points) and the circles are the additional ”circle” points.

displayed in Table 1. In addition to those points, each design contains2M + 1 “circle”
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points. Sanchez and Sanchez (2005) explain how to compute the locations of these points
in theM dimensional space.

Dimension ofθ 2 3 4-5 6 7-8 9-11 12-17
Number of points 4 8 16 32 64 128 256

Table 1: Number of design-points in a CCD.

The points are located using thez parametrisation defined in (18). Moreover, in order
to capture some of the asymmetry possibly present in the domain ofπ̃(θ|y) we allow
the scaling parameterσccd to vary, not only according to theM different axis but also
according to the direction, positive or negative, of each axes. This means that for each
design we have2M scaling parameters,(σm+

ccd , σm−
ccd ), m = 1, . . . ,M . To compute these,

we first note that in a Gaussian density, the drop in log density when we move from the
mode to±2 the standard deviation is−2. We compute our scaling parameters in such a
way that this is approximately true for all direction in our design.

To compute the integral (4) we still have to determine the value of the area weights∆k.
In fact here they cannot be considered all equal like in Section 4.1.1. To determine the
weights we assume for simplicity thatθ|y is standard Gaussian. We require the integral
of 1 to be 1 and the integral ofθT θ to beM . This two conditions give the integration
weights for the points on the sphere with radiusf0

√
M :

∆ =

[
(np − 1)

(
f 2

0 − 1
) {

1.0 + exp

(
−Mf 2

0

2

)}]−1

wheref0 > 1 is any constant. The integration weight for the central point is1−(np−1)∆
wherenp is the total number of points in the design.

The CCD strategy reduces the accuracy of the numerical integral and, for small dimen-
sions of the hyperparameter space the grid strategy is clearly preferable. Anyway, it often
happens that when there are many hyperparameters, the shape of the integrand is more
regular and therefore simpler. This means that with increasing dimension ofθ, the num-
ber of evaluations points does not, necessarily, have to increase exponentially to obtain a
sufficient accuracy of the integral. Strategies like the ’plug-in’ approach brings this idea
to extreme by using only the modal value to integrate overπ(θ|y). The ’plug-in’ solu-
tion will probably underestimate the variance, but in many cases, still gives useful results.
The CCD integration strategy lies somewhere in between the accurate, but expensive, grid
strategy and the fast, but possibly imprecise, ’plug-in’ strategy. It allows to capture some
of the variability in the hyperparameter space also when this is too wide to be explored
via the grid strategy.

4.2 Approximating π(xti|θk, y)

The next task is to build an approximation to the density ofxti|θk,y. It is clear that the
quality of this approximation reflects into the quality ofπ̃(xti|y) whatever the integra-
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tion strategy. We propose here two different approximations: a Gaussian approximation
and an improved approximation. Computing the Gaussian approximation,π̃G(xti|θk,y),
implies almost no extra costs after we have computedπ̃(θk). It is, hence, an extremely
fast alternative. It can, however, present some errors due to the lack of skewness. The
Gaussian approximation is described in Section 4.2.1. A more accurate alternative is pre-
sented in Section 4.2.2. This is a non-parametric approximation and, therefore, it can
better capture the shape of the density ofxti|θk,y. This improved approximation is more
computationally demanding. The improved approximation is valuable because it is more
accurate, but also because it can serve as a validation for the Gaussian approximation. In
fact, if it is indistinguishable or very close the the Gaussian approximation, the latter is
checked and confirmed without Monte Carlo sampling. A different strategy for assess-
ing the approximation error based on the effective number of parameters in the model is
presented in Rue et al. (2007).

4.2.1 Gaussian approximation

The easiest way to approximateπ(xti|θk,y) is to use the marginal derived fromπG(x|θk,y)
(Section 3.1). When selecting the pointsθk and computing̃π(θk|y) we have already
computeπG(x|θk,y), therefore we know the mean vector, and the only element which
remains to be computed is the vector of marginal variances. This, as mentioned in Sec-
tion 3 can be done efficiently thanks to the recursions described in Rue and Martino
(2006). Also, it makes practically no difference in terms of time, to compute one or allN
marginal densities in the GMRF. The approximation is then

π̃G(xti|θk,y) = N (xti; µGti
(θk), σ

2
Gti

(θk)) (20)

whereσG(θk) is theN -dimensional vector of marginal variances.

Rue and Martino (2006) show that the approximation in (20) gives often accurate results,
but, especially for values ofθk located in extreme regions, there might be slight errors in
the location and skewness. These errors are detected by comparing the approximations
with density estimates derived from very long MCMC runs. Since these errors appear
mainly in regions with low density forθ|y, they become much smaller after integrating
out θ. In fact, even ifπ̃(xti|y) is, in this case, a mixture of Gaussian it can represent
precisely also highly skewed densities. Errors using the Gaussian approximation might,
anyway, still be detectable iñπ(xti|y), see Rue and Martino (2006).

4.2.2 Improved approximation

The errors in the Gaussian approximation in Section 4.2.1 are due to the fact that we ap-
proximate a (possibly) skewed distribution with a symmetric one. It is natural then, to
think of an improved approximation which allows for skewness to be present. The im-
proved approximation described in this section follows the lines of the Simplified Laplace
approximation proposed in Rue et al. (2007), with some modifications necessary to adapt
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it to the problems described in this report. The improved approximation assumes no para-
metric form of the densityxti|θk,y, therefore it is able to capture skewness if present.

The starting point is the identity

π(xti|θ,y) =
π(x−ti, xti|θ,y)

π(x−ti|xti,θ,y)
∝ π(x,θ,y)

π(x−ti|xti,θ,y)
(21)

Where the suffix−ti indicates that the elementti in the vector has been removed. The
idea, similar to the one used in Section 3.2 to buildπ̃(θ|x), is to substitute the density in
the denominator of the rightmost element in equation (21) with a Gaussian approximation.
The approximation then reads:

π̃I(xti|θk,y) ∝ π(x,θk,y)

π̃GG(x−ti|xti,θk,y)

∣∣∣∣∣
x−ti=x?

−ti(xti,θk)

(22)

wherex?
−ti(xti,θk) is the mode ofπ(x−ti|xti,θk). This again is equivalent to the Laplace

approximation in Tierney and Kadane (1986).

It has to be noted that the densitỹπGG(x−ti|xti,θk,y), in the denominator of (22), is
different from the conditional distribution,̃πG(x−ti|xti,θk,y), which can be derived from
the Gaussian approximation in (3.1). In fact,π̃G(x−ti|xti,θk,y) is computed through a
rank 1 update from̃πG(x|θk,y). Its precision matrix is constant with respect toxti and
its mean is a linear function ofxti. On the other side,̃πGG(x−ti|xti,θk,y) is computed
by first locating the modex?

−ti(xti,θk) of x−ti|xti,θk,y and then expanding the log-
likelihood term around it, in much the same way as in Algorithm 1. The precision matrix
in π̃GG(x−ti|xti,θk,y) varies withxti. The density in (22) is based on conditioning onxti

and using Laplace approximation to cancel out the remaining variablesx−ti. Hence, it is
more accurate than the approximation in (20) which is based on fitting a Gaussian as the
joint distribution of all variablesx.

Unfortunately, having to locate the mode ofπ(x−ti|xti,θk,y) means that, for each value
of xti, we have to factorise a(N −1)× (N −1) matrix more than once (see Algorithm 1).
Moreover, there are, potentially,N posterior densities for the latent field to be computed.
It is clear, then, that the approximation in (22) is far too computationally expensive to be
convenient. Hence, we need to slightly modify (22) to make it computationally feasible.

The conditional mean EeπG
(x−ti|xti,θk,y) from π̃G(x−ti|xti,θk,y), and the conditional

mode ofx−ti|xti,θk,y would be coincident ifπ(x|y,θk) was Gaussian. This is of
course not the case here, since the log likelihood presents non quadratic terms. Any-
way π(x|θ,y) is not too far from a Gaussian, havingx|θ a Gaussian prior. Moreover
(22) is valid for any value ofx−ti and, though in a different context, Hsiao et al. (2004)
show that consideration for efficiency suggest that the value ofx−ti should be chosen
in an area of high density ofx−ti|xti,θk,y but not necessarily at the modal value. We
propose therefore to compute the quantity in (22) at the conditional mean instead of the
conditional mode. This entails large computational benefits. First of all we avoid the
optimisation step: the conditional mean can easily be computed for eachti, using (10)
wherex = µG andA = 1ti, a vector of zeros with 1 in positionti, ande is the value of
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xti. Moreover, this computation needs to be done only once for eachti, atxti = µGti
+ 1,

say. Exploiting the linearity of the conditional mean with respect toxti, we can, in fact,
evaluate its numerical derivative as:

δti
E = EeπG

(x−ti|xti = µGti
+ 1,θk,y)− µG−ti

and, obtain its value at anyxti as:

EeπG
(x−ti|xti = xti,θk,y) = µG−ti

+ δti(xti − µGti
)

There is also another advantage in considering the conditional mean instead of the condi-
tional mode: the conditional modex?

−ti(xti,θk) is a continuous function ofxti, but, since
we compute it via numerical optimisation, this continuity might not hold in practice. The
conditional mean, on the other side, is always a continuous function ofxti.

Even if using the conditional mean avoids the optimisation step, the approximation in (22)
is still too heavy to be computed efficiently. The log denominator of (22) is in fact:

log π̃GG(x−ti|xti,y,θk)

∣∣∣∣∣
x−ti=EeπG

(x−ti|xti,θk,y)

∝
1
2
log |Q[−ti,−ti] + diag(C(xti,θk))| = f(xti)

(23)

whereQ is the prior precision matrix forx and the subscript[−ti,−ti] indicates that row
and column corresponding to indexti have been deleted. The matrix diag(C(xti,θk)) is
the band matrix derived from the Taylor expansion of the log-likelihood at the conditional
mean EeπG

(x−ti|xti,θk,y) in much the same way as in Section 3.1. Computing the deter-
minant in (23) means factorising a(N − 1)× (N − 1) matrix, and this has to be done for
each value ofxti.

In Rue et al. (2007), the authors propose to approximate (23) by a first order series ex-
pansion aroundxti = µGti

(θk). For the cases analysed in Rue et al. (2007) the matrix
diag(C) defined in (14) is a diagonal matrix, it is then possible to derive the exact expres-
sion for the first derivative off(xti), see Appendix for details. The same is not possible
for MSV models like those we are interested in this report. We can, anyway, compute the
numerical derivative of the quantity in (23)

δti
f =

f(xti + h)− f(xti)

h

Moreover,atxti = µGti
the log determinant of(Q[−ti,−ti] + diag[C(µti,θk)]) can be com-

puted at almost no extra costs as

f(µGti
) =

1

2
log |Q[−ti,−ti] + diag[C(µGti

,θk)]| = 1

2
log |QG|+ log σGti

(24)

See Appendix for detail about how to derive (24). All elements at the right hand side of
equation (24) have already been computed while computingπ̃G(x|y,θk) andπ̃G(xt|y,θk).
Using a linear approximation for the log denominator of equation (22) makes it necessary

21



to factorise a(N − 1) × (N − 1) matrix only once for each of theN nodes in the latent
field.

The quantity in (22), modified as described above, has to be computed for different values
of xti and then normalised in order to obtain a density. We select these points with the
help of the mean and variance of the Gaussian approximation (20), by choosing different
values for the standardised variable

xs
ti =

xti − µGti
(θk)

σGti
(θk)

according to the corresponding choice of abscissas given by the Gauss-Hermite quadra-
ture rule. To represent the densityπ̃I(xti|θk,y) we use

π̃I(xti|θk,y) ∝ N{xti; µGti
(θk), σGti

(θk)} × exp{cubic spline(xti)}
The cubic spline is fitted to the differencelog π̃I(xti|θk,y) − log π̃G(xti|θk,y) at the
selected abscissa points. The density is then normalised using quadrature integration.

5 Approximating marginal likelihood π(y)

Model comparison is an important part of any statistical analysis and a central pursuit
of science in general. In a Bayesian framework, one way to compare models is to use
Bayes factors. Given a series of competing modelsM1, . . . ,MK with assigned a prior
probabilityπ(Mk) the Bayes factor for two of theK models is defined as

B(i, j) =
π(Mi|y)π(Mi)

π(Mj|y)π(Mj)

If we choose the models to be apriori equiprobable,π(M1) = · · · = π(MK), then the
Bayes factor reduces to

B(i, j) =
π(y|Mi)

π(y|Mj)

Hence, we can compare models by comparing their marginal likelihoodπ(y|Mk). Jef-
freys (1961) provide a scale for the interpretation ofB(i, j) which we report in Table 2.
In the following, to simplify the notation, we suppress the conditioning onMk if it is not
strictly necessary. In the INLA framework an approximation to the marginal likelihood
π(y) can be computed as the normalising constant forπ̃(θ|y)

π̃(y) =

∫
π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

dθ

whereπ(x,θ,y) = π(y|x,θ)π(x|θ)π(θ). We propose two approximations toπ(y). The
first one is based on a Gaussian approximation of the density ofθ|y built by matching the
mode and the curvature at the mode, that is

π̃G(θ|y) = N (θ∗,Σ) (25)
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Strength of the evidence
logB(i, j) in favour ifMi

< 0 Negative (support forMj)
0 : 1.09 Barely worth mentioning

1.09 : 2.30 Substantial
2.30 : 3.40 Strong
3.40 : 4.60 Very strong

> 4.60 Decisive

Table 2: Jeffreys (1961)’s scale for the interpretation of the Bayes factor

whereθ∗ is the mode andΣ = H−1 is the inverse of the negative Hessian matrix com-
puted at the modal configuration. The normalising constant, and so our approximation for
the marginal likelihood, is then given by

π̃1(y) = (2π)M/2|H|−1/2 (26)

whereM is the dimension ofθ. This approximation was proposed also by Kass and
Vaidyatnatan (1992).

The second approximation is more precise but also more expensive to compute. It as-
sumes no parametric form of the density ofθ|y and uses the same integration scheme as
in Section 4.1.1 to compute the normalising constant. The approximation then reads

π̃2(y) =
∑

k

π̃G(x|y,θk)∆k (27)

This second approximation, allows to take into account departures from Gaussianity
which are often encountered inπ(θ|y), and therefore gives more accurate results. Un-
luckily, as already explained in Section 4.1.1, this integration scheme becomes unfeasible
when the dimension ofθ grows. Anyway, as shown in the examples, there seems not to
be a big difference in the model ranking obtained from the two approximations.

Note that, when computing an approximation to the marginal likelihoodπ(y), aiming to
use it for model comparison, it is important to include carefully all normalising constants
which appear in the prior for both the hyperparametersπ(θ) and the latent fieldπ(x|θ),
and in the likelihood termπ(y|x,θ).

6 Examples of approximate inference for the latent field

In this section we apply INLA to estimate the univariate models in Section 2.1 and the five
bivariate models in Section 2.2. To assess the quality of the approximations, we compare
them with density estimates obtained from intensive MCMC runs.

Yu and Mayer (2006) propose to use the software package WinBUGS to implement a
MCMC algorithm for univariate and multivariate SV models. WinBUGS is an interac-
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tive Windows version of the BUGS program for Bayesian analysis of complex statistical
problems using MCMC techniques, see Spiegelhalter et al. (2003). The BUGS (and Win-
BUGS) program provides an implementation of the Gibbs sampling algorithm, a specific
MCMC techniques that builds a Markov chain by sampling from all univariate full condi-
tional distributions in a cyclic way. WinBUGS uses a single site update scheme, therefore
long runs are necessary since the mixing might be poor due to the correlations within the
latent fieldx and betweenx andθ. Anyway, since we want to compare our approxi-
mation with the “true” posterior densities, we have run the MCMC algorithm for much
longer time than it is usually done for inference purposes. The reader is referred to Mayer
and Yu (2000) for a comprehensive introduction on using BUGS for fitting SV models.

6.1 Implementation Issues

Running the INLA procedures described in Section 4 so that they are optimised in term
of computational time requires a very carefully implementation in an appropriate lan-
guage. Much speed can be gained from writing the code in a carefully and smart way,
for example by appropriately storing computations and using efficient routines for sparse
matrix computation. Many of the algorithms described are efficiently implemented in the
open-source libraryGMRFLib. This library is written in C, and in addition to the INLA
routines, contains also several other routines for GMRF models. It is freely available at
the web pagehttp://www.math.ntnu.no/ ∼hrue/GMRFLib/ and a brief intro-
duction to it can be found in Rue and Held (2005). Rue and Martino (2006) and Rue
et al. (2007) make an intensive use of theGMRFLib-library in the examples they present.

Unfortunately theGMRFLib-library does not support multivariate models like those de-
scribed in Section 2.2. It was therefore necessary, for the multivariate examples in this
report, to rewrite almost every algorithm necessary for the implementation of INLA. For
this purpose, we used the statistical package R (Ihaka and Gentleman, 1996). The R
language is less fit than C for the purpose, moreover, the code used for the examples in
this report, is far from being optimal with respect to computational efficiency and time.
Hence, the examples reported here have to be considered as a proof of concept showing
another application of approximate inference using INLA. The reader is referred to Rue
et al. (2007) for examples showing the gain, in terms of computing time, which can be
achieved using the INLA over MCMC.

6.2 Univariate Models

In this section we fit two univariate SV models, first to a simulated data set, and then to
the pound-dollar exchange rate data displayed in Figure 1.

Both models are define as in equations (6). In the first model (M1) we defineεt ∼
N (0, 1), while in the second model (M2) εt ∼ tν . For each of the two data set, we fitM1

andM2 and check the quality of the INLA approach. Then, we compare the two models
using the approximated marginal likelihoodπ̃(y).
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6.2.1 Simulated data set

We simulate 500 data from the following model

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ t7. (28)

ht = 0.1 + 0.53(ht−1 − 0.1) + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/2.3).

The simulated time series is displayed in Figure 5. Note that the Student-t distribution
allows for quite extreme values of the returns.

0 100 200 300 400 500

0
5

10

Figure 5: Time series of returns simulated from model (28)

We first fitM1 to the simulated data. Following Algorithm 2, our first task is to locate
a set of points in the hyperparameters space,Θ = {θ1, . . . , θK}, where to compute
π̃(θk|y) andπ̃(xt|θk,y). We do this using both the grid and the CCD strategies. In the
first case, the numberK of points to be computed is 22, while in the second case it re-
duces to 9. For really low dimension of the hyperparameters space (as in this example)
there is no big computational difference in using one integration scheme or the other. Fig-
ure 6, panels (a) and (b), show a contour plot ofπ̃(θ|y). Superimposed are the locations
of the integration points when using a grid strategy, panel (a), and a CCD strategy, panel
(b). Figure 6(c) displays the results of the two integrations strategies when computing the
posterior marginal̃π(xt|y). The density displayed is chosen to be the one for which the
two integration schemes gave the most different results. The difference between densities
is computed via a (symmetric) Kullback-Leibler measure. Even though the grid strat-
egy uses more points than the CCD strategy, and even thought the density ofπ(θ|y) is
quite far from a Gaussian, the difference in the results of the two integrations is almost
unnoticeable.

We compare, the approximations forπ(xt|y) obtained using the Gaussian approximation
and the improved one, in Sections 4.2.1 and 4.2.2 respectively, to representπ(xt|θk,y).
Figure 7, panels (a) and (b), show the two approximations for one of the nodesht in the
time series, and for the common meanµ respectively. The nodeht showed was chosen to
be the one for which the Gaussian and the improved approximation gave the most different
result. In the same figures is also displayed an histogram obtained from an intensive
MCMC run of modelM1 using WinBUGS. After a burn-in period, we have collected a
MCMC samples of106 by keeping every 20th simulated value in the chain. The Gaussian
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Figure 6:M1, simulated data example. Configurationsθk used in the grid strategy (a)
and in the CCD strategy (b). In panel (c) is the result of the integration procedure using
the grid (solid line) and the CCD strategy (broken line)

approximation appears to be shifted, especially when considering the density ofπ(µ|y).
The improved approximation, on the other hand, gives quite an accurate result.
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Figure 7:M1, simulated data example: Gaussian approximation (broken line), improved
approximation (solid line) and MCMC density estimate (histogram).
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We then fit modelM2 to the same simulated data. In this case the hyperparameters
space has dimension 3. The grid integration scheme requires 70 points while the CCD
integration scheme only 15. Figure 8 shows the results of the two integration procedures
for one of the nodes in the latent field(h, µ). Also in this case, the CCD integration
scheme allows for a quite big computational gain without loosing in accuracy.
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Figure 8:M2, simulated data example: approximation ofπ(xt|y) computed via the grid
integration strategy (solid line) and the CCD integration strategy (broken line).

In Figure 9 the Gaussian and improved approximations for two nodesht andµ, are dis-
played and compared with an histogram derived from a long MCMC sample obtained
as before. Notice that there are differences between the MCMC based estimate and the
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(a)π(ht|y) (b) π(µ|y)

Figure 9:M2, simulated data example: Gaussian approximation (broken line), improved
approximation (solid line) and MCMC density estimate (histogram).

improved approximation especially in the right tail of the density for the common mean
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π(µ|y) (Figure 9b). We believe that these differences are mostly due to MCMC error,
which despite the long run, is still present in the sample. WinBUGS uses a single site
algorithm which can be extremely slow and ”sticky” especially with heavy tailed data and
strongly correlated variables in the latent field.

To reinforce our believes we made two experiments. First, we have fixed the value of
the hyperparameter vectorθ to an arbitrary value. This makes the MCMC run faster.
Moreover, quality of the INLA approximation forπ(xt|y) depends directly on the quality
of the approximation forπ(xt|y,θ). Figure 10 shows results for the same two nodes
displays in Figure 9. The hyperparameters value islog κ = 2, log τ = 0 andδ = 1. These
values are chosen in a quite extreme region of the posterior densityπ(θ|y) because in our
experience (Rue and Martino, 2006), it is in such areas that the approximation problem
is more difficult. The Gaussian approximation appears to be slightly shifted with respect
to the MCMC estimate while the improved approximation gives an accurate result. The
experiment was repeated for different values of the hyperparameters always with the same
result.
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Figure 10: Simulated data,M2 model with fixed hyperparameters: Gaussian approxi-
mation (broken line), improved approximation (solid line) and MCMC density estimate
(histogram).

In our second experiment the hyperparameter vectorθ is random but only the first 50
data of the simulated time series are considered. Decreasing the number of data makes
the MCMC algorithm run much faster and mix better. On the other side, the approxi-
mation problems are easier when the number of data increases, see Rue et al. (2007) for
considerations about the asymptotic behaviour of INLA. Figure 11 shows the improved
approximation and the MCMC density estimate for the same nodes in Figure 9 when only
50 data are considered. Here the approximations and the MCMC estimates agree almost
perfectly.

Based on these results, we believe that, if we run the MCMC algorithm for the full data set
for much longer time, the histograms in Figure 9 would finally overlap with the improved
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Figure 11: Simulated data, modelM2 considering only 50 data: Gaussian approximation
(broken line), improved approximation (solid line) and MCMC density estimate (his-
togram).

approximations.

To conclude, we compareM1 andM2, using the approximated marginal likelihood
π̃(y|Mk). We compute two approximation for̃π(y|Mk) using both the Gaussian ap-
proximation forπ(θ|y) in (26) and numerical integration in (27). Table 3 presents the
logarithm ofπ̃(y|Mk). The marginal likelihood is largest for modelM2, which corre-

M1 : Gaus. returns M2 : Stud. return
model model

log π̃1(y|Mk) -209.1083 -206.1067
log π̃2(y|Mk) -208.8983 -206.3458

Table 3: Simulated data example: estimated value of the marginal likelihoodlog π(y|Mk)
for i = 1, 2 computed via a Gaussian approximation ofπ(θ|y) and via numerical integra-
tion.

sponds to the true model in (28). The difference in the logarithm of the marginal likeli-
hood between the two models is 3 if we consider the Gaussian approximation toπ(θ|y) in
(27) and 2.4 if we computẽπ(y|Mk) numerically. This shows evidence that tails heavier
than those of a Gaussian distribution are needed to describe the returns process in this
example.
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6.2.2 Pound-dollar exchange rate data set

Our second example for the univariate SV model consists in the Pound-dollar exchange
rates plotted in Figure 1 .The same data set was analysed, among others, by Durbin and
Koopman (1997) and Rue et al. (2007).

Consider modelM1 first. For the grid integration scheme 29 points are evaluated, while
the CCD strategy evaluates 9. Figure 12, shows contour plots ofπ̃(θ|y). and locations of
the integration points when using a grid strategy, panel (a), and a CCD strategy, panel (b).
Figure 12(c) displays the results of the two integrations when computing the posterior
marginal π̃(xt|y). This time the difference between the two densities is almost unde-
tectable. This is due to the fact that,compared to that in the previous example, the density
of π(θ|y) is more regular. Here by ”regular” we mean no too far from a Gaussian.

3.6 3.8 4.0 4.2 4.4 4.6 4.8

2.
0

2.
5

3.
0

3.
5

3.6 3.8 4.0 4.2 4.4 4.6 4.8

2.
0

2.
5

3.
0

3.
5

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a) Grid strategy (b) CCD strategy (c) integration results

Figure 12:M1, real data example: integration points needed to computeπ̃(xt|y). Panel
(a) illustrates the grid strategy and panel (b) the CCD strategy. In panel (c) is the result of
integration procedure using the grid (solid line) and the CCD strategy (broken line)

We proceed then to check the accuracy of the approximations forπ(xt|y). Figure 13,
panels (a) and (b), show the two approximations for one of the nodesht in the time se-
ries, and for the common meanµ. The nodeht showed was chosen to be the one for
which the Gaussian and the improved approximation gave the most different result. In
the same Figure is also an histogram obtained from a long (around106 iterations) MCMC
run which represents the ”true” density. Again, the Gaussian approximation appears to
be shifted, especially when considering the approximation forπ(µ|y) while the improved
approximation is practically perfect.

When fittingM2, the grid integration scheme requires 73 points while the CCD integra-
tion scheme only 15. Figure 14 shows the results of the two integration procedures for
one of the nodes in the latent field(h, µ). The node is chosen to be the one for which two
procedures gave the most different results.

In Figure 15 the Gaussian and improved approximation for one node in the time series
and for the common meanµ are displayed together with density estimations from a very

30



−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a)π(ht|y) (b) π(µ|y)

Figure 13:M1, real data example: Gaussian approximation (broken line) improved ap-
proximation (solid line) and MCMC density estimate (histogram).

long MCMC run. Again we see that while the Gaussian approximation can present errors
in location and skewness, the improved approximation gives very accurate results.

In order to compareM1 andM2, we compute the approximation for the marginal likeli-
hoods using both a Gaussian approximation forπ(θ|y) and the numerical integration in
(27). Table 4 presents the computed approximations forlog π(y|Mk). The two approxi-

M1: Gaus. returns M2:Stud. return
models model

log π̃1(y|Mk) -67.416 -69.150
log π̃2(y|Mk) -67.372 -68.949

Table 4: Real data example: estimated value oflog π(y|Mk) for the two univariate mod-
els fitted to the pound-dollar exchange rate data. The estimated marginal likelihood is
computed via a Gaussian approximation ofπ(θ|y) and via numerical integration.

mations are very close to each other. The difference in log marginal likelihood, close to
1.7, offers a substantial evidence in favour of the Gaussian returns model. The idea that
extra kurtosis in not needed for this data set is reinforced if we look at the mode of the
posterior distributioñπ(θ|y) for the two models. The modal value of the parameterν∗ in
the Student-t model is 3.760, this corresponds to a modal value for the degree of freedom
of the Student-t distribution around 46. With such high degree of freedom, a Student-t
distribution is practically indistinguishable from a Gaussian. Moreover the modes of the
remaining two parameters, the rangeκ and the precisionτ practically coincide in the two
models, suggesting that a Gaussian distribution in the returns process well describes these
data.
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Figure 14: M2, real data example: approximation ofπ(xt|y) computed via the grid
integration strategy (solid line) and the CCD integration strategy (broken line).
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Figure 15:M2, real data example: Gaussian approximation (broken line) improved ap-
proximation (solid line) and MCMC density estimate (histogram).
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6.3 Multivariate Models

In this section we fit the five bivariate models described in Section 2.2 to two financial
time series.
The first data set consists in 300 data points simulated from Model 2 at page 8, with
mean vector for the latent fieldµ = (0.1,−0.2) and hyperparameters values:log κ1 = 3,
log κ2 = 5, log τ1 = 2, log τ2 = 4, ρ∗ε = 1. The simulated data are plotted in Figure 16.
The second data set consists in 519 weekly mean corrected log-returns of the Australian
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Figure 16: Simulated bivariate time series.

dollar and New Zeland dollar, both against the US dollar, from January 1994 to December
2003. The Australian and the New Zeland economies are closely related to each other,
hence we expect the dependence between the two exchange rates to be strong. The two
series are plotted in Figure 17 and indeed there appear to be strong cross-dependence
both in returns and volatility. The same data set is analysed also in Yu and Mayer (2006).
We analyse each of the five models separately and then compare them using the marginal
likelihood π̃(y).

Computationally, the main difference between univariate and multivariate models is the
increasing number of hyperparameters which makes all numerical integrations more in-
tensive. Here the CCD integration strategy can really help reducing the computational
burden. In Table 5 we have reported the number of evaluation points, for all five bivariate
models fitted to both data set, necessary to compute the integral in (4) using the CCD and
the grid strategy. The tuning parameters for the grid strategy are set toδz = 1 andδπ = 2.5
in all cases. These default values have proved to be usually accurate enough (Rue et al.,
2007). Notice that, when the dimension of the hyperparameters space increases, the CCD
strategy can reduce the number of evaluation points by a factor of 20. To check the ac-
curacy of the CCD integration strategy we compare, for each model, its result with the
result obtained via the more computational intensive grid strategy.
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Figure 17: Time series for Australian/US Dollar (upper) and New Zeland/US Dollar
(lower) exchange rate returns

N. of Simulated Data Real Data
hyperparam. GRID CCD GRID CCD

Model 1 4 124 25 101 25
Model 2 5 277 27 383 27
Model 3 6 774 45 882 45
Model 4 6 810 45 720 45
Model 5 6 619 45 688 45

Table 5: Number of integration points used to computeπ̃(xti|y) using the two integration
strategies.

MODEL Variance Equation Mean Equation
κ1 κ2 φ12 ρ∗η log τη1 log τη2 ρ∗ε ν∗

Model 1 1.926 2.164 - - 3.014 2.654 - -
(1.017) (0.760) - - (1.111) (0.945) - -

Model 2 1.821 2.061 - - 2.906 2.701 0.882 -
(1.125) (0.755) - - (1.203) (0.972) (0.118) -

Model 3 1.96 1.730 0.679 - 2.600 3.038 0.889 -
(0.907) (0.744) (0.529) - (1.056) (1.052) (0.119) -

Model 4 2.085 2.148 - 1.168 2.860 2.457 0.869 -
(0.976) (0.652) - (1.377) (1.115) (0.824) (0.120) -

Model 5 1.837 2.0258 - - 3.220 2.923 0.886 3.092
(1.073) (0.810) - - (1.065) (1.003) (0.121) (0.882)

Table 6: Modal values of̃π(θ|y) in the five bivariate models fitted to the simulated bi-
variate time series. In parentheses is the standard deviation as estimated from the inverse
of the negative Hessian matrix computed at the mode.
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Variance Equation Mean Equation
log κ1 log κ2 φ12 ρ∗η log τη1 log τη2 ρ∗ε ν∗

Model 1 3.998 4.174 - - 3.188 2.700 - -
(0.333) (0.351) - - (0.449) (0.505) - -

Model 2 3.391 3.588 - - 3.792 2.803 1.993 -
(0.566) (0.631) - - (0.538) (0.731) (0.097) -

Model 3 3.902 1.750 0.828 - 3.916 2.260 1.940 -
(0.374) (0.576) (0.393) - (0.485) (0.648) (0.098) -

Model 4 3.360 2.960 - 2.610 3.264 1.805 1.945 -
(0.377) (0.4568) - (0.777) (0.513) (0.509) (0.097) -

Model 5 3.206 3.517 - - 3.840 2.844 1.991 3.535
(0.846) (0.707) - - (0.574) (0.795) (0.100) (0.942)

Table 7: Modal values of̃π(θ|y) in the five bivariate models fitted to the Australian/US
and New Zeland/US exchange rates. In parentheses is the standard deviation as estimated
from the inverse of the negative Hessian matrix computed at the mode.
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6.3.1 Model 1 (Basic MSV)

Model 1 is equivalent to stacking together two independent univariate models with Gaus-
sian noise in the returns equation. There is no correlation between volatilities nor between
returns and no Granger causality is allowed. The hyperparameters are four and consist in
the two log precisions and the two log ranges for the latent field. Table 6 refers to the sim-
ulated data set and reports the modal values of the hyperparameters and, in parentheses,
the standard deviations as estimated from assuming a Gaussian approximation forπ(θ|y)
as in equation (25). Table 7 reports the same quantities for the Australian/New Zeland
data set.

We compare approximations forπ(xti|y) obtained using the grid and the CCD integration
strategy. The results are displayed in Figure 18. For each example we display the node for
which the two integrations gave the most different results. Even if the CCD strategy uses
four times less evaluations points compared to the grid strategy, the results are practically
identical.
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(b) Real data set

Figure 18: Model 1. Results of the CCD (broken line) and grid (solid line) integration
when computing̃π(xti|y).

Figures 19 and 20 compare the Gaussian, the improved approximation and a density es-
timates obtained by an intensive MCMC run of the posterior marginals for four nodes in
the latent field. Figure 19 refers to the simulated data set and Figure 20 to the real one.
The nodes showed are two log-volatilitiesht1 andht2, and the two common meansµ1 and
µ2. In both cases while the Gaussian approximation presents a slight error in locations,
the improved approximation gives practically exact results.
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(d) π(µ2|y)

Figure 19: Simulated bivariate data set, Model 1. Gaussian approximation (broken line),
improved approximation (solid line) and MCMC based density estimate (histogram).
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(b) π(ht2|y)

−0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(c) π(µ1|y)
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Figure 20: Australia/New Zeland data set, Model 1. Gaussian approximation (bro-
ken line), improved approximation (solid line) and MCMC based density estimate (his-
togram).
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6.3.2 Model 2 (Constant correlation MSV)

In Model 2 the returns are correlated. Hence, in addition to the four hyperparameters of
Model 1 we also have the correlation between returns. Tables 6 and 7 show the modal val-
ues of the hyperparameters and their standard deviation as approximated from the inverse
of the negative Hessian matrix ofπ̃(θ|y). The hyperparameterρ∗ε , which is a function of
the correlations parametersρε (see Section 2.3), has, for the simulated data, a modal value
of 0.88, which is quite close to the real value of 1. The standard deviation, if we assume
a Gaussian approximation forπ(θ|y) as in (25), is 0.11. Although this is a very rough
estimate of the posterior marginal ofρ∗ε , it suggests that the value ofρ∗ε is significantly
different from 0 and that the two returns time series are indeed correlated. The same can
be said about the Australia/New Zeland data set where the modal value ofρ∗ε is 1.99 with
a Gaussian standard deviation equal to 0.11.

Figure 21 compares the results of the two integration strategies. Again the nodes displayed
are those where the CCD integration performs worst. There is indeed a slight difference
between the approximations in both examples. Anyway, when compared to the natural
scale of the densities, these differences appear to be quite small. On the other side, the
savings in computational time due to the use of the CCD strategy is relevant, see Table 5.
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Figure 21: Model 2. Grid (solid line) and CCD (broken line) integration results.

Figures 22 and 23 show the Gaussian and the improved approximation for some nodes in
the latent field for the simulated and real data set respectively. In the same plots is also
an histogram derived from an intensive MCMC run. For the real data set, there is a slight
disagreement between the improved approximation and the MCMC estimate in the left
tail of one of the distribution (Figure 23b). In the simulated case the approximations are
practically perfect.

39



−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

(a) π(ht1|y)

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

(b) π(ht2|y)

−0.2 0.0 0.2 0.4

0
1

2
3

4

(c) π(µ1|y)

−0.6 −0.4 −0.2 0.0

0
1

2
3

4

(d) π(µ2|y)

Figure 22: Simulated bivariate data set, Model 2. Gaussian approximation (broken line),
improved approximation (solid line) and MCMC based density estimate (histogram).
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Figure 23: Australia/New Zeland data set, Model 2. Gaussian approximation (broken
line) the improved approximation (solid line) and a MCMC based density estimate (his-
togram) for 4 nodes in the latent field.
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6.3.3 Model 3 (MSV with Granger causality)

Model 3 adds one more hyperparameter by allowing the two latent time series to be inter-
dependent. The cross-correlation between the time series of log-volatilities is caused by
the Granger causality expressed by the non-zero value of the parameterφ21.

Consider first the simulate data set. Here, the posterior mode theφ21 is 0.679 and its
standard deviation, as derived from a Gaussian approximation toπ(θ|y), is 0.523, see
Table 6 .This suggests that no Granger causality is present between the latent fields. This
corresponds to the true model we simulated the data from.

As for the Australia/New Zeland data set, the modal value ofφ21 is 0.828 and that its
standard deviation, as estimated from a Gaussian approximation ofπ(θ|y), is 0.39. This
suggestφ21 being significantly different from 0 and, in turns, that the volatility in Aus-
tralian dollar Granger causes the volatility in the New Zeland dollar. This is consistent
with our expectations of the two economies to be strongly dependent. As a result follow-
ing the Granger causality, the posterior mode of the log-range in the volatility for the New
Zeland dollar is reduced from 3.58 to 1.75.
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Figure 24: Model 3. Grid (solid line) and CCD (broken line) integration results.

Figures 24 displays results obtained using the CCD and the grid strategies when approxi-
matingπ(xti|y). Again we notice that the CCD integration allows for a quite big reduction
in computational costs (see Table 5) with only a slight loss in terms of accuracy.

When comparing the Gaussian and the improved approximation with a MCMC based
density estimate, Figures 25 and 26 for the simulated and the data respectively, there
seems to be, in both cases a slight disagreement between the improved approximation and
the MCMC based estimate concerning the posterior density ofπ(µ1|y) (Figures 25c and
26c). On one side this difference might depend on some MCMC error still present in the
sample. We have seen, in fact, that the single site algorithm implemented in the WinBUGS
software mixes very slowly. On the other side, when compared with the natural scale of
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Figure 25: Simulated data set, Model 3. Gaussian approximation (broken line), improved
approximation (solid line) and MCMC based density estimate (histogram).

the density, the small disagreement in skewness would make no difference in practice.
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Figure 26: Australia/New Zeland data set, Model 3. Gaussian approximation (broken
line) the improved approximation (solid line) and a MCMC based density estimate (his-
togram) for 4 nodes in the latent field.
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6.3.4 Model 4 (Generalised constant correlation MSV)

Model 4 allows for cross-correlation between the volatilities but, unlike Model 3 this de-
pendency is caused by correlations between the two processes and not by Granger causal-
ity. Hence, the hyperparameter space keeps the same dimension butφ21 is substituted by
ρ∗η.

From Table 6 we can see that the estimated modal value ofρ∗η and the curvature of̃π(θ|y)
at the mode, suggest that the latent fields are uncorrelated for the simulation data example.

In the Australia/New Zeland case instead, the modal value ofπ(ρ∗η|y) is estimated to be
4.826 with a standard deviations computed by approximatingπ(θ|y) with a six dimen-
sional Gaussian distribution is 0.632, see Table 7. This again suggests that the correlation
between the two volatilities time series is non-zero.
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Figure 27: Model 4. Grid (solid line) and CCD (broken line) integration results.

Figure 27 show the approximations obtained by using the grid and the CCD integration
scheme for both our bivariate examples. Again we see that, despite the large computa-
tional saving, the results obtained via the CCD integration are only slightly different from
those obtained via the grid scheme.

When we tried to fit Model 4 to the two data set via WinBUGS we found out that the
algorithm runs extremely slowly for this model. When using only the first 30 data points
WinBUGS takes around 36 seconds to perform 100 iteration. The time consumed grows to
circa 78 seconds for 40 data points and to 140 seconds for 50 data points. To obtain a long
enough sample for the complete data set would take an extremely long time. Therefore
no comparison with MCMC estimates is presented for this model.
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6.3.5 Model 5 (Heavy-tailed MSV)

The last model considered is equivalent to Model 2 concerning the equation for the latent
volatility models but uses a Student-t error instead of a Gaussian one in the equation
for the returns. No cross-correlation in the volatility process is allowed. The number of
hyperparameters is then again six.
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Figure 28: Model 5. Grid (solid line) and CCD (broken line) integration results.

In both our examples the modal value ofδ∗ is over 3, with a standard deviation computed
from the Gaussian approximation ofπ(θ|y) close to 1. A value ofδ∗ close to 3 corre-
sponds to a value for the degrees of freedom close to 22. This suggests that the extra
kurtosis is not necessary to describe any of the two data sets.

Figure 28 compares the approximations ofπ(xti|y) obtained by using the grid and the
CCD strategy. As usual the nodes showing the largest differences are reported. No sig-
nificant differences can be detected despite the fact that the CCD integration uses almost
20 times less evaluation points.

Figures 29 and 30 compare the Gaussian and the improved approximation with an his-
togram derived from a long MCMC run. While the improved approximation agrees almost
perfectly with the MCMC density estimate in the simulated data example (Figure 29), in
the Australia/New Zeland example there is a slight disagreement between the two. This
can be seen especially in the left tail of Figure 30b and in the location and skewness of
the density in Figure 30c.

As an experiment we have run the same model this time only taking into account the first
50 points in the Australia/New Zeland data set, so that the MCMC algorithm would run
faster. Again we have compared the histogram resulting from such MCMC run with the
Gaussian and improved approximation. The results are displayed Figure 31. This time
the improved approximation and the MCMC density estimates overlap almost perfectly.
Following the same argument as for the simulated data in Section 6.2, we believe that
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Figure 29: Simulated data set, Model 5. Gaussian approximation (broken line), improved
approximation (solid line) and MCMC based density estimate (histogram).

running the MCMC algorithm long enough the approximation and the MCMC estimate
would coincide also for the full data set.
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Figure 30: Australia/New Zeland data set, Model 5. Gaussian approximation (bro-
ken line), improved approximation (solid line) and MCMC based density estimate (his-
togram).
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Figure 31: Australia/New Zeland data set, Model 5. Gaussian approximation (broken
line), improved approximation (solid line) and MCMC based density estimate (histogram)
when only the first 50 data are considered.
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6.4 Model comparison

In this section we compare the five bivariate models using the two approximations to the
marginal likelihoodπ(y|Mk) described in Section 5.

Table 8 reports the values oflog π̃(y|Mk), for all five models fitted to the simulated data
set. In the same table is also the ranking associated with each of the models.

log π̃1(y|Mk) log π̃2(y|Mk) Rank log π̃1(y|Mk)− log π̃2(y|Mk)−
maxk log π̃1(y|Mk) maxk log π̃2(y|Mk)

Model 1 -295.782 -296.4741 5 -24.802 -22.5181
Model 2 -270.980 -273.9560 1 0.000 0.0000
Model 3 -273.605 -277.8360 4 -2.625 -3.8800
Model 4 -271.247 -274.4130 2 -0.267 -0.4570
Model 5 -272.435 -275.5620 3 -1.455 -1.6060

Table 8: Simulated data set: approximated value forlog π(y|Mk) for the bivariate mod-
els computed via Gaussian approximation ofπ(θ|y) and via numerical integration. In the
third column is the ranking of the models according to the value of the marginal likeli-
hood. The last two columns are the relative values of the marginal likelihood.

Although the Gaussian approximation of the marginal likelihoodπ(y|Mk) is a quite
rough approximation since it does not take into account any departure from a multivariate
normal distribution, it gives the same ranking as the more accurate approximation com-
puted via numerical integration. When comparing models what counts is not the absolute
value ofπ(y|Mk), but rather the differences between the values ofπ(y|Mk) relative
to different models. We have computed(log π̃(y|Mk) − maxk log π̃(y|Mk)) for both
approximations and reported it in Table 8 to show that the discrepancy between the two
approximations is larger when we look at absolute values than when we look at the more
interesting relative values.

The highest value of the marginal likelihood corresponds to Model 2, which is actually the
model we simulated the data from. According to the marginal likelihood criteria, Model
4 receives practically the same support from the data as Model 2. The difference in log
marginal likelihood between Model 2 and Model 1 is more than 20 indicating that some
kind of dependence between the two time series is definitely present.

Results regarding the Australia/New Zeland data set are in Table 9. The model ranked
as best is Model 4 which allows for correlations in both the returns and the volatilities.
This agrees well with our prior idea that the economies of Australia and New Zeland are
closely related. The difference in log marginal likelihood between Model 4 and Model 3,
which is ranked as second best, is 1.8. Both these models imply interdependence in the
returns process and in the latent volatility one. The difference being only in the nature of
such interdependence.

The difference in log marginal likelihood between the best model (Model 4) and the two
models which allow interdependence only in the returns process (Models 2 and 5) is over
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log π̃1(y|Mk) log π̃2(y|Mk) Rank log π̃1(y|Mk)− log π̃2(y|Mk)−
maxk log π̃1(y|Mk) maxk log π̃2(y|Mk)

Model 1 -580.342 -585.131 5 -200.823 -198.045
Model 2 -385.995 -391.332 3 -6.476 -4.246
Model 3 -381.294 -388.942 2 -1.775 -1.856
Model 4 -379.519 -387.086 1 0.000 0.000
Model 5 -387.352 -392.612 4 -7.833 -5.526

Table 9: Australia/New Zeland data set: approximated value forlog π(y|Mk) for the
bivariate models computed via Gaussian approximation ofπ(θ|y) and via numerical in-
tegration. In the third column is the ranking of the models according to the value of the
marginal likelihood. The last two columns are the relative values of the marginal likeli-
hood.

7. This implies very strong evidence against these two models.

Finally, Model 1, which assumes total independence between the two time series can
definitely be rejected, its log marginal likelihood being more than 200 smaller that the
one of Model 4.

Yu and Mayer (2006) fit all these five models, although with a different parametrisation,
to the same data set. They rank the models using the deviation information criteria (DIC)
obtaining the same ranking as we do here.

7 Approximating posterior marginals for the hyperpa-
rametersπ(θm|y)

In some cases one might be interested in investigating the marginal posterior distribu-
tion for the hyperparameters of the model,π(θm|y) for m = 1, . . . ,M . In Section 3.2
an approximation to the joint posterior̃π(θ|y), is introduced. Moreover, in the exam-
ples in Section 6 we have seen that some information about the marginalsπ(θm|y) can
be obtained by approximating the joint marginal for the hyperparametersπ(θ|y) with a
multivariate normal distribution with mean at the modal valueθ∗ of π̃(θ|y) and covari-
ance matrix equal to the inverse of the negative Hessian matrix ofπ̃(θ|y) computed atθ∗.
This Gaussian approximation forπ(θm|y) is quite rough, it does not take into account the
skewness which often is present in the posterior density of the hyperparameters. In some
cases we might, therefore, be interested in a more accurate approximation ofπ(θm|y).

Theoretically, giveñπ(θ|y) the integral

π̃(θm|y) =

∫
π̃(θ|y) dθ−m (29)

can be computed numerically, thus providing the required approximation. In practice
though, as all numerical integration problems, also this becomes more and more compu-
tational demanding with increasing dimension ofθ.
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In our experience, there seems to be no real ”trick” to avoid the rather heavy computa-
tional procedures needed for evaluatingπ̃(θm|y), which means that obtaining a precise
approximation to the posterior marginals of the hyperparameters will always result in a
time-consuming process.

In the following, we present different strategies to evaluate the integral in (29). Both
strategies in Sections 7.1 and 7.2 give quite accurate results but require extra computations
with respect to those used to approximateπ(xit|y). The strategies in Section 7.3 instead,
are intended to provide an approximation, not necessarily very accurate but still useful,
by using quantities already computed when computingπ(xit|y).

7.1 Numerical integration via regular grid

For not too high dimension ofθ, it is possible to evaluatẽπ(θ|y) on a regular grid and
then use the resulting values to numerically compute the integral in (29). In order to locate
the area of highest probability density we can use a strategy similar to that described in
Algorithm 3 with two modifications. First the negative HessianH is replaced by its
diagonal. This because the rotation of the axis due toV in equation (18) is inconvenient
when summing out the variablesθ−m. Using only the diagonal ofH suppresses the
rotation but maintains the scaling. Second, in order to obtain a regular grid of points we
include all the fill in configurations whether or not condition (19) is fulfilled.

After having computed the value of̃π(θ|y) for all points on the grid, by summing out
the variablesθ−m, we obtain, for each dimensionM , a series of points{θ1

m, . . . , θl
m}

with relative density{π̃(θ1
m), . . . , π̃(θl

m)}. We can then fit a spline to the values of the
log-density in order to obtain a smooth estimate.

This is the strategy used in Rue and Martino (2006) and Rue et al. (2007) to approximate
posterior marginals for hyperparameters, and has proved to give extremely accurate re-
sults when compared to those obtained by intensive MCMC runs, provided that the grid
is wide and dense enough.

Unfortunately, in order to achieve precise approximations of theπ(θm|y), especially in
the tails, the grid has to be wider than the one used to computeπ̃(xti|y) and in some
cases also finer. This means that we have to set the tuning parameterδπ to a higher value,
lets say 5 and, in some cases, setδz to a value smaller than 1. This, together with the
fact that we compute all fill in configurations, implies that with, increasing dimension of
θ, the computation becomes soon very heavy. Moreover, computing approximations to
π(θm|y) as described here, does not make use of the values ofπ̃(θ|y) evaluated to com-
puteπ(xti|y) using the grid strategy as described in Section 4.1.1, but implies additional
computations.

As examples of this strategy, we have approximatedπ(θm|y), m = 1, . . . , M for the two
univariate models,M1 andM2 in Section 2.1, fitted to the pound-dollar exchange rate
data set. The two models have respectively two and three hyperparameters.

Figure 32 displays the approximations forπ(θm|y), m = 1, . . . ,M in modelM1 com-
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Figure 32: Posterior marginals for the hyperparameters inM1 fitted to the Pound/Dollar
data set. The solid line is the approximation computed via the regular grid integration, the
histogram is based on intensive MCMC run.
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Figure 33: Posterior marginals for the hyperparameters inM2 fitted to the Pound/Dollar
data set. The solid line is the approximation computed via the regular grid integration, the
histogram is based on intensive MCMC run.

pared with MCMC based density estimates, and Figure 33 displays modelM2. The
approximations and the MCMC-based estimates agree very well. The size of the grid
used to computẽπ(θm|y) is 70 for modelM1 and 1300 for modelM2. It is clear, then,
that when the dimension of the hyperparameters space increases, this strategy for com-
puting posterior marginals for the hyperparameters becomes soon really computational
intensive.
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7.2 Laplace approximation

An alternative way to evaluatẽπ(θm|y) is to use once more the Laplace approximation.
The starting point is the identity:

π(θm|y) =
π(θ|y)

π(θ−m|θm,y)
.

We already have an approximation forπ(θ|y), then

π̃(θm|y) ∝ π̃(θ|y)

π̃G(θ−m|θm,y)

∣∣∣∣∣
θ−m=θ∗−m

(30)

whereθ∗
−m is the modal configuration of̃π(θ−m|θm,y) for different values ofθm and

π̃G(θ−m|θm,y) is a Gaussian approximation tõπ(θ−m|θm,y) built by matching the mode
and the curvature at the mode. That is a Gaussian density with mean equal toθ∗

−m and
precision matrix equal to the negative of the Hessian matrix ofπ̃(θ−m|θm,y) computed
at the mode.

In order to get a smooth approximation toπ(θm|y) we can compute the quantity in (30)
for a set of different values ofθm and then fit a spline to the logarithm of the obtained
values. The density needs then to be numerically normalised so that it integrates to one.
The whole procedure has to be repeated for each of the marginal distributionπ(θm|y) we
are interested in.

The Laplace approximation as described above, gives quite accurate results when com-
pared to density estimates obtained from intensive MCMC runs. As an example we have
computed the marginal posterior densities for all the hyperparameters in Model 2 fitted
to the simulated data set in Figure 16. The results are displayed in Figure 34. Here the
Laplace approximation in (30) is shown as a solid line. The histograms are based on long
(106) MCMC runs. In all cases the approximated densities agree almost perfectly with
the estimated ones.

Unfortunately, computing the expression in (30) implies finding the maximum of the
(M−1) dimensional functioñπ(θ−m|θm,y) for each value ofθm. This operation, with in-
creasing dimension of the hyperparameters space and of the latent fieldx, might become
very costly.

In order to simplify the computations we have tried to substitute, when computing (30),
the conditional modeθ∗

−m with the conditional mean EG(θ−m|θm) computed from the
Gaussian approximatioñπG(θ|y) in equation (25). The conditional mean can be com-
puted in no time thanks to the usual properties of the multivariate Gaussian distribution,
therefore the computational time is reduced a lot. In fact, the only time-consuming op-
eration left to perform is the computation of Hessian ofπ̃(θ−m|y, θm) at EG(θ−m|θm).
This resembles what we have already done in Section 4.2.2 when computing the im-
proved approximation forπ(xti|y). The idea of substituting the conditional mode with
the conditional mean is based on the presupposition that the density of interest,π̃(θ|y)
here andπ(x|y,θ) in Section 4.2.2, is not ”too far” from its Gaussian approximation built
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Figure 34: Posterior marginals for the hyperparameters in Model 2 fitted to the simulated
data in Figure 16. The solid line is the Laplace approximation where (30) is computed
at the conditional mode while the broken line is the Laplace approximation where (30) is
computed at the conditional mean. The histogram is based on intensive MCMC run.

by matching the mode and the curvature at the mode. While this is essentially true for
π(x|y,θ), π̃(θ|y) can differ quite a lot from a Gaussian given also that the priorπ(θ) is
not Gaussian.

The results of approximating̃π(θm|y) using (30) computed at the conditional mean in-
stead of the conditional mode for Model 2 fitted to the simulated data set are displayed
in Figure 34 as a broken line. Clearly the Laplace approximation computed at the condi-
tional mean underestimates the skewness of the marginal posteriors when this is large.

7.3 Integration via an interpolating function

The procedures described in this section provide an approximation forπ(θm|y) using
values of̃π(θ|y) already computed during the numerical integration ofπ̃(xit|y) described
in Section 4.1. The posterior marginals obtained are not necessarily accurate but provide
the user with useful results.
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When evaluating̃π(xti|y) using the grid integration strategy in Section 4.1.1 we compute
the densitỹπ(θk|y) for a certain numberK of points. Although they cannot be directly
used to computẽπ(θm|y), these points carry information about the shape ofπ̃(θ|y) in
the area with highest density. We propose to use theK points in the grid to build aM -
dimensional interpolating functionf(θ). This can then be easily computed for any point
inside the grid in order to numerically compute the integral in (29).

The main advantage of this approach is that, unlike the grid strategy presented in Sec-
tion 7.1, it requires no extra computations ofπ̃(θ|y) with respect to the computation of
π̃(xti|y). In fact, the same evaluation pointsθk in the hyperparameters space, are used to
compute all the posterior marginals in the model. Unfortunately building aM − 1 dimen-
sional interpolating function is not straight forward. We have implemented three different
interpolating functions:

Function 1: Computef(θ) as a weighted sum of theK valuesπ̃(θk|y), k = 1, . . . , K,
that isf(θ) =

∑
wkπ̃(θk|y). The weightswk depend on the Euclidean distance of

θ from eachθk.

Function 2: Computef(θ), as the linear interpolation form theM + 1 points nearest to
θ.

Function 3: Computef(θ), as the quadratic interpolation form theM +1 points nearest
to θ. The curvature is assumed to be 1 as for the standard Gaussian density.

Function 1 seems to provide approximations which tends to be too smooth with respect to
the real posterior densities while Function 2 and 3 can, sometimes, present spikes which
make the numerical integration difficult. Moreover, when the dimension ofθ increases,
not only computing the grid, but also computingf(θ) itself becomes expensive. In fact,
computing any of the three functions described above requires visiting all theK points
which constitutes the grid, and their number grows exponentially withM . Results ob-
tained using Function 1 to interpolate theK points for the univariate Student-t (M2)
model fitted to the Pound-Dollar data set, are displayed in Figure 35. Notice that the
approximations, especially forπ(ν∗|y) are too smooth.

If the CCD strategy is used to computẽπ(xti|y) no grid on the hyperparameter space
is available. Hence a different strategy has to be used. Letz(θ) = (z1(θ), . . . , zM(θ))
be the point in thez-parametrisation defined in (18) corresponding toθ. We define the
functionf(θ) as

f(θ) =
M∏

m=1

fm(zm(θ)) (31)

where

fm(z) =




exp
(
− 1

2(σm+
ccd )2

z2
)

if z ≥ 0

exp
(
− 1

2(σm−
ccd )2

z2
)

if z < 0
(32)

andσm+
ccd andσm−

ccd , m = 1, . . . ,M , are defined at page 18. The function in (31) is not an
interpolating function. It seems, however, to have some advantages over the three func-
tions described above. First of all it is much faster to compute, regardless the dimension
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Figure 35: Hyperparameters for the Student-t model fitted to the Pound-Dollar data set.
The solid line is the approximation obtained via the interpolation Function 2 and the
histogram is derived from a long MCMC run.

of θ, since it does not require visiting any other point in the hyperparameter space. More-
over, when the dimension ofθ is large we do not use the grid strategy for computing
π̃(xit|y) therefore the points constituting the grid are not available.

In Figure 36 we report the approximations forπ(θm|y), m = 1, . . . , 6 obtained using
(31) for Model 5 fitted to the simulated data set. In the same Figure are also displayed
the Gaussian approximations forπ(θm|y) in (25), and an histogram derived from a long
MCMC run. The approximations derived from (31) correct the Gaussian ones for loca-
tions and some skewness. Even though they are not extremely precise they still provide
useful information about the marginals for the hyperparameters. The fact that this appro-
ximations are computed at almost no extra cost after having computedπ̃(xit|y) makes
them valuable.

The approximations based on (31) seem to be more reliable than the one based on the
interpolating functions described at page 56. They can also be computed when the grid
integration strategy is used at the cost of computing the positive and negative “standard
deviations”σm+

ccd andσm−
ccd , m = 1, . . . ,M .

8 Extension: asymmetric models

One feature often observed in financial studies is that volatility responds asymmetrically
to positive and negative return shocks. Several explanations have have been proposed in
the literature to explain the presence of such asymmetric relationship between volatility
and returns. One of the most widely cited is due, to Black (1976) and Christie (1982)
who suggest that the asymmetry reflects a change in financial leverage. In particular, the
argument is that, when a firm experiences a positive (negative) return, it becomes less
(more) risky, thus decreasing (increasing) its volatility. In other words there is a negative
correlations between returns and volatility. This is known asleverageeffect.
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Figure 36: Posterior marginals for the hyperparameters on Model 5 fitted to the simulated
bivariate data set. The solid line is the approximation based on 31 while the broken line is
the Gaussian approximation in (25). The histograms are based on intensive MCMC runs.

A univariate SV model with leverage effect was first introduces by Harvey and Shephard
(1996) and takes the form:

yt = exp(ht/2)εt,
xt+1 = µ + φ(ht − µ) + σηt+1

(33)

whereεt andηt+1 are standard Gaussian variables. The leverage effect is introduced by
letting the two error processes to be negatively correlated. Formally, Corr(εt, ηt+1) = ρ,
with ρ < 0. Note that for asymmetric models we prefer the formulation in (33) over the
one in (6), used in Jacquier et al. (2004). This is because in model (33) a shock at time
t influences the volatility at timet + 1, while in model (6) a shock at timet influences
the volatility at timet. The former being more logically appealing both from a theoretical
and a empirical point of view, see Yu (2005). The SV model with leverage effect in (33)
is estimated by quasi-likelihood method in Harvey and Shephard (1996) and by MCMC
in Mayer and Yu (2000).

In this section we describe how it is possible to perform approximate inference using
INLA for univariate SV models with correlated errors. We have not implemented the
algorithms for such kind of models, therefore no example is presented.
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The core of the INLA approach is the Gaussian approximation for the full conditional
of the latent fieldπ(x|θ,y) described in Section 3.1. In order to be able to write down
such approximation we need to have an expression for the likelihood of each data point
π(yt|x,θ). After some algebra ot can be showed that

π(yt|x,θ) = π(yt|xt, xt+1,θ) = N
{ρ

σ
ext/2[xt+1 − µ + φ(xt − µ)], ext(1− ρ2)

}
(34)

See Appendix for details on how to derive (34) from (33). Note that unlike the univariate
models analysed on Section 2.1, here each data pointyt depends on two nodes of the latent
field, namely,xt andxt+1. The prior distribution for the latent GMRFx is unchanged
from Section 2.1. Hence, the full conditional reads

π(x|y,θ) ∝ exp

{
−1

2
xT Qx +

nd∑
t=1

ft(xt, xt+1)

}
(35)

whereft(xt, xt+1) = log π(yt|xt, xt+1,θ). Similarly to what is done in Section 3.1, we
can expandft(xt, xt+1) around the point(x0

t , x
0
t+1) obtaining

ft(xt, xt+1) ≈ Const+ (xt, xt+1)bt − 1

2
(xt, xt+1)Ct(xt, xt+1)

T .

whereCt is a2 × 2 symmetric matrix andbt a column vector if dimension 2. Bothbt

andCt are functions of the gradient and the Hessian matrix offt(xt, xt+1) computed at
(x0

t , x
0
t+1) and depend on the value of the hyperparameters vectorθ. Let ct

ij indicate the
elementij of the matrixCt andbt

i indicate theith element of vectorbt, wherei, j = 1, 2.
Moreover let

diag(C) =




c1
11 c1

12 0 0 . . . 0
c1
21 c1

22 + c2
11 c2

12 0 . . . 0
0 c2

21 c2
22 + c3

11 c3
12 . . . 0

...
...

0
. . . 0

0 . . . 0




,

and
bT = [b1

1, b
1
2 + b2

1, b
2
2 + b3

1, . . . , 0]

Here diag(C) is aN ×N matrix, whereN is the dimension of the latent fieldx andb is
a vector of lengthN . Similarly to what described in Section 3.1, we can build a Gaussian
approximation toπ(x|y,θ) with precision matrixQ + diag(C) and mean given by the
solution of (Q + diag(C))x∗ = b wherex∗ is the modal configuration ofπ(x|y,θ).
Note that sincext andxt+1 are neighbours in the graph of the latent fieldx, the Gaussian
approximation is a Gaussian Markov random field with respect to the same graph and
therefore preserves the Markov properties of the prior distribution of the latent fieldx.

Starting from the Gaussian approximation described above, it is possible to derive all the
other algorithms necessary to implement the INLA approach also for SV models with
correlated errors.
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9 Discussion

The purpose of this report was to present one more class of models where Integrated
Nested Laplace approximation, introduced in Rue et al. (2007) can be used. In this re-
port we apply INLA to different bivariate stochastic volatility models obtaining approxi-
mations to the posterior marginals of the latent field. These approximations have been
checked against very long runs of MCMC algorithms and appear to be extremely accu-
rate. There are some cases where the approximations and the MCMC based estimates
seem to disagree. We are confident that, in these cases the disagreement is mostly due to
some MCMC error which, despite the long run, is still present in the sample.

The problems analysed in this report present a higher dimension of the hyperparameter
vectorθ than those in Rue and Martino (2006) and Rue et al. (2007). Hence the grid
integration scheme used in Rue and Martino (2006) and Rue et al. (2007) becomes too
computationally expensive. We have, therefore, used a different integration procedure,
named central composit design (CCD). This was introduced in Rue et al. (2007) but in
this report we verify that in most cases it gives accurate results, despite the fact that the
hyperparameter space is explored in a much cruder way.

In all examples considered here, we consider bivariate data and model latent field as a
bivariate autoregressive model of order 1. It is, in principle, possible to generalise this
model by allowing higher dimension of the data set and higher order of the autoregressive
model. However, this would make not only the number of hyperparameters to increase,
but also the structure of the precision matrix of the latent field to become more dense.
This means, in turn, that the efficiency of INLA decreases. Anyway, efficiency problems
would be present, for such complex models, also for MCMC based inference.

Computing approximations for the posterior marginals of hyperparametersπ(θm|y), m =
1, . . . ,M becomes harder whenM grows. In this report we propose different solutions
to this problem. There seems to be no real method to obtain accurate approximations for
π(θm|y) in a cheap way. If accuracỹπ(θm|y) is required, some additional computational
time has to be invested in this task. Anyway,we describe fast solutions which give useful,
though not extremely accurate, results.

Using INLA also the issue of model choice can be solved. An approximation for the
marginal likelihood of the model can easily be derived and, for the class of models dis-
cussed here, the Bayes factor can be used for model comparison.
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A Appendix

A.1 Linear expansion oflog πGG(x−t|xt, θk)

In a unidimensional problem, the log denominator of expression (22) is given by

log π̃GG(x−t|xt,θk)

∣∣∣∣∣
x−t=EeπG

(x−t|xt,θk)

∝ 1

2
log |Q∗ + diag{c(xt,θk)}| (36)

whereQ∗ is the prior precision matrix of the GMRFx where the row and column number
t have been removed, andc(xt,θk) is the vector of minus the second derivative of the l0g-
likelihood evaluated atxj = EeπG

(xj|xt,θk), that is:

cj(xt,θk) = −∂2π(yj|xj,θk)

∂x2
j

∣∣∣∣∣
xj=EeπG

(xj |xt,θk)

Let δt indicate the derivative of the conditional mean EeπG
(xj|xt,θk), then eachxj can be

written as a function ofxt as

xj = µGj(θk) + δt
j(xt − µGt(θk))

whereµG(θk) is the mean of the Gaussian approximationπG(x|y,θk).

We want to expand expression (36) aroundxt = µGt(θk). For this purpose we have to
compute its first derivative. Let

d3
j(xt,θk) =

∂cj(θk, xt)

∂xt

= −∂3π(yj|xj,θk)

∂x3
j

∣∣∣∣∣
xj=EeπG

(xj |xt,θk)

δt
j

Since for any matrixM we have that∂ log |M | = Trace(M−1∂M ), then

d log |Q∗+diag(c)|
dxt

= Trace
{

[Q∗ + diag(c)]−1 d[Q∗+diag(c)]
dxt

}
= Trace

{
[Q∗ + diag(c)]−1diag[d3(xt,θk)]

}
=

∑
j Var(xj|xt)d

3
j(xt,θk)

=
∑

j σGj
(θk)[1− Corr2πG

(xt, xj|θk)] d
3
j(xt,θk)

(37)
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We have then

log π̃GG(x−t|xt,θk)

∣∣∣∣∣
x−t=EeπG

(x−t|xt,θk)

≈
1
2
xt

∑
j σGj

(θk)[1− Corr2πG
(xt, xj|θk)] d

3
j(xt,θk)

(38)

Note that the correlation betweenxj andxt, necessary to compute (38) is only available
for some of thei’s and t’s since he marginal variances are computed using (11). The
solution to this problem given by Rue et al. (2007) is to simply replace all non computed
correlations with a default value, say 0.05.

For Gaussian data (36) is just a constant, so the term in (38) is the first order correction
for non-Gaussian observations.

The first order expansion presented here depends from the fact that the matrix diag{c}
is a diagonal matrix. The corresponding matrix for multidimensional models diag{C},
defined in Section 3.1, instead, includes also some off diagonal terms, these make the
computation of the derivative in (37) much more complex.

A.2 Determinant of Q[−i,−i]

For any GMRFx, with precision matrixQ we have that

π(x) ∝ |Q|1/2 exp{−1

2
xT Qx} (39)

From the basic properties of a Gaussian distribution we have that, for any indexi =
1, . . . , n, the precision matrix ofx−i|xi is Q[−i,−i]. Moreover we have that

π(x) = π(xi)π(x−i|xi) ∝ Var(xi)
−1/2|Q[−i,−i]|1/2 exp{−1

2
xT Qx} (40)

Comparing (39) and (40) we have that

1

2
log |Q[−i,−i]| =

1

2
log |Q|+ 1

2
log Var(xi)

A.3 Likelihood for asymmetric SV models

We can rewrite model (33) as

yt = exp(xt/2)εt,

xt+1 = µ + φ(xt − µ) + σ(ρεt +
√

1− ρ2ωt+1

with ωt+1 being a standard Gaussian and Corr(εt, ωt+1) = 0.
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We want to compute the densityπ(yt|xt, xt+1,θ). To start, notice that given the values of
yt andxt, thenεt = exp(−xt/2) yt and

xt+1 = µ + φ(xt − µ) + σ exp(−xt/2)yt + σ
√

1− ρ2ωt+1

that is
xt+1|xt, yt,θ ∼ N (µ + φ(xt − µ) + σ exp(−xt/2)yt, σ

√
1− ρ2). (41)

Moreover we have
yt|xtθ ∼ N (0, exp(xt)). (42)

We can write

π(yt|xt, xt+1,θ) ∝ π(yt, xt, xt+1|θ)

∝ π(xt|θ)π(yt|xt,θ)π(xt+1|xt, yt,θ)

∝ π(yt|xt,θ)π(xt+1|xt, yt,θ)

From (41) and (42) we have then

π(yt|xt, xt+1,θ) ∝ ext/2 exp
{
− e−xt/2

2
y2

t

}
exp

{
− 1

2σ2(1−ρ2)
[xt+1 − µ− φ(xt − µ)− σρext/2yt]

}

∝ exp
{
−1

2

[
e−xt + ρ2

1−ρ2 e
−xt

]
y2

t + [xt+1 − µ− φ(xt − µ)] ρe−xt/2

σ(1−ρ2)
yt

}

which is the core of a Gaussian density with

Var(yt|xt, xt+1,θ) =

[
e−xt +

ρ2

1− ρ2
e−xt

]−1

= (1− ρ2)ext

and

E(yt|xt, xt+1,θ) = [xt+1 − µ− φ(xt − µ)]
ρe−xt/2

σ(1− ρ2)

[
e−xt +

ρ2

1− ρ2
e−xt

]−1

= [xt+1 − µ− φ(xt − µ)]
ρ

σ
ext/2
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Implementing Approximate Bayesian Inference
using Integrated Nested Laplace Approximation: a

manual for theinla program

Sara Martino and H̊avard Rue
Department of Mathematical Sciences

NTNU, Norway

Abstract

This manual describes theinla program, a new instrument which allows the
user to easily perform approximate Bayesian inference using integrated nested Laplace
approximation (INLA). We describe the set of models which can be solved by the
inla program and provide a series of worked out examples illustrating its usage in
details. The Appendix contains a reference manual for theinla program.

1 Introduction

Integrated nested Laplace approximation (INLA) is a new approach to statistical inference
for latent Gaussian Markov random field (GMRF) models introduced by Rue and Martino
(2006) and Rue et al. (2007). It provides a fast, deterministic alternative to Markov chain
Monte Carlo (MCMC) which, at the moment, is the standard tool for inference in such
models. The main advantage of the INLA approach over MCMC is that it is much faster
to compute; it gives answers in minutes and seconds where MCMC requires hours and
days. The theory behind INLA is thoroughly described in Rue et al. (2007) and will not
be repeated here.

In short, a latent GMRF model is a hierarchical model where, at the first stage we find
a distributional assumption for the observablesy usually assumed to be conditionally
independent given some latent parametersη and, possibly, some additional parametersθ1

π(y|η,θ1) =
∏

j

π(yj|ηj,θ1).

The latent parametersη are part of a larger latent random fieldx, which constitutes the
second stage of our hierarchical model. The latent fieldx is modelled as a GMRF with

1



precision matrixQ depending on some hyperparametersθ2

π(x|θ2) ∝ exp{−1

2
(x− µ)T Q(x− µ)}

The third, and last, stage of the model consists of the prior distribution for the hyperpa-
rametersθ = (θ1,θ2).

The INLA approach provides a recipe for fast Bayesian inference using accurate appro-
ximations toπ(θ|y) andπ(xi|y), i = 0, . . . , n− 1, i.e. the marginal posterior density for
the hyperparameters and the posterior marginal densities for the latent variables. Different
types of approximations are available, see Rue et al. (2007) for details. The approximate
posterior marginals can then be used to compute summary statistics of interest, such as
posterior means, variances or quantiles.

Computational speed is one of the most important components of the INLA approach,
therefore special care has to be put in the implementation of the required algorithms.
All procedures necessary to perform INLA are efficiently implemented in theGMRFLib
library. This an open source library written in (ANSI) C and Fortran which is freely
available on the web pagehttp://www.math.ntnu.no/ ∼hrue/GMRFLib/ .

The inla program is a useful tool which allows the user to easily specify and solve a
large class of models, using the algorithms in theGMRFLib library, without any need for
C programming. The components of the model and the options for the INLA procedures
are specified through aini file. The inla program reads theini file, then it builds
and solves the model returning the required approximate posterior marginal densities and
summary statistics.

The class of models which can be solved using theinla program is wide, covering
time series models, generalised additive models(Hastie and Tibshirani, 1990),gener-
alised additive mixed models(Lin and Zhang, 1999),geoadditive models(Kammand and
Wand, 2003),univariate volatility models(Taylor, 1986). With the exception of univari-
ate volatility models, theinla program supports a subset of the models supported by
BayesX. BayesX is a software tool, developed in the University of Munich, for estimat-
ing structured additive regression models, Brezger et al. (2003).

In this tutorial we present theinla program and, through a series of worked out exam-
ples show the possible range of applications where approximate Bayesian inference using
INLA can be useful. In Section 2 we discuss the class of models which can be defined and
solved using theinla program. In Section 3 we describe the use of theinla program
through a series of worked out examples of increasing complexity. The examples include
all, but one, examples in Rue and Held (2005) and all examples in Rue et al. (2007),
plus some more examples previously analysed with BayesX. The Appendix consists of a
reference manual for theinla program.
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2 Model description

The inla program supports hierarchical GMRF models of the following type

yj|ηj,θ1 ∼ π(yj|ηj,θ1) j ∈ J (1)

ηi =

nf−1∑
k=0

fk(cki) + zT
i β + ui i = 0, . . . , nη − 1 (2)

where

• J is a subset of{0, 1, . . . , nη − 1}, that is, not necessarily all latent parametersη
are observed through the datay.

• π(yj|ηj,θ1) is the likelihood of the observed data assumed to be conditional inde-
pendent given the latent parametersη, and, possibly, some additional parameters
θ1. The latent variableηi enters the likelihood through a known link function, see
Appendix A.1 for details.

• u is a vector of unstructured random effects of lengthnη with i.i.d Gaussian priors
with precision parameterλη:

u|λη ∼ N (0, ληI) (3)

• fk(cki) is the effect of a generic covariatek which assumes valuecki for obser-
vation i. The functionsfk, k = 0, . . . , nf − 1 comprise usual nonlinear effect
of continuous covariates, time trends and seasonal effects, two dimensional sur-
faces, iid random intercepts and slopes and spatial random effects. The unknown
functions, or more exactly the corresponding vector of function evaluationsf k =
(f0k, . . . , f(mk−1)k)

T , are modelled as GMRFs given some parametersθfk
, that is

fk|θfk
∼ N (0,Q−1

k ) (4)

• zi is a vector ofnβ covariates assumed to have a linear effect, and isβ the cor-
responding vector of unknown parameters with independent zero-mean Gaussian
prior with fixed precisions.

The full latent field, of dimensionn = nη +
∑nf−1

j=0 mj + nβ, is then

x = (ηT ,fT
0 , . . . ,fT

nf−1,β
T ).

All elements of vectorx are defined as GMRFs, hencex is itself a GMRF with density:

π(x|θ2) =

nη−1∏
i=0

π(ηi|f 0, . . . ,fnf−1,β, λη)

nf−1∏
k=0

π(fk|κfk
)

nβ−1∏
m=0

π(βm) (5)
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whereθ2 = {λη,θf0 , . . . ,θnf−1} is a vector of unknown hyperparameters.

The last element in the definition of our hierarchical model is a prior distribution for the
hyperparametersθ = (θ1,θ2). In the inla function all precisions are given a Gamma
prior with parametersa andb so that the mean isa/b and the variance isa/b2. See the
Appendix for details about the prior distributions for all the hyperparameters of the model.

Many well known models from the literature can be written as special cases of (1) and (2)

• Time series models

Time series models are obtained ifck = t represents time. The functionsfk can
model nonlinear trends or seasonal effects

ηt = ftrend(t) + fseasonal(t) + zT
t β

• Generalised additive models (GAM)

A GAM model is obtained ifπ(yi|ηi,θl) belongs to an exponential family,ck are
univariate, continuous covariates andfk are smooth functions.

• Generalised additive mixed models (GAMM) for longitudinal data

Consider longitudinal data for individualsi = 0, . . . , ni−1, observed at time points
t0, t1, . . . . A GAMM model extends a GAM by introducing individual specific
random effects, i.e.

ηit = f0(cit0) + . . . , +fnf−1(cit(nf−1))) + b0iwit0 + · · ·+ b(nb−1)iwit(nb−1)

whereηit is the predictor for individuali at timet, xitk, k = 0, . . . , nf − 1,witq, q =
0, . . . , nb − 1 are covariate values for individuali at timet, andb0i, . . . , b(nb−1)i is a
vector ofnb individual specific random intercepts (ifwitq = 1) or slopes. The above
model can be written in the general form in equation (2) by definingr = (i, t), crj =
citj for j = 0, . . . , nf − 1 andcr,(nf−1)+q = witq, f(nf−1)+q(cr,(nf−1)+q) = bqiwitq

for q = 0, . . . , nb. In the same way GAMM’s for cluster data can be written in the
general form (2).

• Geoadditive models

If geographical information for the observations in the data set are available, they
might be included in the model as

ηi = f1(c0i) + · · ·+ fnf−1(c(nf−1)i) + fspat(si) + zT
i β

wheresi indicates the location of observationi andfspat is a spatially correlated
effect. Models where one of the covariate represent the spatial effect have recently
been coined geoadditive by Kammann and Wand (2003).
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• ANOVA type interaction model

The effect of two continuous covariatew andv can be modelled as

ηi = f1(wi) + f2(vi) + f1|2(wi, vi) + . . .

wheref1 andf2 are the main effects of the two covariates andf1|2 is a two dimen-
sional interaction surface. The above model can be written in the general form (2)
simply by definingc1i = wi, c2i = vi, c3i = (wi, vi),

• Univariate stochastic volatility model

Stochastic volatility models are time series models with Gaussian likelihood where
it is the variance, and not the mean of the observed data, to be part of the latent
GMRF model. That is

yi|ηi ∼ N (0, exp(ηi))

The latent field is then typically modelled as a autoregressive model of order 1.

3 Examples of application

In this section we present a series of worked out examples mostly taken from Rue and
Held (2005), Rue et al. (2007) and from the BayesX web page. The aim is both to show
the wide range of models which can be solved using the approximate Bayesian inference
techniques presented in Rue et al. (2007), and to introduce theinla program which
makes it possible for the user to apply the above mentioned approximation techniques,
making use of theGMRFLib library, in an easy and painless way.

The only input required from theinla program is aini file containing the description
of the model, the location of the files where the data and the covariates are stored, and,
possibly, some options to be passed to the underlyingGMRFLib library. Theini file is
organised in sections each of which either describes one element of the hierarchical model
in equations (1) and (2), or specifies some global parameters for the underlying functions
in theGMRFLib library. The user is required to specify the likelihood model for the data,
the parameters for the prior distribution of the model hyperparametersθ, and to describe,
one by one, all components of the latent GMRFx in (2). Theinla program will then
read the model specifications, build the joint probability distribution for the latent GMRF
x in equation (5), compute approximations for the required posterior marginals and store
the results in a user defined directory.

Before presenting the examples, we describe how the covariate values are stored in files.
Each covariate has to be stored in a separate file. The format of the file depends on
whether the covariate is assumed to have linear or non-linear effect:
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Covariates with linear effect: The value of the covariate is simply stored in a file with
nη columns each row having the format:

i zi

wherei = 0, . . . , nη − 1 andzi is the value of the covariate for observationi.

Covariates with non-linear effect: Let c ∈ C andC = {c(0) < c(1) < · · · < c(idx) <
· · · < c(m−1)}. That is, covariatec takes one of them values in the ordered vector
C. The file storing covariatec hasnη row, each with the following format:

i (idx)i

wherei = 0, . . . , nη − 1 and(idx)i is the position of the observed valueci in the
vectorC. If the values inC are different from0, 1, . . . , another file ofm rows, is
necessary to store the values ofC. A short example will be useful:

Example: Let nη = 5 andC = {9, 10, 11}. Let the observed covariate values be
c0 = 10, c1 = 9, c2 = 11, c3 = 9 andc4 = 10. Then the covariate file will be as
following

0 1
1 0
2 2
3 0
4 1

We would need also a file storing the values inC:

9
10
11

Note that all indexes go from0 to n− 1 and not from1 to n.

We run each example in Section 3.1 on two different machines. The first, defined Machine
1, is a laptop with a Intel(R) Pentium(R) M processor 1.86GHz. The second one, defined
Machine 2 is a Dell Poweredge 2950 equipped with two quad-core Itel Xeon 2.66GHz
CPUs. For each of the examples we describe the model, the correspondingini file and
report some output results and the computation time for each of the two machines.

3.1 A simple time series: the Tokyo rainfall data

Our first example is a simple time series model, analysed, among others, in Rue and Held
(2005, Sec. 4.3.4).
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Example 1 The number of occurrences of rainfall over 1 mm in the Tokyo area for each
calendar year during two years (1983-84) are registered. It is of interest to estimate
the underlying probabilitypt of rainfall for calendar dayt which is, apriori, assumed to
change gradually over time. The likelihood model is binomial

yt|ηt ∼ Bin(nt, pt)

with logit link function

pt =
exp(ηt)

1 + exp(ηt)
.

The model for the latent variables can be written in the general form of equation (2) as

ηt = f(t)

wheret is the observed time whose effect is modelled as a smooth functionf(·). Following
Rue and Held (2005), the random vectorf = {f0, . . . , f365} is assumed to have a circular
random walk of order 2 (RW2) prior with unknown precisionλf .

There is only one hyperparameterθ = (λf ) which we assign a Gamma(a, b) prior distri-
bution witha = 1 andb = 0.0001.

Figure 1, panel (a), displays the observed frequencies of rain for the 366 time points. The
TOKYO.ini file which defines the above model for theinla program is:

1 [ The Tokyo− r a i n f a l l example ]
2 t y p e = problem
3 d i r = r e s u l t s
4

5 [ Uns t ruc t−te rm ]
6 t y p e = u n s t r u c t
7 i n i t i a l = 10
8 f i x e d = 1
9 n = 366

10

11 [ da ta ]
12 t y p e = data
13 l i k e l i h o o d = b i n o m i a l
14 f i l ename = t o kyo . r a i n f a l l . da ta
15

16 [ l a t e n t−RW2]
17 t y p e = f f i e l d
18 c o v a r i a t e s = t ime . c o v a r i a t e
19 n=366
20 model = rw2
21 paramete rs = 1 .0 0 .0001
22 c y c l i c = 1
23 q u a n t i l e s=0.025 0 .975
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In the following we guide the reader, section by section, through the aboveini file and
explain what the different fields represent. We then briefly illustrate how to run theinla
program and how and where the output is stored.

Each section of theini file starts with a tag (in square brackets) which is simply a user
defined name for the section itself. The order of the sections is not important. The field
namedtype is contained in each section. It defines the role of the section in the problem
specification and, consequently, determines also the nature of all other fields in the same
section. There are six specifications for thetypefield, see Appendix A.1 for details.

The first section in ourini file, defined bytype=problem, specifies some global param-
eters. The options specified in this section are valid for the whole problem. Here, the
directory where the results will be stored is defined (line 3).

The second section, defined bytype=unstruct, (lines 5-9), specifies the model for the un-
structured termui in equation (2). The fieldn is required and indicates the length of the
latent variable vectorη. The inla program requires a section oftype=unstruct to al-
ways be present, even in cases, like the example we are presenting here, where there is
no unstructured random effect. We mimic the absence of unstructured random effect by
declaring the precisionλη to be fixed and not random (fixed=1), and the value of the log
precisionlog λη to be high (initial =10).

The following section, defined bytype=data (lines 11-14), specifies the model for the
likelihood of the dataπ(yt|ηt) (line 13), and the name of the file where the data are stored
(line 14). The format of the data file depends on the likelihood model, see Appendix
A.1.2. For binomial likelihood it is as following:

t nt yt

wheret is the data index going from0 to (nd − 1) = 365.

The last section, defined bytype= ffield (lines 16-23) specifies the model for the random
vectorf . In this example we have a second order random walk (model=rw2) of length 366
(n=366) which is cyclical (cyclic=1). We also specify here the parametersa andb for the
Gamma prior for the precision parameterλf (line 21). We require theinla program to
compute also the 0.025 and 0.975 quantiles for each of the posterior marginal densities in
the latent RW2 field (line 23). The name of the file where the covariate values are stored
(line 18) completes the model specification. In this case the covariate is just the observed
time point. The covariate file consists of two identical columns with index going from 0
to 365.

0 0
1 1
2 2

Once theini file is ready, we can run the program using the following command line:
inla -v TOKYO.ini

The option-v (verbose) makes the program print out some more information about the
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model while running. Only for this example, we reproduce the output of theinla pro-
gram to make the reader familiar with it.

i n l a b u i l d . . .
number o f s e c t i o n s = [4 ]
p a r s e s e c t i o n = [0 ] name =[ t h etokyo− r a i n f a l l example ]

t ype =[PROBLEM]
i n l a p a r s e p r o b l e m . . .

name =[ t h e tokyo− r a i n f a l l example ]
use . d e r i v a t i e s = [1 ]
s t o r e r e s u l t s i n d i r e c t o r y =[ r e s u l t s ]
o u t p u t :

k l d = [1 ]
h y p e r p a r a m e t e r s = [0 ]
summary = [1 ]
d e n s i t y = [1 ]
n q u a n t i l e s = [0 ] [ ]
n p e r c e n t i l e s = [0 ] [ ]

p a r s e s e c t i o n = [1 ] name =[u n s t r u c t−te rm ] t ype =[UNSTRUCT]
i n l a p a r s e u n s t r u c t . . .

s e c t i o n =[u n s t r u c t−te rm ]
PRIOR−>name =[GAMMA]
PRIOR−>PARAMETERS=[1 , 0 .0 0 1 ]
i n i t i a l i s e l o g p r e c i s i o n [ 1 0 ]
f i x e d = [1 ]
n = [366 ]
compute = [0 ]
o u t p u t :

summary = [1 ]
d e n s i t y = [1 ]
n q u a n t i l e s = [0 ] [ ]
n p e r c e n t i l e s = [0 ] [ ]

p a r s e s e c t i o n = [2 ] name =[d a t a ] t ype =[DATA]
i n l a p a r s e d a t a . . .

t a g =[ d a t a ]
l i k e l i h o o d =[BINOMIAL]
f i l e −>name =[tokyo . r a i n f a l l . d a t a ]
read n =[1098] en t r i e s from f i l e =[tokyo . r a in f a l l . d a t a ]

0 /366 ( idx , a , y ) = ( 0 , 2 , 0 )
1 /366 ( idx , a , y ) = ( 1 , 2 , 0 )

p a r s e s e c t i o n = [3 ] name =[ l a t e n t−rw2 ] t ype =[FFIELD ]
i n l a p a r s e f f i e l d . . .

s e c t i o n =[ l a t e n t−rw2 ]
model =[ rw2 ]
PRIOR−>name =[GAMMA]
PRIOR−>PARAMETERS=[1 , 0 . 0 0 0 1 ]
c o n s t r = [0 ]
d i a g o n a l = [0 ]
compute = [1 ]
f i x e d = [0 ]
read c o v a r i a t e s from f i l e =[ t ime . c o v a r i a t e ]
r ead n =[732 ] e n t r i e s from f i l e =[ t ime . c o v a ri a t e ]
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f i l e =[ t ime . c o v a r i a t e ] 0 /366 ( idx , y ) = ( 0 , 0 )
f i l e =[ t ime . c o v a r i a t e ] 1 /366 ( idx , y ) = ( 1 , 1 )

n = [ 3 6 6 ] : use d e fa u l t lo c a t i o n s , i f r e q u i r e d
c y c l i c = [1 ]
i n i t i a l i s e l o g p r e c i s i o n [6 . 9 0 7 7 6 ]
o u t p u t :

summary = [1 ]
d e n s i t y = [1 ]
n q u a n t i l e s = [2 ] [ 0 .025 0 .975 ]
n p e r c e n t i l e s = [0 ] [ ]

i n l a b u i l d : check f o r unusede n t r i e s i n [TOKYO. i n i ]
in la INLA . . .

S i ze o f f u l l g raph =[732]
Found o pt i m a l r e o r d e r i n g =[amd ]
L i s t o f h y p e r p a r a m e t e r s :

t h e t a [ 0 ] = [ L o g p r e c i s i o n f o r l a t e n t−rw2 ]
Maximise marg ina l f o r hyperparam : log (d e n s i t y ) = −331.7258 t h e t a =

9.335481
Maximise marg ina l f o r hyperparam : log (d e n s i t y ) = −331.7258 t h e t a =

9.335732
Compute t h e Hess ian u s i n g c en t r a l d i f f e r e n c e s and s t e ps i z e [ 0 . 0 0 0 1 ] .

Matr ix−t ype [ dense ]
Maximise marg ina l f o r hyperparam : log (d e n s i t y ) = −331.7258 t h e t a =

9.335732
2.609340

E i g e n v e c t o r s o f t h e Hess ian
1.000000

E i g e n v a l u e s o f t h e Hess ian
2.609340

Search : c o o r d i n a t e 0 d i re c t i o n −1
c o n f i g 0=[ −1] log ( r e l . dens ) = −0.49 , accep t , compute , 0 .10 s
c o n f i g 1=[ −2] log ( r e l . dens ) = −1.88 , accep t , compute , 0 .10 s
c o n f i g 2=[ −3] log ( r e l . dens ) = −3.99 , d i f f t o l a r g e , s t o p

s e a r c h i n g
Search : c o o r d i n a t e 0 d i re c t i o n 1

c o n f i g 3=[ 1 ] l og ( r e l .dens ) = −0.51 , accep t , compute , 0 .10 s
c o n f i g 4=[ 2 ] l og ( r e l .dens ) = −2.13 , accep t , compute , 0 .10 s
c o n f i g 5=[ 3 ] l og ( r e l .dens ) = −5.33 , d i f f t o l a r g e , s t o p

s e a r c h i n g
F i l l −i n c o m p u t a t i o n s
Maximise marg ina l f o r hyperparam : log (d e n s i t y ) = −331.7258 t h e t a =

9.335732
c o n f i g 6=[ 0 ] l og ( r e l .dens ) = 0 . 0 0 , accep t , compute , 0 .10 s

Combine t h e d e n s i t i e s w i th r e l a t i v e we igh t s :
c o n f i g 0 / 5=[ −1.00] we igh t = 0 .614 a d j u s t e d we igh t = 0 .616
c o n f i g 1 / 5=[ −2.00] we igh t = 0 .152 a d j u s t e d we igh t = 0 .171
c o n f i g 2 / 5=[ 1 . 0 0 ] we igh t = 0 .603 a d j u s t e d we igh t = 0 .604
c o n f i g 3 / 5=[ 2 . 0 0 ] we igh t = 0 .119 a d j u s t e d we igh t = 0 .134
c o n f i g 4 / 5=[ 0 . 0 0 ] we igh t = 1 .000 a d j u s t e d we igh t = 0 .963

Done .
s t o r e r e s u l t s i n d i r e c t o r y [ r e s u l t s ]
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s t o r e summary r e s u l t s
i n [ r e s u l t s / l a t e n t−rw2 / summary . d a t ]

s t o r e summary (g a u s s i a n ) r e s u l t s
i n [ r e s u l t s / l a t e n t−rw2 / summary−g a u s s i a n . d a t ]

s t o r e m a r g i n a l s
i n [ r e s u l t s / l a t e n t−rw2 / marg ina l−d e n s i t i e s . d a t ]

s t o r e marg ina l−d e n s i t i e s (g a u s s i a n )
i n [ r e s u l t s / l a t e n t−rw2 / marg ina l−d e n s i t i e s−g a u s s i a n . d a t ]

s t o r e ( symmetr ic ) k ld ’ s
i n [ r e s u l t s / l a t e n t−rw2 / symmetr ic−k ld . d a t ]

s t o r e q u a n t i l e s i n [ r e s u l t s / l a t e n t−rw2 / q u a n t i l e s . d a t ]
s t o r e q u a n t i l e s (g a u s s i a n )

i n [ r e s u l t s / l a t e n t−rw2 / q u a n t i l e s−g a u s s i a n . d a t ]
Time used :

P r e p a r a t i o n s : 0 .011 seconds
Approx i n f e re n c e : 2 .361 seconds
Output : 2 .122 seconds
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T o t a l : 4 .494 seconds

From the above output we can follow what theinla program does: it first reads the
different sections, builds the model for the full latent fieldx, performs the INLA approxi-
mation and, finally, stores the results in the appropriate directories. The whole procedure
takes less than 5 seconds on Machine 1 and about 2 seconds on Machine 2.

The results are stored in the the directoryresults. The program creates sub-directories to
store separately results for each component of the model. In our Tokyo example we have
two sub-directories:

• unstruct−term/

• latent−rw2/

The first one is an empty directory since by default the marginals for the unstructured
term are not computed, see Appendix A.1.3. The second directory contains results for the
latent RW2 model. The sub-directories where the results are stored are printed in the last
part of the output of theinla function.

The default results consist of five files for each sub-directory created, namely:

• marginal−densities−gaussian.dat

• summary−gaussian.dat

• marginal−densities .dat

• summary.dat

• symmetric−kld.dat

Moreover we have two files containing the quantiles

• quantiles−gaussian.dat
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• quantiles .dat

The names of the files are always the same for each sub-directory created. The files whose
names ends with−gaussian.datcontain results obtained using the Gaussian approximation
to approximate the density ofxt|y,θ (see Rue et al. (2007), Section 3.2.1) while the
other files contain results obtained using one of the improved approximations forxt|y,θ
described in Rue et al. (2007), i.e. the Laplace approximation or its simplified version
(default).

The filesymmetric−kld.datcontains the (symmetric) Kullback-Leibler (KL) divergence be-
tween the Gaussian and the (simplified) Laplace approximation to the marginal posterior
densities, which we have plotted in Figure 1, panel (b). In this example the divergence is
larger for the winter months (November to February), when the observed frequencies are
lower, but it stays always very low. Rue et al. (2007) propose to use the Kullback-Leibler
distance to check the accuracy of the Gaussian approximation.

The “summary” files contain the mean and the standard deviation for each posterior den-
sity. There is one line for each node in the RW2 model and each line is structured as
follows:

t E(xt|y) σ(xt|y)

Also in the “quantiles” files each line refers to one node and is structured as follows:

t p(0) xt(0) p(1) xt(1) . . .

wherep(j) andxt(j) are such that Prob(xt < xt(j)|y) = p(j), j = 0, 1, . . . . The number
of columns in the “quantiles” files depends on how many quantile values the user choose
to compute. In our example there are 5 columns.

Figure 1, panel (a), displays the binomial frequencies and the approximated posterior
mean with uncertainty bounds for the underlying probabilitiespt. The probability of rain
is smaller in the winter months.

The “marginal-densities” files contain the approximated marginal posterior densities.
Again each line refers to a different node in the RW2 model and the structure of each
line is as follows

t xt0 π̃(xt0|y) xt1 π̃(xt1|y) . . . xtK π̃(xt(K−1)|y)

where(xt0, xt1, . . . , xt(K−1)) areK = 201 selected values of the variablext and
(π̃(xt0), π̃(xt1), . . . , π̃(xt(K−1))) are the corresponding values of the density. Figure 1
(right) displays the Gaussian approximation (broken line) and the simplified Laplace ap-
proximation (solid line) for the marginal posterior density ofx365|y, this node is chosen
for being the one for which the KL divergence is maximised. The following R code can
be used to reproduce this figure

>plot(marginal[1,seq(2,403,2)],marginal[1,seq(3,403,2)],

type="l",lwd=2,ylab="",xlab="")
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Figure 1: Results for the Tokyo rainfall example

>lines(gaus.marginal[1,seq(2,403,2)],gaus.marginal[1,seq(3,403,2)],

type="l",lwd=2,lty=2)

wheremarginal andgaus.marginal arenη × (2K + 1) matrices containing the
data in the filesmarginal-densities.datandmarginal-densities-gaussian.datrespectively.
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3.2 A time series with seasonal component: the drivers data

The second example is also taken from Rue and Held (2005, Sec 4.4.2). It is again a
time series but here we decompose the latent variablesηt into a trend and a seasonal
component.

Example 2 The data consist in monthly counts of car drivers in Great Britain killed or
seriously injured in car accidents from January 1969 to December 1984. The time series
hasnd = 192 data points and exhibits a strong seasonal pattern. One of our goals is to
predict the pattern of counts in the 12 month following the last observation.

We assume the squared root of the countsyt to be conditionally independent Gaussian
random variables:

yt|ηt, λy ∼ N (ηt, 1/λy), t = 0, . . . , nd − 1

The conditional meanηt is then a sum of a smooth trend and a seasonal component:

ηt = seasont + trendt, t = 0, . . . , nη − 1 (6)

We assume the vectorseason= (season0, . . . , seasonnη−1) to follow the seasonal model
in (3.58) of Rue and Held (2005), with length 12 and unknown precisionλseason, and the
vectortrend = (trend0, . . . , trendnη−1) to follow a RW2 with unknown precisionλtrend.

Note that we have thatnη = nd + 12 = 204, since no observationsyt are available for
t = nd, nd + 1, . . . , nd + 11. For prediction we are interested in the posterior marginals
of (ηnd

, . . . , ηnd+11).

There are three hyperparameters in the modelθ = (λy, λseason, λtrend) for which we choose
the following prior distributions:

λy ∼ Gamma(4, 4)
λseason ∼ Gamma(1, 0.1)
λtrend ∼ Gamma(1, 0.0005)

See Rue and Held (2005) for more details.

The correspondingDRIVERS.ini file is as follows:

1 [ D r i v e r s da ta ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4 q u a n t i l e s = 0.025 0 .975
5

6 [ U n s t r u c t ]
7 t y p e = u n s t r u c t
8 paramete rs = 1 0.0005

14



9 i n i t i a l = 13
10 f i x e d = 1
11 n = 204
12 compute=1
13

14 [ da ta ]
15 t y p e = data
16 l i k e l i h o o d = g a u s s i a n
17 f i l ename = s q r t−d r i v e r s . da t
18 paramete rs = 4 4
19 i n i t i a l = −2
20

21 [ t r e n d ]
22 t y p e = f f i e l d
23 c o v a r i a t e s = t ime . da t
24 n=204
25 model = rw2
26 paramete rs = 1 0.0005
27 i n i t i a l = 7
28

29 [ s e a s o n a l ]
30 t y p e = f f i e l d
31 model = s e a s o n a l
32 c o v a r i a t e s = t ime . da t
33 n = 204
34 season=12
35 paramete rs = 1 0 .01
36 i n i t i a l = 10
37

38 [ INLA paramete rs]
39 t y p e = INLA
40 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 0.001
41 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 0.001

We go briefly through theini file ,section by section, highlighting the difference with
the previous example.

• [Drivers data] section: specifying the quantiles intype=problem section (line 4) ,
will make the program compute quantiles for all nodes in the latent field.

• [Unstruct] section: the precision is fixed to a high value (lines 9-12) to mimic
the absence of an unstructured term in the model. Anyway, since our goal is to
predict the expected counts we ask the program to compute posterior marginals
for η as well (compute=1). Note that, even though in this section a model for the
unstructured termui is specified, when thecomputeflag is turned on, theinla
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program computes posterior marginals for vectorη. That is for the nodes in latent
field which are directly linked to the observablesy.

• [data] section: for Gaussian likelihood the data file has the following format

t wt yt

wherewt are fixed weights, see Appendix A.1.2. Note that in this example the
length of the observed data (194) is smaller than the length of the latent variables
vectorη (204).

• [trend] section: defines the RW2 model for the trend component. At line 26 we
also define a starting value forlog λtrend for the optimiser.

• [seasonal]section: defines the model for the seasonal component of the model, the
parameterseasonat line 34 defines the season length

• [INLA parameters]: this is an optional section, defined bytype=INLA, which spec-
ifies some parameters to be passed to theGMRFLib library, in this case we specify
the step length for the numerical computation of the gradient and the Hessian of
π̃(θ|y) at its mode, see Appendix for details.

Building and solving the model takes about 10 seconds on Machine 1 and about 3 seconds
on Machine 2.

Figure 2 displays the observed and expected counts in the squared root scale (together
with 0.025 and 0.975 quantiles).
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Figure 2: Observed and predicted counts (posterior mean within 0.025 and 0.975 quan-
tiles) for the drivers data example without the seat belt covariate
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We consider now a slight modification of Example 2 as discussed by Rue and Held (2005,
Sec 4.2.2):

Example 2 cont. On January 1983 wearing seat belt became compulsory. To check
whether this law had an effect on the number of serious accidents we modify the model as
follows:

ηt =

{
season(t) + trend(t) t = 0, . . . , 168
season(t) + trend(t) + β t = 169, . . . , 204.

We assign additional parameterβ a Gaussian distribution with0 precision, equivalent to
a flat prior.

Modifying theDRIVERS.ini file to account for the extended model is really easy; it is
enough to add a new section as below:

1 [ b e l t ]
2 t y p e= l i n e a r
3 c o v a r i a t e s = b e l t . da t
4 p r e c i s i o n=0

The type=linear parameter specifies that the new covariate has a lines effect, the file
belt.datis as follows

0 0
...

...
168 0
169 1

...
...

203 1

Figure 3 displays the approximate posterior marginal density forβ together with 0.025
and 0.975 quantiles. The95% confidence region is well below0 indicating a significant
effect of the seat belt law in reducing the number of dead or injured drivers. Finally, the
observed and expected counts in the squared root scale (together with 0.025 and 0.975
quantiles) for the model with the seat belt covariate are displayed in Figure 4, a slightly
better fit of this model before and after January 1983 is visible.
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Figure 3: Approximate posterior marginal for parameterβ with 0.025 and 0.975 quantiles
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Figure 4: Observed and predicted counts (posterior mean within 0.025 and 0.975 quan-
tiles) for the drivers data example with seat belt covariate
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3.3 Stochastic volatility models

Stochastic volatility models are common models in financial time series analysis, lately
much interest has been shown in developing efficient MCMC methods for such models,
e.g. Shephard and Pitt (1997) and Chib et al. (2002). In the following example, we show
how easily a univariate stochastic volatility model can be solved using theinla program.
The example is taken from Rue et al. (2007) but the model is slightly modified here.

Example 3 The data consist in 945 observed logarithms of the daily difference of the
dollar-pound exchange rate from October 1st, to June 28th, 1985. The data are displayed
in Figure 5, panel (a). We analyse this data set using a univariate stochastic volatility
model (Taylor, 1986). The likelihood of the data, conditional on the latent variables is:

yt|ηt ∼ N (0, exp(ηt)), t = 0, . . . , nd − 1

and the model for the latent variables:

ηt = µ + ft t = 0, , nη − 1

whereµ is an unknown common mean with vague Gaussian prior andf = (f0, . . . , fnη−1)
is modelled as an auto regressive process of order1 (AR1) with persistence parameter
φ ∈ (−1, 1) to ensure stationarity, and precision parameterλf .

The model has two hyperparameters,(λf , φ). We re-parametrise the persistence parame-
ter φ as

κ = logit

(
φ + 1

2

)

and assign the following prior distributions

λf ∼ Gamma(1, 0.0005)
κ ∼ N (0, 1/0.0001)

TheVOLATILITY.ini file defining the model is the following:

1 [ S tandard V o l a t i l i t y ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4

5 [ U n s t r u c t term ]
6 t y p e = u n s t r u c t
7 n = 1001
8 i n i t i a l = 13
9 f i x e d = 1

10 compute=1
11

12 [ Data ]
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13 t y p e = data
14 l i k e l i h o o d = s t o c h v o l
15 f i l ename = poundd . da t
16

17 [AR1]
18 t y p e = f f i e l d
19 model = ar1
20 c o v a r i a t e s=t ime . da t
21 n=1001
22 p r i o r 0=gamma ;p r i o r f o r t h e p r e c i s i o n
23 i n i t i a l 0 =3 ; i n i t i a l v a l u e f o r t h e log−p r e c i s i o n
24 parameters0 = 1 .0 0 .0005 ; paramete rs f o r t h eGamma p r i o r o f t h e

p r e c i s i o n
25

26 p r i o r 1=g a u s s i a n ;p r i o r f o r \kappa
27 i n i t i a l 1 =4 ; i n i t i a l v a l u e f o r \kappa
28 parameters1 = 0 0.0001 ; paramters f o r t h eGauss ian p r i o r o f

\kappa
29

30 [Common mean ]
31 t y p e= l i n e a r

The likelihood for the stochastic volatility model is namedstochvol (line 14) and the
format of the data file is

t yt

As in Example 2, the precision for the unstructured termλη is fixed, but we compute the
marginal posteriors distributions for the elements of vectorη.

The AR1 model forf is defined in lines 17-28. Unlike all other models at the moment
available for the ffield section, the AR1 has two hyperparameters, namely the precision
parameterλf , and the transformed persistence parameterκ. Lines 22-24 specify the prior
and the starting value for the precision parameterλf , and lines 26-28 do the same for
parameterκ.

The last section of theini file describe the model for the common mean, the default
value for the precision is used here.

Note that the length of the data setnd is 945 but we have set the length of the latent variable
vectorη, to benη = 1001 (lines 7 and 21). In this way we obtain also predictions for the
unobserved volatility for the 56 days following the last observation.

Building and running the model takes around 110 seconds on Machine 1 and 26 seconds
on Machine 2.

Figure 5, panel (b), display the approximate posterior mean for the logarithm of the un-
observed volatility, together with 0.025 and 0.975 posterior quantiles. The vertical line
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(b) Posterior mean ofη together with 0.025 and 0.975 quantiles.

Figure 5: Data and results for the volatility model in Example 3

indicates the last observed data point.
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3.4 Bayesian multiscale analysis for time series data

In the previous examples we were interested in the posterior marginalsπ(xi|y) where the
uncertainty about the hyperparameterθ is integrated out. We present here one example
where it is important to be able to precisely estimate posterior marginals for a fixed value
of the hyperparameterθ, that isπ(xi|y,θ). The example is taken from Rue et al. (2007).

Example 4 A signal is observed with noise and the goal of the analysis is to detect sig-
nificant features and structures in the signal. Since some features might be visible only at
some specific level of smoothing it is interesting to consider several levels of smoothing si-
multaneously. This is the idea behind the SIZer (Significant ZERo crossing of derivatives)
methodology, see Chaudhuri and Marron (1999) and Eräsẗo (2005).

In our example the data are Gamma ray burst intensity, plotted in Figure 6 (panel (a)).
The observations are assumed to be conditionally independent Poisson random variables

y(ti)|η(ti) ∼ Po{exp(η(ti)} i = 0, 1, . . .

Whereη(t) is the underlying signal of interest. We assumeη(t) to be continuous with
derivativesη′(t), and level of smoothingκ. The derivative is said to be “significant posi-
tive” at time t if

Prob(η′(t) > 0|y, κ) > 1− α/2

withα being the level of significance. A similar definition holds for “significant negative”.

We modelη(t) as an integrated Wiener process with precisionκ which is Markov if aug-
mented with derivatives (Wecker and Ansley, 1983), hence a discretely observed Wiener
process observed inn time points is a GMRF of dimension2n, see Rue and Held (2005,
Sec. 3.5). Our latent GMRF is thenx = (η,η′), that is the log-mean of the data aug-
mented with its derivatives.

In this example the precisionκ is fixed therefore there are no random hyperparameters in
the model.

The fileBURST.iniis as follows:

1 [ B u r s t da ta example ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4 smtp = GMRFLib SMTPBAND
5

6 [ Po isson da ta ]
7 t y p e = data
8 l i k e l i h o o d = p o i s s o n
9 f i l ename = b u r s t . da t

10

11 [ U n s t r u c t term ]
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12 t y p e = u n s t r u c t
13 n = 512
14 i n i t i a l = 10
15 f i x e d = 1
16

17 [ Smoother ]
18 t y p e = f f i e l d
19 model = crw2
20 n = 512
21 c o v a r i a t e s = covar . da t
22 i n i t i a l = 7
23 f i x e d = 1
24 p e r c e n t i l e s = 0

The smtpfield in the [Burst data example]section (line 4) determines the type of solver
for dealing with sparse matrices, in this case, since we know that the precision matrix
of the problem is a band matrix, we can use theGMRFLib SMTPBAND solver which is
optimal for band matrices.
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Figure 6: Multiscale analysis example: observed Gamma ray burst intensity (top) and
posterior mean for the underlying signalη(t) for level of smoothing given bylog κ = 7

Notice that all precision parameters are definedfixed in the ini file (lines 15 and 23).
The log-precision of the[Unstructured term]section is fixed to a high value (line 14) again
to mimic the absence of the unstructured component in the model, while the log-precision
in the [Smoother]section is fixed to a user defined value, in this caselog κ = 7. This
determines the level of smoothing in the result. The continuous time random walk model
is defined in line 19. Note that even if the length of the smoother term is declared to
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be 512 (line 20) the actual length of the output file is 1024 since the derivatives are also
included. The derivatives constitutes the second half of the output file.

Since we are interested in checking where the derivatives are significantly positive or
negative, we compute also the percentiles Prob(x(t) < 0) for the smoother term (line 24).
Figure 6 (panel (b)) displays the posterior mean ofη(t) for log κ = 7. In Figure 7 the
posterior mean of the derivativesη′(t) is displayed. The band in the lower part of Figure 7
indicates where the derivatives are found to be significantly positive, negative or none.

The inla program runs in about 7 seconds on Machine 1 and about 2 seconds on Ma-
chine 2.
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Figure 7: Multiscale analysis example: posterior mean of the derivativesη′(t) is dis-
played. The band in the lower part of the figure indicates where the derivatives are found
to be significantly positive (white), negative (black) or none (gray).
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3.5 Disease mapping

Our next example is taken from (Rue and Held, 2005, Sec. 4.4.2). The data are collected
over a spatial domain rather than over a time period. The data are georeferenced and we
want to include the knowledge of the spatial location of the data in the model.

Each observed datayi is linked to a spatial regions ∈ S = (0, . . . , S − 1), so that
si indicates the region theith data belongs to. A common way to introduce a spatially
correlated effect is to assume that neighbouring sites are more alike than two arbitrary
sites, therefore for a valid prior definition, a neighbourhood has to be defined for each site
s. In geographical applications a common assumption is that two sites are neighbours if
they share a common border.

Letfs(si) indicate the spatial effect. The prior model forf s = (f(0), . . . , f(s), . . . , f(S−
1)) implemented in theinla program is a simple (but most often used) intrinsic GMRF
model, see (Rue and Held, 2005, Ch. 3), defined as:

fs(s)|fs(s
′), s 6= s′, λs ∼ N (

1

ns

∑
s∼s′

fs(s
′),

1

nsλs

) (7)

wherens is the number of neighbours of sites, s ∼ s′ indicates that the two sitess ands′

are neighbours.λs is the unknown precision parameter.

The neighbourhood structure has to be passed to theinla program through a file which
describes the graph of the spatial component of the model. We describe the required
format for such a file using a small example. Let the filegra.dat, relative to a small graph,
be

1 5
2 0 1 1
3 1 2 0 2
4 2 3 1 3 4
5 3 1 2
6 4 1 2

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is
described. For example, line 4 states that node 2 has 3 neighbours and these are nodes 1,
3 and 4. This is the same format used in theGMRFLib library.

Example 5 The number of cases of oral cavity cancer is observed for a 5 year period
(1986-1990) in the 544 districts of Germany. The goal of the analysis is to explore the
spatial distribution of the data. The common approach is to assume that the data are
conditionally independent Poisson counts

yi|ηi ∼ Po(Ei exp(ηi)) i = 0, . . . , 543

whereEi is a fixed quantity which accounts for number of people in districti, age dis-
tribution etc. The standardised mortality ratiosyi/Ei are displayed in Figure 8, panel
(a).
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The model for the latent variableηi takes the following form

ηi = µ + fs(si) + ui (8)

whereµ is th common mean,f s is a spatially structured term andu is the unstructured
term which accounts for non-observed variability. The prior model forf s is the intrinsic
GMRF in equation (7). We impose a sum-to-zero restriction onf s (

∑
s f(s) = 0) to

ensure identifiably ofµ.

Following Rue and Held (2005), the two precision hyperparameters of the model(λu, λs)
are both given Gamma priors witha = 1 andb = 0.01.
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Figure 8: Standardised mortality ratio for oral cavity cancer, panel (a) and estimated
relative risks (posterior mean) of the spatial componentexp(f s).

TheDISEASE-oral.ini file describing the model for theinla program is:

1 [ Oral−c a v i t y cancer da ta ]
2 t y p e = problem
3 d i r = r e s u l t s−f o r−ora l−%d
4

5 [ U n s t r u c t ]
6 t y p e = u n s t r u c t
7 p r i o r = gamma
8 paramete rs = 1 0 .01
9 n = 544
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10

11 [ da ta ]
12 t y p e = data
13 l i k e l i h o o d = p o i s s o n
14 f i l ename = o r a l . t x t
15

16 [ S p a t i a l ]
17 t y p e = f f i e l d
18 model = besag
19 c o v a r i a t e s= s p a t i a l . c o v a r i a t e
20 paramete rs = 1 0 .01
21 c o n s t r a i n t = 1
22 graph = germany . gra
23

24 [ Cons tan t ]
25 t y p e = l i n e a r

The [ unstruct ] section (lines 5-9) defines the model forui. Unlike the previous examples,
here there actually is an unstructured component, therefore in this caseλη is not fixed.

The model for the spatial component offs(·) is defined in lines 16-22. The section is
defined bytype= ffield . The intrinsic GMRF model in equation (7) is namedbesagin the
inla program. Line 21 defines the sum-to-zero constraint forf s. The graph off s is read
from a file (line 22). The last section, lines 24-25 defines the model for the common mean
µ. Figure 8, panel (b), displays the posterior mean of the spatial componentexp(f s).

A different parametrisation would have been possible for the same model. Namely we
could have dropped the common meanµ and the sum-to-zero constraint. Modifying the
ini file to account for this other parametrisation is extremely easy; it is, in fact, sufficient
to remove lines 24-25 defining the common mean and line 21 defining the constraint.

Theinla program allows also the possibility to introduce a user defined model for some
functionsf(·) in equation (2). This is done in atype= ffield section specifying the field
model= generic. The user then has to provide the precision functionQ, corresponding to
the stochastic vectorf , in a file with the following format

i j Qij

wherei andj are the row and column index andQij is the correponding element of the
precision matrix. Only the non-zero elements of the precision matrix need to be stored
in the file. For example, we could have stored the precision matrix corresponding to the
spatial effect in (8) in a file, namedQmat.dat . We report the few first lines of such file:

1 0 0 1
2 0 11 −1
3 1 1 2
4 1 9 −1
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The same model as in (8) can then be defined in a newini file as following:

1 [ Oral−c a v i t y cancer − User d e f i n e d Qm a t r i x ]
2 t y p e = problem
3 d i r = r e s u l t s−%1d
4

5 [ U n s t r u c t ]
6 t y p e = u n s t r u c t
7 p r i o r = gamma
8 paramete rs = 1 0 .01
9 n = 544

10

11 [ da ta ]
12 t y p e = data
13 l i k e l i h o o d = p o i s s o n
14 f i l ename = o r a l . t x t
15

16 [ S p a t i a l ]
17 t y p e = f f i e l d
18 model = g e n e r i c
19 Qmatrix = Qmat . da t
20 rankdef = 1
21 c o v a r i a t e s = s p a t i a l . c o v a r i a t e
22 paramete rs = 1 0 .01
23 c o n s t r a i n t = 1
24

25 [ Cons tan t ]
26 t y p e = l i n e a r

Notice that the only difference with respect to theini file previously used is in the section
[ Spatial ]. Here we declaremodel= genericand specify the file containing theQ function
in line 19. Theinla program then builds a graph based on the non-zero pattern of
the specified precision matrix. The otional argumentrankdef, in line 20, specifies the
rank deficiency of the precision matrix. For the intrinsic model in equation (7) the rank
deficiency is 1.
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3.6 Disease mapping with covariate

We present now an extension of the model in Example 5 which allows for adjusting the
log-relative risk by a semi-parametric function of a covariate which is believed to influ-
ence the risk. The model is a Bayesian semiparametric model with an additional spatial
effect. These kinds of models have been named “geoadditive models” in Kammann and
Wand (2003). For an introduction to the subject see, for example, Fahrmeir and Tutz
(2001). The example below is taken from Rue et al. (2007).

Example 6 Larynx cancer mortality counts are observed in the 544 district of Germany
from 1986 to 1990. As in Example 5 we assume the data to be conditionally independent
Poisson random variables with meanEi exp(ηi), whereEi is fixed and accounts for de-
mographic variation, andηi is the log-relative risk. Together with the counts, for each
district, the level of smoking consumptionc is registered.

The model forηi takes the following form

ηi = µ + fs(si) + f(ci) + ui (9)

where, as in Example 5,fs(·) is the spatial effect modelled according to (7), andui is
the unstructured random effect. The remaining term in (9),f(ci), is the unknown ef-
fect of of the exposure covariate which assumes valueci for observationi. The effect
of covariatec is modelled as a smooth functionf(·) parametrised as unknown values
f = (f0, . . . , fm−1)

T at m = 100 equidistant values ofci. We have scaled the covariate
values so that they belong to the interval[0, 10]. The vectorf is modelled with a second-
order random walk (RW2) prior with unknown precisionλf . A sum-to-zero constraint is
imposed onf s andf separate out the spatial effect and the effect of the covariate from
the common meanµ.

The model has three hyperparametersθ = (λs, λf , λη). Following Rue et al. (2007) we
assign a vague Gamma prior to each element ofθ.

In Figure 10 the standardised mortality ratios,yi/Ei are displayed (panel (a)) together
with the observed values of the covariatec (panel (b)).

TheDISEASE-COVARIATE.ini file defining the model is the following:

1 [ D i sease mapping w i th c o v a r i a t e ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4

5 [ U n s t r u c t term ]
6 t y p e = u n s t r u c t
7 n = 544
8 p r i o r = gamma
9 i n i t i a l =9

29



 

 

0.63

0.95

1.27

1.59

1.91

2.23

2.55

(a)

 

 

26.22

38.02

49.82

61.61

73.41

85.2

97

(b)

Figure 9: Standardised mortality ratio for larynx cancer, panel (a) and observed covariate
values, panel(b)

10 paramete rs = 1 .0 0.00005
11

12 [ Data ]
13 t y p e = data
14 l i k e l i h o o d = p o i s s o n
15 f i l ename = l a r y n x . da t
16

17 [ S p a t i a l ]
18 t y p e = f f i e l d
19 model = besag
20 c o v a r i a t e s=s p a t i a l−c o v a r i a t e . da t
21 p r i o r = gamma
22 paramete rs = 1 .0 0.00005
23 graph = germany . gra
24 c o n s t r a i n t = 1
25 i n i t i a l =3
26 d iagona l = 0.001
27

28 [ C o v a r i a t e ]
29 t y p e = f f i e l d
30 model = rw2
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31 c o v a r i a t e s = c o v a r i a t e . da t
32 l o c a t i o n s=c o v a r i a t e . va l u e
33 p r i o r = gamma
34 paramete rs = 1 0 .05
35 i n i t i a l =9
36 d iagona l = 0.00001
37 q u a n t i l e s=0.025 0 .975
38 c o n s t r a i n t = 1
39

40 [ Cons tan t l i n e a r ]
41 t y p e = l i n e a r
42

43 [ INLA param ]
44 t y p e = INLA
45 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 0.001
46 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 0.001

The section[ Spatial ] defines the model for the structured spatial componentf s. We
recognise the intrinsic GMRF model in line 19 and the graph file in line 23. The field
diagonalat line 36 indicates a (small) number to be added to the diagonal of the precision
matrix forf s to ensure that it is positive definite.

The model for the semi-parametric functionf , which is the new feature introduced by this
example, is defined in the section tagged[Covariate]. The file covariate . valuedeclared
in line 32 contains all values that the covariatec could assume, they are ordered from
the lower to higher. In this case the file contains one sequence of numbers from 0 to 9.9
with step 0.1. The filecovariate .datcontains information on which values ofc is actually
observed in each district. We report the first 5 lines of the file to better explain the format
of such files

1 0 56
2 1 65
3 2 50
4 3 63
5 4 65

For example, line 3 tells us that for district2 the observed value of the covariatec is the
50th element of the series in filecovariate . value, that is0.5.

In the last section, tagged[INLA param] we define the step length for the numerical com-
putation of the gradient and Hessian ofπ̃(θ|y) at the mode. This is necessary because the
default values do not always ensure a positive definite Hessian matrix.

The computation time is about 30 seconds on Machine 1 and 15 seconds on Machine 2.

Figure 10 displays the posterior mean of the spatial effectf s for all districts, while Fig-
ure 11, panel (a), displays the effect of the covariatec (posterior mean) within 2.5 and
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Figure 10: Posterior mean for the structured spatial effectf s

97.5% confidence intervals. The covariate effect is not too far from a linear effect. We
might, therefore, want to run a modified version of the model in which the effect ofc is
modelled as a linear function, that is

ηi = µ + fs(si) + βci + ui

To modify the DISEASE-COVARIATE.ini file in order to fit the new model it is
enough to delete the[Covariate] section, lines 28-38 and instead add the following section
whereβ is defined.

1 [ C o v a r i a t e li n e a r ]
2 t y p e= l i n e a r
3 c o v a r i a t e s=c o v a r i a t e− l i n e a r . da t

The file covariate−linear.dathas the format

i ci

The computation time for the linear-effect model reduces to 11 seconds for Machine 1
and to 6 seconds on Machine 2. This is due to the fact that in the linear model both the
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Figure 11: Effect of the covariate. Panel (a) nonparametric model and panel (b) linear
model: posterior mean within 2.5 and 97.5% confidence interval.

latent fieldx and the vectors of hyperparametersθ are of lower dimensionality.

The estimated posterior mean for the slope parameterβ is 0.0677 with posterior standard
deviation0.0126. Figure 11, panel (b), displays the linear effect of the covariate within
0.025 and 0.975 quantiles. To compute the quantiles for the regression line in Figure 11,
panel (b), we have run the model described in theDISEASE-COVARIATE.ini file
fixing the log precision of the RW2 model to a high value. In this way the RW2 is forced
to be a straight line.
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3.7 Mapping cancer incidence

We present a little more complicated example on the same line of examples 5 and 6. In-
stead of observing only one data point for each district, in the next example there are mul-
tiple observations sharing the same spatial location. Therefore, a possible unstructured
spatial effect needs to be coded in a different way than in the two previous examples. The
example is taken from Rue and Held (2005, Sec 4.3.5).

Example 7 The data are incident cases of cervical cancer in the former East German
Republic (GDR) from 1979, stratified by district and age group. Each cases was classified
as pre-malignant (coded as 0) or malignant (coded as 1). For each of thend = 6 690 cases
in the data set, the age, agei, and the district,si, of the patient are available. The age was
categorised into 15 age groups.

The data are assumed to be conditionally independent Bernoulli random variables:

yi|ηi ∼ B(pi) i = 0, . . . , nd

with logit link function

pi =
exp(ηi)

1 + exp(ηi)

The model for the latent variables is:

ηi = µ + f(agei) + fs(si) + fu(si)

wheref(age) is the age group effect, modelled as a RW2 with precision parameterλf .
The spatial effect of the districtsi is split into a spatially correlated part and an uncorre-
lated one. The spatially correlated element,fs(·), is modelled as the intrinsic GMRF in
equation (7) with given neighbouring structure. The uncorrelated part,fu(·), is modelled
as by a i.i.d Gaussian effect. Note that, in this model, the unstructured spatial effectfu(·),
does not coincide with the unstructured termui in equation (2), which was the case in
Examples 5 and 6.

There are three hyperparameters in the modelθ = (λf , λs, λu). Following Rue and Held
(2005), we assume a Gamma(1.0, 0.01) prior distribution forλs andλu and a
Gamma(1.0, 0.00005) prior for λf . Moreover we impose a sum-to-zero constraint on both
f andf s

The fileCANCER−INCIDENCE.inidefining the model is:

1 [ Cancer i n c i d e n c e ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4

5 [ U n s t r u c t ]
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6 t y p e = u n s t r u c t
7 n = 6690
8 i n i t i a l = 15
9 f i x e d = 1

10

11 [ L i k e l i h o o d model]
12 t y p e = data
13 l i k e l i h o o d = b i n o m i a l
14 f i l ename = cancer . da t
15

16 [ Age c l a s s e s ]
17 t y p e = f f i e l d
18 model = rw2
19 c o v a r i a t e s = age−group−cov . da t
20 n=15
21 c o n s t r a i n t = 1
22 d iagona l = 1 .0 e−4
23 paramete rs = 1 0.001
24 i n i t i a l = 6.456745
25 q u a n t i l e s=0.025 0 .975
26

27 [ S p a t i a l ]
28 t y p e = f f i e l d
29 model = besag
30 graph = ddr . gra
31 c o v a r i a t e s = s p a t i a l−cov . da t
32 c o n s t r a i n t = 1
33 d iagona l = 1 .0 e−4
34 paramete rs = 1 0.0005
35 i n i t i a l = 8.006793
36

37 [ S p a t i a l random e f f e c t ]
38 t y p e = f f i e l d
39 model = i i d
40 n = 216
41 paramete rs = 1 0 .01
42 c o v a r i a t e s = s p a t i a l−cov . da t
43 i n i t i a l = 4.512093
44

45 [ c o n s t a n t ]
46 t y p e = l i n e a r
47

48 [ Parameters f o r INLA ]
49 t y p e = INLA
50 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 0 .01
51 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 0 .01

35



Note that while in Examples 5 and 6 the spatial unstructured component in the model was
coded in thetype=unstrucsection of theini file, here, for the same purpose, we have to
include atype= ffield section wheremodel=iid (lines 37-43).

The model runs in about 90 seconds on Machine 1 and about 30 seconds on Machine 2.

In Figure 12 the posterior mean of the non-parametric effect of the age group within 2.5
and 97.5% confidence band is dispayed.
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Figure 12: Nonparametric effect of age group. Posterior mean within 2.5 and 97.5%
quantiles.
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3.8 Geoadditive model: Munich rental guide

In this section we present a slightly more complex example of geoadditive models where
we have a higher number of covariates in the data set. The example is taken from Rue and
Held (2005, Sec. 4.2.1).

Example 8 - Munich rental guide

The response variableyi is the rent (Euro per square meter) for a flat in Munich. There
are three covariates to be included in the model: the spatial location (si), the floor space
(sizei) and the year of construction (yeari). Moreover for each data point we have a set of
indicator variables such as whether or not the flat has central heating, bathroom, a large
balcony, etc. The data set consist innd = 2 035 observations. There are 380 district in
Munich, the floor size varies from 17 to 185 square meters and the year of construction
goes from 1918 to 2001

The model for the data is:
yi|ηi ∼ N (ηi, 1/λy)

with
ηi = µ + fs(si) + f0(sizei) + f1(yeari) + zT

i β (10)

wherefs(·) is the spatial effect modelled as the intrinsic GMRF in equation (7),f0(·) is
the non parametric effect of the floor size andf1(·) is the non parametric effect of the
year of construction. Bothf0(·) andf1(·) are modelled as RW2 with unknown precision.
The last term in (10) models the covariates assumed to have a linear effect. As usual we
choose a Gaussian prior with known precision for the elements of vectorβ. We impose a
sum-to-zero constraint onfs(·), f0(·) andf1(·).
The model has four hyperparametersθ = (λy, λs, λ0, λ1). We assign each precision a
Gamma(1.0, 0.001) prior. In this example we approximate also the posterior marginals
for the four hyperparametersθ.

In the following we report part of theRENT.ini file which defines the model. We have
omitted the part defining most of the indicator variables since they are all defined in the
same way.

1 [ Rent i n Munich ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4 hyperparamete rs= 1
5

6 [ U n s t r u c t term ]
7 t y p e = u n s t r u c t
8 n = 2035
9 paramete rs = 1 .0 0 .001
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10 i n i t i a l = 10
11 f i x e d = 1
12

13 [ Data ]
14 t y p e = data
15 l i k e l i h o o d = g a u s s i a n
16 f i l ename = r e n t . da t
17 paramete rs = 1 0.001
18 i n i t i a l = −1
19

20 [ f l o o r −s i z e ]
21 t y p e = f f i e l d
22 model = rw2
23 c o v a r i a t e s = s i z e−c o v a r i a t e . da t
24 l o c a t i o n s = s i z e−l o c . da t
25 d iagona l = 1 .0 e−6
26 i n i t i a l = 7
27 c o n s t r a i n t = 1
28 paramete rs = 1 0.001
29 q u a n t i l e s = 0.25 0 .975
30

31 [ s p a t i a l ]
32 t y p e = f f i e l d
33 model = besag
34 graph = munich . gra
35 c o v a r i a t e s = s p a t i a l−c o v a r i a t e . da t
36 d iagona l = 0.00001
37 c o n s t r a i n t = 1
38 i n i t i a l = 0 .4
39 paramete rs = 1 0.001
40 compute=1
41

42 [ year ]
43 t y p e = f f i e l d
44 model = rw2
45 c o v a r i a t e s = year−c o v a r i a t e . da t
46 l o c a t i o n s = year−l o c . da t
47 d iagona l = 1 .0 e−6
48 i n i t i a l = 7
49 c o n s t r a i n t = 1
50 paramete rs = 1 0.001
51 q u a n t i l e s = 0.25 0 .975
52

53 [ c o n s t a n t ]
54 t y p e = l i n e a r
55 p r e c i s i o n = 0 .01

38



56

57 [ l i n e a r −b e s t e . da t ]
58 t y p e = l i n e a r
59 c o v a r i a t e s = beta−b e s t e . da t
60 p r e c i s i o n = 0 .01
61

62 .
63 .
64 .
65

66 [ INLA param ]
67 t y p e = INLA
68 i n t s t r a t e g y = GMRFLib AI INT STRATEGYCCD ;
69 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 0 .01
70 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 0 .01

The flaghyperparametersin line 4 section is turned on to indicate that also posterior
marginals for the hyperparameters have to be computed. The results are displayed in
Figure 13 and they agree well with tho use found by Rue and Held (2005).

The new feature introduced in this example is the use of a different integration scheme to
compute

π̃(xi|y) =
∑

k

π̃(xi|y,θk)π̃(θk|y)∆k (11)

When the dimension of the hyperparameters space grows, in fact, the grid integration
scheme, which was used in all previous examples and which is the default choice in
the inla program, soon becomes too computationally intensive. The central composit
design (CCD) integration scheme, defined in line 68, is an alternative integration scheme
which computes the integral in (11) using much less points, still providing useful results.
Both integration schemes are described in Rue et al. (2007).

Figure 17, panels (a) and (b), displays the posterior mean, within 0.25 and 0.975 quantiles,
of the effect of the floor size and the year of construction respectively.

To check the quality of the CCD integration scheme we run the model once more using
the default grid scheme (to do so it is enough to delete line 67). The results are plotted
in Figure 14 as dotted lines, they are indistinguishable from the CCD results despite the
fact that the grid integration scheme used 115 evaluation points to compute the integral in
(11) and the CCD one only 15.

The computing time for this model on Machine 1 is of 80 seconds if we use the CCD
scheme and 250 seconds using the grid scheme. On Machine 2 the computational time
reduces to 30 seconds in the first case and 70 in the second case.
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Figure 13: Munich rent example: approximate posterior marginals for the hyperparameter
of the model.
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Figure 14: Munich rent example: semiparametric effect of the floor size (a) and of the year
of construction (b). The posterior mean within 0.025 and 0.975 quantiles is displayed.
The solid line is the result of the CCD integration scheme and the dotted line is the result
of the grid integration scheme.
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3.9 Geoadditive model: Zambia children undernutrition

The second example of geoadditive model with several covariates is from Kandala et al.
(2001) and is one of the worked out examples in the BayesX web page.

Example 9 - Undernutrition of children in Zambia . Undernutrition in children is mea-
sured determining the anthropometric status of the child relative to a reference standard.
In our example undernutrition is measured by stunting, or inefficiency height for age,
indicating chronic undernutrition. Stunting for a childi is determined using aZ score
defined as

Zi =
AIi −MAI

σ

whereAI refers to the child’s anthropometric indicator,MAI refers to the median of the
reference population andσ refers to the deviation of the standard population.

The main interest is on modelling the dependence of undernutrition on a set of covariates
including the age of the child (agei), the body mass index of the child’s mother (bmii),
the district the child lives in (si) and some further categorical covariates. The data set
consists innd = 4846 observations. For more details about the data set see Kandala et al.
(2001) and Kneib et al. (2004).

We assume the scoresZi to be conditionally independent Gaussian random variables

Zi|ηi ∼ N (ηi, 1/λy)

and
ηi = µ + f0(bmii) + f1(agci) + fs(si) + fu(si) + zT

i β

wheref0(·) andf1(·) are the semi parametric effect of the mother’s body mass index and
the age of the child respectively.fs(·) is the structured spatial effect of the district,fu(·)
is an unstructured spatial effect andzi are a set of categorical covariates. We model the
spatial structured effectfs(si) as the intrinsic GMRF in equation (7) andf0(·) andf1(·)
as RW2. The unstructured spatial effectfu(si) is modelled by i.i.d. Gaussian random
variables. We impose a sum-to-zero constraint forfs(·), f0(·) andf1(·).
In this model there are five hyperparametersθ = (λy, λs, λu, λ0, λ1) and we assign a
vague Gamma prior distribution to each of them.

1 [ Zambia model]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4

5 [ U n s t r u c t term ]
6 t y p e = u n s t r u c t
7 n = 4846
8 p r i o r = gamma
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9 paramete rs = 1 .0 0 .005
10 i n i t i a l = 10
11 f i x e d = 1
12

13 [ Data ]
14 t y p e = data
15 l i k e l i h o o d = g a u s s i a n
16 f i l ename = zambia . da t
17 paramete rs = 1 0.005
18 i n i t i a l = 0 .2
19

20 [ s p a t i a l ]
21 t y p e = f f i e l d
22 model = besag
23 graph = zambia . gra
24 c o v a r i a t e s = s p a t i a l c o v a r i a t e . da t
25 d iagona l = 0.00001
26 c o n s t r a i n t = 1
27 i n i t i a l = 3 .6
28 paramete rs = 1 0.005
29

30 [ s p a t i a l u n st r u c t ]
31 t y p e = f f i e l d
32 model = i i d
33 c o v a r i a t e s = s p a t i a l c o v a r i a t e . da t
34 n =57
35 d iagona l = 0.00001
36 i n i t i a l = 5 .4
37 paramete rs = 1 0.005
38

39 [ agc ]
40 t y p e = f f i e l d
41 model = rw2
42 c o v a r i a t e s = agc . da t
43 n=60
44 d iagona l = 0.0001
45 c o n s t r a i n t = 1
46 i n i t i a l = 6 .6
47 paramete rs = 1 0.005
48 q u a n t i l e s = 0.025 0 .975
49

50 [ bmi ]
51 t y p e = f f i e l d
52 model = rw2
53 c o v a r i a t e s = b m i c o v a r i a t e . da t
54 l o c a t i o n s = bmi . l o c a t i o n
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55 d iagona l = 0.00001
56 c o n s t r a i n t = 1
57 i n i t i a l = 6 .2
58 paramete rs = 1 0.005
59 q u a n t i l e s = 0.025 0 .975
60

61 [ be ta ]
62 t y p e= l i n e a r
63

64 [ rcw ]
65 t y p e= l i n e a r
66 c o v a r i a t e s = rcw . da t
67

68 [ edu1 ]
69 t y p e= l i n e a r
70 c o v a r i a t e s = edu1 . da t
71

72 [ edu2 ]
73 t y p e= l i n e a r
74 c o v a r i a t e s = edu2 . da t
75

76 [ sex ]
77 t y p e= l i n e a r
78 c o v a r i a t e s = sex . da t
79

80 [ t p r ]
81 t y p e= l i n e a r
82 c o v a r i a t e s = t p r . da t
83

84 [ INLA param ]
85 t y p e = INLA
86 i n t s t r a t e g y = GMRFLib AI INT STRATEGYCCD ;

Also in this example we use the CCD integration scheme to compute the integral in (11).

In Figure 15, panels (a) and (b), the posterior mean of the unstructured and structured
spatial effect is displayed. The effect of the age of the children is in Figure 15, panel
(c). It shows a clear non linear pattern. The effect of the mother’s body mass index
(Figure 15, panel (d)) instead is more regular and could probably be substitute in the
model formulation by a linear effect.

The computation time is about 4 minutes on Machine 1 and 1 minute on Machine 2.
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Figure 15: Results for the Zambia example. Panel (a) and (b) displays the posterior mean
of the unstructured and structured spatial effect respectively. Panel (c) and (d) display the
posterior mean, within 0.025 and 0.975 quantiles, of the age effect (c) and of the mother’s
body mass index (d)
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3.10 Log-Gaussian Cox processes

The particular feature of our next example is that data are registered on a regular grid of
dimensionnrow × ncol, wherenrow is the number of row andncol the number of columns.
Unlike all the previous examples then, each data is identified by two indexes(i, j) indi-
cating respectively the row and column the data point belongs to. This example is taken
from Rue et al. (2007).

Example 10 Log-Gaussian Cox processes (LGCP) are a class of models used for mod-
elling spatial point processes, see for example Møller and Waagepetersen (2003). A
LGCP is a Poisson point process.Y ∈ W ⊂ Rd. with random intensity function
λ(ξ) = exp(Z(ξ)), whereZ(ξ) is a Gaussian field andξ ∈ W . It is common practice to
discretise the observation windowsW into N = nrow × ncol disjoint cells{sij}with area
|sij| wherei = 0, . . . , nrow − 1 andj = 0, . . . , ncol − 1.

Letyij be the observed number of occurrences of the realised point pattern withinsij. Let
ηij be the random variableZ(ξij). The likelihood of the model is

yij|ηij ∼ Po(|sij| exp(ηij))

while, as usual the latent variable vectorη is part of a larger GMRF.

In this example, the data consist in the locations of a particular tropical tree species (
Beilschmiedia pendula Lauraceae) registered in a 50-hectares plot in the tropical moist
forest of Barro Colorado Island in central Panama. For more information about this
study see Waagepetersen (2006). The 3605 tree locations are plotted in Figure 6, panel
(a). We divide our region of interest into a201×101 regular grid, where each square pixel
represent an area of 25 squares meters. Together with the datayij, we observe, the mean
elevation and the mean norm of the gradient for each area on the grid. These covariates
are believed to influence the behaviour of the tree under examination. A scaled version
of these covariates is displayed in Figure 16, panels (b) and (c). The model for the latent
variableηij is

ηij = µ + β1altij + β2gradij + fs(sij) + uij

where altij and gradij are the values for the two covariates at location(i, j), fs is the
spatial structured effect of the location anduij is the unstructured random effect.

For the spatial structured termf s we use a second order polynomial intrinsic GMRF with
unknown precisionλf . See Rue and Held (2005, Sec 3.4.2) for a thorough definition of
intrinsic GMRF models on a lattice. We use vague Gaussian priors forµ, β1 andβ2. The
unstructured termsuij are independentN (0, 1/λu) random variables. Notice that the
latent fieldx = (η,f s, µ, β1, β2) in this example has dimension40 605.

The hyperparameters areθ = (λf , λu) are are assigned vague Gamma priors.
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Figure 16: Data and covariate for the LGCP example: panel (a) displays locations for the
3065 trees, panel (b) displays the altitude and panel (c) the norm of the gradient.

1 [ T r o p i c a l r a i n f o r e s t da ta ]
2 t y p e = problem
3 d i r = r e s u l t s−%d
4

5 [ Po isson da ta ]
6 t y p e = data
7 l i k e l i h o o d = p o i s s o n
8 f i l ename = data− f u l l . da t
9

10 [ U n s t r u c t term ]
11 t y p e = u n s t r u c t
12 nrow = 101
13 nco l = 201
14 i n i t i a l = 0 .4
15

16 [ S p a t i a l smoother ]
17 t y p e = f f i e l d
18 c o v a r i a t e s=s p a t i a l− f u l l . da t
19 nrow=101
20 nco l=201
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21 model = rw2d
22 c o n s t r a i n t=1
23 i n i t i a l =0.7
24

25 [ Cons tan t ]
26 t y p e = l i n e a r
27

28 [ A l t i t u d e C o v a r i a t e ]
29 t y p e = l i n e a r
30 c o v a r i a t e s = a l t i t u d e− f u l l . da t
31

32 [ G rad ien t Cova r i a te ]
33 t y p e = l i n e a r
34 c o v a r i a t e s = g r a d i e n t− f u l l . da t
35

36 [ INLA paramete rs]
37 t y p e = INLA
38 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 0.001
39 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 0.001

The data filedata−full . dat has the following format

i j |sij| yij

wherei = 0, . . . , nrow − 1 is the row index andj = 0, . . . , ncol − 1 is the column index.
Notice then, that for data observed on a grid the data file has four columns instead of three
(see Appendix A.1.2). The data are stored by row, so that the firstnrow lines of the data
file refer to row 1, the secondnrow lines to row 2 etc. The same also for the covariate files.

Notice also that it is required for the user to specify the number of rows and columns
in the data set (lines 12-13 and 19-20). For grid observed data, the fieldsnrow andncol
substitute the fieldn which we have used in all previous examples. The prior model for
the spatial effect is defined in line 21.

The results are displayed in Figure 17. Panel (a) shows the posterior mean of the struc-
tured spatial effect. Panels (b)-(d) show the posterior marginal distributions for the pa-
rametersµ, β1 andβ2.

The graph of the full model for this example contains40605 nodes, this makes the compu-
tation procedures heavier that for all other examples considered here. The computational
time required to solve the model grows then to about 1 hour and 30 minutes on Machine
2. We have not run the model on Machine 1.
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Figure 17: LGCP example: (a) posterior mean of the spatial effectfs(·), (b)-(d) posterior
marginals forµ, β1 andβ2
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3.11 A longitudinal study example - Forest health data

Our last example is a longitudinal study on forest health. The aim of the study if to
identify potential factors influencing the health status of the trees. In addition to covariates
characterising a tree and its stand, spatial and temporal information are also available.
The example is taken from Kneib and Fahrmeir (2008), an earlier version of the data set
is analysed in Kneib and Fahrmeir (2006).

Example 11 The data have been collected annually in a visual forest health inventories
between 1983 and 2004 in a northern Bavarian district. There are 83 observations plots
within an area of around 15 squared kilometres.

Every year, in some of the 83 observations plots the health status of the treeyit, i =
0, . . . , 83, t = 0, . . . , 21, is registered. Not all plots are observed every year, so the data
set has in totalnd = 1796 observations. In the original data set there are 9 categories for
tree health, anyway, here we consider only two: healthy or non-healthy. Together with
the tree health status, several covariates are registered year after year at the different
observation plot. All covariates are summarised in Table 1. Moreover the location of

Covariate Description
Age age of the stand in years (continuous between 7 and 234 years)
elevation elevation above the sea level (continuous, between 250 and 480 meters)
inclination inclination of the terrain in percent (continuous between 0 and 1)
soil depth of soil level (continuous, between 9 and 51 cm)
ph ph-value in 0-2cm depth (continuous, between 3.28 and 5.05)
canopy density of forest canopy in percent (continuous, between 0 and 1)
stand type of stand (categorical, 3 categories)
fertilisation fertilisation (categorical: yes or no)
humus thickness of humus (categorical, 5 categories)
moisture level of moisture (categorical, 3 categories)
saturation base saturation (ordinal)

Table 1: Forest health data: description of covariates.

each registration plotsi is known. The spatial distribution of the locations is displayed in
Figure 18.

The likelihood of the data is binomial:

yit|ηit ∼ Bin(pit)

with logit link

pit =
exp(ηit)

1 + exp(ηit)
i = 0, . . . , 82, t = 0, . . . , 21.
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Figure 18: Forest health example: location of the 83 observation plots.

Following Kneib and Fahrmeir (2008) we model the latent variables as:

ηit = µ+f0(ageit)+f1(inclinationi)+f2(canopyit)+ftime(t)+fs(si)+fu(si)+zT
itβ (12)

wheref0(·), f1(·), f2(·) are the semiparametric effect of age of the tree, inclination and
canopy of the location respectively, whileftime(·) is the non parametric effect of time.
Each semiparametric function is modelled as a RW2 with unknown precision parameter.
The vectorzT

it includes all covariates in Table 2 not mentioned before which are assumed
to have a linear effect. Finallyfs(·) andfu(·) indicate the structured spatial effect and
the unstructured one.

We models the spatial structured effect as the intrinsic GMRF in equation (7). We build
the graph for such a model by considering two observation plots as neighbours if their
distance is less than 1200 meters. The spatial unstructured effect is modelled as a series
of uncorrelated Gaussian random variable.

We can cast the model in (12) in the general formulation in equation (2) by defining a new
indexr = (i, t), r = 0, . . . , nd − 1, and rewriting the model as

ηr = µ+f0(ager)+f1(inclinationr)+f2(canopyr)+ftime(r)+fs(sr)+fu(sr)+zT
r β (13)

The above model has six precision hyperparametersθ = (λ0, λ1, λ2, λtime, λs, λu), each
is given a vague Gamma prior.

We report part of theini file which defines the model. We have omitted the definition of
almost all covariates with linear effect.

1 [ F o r e s t damage ]
2 t y p e=problem
3 d i r =r e s u l t s−%d

51



4

5 [ u n s t r u c t term ]
6 t y p e=u n s t r u c t
7 n=1796
8 i n i t i a l = 10
9 f i x e d=1

10

11 [ Data ]
12 t y p e=data
13 l i k e l i h o o d=b i n o m i a l
14 f i l ename=damage . da t
15

16 [ s p a t i a l ]
17 t y p e= f f i e l d
18 model=besag
19 graph= f o r e s t . gra
20 c o v a r i a t e s= s p a t i a l . c o v a r i a t e
21 d iagona l = 0.00001
22 c o n s t r a i n t = 1
23 i n i t i a l = −3.346165
24 paramete rs = 1 0.001
25

26 [ s p a t i a l−u n s t r u c t ]
27 t y p e= f f i e l d
28 model= i i d
29 n=83
30 c o v a r i a t e s= s p a t i a l . c o v a r i a t e
31 d iagona l = 0.00001
32 c o n s t r a i n t = 1
33 i n i t i a l = 7.324791
34 paramete rs = 1 1
35

36 [ age ]
37 t y p e = f f i e l d
38 model = rw2
39 c o v a r i a t e s = age . c o v a r i a t e
40 l o c a t i o n s=age . l o c a t i o n
41 d iagona l = 0.0001
42 c o n s t r a i n t = 1
43 i n i t i a l = 5.674807
44 paramete rs = 1 0.001
45 q u a n t i l e s = 0.025 0 .975
46

47 [ canopy ]
48 t y p e = f f i e l d
49 model = rw2
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50 c o v a r i a t e s = canopy .c o v a r i a t e
51 l o c a t i o n s=canopy .l o c a t i o n
52 d iagona l = 0.0001
53 c o n s t r a i n t = 1
54 i n i t i a l = 13.763045
55 paramete rs = 1 0.001
56 q u a n t i l e s = 0.025 0 .975
57

58 [ i n c l i n a t i o n ]
59 t y p e = f f i e l d
60 model = rw2
61 c o v a r i a t e s = i n c l i n a t i o n . c o v a r i a t e
62 n=47
63 d iagona l = 0.0001
64 c o n s t r a i n t = 1
65 i n i t i a l = 6.422709
66 paramete rs = 1 0.001
67 q u a n t i l e s = 0.025 0 .975
68

69 [ t ime ]
70 t y p e = f f i e l d
71 model = rw2
72 c o v a r i a t e s = year . c o v a r i a t e
73 l o c a t i o n s=year . l o c a t i o n
74 d iagona l = 0.0001
75 c o n s t r a i n t = 1
76 i n i t i a l = 1.211905
77 paramete rs = 1 0.001
78 q u a n t i l e s = 0.025 0 .975
79

80 [ common mean ]
81 t y p e= l i n e a r
82

83 [ s o i l ]
84 t y p e = l i n e a r
85 c o v a r i a t e s = s o i l . cov
86 .
87 .
88 .
89 [ INLA paramete rs]
90 t y p e = INLA
91 i n t s t r a t e g y = GMRFLib AI INT STRATEGYCCD ;
92 g r a d i e n t f i n i t e d i f f e r e n c e s t e p l e n = 1 .0 e−2;
93 h e s s i a n f i n i t e d i f f e r e n c e s t e p l e n = 1 .0 e−2;
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Notice that when using theinla program we treat all covariates, including space and
time in the same way. All covariates files have the same structure.

Again we use the CCD strategy in order to integrate out the uncertainty about the hyper-
parametersθ. Given the high dimension of the hyperparameters space, the CCD strategy
gives a much lower computation time if compared to the grid strategy. We have compared
the results coming from the two integration strategies and the differences are irrelevant.

In Figure 19 the results about the semiparametric effects are displayed. The posterior
mean is plotted within 0.025 and 0.975 posterior quantiles. The results agree very well
with those found by Kneib and Fahrmeir (2008).
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Figure 19: Results for the forest health example, semiparametric effect of covariates,
posterior mean within 0.025 and 0.975 quantiles: age of the tree, panel (a), canopy, panel
(b), inclination panel (c) and time panel (d).

The model runs in around 9 minutes on Machine 1 and around 4 minutes on Machine
2. Much of the time is used by the optimiser to find the maximum ofπ̃(θ|y) and to
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compute the Hessian at the modal configuration. When the hyperparameter space is high
dimensional it is possible that the optimiser fails to succeed at a first attempt. The problem
is usually solved by running theinla program again starting from different initial values
for the hyperparameters. It is, usually, a good idea to start from the best configuration
found during the previous run.

If one is interested in spatial prediction of tree health outside the observation plots, the
spatial model in (7) is not very useful. We could instead use a second order random walk
defined on a regular grid (Rue and Held, 2005, Sec 3.4.2) built as following. We divide
the region of interest innrow × ncol cells, withnrow = 50 andncol = 100. We then build
a new covariate file,spatial−covariate−rw2.dat, where, to each data pointyr are assigned
two indexesnr

row andnr
col indicating its the location of the data on thenrow × ncol grid.

The code for theini file substituting section[ spatial ] (lines 16-24) and[ spatial−unstruct]
(lines 26-34) is the following:

1 [ s p a t i a l ]
2 t y p e= f f i e l d
3 model=rw2d
4 c o v a r i a t e s=s p a t i a l−c o v a r i a t e−rw2 . da t
5 nrow=50
6 nco l=100
7 c o n s t r a i n t=1
8 paramete rs = 1 0.001
9 i n i t i a l = −1.570568

The new model has one hyperparameter less than the previous one since no spatial un-
structured effect is present, but the number of nodes in the latent fieldx is increased,
therefore running the new model will take longer time.

The results for the spatial effect in the new model is displayed in Figure 20. The non
parametric effects of the other covariates do not change significantly.

Kneib and Fahrmeir (2008) propose to include in the model for the latent variable an
interaction between the age of the tree and the calendar time, so that the model becomes:

ηit = µ + f1(inclinationi) + f2(canopyit)

f3(t, ageit) + fs(si) + fu(si) + zT
itβ (14)

where the spatial effectfs(·) is modelled as in (7) andf4(·) is the interaction effect be-
tween time and age of the tree modelled as a RW2d.

We can include the termf4(·) in equation (14) in a similar way as we did earlier in
this same example for the RW2d spatial effect. We just create a new covariate file,
year .age−covariate, with the format

r t ager
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Figure 20: Posterior mean estimate for the spatial effect modelled as a RW2d

where both time and age are recorded, and delete from theini on page 51 section[age]
and[time] while adding the the following lines:

1 [ year−age i n t e r a c t i o n ]
2 t y p e= f f i e l d
3 model=rw2d
4 c o v a r i a t e s=year . age−c o v a r i a t e
5 nrow=22
6 nco l=223
7 c o n s t r a i n t=1
8 d iagona l = 0 .01
9 paramete rs = 1 0 .01

10 i n i t i a l = 2.025712

The new model has 5 hyperparameters and the total number of nodes in the latent field is
6939. We run the model on Machine 2 and the computation time was around 30 minutes
using a CCD integration strategy.

The posterior mean and standard deviation of the interaction effect are displayed in Fig-
ure 21, panel (a) and (b) respectively.
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A Reference manual for theinla program

A.1 Structure of the ini file

The ini file describes the model and sets some additional parameters to be passed to theGMR-
FLib library. It divided in several sections. Each section starts with a tag written between squared
brackets ([tag] ) which is simply a user defined name for the section itself.

Each section contains the fieldtypewhich determines the role of the section in the problem def-
inition and also the structure of the section itself. The six different types of section are described
in details below.

A.1.1 The type=problemsection

This sections specifies some global parameters which are valid for the whole problem. It consists
of the following fields:

dir : A string indicating the name of the directory where the results are stored. The directory is
created when theinla program is run. The directory name can include%d

hyperparameters: A Boolean variable indicating whether or not to compute the marginals for
the hyperparametersθ of the model.

Default = 0

summary: A Boolean variable indicating whether or not to output a short summary of the poste-
rior density forall the nodes in the GMRFx. Currently the summary contains the posterior
mean and standard deviation.

Default = 1

density: A Boolean variable indicating whether or not to output the marginal densities forall
nodes in the latent GMRFx.

Default = 1

quantiles: A list of maximum 10 quantiles,p(0), p(1), . . . , to compute for each posterior
marginal. The function returns, for each posterior marginal, the valuesx(0), x(1), . . . such
that

Prob(X < x(p)) = p

Default: Empty

percentiles: A list of maximum 10 percentiles,x(0), x(1), . . . , to compute for each posterior
marginal. The function returns, for each posterior marginal, the probabilities Prob(X <
x(p)).

Default: Empty
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smtp: A string indicating which type of solver for sparse matrices should be used. The available
choices are:

• GMRFLib SMTPBANDLapack’s band-solver. This is optimal for band matrices

• GMRFLib SMTPTAUCSThe solver in the TAUCS-library. This is generic for all
kind of sparse matrices.

Default: GMRFLib SMTPTAUCS

A.1.2 The type=datasection

This section specifies the model for the likelihood of the dataπ(yi|ηi, θ1) in equation (1). It
consists of the following fields:

likelihood : A string indicating the name of the required likelihood model. The available choices
are listed in Table 2.

prior : Prior distribution for the hyperparameters of the likelihood modelθ1. At the moment this
is only used for the precision parameterλy of thegaussianlikelihood which is assigned a
Gamma(a, b) prior with meana/b and variancea/b2.

Default: gamma

initial : Initial value forlog λy.

parameters: Parametersa andb for the Gamma prior of the precisionλy.

Default: a = 1.0 andb = 0.001

fixed: A Boolean variable indicating whether the hyperparameters of the likelihood model are
fixed or random.

Default: 0

filename: The name of the file which contains the data for the model. The format of the file
depends on the likelihood model chosen and is indicated in Table 2

A.1.3 The type=unstructsection

This section defines the model for the unstructured termui in equation (2). Theinla program
requires a section oftype=unstruct to always be present. It consists of the following fields:

prior : Name of the prior for the precision parameterλη. At the moment only the Gamma(a, b)
prior is implemented.

Default: gamma
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Model Distribution Link Parameter Input File Input File
name function θ1 format format

(on a grid)

gaussian N (µi,
λ−1

y

wi
) µi = ηi λy i wi yi i j wij yij

poisson Po(Eiλi) λi = exp(ηi) - i Ei yi i j Eij yij

binomial Bin(ni, pi) pi = exp(ηi)
(1+exp(ηi))

- i ni yi i j nij yij

stochvol N (0, σ2
i ) σi = exp(ηi/2) - i yi -

Table 2: Likelihood models supported in theinla program.

parameters: Parametersa andb for the Gamma prior of the precisionλη.

Default: a = 1.0 andb = 0.001

fixed: A Boolean variable indicating whether the precision parameterλη is fixed or random.

Default: 0.

initial : Starting value forlog λη

n: Length of the latent variable vectorη. Eithern, or nrow andncol are required.

nrow: Number of rows of the latent variable vectorη. Eithern, or nrow andncol are required.

ncol: Number of columns of the latent variable vectorη. Eithern, ornrow andncol are required.

compute: A Boolean variable indicating whether or not the marginals for vectorη have to be
computed.

Default: 0 section

summary:A Boolean variable indicating whether or not to output a short summary of the poste-
rior density forη.

Default: compute

density: A Boolean variable indicating whether or not to output the marginal densities forη.

Default: compute

quantiles: A list of maximum 10 quantiles,p(0), p(1), . . . , to compute for each node inη.

Default: Empty

percentiles:A list of maximum 10 percentiles,x(0), x(1), . . . , to compute for each node inη.

Default: Empty
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A.1.4 The type= ffield type section

A section of type= ffield specifies the model for one of the functionf in equation (2). Hence,
in a ini file there must benf sections oftype= ffield . Eachtype= ffield section consists of the
following fields:

model: A a string indicating the name of the chosen model. All available choices are listed in
Table 3.

Model Model
Type Name Parameters Reference

Independent
random noise iid precisionλf

Random Walk
of order 1 rw1 precisionλf (Rue and Held, 2005, Ch. 3.3.1)

Random Walk
of order 2 rw2 precisionλf (Rue and Held, 2005, Ch. 3.4.1)

First order
Intrinsic GMRF besag precisionλf (Rue and Held, 2005, Ch. 3.3.2)

on a irregular lattice

Continuous
random walk crw2 precisionλf (Rue and Held, 2005, Ch. 3.5)

Autoregressive
of order 1 ar1 precisionλf (Rue and Held, 2005, Ch. 1.1)

xt = φxt−1 + εt κ = logitφ+1
2

User defined
precision matrix generic precisionλf (see Example 5)

Table 3: Models for thetype= ffield section implemented in theinla program.

prior : Name of the prior for the precision parameterλf . At the moment only the Gamma(a, b)
prior is implemented (not in use ifmodel=ar1)

Default: gamma

parameters: Parametersa andb for the Gamma prior of the precisionλf (not in use ifmodel=ar1)

Default: a = 1.0 andb = 0.001

initial : Starting value forlog λf (not in use ifmodel=ar1)
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prior0: Name of the prior for the precision parameterλf if model=ar1. At the moment only the
Gamma(a, b) prior is implemented

Default: gamma

prior1: Name of the prior for the precision parameterκ if model=ar1. At the moment only the
Gaussian(0, precκ) prior is implemented

Default: gaussian

parameters0:Parametersa andb for the Gamma prior of the precisionλf (only for model=ar1)

Default: a = 1.0 andb = 0.001

parameters1: Parameter precκ for parameterκ (only for model=ar1)

Default: preck = 0.001

initial0 : Starting value forlog λf (only for model=ar1)

initial1 : Starting value forκ (only for model=ar1)

Hyperparameter Prior distribution Default param
Precisionλf Gamma(a, b) so that mean isa/b a = 1.0 andb = 0.001

κ (only for AR1) N (0, 1/preck) preck = 0.001

Table 4: Prior distributions for the hyperparameters

rankdef: A number indicating the rank deficiency of the user definedQ matrix (0nly used if
model=generic).

Default: 0.

fixed: A Boolean variable indicating whether the precision parameterλf is fixed or random.

Default: 0.

constraint: A Boolean variable indicating whether or not to impose a sum-to-zero constraint∑
fj = 0

Default: 0.

diagonal: Additional constraint to add on the diagonal

Default: 0.

graph: The name of the file where the graph is stored (only ifmodel=besag)

n: Lengthm of vectorf . Only if model=rw1,rw2,crw2and no locations is specified.

locations: The name of the file where the value of the covariate are stored, only ifmodel=rw1,rw2
or crw2. If no file is specified the covariate are assumed to take values in{0, 1, . . . , m−1}.
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cyclic: A Boolean variable specifying whether the model is cyclical, only ifmodel=rw1,rw2
and no locations is specified.

compute: A Boolean variable indicating whether or not the marginals for vectorf have to be
computed.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the poste-
rior density forf .

Default: compute

density: A Boolean variable indicating whether or not to output the marginal densities forf .

Default: compute

quantiles: A list of maximum 10 quantiles,p(0), p(1), . . . , to compute for each node inf .

Default: Empty

percentiles:A list of maximum 10 percentiles,x(0), x(1), . . . , to compute for each node inf .

Default: Empty

A.1.5 The type=linearsection

A section oftype=linear specifies the model for one of the elementβk of vectorβ = (β0, . . . , βnβ−1)
in equation (2). Hence aini file will contain nβ sections oftype=linear. Each section consists
of the following fields:

covariates: Name of the file where covariate are stored. If empty, then all covariates are assumed
to be1.

precision: Fixed precision for the Gaussian prior distribution ofβ.

Default: 0.001

compute: A Boolean variable indicating whether or not the marginal forβk has to be computed.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the poste-
rior density forβk.

Default: compute

density: A Boolean variable indicating whether or not to output the marginal densities forβk.

Default: compute

quantiles: A list of maximum 10 quantiles,p(0), p(1), . . . , to compute for each node inβk.

Default: Empty

percentiles:A list of maximum 10 percentiles,x(0), x(1), . . . , to compute for each node inβk.

Default: Empty
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A.1.6 The type=INLA section

This section is optional, it specifies parameters to be passed to theGMRFLib library. It is possible
to specify here all parameters in theGMRFLib ai paramtp structure. We describe here the most
used and useful ones, for more details see the on-line documentation for theGMRFLib library:
http://www.math.ntnu.no/ ∼hrue/GMRFLib/doc/html/

strategy : The strategy used to compute approximations to the posterior marginalsπ(xi|y, θ).
The three main choice are:

• GMRFLib AI STRATEGYGAUSSIAN: computes the Gaussian approximation

• GMRFLib AI STRATEGYMEANSKEWCORRECTEDGAUSSIAN: computes the sim-
plified Laplace approximation.

• GMRFLib AI STRATEGYADAPTIVE: Computes the full Laplace approximation.

The three approximation types are described in Rue et al. (2007).

Default: GMRFLib AI STRATEGYMEANCORRECTEDGAUSSIAN

int strategy : The strategy used to integrate out the hyperparametersθ when computing̃π(xi|y).
There are two possible choices:

• GMRFLib AI INT STRATEGYGRID (or grid) : Use a grid strategy, slower and
somehow more accurate.

• GMRFLib AI INT STRATEGYCCD (or ccd) : Use a central composite design strat-
egy, faster and especially useful for problems with higher dimension of the hyperpa-
rameter vectorθ.

Both strategies are described in Rue et al. (2007).

Default: GMRFLib AI INT STRATEGYGRID

dz : Step length for the integration procedure, only ifint strategy=grid .

Default: 1

diff logdens : Only used if int strategy = grid . Threshold for accepting a configuration.

Default: 2.5

skip configurations : Only used if int strategy = grid . Skip fill-in configuration larger than
a non-accepted one.

Default: GMRFLib TRUE

gradient finite differencesteplen (or h): Step length to compute the gradient ofπ̃(θ).

Default: 1.0e-4

hessianfinite differencesteplen (or h): Step length to compute the Hessian ofπ̃(θ|y) at
the mode.

Default: 1.0e-4
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interpolator Type of interpolator used to compute marginals for each hyperparameterπ̃(θm|y),
the available choices are:

• GMRFLib AI INTERPOLATORAUTO: Chose interpolation type based on the inte-
gration strategy.
If int strategy=grid , then chooseGMRFLib AI INTERPOLATORWEIGHTEDDISTANCE.
If int strategy=ccd, then the choice isGMRFLib AI INTERPOLATORCCD

• GMRFLib AI INTERPOLATORLINEAR: Linear interpolation using the(M + 1)
nearest points, whereM is the dimension of the hyperparameters space.

• GMRFLib AI INTERPOLATORQUADRATIC: Quadratic interpolation using the(M+
1) nearest points.

• GMRFLib AI INTERPOLATORWEIGHTEDDISTANCE: Linear interpolation us-
ing weighted distance.

• GMRFLib AI INTERPOLATORCCD: Special interpolation for the CCD integration
scheme.

The interpolations are described in Martino (2007).

A.2 Format of the input files

There are five type of input files which can be read from theinla program: the data file, the
covariate file, the covariate locations type, the graph file and theQ-matrix file, each with its
own format required. The formats have been already presented in different examples but are all
collected here.

Data file The format of the data file depends on the likelihood model chosen and on whether the
data are collected on a grid or not. The format of the data file is displayed in Table 2.

Covariate and location file Each covariate has to be stored in a separate file. The format of the
file depends on whether the covariate is assumed to have linear or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file withnη

columns each row having the format:

i zi

wherei = 0, . . . , nη − 1 andzi is the value of the covariate for nodei.

Covariates with non-linear effect: Let c ∈ C andC = {c(0) < c(1) < · · · < c(idx) <
· · · < c(m−1)}. That is, covariatec takes one of them values in the ordered vector
C. The file storing covariatec hasnη row, each with the following format:

i (idx)i

wherei = 0, . . . , nη − 1 and(idx)i is the position of the observed valueci in the
vectorC. If the values inC are different from0, 1, . . . then another file (the locations
file) of m rows, is necessary to store the values ofC. A short example will be useful:
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Example: Let nη = 5 and C = {9, 10, 11}. Moreover assume that the observed
covariate values arec0 = 10, c1 = 9, c2 = 11, c3 = 9 and c4 = 10. Then the
covariate file will be as following

0 1
1 0
2 2
3 0
4 1

We would need also a file storing the values inC:

9
10
11

Graph file The graph file contains information on the neighbourhood structure of the spatial ef-
fect We describe the required format for such a file using a small example. Let the file
graph.dat, relative to a small graph, be

1 5
2 0 1 1
3 1 2 0 2
4 2 3 1 3 4
5 3 1 2
6 4 1 2

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is
described. For example, line 4 states that node 2 has 3 neighbours and these are nodes 1, 3
and 4. This is the same format used in theGMRFLib library.

Q-matrix file This file is only needed if the fieldmodel in a ffield -type section is defined as
generic. The file should contain all non-zero entries of the user specified precision matrix
Q in the following format

i j Qij

wherei and j are the row and column index andQij is the corresponding entry in the
precision matrix.

A.3 Some possible problems and solutions

1. Theinla function checks that all entries in theini file are used while building the models,
so an error message like

i n l a b u i l d : [ZAMBIA. i n i ] c o n t a i n [ 1 ] unused en t r i e s . PLEASE CHECK

probably means that some of the fields in theini file have been misspelled.

2. In our experience the most common problems with theinla function comes from the
optimisation procedure and the numerical computation of the Hessian oflog π̃(θ|y) at the
modal configuration.

The optimiser might not converge, thus producing an error message like:
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GMRFLib v e r s i o n 3.0−0− snapsho t , has re c e i v e d e r r o r no [ 1 2 ]
Reason : TheNewton−Reason o p t i m i s e r d id no tconverge
Func t i on : GMRFLib opt im ize s to re
F i l e : o p t i m i z e . c
L ine : 460
RCSId : $ Id : o p t i m i z e . c , v 1 .37 2007 /07 /13 11 :49 :41

hrue Exp $

Usually restarting theinla function assigning different starting values for the hyperpa-
rameters vectorθ (field initial ), will solve the problem.

3. Another error which might happen is that the computed numerical Hessian forlog π̃(θ|y)
in not positive definite. This produces the following error message:

GMRFLib v e r s i o n 3.0−0− snapsho t , has re c e i v e d e r r o r no [ 2 ]
Reason : Mat r i x i s no t p o s i t i v e d e f i n i t e
Message : C o n d i t i o n ‘ g s lv e c t o r g e t ( e i g e n v a l u e s ,

( uns igned i n t ) i ) > 0 .0 ’ i s no t TRUE
Func t i on : GMRFLib ai INLA
F i l e : approx− i n f e r e n c e . c
L ine : 2689
RCSId : $ Id : approx− i n f e r e n c e . c , v 1 .3722007 /09 /06

21 :38 :26 hrue Exp $

To solve this problem it is usually enough to increase the step length used to numeri-
cally compute the Hessian and the gradient. These quantities can be re-defined in the
type=INLA section by using the parametersgradient finite differencesteplen and

hessianfinite differencesteplen .
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