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Abstract— We derive an adaptive output-feedback stabilizing
controller for a system of 2 × 2 linear hyperbolic partial dif-
ferential equations (PDEs) with delayed, anti-collocated sensing
and control. This is done by using a series of transformations
to show that the system is equivalent to delay-free systems for
which such controllers have been derived. The only required
knowledge of the system is the system’s transport delays, the
sensor and actuation delays and the sign of the product of the
actuation and sensing scaling constants. The theory is verified
in a simulation.

I. INTRODUCTION

Linear first order hyperbolic partial differential equations
(PDEs) describe transport phenomena with finite propagation
speeds. Consequently, many processes arising in applications
can be modeled by them, for instance sensor and actuation
delays [1], oil wells [2] and predator-prey systems [3]. Linear
first order hyperbolic PDEs have therefore been subject to
extensive research regarding estimation and control.

In the last years, infinite-dimensional backstepping, orig-
inally derived for parabolic PDEs in [4], has been further
developed for use on hyperbolic PDEs of increasing com-
plexity. When using this method for controller design, an
invertible Volterra transformation and a control law are used
to map the original system of PDEs into a simpler target
system whose stability is easier to establish. By invertibility
of the Volterra transformation, stability of the original system
then follows. The first use of backstepping on hyperbolic
PDEs was for a single, first order PDE in [1]. The extension
to 2× 2 systems of the same type considered in the current
paper was done in [5], while extensions to more complicated
systems of linear hyperbolic PDEs have been done in [6] and
[7].

Infinite-dimensional backstepping has also recently been
used to derive adaptive controllers for hyperbolic PDEs,
with the first result being presented in [8] where a 1–D
system with a single, uncertain parameter was adaptively
stabilized using boundary sensing only. This result was later
extended in [9] to a slightly more general class of systems,
offering a solution to a model reference adaptive control
(MRAC) problem for which the stabilization problem is a
subproblem. The only required knowledge of the system was
its total transport delay and the sign of the product of the
actuation and sensing scaling constants. The method in [8]
has also been extended to 2 × 2 systems simultaneously
in [10] and [11], where in both these papers a 2 × 2
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system of linear hyperbolic PDEs with uncertain in-domain
coefficients was adaptively stabilized using boundary sensing
only. The methods from [9] and [10] were later combined to
solve both an MRAC and a stabilization problem for 2 × 2
systems in [12]. However, the controllers of all these three
papers had a higher dynamical order than the solution in [8].
Other variations of adaptive controllers for PDEs based on
backstepping can be found in [13], [14], [15], [16].

The work presented here is an extension of the result
from [10] and [11]: we derive an adaptive output-feedback
stabilizing controller for a class of systems of 2 × 2 linear
hyperbolic PDEs with actuator delay, using a single boundary
sensing which is also allowed to be delayed. We will through
a series of transformations show that the 2 × 2 system,
with actuator and sensor delays, is for small sensor delays
equivalent to a delay-free 2 × 2 system, while for large
sensor delays, it is equivalent to a delay-free 1–D system.
The only required knowledge of this system is the same that
was assumed in [9], as well as the magnitude of the actuator
and sensor delays.

Notation: We define the following domains D = {x | x ∈
[0, 1]}, D1 = {(x, t) | x ∈ D, t ≥ 0} and T = {(x, ξ) | 0 ≤
ξ ≤ x ≤ 1}. For the variable u : D → R (or u : D1 → R),

we define ||u|| =
√∫ 1

0
u2(x)dx, ||u||∞ = supx∈D |u(x)|,

and B(D) = {u | ||u||∞ < ∞}. For a function f(t) we
define f ∈ Lp ⇔

(∫∞
0
|f(t)|pdt

) 1
p < ∞, for p = 1, 2, and

f ∈ L∞ ⇔ supt≥0 |f(t)| <∞.

II. PROBLEM STATEMENT

Consider a system of 2 × 2 linear hyperbolic PDEs with
time-delayed, scaled anti-collocated actuation and sensing

ut(x, t) + λ(x)ux(x, t) = c1(x)v(x, t) (1a)
vt(x, t)− µ(x)vx(x, t) = c2(x)u(x, t) (1b)

u(0, t) = qv(0, t) (1c)
v(1, t) = k1U(t− d1) (1d)
y(t) = k2v(0, t− d2) (1e)

for u, v defined over D1. The parameters µ, λ, c1, c2, q, k1,
k2 are unknown, but assumed to satisfy

µ, λ ∈ C1(D), µ(x), λ(x) > 0 ∀x ∈ D (2a)

c1, c2 ∈ C0(D), q, k1, k2 ∈ R\{0} (2b)
d1, d2 ∈ R, d1, d2 ≥ 0. (2c)

The quantities d1 and d2 are the actuation and measurement
delays, respectively, which we for natural reasons assume



nonnegative. The system’s initial conditions u(x, 0) = u0(x),
v(x, 0) = v0(x) are assumed to satisfy u0, v0 ∈ B(D).

The goal is to design a control law U(t) in (1d) so that
system (1) is adaptively stabilized. Moreover, all additional
variables in the closed loop system should be bounded
pointwise in space. We seek to achieve this from minimal
knowledge of the system parameters. Specifically, the only
knowledge required of the system is stated in the following
assumption.

Assumption 1: We assume that the following quantities
are known

1) the actuator and sensor delays

d1 = ε−1
1 d2 = ε−1

2 , (3)

2) the transport delays in each direction, that is

dα = λ̄−1 =

∫ 1

0

dγ

λ(γ)
, dβ = µ̄−1 =

∫ 1

0

dγ

µ(γ)
, (4)

3) the sign of the product k1k2.
Remark 2: We have for simplicity restricted ourselves to

systems with no reflection term at x = 1, and where q 6=
0, which was also assumed in [12]. However, the method
extends to the case q = 0 and nonzero reflection coefficient
at x = 1 by using the swapping method proposed for n+ 1
systems in [17].

III. MAPPING TO CANONICAL FORM

We will in this section introduce a series of transforma-
tions that brings the system to a canonical form, which can
be simplified if d2 ≥ dα. This canonical form is known from
previous literature.

A. Decoupling by backstepping

The following result was proved in [5].
Lemma 3: The system (1) is through an invertible back-

stepping transformation equivalent to the following system

α̌t(x, t) + λ(x)α̌x(x, t) = 0, α̌(x, 0) = α̌0(x) (5a)

β̌t(x, t)− µ(x)β̌x(x, t) = 0, β̌(x, 0) = β̌0(x) (5b)

α̌(0, t) = qβ̌(0, t) (5c)

β̌(1, t) = k1U(t− d1)−
∫ 1

0

L1(ξ)α̌(ξ, t)dξ

−
∫ 1

0

L2(ξ)β̌(ξ, t)dξ (5d)

y(t) = k2β̌(0, t− d2) (5e)

where L1, L2, L3 are (continuous) functions of the unknown
parameters λ, µ, c1, c2, q, and α̌0, β̌0 ∈ B(D).

Proof: See [5].

B. Constant transport speeds and scaling

Lemma 4: The invertible mapping

α(x, t) =
k2

q
α̌(h−1

α (x), t), β(x, t) = k2β̌(h−1
β (x), t) (6)

where

hα(x) =
1

dα

∫ x

0

dγ

λ(γ)
, hβ(x) =

1

dβ

∫ x

0

dγ

µ(γ)
(7)

transforms (5) into

αt(x, t) + λ̄αx(x, t) = 0, α(x, 0) = α0(x) (8a)
βt(x, t)− µ̄βx(x, t) = 0, β(x, 0) = β0(x) (8b)

α(0, t) = β(0, t) (8c)

β(1, t) = ρU(t− d1) +

∫ 1

0

σ1(ξ)α(ξ, t)dξ

+

∫ 1

0

σ2(ξ)β(ξ, t)dξ, (8d)

y(t) = β(0, t− d2) (8e)

where λ̄, µ̄ are defined in (4), and σ1, σ2, ρ are functions of
L1, L2, q, k1, k2, with α0, β0 ∈ B(D).

Proof: We note from (7) that hα and hβ are strictly
increasing and thus invertible. The invertiblility of the trans-
form (6) therefore follows. The rest of the proof follows
immediately from insertion and noting that

h′α(x) =
1

dα

1

λ(x)
, h′β(x) =

1

dβ

1

µ(x)
(9a)

hα(0) = hβ(0) = 0, hα(1) = hβ(1) = 1, (9b)

and is therefore omitted. The new parameters are given as

σ1(x) = −k2dαλ(h−1
α (x))L1(h−1

α (x)) (10a)

σ2(x) = −dβµ(h−1
β (x))L2(h−1

β (x)), ρ = k1k2. (10b)

C. Actuator and sensor dynamics

We now augment the system with an additional filter ν
that can be used to represent the actuator delay, and also
split the variable α in two variables w and ζ.

Lemma 5: System (8) can be represented as

wt(x, t) + ε3wx(x, t) = 0, w(x, 0) = w0(x) (11a)
ζt(x, t) + ε2ζx(x, t) = 0, ζ(x, 0) = ζ0(x) (11b)
βt(x, t)− µ̄βx(x, t) = 0, β(x, 0) = β0(x) (11c)
νt(x, t)− ε1νx(x, t) = 0, ν(x, 0) = ν0(x) (11d)

w(0, t) = ζ(1, t) (11e)
ζ(0, t) = β(0, t) (11f)

β(1, t) = ν(0, t) +

∫ 1

0

σ3(ξ)ζ(ξ, t)dξ

+

∫ 1

0

σ4(ξ)w(ξ, t)dξ

+

∫ 1

0

σ2(ξ)β(ξ, t)dξ (11g)

ν(1, t) = ρU(t) (11h)
y(t) = ζ(1, t) + e(1, t) (11i)

where e is governed by

et(x, t) + ε2ex(x, t) = 0, e(0, t) = 0 (12a)



e(x, 0) = e0(x) (12b)

with ε1, ε2 defined in (3), and

ε3 = max{(dα − d2)−1, 0} (13)

with σ3 and σ4 being functions of dα, d2 and σ1, and
w0, ζ0, β0, ν0, e0 ∈ B(D). Moreover, if d2 ≥ dα, then

σ4 ≡ 0 (14)

and (11a) and (11e) can be discarded from the set of
equations.

Proof: The variable α satisfying (8a) is a pure transport
equation. If d2 < dα, we simply split the transport equation
into two parts, ζ, representing a delay of d2, and w repre-
senting a delay of d3 = dα− d2, so that the total delay of ζ
and w is dα. Specifically, ζ and w are given from α through

ζ(x, t) = α

(
d2

dα
x, t

)
(15a)

w(x, t) = α

(
d3

dα
x+

d2

dα
, t

)
(15b)

or, reversely

α(x, t) =


ζ

(
dα
d2
x, t

)
for x ∈ [0, d2dα ]

w

(
dα
d3
x− d2

d3
, t

)
for x ∈ [ d2dα , 1].

(16)

Now, if on the other hand dα ≤ d2, the variable ζ will
contain all the information in the variable α. Specifically, α
can be reconstructed from ζ alone as

α(x, t) = ζ

(
dα
d2
x, t

)
, (17)

provided the initial conditions match. In either case, we can
insert for α in the integral in (8d), and find a boundary
condition on the form (11g). Specifically, σ3 and σ4 are given
as

σ3(x) =


dα
d2
σ1

(
d2

dα
x

)
if d2 < dα

σ3,2(x) otherwise
(18a)

σ4(x) =


d3

dα
σ1

(
d3

dα
x+

d2

dα

)
if d2 < dα

0 otherwise
(18b)

where

σ3,2(x) =


d2

dα
σ1

(
d2

dα
x

)
for 0 ≤ x ≤ dα

d2

0 otherwise.
(19)

The delays in the actuation and sensing signals can be rep-
resented using linear hyperbolic PDEs. We have represented
the actuation delay using the PDE ν in (11d), (11h), while
the sensor delay can be represented using a PDE on the form

πt(x, t) + ε2πx(x, t) = 0, π(x, 0) = π0(x) (20a)
π(0, t) = β(0, t), y(t) = π(1, t). (20b)

with π0 ∈ B(D). These representations are valid subject to
the restriction that the initial conditions ν0(x) and π0(x) are
chosen to match past values of U(t) and β(0, t). Lastly, in
(11), we have used the PDE ζ to generate a non-adaptive
estimate of the PDE π as

π(x, t) = ζ(x, t) + e(x, t), (21)

from which we straight forwardly find that e satisfies the
dynamics (12a), and the measurement (20b) becomes (11i).

It is obvious that if d2 ≥ dα, the variable w is surplus, and
can hence be removed from the equations (by for instance
choosing ||w0||∞ = 0).

We note that in any case, e(1, t) = 0 for t ≥ d2, so that
y(t) = ζ(1, t) for t ≥ d2.

D. Merging two states

System (11) is a cascade in the following order: ν, β, ζ
and w, with the latter being identically zero if d2 ≥ dα. We
will in the next lemma merge ζ and β into a single PDE.

Lemma 6: System (11) is equivalent to

wt(x, t) + ε3wx(x, t) = 0, w(x, 0) = w0(x) (22a)
ϕt(x, t)− ε4ϕx(x, t) = 0, ϕ(x, 0) = ϕ0(x) (22b)
νt(x, t)− ε1νx(x, t) = 0, ν(x, 0) = ν0(x) (22c)

w(0, t) = ϕ(0, t) (22d)

ϕ(1, t) = ν(0, t) +

∫ 1

0

σ5(ξ)ϕ(ξ, t)dξ

+

∫ 1

0

σ4(ξ)w(ξ, t)dξ (22e)

ν(1, t) = ρU(t) (22f)
y(t) = ϕ(0, t) + e(1, t) (22g)

where

ε4 = d−1
4 = (d2 + dβ)−1 (23)

with w0, ϕ0, ν0 ∈ B(D), and with ||w||∞ = 0 if d2 ≥ dα,
and e(1, t) = 0 for t ≥ d2.

Proof: The variable ϕ is defined from ζ and β as

ϕ(x, t) =

{
ζ(k1(x1 − x), t) for x ∈ [0, x1]

β(k2(x− x1), t) for x ∈ [x1, 1]
(24)

where

k1 =
ε2
ε4
, k2 =

µ̄

ε4
, x1 = k−1

1 . (25)

Straightforward calculations, using the dynamics (11b)–(11a)
give the dynamics (22b) with boundary condition (22c) when

σ5(x) =

{
k1σ3(1− k1x) for x ∈ [0, x1]

k2σ2(k2(x− x1)) for x ∈ (x1, 1]
(26)

The measurement (22g) comes from (11i) and noting that

ζ(1, t) = ϕ(0, t). (27)



E. Mixed Volterra-Fredholm transformation

Lemma 7: System (22) is equivalent to the following
system

wt(x, t) + ε3wx(x, t) = 0, w(x, 0) = w0(x) (28a)
ωt(x, t)− ε4ωx(x, t) = θ1(x)ϕ(0, t), ω(x, 0) = ω0(x)

(28b)
ηt(x, t)− ε1ηx(x, t) = θ2(x)ϕ(0, t), η(x, 0) = η0(x)

(28c)
w(0, t) = ω(0, t) (28d)
ω(1, t) = η(0, t) (28e)

η(1, t) = ρU(t) +

∫ 1

0

κ(ξ)w(ξ, t)dξ (28f)

where θ1, θ2 and κ are functions of σ4, σ5, and where
w0, ω0, η0 ∈ B(D).

Proof: Consider now the transformation (w,ϕ, ν) →
(w,ω, η), given as

ω(x, t) = ϕ(x, t)−
∫ x

0

A(x, ξ)ϕ(ξ, t)dξ (29a)

η(x, t) = ν(x, t)−
∫ 1

0

B(x, ξ)w(ξ, t)dξ (29b)

where A,B satisfy the PDE

Ax(x, ξ) +Aξ(x, ξ) = 0, A(1, ξ) = σ5(ξ) (30a)
ε1Bx(x, ξ)− ε3Bξ(x, ξ) = 0, B(x, 1) = 0 (30b)

B(0, ξ) = −σ4(ξ). (30c)

Here, A is defined over the triangular domain T while B is
defined over a square domain S = D2. Transformation (29a)
with a kernel satisfying (30a) is a standard, invertible Volterra
backstepping transformation, and therefore ϕ is uniquely
determined from ω. Since (29b) trivially provides ν from
η and w, the existence of the inverse (w,ω, η) → (w, φ, ν)
is established. The well-posedness of (30) is trivial to prove
by considering its characteristics, and we omit further details
due to page limitations.

Next, we prove that (w,ω, η) has the dynamics (28) pro-
vided A and B are selected according to (30). Differentiating
(29) with respect to time and space, inserting the dynamics
(22a)–(22b), integration by parts and inserting the boundary
condition (22d), we obtain

ϕt(x, t) = ωt(x, t) + ε4A(x, x)ϕ(x, t)

− ε4A(x, 0)ϕ(0, t)− ε4
∫ x

0

Aξ(x, ξ)ϕ(ξ, t)dξ (31a)

νt(x, t) = ηt(x, t)− ε3B(x, 1)w(1, t)

+ ε3B(x, 0)w(0, t) + ε3

∫ 1

0

Bξ(x, ξ)w(ξ, t)dξ (31b)

and

ϕx(x, t) = ωx(x, t) +A(x, x)ϕ(x, t)

+

∫ x

0

Ax(x, ξ)ϕ(ξ, t)dξ (32a)

νx(x, t) = ηx(x, t) +

∫ 1

0

Bx(x, ξ)w(ξ, t)dξ. (32b)

Inserting (31) and (32) into the dynamics (22b)–(22c), we
find

ϕt(x, t)− ε4ϕx(x, t) = ωt(x, t)− ε4ωx(x, t)

− ε4
∫ x

0

(Ax(x, ξ) +Aξ(x, ξ))ϕ(ξ, t)dξ (33a)

− ε4A(x, 0)ϕ(0, t) = 0

νt(x, t)− ε1νx(x, t) = ηt(x, t)− ε1ηx(x, t)

−
∫ 1

0

(ε1Bx(x, ξ)− ε3Bξ(x, ξ))w(ξ, t)dξ

− ε3B(x, 1)w(1, t) + ε3B(x, 0)ϕ(0, t) = 0. (33b)

Using (30a)–(30b) yields (28b)–(28c) with

θ1(x) = ε4A(x, 0) θ2(x) = −ε3B(x, 0). (34)

Inserting (29) into (22d)–(22f), we obtain

w(0, t) = ω(0, t) (35a)

ω(1, t) = η(0, t)−
∫ 1

0

[A(1, ξ)− σ5(ξ)]ϕ(ξ, t)dξ

+

∫ 1

0

[B(0, ξ) + σ4(ξ)]w(ξ, t)dξ (35b)

η(1, t) = ρU(t)−
∫ 1

0

B(1, ξ)w(ξ, t)dξ. (35c)

Using (30a) and (30c) results in the boundary conditions
(28d)–(28f), with

κ(ξ) = −B(1, ξ). (36)

F. Canonical form

System (28) is a cascade in the following order: η, ω, and
w, with the latter being identically zero if d2 ≥ dα. This will
be utilized in the following lemma, bringing the system to a
canonical form

Lemma 8: System (28) is equivalent to

wt(x, t) + ε3wx(x, t) = 0, w(x, 0) = w0(x) (37a)
zt(x, t)− ε5zx(x, t) = θ(x)z(0, t), z(x, 0) = z0(x)

(37b)
w(0, t) = z(0, t) (37c)

z(1, t) = ρU(t) +

∫ 1

0

κ(ξ)w(ξ, t)dξ (37d)

y(t) = z(0, t) + e(1, t), (37e)

where

ε5 = d−1
5 = (d1 + d4)−1, (38)

with w0, z0 ∈ B(D), and with ||w||∞ = 0 if d2 ≥ dα, and
e(1, t) = 0 for t ≥ d2.

Proof: We define the new variable z as

z(x, t) =

{
ω(k2x, t) for x ∈ [0, x2]

η(k3(x− x2), t) for x ∈ (x2, 1]
(39)



where

k2 =
ε4
ε5
, k3 =

ε1
ε5
, x2 = k−1

2 . (40)

Straightforward calculations, using the dynamics (28b)–(28c)
give the dynamics (37b) with θ given as

θ(x) =

{
θ1(k2x) for x ∈ [0, x2]

θ2(k3(x− x2)) for x ∈ (x2, 1]
(41)

The boundary condition (37d) comes from noting that

z(1, t) = η(1, t) (42)

and using the boundary condition (28f).

IV. ADAPTIVE CONTROL

Since the term e(1, t) in (37e) is zero for t ≥ d2,
system (37) is for d2 < dα on the same form as the
system which was adaptively stabilized in [12], while for
d2 ≥ dα, w ≡ 0 and the system reduces to the form which
was adaptively stabilized in [9]. Both controllers, however,
require the following assumption.

Assumption 9: Bounds on ρ, θ and κ, are known. That
is, we are in knowledge of some constants ρ, ρ̄, θ, θ̄, κ, κ̄, so
that

ρ ≤ ρ ≤ ρ̄ θ ≤ θ(x) ≤ θ̄ κ ≤ κ(x) ≤ κ̄ (43)

for all x ∈ D, where

0 /∈ [ρ, ρ̄]. (44)
This assumption is not a limitation, since the bounds

are arbitrary. The assumption (44) requires the sign on the
product k1k2 to be known, which is ensured by Assumption
1.

Consider the filters

ψt(x, t)− ε5ψx(x, t) = 0, ψ(1, t) = U(t) (45a)
φt(x, t)− ε5φx(x, t) = 0, φ(1, t) = y(t) (45b)

Pt(x, ξ, t) + ε3Pξ(x, ξ, t) = 0, P (x, 0, t) = φ(x, t) (45c)

with initial conditions ψ(x, 0) = ψ0(x), φ(x, 0) =
φ0(x), P (x, ξ, 0) = P0(x, ξ) satisfying

ψ0, φ0 ∈ B(D), P0 ∈ B(D2). (46)

Consider also the adaptive laws

˙̂ρ(t) = projρ,ρ̄

{
γ1
ε̂(0, t)ψ(0, t)

1 + f2(t)
, ρ̂(t)

}
(47a)

θ̂t(x, t) = projθ,θ̄

{
γ2(x)

ε̂(0, t)φ(1− x, t)
1 + f2(t)

, θ̂(x, t)

}
(47b)

κ̂t(x, t) = projκ,κ̄

{
γ3(x)

ε̂(0, t)p0(x, t)

1 + f2(t)
, κ̂(x, t)

}
(47c)

where

ε̂(x, t) = z(x, t)− ẑ(x, t) (48a)

ẑ(x, t) = ρ̂(t)ψ(x, t) +

∫ 1

x

θ̂(ξ, t)φ(1− (ξ − x), t)dξ

+

∫ 1

x

θ̂(ξ, t)P (x, ξ, t)dξ (48b)

and

p0(x, t) = P (0, x, t) (49)

with

f2(t) = ψ2(0, t) + ||φ(t)||2 + ||p0(t)||2 (50)

and γ1 > 0, γ2(x), γ3(x) > 0, ∀x ∈ D as design gains. The
initial guesses must be chosen inside the feasible domain,
i.e. ρ ≤ ρ̂(0) ≤ ρ̄, θ ≤ θ̂0(x, 0) ≤ θ̄, κ ≤ κ̂0(x, 0) ≤ κ̄,
∀x ∈ D. The projection operator is defined as

proja,b(τ, ω) =


0 if ω ≥ a and τ ≤ 0

0 if ω ≤ b and τ ≥ 0

τ otherwise.
(51)

Consider also the control law

U(t) =
1

ρ̂(t)

(∫ 1

0

k̂(1− ξ, t)ẑ(ξ, t)dξ

−
∫ 1

0

κ̂(ξ, t)p1(ξ, t)dξ

)
(52)

where ẑ is generated using (48b),

p1(x, t) = P (1, x, t), (53)

and k̂ is the on-line solution to the Volterra equation

k̂(x, t) =

∫ x

0

k̂(x− ξ, t)θ̂(ξ, t)dξ − θ̂(x, t) (54)

with ρ̂, θ̂ and κ̂ generated from the adaptive laws (47).
Theorem 10: Consider the system (1), the filters (45) and

the adaptive laws (47), where if d2 ≥ dα we let κ̂0 ≡ 0 and
γ3 ≡ 0. The control law (52) guarantees

||u||, ||v||, ||u||∞, ||v||∞ ∈ L2 ∩ L∞ (55a)
||u||, ||v||, ||u||∞, ||v||∞ → 0 (55b)

Moreover, all additional signals in the closed loop system
are bounded.

Proof: It was proved in [12] and [9] for the cases
d2 < dα and d2 ≥ dα, respectively, that the controller
achieves ||z||, ||z||∞ ∈ L2 ∩ L∞. From the invertibility of
the transforms of Lemmas 3–8, the result follows.

V. SIMULATION

The system (1) and controller of Theorem (10) are imple-
mented MATLAB using the system parameters

λ(x) = 2 + x, µ(x) =
1

2
e

1
2x, d1 =

3

4
, d2 =

1

2
(56a)

c1(x) = x, c2(x) =
1

2
(1 + sin(x)), q = 2 (56b)

k1 =
3

2
, k2 =

1

2
. (56c)

We note that

dα = λ̄−1 =

∫ 1

0

ds

λ(s)
≈ 0.4055 ≤ d2 = 0.5 (57)

so that the 1–D controller from [9] (i.e. ||w||∞ = 0) can be
used. The adaptation parameters are set to



Fig. 1: State norm with the controller inactive (left) and
active (right).

0 10 20 30 40 50

−1.2

−1.1

−1

−0.9

Time [s]

ρ̂

Fig. 2: Estimated parameters during stabilization.

γ1 = γ2(x) = 5, ∀x ∈ D (58a)
θ̄ = −θ = 100, ρ = 0.1, ρ̄ = 10 (58b)

while adaptation of κ is not required. It is observed from
Figure 1 that the system states diverge in the open loop case.
In the closed loop case, the controller successfully manages
to stabilize the system, and the system norms converge to
zero, as seen from Figure 1. The estimated parameters are
seen in Figure 2 to be bounded. The actuation signal is also
bounded, as seen from Figure 3.

VI. CONCLUSIONS

Using a series of transformations, we showed that a system
of linear 2×2 hyperbolic PDEs with delayed, anti-collocated
actuation and sensing is for small sensor delays equivalent to
a delay-free 2×2 system, while for large sensor delays, it is
equivalent to a delay-free 1–D system. Already established
controllers were then applied to adaptively stabilize the
system from the single, delayed boundary sensing only. The
only required knowledge of the system was the various
delays involved, as well as the sign of the product of the
actuation and sensing scaling constants. The theory was
verified in a simulation.

0 10 20 30
−2

−1

0

1

Time [s]

U

Fig. 3: Actuation signal during stabilization.

A natural direction for future work is to extend the method
to more general systems consisting of several coupled PDEs;
or derive under what conditions such an extension is possible.
Another unsolved problem, is to adaptively stabilize system
(1) from sensing restricted to the boundary collocated with
the actuation. This latter problem has been solved for the case
where the only uncertain boundary parameter was q, but no
results exist for the case of uncertain in-domain parameters.
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