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INTRODUCTION

The main topic of this thesis is the study of a nonlinear partial differential
equation, the Camassa–Holm (CH) equation:

ut − utxx + 3uux − 2uxuxx − uuxxx = 0. (1)

The origin of the Camassa-Holm equation can by traced back to an article from
Fuchssteiner and Fokas ([18]) from 1981 where it appears as one member of a
whole family of bi-hamiltonian equations generated by the method of recursion
operator. However some coefficients were not correctly computed. This may be
the reason why no special attention was given to it until its rediscovery in 1993 by
Camassa and Holm in the context of water wave ([7, 8]). They derived equation
(1) as a model for unidirectional water wave propagation in shallow water with
u representing the height of the water’s free surface above a flat bottom. The
relevance of the equation as a model for shallow water wave has been further
investigated by Johnson in [21].

In 1998 a similar equation, namely

ut − utxx + 3uux − γ(2uxuxx + uuxxx) = 0, (2)

was discovered independently by Dai as a model for nonlinear waves in cylindrical
axially symmetric hyperelastic-rod. In this case, u(x, t) represents the radial
stretch and γ a constant depending on the property of the material.

a rich mathematical structure

The Camassa–Holm enjoys many remarkable mathematical properties. It is
bi-Hamitonian, that is, it possesses two distinct but compatible hamiltonians.
Following the methodology described in [24] for general bi-Hamiltonian systems,
it is possible to derive an infinite number of conserved quantities for the solutions
of (1); the computation is carried out in detail in [22]. The equation admits
a Lax-pair and is also formally integrable by means of scattering and inverse
scattering techniques. The scattering problem consists of computing the scattered
far-field over an obstacle whose “shape” is determined in some way by u (for t

fixed). In practice, it means finding the eigenvalues of a linear operator depending
on u(t, x). The remarkable fact is that as time evolves, if u(t, x) satisfies (1),
then these eigenvalues satisfy trivial linear ordinary differential equations which
can be solved explicitly and the far-field can be determined for any time. The
inverse scattering problem consists of retrieving the “shape” of the obstacle, that
is u, from the knowledge of the scattered far-field. This is also a nontrivial
but nevertheless linear problem so that one can think of the scattering-inverse
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Figure 1. Interaction of two solitons for the KdV equation.

scattering method as a way of linearizing the equation. If this approach can be
(formally) followed then the system is (formally) integrable and solutions of the
Camassa–Holm equation exist and can be computed. For a large class of initial
data, it is indeed possible, see [10, 16].

It turns out that many physical relevant equations share the same structure
(Lax pair, complete integrability via scattering and inverse scattering techniques),
the paramount example being the KdV equation

ut + uux − uxxx = 0 (3)

which is also used as a model for shallow water wave. These equations exhibit
a special type of solutions, the so-called solitons. A single soliton is a traveling
wave whose speed is proportional to the height. What makes solitons so special
is that when one combines several of them they interact nicely and retain their
shape after interaction, see Figure 1 for a two soliton interaction in the case of the
KdV equation. The Camassa-Holm equation also possesses solutions of a soliton
type, which, because of their shape, have been given the name of peakons. A
single peakon is given by

u(t, x) = ce|x−ct|. (4)

The traveling speed is then equal to the height of the peak. By taking a linear
combination of peakons one obtains what is called a multipeakon solution. The
multipeakons have the following form

u(x, t) =

n
∑

i=1

pi(t)e
−|x−qi(t)| (5)

where pi and qi are solutions of the following system of ordinary differential
equations

q̇i =

n
∑

j=1

pje
−|qi−qj |, ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |. (6)

In Figure 2, we show a simple interaction between two peakons. At the peaks,
the derivative is discontinuous and the multipeakons can only be solutions of (1)
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Figure 2. Interaction of two peakons for the CH equation.

in a weak sense, see [20] and below. The system of equations (6) is hamiltonian:
For H given by H = 1

2

∑n
i,j=1 pipje

−|qi−qj |, it can be rewritten as

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

. (7)

The multipeakon solutions as given by (7) can then be seen as a discrete version
of the Camassa–Holm equation, see [6].

The Camassa–Holm equation has a geometric interpretation: It is the geodesic
equation in the group of diffeomorphism with respect to a right-invariant met-
ric. Using the formalism presented in [1], this geometrical property can in turn
be given a physical meaning. For a mechanical system constituted of n distinct
particles, the evolution of the system is naturally given by the position of the
particles at each time, say {yi(t)}

n
i=1. When we consider a continuous medium,

like a fluid, the system is correspondingly described by a function y(t, ξ) which
gives the trajectory of the particle labeled by ξ. This is the Lagrangian descrip-
tion. In a fluid, we may assume that vacuum is not created and particles do not
accumulate so that, for any time t, ξ 7→ y(t, ξ) remains a bijection between the
labeling space and the physical space. Taking one step further, we may as well
assume that y(t, ·) remains a smooth diffeomorphism so that y : t 7→ y(t, ·) can
be seen as a path in the group of diffeomorphism from R

n to R
n (n is the dimen-

sion of the system). Formally, the group of smooth diffeomorphism, which we
denote G, can be given the structure of a Riemannian Lie group, the Riemannian
metric then representing the energy of the system. The physically relevant path
is then determined by the least action principle which says that y : t 7→ y(t, ·)
is a geodesic in G. We consider a homogeneous fluid for which the particles are
undistinguishable. In this case the initial labeling is arbitrary and, at each given
time, it must be possible to relabel the particles in a arbitrarily way without
changing the evolution of the system. The evolution of the system depends only
on the velocity distribution and the actual position of the particles should not
matter as they are undistinguishable. A pure Eulerian description of the system
is possible: Instead of looking at the trajectory of each individual particle, one
consider, for a fixed point x in space, the velocity u(t, x) of the particle that at
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time t goes through x, that is,

u(t, x) = yt(t, y
−1(t, x)).

The system enjoys what is called a relabeling symmetry. In the topological frame-
work of Arnold and Khesin, the relabeling symmetry corresponds to the fact that
the metric of G is right-invariant. Then, by Noether’s theorem, one derives the
existence of a conserved quantity holding point-wise in space and which, by anal-
ogy with the rigid body problem, is called angular momentum. Furthermore,
this framework provides a generic way of deriving the Euler equation for hydro-
dynamical systems. For the Camassa–Holm equation, the right-invariant metric
is given by

∫

R

[

(

yt ◦ y−1
)2

+
(

∂x(yt ◦ y−1)
)2

]

dx =

∫

R

(u2 + u2
x) dx

and the preservation of the angular momentum writes
(

(u − uxx) ◦ y(t, ξ)
)

yξ(t, ξ)
2 =

(

(u − uxx) ◦ y(0, ξ)
)

yξ(0, ξ)2 (8)

for all time and ξ ∈ R, see [13, 14, 15].

Local well-posedness and blow-up of the solutions

Local existence and well-posedness of solutions to (1) have been studied in [25,
11] with the help of Kato’s semi-group theory and in [23] using a regularization
technique. It is shown that, for u0 ∈ Hs(R) with s > 3

2 , there exists a unique
solution u with

u ∈ C([0, T ), Hs(R)) ∩ C1([0, T ), H
1

2 (R))

where T > 0 only depends on ‖u0‖Hs(R). Solutions have to be understood in the

weak sense or in the sense of distribution. Equation (1) can be rewritten as

ut + uux + Px = 0, (9a)

P − Pxx = u2 +
1

2
u2

x. (9b)

The operator 1− ∂xx is a bijection from S ′ into S ′ where S ′ denotes the class of
tempered distribution (see [19]) and a sufficient condition for (9) to hold in the
sense of distribution is for example that u ∈ L1

loc(R, H1(R)).

These results hold only for a finite time interval and the CH equation, in
contrast with the KdV equation, has smooth solutions that blow up in finite
time. Due to their bi-hamiltonian structure, the KdV and CH equations possess
infinitely many conserved quantities. In the case of the KdV equation these
quantities provide some apriori control on the regularity of the solution and yield
global existence and uniqueness of smooth solutions. However, this argument
does not apply to the CH equation where only one such conserved quantity,
the H1(R) norm, can be used that way. The solution blows up in the following
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manner. Let T be the time where a smooth solution eventually loses its regularity,
i.e., limt→T ‖u(t, ·)‖Hs = ∞ for all s > 1. Then,

lim
t→T

inf
x∈R

ux(t, x) = −∞. (10)

There appears a point where the profile of u steepens gradually and ultimately
the slope becomes vertical. In the context of water waves, this corresponds to
the breaking of a wave. This fact was already noted in the seminal papers of
Camassa and Holm ([7, 8]) and was subsequently proved by Constantin and
Escher ([11, 12]). Wave breaking is an important physical phenomenon which is
not captured by the other standard shallow water equations, as for example the
KdV equation, and therefore makes the CH equation particularly interesting in
that context.

The peakon and multipeakon as defined in (4) and (5) belong to Hs(R) (for t

fixed) only when s < 3
2 and therefore are not included in the existence theorems

mentioned above. The H1(R) norm is preserved by the equation, it plays a special
role in the geometrical interpretation of the equation and H1(R) can be seen as
the natural space for the equation. These facts motivate the investigation of an
H1(R) theory for the CH equation.

Global existence of solutions

The first major step in this direction was accomplished by Constantin and
Escher in [17]. They prove that, for u0 ∈ H1(R) and u0 − u0,xx ∈ M+(R), the
space of positive Radon measure, equation (9) admit a unique global solution
u in C1(R, L2(R)) ∩ C(R, H1(R)). They proceed as follows. They consider a
smooth approximation of the initial data, which for simplicity we also denote u0,
satisfying the sign condition u0 − u0,xx ≥ 0 and the corresponding solution u

given by the local existence theory. Formally, it follows directly from (8) that

(u − uxx)(t, x) ≥ 0 (11)

for t ∈ [0, T ) and x ∈ R; a rigorous proof of (11) is given in [11]. The fact that
the sign of u−uxx is preserved leads to an apriori estimate for the total variation
of ux as the following simple (formal) computation shows. We have

TV(ux) = ‖uxx‖M(R) ≤ 2 ‖u‖L1(R) , (12)

because ‖uxx‖M(R) =
∫

R
|uxx| dx ≤

∫

R
|u − uxx| dx +

∫

R
|u| dx = 2

∫

R
|u| dx.

Since the operator (1−∂xx)−1 preserves positivity, we have u ≥ 0 and
∫

R
|u| dx =

∫

R
u dx =

∫

R
u0 dx (we see directly from (9a) that

∫

R
u dx is a conserved quantity).

Therefore, TV(ux) ≤ 2 ‖u0‖L1(R). This apriori bound implies that ux remains

bounded and the blow-up situation given by (10) cannot occur. There is no
wave breaking and the solution exists globally in time. Moreover, it gives enough
control on the approximated solutions to prove by compactness the existence of
solutions in C(R, H1(R)). In the two first papers, we present numerical schemes
for the same class of initial data based on a finite difference scheme (Paper I)
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Figure 3. Peakon-antipeakon collision. First scenario: The dis-
sipative solution.

and on multipeakons (Paper II). Both schemes preserve the positivity of u−uxx.
This is the key property that enables us to derive an apriori bound of the same
type of (12) for our approximated solutions, and the convergence of the schemes
is proved by a compactness argument.

In the case of arbitrary initial data in H1(R), solutions are no longer unique.
To illustrate this fact we look at the following multipeakon configuration where
a peakon traveling from the left to the right collides with another peakon going
in the opposite direction (since this peakon has its peak pointing downwards,
it is called antipeakon), see Figure 3. In the antisymmetric case, that is p1 =
−p2 and q1 = −q2, the solution at collision time is identically zero. Then to
prolong the solutions, two scenarios at least are possible. The first one consists
of letting u remain identically zero after collusion. It can be checked directly
that this is indeed a weak solution of (9). The second scenario is provided by
Beals, Sattinger and Szmigielski in [2, 3] where they derive analytical solutions for
the multipeakons by using scattering and inverse scattering techniques. For the
solution they obtain in the antisymmetric peakon-antipeakon case, the peakons
re-emerge after the collision in such a way that the transformation t 7→ −t,
x 7→ −x, which let equation (1) invariant, also lets the solution invariant (here
we assume that t = 0 at collision), see Figure 4. The solution is time reversible.
Let E(t) = ‖u(t, ·)‖H1(R) denote the energy of the system. In the time reversible

case illustrated in Figure 4, for any t different from collision time (t 6= 0), E(t)
remains equal to the same strictly positive constant, say E(t) = 1, while at
collision time, we have E(0) = 0. In the other case illustrated in Figure 3 we
have E(t) = 1 for t < 0 and E(t) = 0 for t ≥ 0. One can prolong the solution
after collision in infinitely many ways but the two scenarios we mentioned are
really the only reasonable ones and the question is how they can be characterized
and what is the selection principle that can be used to capture each of them.

By using viscous approximations of the equation, Xin and Zhang in [26] obtain
the existence of a solution u ∈ C([0,∞) × R

1) ∩ L∞((0,∞), H1(R)) to the CH
equation for any initial data in u0 ∈ H1(R). In particular their solution satisfies

E(t) = ‖u(t, ·)‖H1(R) ≤ E(t′) = ‖u(t′, ·)‖H1(R) (13)
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Figure 4. Peakon-antipeakon collision. Second scenario: The
conservative solution.

for all t < t′ and the following one-sided super-norm estimate on ux holds

ux(t, x) ≤
1

t
+ C, t > 0, x ∈ R. (14)

Because of (13), we call these solutions dissipative solutions: the energy can
only decay. In [9] it is proven that dissipative solutions are unique. In the
symmetric peakon-antipeakon case, it is clear that the dissipative solution is the
one corresponding to Figure 3.

In [4], Bressan and Constantin introduce a new set of variable,

w = u(t, y), v = 2 arctanux, q = (1 + u2
x)yξ (15)

where y(t, ξ) denotes the characteristics, i.e., yt(t, ξ) = u(t, y(t, ξ)). They rewrite
equation (1) uniquely in terms of these new variables and the system of equa-
tions they obtain, turns out to be a well-posed system of ordinary differential
equation in a Banach space. Well-posed ordinary differential equation are time
reversible and indeed this change of variable selects the time reversible solution in
the antisymmetric peakon-antipeakon problem, which is given in Figure 4. The
approach adopted in [5] by Bressan and Fonte is substantially different. They
start by considering a system of multipeakons and describe the dynamic of the
system, in particular how the multipeakons evolve throughout the collisions. At
this stage, they select the conservative solution. Then, they introduce a distance
functional inspired by optimal transport theory which satisfies

d

dt
J(u(t), v(t)) ≤ κJ(u(t), v(t)) (16)

for any conservative multipeakons solutions u and v. Identity (16) is precisely
the one needed to use Gronwall’s Lemma and obtain stability results. General
solutions to the CH equation are finally constructed from the multipeakons by a
density argument.

Our approach in Paper IV is similar to the one of Bressan and Constantin.
We reformulate the equation by using a new set of variables. The variables
(y, U, H) we use have a natural interpretation from the Lagrangian point of view.
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Figure 5. The energy density in the peakon-antipeakon case

As before, y denotes the characteristics and is given by

yt(t, ξ) = u(t, y(t, ξ)) (17)

while

U(t, ξ) = u(t, y(t, ξ)) and H(t, ξ) =

∫ y(t,ξ)

−∞

(u2(t, x) + u2
x(t, x)) dx (18)

correspond to the Lagrangian velocity and the cumulative energy distribution,
respectively. Equation (9) can be rewritten as a system of ordinary differential
equation in a Banach space involving uniquely (y, U, H). The system is well-posed
and we obtain the global existence of solution.

The original equation (1) which corresponds to the Euler formulation of the
problem contains only one unknown function, the velocity field u. The Lagrangian
description as we introduced it in the first section contains two unknown func-
tions: the position and the velocity of the particles, y and U . In order to ex-
plain why the extra variable H describing the energy distribution is needed, we
look again at the peakon-antipeakon problem. At collision time, say t = 0, u

is identically zero. Since zero is a global solution of (1), it is necessary, in or-
der to select the conservative solution after collision, to take into account what
happened before collision, to keep track in some way of the history of the sys-
tem. The H1(R) norm of u is a preserved quantity and

∫

R

(

u2(t, x) + u2
x(t, x)

)

dx

remains equal to a constant, say 1, up to collision. In Figure 5, we plot the func-
tion u2(t, x) + u2

x(t, x) at different times. As it can also be seen from Figure 4,

limt→0 ‖u(t, ·)‖L∞(R) = 0 and limt→0

{

supx∈R\[q1,q2] |ux(t, x)|
}

= 0 so that all

the mass of u2 + u2
x concentrates at the origin. We have

lim
t→0

(u2(t, x) + u2
x(t, x)) dx = δ(x)

where δ denotes the Dirac function. It is clear now that if we want to prolong the
solution after collision while conserving the energy, we have to take into account
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the fact that the energy at collision time is concentrated at one point. We define
the set D consisting of pairs (u, µ) such that u ∈ H1(R), µ is a Radon measure
whose absolute continuous part satisfies

µac = (u2 + u2
x) dx. (19)

The measure µ represents the energy density. It is strongly related to (u2+u2
x) dx

by (19) but at the same time it also allows the energy to concentrate on singular
sets. In the case of peakon-antipeakon, we have u(0) = 0 and µ(0) = δ and it is
clear that (u(0), µ(0)) ∈ D. The question is now whether, knowing both u and
µ, we are able to construct a solution in a unique way. For smooth solutions, a
simple calculation shows that the energy density u2 + u2

x satisfies the following
transport equation

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x. (20)

Rewritten in terms of the Lagrangian variables, equation (20) takes the following
simpler form

Ht = U3 − 2P ◦ y U. (21)

From (9a), we obtain that Ut = ut(t, y) + ytux(t, y) = ut(t, y) + u(t, y)ux(t, y)
and therefore

Ut = −Px ◦ y. (22)

Equations (17), (21) and (22) can be rewritten only in terms of (y, U, H) and
they constitute a well-posed system of ordinary differential equation in a Banach
space which admits global solutions in time. Going back to the Eulerian variable
(u, µ), we prove that u is a weak solution of (9). Thus we have established the
global existence of conservative solutions to the CH equation.

In the second part of the paper we address the question of stability and deter-
mine the topology on D which makes the conservative solutions stable. The set of
Lagrangian coordinates, that we denote G, can be given the topology induced by
the Banach space in which they are embedded and stability with respect to ini-
tial data follows directly from the general theory of ordinary differential equation.
Furthermore, we obtain the existence a continuous semigroup S : R+ × G → G
of solutions in Lagrangian coordinates. If we assume for a moment that the La-
grangian and Eulerian coordinates are in bijection, that is, that there exists an
invertible mapping f from G to D, then we can define the semigroup of conser-
vative solutions of (9) T : R+ ×D → D by

Tt = f ◦ St ◦ f−1.

The topology on D can simply be defined by transporting the metric on G into
D by the mapping f , i.e.,

dD((u, µ), (ū, µ̄)) = dG(f(u, µ), f(ū, µ̄)).

Since the semigroup St is continuous, this metric per definition makes also Tt

continuous. As noted in [5], distances defined in terms of convex norms perform
well in connection with linear problems, but occasionally fail when nonlinear
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features become dominant. This is the case here, the set D is not a vector space
and the distance on D is not derived from a norm of some vector space containing
D. At the same time, the metric dD is perfectly well-suited to the conservative
solutions. With three variables in Lagrangian coordinates (y, U , H) versus two
in Eulerian coordinates (u, µ), it is clear that the set G and D can not be in
bijection. However, using the relabeling symmetry, it is possible to identify the
Lagrangian variables that correspond to a same Eulerian configuration. Then, a
bijection between the two coordinates systems can be established and we obtain
the existence of a continuous semigroup in D.

The Lagrangian variables are particularly well-suited to the study of the mul-
tipeakon solutions. From (5) and (6) we infer that

q̇i(t) = u(t, qi(t)).

Hence, the positions of the peaks are given by the characteristics. By defini-
tion, we have that, for a multipeakon u, u − uxx = 0 everywhere between the
peaks. Furthermore the conservation of angular momentum (8), which is given
in Lagrangian coordinates, tells us that this quantity remains zero. In Paper

V, we prove that the conservative solutions preserve the multipeakon structure,
i.e., multipeakons are conservative solutions in the sense defined in Paper IV.
Moreover, we derive a system of ordinary differential equation, globally defined,
for the conservative multipeakon solutions.

The Lagrangian approach is sufficiently robust to handle a larger class of equa-
tion. In Paper VI, we prove the existence of a global continuous semigroup of
conservative solutions for

ut − uxxt + f(u)x − f(u)xxx + (g(u) +
1

2
f ′′(u)(ux)2)x = 0 (23)

with f ∈ W
3,∞
loc (R), f strictly convex or concave, g ∈ W

1,∞
loc (R). For f(u) = u2

2

and g(u) = κu+u2, (23) gives the Camassa–Holm equation while, for f(u) = γu2

2

and g(u) = 3−γ
2 u2, it gives the hyperelastic rod equation (2).

In Paper III we look at the smooth-solutions of (1) in contrast with the
other papers where the focus was set on solutions with low spatial regularity. We
prove the spectral convergence of the Fourier-Galerkin and a de-aliased Fourier-
collocation for the Camassa–Holm equation.
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CONVERGENCE OF A FINITE DIFFERENCE SCHEME FOR

THE CAMASSA–HOLM EQUATION

HELGE HOLDEN AND XAVIER RAYNAUD

Abstract. We prove that a certain finite difference scheme converges to
the weak solution of the Cauchy problem on a finite interval with periodic
boundary conditions for the Camassa–Holm equation ut − uxxt + 3uux −
2uxuxx − uuxxx = 0 with initial data u|t=0 = u0 ∈ H1([0, 1]). Here it is
assumed that u0 − u′′

0
≥ 0 and in this case, the solution is unique, globally

defined, and energy preserving.

1. Introduction

The Camassa–Holm equation (CH) [3]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0 (1.1)

has received considerable attention the last decade. With κ positive it models,
see [4, 16, 12], propagation of unidirectional gravitational waves in a shallow
water approximation, with u representing the fluid velocity. The Camassa–Holm
equation possesses many intriguing properties: It is, for instance, completely
integrable and experiences wave breaking in finite time for a large class of initial
data. Most attention has been given to the case with κ = 0 on the full line, that
is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1.2)

which has so-called peakon solutions, i.e., solutions of the form u(x, t) = ce−|x−ct|

for real constants c. Local and global well-posedness results as well as results
concerning breakdown are proved in [9, 14, 17, 20].

In this paper we study the Camassa–Holm equation (1.1) on a finite inter-
val with periodic boundary conditions. It is known that certain initial data
give global solutions, while other classes of initial data experience wave break-
ing in the sense that ux becomes unbounded while the solution itself remains
bounded. It suffices to treat the case κ = 0, since solutions with nonzero κ
are obtained from solutions with zero κ by the transformation v(x, t) = u(x +
κt, t) − κ. More precisely, the fundamental existence theorem, due to Con-
stantin and Escher [10], reads as follows: If u0 ∈ H3([0, 1]) and m0 := u0 −
u′′0 ∈ H1([0, 1]) is non-negative, then equation (1.2) has a unique global solution

1991 Mathematics Subject Classification. Primary: 65M06, 65M12; Secondary: 35B10,
35Q53.

Key words and phrases. Camassa–Holm equation, convergence of finite difference schemes.

1
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u ∈ C([0, T ), H3([0, 1])) ∩ C1([0, T ), H2([0, 1])) for any T positive. However, if
m0 ∈ H1([0, 1]), u0 not identically zero but

∫
m0 dx = 0, then the maximal time

interval of existence is finite. Furthermore, if u0 ∈ H1([0, 1]) and m0 = u0 − u′′0
is a positive Radon measure on [0, 1], then (1.2) has a unique global weak solu-
tion. Additional results in the periodic case can be found in [7, 10, 8, 11, 18].
Numerical results can be found in [4] where Camassa, Holm, and Hyman study
(1.2) using a pseudospectral method. Numerical schemes based on multipeakons
are examined in [2, 6, 5, 15].

In this paper, we prove convergence of a particular finite difference scheme for
the equation, thereby giving a constructive approach to the actual determination
of the solution). We work in the case where one has global solutions, that is,
when m0 ≥ 0. The scheme is semi-discrete: Time is not discretized, and we have
to solve a system of ordinary differential equations. We reformulate (1.1) to give
meaning in C([0, T ];H1[0, 1]) to solutions such as peakons, and we prove that
our scheme converges in C([0, T ];H1[0, 1]).

More precisely, we prove the following: Assume that vn is a sequence of
continuous, periodic and piecewise linear functions on intervals [(i − 1)/n, i/n],
i = 1, . . . , n, that converges to the initial data v in H1([0, 1]) as n → ∞. Let
un = un(x, t) be the solution of the following system of equations

mn
t = −D−(mnun) −mnDun

mn = un −D−D+u
n (1.3)

with initial condition un|t=0 = vn. Here D± denotes forward and backward dif-
ference operators relative to the lattice with spacing 1/n, and D = (D+ +D−)/2.
Extrapolate un from its lattice values at points i/n to obtain a continuous, peri-
odic, and piecewise linear function also denoted un. Assume that vn−D−D+v

n ≥
0. Then un converges in C([0, T ];H1([0, 1])) as n → ∞ to the solution u of the
Camassa–Holm equation with initial condition u|t=0 = v. The result includes the
case when the initial data v ∈ H1 is such that v − vxx is a positive Radon mea-
sure, see Corollary 2.5. For the actual computations we discretize (1.3) using the
forward Euler method. We prove convergence of that method, see Theorem 3.1.

The numerical scheme (1.3) is tested on various initial data. In addition,
we study experimentally the convergence of other numerical schemes for the
Camassa–Holm equation. The numerical results are surprisingly sensitive in the
explicit form of the scheme, and, among the various schemes we have imple-
mented, only the scheme (1.3) converges to the unique solution.

2. Convergence of the numerical scheme

We consider periodic boundary conditions and solve the equation on the in-
terval [0, 1]. We are looking for solutions that belong to H1([0, 1]) which is the
natural space for the equation. Introduce the partition of [0, 1] in points separated
by a distance h = 1/n denoted xi = hi for i = 0, . . . , n−1. For any (u0, . . . , un−1)
in R

n, we can define a continuous, periodic, piecewise linear function u by

u(xi) = ui, (2.1)
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in other words, the periodic polygon that passes through the points (xi, ui) for
i = 0, . . . , n − 1. It defines a bijection between R

n and the set of continuous,
periodic, piecewise linear function with possible break points at xi, and we will
use this bijection throughout this paper.

Given u = (u0, . . . , un−1), the quantity D±u given by

(D±u)i =
±1

h
(ui±1 − ui)

gives the right and left derivatives, respectively, of u at xi. In these expressions,
u−1 and un are derived from the periodicity conditions: u−1 = un−1 and un = u0.
The average Du between the left and right derivative is given by

(Du)i =
1

2

(
(D+u)i + (D−u)i

)
=

1

2h
(ui+1 − ui−1).

The Camassa–Holm equation preserves the H1-norm. In order to see that, we
rewrite (1.2) in its Hamiltonian form, see [3]

mt = −(mu)x −mux (2.2)

with

m = u− uxx. (2.3)

Assuming that u is smooth enough so that the integration by parts can be carried
out, we get

d

dt
‖u‖2

H1 = 2

∫ 1

0

(ut − uxxt)u dx = 2

∫ 1

0

umt dx

= −2

∫ 1

0

u(mu)x dx− 2

∫ 1

0

umux dx

= 2

∫ 1

0

uxmudx− 2

∫ 1

0

umux dx = 0,

and the H1 norm of u is preserved.
From (2.3) and (2.2), we derive a finite difference approximation scheme for

the Camassa–Holm equation, and prove that it converges to the right solution.
This is our main result.

Theorem 2.1. Let vn be a sequence of continuous, periodic and piecewise linear
functions on [0, 1] that converges to v in H1([0, 1]) as n → ∞ and such that
vn − D−D+v

n ≥ 0. Then, for any given T > 0, the sequence un = un(x, t) of
continuous, periodic and piecewise linear functions determined by the system of
ordinary differential equations

mn
t = −D−(mnun) −mnDun

mn = un −D−D+u
n (2.4)

with initial condition un|t=0 = vn, converges in C([0, T ];H1([0, 1])) as n→ ∞ to
the solution u of the Camassa–Holm equation (1.2) with initial condition u|t=0 =
v.
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If we interpret the functions as vectors in (2.4), cf. (2.1), the multiplications
are term-by-term multiplications of vectors. We also have to rewrite equation
(1.2) in order to make it well-defined in the sense of distributions for functions
that at least belong to C([0, T ];H1([0, 1])), more precisely,

ut − uxxt = −3

2
(u2)x − 1

2
(u2

x)x +
1

2
(u2)xxx. (2.5)

A function u in L∞([0, T ];H1) is said to be solution of the periodic Camassa–
Holm equation if it is periodic and satisfies (2.5) in the sense of distributions. In
[11], a different definition of weak solutions for the Camassa–Holm equation is
presented. After proving our main theorem at the end of this section, we also
prove that these two definitions are equivalent.

In order to solve equation (2.4), we need to compute un from mn. It is simpler
first to consider sequences that are defined in R

Z, the set of all sequences, and
then discuss the periodic case. Let L denote the linear operator from R

Z to R
Z

given, for all u ∈ R
Z, by

Lu = u−D−D+u.

We want to find an expression for L−1. Introduce the Kronecker delta by δi = 1
if i = 0 and zero otherwise. It is enough to find a solution g of

Lg = δ

which decays sufficently fast at infinity because L−1m is then given, for any
bounded m ∈ R

Z, by the discrete convolution product of g and m:

L−1mi =
∑

j∈Z

gi−jmj .

The function g satisfies for i nonzero

gi − n2(gi+1 − 2gi + gi−1) = 0. (2.6)

The general solution of (2.6) for all i ∈ Z is given by

gi = Aeκ1i +Beκ2i

where A, B are constants, κ1 = lnx1, κ2 = lnx2, and x1 and x2 are the solutions
of

−n2x2 + (1 + 2n2)x− n2 = 0.

Here x1 and x2 are real and positive, and x1x2 = 1 implies that κ2 = −κ1. We
set κ = κ1 = −κ2. After some calculations, we get

κ = ln

(

1 + 2n2 +
√

1 + 4n2

2n2

)

. (2.7)

We take g of the form

gi = c e−κ|i|
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so that g satisfies (2.6) for all i 6= 0 and decays at infinity. The constant c is
determined by the condition that (Lg)0 = 1 which yields

c =
1

1 + 2n2(1 − e−κ)
.

We periodize g in the following manner:

gp
i ≡

∑

k∈Z

gi+kn = c
e−κi + eκ(i−n)

1 − e−κn

for i ∈ {0, . . . , n − 1}. The inverse of L on the set of periodic sequences is then
given by

ui = L−1mi =

n−1∑

j=0

gp
i−jmi =

c

1 − e−κn

n−1∑

j=0

(e−κ(i−j) + eκ(i−j−n))mj . (2.8)

Hence,

L
(

n−1∑

j=0

gp
i−jmj

)

i
= L

(∑

l∈Z

gi−lml

)

i
= mi.

For sufficiently smooth initial data (u0 ∈ H3 and m0 ∈ H1) which satisfies
m0 ≥ 0, Constantin and Escher [9] proved that there exists a unique global
solution of the Camassa–Holm equation belonging to C(R+;H3) ∩ C1(R+;H2).
The proof of this result relies heavily on the fact that if m is non-negative at
t = 0, then m remains non-negative for all t > 0. An important feature of our
scheme is that it preserves this property. (For simplicity we have here dropped
the superscript n appearing on u and m.)

Lemma 2.2. Assume that mi(0) ≥ 0 for all i = 0, . . . , n − 1. For any solution
u(t) of the system (2.4), we have that mi(t) ≥ 0 for all t ≥ 0 and for all i =
0, . . . , n− 1.

Proof. Let us assume that there exist t > 0 and i ∈ {0, . . . , n− 1} such that

mi(t) < 0. (2.9)

We consider the time interval F in which m remains positive:

F = {t ≥ 0 | mi(t̃) ≥ 0, for all t̃ ≤ t and i ∈ {0, . . . , n− 1}}.
Because of assumption (2.9), F is bounded and we define

T = supF.

By definition of T , for any integer j > 0, there exists a t̃j and an ij such that T <
t̃j < T + 1

j
and mij

(t̃j) < 0. The function mij
(t) is a continuously differentiable

function of t. Hence, mij
(T ) ≥ 0 and there exists a tj such that

mij
(tj) = 0,

with T ≤ tj < T + 1
j
.
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Since ij can only take a finite number of values (ij ∈ {0, . . . , n − 1}), there
exists a p ∈ {0, . . . , n− 1} and a subsequence jk such that ijk

= p. The function
mp(t) belongs to C1 and, since tjk

→ T , we have

mp(T ) = 0. (2.10)

We denote by G the set of indices for which (2.10) holds:

G = {k ∈ {0, . . . , n− 1} | mk(T ) = 0}.
G is non-empty because it contains p. If G = {0, . . . , n− 1}, then mk(T ) = 0 for
all k and m must be the zero solution because we know from Picard’s theorem
that the solution of (2.4) is unique.

If G 6= {0, . . . , n− 1}, then there exists an l ∈ {0, . . . , n− 1} such that

ml−1(T ) > 0, ml(T ) = 0,
dml

dt
(T ) ≤ 0. (2.11)

The last condition, dml

dt
(T ) ≤ 0, comes from the definition of T that would be

contradicted if we had dml

dt
(T ) > 0. Note that we also use the periodicity of m

which in particular means that if l = 0, then ml−1(T ) = m−1(T ) = mn−1(T ).
In (2.4), for i = l and t = T , the terms involving ml(T ) cancel and

dml

dt
(T ) =

ml−1(T )ul−1(T )

h
.

The fact that all the mi(T ) are positive with one of them, ml−1(T ), strictly
positive, implies that ui is strictly positive for all indices i, see (2.8). Since, in
addition, ml−1(T ) > 0, we get

dml

dt
(T ) > 0

which contradicts the last inequality in (2.11) and therefore our primary assump-
tion (2.9) does not hold. The lemma is proved. �

We want to establish a uniform bound on the H1 norm of the sequence un.
Recall that un is a continuous piecewise linear function (with respect to the space
variable), and its L2 norm can be computed exactly. We find

‖un‖2
L2 =

1

n

n−1∑

i=0

1

3
((un

i+1)
2 + un

i u
n
i+1 + (un

i )2). (2.12)

The derivative un
x of un is piecewise constant and therefore we have

‖un
x‖2

L2 =
1

n

n−1∑

i=0

(D+u
n)2i . (2.13)

We define a renormalized norm ‖ · ‖l2 and the corresponding scalar product on
R

n by

‖un‖l2 =

√
√
√
√ 1

n

n−1∑

i=0

(un
i )2, 〈un, vn〉l2 =

1

n

n−1∑

i=0

un
i v

n
i .
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The following inequalities hold

1

2
‖un‖l2 ≤ ‖un‖L2 ≤ ‖un‖l2 (2.14)

which make the two norms ‖ · ‖l2 and ‖ · ‖L2 uniformly equivalent independently of
n. In (2.14), un either denotes an element of R

n or the corresponding continuous
piecewise linear function as defined previously. By using the Cauchy–Schwarz
inequality and the periodicity of un, it is not hard to prove that

‖un‖L2 ≤ ‖un‖l2 .

For the other equality, it suffices to see that (2.12) can be rewritten as

‖un‖2
L2 =

1

3n

n−1∑

i=0

[

(un
i+1 +

1

2
un

i )2 +
3

4
(un

i )2
]

which implies
1

2
‖un‖l2 ≤ ‖un‖L2 .

We are now in position to establish a uniform bound on the H1-norm of un. Let
En(t) denote

En(t) =
(

‖un(t)‖2
l2 + ‖D+u

n(t)‖2
l2

) 1
2

(2.15)

which provides an approximation of the H1-norm of un(t). We have, from (2.14)
and (2.13),

1

2
‖un(t)‖H1 ≤ En(t) ≤ ‖un(t)‖H1 . (2.16)

The derivative of En(t)2 reads

dEn(t)2

dt
=

2

n

n−1∑

i=0

[
un

i u
n
i,t +D+u

n
i D+u

n
i,t

]

=
2

n

n−1∑

i=0

(un
i −D−D+u

n
i )tu

n
i (summation by parts)

= − 2

n

n−1∑

i=0

[D−(mnun)iu
n
i +mn

i Du
n
i u

n
i ] by (2.4)

=
2

n

n−1∑

i=0

[mn
i u

n
i (D+u

n
i −Dun

i )] .

Since

D+u
n
i −Dun

i =
1

2

[
D+u

n
i −D+u

n
i−1

]
=

1

2n
D−D+u

n
i ,

we get

dEn(t)2

dt
=

1

n

n−1∑

i=0

[

mn
i u

n
i

1

n
D−D+u

n
i

]

=
1

n2

n−1∑

i=0

[mn
i u

n
i (−mn

i + un
i )] , (2.17)
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and, because un
i is positive (see (2.8)),

dE2
n(t)

dt
≤ 1

n2

n−1∑

i=0

mn
i (un

i )2. (2.18)

A summation by parts gives us that

1

n

n−1∑

i=0

mn
i u

n
i = En(t)2.

Since L∞ is continuously embedded in H1, there exists a constant O(1), inde-
pendent of n, such that

max
i
un

i ≤ O(1) ‖un‖H1 ≤ O(1)En(t).

Hence, (2.18) implies

E′
n(t) ≤ O(1)

n
En(t)2

and, after integration,
1

En(t)
≥ 1

En(0)
− O(1)

n
t.

Since un(0) = vn tends to v in H1, ‖un(0)‖H1 and therefore En(0) are bounded.
It implies that En(0)−1 is bounded from below by a strictly positive constant
and, for any given T > 0, there exists N ≥ 0 and constant C ′ > 0 such that for
all n ≥ N and all t ∈ [0, T ], we have En(0)−1 −O(1)t/n ≥ 1/C ′. Hence,

‖un‖H1 ≤ 2En(t) ≤ 2C ′ (2.19)

and, by (2.16), the H1-norm of un(t) is uniformly bounded in [0, T ]. This re-
sult also guarantees the existence of solutions to (2.4) in [0, T ] (at least, for
n big enough) because, on [0, T ], we have that maxi |un

i (t)| = ‖un( · , t)‖L∞ ≤
O(1) ‖un(t)‖H1 remains bounded.

To prove that we can extract a converging subsequence of un, we need some
estimates on the derivative of un.

Lemma 2.3. We have the following properties:
(i) un

x is uniformly bounded in L∞([0, 1]).
(ii) un

x has a uniformly bounded total variation.
(iii) un

t is uniformly bounded in L2([0, 1]).

Proof. (i) From (2.8), we get

D+u
n
i =

c

1 − e−κn

n−1∑

j=0

[

mn
j e

−κ(i−j)

(
e−κ − 1

h

)

+mn
j e

κ(i−j−n)

(
eκ − 1

h

)]

where κ is given by (2.7).
One easily gets the following expansion for κ as h tends to 0

κ = h+ o(h2),
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which implies that for all i ∈ {0, . . . , n− 1},

|D+u
n
i | ≤ (1 + O (h))

c

1 − e−κn

n−1∑

j=0

( ∣
∣mn

j

∣
∣ e−κ(i−j) +

∣
∣mn

j

∣
∣ eκ(i−j−n)

)

≤ (1 + O (h))
c

1 − e−κn

n−1∑

j=0

(
mn

j e
−κ(i−j) +mn

j e
κ(i−j−n)

)

≤ (1 + O (h))un
i , (2.20)

where we have used the positivity of mn and relation (2.8). Hence, since ‖un‖L∞

is uniformly bounded, we get a uniform bound on ‖un
x‖L∞ .

(ii) For each t the total variation of un
x( · , t) is given by

TV(un
x) = sup

φ∈C1,‖φ‖
L∞≤1

∫ 1

0

un
x(x)φx(x) dx.

On the interval (xi, xi+1), the function un
x is constant and equal to D+u

n
i . There-

fore,

∫ 1

0

un
x(x)φx(x) dx =

n−1∑

i=0

D+u
n
i

∫ xi+1

xi

φx(x) dx =

n−1∑

i=0

D+u
n
i (φ(xi+1) − φ(xi))

=

n−1∑

i=0

1

n
D+u

n
i D+φ(xi) = −

n−1∑

i=0

1

n
(D−D+u

n
i )φ(xi)

and

TV(un
x) ≤ 1

n

n−1∑

i=0

|D−D+u
n
i | .

Since mn
i and un

i are positive for all i,

|D−D+u
n
i | = |mn

i − un
i | ≤ mn

i + un
i ≤ 2un

i −D−D+u
n
i .

When summing over i on the right-hand side of the last inequality, the term
D−D+u

n
i disappears and we get

TV(un
x) ≤ 2 max

i
un

i ≤ O(1) ‖un‖H1 ≤ O(1)

for all t.
(iii) In order to make the ideas clearer, we first sketch the proof directly on

equation (2.2). Assuming that m is positive and u is in H1, we see how, from
(2.2), ut can be defined as an element of L2([0, 1]). This will be useful when we
afterwards derive a uniform bound for un

t in L2([0, 1]).
For all smooth v, we have

∫ 1

0

ut v dx =

∫ 1

0

(L−1mt) v dx
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where L denotes the operator Lu = u − uxx, which is a self-adjoint homeomor-
phism from H2 to L2. If we let w = L−1v, the continuity of L−1 implies

‖w‖H2 ≤ O(1) ‖v‖L2 (2.21)

for some constant O(1) independent of v.
We find
∫ 1

0

ut v dx =

∫ 1

0

(
L−1mt

)
v dx =

∫ 1

0

mt L−1v dx (L−1 is self-adjoint)

= −
∫ 1

0

((mu)x +mux)w dx =

∫ 1

0

(muwx −muxw) dx.

The integrals here must be understood as distributions. Even so, some terms
(like mux) are not well-defined as distributions. However, we get the same results
rigorously by considering the equation written as a distribution (2.5). We have:

∣
∣
∣
∣

∫ 1

0

ut v dx

∣
∣
∣
∣
≤
∫ 1

0

(|muwx| + |muxw|) dx

≤ (‖u‖L∞ ‖wx‖L∞ + ‖ux‖L∞ ‖w‖L∞)

∫ 1

0

|m| dx.

Recall that ‖u‖L∞ and ‖ux‖L∞ are uniformly bounded. Furthermore, m posi-

tive implies
∫ 1

0 |m| =
∫ 1

0 m =
∫ 1

0 u ≤ ‖u‖L∞ and therefore m is also uniformly

bounded. From (2.21) and the fact that H1 is continuously embedded in L∞, we
get

‖wx‖L∞ ≤ O(1) ‖wx‖H1 ≤ O(1) ‖w‖H2 ≤ O(1) ‖v‖L2 ,

and similarly
‖w‖L∞ ≤ O(1) ‖v‖L2 .

Finally,
∣
∣
∣
∣

∫ 1

0

ut v dx

∣
∣
∣
∣
≤ O(1) ‖v‖L2

which implies, by Riesz’s representation theorem, that ut is in L2 and

‖ut‖L2 ≤ O(1).

We now turn to the analogous derivations in the discrete case. Consider the
sequence un. The aim is to derive a uniform bound for un

t in L2. We take a
continuous piecewise linear function vn,

〈un
t , v

n〉l2 =
〈
L−1mn

t , v
n
〉

l2
=
〈
mn

t , L
−1vn

〉

l2
(2.22)

because L and therefore L−1 are self-adjoint.
Let wn denote

wn = L−1vn.

We have

〈vn, wn〉l2 = 〈Lwn, wn〉l2 =
1

n

n−1∑

i=0

(wn
i −D−D+w

n
i )wn

i =
1

n

n−1∑

i=0

[
(wn

i )2 + (D+w
n
i )2
]
.
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Then, after using (2.16) and Cauchy–Schwarz, we get

‖wn‖2
H1 ≤ 4 ‖vn‖l2 ‖wn‖l2 .

By (2.14), (2.16) we find

‖wn‖2
H1 ≤ O(1) ‖vn‖l2 ‖wn‖H1

and

‖wn‖H1 ≤ O(1) ‖vn‖l2 (2.23)

where O(1) is a constant independent of n. Since H1 is continuously embedded
in L∞, we get

max
i

|wn
i | ≤ O(1) ‖vn‖l2 . (2.24)

Let us define yn as follows

yn
i = (D+w

n)i−1.

We want to find a bound on yn. From (2.14) and (2.23), we get

‖yn‖l2 ≤ ‖wn‖H1 ≤ O(1) ‖vn‖l2 . (2.25)

We also have, using the definition of yn and wn,

D+y
n = D−D+w

n = wn − vn

which gives

‖D+y
n‖l2 ≤ O(1) ‖vn‖l2 (2.26)

because, by (2.23),

‖wn‖l2 ≤ O(1) ‖vn‖l2 .

Equations (2.25), (2.26), and (2.16) give us a uniform bound on the H1 norm
of yn:

‖yn‖H1 ≤ O(1) ‖vn‖l2 .

Since H1 is continuously embedded in L∞, we get

max
i

|D+w
n
i | = max

i
|yn

i | = ‖yn‖L∞ ≤ O(1) ‖vn‖l2 . (2.27)

Going back to (2.22), we have

〈un
t , v

n〉l2 = 〈mn
t , w

n〉l2 = 〈−D−(mnun) −mnDun, wn〉l2
= 〈mnun, D+w

n〉l2 − 〈mnDun, wn〉l2 .

Hence,

|〈un
t , v

n〉l2 | ≤
1

n

(

max
i

|un
i |max

i
|D+w

n
i | + max

i
|D+u

n
i |max

i
|wn

i |
) n−1∑

i=0

|mn
i | .
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The functions un
i and D+u

n
i are uniformly bounded with respect to n. and

1

n

n−1∑

i=0

|mn
i | =

1

n

n−1∑

i=0

mn
i (mn is positive)

=
1

n

n−1∑

i=0

un
i (cancellation of

n−1∑

i=0

D−D+u
n
i )

≤ O(1). (un
i is bounded)

Finally, using the bounds we have derived on wn, see (2.24), and D+w
n, see

(2.27), we get

|〈un
t , v

n〉l2 | ≤ O(1) ‖vn‖l2 .

Taking vn = un
t yields

‖un
t ‖l2 ≤ O(1)

which, since the l2 and L2 norm are uniformly equivalent, gives us a uniform
bound on ‖un

t ‖L2 . �

To prove the existence of a converging subsequence of un in C([0, T ], H1) we
recall the following compactness theorem given by Simon [21, Corollary 4].

Theorem 2.4 (Simon). Let X,B, Y be three continuously embedded Banach
spaces

X ⊂ B ⊂ Y

with the first inclusion, X ⊂ B, compact. We consider a set F of functions map-

ping [0, T ] into X. If F is bounded in L∞([0, T ], X) and ∂F
∂t

=
{

∂f
∂t

| f ∈ F
}

is

bounded in Lr([0, T ], Y ) where r > 1, then F is relatively compact in C([0, T ], B).

We now turn to the proof of our main theorem.

Proof of Theorem 2.1. (i) First we establish that there exists a subsequence of
un that converges in C([0, T ], H1) to an element u ∈ H1. To apply Theorem 2.4,
we have to determine the Banach spaces with the required properties. In our
case, we take X as the set of functions of H1 which have derivatives of bounded
variation:

X =
{
v ∈ H1 | vx ∈ BV

}
.

X endowed with the norm

‖v‖X = ‖v‖H1 + ‖vx‖BV = ‖v‖H1 + ‖vx‖L∞ + TV(vx)

is a Banach space. Let us prove that the injection X ⊂ H1 is compact. We
consider a sequence vn which is bounded in X . Since ‖vn‖L∞ is bounded (H1 ⊂
L∞ continuously), there exists a point x0 such that vn(x0) is bounded and we
can extract a subsequence (that we still denote vn) such that vn(x0) converges
to some l ∈ R. By Helly’s theorem, we can also extract a subsequence such that

vn,x → w a.e. (2.28)
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for some w ∈ L∞. By Lebesgue’s dominated convergence theorem, it implies that
vn,x → w in L2. We set

v(x) = l +

∫ x

x0

w(s) ds.

We have that vx = w almost everywhere. We also have

vn(x) = vn(x0) +

∫ x

x0

vn,x(s) ds

which together with (2.28) implies that vn converges to v in L∞. Therefore vn

converges to v in H1 and X is compactly embedded in H1.
The estimates we have derived previously give us that un and un

t are uniformly
bounded in L∞([0, T ], X) and L∞([0, T ], L2), respectively. Since X ⊂ H1 ⊂ L2

with the first inclusion compact, Simon’s theorem gives us the existence of a
subsequence of un that converges in C([0, T ], H1) to some u ∈ H1.

(ii) Next we show that the limit we get is a solution of the Camassa–Holm
equation (1.2).

Let us now take ϕ in C∞([0, 1]× [0, T ]) and multiply, for each i, the first equa-
tion in (2.4) by hϕ(xi, t). We denote ϕn the continuous piecewise linear function
given by ϕn(xi, t) = ϕ(xi, t). We sum over i and get, after one summation by
parts,

n−1∑

i=0

h
(
un

i,t − (D−D+u
n
i )t

)
ϕn

i =

n−1∑

i=0

h(un
i )2D+ϕi

︸ ︷︷ ︸

A

−
n−1∑

i=0

hun
i D−D+u

n
i D+ϕ

n
i

︸ ︷︷ ︸

B

−
n−1∑

i=0

hun
i Du

n
i ϕ

n
i

︸ ︷︷ ︸

C

+

n−1∑

i=0

hD−D+u
n
i Du

n
i ϕ

n
i

︸ ︷︷ ︸

D

.

(2.29)

We are now going to prove that each term in this equality converges to the
corresponding terms in (2.5).

Term A: We want to prove that

〈
(un)2D+ϕ

n
〉
→
∫ 1

0

u2ϕx dx, (2.30)

where we have introduced the following notation

〈u〉 = h

n−1∑

i=0

ui
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to denote the average of a quantity u. We have
∣
∣
∣
∣

∫ 1

0

u2ϕx dx−
〈
(un)2D+ϕ

n
〉
∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ 1

0

(u2 − (un)2)ϕx dx

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ 1

0

(un)2(ϕx −D+ϕ
n) dx

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ 1

0

(un)2D+ϕ
n dx−

〈
(un)2D+ϕ

n
〉
∣
∣
∣
∣
.

The first term tends to zero because un → u in L2 for all t ∈ [0, T ]. The second
tends to zero by Lebesgue’s dominated convergence theorem. It remains to prove
that the last term tends to zero.

The integral of a product between two continuous piecewise linear function, v
and w, and a piecewise constant function z can be computed explicitly. We skip
the details of the calculation and give directly the result:

∫ 1

0

zvw dx =
1

3
〈zS+vS+w〉 +

1

6
〈zS+vw〉 +

1

6
〈zvS+w〉 +

1

3
〈zvw〉 . (2.31)

Here S+ and S− denote shift operators

(S±u)i = ui±1.

After using (2.31) with v = w = un and z = D+ϕ
n, we get

∫ 1

0

(un)2D+ϕ
n −

〈
(un)2D+ϕ

n
〉

=
1

3
〈(S+u

n − un)D+ϕ
nun〉

+
1

3

〈
(un)2D+(S−ϕ

n − ϕn)
〉
.

We use the uniform equivalence of the l2 and L2 norm to get the following estimate

〈(S+u
n − un)D+ϕ

nun〉 ≤ ‖S+u
n − un‖l2 ‖D+ϕ

nun‖l2 (Cauchy–Schwarz)

≤ O(1) ‖un( · + h) − un( · )‖L2 . (2.32)

Since un ∈ H1, we have (see, for example, [1]):

‖un( · + h) − un( · )‖L2 ≤ h ‖un
x‖L2 ≤ O(1)h

because ‖un
x‖L∞ is uniformly bounded. Hence |〈(S+u

n − un)D+ϕ
nun〉| tends to

zero. The quantity
〈
(un)2D+(S−ϕ

n − ϕn)
〉

tends to zero because ϕ is C∞ and
un uniformly bounded. We have proved (2.30).

Term B: We want to prove

〈unD−D+u
nD+ϕ

n〉 → 1

2

∫ 1

0

u2ϕxxx dx−
∫ 1

0

u2
xϕx. (2.33)

We rewrite unD−D+u
n in such a way that the discrete double derivative D−D+

does not appear in a product (so that we can later sum by parts). We have

unD−D+u
n =

1

2
(D−D+((un)2) −D+u

nD+u
n −D−u

nD−u
n).
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We can prove in the same way as we did for term A that
〈
D−D+((un)2)D+ϕ

n
〉

=
〈
(un)2D−D+D+ϕ

n
〉

(summation by parts)

→
∫ 1

0

u2ϕxxx dx.

The quantity (un
x)2ϕn

x is a piecewise constant function. Therefore,
∫ 1

0

(un
x)2ϕn

x dx = 〈D+u
nD+u

nD+ϕ
n〉 .

Since un
x → in L2 for all t ∈ [0, T ], and

∫ 1

0

u2
xϕx dx−〈D+u

nD+u
nD+ϕ

n〉 =

∫ 1

0

(u2
x−(un

x)2)ϕx dx+

∫ 1

0

(un
x)2(ϕx−ϕn

x) dx,

we have

〈D+u
nD+u

nD+ϕ
n〉 →

∫ 1

0

u2
xϕx dx.

In the same way, we get

〈D−u
n
i D−u

n
i D+ϕ

n〉 →
∫ 1

0

u2
xϕx

and (2.33) is proved.
Term C: We want to prove

〈unDunϕn〉 →
∫ 1

0

uuxϕdx. (2.34)

We have
∫ 1

0

uuxϕdx− 〈unD+u
nϕn〉 =

∫ 1

0

(u− un)uxϕdx +

∫ 1

0

un(ux − un
x)ϕdx

+

∫ 1

0

unun
x(ϕ− ϕn) dx +

∫ 1

0

unun
xϕ

n dx

− 〈unD+u
nϕn〉 .

The first two terms converge to zero because un → u in H1 for all t ∈ [0, T ]. The
third term converges to zero by Lebesgue’s dominated convergence theorem. We
use formula (2.31) to evaluate the last integral:

∫ 1

0

unun
xϕ

n dx =
1

3
〈D+u

nS+u
nS+ϕ

n〉 +
1

6
〈D+u

nS+u
nϕn〉

+
1

6
〈D+u

nunS+ϕ
n〉 +

1

3
〈D+u

nunϕn〉 .

Using the same type of arguments as those we have just used for term A, one can
show that

∫ 1

0

unun
xϕ

n dx → 〈D+u
nunϕn〉 .
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Thus, in order to prove (2.34), it remains to prove that

〈D+u
nunϕn〉 − 〈Dununϕn〉 → 0. (2.35)

Since D = 1
2 (D+ +D−), we have:

〈D+u
nunϕn〉 − 〈Dununϕn〉 =

1

2
〈(D+u

n −D−u
n)unϕn〉

and

|〈(D+u
n −D−u

n)unϕn〉| ≤ C
n−1∑

i=0

h
∣
∣D+u

n
i −D+u

n
i−1

∣
∣

≤ O(1)

∫ 1

0

|un
x(x) − un

x(x − h)| dx

≤ O(1)h TV(un
x).

Since TV(un
x) is uniformly bounded, (2.35) holds and we have proved (2.34).

Term D: We want to prove that

〈D−D+u
nDunϕn〉 → −1

2

∫ 1

0

u2
xϕx dx. (2.36)

We have

1

2

∫ 1

0

u2
xϕx dx+ 〈D−D+u

nDunϕn〉 (2.37)

=
1

2

∫ 1

0

(u2
x − (un

x)2)ϕx dx+
1

2

∫ 1

0

(un
x)2(ϕx −D−ϕ

n) dx

(2.38)

− 1

2
〈D+(D+u

nD+u
n)ϕn〉 + 〈D−D+u

nDunϕn〉 . (2.39)

The two first terms on the right-hand side tend to zero. After using the following
identity

D+(D+u
nD+u

n) = D+D+u
nD+u

n +D+D+u
nD+S+u

n,

we can rewrite the two last terms in (2.37) as

−1

2
〈D+(D+u

nD+u
n)ϕn〉 + 〈D−D+u

nDunϕn〉

= −1

2
〈D−D+S+u

nD+u
nϕn〉 − 1

2
〈D−D+S+u

nD+S+u
nϕn〉

+
1

2
〈D−D+u

nD+S−u
nϕn〉 +

1

2
〈D−D+u

nD+u
nϕn〉

=
1

2
〈D−D+u

nD−u
n(ϕn − S−ϕ

n)〉 +
1

2
〈D−D+u

nD+u
n(ϕn − S−ϕ

n)〉

which tends to zero because, as we have seen before, due to the positivity of m,
〈|D−D+u

n
i D+u

n
i |〉 is uniformly bounded. We have proved (2.36).
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Up to now we have not really considered the time variable. We integrate (2.29)
with respect to time and integrate by part the left-hand side:
∫ T

0

n−1∑

i=0

h
(
un

i,t −D−D+u
n
i,t

)
ϕ(xi, t) dt = −

∫ T

0

n−1∑

i=0

h (un
i −D−D+u

n
i )ϕt(xi, t) dt

+

[
n−1∑

i=0

h (un
i −D−D+u

n
i )ϕ(xi, t)

]t=T

t=0

and, after summing by parts, the limit of this expression is (we use Lebesgue’s
dominated convergence theorem with respect to x and t)

−
∫ T

0

∫ 1

0

u(ϕt − ϕtxx) dxdt +

[∫ 1

0

u(ϕ− ϕxx) dx

]t=T

t=0

.

It is not hard to see that the right-hand side of (2.29) is uniformly bounded
by a constant and we can integrate over time and use the Lebesgue dominated
convergence theorem to conclude that u is indeed a solution of (2.5) in the sense
of distribution.

The analysis in [11] shows that the weak solution of the Camassa–Holm with
initial conditions satisfying m(x, 0) ≥ 0 is unique. This implies that in our
algorithm not only a subsequence but the whole sequence un converges to the
solution. However, in [11], a solution of the Camassa–Holm equation is defined
as an element u of H1 satisfying

ut + uux +

[∫ ∞

−∞

p(x− y)[u2(y, t) +
1

2
u2

x(y, t)] dy

]

x

= 0 (2.40)

where p is the solution of
Ap ≡ (I − ∂2

x)p = δ.

We want to prove that weak solutions of (2.40) and (2.5) are the same. Periodic
distributions belong to the class of tempered distribution S ′ (see for example [13]).
The operator A defines a homeomorphism on the Schwartz class S (or class of
rapidly decreasing function): The Fourier transform is a homeomorphism on S
and A restricted to S can be written as

A = F−1(1 + ξ2)F (2.41)

where ξ denotes the frequency variable. It is clear from (2.41) that the inverse of
A in S is

A−1 = F−1 1

1 + ξ2
F .

Hence A is a homeomorphism on S.
We can now define the inverse A−1 of A in S ′. Given T in S ′, A−1T is given

by
〈
A−1T, φ

〉
=
〈
T,A−1φ

〉
, φ ∈ S.

It is easy to check that A−1 indeed satisfies

A−1A = AA−1 = Id,
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and that A−1 is continuous on S ′. The operator A is therefore a homeomorphism
on S ′.

Let u be a solution of (2.40). Then we have

ut + ∂x(
u2

2
) + ∂xA−1[u2 +

1

2
u2

x] = 0. (2.42)

The operators ∂x and A−1 commute because ∂x and A commute. We apply A
on both sides of (2.42) and get:

ut − uxxt + A∂x(
1

2
u2) + ∂x[u2 +

1

2
u2

x] = 0, (2.43)

which is exactly (2.5). Since A is a bijection, (2.43) also implies (2.42) and we
have proved that the weak solutions of (2.5) are the same as the weak solutions
given by (2.40). �

In Theorem 2.1, some restrictions on the initial data v are implicitly imposed
by the condition vn −D−D+v

n ≥ 0. We are going to prove that if v ∈ H1([0, 1])
is periodic with v − vxx ∈ M+, where M+ denotes the space of positive Radon
measures, then there exists a sequence of piecewise linear, continuous, periodic
functions vn that converges to v in H1 and satisfies vn −D−D+v

n ≥ 0 for all n.
We can then apply Theorem 2.1 and get the existence result contained in the

following corollary which coincides with results obtained in [11] by a different
method.

Corollary 2.5. If u0 ∈ H1 is such that u0 − u0,xx ∈ M+ then the Camassa–
Holm equation has a global solution in C(R+, H

1). The solution is obtained as a
limit of the numerical scheme defined by (2.4).

To apply Theorem 2.1, we need to prove that, given u ∈ H1([0, 1]) such that
u − uxx ∈ M+, there exists a sequence un of piecewise linear, continuous and
periodic functions such that

un → u in H1,

un −D−D+u
n ≥ 0.

Let {ψn
i } be a partition of unity associated with the covering ∪n−1

i=0 (xi−1, xi+1).
For all i ∈ {0, , . . . n − 1}, the functions ψn

i are non-negative with supp ψn
i ⊂

(xi−1, xi+1), and
∑n−1

i=0 ψ
n
i = 1. Define

vn
i =

1

h
〈u− uxx, ψ

n
i 〉

and

un
i −D−D+u

n
i = vn

i . (2.44)

Recall that the operator un − D−D+u
n is invertible, see (2.8), so that un is

well-defined by (2.44). Since u − uxx belongs to M+ and ψn
i ≥ 0, we have

vn
i = un

i − D−D+u
n
i ≥ 0 and it only remains to prove that un converges to
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u in H1. Since the application L : H1 → H−1 given by Lu = u − uxx is an
homeomorphism, it is equivalent to prove that

un − un
xx → u− uxx in H−1.

The homeomorphism L is also an isometry, so that

‖Lu‖H−1 = ‖u‖H1 .

We can find a bound on ‖un‖H1 . Let En be defined, as before, by

En =

(

h

n−1∑

i=0

[
(un

i )2 + (D+u
n)2i
]

) 1
2

.

The inequality (2.16) still holds. We have

E2
n = h

n−1∑

i=0

(un
i −D−D+u

n
i )un

i

= h

n−1∑

i=0

vn
i u

n
i

≤ ‖un‖L∞

n−1∑

i=0

hvn
i

≤ ‖un‖L∞ 〈u− uxx,

n−1∑

i=0

ψn
i 〉

≤ ‖un‖L∞ ‖u− uxx‖M+ (since

n−1∑

i=0

ψn
i = 1).

Hence, since L∞ is continuously embedded in H1, there exists a constant C
(independent of n) such that

E2
n ≤ C ‖un‖H1 ‖u− uxx‖M+ .

We use inequality (2.16) to get the bound on ‖un‖H1 we were looking for:

‖un‖H1 ≤ 4C ‖u− uxx‖M+ .

To prove that un − un
xx → u − uxx in H−1, since ‖un − un

xx‖H−1 = ‖un‖H1 is
uniformly bounded, we just need to prove that

〈un − un
xx, ϕ〉 → 〈u− uxx, ϕ〉

for all ϕ belonging to a dense subset of H1 (for example C∞).
The function un is continuous and piecewise linear. Its second derivative un

xx

is therefore a sum of Dirac functions:

un
xx =

n−1∑

i=0

hD−D+u
n
i δxi
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and, for any ϕ in C∞, we have

〈un − un
xx, ϕ〉 =

∫ 1

0

un(x)ϕ(x) dx − h
n−1∑

i=0

D−D+u
n
i ϕ(xi)

=

∫ 1

0

un(x)(ϕ(x) − ϕn(x)) dx +

∫ 1

0

un(x)ϕn(x) dx (2.45)

− h

n−1∑

i=0

un
i ϕ

n
i + h

n−1∑

i=0

viϕ
n
i

where ϕn denotes the piecewise linear, continuous function that coincides with ϕ
on xi, i = 0, . . . , n− 1.

The first integral in (2.45) tends to zero by the Lebesgue dominated conver-
gence theorem. We use formula (2.31) to compute the second integral:

∫ 1

0

un(x)ϕn(x) dx =
2

3
〈unϕn〉 +

1

6
〈S+u

nϕn〉 +
1

6

〈
unS+ϕn

〉
.

One can prove that this term tends to 〈unϕn〉 (see the proof of the convergence
of term A in the proof of Theorem 2.1). The last sum equals

n−1∑

i=0

hvn
i ϕ(xi) =

〈

u− uxx,

n−1∑

i=0

ϕn
i ψ

n
i (x)

〉

.

For all x ∈ [0, 1], there exists a k such that x ∈ [xk, xk+1]. Then,
∣
∣
∣
∣
∣
ϕ(x) −

n−1∑

i=0

ϕn
i ψ

n
i (x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n−1∑

i=0

(ϕ(x) − ϕ(xi))ψ
n
i (x)

∣
∣
∣
∣
∣

≤ |ϕ(x) − ϕ(xk)| + |ϕ(x) − ϕ(xk+1)|
≤ 2 sup

|z−y|≤h

|ϕ(y) − ϕ(z)|

and therefore, by the uniform continuity of ϕ,

n−1∑

i=0

ϕ(xi)ψ
n
i (x) → ϕ(x) in L∞.

Thus,
n−1∑

i=0

hvn
i ϕ(xi) =

〈

u− uxx,
n−1∑

i=0

ϕ(xi)ψ
n
i

〉

→ 〈u− uxx, ϕ〉

and, from (2.45), we get

〈un − un
xx, ϕ〉 → 〈u− uxx, ϕ〉 .

As already explained, it implies that

un → u in H1.
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Figure 1. Periodic single peakon. The initial condition is given
by u(x, 0) = 2e−|x| and period a = 40. The computed solutions
are shown at time t = 6 for (from left to right) n = 210, n =
212, n = 214 together with the exact solution (at the far right).
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Figure 2. Plot of ‖u(t) − un(t)‖H1 / ‖u(t)‖H1 in the one
peakon case of Figure 1.

3. Numerical results

The numerical scheme (2.4) is semi-discrete: The time derivative has not been
discretized, and hence we work with a system of ordinary differential equations.
However, for numerical computations we integrate in time by using an explicit
Euler method. Given a positive time T and l ∈ N, we consider the time step

∆t = T/l. We compute mn,l
j , the approximate value of mn at time tj = j∆t, by
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taking

mn,l
j+1 = mn,l

j + ∆t
(

−D−(mn,l
j un,l

j ) −mn,l
j Dun,l

j

)

, (3.1)

where

mn,l
j = un,l

j −D−D+u
n,l
j . (3.2)

Here mn,l
j = (mn,l

0,j , . . . ,m
n,l
n−1,j) and un,l

j = (un,l
0,j , . . . , u

n,l
n−1,j). Given mn,l

j , one

can still recompute un,l
j using (2.8), that is,

un,l
i,j = L−1mn,l

i,j =
c

1 − e−κn

n−1∑

k=0

(e−κ(i−k) + eκ(i−k−n))mn,l
k,j . (3.3)

Lemma 2.2 does not apply in this setting, and the proof of convergence for the
fully discrete scheme proceeds differently. Writing (2.4) as

mn
t = f(mn),

where f : R
n → R

n, we observe (cf. (2.4) and (2.8)) that each component of f(x)
is a polynomial in the components x0, . . . , xn−1 of x. Hence, f is continuously
differentiable. From (2.19) and (2.4), we obtain that, when n is large enough,
there exists a constant C which is independent of n such that

|mn
i (t)| ≤ 5n2 max

i
|un

i (t)| ≤ Cn2

for all t ∈ [0, T ]. Hence, mn(t) is bounded in [0, T ] and therefore the Euler
method converges, see, for example, [19], that is,

lim
l→∞

max
j=1,...,l

∥
∥
∥m

n,l
j −mn(tj)

∥
∥
∥ = 0. (3.4)

All norms are equivalent in finite dimensional vector spaces, and therefore (3.4)
holds for any norm in R

n. We denote by mn,l(t) the piecewise linear function in

C([0, T ],Rn) satisfying mn,l(tj) = mn,l
j . It is given by

mn,l(t) =
1

∆t
(tj+1 − t)mn,l

j +
1

∆t
(t− tj)m

n,l
j+1

for t ∈ [tj , tj+1]. Let us prove that

lim
l→∞

∥
∥mn,l −mn

∥
∥

C([0,T ],Rn)
= 0. (3.5)

We have, for t ∈ [tj , tj+1],

mn,l(t)−mn(t) =
1

∆t
(tj+1 − t)(mn,l

j −mn(tj))+
1

∆t
(t− tj)(m

n,l
j+1 −mn(tj+1))

+
1

∆t
(tj+1 − t)(mn(tj) −mn(t)) +

1

∆t
(t− tj)(m

n(tj+1) −mn(t)). (3.6)

Let ε > 0. Since mn ∈ C([0, T ],Rn), mn is uniformly continuous and there exists
δ > 0 such that ‖mn(t1) −mn(t2)‖ < ε/2 for all t1, t2 ∈ [0, T ] with |t2 − t1| < δ.
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We can choose l large enough so that ∆t = T/l < δ. Then, for t ∈ [tj , tj+1], we
have t− tj < δ and tj+1 − t < δ, and
∥
∥
∥
∥

1

∆t
(tj+1 − t)(mn(tj) −mn(t)) +

1

∆t
(t− tj)(m

n(tj+1) −mn(tj+1))

∥
∥
∥
∥

<
1

∆t
(tj+1 − t)

ε

2
+

1

∆t
(t− tj)

ε

2
(3.7)

<
ε

2
.

By (3.4), we can choose l large enough so that maxj=1,...,l

∥
∥
∥m

n,l
j −mn(tj)

∥
∥
∥ < ε/2.

Hence,
∥
∥
∥
∥

1

∆t
(tj+1 − t)(mn,l

j −mn(tj)) +
1

∆t
(t− tj)(m

n,l
j+1 −mn(tj+1))

∥
∥
∥
∥
<
ε

2
. (3.8)

Comparing (3.6), (3.7) and (3.8), we obtain
∥
∥mn,l(t) −mn(t)

∥
∥ < ε

for l large enough and any t ∈ [0, T ]. Hence, (3.5) is proved. The mapping
L−1 : R

n → R
n, L−1mn = un, is continuous, and therefore we have

lim
l→∞

∥
∥un,l − un

∥
∥

C([0,T ],Rn)
= 0.

Finally, after using the identification of R
n with the set of continuous, periodic,

piecewise linear functions, we get that

lim
l→∞

un,l = un,

and, from Theorem 2.1,
lim

n→∞
lim
l→∞

un,l = u

in C([0, T ], H1). We summarize the result in the following theorem.

Theorem 3.1. Let ∆t = T/l, and define the function un,l
i,j by (3.1)–(3.3). Define

the corresponding interpolating function un,l in C([0, T ], H1) by

un,l(x, t) =
n

∆t

(

(tj+1 − t)
[
(xi+1 − x)un,l

i,j + (x− xi)u
n,l
i+1,j

]

+ (t− tj)
[
(xi+1 − x)un,l

i,j+1 + (x− xi)u
n,l
i+1,j+1

])

for x ∈ [xi, xi+1] and t ∈ [tj , tj+1]. Then

lim
n→∞

lim
l→∞

un,l = u (3.9)

in C([0, T ], H1) where u is the solution of the Camassa–Holm equation (1.2).

To compute the discrete spatial derivative, we need at each step to compute
u from m. The function u is given by a discrete convolution product

ui = h

n−1∑

j=0

gp
i−jmj .
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It is advantageous to apply the Fast Fourier Transform (FFT), see [13]. In the
frequency space, a convolution product becomes a multiplication which is cheap
to evaluate. Going back and forth to the frequency space is not very expensive
due to the efficiency of the FFT. We use a formula of the form (see [13] for more
details):

u = F−1
N (FN [g] · FN [m])

where FN denotes the FFT.
We have tested algorithm (3.1) with single and double peakons. In the single

peakon case, the initial condition is given by

u(x, 0) = c
cosh(d− a

2 )

sinh a
2

, (3.10)

which is the periodized version of u(x, 0) = ce−|x|. The period is denoted by a
and d = min (x, a− x) is the distance from x to the boundary of the interval
[0, a]. The peakons travel at a speed equal to their height, that is

u(x, t) = ce−|x−ct|.

If u satisfies the initial condition u(x, 0) = e−|x|, then m = 2δ at t = 0 and we
take

mi(0) =

{
2
h

if i = 0,
0 otherwise,

(3.11)

as initial discrete condition. The function mi gives a discrete approximation of
2δ. Figure 1 shows the result of the computation for different refinements. Figure
2 indicates that the computed solution converges to the exact solution.

The sharp increase of the error ‖u(t) − un(t)‖H1 at time t = 0 can be predicted
by looking at (2.17) which gives a first-order approximation of the time derivative

of ‖u(t)‖2
H1 :

dEn(t)2

dt
= −

n−1∑

i=0

ui(hmi)
2 + O (h) .

Hence,

d ‖u‖2
H1

dt
≈ dEn(t)2

dt
≈ −4 at t = 0.

At the beginning of the computation, we can therefore expect a sharp decrease
of the H1 norm. To get convergence in H1, it is therefore necessary that the

solution becomes smooth enough so that
d‖u‖2

H1

dt
→ 0. In any case, we cannot

hope for high accuracy and convergence rate in this case. Figure 3 shows the
same plots in the two peakon case.

We have tested our algorithm with smooth initial conditions. In this case, the
H1 norm remains constant in a much more accurate manner. The convergence
is probably much better but we have no analytical solution to compare with.

Other time integration methods (second-order Runge–Kutta method, variable
order Adams–Bashforth–Moulton) have also been tried and the results do not
differ significantly from those given by (3.1). It follows that the CH equation is
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Figure 3. Two peakon case. The initial condition is the pe-
riodized version of 2e−|x−2| + e−|x−5|. The computed solutions
are shown at time t = 12 for (from left to right) n = 210, n =
212, n = 214 together with the exact solution (at the far right).
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Figure 4. Plot of ‖u(t) − un(t)‖H1 / ‖u(t)‖H1 in the two
peakon case of Figure 3.

not very sensitive to the way time is discretized. But the situation is completely
different when we consider different space discretizations. The following schemes

mt = −D−(mu)i −miD+ui, (3.12)

mt = −D(mu)i −miDui, (3.13)

mt = −D+(mu)i −miD−ui (3.14)
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are all at first glance good candidates for solving the CH equation. They preserve
the H1 norm, are finite difference approximations of (2.2) and finally look very
similar to (2.4). But, tested on a single peakon, (3.12) produces a peakon that
grows, (3.13) produces oscillations, and (3.14) behaves in a completely unexpected
manner (at the first time step, m becomes a negative Dirac function and starts
traveling backward!).

Let us have a closer look at the scheme (3.12). We compute
dE2

n

dt
:

1

2

dE2
n

dt
=

n−1∑

i=0

mn
i,tu

n
i =

n−1∑

i=0

(
−D−(mnun)iui −mn

i D+uiui

)
= 0.

Thus, En is exactly preserved. Lemma 2.2 still holds since the same proof applies
to (3.12). It allows us to derive the bounds of Lemma 2.3 and, after applying
Simon’s theorem, we get the existence of a converging subsequence. The problem
is that, in general, this subsequence does not converge to the solution of the
Camassa–Holm equation. In order to see that, we compare how our original
algorithm (3.12) and algorithm (3.13) handle a peakon solution u = ce−|x−ct|.
The only terms that differ are mnDun and mnD+u

n. We have proved earlier
that, for any smooth function ϕ,

n−1∑

i=0

mn
i Du

n
i ϕ(xi) →

1

2

∫ 1

0

(u2 − u2
x)ϕ(x) dx

as n → ∞. In the peakon case, u2 = u2
x and this term tends to zero. Roughly

speaking, we can say that mn converges to a Dirac function, see (3.11), but at
the same time it is multiplied by Dun which is the average of the left and right
derivatives and which tends to zero at the top of the peak. Eventually the whole
product mnDun tends to zero. We follow the same heuristic approach with the
term mnD+u

n in (3.13). This time, mn is multiplied by the right derivative
D+u

n of un which tends, at the top of the peak, to −c. Hence, −mnD+u
n

tends to cδ and not zero as it would if (3.13) converged to the correct solution.
This example shows how sensitive the numerical approximation is, regarding the
explicit form of the finite difference scheme, for the Camassa–Holm equation.

Acknowledgements. HH acknowledges helpful discussions with Nils Hen-
rik Risebro and Kenneth H. Karlsen on discretizations of the Camassa–Holm
equation.
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A CONVERGENT NUMERICAL SCHEME FOR THE

CAMASSA–HOLM EQUATION BASED ON MULTIPEAKONS

HELGE HOLDEN AND XAVIER RAYNAUD

Abstract. The Camassa–Holm equation ut − uxxt + 3uux − 2uxuxx −
uuxxx = 0 enjoys special solutions of the form u(x, t) =

Pn
i=1 pi(t)e

−|x−qi(t)|,
denoted multipeakons, that interact in a way similar to that of solitons. We
show that given initial data u|t=0 = u0 in H1(R) such that u − uxx is a
positive Radon measure, one can construct a sequence of multipeakons that
converges in L∞

loc(R, H1
loc(R)) to the unique global solution of the Camassa–

Holm equation. The approach also provides a convergent, energy preserving
nondissipative numerical method which is illustrated on several examples.

1. Introduction

The Camassa–Holm equation (CH) [4, 5]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0 (1.1)

has received considerable attention the last decade. With κ positive it models, see
[14], propagation of unidirectional gravitational waves in a shallow water approx-
imation, with u representing the fluid velocity. The Camassa–Holm equation
possesses many intriguing properties: It is, for instance, completely integrable
and experiences wave breaking in finite time for a large class of initial data. In
this article we consider the case κ = 0 on the real line, that is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1.2)

and henceforth we refer to (1.2) as the Camassa–Holm equation.
Local and global well-posedness results as well as results concerning break-

down are proved in [8, 12, 16, 17]. It is known that certain initial data give
global solutions, while other classes of initial data experience wave breaking in
the sense that ux becomes unbounded while the solution itself remains bounded.
More precisely, the fundamental existence theorem, due to Constantin, Escher,
and Molinet [8, 9], reads as follows: If u0 ∈ H1(R) and m0 := u0 − u′′0 is a
positive Radon measure, then equation (1.2) has a unique global weak solution
u ∈ C([0, T ), H1(R)), for any T positive, with initial data u0. However, any

1991 Mathematics Subject Classification. Primary: 65M06, 65M12; Secondary: 35B10,
35Q53.

Key words and phrases. Camassa–Holm equation, peakons, numerical methods.
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1



2 H. HOLDEN AND X. RAYNAUD

solution with odd initial data u0 in H3(R) such that u0,x(0) < 0 blows up in a
finite time ([8]).

The Camassa–Holm equation (1.2) exhibits so-called multipeakon solutions
(see [5]), i.e., solutions of the form

u(x, t) =

n
∑

i=1

pi(t)e
−|x−qi(t)|

where pi and qi are solutions of the following system of ordinary differential
equations

q̇i =

n
∑

j=1

pje
−|qi−qj |,

ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |.

(1.3)

The main idea in this article is to use multipeakons to approximate solutions of
the Camassa–Holm equation. This gives rise to a numerical scheme for which we
prove convergence.

In [5], Camassa, Holm, and Hyman use a pseudospectral method to solve (1.2)
numerically but they do not study convergence of the method. We have shown
in [13] how a particular finite difference scheme converges to the unique global
solution in the case with periodic initial data.

The idea of using multipeakons has also been used by Camassa, Huang, and Lee
in [3, 7, 6]. In [3], Camassa reformulates equation (1.2) in term of characteristics.
The characteristics q(ξ, t) are defined as solutions of the equation

qt(ξ, t) = u(q(ξ, t), t)

with initial condition q(ξ, 0) = ξ. After introducing the auxiliary variable p,
which is directly related to the momentum m = u− uxx of the system,

p(ξ, t) = m(q(ξ, t), t)
∂q

∂ξ
(ξ, t),

Camassa shows that (1.2) reduces to the following system of partial differential
equations

qt(ξ, t) =
1

2

∫ ∞

−∞

exp (− |q(ξ, t) − q(η, t)|) p(η, t) dη,

pt(ξ, t) =
1

2
p(ξ, t)

∫ ∞

−∞

sgn(ξ − η) exp (− |q(ξ, t) − q(η, t)|) p(η, t) dη.
(1.4)

In [7, 6], Camassa, Huang, and Lee discretize system (1.4) by considering a finite
number n of “particles” whose positions and momenta are given by

qi(t) = q(ξi, t) pi = p(ξi, t)

for some equidistributed ξi. By approximating the integrals in (1.4) by their Rie-
mann sums, equation (1.4) reduces to the system of ordinary differential equations
given by (1.3). For initial data such that pi > 0, (1.3) has global solutions in



A NUMERICAL SCHEME BASED ON MULTIPEAKONS 3

time. In this case they show that the scheme is convergent in the following sense.
Let p and q be solutions of (1.4) and {pi(t)}n

i=1 and {qi(t)}n
i=1 be solutions of

(1.3) with initial conditions pi(0) = p(ξi, 0) and qi(0) = q(ξi, 0). Then, when the
number of particles n increases, {pi(t)}n

i=1 and {qi(t)}n
i=1 converge uniformly for

any time interval [0, T ] to {p(ξi, t)}n
i=1 and {q(ξi, t)}n

i=1 in some discrete l1 norm.
The approach we adopt here is different, and we obtain a more general conver-

gence result, see Theorem 3.1. However, the numerical method, which is based
on solving (1.3), is the same. We consider distributional solutions of (1.2), and
show first that multipeakons are indeed distributional solutions. Given general
initial data for (1.2), we construct a sequence of multipeakons and prove that it
converges to the exact solution of the equation when the number of peakons is
increased appropriately. More precisely, we prove that, given u0 ∈ H1(R) such
that u0 − u0,xx is a positive Radon measure, there exists a sequence of multi-
peakons that converges in L∞

loc(R, H
1
loc(R)) to the solution of the Camassa–Holm

equation with initial data u0. The proofs extend to the periodic case as well.
Our proofs are constructive in the sense that we provide an explicit method,
either by a collocation method or by a minimization technique (see Proposition
3.2 and Remark 3.4) to construct the multipeakon approximation. This gives a
constructive proof of existence of solutions to the Camassa–Holm equation and
shows that the multipeakons span the set of solutions at least in the case where
the initial data satisfy the condition mentioned above. Furthermore, this leads to
a numerical method which, in contrast to the finite difference scheme presented
in [13], does not contain any dissipation and preserves the H1(R) norm exactly.
In the last section we illustrate the method on two numerical examples.

2. Global existence of multipeakon solutions

The Camassa–Holm equation may be rewritten as

mt + umx + 2mux = 0 (2.1)

where the momentum m equals u− uxx.

Definition 2.1. We say that u in L1
loc([0, T ), H1

loc) is a weak solution of the
Camassa–Holm equation if it satisfies

ut − uxxt +
3

2
(u2)x +

1

2
(u2

x)x − 1

2
(u2)xxx = 0 (2.2)

in the sense of distributions.

When u is smooth, (2.1) and (2.2) are equivalent. Multipeakons are solutions
of the form

u(x, t) =

n
∑

i=1

pi(t)e
−|x−qi(t)|, (2.3)

which are continuous and piecewise C∞ functions in H1(R) for any given t. But
since they have discontinuous first derivative, they cannot satisfy the Camassa–
Holm equation in the classical sense. For functions with these properties the left-
hand side of (2.2) is a distribution which consists of regular terms (piecewise C∞
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functions) and singular terms (Dirac functions or their derivatives at the points
qi) that we can compute explicitly. We only give the details of the computation
of the last term, (u2)xxx, in (2.2), the other terms being obtained similarly. For
each i ∈ {0, . . . , n+ 1} we introduce the function

ui(x, t) =

i
∑

j=1

pj(t)e
−(x−qj(t)) +

n
∑

j=i+1

pj(t)e
(x−qj(t))

which is C∞ in the space variable. Then (2.3) can be rewritten as

u(x, t) =
n

∑

i=0

ui(x, t)χi(x)

where χi denotes the characteristic function of the interval [qi, qi+1) with the
convention that q0 = −∞ and qn+1 = ∞. Since the χi have disjoint supports,
we have

u2 =

n
∑

i=0

u2
iχi (2.4)

and, after differentiating (2.4),

(u2)x =

n
∑

i=0

(u2
i )xχi +

n
∑

i=1

u2
i (qi)δqi

−
n−1
∑

i=0

u2
i (qi+1)δqi+1

=
n

∑

i=0

(u2
i )xχi +

n
∑

i=1

(

u2
i (qi) − u2

i−1(qi)
)

δqi

=

n
∑

i=0

(u2
i )xχi +

n
∑

i=1

[

u2
]

qi
δqi

(2.5)

where the bracket [v]qi
denotes the jump of v across qi, that is, [v]qi

= v(q+i ) −
v(q−i ). Since u is continuous,

[

u2
]

qi
= 0, and the last term in (2.5) vanishes. We

differentiate (2.5) and get

(u2)xx =
n

∑

i=0

(u2
i )xxχi +

n
∑

i=1

(u2
i )x(qi)δqi

−
n−1
∑

i=0

(u2
i )x(qi+1)δqi+1

=

n
∑

i=0

(u2
i )xxχi +

n
∑

i=1

[

(u2)x

]

qi
δqi
. (2.6)

On every interval (qi, qi+1), since u = ui, u is differentiable and every derivative
of u admits a limit when x tends to qi from one side. It follows that the jump
[

(u2)x

]

qi
is a well-defined quantity and justifies its use in (2.6). Finally, after

differentiating (2.6) once more, we get

(u2)xxx =

n
∑

i=0

(u2
i )xxxχi +

n
∑

i=1

[

(u2)xx

]

qi
δqi

+

n
∑

i=1

[

(u2)x

]

qi
δ′qi
.
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In a similar way we can compute the other terms in (2.2) and we end up with

ut − uxxt +
3

2
(u2)x +

1

2
(u2

x)x − 1

2
(u2)xxx (2.7)

=

n
∑

i=0

(

ui,t − ui,xxt +
3

2
(u2

i )x +
1

2
(u2

i,x)x − 1

2
(u2

i )xxx

)

χi

+

n
∑

i=1

(

− [uxt]qi
+

1

2

[

u2
x

]

qi
− 1

2

[

(u2)xx

]

qi

)

δqi

+

n
∑

i=1

(

− [ut]qi
− 1

2

[

(u2)x

]

qi

)

δ′qi
.

We already noted the equivalence between (2.2) and (2.1) when u is smooth.
The same equivalence obviously holds for ui and, after introducing mi to denote
ui − ui,xx, we have

ui,t − ui,xxt +
3

2
(u2

i )x +
1

2
(u2

i,x)x − 1

2
(u2

i )xxx = mi,t + uimi,x + 2miui,x = 0

because, from the definition of ui as a linear combination of e−x and ex, it is
clear that mi = 0. Thus, the first sum on the right-hand side of (2.7) vanishes.
The values of the jumps in (2.7) can be computed from (2.3). We have

[ux]qi
= −2pi (2.8)

and, after some calculation,
[

(u2)xx

]

qi
= 0, [ut]qi

= 2piq̇i, [uxt]qi
= −2ṗi,

[

u2
x

]

qi
= [ux]qi

(ux(q+i ) + ux(q−i )) = 4pi

n
∑

j=1

pj sgn(qi − qj)e
−|qi−qj |,

[

(u2)x

]

qi
= 2u(qi) [ux]qi

= −4pi

n
∑

j=1

pje
−|qi−qj |.

(2.9)

Assume that the qi are all distinct. Then (2.2) holds if and only if the coefficients
multiplying δqi

and δ′qi
in (2.7) all vanish. Hence, after using (2.9), (2.7) and

(2.2), we end up with the system


























q̇i =

n
∑

j=1

pje
−|qi−qj |,

ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |

(2.10)

with the convention that sgn(x) = 0 if x = 0. We summarize the discussion in
the following lemma.

Lemma 2.2. The function (2.3) is a weak solution of the Camassa–Holm equa-
tion if and only if pi, qi satisfy the system (2.10) of ordinary differential equations.
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The system (2.10) is Hamiltonian with Hamiltonian H given by

H =
1

2

n
∑

i,j=1

pipje
−|qi−qj |.

It means that (2.10) can be rewritten as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.11)

From (2.3), the momentum is given by

m = 2

n
∑

i=1

piδqi
.

Hence,

‖u‖2
H1(R) = 〈u− uxx, u〉H−1 =

n
∑

i=1

2piu(qi) = 2
n

∑

i,j=1

pipje
−|qi−qj |.

and the Hamiltonian H and the H1 norm of u satisfy

H =
1

2

n
∑

i,j=1

pipje
−|qi−qj | =

1

4
‖u‖2

H1(R) . (2.12)

Because of the sign function, the right-hand side in (2.10) is not Lipchitz, and
we cannot apply Picard’s theorem to get existence and uniqueness of solutions of
(2.10). However, the Lipschitz condition would hold if we knew in advance that
qi − qj does not change sign. We are going to prove that the peaks do not cross
and that the sign of qi − qj is indeed preserved.

Let us first assume, without loss of generality, that the positions of the peaks
at time t = 0, {qi}n

i=1, are distinct and ordered as follows

qi(0) < qj(0) for all i < j. (2.13)

We consider the system of ordinary differential equations


























q̇i =

n
∑

j=1

pje
−|qi−qj |,

ṗi =

n
∑

j=1

pipj sgn(i− j)e−|qi−qj |.

(2.14)

This system is equivalent to (2.10) as long as the positions of the peaks qi satisfy
the ordering defined in (2.13). In contrast to (2.10), the system (2.14) fulfills
the Lipchitz condition of Picard’s theorem, and therefore there exists a unique
maximal solution. If, in addition, the pi are strictly positive initially then the
solution exists for all time.
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Lemma 2.3. Let {pi, qi} be the maximal solutions of (2.14). If we have

qi(t) < qj(t) for all i < j, (2.15)

pi(t) > 0 for all i, (2.16)

when t = 0, then {pi(t), qi(t)} are globally defined on [0,∞) and inequalities
(2.15) and (2.16) remain true for all t.

Proof. We call T the maximal time of existence. Let us assume that (2.15) and
(2.16) do not hold for all t ∈ [0, T ). Then, since pi and qi are continuous, there
exist t0 in [0, T ) such that (2.15) and (2.16) hold in [0, t0) and either

qi(t0) = qj(t0) for some i and j with i < j

or

pi(t0) = 0 for some i.

In the first case when qi(t0) = qj(t0) = α, we have that qi and qj are both
solutions of the ordinary differential equation

q̇ =

n
∑

k=1

pke
−|q−qk |

with initial condition q(t0) = α. The function q plays the role of the unknown
while pk and qk are given (they are the solutions of (2.14)). By Picard’s theorem,
we know that, given some initial condition, the solution is unique and therefore
qi = qj at least in a small interval centered around t0. This contradicts the
assumption that qi(t) < qj(t) in [0, t0). In the second case when pi(t0) = 0, the
function pi is solution of

ṗ = p

n
∑

j=1

pj sgn(i− j)e−|qi−qj |

with initial condition p(t0) = 0. Zero is an obvious solution and since the solution
is unique, we must have pi = 0 on [0, T ). This contradicts our assumption, and
hence (2.15) and (2.16) hold for all time t in [0, T ). We denote by M the following
quantity

M = 2

n
∑

i=1

pi. (2.17)

As we will see in the next section, M corresponds to the total mass of the system
and it is a conserved quantity of the governing equation (1.1). We can directly
check this statement here since we have

dM

dt
= 2

n
∑

i,j=1

pipj sgn(i− j)e−|qi−qj | = 0. (2.18)

We have proved that the pi are positive for all t in [0, T ). Therefore we have

0 < pi(t) <
M

2
,
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for all i and all t ∈ [0, T ), which implies the pi are bounded. It follows that ṗi

and q̇i in (2.14) are bounded and the maximum solution is therefore defined for
all time, i.e., T = ∞. �

Lemma 2.3 tells us that the ordering of the positions of the peaks is preserved,
and in this case, as we already mentioned, (2.10) and (2.14) are equivalent. Thus
we have established the following result.

Lemma 2.4. If qi < qj for i < j and pi > 0 at t = 0, then the system (2.10) has
a unique, globally defined solution on [0,∞).

Remark 2.5. A similar result is proved by other means in [6].

3. Convergence of multipeakon sequences

Multipeakon solutions can be used to prove the existence of solutions for the
Camassa–Holm equation.

Theorem 3.1. Given u0 in H1(R) such that m0 = u0 − u0,xx is in M+, the
space of positive finite Radon measures, there exists a sequence of multipeakons
that converges in L∞

loc(R, H
1
loc(R)) to the unique solution of the Camassa–Holm

equation with initial condition u0.

The proof of Theorem 3.1 is presented at the end of the section. The se-
quence of multipeakons mentioned in the theorem is denoted by un(x, t) =
∑n

i=1 p
n
i (t)e−|x−qn

i (t)|. We require that the initial conditions un
0 (x) = un(x, 0)

satisfy the following properties

un
0 → u0 in H1(R), (3.1a)

un
0 is uniformly bounded in L1(R), (3.1b)

pn
i ≥ 0 for all i and n. (3.1c)

In the next proposition we give a constructive proof that such sequences exist.
The sequence un

0 is defined by collocation: It coincides with the given initial
function u0 at a given number of points.

Proposition 3.2. Given u0 ∈ H1(R) such that u0 − u0,xx ∈ M+. For each

n, let qi,n = i/n. Then, there exists a unique (pi,n)
n2

i=−n2 such that un
0 (x) =

∑n2

i=−n2 pi,ne
−|x−qi,n| coincides with u0 at the qi,n, that is,

un
0 (qi,n) = u0(qi,n) (3.2)

for all i ∈ {−n2, . . . , n2}. The initial multipeakon sequence un
0 satisfies condition

(3.1).

Proof. In order to simplify the notation, we write u and un instead of u0 and un
0 .

First we show that (3.2) defines a unique pi,n. The equation (3.2) is equivalent
to the following system

Ap = u (3.3)
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where p and u are vectors of R
2n2+1 given by (pi,n)n2

i=−n2 and (u(qi,n))n2

i=−n2 ,
respectively, and A equals the matrix

A = (Ai,j)
n2

i,j=−n2 , Ai,j = e−|qi,n−qj,n|.

The method is well-posed if A is invertible. In fact, A is symmetric and positive
definite. Symmetry is obvious. To prove the positivity of A, we associate to any

vector r in R
2n2+1 the function v in H1(R) given by v(x) =

∑n2

i=−n2 ri,ne
−|x−qi,n|.

The H1 norm of v has already been calculated, see (2.12), and we have

rtAr =
1

2
‖v‖2

H1(R) ≥ 0. (3.4)

Hence, A is positive. Let us prove that A is invertible. Assume Ar = 0. From

(3.4), we have v = 0. Thus, since v − vxx = 2
∑n2

i=−n2 ri,nδqi,n
, we have

2

n2

∑

i=−n2

ri,nδqi,n
= 0. (3.5)

Since the qi,n are all distinct, it follows that r = 0. Hence, A is invertible, and
thus there exists a unique p solving (3.3) for any given u.

Let us prove (3.1a). Let f and vn denote u − uxx and u − un, respectively.
We want to prove that vn tends to zero in H1(R). Note that vn − vn

xx = f −
2

∑n2

i=−n2 pi,nδqi,n
is a Radon measure and we have

‖vn‖2
H1(R) = 〈vn − vn

xx, v
n〉 = 〈f, vn〉 − 2pi,nv

n(qi,n)

where the bracket 〈µ, g〉 denotes the integration of g with respect to the Radon
measure µ. By assumption (3.2), we have v(qi,n) = 0, and it follows that

‖vn‖2
H1(R) = 〈f, vn〉 . (3.6)

We consider a partition of unity of R that we denote {φi,n}∞i=−∞ and which

corresponds to the decomposition R = ∪∞
i=−∞

(

i−1
n , i+1

n

)

. The functions φi,n

satisfy 0 ≤ φi,n ≤ 1,
∑∞

i=−∞ φi,n = 1 and suppφi,n ⊂ ( i−1
n , i+1

n ). Then we have

〈f, vn〉 = 〈f, ψnv
n〉 +

n2

∑

i=−n2

〈f, φiv
n〉 (3.7)

where ψn = 1 − ∑n2

i=−n2 φi. We estimate separately the two terms on the right-
hand side of (3.7). Since the support of φi is contained in (qi−1,n, qi+1,n), we
have

φi(x)v
n(x) ≤ sup

x∈(qi−1,n,qi+1,n)

|vn(x)| φi(x). (3.8)

Since

vn(x) = vn(qi,n) +

∫ x

qi,n

vn
x (t) dt
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and vn(qi,n) = 0, we have

sup
x∈(qi−1,n,qi+1,n)

|vn(x)| ≤
∫ qi+1,n

qi−1,n

|vn
x (t)| dt

≤
√

2

n
‖vn‖H1(R) (Cauchy–Schwarz). (3.9)

The positivity of f directly implies that f is monotone: If u ≤ v, then 〈f, u〉 ≤
〈f, v〉. Hence, from (3.8), (3.9) and the monotonicity of f , we get

n2

∑

i=−n2

〈f, φiv
n〉 ≤

n2

∑

i=−n2

√

2

n
‖vn‖H1(R) 〈f, φi〉 ≤

√

2

n
‖vn‖H1(R) ‖f‖M . (3.10)

Since H1(R) is continuously embedded in L∞(R), we have, for some constant C
independent of n,

ψn(x)vn(x) ≤ ‖vn‖L∞ ψn(x) ≤ C ‖vn‖H1(R) ψn(x)

and, after using the monotonicity of f ,

〈f, ψnv
n〉 ≤ C ‖vn‖H1(R) 〈f, ψn〉 (3.11)

Gathering (3.6), (3.7), (3.10) and (3.11), we get

‖vn‖2
H1(R) ≤

√

2

n
‖vn‖H1(R) ‖f‖M + C ‖vn‖H1(R) 〈f, ψn〉

which, after dividing both terms by ‖vn‖H1(R),

‖vn‖H1(R) ≤
√

2

n
‖f‖M + C 〈f, ψn〉 . (3.12)

It remains to prove that 〈f, ψn〉 tends to zero. The space of Radon measures and
C∗

0 , the dual of C0, where C0 denotes the closure of Cc in L∞(R), are isometrically
isomorphic (see, e.g., [11, Chapter 7]), and we have

‖f‖M = sup
ϕ∈Cc

‖ϕ‖L∞≤1

〈f, ϕ〉 .

Therefore, for all ε > 0, there exists ϕ̃ ∈ Cc with ‖ϕ̃‖L∞ ≤ 1 and such that

‖f‖M ≤ 〈f, ϕ̃〉 + ε.

For n big enough, the supports of ψn and ϕ̃ do not intersect and therefore we
have ‖ψn + ϕ̃‖L∞ ≤ 1. Hence,

〈f, ψn + ϕ̃〉 ≤ ‖f‖M ‖ψn + ϕ̃‖L∞

≤ ‖f‖M
≤ 〈f, ϕ̃〉 + ε

which implies

〈f, ψn〉 ≤ ε,
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and this proves that 〈f, ψn〉 → 0. Then, by (3.12), we get that vn tends to zero,
and (3.1a) is proved.

Let us prove (3.1b), namely that pi,n ≥ 0 for all −n2 ≤ i ≤ n2. Let f
again denote u − uxx. By assumption, f is positive. In a first step, we assume
that f belongs to C∞(R) ∩ L1(R). We will remove this smoothness assumption
afterwards. A notable property of un is that it is always bounded by u, i.e.,

un(x) ≤ u(x) for all x. (3.13)

We see this as follows. Let v = u− un. Since we have un − un
xx = 0 everywhere

except at the qi,n and (3.2) holds, v satisfies, for every i ∈ {−n2, . . . , n2 − 1}, the
Dirichlet problem

v − vxx = f on (qi,n, qi+1,n),

v(qi,n) = v(qi+1,n) = 0.
(3.14)

The Green’s function G(x, ξ) is defined as the solution of (3.14) with f = δ(x−ξ).
We can compute G (see for example [1]), and we get

G(x, ξ) =
1

sinh(qi+1,n − qi,n)

{

sinh(x− qi,n) sinh(qi+1,n − ξ) for qi,n ≤ x ≤ ξ,

sinh(ξ − qi,n) sinh(qi+1,n − x) for ξ < x ≤ qi+1,n.

(3.15)
The general solution of (3.14) is then given by

v(x) =

∫ qi+1,n

qi,n

G(x, ξ)f(ξ) dξ. (3.16)

Since G(x, ξ) is positive, it follows from (3.16) that v ≥ 0 on every interval
[qi,n, qi+1,n]. On the intervals (−∞, q−n2,n] and [qn2,n,∞), v solves a Dirichlet
problem similar to (3.14) and the Green’s functions are obtained from (3.15) by
letting q−n2−1,n tend to −∞ and qn2+1,n to +∞, respectively. The Green’s func-
tions are still positive and that implies, as before, that v ≥ 0 on (−∞, q−n2,n] ∪
[qn2,n,∞). This concludes the proof of (3.13). From (2.8), we have

pi,n = −1

2
[un

x ]qi,n

= −1

2
lim
h↓0

[

un(qi,n + h) − un(qi,n)

h
− un(qi,n) − un(qi,n − h)

h

]

and, after using (3.13) and (3.2),

pi,n ≥ −1

2
lim
h↓0

[

u(qi,n + h) − u(qi,n)

h
− u(qi,n) − u(qi,n − h)

h

]

≥ −1

2
[ux]qi,n

.

Since f is smooth, u is smooth and therefore [ux]qi,n
= 0. Hence,

pi,n ≥ 0. (3.17)

We want to prove (3.17) without any extra smoothness assumption on f . Let ρ
be a positive, C∞ and even function which satisfies

∫ ∞

−∞
ρ(x) dx = 1. We denote
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by ρε the mollifier ρε = 1
ερ(x/ε). Let fε = ρε ∗ f and uε = ρε ∗ u. The mollified

function uε tends to u in H1(R) and therefore in L∞(R). Hence, for all i in
{−n2, . . . , n2}, uε(qi,n) tends to u(qi,n) or, using the previous notations,

uε → u. (3.18)

We can construct multipeakons un
ε from the regularized function uε whose coef-

ficients pε,i,n are determined by

Apε = uε, pε = (pε,i,n)
n2

i=−n2 . (3.19)

Since f is positive, fε is positive and, since it also belongs to C∞(R)∩L1(R), we
have already established, see (3.17), that pε ≥ 0. Thus, by (3.18),

p = Au = lim
ε→0

Auε = lim
ε→0

pε, (3.20)

implying that p is positive and (3.1b) is proved.
It remains to prove (3.1c), namely that un is bounded in L1(R). The regular-

ized fε of f belongs to C∞(R)∩L1(R) and is positive. Hence, (3.13) holds when
un and u are replaced by un

ε and uε:

un
ε ≤ uε. (3.21)

From (3.20), we have pε → p when ε → 0. Then by looking at the definitions of
un

ε and un it is clear that un
ε tends to un in L∞(R). We have already seen that uε

tends to uε in L∞(R). Hence, after letting ε tend to zero in (3.21), we get that
(3.13) holds for all f without any further smoothness assumption. Moreover, u
is positive since the positivity of p implies the positivity of un. From (3.13), we
get

∫ ∞

−∞

un(x) dx ≤
∫ ∞

−∞

u(x) dx. (3.22)

If u belongs to L1(R), then a bound on ‖un‖L1 follows directly from (3.22).
Again, we consider the regularized fε of f . Since uε satisfies uε − uε,xx = fε, it
is known that uε can be expressed as

uε(x) =

∫ ∞

−∞

e−|x−y|fε(y) dy.

Hence,
∫ ∞

−∞

uε dx =

∫ ∞

−∞

∫ ∞

−∞

e−|x−y|fε(y) dydx

= 2 ‖fε‖L1 (after applying Fubini’s theorem)

= 2 ‖fε‖M .

Since uε is positive and converges to u in L∞(R), by Fatou’s lemma, we get
∫ ∞

−∞

u(x) dx ≤ lim inf

∫ ∞

−∞

uε(x) dx

≤ 2 lim inf ‖fε‖M . (3.23)
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Let us estimate ‖fε‖M. For any continuous function φ with compact support,
we have

〈fε, φ〉 = 〈ρε ∗ f, φ〉 = 〈f, φ ∗ ρε〉 . (3.24)

Note that the last equality in (3.24) holds because of the parity of ρε (see, e.g.,
[11, Chapter 9] for general formulas on convolutions of distributions). Hence,

|〈fε, φ〉| ≤ ‖f‖M ‖φ ∗ ρε‖L∞

≤ ‖f‖M ‖φ‖L∞ ‖ρε‖L1 (Young’s inequality)

and, since ‖ρε‖L1 = 1, it implies

‖fε‖M ≤ ‖f‖M .

Inequality (3.23) now gives
∫ ∞

−∞

u(x) dx ≤ 2 ‖f‖M

which implies that u belongs to L1(R). From (3.22), we get that ‖un‖L1 is
bounded. This concludes the proof of the proposition. �

Remark 3.3. The initial multipeakon sequence un
0 (x) =

∑n2

i=−n2 pi,ne
−|x−qi,n|

defined by setting

pi,n =
1

2
〈m0, φi,n〉 for i ∈ {−n2, . . . , n2}

where {φi}∞i=−∞ denotes the partition of unity used in (3.7), also satisfies the con-
dition (3.1). The proof of that result is much shorter than the proof of Proposition
3.2. However, the method is not directly applicable numerically (we would have
to construct the φi and compute 2n2 + 1 integrals), which makes Proposition 3.2
more interesting.

Remark 3.4. Another natural way to construct a sequence of multipeakons from
the set of points qi,n, is to choose p so that it minimizes ‖u0 − un

0‖H1(R), that is,

p = Argmin
pi,n

∥

∥

∥

∥

∥

∥

u0 −
n2

∑

i=−n2

pi,ne
−|x−qi,n|

∥

∥

∥

∥

∥

∥

H1(R)

. (3.25)

It turns out that the sequence that this minimization method produces and the
one of Proposition 3.2 are the same. One can prove this as follows. We have

‖u0 − un
0‖2

H1(R) = ‖u0‖2
H1(R) − 2 〈un

0 , u0〉H1 + ‖un
0‖2

H1(R)

= ‖u0‖2
H1(R) − 2

〈

un
0 − un

0,xx, u0

〉

M
+ 2ptAp

and, since

〈

un
0 − un

0,xx, u0

〉

M
=

〈

n2

∑

i=−n2

2pi,nδqi,n
, u0

〉

= 2
n2

∑

i=−n2

pi,nu0(qi,n) = 2ptu,
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we get

‖u0 − un
0‖2

H1(R) = ‖u0‖2
H1(R) − 4ptu+ 2ptAp. (3.26)

By differentiating (3.26) with respect to p, we can easily check that the minimizer
p of (3.26) satisfies (3.3). In addition, since A is positive definite, p is the unique
strict minimizer of (3.26).

The estimates contained in the following lemma will be needed to derive the
existence of a converging subsequence.

Lemma 3.5. Let un(x, t) be a sequence of multipeakons with initial data satis-
fying (3.1). The following properties hold:
(i) un is uniformly bounded in H1(R),
(ii) un

x is uniformly bounded in L∞(R),
(iii) un

x has a uniformly bounded total variation,
(iv) un

t is uniformly bounded in L2(R).

Proof. From Lemma 2.4 we know, using assumption (3.1c), that the system (2.10)
has a unique global solution, and hence we have a globally defined sequence of
multipeakons denoted un(x, t). In order to simplify the notation, we drop the
superscript n on pn

i and qn
i and write

un =

n
∑

i=1

pie
−|x−qi|.

Property (i) is obvious because of (3.1a) and the fact that the H1 norm is auto-
matically preserved due to the Hamiltonian structure of (2.10). We have

un
x(t, x) =

n
∑

i=1

−pi(t) sgn(x− qi(t))e
−|x−qi(t)| a.e.

Hence,

|un
x(x, t)| ≤

n
∑

i=1

pi(t)e
−|x−qi(t)| (pi ≥ 0)

≤ ‖un‖L∞

≤ C ‖un‖H1(R) (H1(R) is continuously embedded in L∞(R))

and (ii) follows from (i). The total variation of un
x equals ‖un

xx‖M (see, e.g., [10,
Chapter 6]). We have

‖un
xx‖M ≤ ‖un‖M + ‖un − un

xx‖M . (3.27)

Since un ∈ L1(R), we have ‖un‖M = ‖un‖L1 . At the same time, due to the
positivity of the pi, the L1-norm of u is equal to M , the total mass of the system,

M =

∫

un(x, t) dx = 2

n
∑

i=1

pi(t). (3.28)
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As we have seen in the previous section, M is a conserved quantity. Hence,

M = ‖un‖L1 = ‖un
0‖L1 .

Since the pi are positive, the fact that mn = un − un
xx =

∑n
i=1 2piδqi

and (3.28)
imply that

‖un − un
xx‖M = 2

n
∑

i=1

pi = M. (3.29)

Hence, from (3.27),

‖un
xx‖M ≤ 2M = 2 ‖un

0‖L1

and (iii) follows from (3.1b) .
The derivative un

t is given by

un
t =

n
∑

i=1

(

ṗie
−|x−qi| + piq̇i sgn(x− qi)e

−|x−qi|
)

,

or, after using (2.10),

un
t =

n
∑

i,j=1

pipje
−|x−qi|e−|qi−qj | (sgn(qi − qj) + sgn(x− qi)) .

Hence, since the pi are all positive,

‖un
t ‖L2 ≤ 2

n
∑

i,j=1

pipje
−|qi−qj |

∥

∥

∥
e−|x−qi|

∥

∥

∥

L2

≤ 2

n
∑

i,j=1

pipje
−|qi−qj |

≤ ‖un‖2
H1(R)

and assertion (iv) follows from (i). �

To prove the existence of a converging subsequence of un in C([0, T ], H1
loc(R))

we recall the following compactness theorem adapted from Simon [18, Corollary
4].

Theorem 3.6 (Simon). Let X,B, Y be three continuously embedded Banach
spaces

X ⊂ B ⊂ Y

with the first inclusion, X ⊂ B, compact. We consider a set F of contin-
uous functions mapping [0, T ] into X. If F is bounded in L∞([0, T ], X) and
∂F
∂t =

{

∂f
∂t | f ∈ F

}

is bounded in Lr([0, T ], Y ) where r > 1, then F is relatively

compact in C([0, T ], B).
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Proof of Theorem 3.1. Given initial data u0 ∈ H1(R) with u0 − u0,xx ∈ M+ we
know from Proposition 3.2 that there exists a sequence un

0 satisfying condition
(3.1). Furthermore, by using Lemma 2.4, we infer that there exists a sequence of
multipeakons un(x, t) such that un|t=0 = un

0 . The sequence then possesses the
properties stated in Lemma 3.5.

To apply Theorem 3.6, we have to determine the Banach spaces with the
required properties. Let K be a compact subset of R. We define X = X(K) as
the set of functions of H1(K) which have derivatives of bounded variation, that
is,

X(K) =
{

v ∈ H1(K) | vx ∈ BV (K)
}

endowed with the norm

‖v‖X(K) = ‖v‖H1(K) + ‖vx‖BV (K) = ‖v‖H1(K) + ‖vx‖L∞(K) + TVK(vx).

It follows that X(K) is a Banach space. Let us prove that the injection X(K) ⊂
H1(K) is compact. We consider a sequence vn which is bounded in X(K).
By the Rellich–Kondrachov theorem, since ‖vn‖H1(K) is bounded, there exists a

subsequence (that we still denote vn) which converges to some v in L2(R). Since
TVK(vn,x) is bounded, Helly’s theorem allow us to extract another subsequence
such that

vn,x → w a.e. in K (3.30)

for some w ∈ L∞(K). We have ‖vn,x‖L∞(K) bounded. From (3.30) we get, by

Lebesgue’s dominated convergence theorem, that vn,x → w in L2(K). Using
the distributional definition of a derivative, it is not hard to check that w must
coincide with vx. Therefore vn converges to v in H1(K) and X(K) is compactly
embedded in H1(K).

The estimates we have derived previously imply that un and un
t are uniformly

bounded in L∞([0, T ], X(K)) and L∞([0, T ], L2(K)), respectively. Since X(K) ⊂
H1(K) ⊂ L2(K) with the first inclusion compact, Simon’s theorem gives us
the existence of a subsequence of un that converges to some u ∈ H1(K) in
C([0, T ], H1(K)). We consider a sequence of compact sets Km such that R =
∪m∈NKm and a sequence of time Tm such that limm→∞ Tm = ∞. By a diagonal
argument, we can find a subsequence (that we still denote un) that converges
to some u ∈ C([0, Tm], H1(Km)) in L∞([0, Tm], H1(Km)) for all m. Therefore u
belongs to C(R, H1

loc(R)) and un converges to u in L∞
loc(R, H

1
loc(R)).

It remains to prove that u is solution of the Camassa–Holm equation. This
simply comes from the fact that the un are all weak solutions of (2.2), and since
they converge to u in L∞

loc(R, H
1
loc(R)), u is a weak solution of (2.2). The solutions

of the Camassa–Holm equation for the class of initial data we are considering in
the theorem are unique, see [8]. It implies that not only a subsequence, but the
whole sequence of multipeakons converges to the solution. �
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4. Numerical results

Multipeakons can be used in a numerical scheme to solve the Camassa–Holm
equation with initial data satisfying u0 − u0,xx ∈ M+. The scheme consists
of solving the system of ordinary differential equations (2.10) where the initial
conditions are computed as in Proposition 3.2.

In the numerical experiments that follow, we solve (2.10) by using the explicit
Runge–Kutta solver ode45 for ordinary differential equation from Matlab. In
the case where u0 is sufficiently smooth, an initial multipeakon sequence can
be obtained without having to solve (3.2). This is the aim of the following
proposition.

Proposition 4.1. Let u0 be such that u0−u0,xx is a positive function in H1(R)∩
L1(R). We set

qi,n =
i

n
,

pi,n =
1

2n
[u0 − u0,xx](qi,n) =

1

2n
m0(qi,n).

(4.1)

Then the sequence un
0 =

∑n2

i=−n2 pi,ne
−|x−qi,n| of multipeakons satisfies the con-

ditions given in (3.1).

Proof. Condition (3.1c) follows directly from the definition of pi,n and the pos-
itivite of m0. Let us prove (3.1a), i.e., that un

0 → u0 in H1(R). It is enough
to show that mn

0 tends to m0 in H−1 because the mapping v 7→ v − vxx is an
homeomorphism from H1 to H−1 (see [2, chapter 8]). For any function φ in
H1(R), we have to prove that

〈mn
0 , φ〉 =

n2

∑

i=−n2

2pi,nφ(qi,n) =
1

n

n2

∑

i=−n2

m0(qi,n)φ(qi,n)

converges to

〈m0, φ〉 =

∫

R

m0(x)φ(x) dx.

If φ is continuous with compact support, the above convergence simply follows
from the fact that for continuous functions, the Riemann sums converge to the
integral. To prove that 〈mn

0 , φ〉 → 〈m0, φ〉 for any φ ∈ H1(R), it is then enough
to show that ‖mn

0‖H−1 is uniformly bounded. In fact, mn
0 is uniformly bounded

in M and

‖mn
0‖M =

1

n

n2

∑

i=−n2

m0(qi,n) → ‖m0‖L1 . (4.2)

Let us prove (4.2). We have

∫

R

m0(x) dx =

∫ −n

−∞

m0(x) dx+

∫ n+ 1
n

−n

m0(x) dx +

∫ ∞

n+ 1
n

m0(x) dx.
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The first and the last integral tend to zero because m0 belongs to L1(R). Then
we have

∣

∣

∣

∣

∣

∣

∫ n+ 1
n

−n

m0(x) dx − 1

n

n2

∑

i=−n2

m0(qi,n)

∣

∣

∣

∣

∣

∣

≤
n2

∑

i=−n2

∫ qi+1,n

qi,n

|m0(x) −m0(qi,n)| dx

≤
n2

∑

i=−n2

∫ qi+1,n

qi,n

∫ x

qi,n

|m′
0(ξ)| dξdx.

We change the order of integration, introduce χi,n to denote the characteristic
function of the interval (qi,n, qi+1,n), and get

∣

∣

∫ n+ 1
n

−n

m0(x) dx − 1

n

n2

∑

i=−n2

m0(qi,n)
∣

∣ ≤
n2

∑

i=−n2

∫ qi+1,n

qi,n

∫ qi+1,n

ξ

|m′
0(ξ)| dxdξ

=

∫ ∞

−∞

|m′
0(ξ)|

n2

∑

i=−n2

χi,n(ξ)(qi+1,n − ξ) dξ

≤ ‖m′
0‖L2

[

∫ ∞

−∞

(

n2

∑

i=−n2

χi,n(ξ)(qi+1,n − ξ)
)2

dξ
]1/2

≤ ‖m0‖H1(R)

[

∫ ∞

−∞

n2

∑

i=−n2

χi,n(ξ)(qi+1,n − ξ)2 dξ
]1/2

≤ ‖m0‖H1(R)

[

n2

∑

i=−n2

∫ qi+1,n

qi,n

(qi+1,n − ξ)2 dξ
]1/2

≤ ‖m0‖H1(R)

[

n2

∑

i=−n2

1

3n3

]1/2

≤ 1√
n
‖m0‖H1(R)

which tends to zero. This concludes the proof of (3.1a) and condition (3.1b)
follows from (4.2) since we have, see (3.29),

‖un
0‖L1 = 2

n
∑

i=1

pi = ‖mn
0‖M .

�

We tested our algorithm with smooth traveling waves. Smooth traveling waves
are solutions of the form

u(x, t) = f(x− ct)
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where f is solution of the second-order ordinary differential equation

fxx = f − α

(f − c)2
. (4.3)

In order to give rise to a smooth traveling wave, the constants c and α cannot
be chosen arbitrarily, see [15]. Here we consider periodic smooth traveling waves.
The approach, based on functions in H1(R), which was developed in the previous
sections, can be adapted to handle solutions with periodic boundary conditions.
We then have to consider periodic multipeakons which are solutions of the form

u(x, t) =

n
∑

i=1

pi(t)G(x, qi(t)) (4.4)

where G is given by

G(x, y) =
cosh(d(x, y) − a

2 )

sinh a
2

.

In the expression above, a is the period and d(x, y) = min (|x− y| , a− |x− y|) is
the distance in the interval [0, a], identifying the end points 0 and a of the interval.
The function G(x, y) can be interpreted as the periodized version of e−|x−y| as
we have G(x, y) =

∑∞
k=−∞ e−|x−y+ka|. The coefficients pi and qi satisfy equation

(2.11) when H is replaced by the Hamiltonian

Hper =
1

2

n
∑

i,j=1

pipjG(qi, qj).

For periodic functions, we have Hper = 4 ‖u‖H1((0,a)) for u given by (4.4). It

is not hard to prove that, with the necessary amendments, Theorem 3.1 and
Proposition 3.2 hold also for periodic functions in H1([0, a]).

0 1 2 3 4 5 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6
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1.4

1.6

1.8

2

2.2

Figure 1. Approximation of a smooth traveling wave (dashed
curve) by (4.4) with n = 10. On the left, the coefficients pi are
computed by using the method of Proposition 4.1 designed for
smooth functions. On the right, they are computed by using the
collocation method of Proposition 3.2.
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Table 1. Convergence rate in the case of a smooth traveling wave.

Number of peakons 5 10 20 40

‖u− uexact‖H1(R) at t = 0 1.48 0.76 0.38 0.20

Ratio 1.95 2 1.9

‖u− uexact‖H1(R) at t = 2 1.31 0.68 0.34 0.17

Ratio 1.93 2 2

A high precision solution of equation (4.3) is used as a reference solution
for the smooth traveling wave. We take α = c = 3. With initial condition
f(0) = 1, fx(0) = 0, it gives rise to a smooth traveling wave of period a ≈ 6.4723.
In our multipeakon scheme, we approximate initial data by using (4.1) because
the initial data is smooth. In Figure 1, we show the result of such approximation
in the case of 10 multipeakons. In Table 1 we give the error in the H1 norm
between the computed and the exact solutions at time t = 0 and t = 2 (at t = 2,
the wave has approximately traveled over a distance equal to one period). We
can see that the computed solution converges to the exact solution at a linear
rate. It is to be noted that the error does not grow in time and is apparently
only due to the error which is made in approximating the initial data.

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

2

2.5

3

Figure 2. Solution with initial data u0(x) = 10(3 + |x|)−2 at
t = 0, 5, 10, 15, 20 (from the bottom to the top).

Our next example deals with a initial data function u0 which has discontinuous
derivative. We take

u0(x) =
10

(3 + |x|)2 .

The function u0 satisfies u0−u0,xx ≥ 0 and it is plotted in Figure 2. In our multi-
peakon scheme, we use Proposition 3.2 to set the initial sequence of multipeakons.
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Table 2. Convergence rate for an initial data given by u0(x) =
10(3 + |x|)−2.

Number of peakons 61 127 251 501 1001

‖u− uexact‖H1(R) at t = 0 0.27 0.14 0.079 0.053 0.045

Ratio – 1.93 1.77 1.49 1.18

‖u− uexact‖H1(R) at t = 10 0.58 0.18 0.074 0.028 –

Ratio – 3.22 2.43 1.95 –

In Figure 2 the solution is computed with very high resolution (n = 1000 peakons
spread over the interval [−30, 30]) and in Table 2, the error is evaluated by taking
this numerical solution as an approximation of the exact solution (except a time
t = 0 where we can use u0). The convergence rate at time t = 0 is not linear,
as in the previous case. This is due to the fact that we only took peakons on
the interval [−30, 30]. We have considered the error in H1([−30, 30]), and in that
case the convergence is linear. As in the case of smooth traveling waves, the error
does not grow in time showing the robustness of the algorithm.
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CONVERGENCE OF A SPECTRAL PROJECTION OF THE

CAMASSA-HOLM EQUATION

HENRIK KALISCH AND XAVIER RAYNAUD

Abstract. A spectral semi-discretization of the Camassa-Holm equation is
defined. The Fourier-Galerkin and a de-aliased Fourier-collocation method
are proved to be spectrally convergent. The proof is supplemented with
numerical explorations which illustrate the convergence rates and the use of
the dealiasing method.

1. Introduction

In this article, consideration is given to the error analysis of a spectral projec-
tion of the periodic Camassa–Holm equation

ut − uxxt + ωux + 3uux − γ(2uxuxx + uuxxx) = 0 (1.1)

on the interval [0, 2π]. Spectral discretizations of this equation have been in use
ever since the work of Camassa and Holm [2] and Camassa, Holm and Hyman
[3]. However, to the knowledge of the authors, no proof that such a discretization
actually converges has appeared heretofore. Therefore, this issue is taken up
here. Our method of proof is related to the work of Maday and Quarteroni on
the convergence of a Fourier-Galerkin and collocation method for the Korteweg-
de Vries equation [22]. While they were able to treat the unfiltered collocation
approximation, we resort to proving the convergence of a de-aliased collocation
projection which turns out to be equivalent to a Galerkin scheme. Before we
get to the heart of the subject, a few words about the range of applicability
of the equation are in order. The validity of the Camassa-Holm equation as
a model for water waves in a channel of uniform width and depth has been
a somewhat controversial subject. The discussion seems to have finally been
settled in the recent articles of Johnson [16] and Kunze and Schneider [20]. One
merit of the equation is the fact that it allows wave breaking typical of hyperbolic
systems. Such wave breaking is observed in fluid flows, and under this aspect,
the Camassa-Holm equation could be seen as a more suitable model than the
well known Korteweg-de Vries equation, for instance. On the other hand, in the
derivation of the Camassa-Holm equation, it is assumed that the solutions are
more regular than breaking waves [20]. In this respect, smooth solutions are
more closely related to the fluid flow problem than are irregular solutions. From
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2 H. KALISCH AND X. RAYNAUD

this point of view, a spectral approximation seems a natural choice for a spatial
discretization.

Another application of the Camassa-Holm equation arises when ω = 0. In this
case, the equation can be derived as a model equation for mechanical vibrations
in a compressible elastic rod. As explained by Dai and Huo [8], the range of the
parameter γ is roughly from −29.5 to 3.4. The equation has even found its place
in the context of differential geometry, where it can be seen as a re-expression for
geodesic flow on an infinite-dimensional Lie group [6, 13, 23].

Notwithstanding its importance as a model equation, one reason for the in-
terest in the Camassa-Holm equation is its vast supply of novel mathematical
issues, such as its integrable bi-Hamiltonian structure. This property alone
has led to many interesting developments, a sample of which can be found in
[2, 3, 4, 9, 10, 11], and the references contained therein. One aspect of the
integrability of the equation in case γ = 1 is that the solitary-wave solutions
are solitons [2, 4], similar to the solitary-wave solutions of the Korteweg-de Vries
equation. However, the Camassa-Holm equation also admits solitary waves which
are not smooth, but rather have a peak or even a cusp. These peaked solitary
waves are well known, and owing to their soliton-like properties they have been
termed peakons. In the case that ω = 0 and γ = 1, they are of the form

u(x, t) = de−|x−dt|,

where d ∈ R is the wavespeed. For general ω and γ, a similar formula was found
by one of the authors in [17]. Even more general shapes have been described in
[21], where a classification of traveling-wave solutions is given. For the numerical
approximation of these peaked or cusped waves, spectral methods may not be
the best choice. Other methods based on finite-difference approximations have
been used for instance in [1, 14, 15].

For the purpose of numerical study, it is important to have a satisfactory the-
ory of existence of solutions, as well as uniqueness and continuous dependence
with respect to the initial data. For the periodic case, an example of such well
posedness results has been provided by Constantin and Escher in [5]. However,
for our purposes, the available results are not quite strong enough. In particular,
it appears that it is possible for solutions emanating from smooth initial data to
form singularities in finite time. These singularities manifest themselves in the
form of steepening up to the point where the first derivative becomes close to −∞.
In the context of one-dimensional water-wave theory, this may be understood as
wave breaking which we have alluded to earlier. The idea of the proof of this
phenomenon is to make use of a differential inequality which goes back at least
to the work of Seliger [25] (see also Whitham [26]). It is clear that such singular-
ity formation will prevent the spectral, or super-polynomial convergence usually
exhibited by spectral discretizations. To circumvent this problem, we assume
that the solution has at least four derivatives in the space of square-summable
functions. This requirement turns out to be sufficient to obtain convergence of
the spectral projection, with a convergence rate dependent upon the regularity
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of the solution to be approximated. Of course, this requirement also restricts
the pool of possible solutions, and thus limits the applicability of our method. A
spectral discretization may still be used for solutions that have lower regularity,
but the convergence is then not known.

For the sake of simplicity, we will only give proofs in the case where ω = 0
and γ = 1 but all the proofs extend to the general case with only small changes
in the constants. To prepare the equation for the discretization, it is convenient
to write (1.1) in the form

ut + 1
2 (u2)x + K(u2 + 1

2 (ux)2) = 0, (1.2)

where K is a Fourier multiplier operator with the symbol

K̂f(k) =
ik

1 + k2
f̂(k),

which formally corresponds to

K =
∂x

1 − ∂2
x

.

This formulation reveals that it is natural to use a spectral Fourier discretization,
as the symbol of the Green’s function K is already known. In section 3, we define
a Fourier-Galerkin approximation of the Camassa-Holm equation, and prove that
this approximation converges if appropriate assumptions are made on the initial
data and the solution. Indeed, it will transpire that for smooth solutions, the
convergence is indeed spectral, i.e. super-polynomial. In section 4, a similar
result will be proved for a de-aliased Fourier-collocation scheme. Finally, the
last section contains some numerical computations, which illustrate the results
obtained in sections 3 and 4, and which show that the de-aliased collocation
scheme is preferable to an unfiltered collocation approximation, especially when
approximating solutions which are not smooth.

2. Notation

In order to facilitate our study, we start by introducing some mathematical
notation. Denote the inner product in L2(0, 2π) by

(f, g) =

∫ 2π

0

f(x) g(x) dx.

The Fourier coefficients f̂(k) of a function f ∈ L2(0, 2π) are defined by

f̂(k) =
1

2π

∫ 2π

0

e−ikxf(x) dx.

Recall the inversion formula

f(x) =
∑

k∈Z

eikxf̂(k),

and the convolution formula

(f̂ ∗ ĝ)(k) = f̂g(k),
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where the convolution of two functions f̂ and ĝ on Z is formally defined by

(f̂ ∗ ĝ)(k) =
∑

m+n=k

f̂(m) ĝ(n).

Denote by ‖ · ‖Hm the Sobolev norm, given by

‖f‖2
Hm =

∑

k∈Z

(1 + |k|2)m|f̂(k)|2.

The space of periodic Sobolev functions on the interval [0, 2π] is defined as the
closure of the space of smooth periodic functions with respect to the Hm-norm,
and will be simply denoted by Hm. In particular, for m = 0, we recover the
space L2(0, 2π) whose norm will be denoted by ‖ ·‖L2 . The subspace of L2(0, 2π)
spanned by the set

{
eikx

∣∣∣ k ∈ Z, −N

2
≤ k ≤ N

2
− 1

}

for N even is denoted by SN . In the following, it will always be assumed that N
is even. The operator PN denotes the orthogonal, self-adjoint, projection from
L2 onto SN , defined by

PNf(x) =
∑

−N/2≤k≤N/2−1

eikxf̂(k).

For f ∈ Hm, the estimates

‖f − PNf‖L2 ≤ CP N−m ‖∂m
x f‖L2 , (2.1)

‖f − PNf‖Hn ≤ CP Nn−m ‖∂m
x f‖L2 (2.2)

hold for an appropriate constant CP and a positive integer n. For the proof of
these inequalities, the reader is referred to [7].

The space of continuous functions from the interval [0, T ] into the space Hn

is denoted by C([0, T ], Hn). Similarly, we also consider the space C([0, T ], SN),
where the topology on the finite-dimensional space SN can be given by any norm.
Finally note the inverse inequality

‖∂m
x φ‖L2 ≤ Nm ‖φ‖L2 , (2.3)

which holds for integers m > 0 and φ ∈ SN . A proof of this estimate can also
be found in [7]. We will make use of the Sobolev lemma, which guarantees the
existence of a constant c, such that

sup
x

|f(x)| ≤ c ‖f‖H1 . (2.4)

Another standard result is that the assignment (f, g) 7→ fg is a continuous bilin-
ear map from H1 × H−1 to H−1, as shown by the estimate

‖fg‖H−1 ≤ c ‖f‖H1 ‖g‖H−1 , (2.5)

where the same constant c has been used for simplicity.
In order to obtain a unique solution, equation (1.1) has to be supplemented

by appropriate boundary and initial conditions. For the purpose of numerical



SPECTRAL PROJECTION OF THE CAMASSA-HOLM EQUATION 5

approximation, the problem will be studied on a finite interval with periodic
boundary conditions. The periodic initial value problem associated to equation
(1.1) is





ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 x ∈ [0, 2π] , t ≥ 0,

u(0, t) = u(2π, t), t ≥ 0,

u(x, 0) = u0(x).

(2.6)
In the following, it will always be assumed that a solution of this problem exists

on some time interval [0, T ], and with a certain amount of spatial regularity. In
particular, we suppose that a solution exists in the space C([0, T ], H4) for some
T > 0. With these preliminaries in place, we are set to attack the problem of
defining a suitable spectral projection of (2.6) and proving the convergence of
such a projection. First, the Fourier-Galerkin method is presented and a proof
of convergence given. Then in section 4, a de-aliased collocation scheme will be
treated.

3. The Fourier-Galerkin method.

A space-discretization of (2.6) is defined by utilizing the equivalent formulation
(1.2). Thus the problem is to find a function uN from [0, T ] to SN which satisfies

{(
∂tuN + 1

2∂x(uN)2 + K
(
u2

N + 1
2 (∂xuN)2

)
, φ

)
= 0, t ∈ [0, T ],

uN(0) = PNu0,
(3.1)

for all φ ∈ SN . Since for each t, uN (·, t) ∈ SN , uN has the form

uN(x, t) =

N

2
−1∑

k=−N

2

ûN (k, t)eikx,

where ûN(k, t) are the Fourier coefficients of uN (·, t).
Taking φ = eikx for −N/2 ≤ k ≤ N/2− 1 in (3.1) yields the following system

of equations for the Fourier coefficients of uN .




d

dt
ûN(k, t) = −1

2
ik(ûN ∗ ûN)(k, t) − ik

1 + k2

[
(ûN ∗ ûN)(k, t)

+ 1
2 ((ikûN ) ∗ (ikûN))(k, t)

]
,

ûN (k, 0) = û0(k),

(3.2)

for −N/2 ≤ k < N/2 − 1..
The short-time existence of a maximal solution of (3.2) is proved using the

contraction mapping principle, and the solution is unique on its maximal interval
of definition, [0, tmN), where tmN is possibly equal to T . Since the argument is
standard, the proof is omitted here. The main result of this paper is the fact
that the Galerkin approximation uN converges to the exact solution u when u is
smooth enough. This is stated in the next theorem.
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Theorem 3.1. Suppose that a solution u of the Camassa-Holm equation (2.6)
exists in the space C([0, T ], Hm) for m ≥ 4, and for some time T > 0. Then

for N large enough, there exists a unique solution uN of the finite-dimensional

problem (3.1). Moreover, there exists a constant λ such that

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖L2 ≤ λN1−m.

Before the proof is given, note that the assumptions of the theorem encompass
the existence of a constant κ, such that

sup
t∈[0,T ]

‖u(·, t)‖Hm ≤ κ.

In particular, it follows then that there is another constant Λ, such that

sup
t∈[0,T ]

‖u(·, t)‖H2 ≤ Λ.

The main ingredient in the proof of the theorem is a local error estimate which
will be established by the following lemma.

Lemma 3.2. Suppose that a solution uN of (3.1) exists on the time interval

[0, t∗N ], and that supt∈[0,t∗
N

] ‖uN (·, t)‖H2 ≤ 2Λ. Then the error estimate

sup
t∈[0,t∗

N
]

‖u(·, t) − uN(·, t)‖L2 ≤ λN1−m (3.3)

holds for some constant λ which only depends on T , Λ and κ.

Proof. Let h = PNu − uN . We apply PN to both sides of (1.2) and, since PN

commutes with derivation, we obtain

∂tPNu + 1
2PN∂x(u2) + KPN (u2 + 1

2u2
x) = 0.

We multiply this equation by h, integrate over [0, 2π] and subtract the result
from (3.1) where we have used h, which belongs to SN , as a test function. We
get

(ht, h) = −1

2

(
PN∂xu2 − ∂xu2

N , h
)
−

(
KPN

[
u2 +

1

2
(∂xu)2

]
, h

)

+

(
K

[
u2

N +
1

2
(∂xu2

N )2
]

, h

)

Using the fact that PN is self-adjoint on L2, and h ∈ SN , this may be rewritten
as

1

2

d

dt
‖h‖2

L2 = −1

2

(
∂xu2 − ∂xu2

N , h
)
−

(
K

[
u2 − u2

N

]
, h

)

− 1

2

(
K

[
(∂xu)2 − (∂xuN )2

]
, h

)
. (3.4)
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Let’s estimate the three terms on the right-hand side of (3.4) in the time
interval [0, t∗N ] where the H2-norm of uN is bounded by 2Λ. We have

(
∂xu2 − ∂xu2

N , h
)

=
(
∂x {(u + uN)(u − uN)} , h

)

=
(
∂x(u + uN) (u − uN ), h

)
+

(
(u + uN) ∂x(u − uN), h

)

=
(
∂x(u + uN) (u − uN ), h

)

+
(
(u + uN)∂x(u − PNu), h

)

+
(
(u + uN)∂x(PNu − uN ), h

)
.

Consequently, there appears the estimate
∣∣(∂xu2 − ∂xu2

N , h
)∣∣ ≤ sup

x
|∂x(u + uN)| ‖u − uN‖L2 ‖h‖L2

+ sup
x

|u + uN | ‖∂x(u − PNu)‖L2 ‖h‖L2

+

∣∣∣∣
∫ 2π

0

(u + uN )hxh dx

∣∣∣∣

≤ c ‖u + uN‖H2 (‖u − PNu‖L2 + ‖PNu − uN‖L2) ‖h‖L2

+ c ‖u + uN‖H1 ‖u − PNu‖H1 ‖h‖L2

+
1

2

∫ 2π

0

h2|∂x(u + uN)| dx

≤ 3cΛ
(
CP N−m ‖u‖Hm + ‖h‖L2

)
‖h‖L2

+ 3cΛCP N1−m ‖u‖Hm ‖h‖L2

+
1

2
sup

x
|∂x(u + uN )|

∫ 2π

0

h2 dx.

Noting that the last integral is bounded by 1
23cΛ ‖h‖2

L2 , there appears the esti-
mate

∣∣(∂xu2 − ∂xu2
N , h

)∣∣ ≤ 3cΛ ‖h‖L2

(
3

2
‖h‖L2 + CP ‖u‖Hm (N−m + N1−m)

)
.

(3.5)
We turn to the second term in (3.4). The operator K is a continuous operator
from H−1 to L2. Therefore, after using the Cauchy-Schwartz inequality and
(2.5), there appears

(
K(u2 − u2

N ), h
)
≤

∥∥u2 − u2
N

∥∥
H−1

‖h‖L2

≤ ‖(u − uN )(u + uN )‖H−1 ‖h‖L2

≤ c ‖u + uN‖H1 ‖u − uN‖H−1 ‖h‖L2 . (3.6)
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Then, since

‖u − uN‖H−1 ≤ ‖u − uN‖L2

≤ ‖u − PNu‖L2 + ‖h‖L2

≤ CP N−m ‖u‖Hm + ‖h‖L2 ,

and ‖u + uN‖H1 is bounded (recall that the estimates are established on [0, t∗N ]
where the H2-norm of uN is bounded by 2Λ), we get from (3.6)

(
K(u2 − u2

N), h
)
≤ 3cΛ ‖h‖L2

(
CP N−m ‖u‖Hm + ‖h‖L2

)
. (3.7)

Similarly for the remaining term in (3.4) we have
(
K((∂xu)2 − (∂xuN)2), h

)
≤ ‖h‖L2

∥∥(∂xu)2 − (∂xuN )2
∥∥

H−1

≤ c ‖∂x(u + uN )‖H1 ‖∂x(u − uN )‖H−1 ‖h‖L2

≤ 3cΛ ‖h‖L2

(
CP ‖u‖Hm N−m + ‖h‖L2

)
. (3.8)

Gathering the estimates (3.5), (3.7) and (3.8), it transpires that

d

dt
‖h‖L2 ≤ 27

4
cΛ ‖h‖L2 +

15

2
cΛCP κN1−m.

Consequently, Gronwall’s inequality gives

sup
t∈[0,t∗

N
]

‖h(·, t)‖L2 ≤ λN1−m (3.9)

for an appropriate constant λ which depends on T , Λ and κ. After decomposing
u−uN as the sum u−PNu + h and using (2.1) and the triangle inequality, (3.9)
yields

sup
t∈[0,t∗

N
]

‖u(·, t) − uN(·, t)‖L2 ≤ λN1−m

for another constant λ which again only depends on T , Λ and κ. �

Lemma 3.3. Suppose that a solution uN of (3.1) exists on the time interval

[0, t∗N ], and that supt∈[0,t∗
N

] ‖uN (·, t)‖H2 ≤ 2Λ. Then the error estimate

sup
t∈[0,t∗

N
]

‖u(·, t) − uN (·, t)‖H2 ≤ λN3−m (3.10)

holds for some constant λ which only depends on T , Λ and κ.

The proof of this lemma follows from (3.9) after application of the triangle
inequality and the inverse inequality (2.3).

Proof of Theorem 3.1. We want to extend the estimate (3.3) to the time
interval [0, T ]. Note that the time t∗N appearing in Lemma 3.2 has so far been
unspecified. We now define t∗N by

t∗N = sup {t ∈ [0, T ] | for all t′ ≤ t, ‖uN (·, t′)‖H2 ≤ 2Λ} . (3.11)

Thus the time t∗N corresponds to the largest time in [0, T ] for which the H2-norm
of uN is uniformly bounded by 2Λ. Since ‖uN(·, 0)‖H2 = ‖PNu(·, 0)‖H2 , we have

‖uN(·, 0)‖H2 ≤ ‖u(·, 0)‖H2 ≤ Λ.
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Hence, t∗N > 0 for all N . Note that t∗N is necessarily smaller than the maximum
time of existence tmN . On the other hand, we are going to prove that there exists
N∗ such that

t∗N = T for all N ≥ N∗, (3.12)

and therefore the supremum in (3.3) holds on [0, T ]. By definition (3.11), we
either have t∗N = T or t∗N < T and in this case, since ‖uN(t)‖H2 is a continuous
function in time, ‖uN(t∗N )‖H2 = 2Λ. Suppose that t∗N < T . Then using the
triangle inequality yields

2Λ = ‖uN (·, t∗N )‖H2

≤ ‖(uN (·, t∗N ) − u(·, t)‖H2 + sup
t∈[0,T ]

‖u(·, t)‖H2

= ‖(uN (·, t∗N ) − u(·, t∗N)‖H2 + Λ,

by the definition of Λ. Hence,

Λ ≤ ‖(uN (·, t∗N ) − u(·, t∗N )‖H2 .

By Lemma 3.3, it follows that

Λ ≤ λN3−m

or

N ≤
(

λ

Λ

) 1

m−3

.

In conclusion, for N∗ >
(

λ
Λ

) 1

m−3 , we cannot have t∗N < T and the claim (3.12)
holds. It follows that for N ≥ N∗ the solution uN of (3.2) is defined on [0, T ]
because, as we noticed earlier, t∗N < tmN and, from (3.3), we get

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖L2 ≤ λN1−m.

The following corollary is immediate from the estimate (3.9) and the inequal-
ities (2.2) and (2.3).

Corollary 3.4. Suppose that a solution u of the Camassa-Holm equation (2.6)
exists in the space C([0, T ], Hm) for m ≥ 4, and for some time T > 0. Then

for N large enough, there exists a unique solution uN of the finite-dimensional

problem (3.1). Moreover, there exists a constant λ such that

sup
t∈[0,T ]

‖u(·, t) − uN (·, t)‖H2 ≤ λN3−m.

4. The Fourier-collocation method

The Galerkin method is not very attractive from a computational point of
view, because the computation of the convolution sums in (3.2) is very expensive.
If the convolution is computed by means of the Fast Fourier Transform (FFT),
the computational time is minimized, but an additional error known as aliasing

is introduced. This means that high wavenumbers are projected back into low
wavenumber modes, causing spurious oscillations. We refer to [7, 12] for more
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details about the aliasing phenomenon. Methods that use the FFT are often
called collocation methods since they are sometimes algebraically equivalent to a
collocation scheme in the case of a Fourier basis. The problem of aliasing can be
somewhat alleviated if enough modes are used to resolve all frequencies. However,
this remedy is mostly applicable to the study of one-dimensional problems, and
it supposes that the amplitudes decay in a reasonable fashion. In the case of
the Camassa-Holm equation, one may want to use the spectral discretization to
study the peakon solutions mentioned in the introduction. In the case that ω = 0
and γ = 1, the representation

u(x, t) = de−|x−dt|,

reveals that u has an elementary Fourier transform, given for instance at time
t = 0 by

û(k, 0) = d

√
2

π

1

1 + k2
. (4.1)

As this expression shows, the Fourier amplitudes decay only quadratically, and
therefore, it will be nearly impossible to avoid aliasing, even when using a large
number of modes. In light of this problem, we have chosen to treat the case of a
de-aliased scheme. In fact, it will be shown that the dealiasing we choose yields a
scheme which is equivalent to the Galerkin scheme treated in the previous section.

The collocation operator in SN denoted IN is defined as follows. Let the
collocation points be xj = 2πj

N for j = 0, 1, ..., N − 1. Then, given a continuous
and periodic function f , INf is the unique element in SN , such that

INf(xj) = f(xj),

for j = 0, 1, ..., N − 1. INf is also called the N -th trigonometric interpolant of f .
When restricted to SN , the collocation operator reduces to the identity operator,
as highlighted by the identity

INφ = φ for all φ ∈ SN . (4.2)

It has been proved in [19, 24] that when f ∈ Hm with m ≥ 1, there exists a
constant CI , such that

‖f − INf‖L2 ≤ CIN
−m ‖∂m

x f‖L2 , (4.3)

and more generally

‖f − INf‖Hn ≤ CIN
n−m ‖∂m

x f‖L2 . (4.4)

The collocation approximation to (2.6) is given by a function uN from [0, T ] to
SN , such that

{
∂tuN + 1

2∂xIN [u2
N ] + KIN

[
u2

N + 1
2 (∂xuN )2

]
= 0, t ∈ [0, T ],

uN (0) = INu0.
(4.5)

Note that (4.5) reduces to (3.1) if the interpolation operator IN is replaced by the
projection operator PN . In order to apply the FFT, we take the discrete Fourier

transform, denoted here by FN . We again refer to [7, 12] for more details on this
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algorithm and its properties. The discrete Fourier transform FN of a continuous
function u is the vector in CN defined as

FN(u)(k) = ÎN (u)(k), for − N/2 ≤ k < N/2− 1. (4.6)

Applying the discrete Fourier transform to each term in (4.5), and using the
definition (4.6) of FN , there appears the equation

(
∂tFNuN +

ik

2
FN(u2

N ) +
ik

1 + k2
FN

[
u2

N + 1
2 (∂xuN )2

])
(k) = 0. (4.7)

Let ũN ∈ CN denote FN (uN ). The solutions of (4.5), or equivalently of (4.7),
are obtained by solving the following system of ordinary differential equations:





d

dt
ũN(k) +

ik

2
FN((F−1

N ũN)2)(k) +
ik

1 + k2
FN

[
(F−1

N ũN)2

+ 1
2 (F−1

N (ikũN))2
]
(k) = 0,

ũN(k, 0) = FNu(k, 0)

for −N/2 ≤ k < N/2 − 1. This method is appealing because of the efficiency
of the FFT which allows us to rapidly compute the discrete Fourier transform
and its inverse. It has to be compared to (3.2) where the computation of the
convolution is extremely expensive. Nevertheless the FFT introduces errors due
to aliasing. In order to avoid aliasing, we apply the well known 2/3-rule. Thus
we consider instead the following initial value problem: Find uN ∈ C([0, T ], SN)
such that




∂tuN + 1
2∂xIN [(P 2N

3

uN)2] + KIN

[
(P 2N

3

uN )2 + 1
2 (∂x(P 2N

3

uN))2
]

= 0,

uN(0) = INu0.
(4.8)

The corresponding system of ordinary differential equation satisfied by ũN =
FNuN is





d

dt
ũN (k) +

ik

2
FN ((P 2N

3

F−1
N ũN )2)(k)

+
ik

1 + k2
FN

[
(P 2N

3

F−1
N ũN)2 + 1

2 (P 2N

3

F−1
N (ikũN ))2

]
(k) = 0,

ũN (k, 0) = FNu(k, 0)

(4.9)

which again can be solved efficiently by the use of the FFT. When implement-
ing (4.9) numerically, it is important to note that P 2N

3

F−1
N ũN (and similarly

P 2N

3

F−1
N (ikũN )) can be rewritten according to

P 2N

3

F−1
N ũN = F−1

N ũc
N ,

where ũc
N is obtained by cutting off the frequencies higher than M , i.e.

ũc
N (k) =

{
ũN (k) if

2N

3
− 1 ≤ k ≤ 2N

3
,

0 otherwise,
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thus making these quantities easy to compute. The use of the projection P 2N

3

is

justified by the following identity which is derived in [7],

PM IN (PMf · PMg) = PM (PMf · PMg) , (4.10)

and which holds for any continuous functions f, g and any M ≤ 2N
3 . The iden-

tity (4.10) essentially means that the interpolation operator IN , which generally
introduces aliasing, becomes harmless when we apply an M -filter, that is when
we cut off the frequencies higher than M .

In order to prove convergence of the scheme, we introduce vN = P 2N

3

uN and

h = vN − P 2N

3

u. Note that vN , ∂xvN , h ∈ S 2N

3

. After applying P 2N

3

in (4.8) and

taking the scalar product with h, we get

(∂tvN , h) +
1

2

(
P 2N

3

∂xIN (v2
N ), h

)
+

(
P 2N

3

KIN

[
(vN )2 + 1

2 (∂xvN )2
]
, h

)
= 0.

(4.11)
The projection operator P 2N

3

commutes with ∂x and K. Using (4.10) with

M = 2N
3 , we get P 2N

3

IN (v2
N ) = P 2N

3

(v2
N ) and P 2N

3

IN (∂xv2
N ) = P 2N

3

(∂xv2
N ) since

vN , ∂xvN ∈ S 2N

3

. Hence, from (4.11), we get

(∂tvN , h) +
1

2

(
P 2N

3

∂x(v2
N ), h

)
+

(
P 2N

3

K
[
(vN )2 + 1

2 (∂xvN )2
]
, h

)
= 0.

Then using the fact that P 2N

3

is self-adjoint and P 2N

3

h = h, there obtains

(∂tvN , h) +
1

2

(
∂x(v2

N ), h
)

+
(
K

[
(vN )2 + 1

2 (∂xvN )2
]
, h

)
= 0. (4.12)

After applying P 2N

3

to (1.2) and taking the scalar product with h, we get

(
P 2N

3

∂tu, h
)

+
1

2

(
∂x(u2), h

)
+

(
K

[
u2 + 1

2 (∂xu)2
]
, h

)
= 0, (4.13)

where we have used again the fact that P 2N

3

is self-adjoint and P 2N

3

h = h. Sub-

tracting (4.13) from (4.12), we obtain

(∂th, h) + 1
2

(
∂x(v2

N ) − ∂xu2, h
)

+
(
K

[
(vN )2 − u2

]
, h

)

+ 1
2

(
K

[
(∂xvN )2 − (∂xu)2

]
, h

)
= 0. (4.14)

We now proceed exactly in the same way as for the Galerkin method in the
previous section. After introducing

t∗N = sup {t ∈ [0, T ] | for all t′ ≤ t, ‖vN (t′, ·)‖H2 ≤ 2Λ}
is appears that the estimate

sup
t∈[0,t∗

N
]

‖vN − v‖L2 ≤ λ

(
2N

3

)1−m

(4.15)

holds for some λ depending only on T , Λ and κ. The factor 2N/3 in (4.15) comes
from the fact that we used the projection on S 2N

3

instead of the projection on

SN that was used to derive (3.3). As in the previous section, we can prove that
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for N large enough the inequality (4.15) holds when taking the supremum over
all t in [0, T ]. Thus we are led to the following theorem.

Theorem 4.1. Suppose that a solution u of the Camassa-Holm equation (1.1)
exists in the space C([0, T ], Hm) for m ≥ 4 and for some time T > 0. Then

for N large enough, there exists a unique solution uN to the finite-dimensional

problem (4.8). Moreover, there exists a constant λ such that,

sup
t∈[0,T ]

‖u(·, t) − vN (·, t)‖L2 ≤ λ

(
2N

3

)1−m

,

where vN = P 2N

3

uN .

5. Numerical experiments

It appears that spectral discretizations have been widely used to study mathe-
matical properties of the Camassa-Holm equation. In particular, the interaction
of two or more peakon solution has been a topic of intense interest. Here, we
restrict ourselves to the computation of single traveling waves in order to validate
the results of the previous sections. Traveling waves have the form

u(x, t) = φ(x − dt),

were φ is either known exactly, or can be approximated, and where d is the wave
speed. On the real line R, the so-called peakons are well known. In the case that
ω = 0 and γ = 1, they are given by

φ(x) = de−|x|. (5.1)

Since we consider periodic boundary conditions, it is convenient to know that
there are also periodic peaked traveling waves. These are given by

φ(x) = d
cosh( 1

2 − x)

cosh( 1
2 )

(5.2)

on the interval [0, 1], and are periodic with period 1.
The Camassa-Holm equation (1.1) also admits smooth periodic traveling-wave

solutions. These are not known in closed form, but they can be approximated.
In this case, φ is given implicitly by

|x − x0| =

∫ φ

φ0

√
d − y√

(M − y)(y − m)(y − z)
dy, (5.3)

where φ(x0) = φ0, and z = d − M − m. If z < m < M < d, then φ is a smooth
function with m = minx∈R ϕ(x) and M = maxx∈R ϕ(x). Once this integral
is evaluated for a sufficient number of values, the function is inverted, and an
approximation is found via a spline interpolation. This procedure for finding
smooth traveling waves is explained in more detail in [18, 21].

For the purpose of numerical integration, the Fourier discretization is supple-
mented with the well known explicit four-stage Runge-Kutta scheme. Since the
equation is only mildly stiff, an explicit method appears to be more advantageous
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than an implicit method. The scheme is explained as follows. If the wave profile
vN (·, ti) is known at a particular time ti, the four-stage Runge-Kutta method
consists of letting

V1 = v̂N (·, ti), Γ1 = F (V1),

V2 = V1 +
∆t

2
Γ1, Γ2 = F (V2),

V3 = V2 +
∆t

2
Γ2, Γ3 = F (V3),

V4 = V3 + ∆tΓ3, Γ4 = F (V4).

Finally, these functions are combined to compute vN (·, ti+1) = vN (·, ti + ∆t),
according to

v̂N (·, ti + ∆t) = v̂N (·, ti) +
∆t

6
(Γ1 + 2Γ2 + 2Γ3 + Γ4) .

This scheme is formally fourth-order convergent, meaning that if the time step
∆t is halved, the error should decrease by a factor of 16.

The traveling-wave solutions can be used to test the numerical algorithm,
because their time evolution is simply given by translation. If vN (·, T ) is the
result of a numerical computation with initial data φ(x), it can be compared
with the translated function φ(x − dT ). In this way, the error produced by
the discretization can be calculated. In particular, the smooth traveling wave
shown in Figure 1 can be used to exhibit the convergence rate of the numerical
approximation. In Table 1, it can be seen that the 4-th order convergence of the
temporal integration scheme is approximately achieved. The spectral convergence
of the spatial discretization is visible in Table 2. Note however, that the error is
limited below because the smooth traveling waves are not known in closed form.

For the Camassa-Holm equation, the peakon solutions are of special impor-
tance. For these, we cannot expect spectral convergence. However, as shown
in Table 3, the spectral discretization converges nevertheless, albeit at a lower
rate. The Fourier representation (4.1) reveals that the peakon is in the Sobolev
space Hs(R) for any s < 3

2 . Thus it appears that the convergence at rate of

N1−m is probably not an optimal result. We hasten to mention however that
this result as it stands is not applicable to peakons, because the proof makes use
of H4-regularity. In order to analyze the advantage of the dealiasing scheme,
we compared our calculations with computations performed using an unfiltered
scheme. For both the smooth approximate traveling waves, and the peaked waves,
the differences in convergence were minute on small time scales. In fact the ob-
served rate of convergence was almost exactly the same. However, as shown in
Figure 3, the dealiasing did reduce some spurious oscillations in the approxima-
tions. The advantage of the dealiasing became apparent when integrating over
intermediate time scales. The periodic peaked traveling waves then suffered seri-
ous destabilization when computed with an aliased scheme. As shown in Figure
4, this problem was completely avoided by the use of an appropriate filter. This
shows in fact that it is preferable to perform de-aliased computations, especially
for solutions with low regularity.
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Figure 1. A smooth periodic traveling wave. The solid curve
shows the initial data, while the dashed-dotted curve shows the
computed solution at T = 2.255.
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T=0 T=2.255

Table 1. Temporal discretization error for a smooth periodic
traveling wave over the time domain [0, 2.255]. The number of
grid points is N = 256.

∆t L2-Error Ratio
0.036 1.50e-07
0.018 9.30e-09 16.08
0.009 5.58e-10 16.66
0.0045 1.82e-11 30.74
0.00225 2.52e-11 7.20

Table 2. Spatial discretization error for a smooth periodic trav-
eling wave over the time domain [0, 3.28]. The time step is ∆t =
0.0002.

N L2-Error Ratio
4 8.67e-02
8 8.12e-03 10.67
16 1.11e-04 73.14
32 7.98e-08 1391.0
64 1.49e-11 5354.1
128 1.49e-11 0.9945
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Figure 2. A peakon. The solid curve shows the initial data,
while the dashed-dotted curve shows the computed solution at
T = 3.2. The size of the domain is L = 50.
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Table 3. Discretization error for a peaked traveling wave on
the real line over the time domain [0, 3.2]. The time step is
∆t = 0.0002, and the size of the spatial domain is 50.

N L2-Error Ratio
512 7.26e-02
1024 3.29e-02 2.20
2048 1.45e-02 2.27
4096 6.35e-03 2.28
8192 2.81e-03 2.26
16384 1.28e-03 2.18
32768 6.20e-04 2.06

Table 4. Discretization error for a peaked periodic traveling
wave over the time domain [0, 3.2]. The time step is ∆t = 0.003.

N L2-Error Ratio
32 8.89e-01
64 3.95e-01 2.25
128 1.86e-01 2.12
512 9.36e-02 1.98
1024 4.66e-02 2.01
2048 2.31e-02 2.02
4096 1.15e-02 2.01
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Figure 3. A peakon, computed with and without dealiasing.
The number of grid points is N = 512. The left column shows
the aliased calculations. (a) T = 6.4, (c) T = 6.4, close-up.
The right column shows the de-aliased calculations. (b) T =
6.4, (d) T = 6.4, close-up. The dashed curve shows the exact
peakon, translated by an appropriate amount according to the
time T = 6.4 and the speed d = 1. It appears that the de-aliased
computation shown on the right is more advantageous.
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Figure 4. Comparison of aliased and de-aliased calculations of
a periodic peakon with N = 256 and ∆t = 0.003. The left
column shows the aliased calculations. (a) T = 4, (c) T = 6,
(e) T = 8. The right column shows the de-aliased calculations.
(b) T = 4, (d) T = 6, (f) T = 8. Solid curves are computed
waves after 4, 6 and 8 periods. Dashed curves are the initial
data, translated by an appropriate amount. In the de-aliased
computation, a 2/3 filter was used, so that the effective number
of modes is only 170.
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GLOBAL CONSERVATIVE SOLUTIONS

OF THE CAMASSA–HOLM EQUATION – A LAGRANGIAN

POINT OF VIEW

HELGE HOLDEN AND XAVIER RAYNAUD

Abstract. We show that the Camassa–Holm equation ut −uxxt +3uux −
2uxuxx − uuxxx = 0 possesses a global continuous semigroup of weak con-
servative solutions for initial data u|t=0 in H1. The result is obtained by
introducing a coordinate transformation into Lagrangian coordinates. To
characterize conservative solutions it is necessary to include the energy den-
sity given by the positive Radon measure µ with µac = (u2 + u2

x
) dx. The

total energy is preserved by the solution.

1. Introduction

The Cauchy problem for the Camassa–Holm equation [7, 8]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = ū, (1.1)

has received considerable attention the last decade. With κ positive it models, see
[25], propagation of unidirectional gravitational waves in a shallow water approx-
imation, with u representing the fluid velocity. The Camassa–Holm equation has
a bi-Hamiltonian structure and is completely integrable. It has infinitely many
conserved quantities. In particular, for smooth solutions the quantities

∫

u dx,

∫

(u2 + u2
x) dx,

∫

(u3 + uu2
x) dx (1.2)

are all time independent.
In this article we consider the case κ = 0 on the real line, that is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1.3)

and henceforth we refer to (1.3) as the Camassa–Holm equation. The equation
can be rewritten as the following system

ut + uux + Px = 0, (1.4a)

P − Pxx = u2 +
1

2
u2

x. (1.4b)
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A highly interesting property of the equation is that for a wide class of initial
data the solution experiences wave breaking in finite time in the sense that the
solution u remains bounded pointwise while the spatial derivative ux becomes
unbounded pointwise. However, the H1 norm of u remains finite. More precisely,
Constantin, Escher, and Molinet [12, 14] showed the following result: If the
initial data u|t=0 = ū ∈ H1(R) and m̄ := ū − ū′′ is a positive Radon measure,
then equation (1.3) has a unique global weak solution u ∈ C([0, T ], H1(R)), for
any T positive, with initial data ū. However, any solution with odd initial data
ū in H3(R) such that ūx(0) < 0 blows up in a finite time.

The problem how to extend the solution beyond wave breaking can nicely
be illustrated by studying an explicit class of solutions. The Camassa–Holm
equation possesses solutions, denoted (multi)peakons, of the form

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)|, (1.5)

where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential equations

q̇i =

n
∑

j=1

pje
−|qi−qj |, ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |.

Observe that the solution (1.5) is not smooth even with continuous functions
(pi(t), qi(t)); one possible way to interpret (1.5) as a weak solution of (1.3) is to
rewrite the equation (1.3) as

ut +
(1

2
u2 + (1 − ∂2

x)−1(u2 +
1

2
u2

x)
)

x
= 0.

Peakons interact in a way similar to that of solitons of the Korteweg–de Vries
equation, and wave breaking may appear when at least two of the qi’s coincide.
If all the pi(0) have the same sign, the peakons move in the same direction.
Furthermore, in that case the solution experiences no wave breaking, and one
has a global solution. Higher peakons move faster than the smaller ones, and
when a higher peakon overtakes a smaller, there is an exchange of mass, but no
wave breaking takes place. Furthermore, the qi(t) remain distinct. However, if
some of pi(0) have opposite sign, wave breaking may incur, see, e.g., [3, 26]. For
simplicity, consider the case with n = 2 and one peakon p1(0) > 0 (moving to the
right) and one antipeakon p2(0) < 0 (moving to the left). In the symmetric case
(p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution will vanish pointwise at the
collision time t∗ when q1(t

∗) = q2(t
∗), that is, u(t∗, x) = 0 for all x ∈ R. Clearly,

at least two scenarios are possible; one is to let u(t, x) vanish identically for t > t∗,
and the other possibility is to let the peakon and antipeakon “pass through” each
other in a way that is consistent with the Camassa–Holm equation. In the first
case the energy

∫

(u2+u2
x) dx decreases to zero at t∗, while in the second case, the

energy remains constant except at t∗. Clearly, the well-posedness of the equation
is a delicate matter in this case. The first solution could be denoted a dissipative
solution, while the second one could be called conservative. Other solutions are
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also possible. Global dissipative solutions of a more general class of equations
were recently derived by Coclite, Holden, and Karlsen [9, 10]. In their approach
the solution was obtained by first regularizing the equation by adding a small
diffusion term εuxx to the equation, and subsequently analyzing the vanishing
viscosity limit ε → 0. Multipeakons are fundamental building blocks for general
solutions. Indeed, if the initial data ū is in H1 and m̄ := ū − ū′′ is a positive
Radon measure, then it can proved, see [23], that one can construct a sequence
of multipeakons that converges in L∞

loc(R; H1
loc(R)) to the unique global solution

of the Camassa–Holm equation.
The problem of continuation beyond wave breaking was recently considered

by Bressan and Constantin [4]. They reformulated the Camassa–Holm equa-
tion as a semilinear system of ordinary differential equations taking values in a
Banach space. This formulation allowed them to continue the solution beyond
collision time, giving a global conservative solution where the energy is conserved
for almost all times. Thus in the context of peakon-antipeakon collisions they
considered the solution where the peakons and antipeakons “passed through”
each other. Local existence of the semilinear system is obtained by a contrac-
tion argument. Furthermore, the clever reformulation allows for a global solution
where all singularities disappear. Going back to the original function u, one ob-
tains a global solution of the Camassa–Holm equation. The well-posedness, i.e.,
the uniqueness and stability of the solution, is resolved as follows. In addition
to the solution u, one includes a family of non-negative Radon measures µt with
density u2

x dx with respect to the Lebesgue measure. The pair (u, µt) constitutes
a continuous semigroup, in particular, one has uniqueness and stability.

Very recently, Bressan and Fonte [5, 20] presented another approach to the
Camassa–Holm equation. The flow map ū 7→ u(t) is, as we have seen, neither
a continuous map on H1 nor on L2. However, they introduced a new distance
J(u, v) with the property

c1 ‖u − v‖L1 ≤ J(u, v) ≤ c2 ‖u − v‖H1 .

Furthermore, it satisfies

J(u(t), ū) ≤ c3 |t| , J(u(t), v(t)) ≤ J(ū, v̄)ec4|t|,

where u(t), v(t) are solutions with initial data ū, v̄, respectively. The distance
is introduced by first defining it for multipeakons, using the global, conservative
solution described above. Subsequently it is shown that multipeakons are dense
in the space H1. This enables them to construct a semi-group of conservative
solutions for the Camassa–Holm equation which is continuous with respect to the
distance J .

In this paper, as Bressan and Constantin [4], we reformulate the equation using
a different set of variables and obtain a semilinear system of ordinary differential
equations. However, the change of variables we use is distinct from that of Bressan
and Constantin and simply corresponds to the transformation between Eulerian
and Lagrangian coordinates. Let u = u(t, x) denote the solution, and y(t, ξ) the
corresponding characteristics, thus yt(t, ξ) = u(t, y(t, ξ)). Our new variables are
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y(t, ξ),

U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =

∫ y(t,ξ)

−∞

(u2 + u2
x) dx (1.6)

where U corresponds to the Lagrangian velocity while H could be interpreted as
the Lagrangian cumulative energy distribution. Furthermore, let

Q(t, ξ) = −1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + Hξ

)

(η) dη,

P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + Hξ

)

dη.

Then one can show that










yt = U,

Ut = −Q,

Ht = U3 − 2PU,

(1.7)

is equivalent to the Camassa–Holm equation. Global existence of solutions of
(1.7) is obtained starting from a contraction argument, see Theorem 2.8. The
uniqueness issue is resolved by considering the set D (see Definition 3.1) which
consists of pairs (u, µ) such that (u, µ) ∈ D if u ∈ H1(R) and µ is a positive
Radon measure whose absolutely continuous part satisfies µac = (u2 + u2

x) dx.
With three Lagrangian variables (y, U, H) versus two Eulerian variables (u, µ),
it is clear that there can be no bijection between the two coordinates systems.
However, we define a group of relabeling transformations which acts on the La-
grangian variables and let the system of equations (1.7) invariant. Using this
group, we are able to establish a bijection between the space of Eulerian vari-
ables and the space of Lagrangian variables when we identify variables that are
invariant under relabeling. This bijection allows us to transform the results ob-
tained in the Lagrangian framework (in which the equation is well-posed) into the
Eulerian framework (in which the situation is much more subtle). In particular,
and this constitutes the main result of this paper, we obtain a metric dD on D
and a continuous semi-group of solutions on (D, dD). The distance dD gives D
the structure of a complete metric space. This metric is compared with some
more standard topologies, and we obtain that convergence in H1(R) implies con-
vergence in (D, dD) which itself implies convergence in L∞(R), see Propositions
5.1 and 5.2. The properties of the spaces as well as the various mappings between
them are described in great detail, see Section 3. Our main result, Theorem 4.2,
states that for given initial data in D there exists a unique weak solution of the
Camassa–Holm equation. The associated measure µ(t) has constant total mass,
i.e., µ(t)(R) = µ(0)(R) for all t, which corresponds to the total energy of the
system. This is the reason why our solutions are called conservative.

The method described here can be studied in detail for multipeakons, see [24]
for details. By suitably modifying the techniques described in this paper, the
results can be extended to show global existence of conservative solutions for the
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generalized hyperelastic-rod equation






ut + f(u)x + Px = 0

P − Pxx = g(u) +
1

2
f ′′(u)u2

x.
(1.8)

where f, g ∈ C∞(R) and f is strictly convex. Observe that if g(u) = κu + u2

and f(u) = u2

2 , then (1.8) is the classical Camassa–Holm equation (1.1). With

g(u) = 3−γ
2 u2 and f(u) = γ

2u2, Dai [15, 16, 17] derived (1.8) as an equation
describing finite length, small amplitude radial deformation waves in cylindri-
cal compressible hyperelastic rods, and the equation is often referred to as the
hyperelastic-rod wave equation. See [9, 10] for a recent proof of existence of dis-
sipative solutions of (1.8). The details will be described in a forthcoming paper.

Furthermore, the methods presented in this paper can be used to derive nu-
merical methods that converge to conservative solutions rather than dissipative
solutions. This contrasts finite difference methods that normally converge to dis-
sipative solutions, see [22] and [21] for the related Hunter–Saxton equation. See
also [23]. Results will be presented separately.

2. Global solutions in Lagrangian coordinates

2.1. Equivalent system. Assuming that u is smooth, it is not hard to check
that

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x. (2.1)

Let us introduce the characteristics y(t, ξ) defined as the solutions of

yt(t, ξ) = u(t, y(t, ξ)) (2.2)

for a given y(0, ξ). Equation (2.1) gives us information about the evolution of
the amount of energy contained between two characteristics. Indeed, given ξ1, ξ2

in R, let H(t) =
∫ y(t,ξ2)

y(t,ξ1)

(

u2 + u2
x

)

dx be the energy contained between the two

characteristic curves y(t, ξ1) and y(t, ξ2). Then, using (2.1) and (2.2), we obtain

dH

dt
=
[

(u3 − 2Pu) ◦ y
]ξ2

ξ1
. (2.3)

Solutions of the Camassa–Holm blow up when characteristics arising from dif-
ferent points collide. It is important to notice that we do not get shocks as the
Camassa–Holm preserves the H1 norm and therefore solutions remain continu-
ous. However, it is not obvious how to continue the solution after collision time.
It turns out that, when two characteristics collide, the energy contained between
these two characteristics has a limit which can be computed from (2.3). As we
will see, knowing this energy enables us to prolong the characteristics and thereby
the solution, after collisions.

We now derive a system equivalent to (1.4). All the derivations in this section
are formal and will be justified later. Let y still denote the characteristics. We
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introduce two other variables, the Lagrangian velocity and cumulative energy
distribution, U and H , defined as U(t, ξ) = u(t, y(t, ξ)) and

H(t, ξ) =

∫ y(t,ξ)

−∞

(

u2 + u2
x

)

dx. (2.4)

From the definition of the characteristics, it follows that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ). (2.5)

This last term can be expressed uniquely in term of U , y, and H . From (1.4b),
we obtain the following explicit expression for P ,

P (t, x) =
1

2

∫

R

e−|x−z|(u2(t, z) +
1

2
u2

x(t, z)) dz. (2.6)

Thus we have

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|(u2(t, z) +
1

2
u2

x(t, z)) dz

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1

2
u2

x(t, y(t, η))

)

yξ(t, η)
]

dη.

Finally, since Hξ = (u2 + u2
x)◦y yξ,

Px◦y (ξ) = −1

4

∫

R

sgn(y(ξ) − y(η)) exp(− |y(ξ) − y(η)|)
(

U2yξ + Hξ

)

(η) dη (2.7)

where the t variable has been dropped to simplify the notation. Later we will
prove that y is an increasing function for any fixed time t. If, for the moment,
we take this for granted, then Px◦y is equivalent to Q where

Q(t, ξ) = −1

4

∫

R

sgn(ξ−η) exp
(

−sgn(ξ−η)(y(ξ)−y(η))
)(

U2yξ+Hξ

)

(η) dη, (2.8)

and, slightly abusing the notation, we write

P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + Hξ

)

(η) dη. (2.9)

Thus Px◦y and P◦y can be replaced by equivalent expressions given by (2.8) and
(2.9) which only depend on our new variables U , H , and y. We introduce yet
another variable, ζ(t, ξ), simply defined as ζ(t, ξ) = y(t, ξ) − ξ. It will turn out
that ζ ∈ L∞(R). We now derive a new system of equations, formally equivalent
to the Camassa–Holm equation. Equations (2.5), (2.3) and (2.2) give us











ζt = U,

Ut = −Q,

Ht = U3 − 2PU.

(2.10)
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As we will see, the system (2.10) of ordinary differential equations for (ζ, U, H)
from [0, T ] to E is well-posed, where E is Banach space to be defined in the next
section. We have

Qξ = −1

2
Hξ −

(

1

2
U2 − P

)

yξ and Pξ = Qyξ. (2.11)

Hence, differentiating (2.10) yields


















ζξt = Uξ (or yξt = Uξ),

Uξt =
1

2
Hξ +

(

1

2
U2 − P

)

yξ,

Hξt = −2Q Uyξ +
(

3U2 − 2P
)

Uξ.

(2.12)

The system (2.12) is semilinear with respect to the variables yξ, Uξ and Hξ.

2.2. Existence and uniqueness of solutions of the equivalent system. In
this section, we focus our attention on the system of equations (2.10) and prove,
by a contraction argument, that it admits a unique solution. Let V be the Banach
space defined by

V = {f ∈ Cb(R) | fξ ∈ L2(R)}
where Cb(R) = C(R)∩L∞(R) and the norm of V is given by ‖f‖V = ‖f‖L∞(R) +

‖fξ‖L2(R). Of course H1(R) ⊂ V but the converse is not true as V contains

functions that do not vanish at infinity. We will employ the Banach space E
defined by

E = V × H1(R) × V

to carry out the contraction mapping argument. For any X = (ζ, U, H) ∈ E, the
norm on E is given by ‖X‖E = ‖ζ‖V + ‖U‖H1(R) + ‖H‖V . The following lemma

gives the Lipschitz bounds we need on Q and P .

Lemma 2.1. For any X = (ζ, U, H) in E, we define the maps Q and P as
Q(X) = Q and P(X) = P where Q and P are given by (2.8) and (2.9), respec-
tively. Then, P and Q are Lipschitz maps on bounded sets from E to H1(R).
Moreover, we have

Qξ = −1

2
Hξ −

(

1

2
U2 − P

)

(1 + ζξ), (2.13)

Pξ = Q(1 + ζξ). (2.14)

Proof. We rewrite Q as

Q(X)(ξ) = −e−ζ(ξ)

4

∫

R

χ{η<ξ}e
−|ξ−η|eζ(η)

[

U(η)2(1 + ζξ(η)) + Hξ(η)
]

dη

+
eζ(ξ)

4

∫

R

χ{η>ξ}e
−|ξ−η|e−ζ(η)

[

U(η)2(1 + ζξ(η)) + Hξ(η)
]

dη, (2.15)

where χB denotes the indicator function of a given set B. We decompose Q into
the sum Q1 + Q2 where Q1 and Q2 are the operators corresponding to the two
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terms on the right-hand side of (2.15). Let h(ξ) = χ{ξ>0}(ξ)e
−ξ and A be the

map defined by A : v 7→ h ? v. Then, Q1 can be rewritten as

Q1(X)(ξ) = −e−ζ(ξ)

4
A ◦ R(ζ, U, H)(ξ) (2.16)

where R is the operator from E to L2(R) given by R(ζ, U, H)(t, ξ) = χ{η<ξ}e
ζ(U2+

U2ζξ +Hξ). We claim that A is continuous from L2(R) into H1(R). The Fourier
transform of h can easily be computed, and we obtain

ĥ(η) =

∫

R

h(ξ)e−2iπηξ dξ =
1

1 + 2iπη
. (2.17)

The H1(R) norm can be expressed in term of the Fourier transform as follows,
see, e.g., [19],

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥ ? v

∥

∥

∥

L2(R)
.

Since ĥ ? v = ĥv̂, we have

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥv̂

∥

∥

∥

L2(R)

≤ C ‖v̂‖L2(R) by (2.17)

= C ‖v‖L2(R) by Plancherel equality

for some constant C. Hence, A : L2(R) → H1(R) is continuous. We prove that
R(ζ, U, H) belongs to L2(R) by using the assumption that g(0) = 0. Then,
A ◦R(ζ, U, H) belongs to H1. We say that an operator is B-Lipschitz when it is
Lipschitz on bounded sets. Let us prove that Q1 : E → H1(R) is B-Lipschitz. It
is not hard to prove that R is B-Lipschitz from E into L2(R) and therefore from
E into H−1(R). Since A : H−1(R) → H1(R) is linear and continuous, A ◦ R is
B-Lipschitz from E to H1(R). Then, we use the following lemma whose proof is
left to the reader.

Lemma 2.2. Let R1 : E → V and R2 : E → H1(R), or R2 : E → V , be two
B-Lipschitz maps. Then, the product X 7→ R1(X)R2(X) is also a B-Lipschitz
map from E to H1(R), or from E to V .

Since the mapping X 7→ e−ζ is B-Lipschitz from E to V , Q1 is the product
of two B-Lipschitz maps, one from E to H1(R) and the other from E to V , it is
B-Lipschitz map from E to H1(R). Similarly, one proves that Q2 is B-Lipschitz
and therefore Q is B-Lipschitz. Furthermore, P is B-Lipschitz. The formulas
(2.13) and (2.14) are obtained by direct computation using the product rule, see
[18, p. 129]. �

In the next theorem, by using a contraction argument, we prove the short-time
existence of solutions to (2.10).

Theorem 2.3. Given X̄ = (ζ̄, Ū , H̄) in E, there exists a time T depending only
on
∥

∥X̄
∥

∥

E
such that the system (2.10) admits a unique solution in C1([0, T ], E)

with initial data X̄.
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Proof. Solutions of (2.10) can be rewritten as

X(t) = X̄ +

∫ t

0

F (X(τ)) dτ (2.18)

where F : E → E is given by F (X) = (U,−Q(X), U 3 − 2P(X)U) where X =
(ζ, U, H). The integrals are defined as Riemann integrals of continuous functions
on the Banach space E. Using Lemma 2.1, we can check that each component of
F (X) is a product of functions that satisfy one of the assumptions of Lemma 2.2
and using this same lemma, we obtain that F (X) is a Lipchitz function on any
bounded set of E. Since E is a Banach space, we use the standard contraction
argument to prove the theorem. �

We now turn to the proof of existence of global solutions of (2.10). We are
interested in a particular class of initial data that we are going to make precise
later, see Definition 2.6. In particular, we will only consider initial data that

belong to E ∩
[

W 1,∞(R)
]3

where W 1,∞(R) = {f ∈ Cb(R) | fξ ∈ L∞(R)}. Given

(ζ̄, Ū , H̄) ∈ E ∩ [W 1,∞(R)]3, we consider the short-time solution (ζ, U, H) ∈
C([0, T ], E) of (2.10) given by Theorem 2.3. Using the fact that Q and P are
Lipschitz on bounded sets (Lemma 2.1) and, since X ∈ C([0, T ], E), we can prove
that P and Q belongs to C([0, T ], H1(R)). We now consider U , P and Q as given
function in C([0, T ], H1(R)). Then, for any fixed ξ ∈ R, we can solve the system
of ordinary differential equations






























d

dt
α(t, ξ) = β(t, ξ),

d

dt
β(t, ξ) =

1

2
γ(t, ξ) +

[

(
1

2
U2 − P )(t, ξ)

]

(1 + α(t, ξ)),

d

dt
γ(t, ξ) = − [2(Q U)(t, ξ)] (1 + α(t, ξ)) +

[

(3U2 − 2P )(t, ξ)
]

β(t, ξ),

(2.19)

which is obtained by substituting ζξ , Uξ and Hξ in (2.12) by the unknowns α, β,
and γ, respectively. We have to specify the initial conditions for (2.19). Let A
be the following set

A = {ξ ∈ R |
∣

∣Ūξ(ξ)
∣

∣ ≤
∥

∥Ūξ

∥

∥

L∞(R)
,
∣

∣H̄ξ(ξ)
∣

∣ ≤
∥

∥H̄ξ

∥

∥

L∞(R)
,
∣

∣ζ̄ξ(ξ)
∣

∣ ≤
∥

∥ζ̄ξ

∥

∥

L∞(R)
},

We have that A has full measure, that is, meas(Ac) = 0. For ξ ∈ A we define
(α(0, ξ), β(0, ξ), γ(0, ξ)) = (Ūξ(ξ), H̄ξ(ξ), ζ̄ξ(ξ)). However, for ξ ∈ Ac we take
(α(0, ξ), β(0, ξ), γ(0, ξ)) = (0, 0, 0).

Lemma 2.4. Given initial condition X̄ = (Ū , H̄, ζ̄) ∈ E ∩ [W 1,∞(R)]3, we con-
sider the solution X = (ζ, U, H) ∈ C1([0, T ], E) of (2.19) given by Theorem 2.3.
Then, X ∈ C1([0, T ], E ∩ [W 1,∞(R)]3). The functions α(t, ξ), β(t, ξ) and γ(t, ξ)
which are obtained by solving (2.19) for any fixed given ξ with the initial condi-
tion specified above, coincide for almost every ξ and for all time t with ζξ, Uξ

and Hξ, respectively, that is, for all t ∈ [0, T ], we have

(α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ), Hξ(t, ξ)) (2.20)
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for almost every ξ ∈ R.

Thus, this lemma allows us to pick up a special representative for (ζξ , Uξ, Hξ)
given by (α, β, γ), which is defined for all ξ ∈ R and which, for any given ξ,
satisfies the ordinary differential equation (2.19). In the remaining we will of
course identify the two and set (ζξ , Uξ, Hξ) equal to (α, β, γ). To prove this
lemma, we will need the following proposition which is adapted from [27, p. 134,
Corollary 2].

Proposition 2.5. Let R be a bounded linear operator on a Banach space X into
a Banach space Y . Let f be in C([0, T ], X). Then, Rf belongs to C([0, T ], Y )
and therefore is Riemann integrable, and

∫

[0,T ]
Rf(t) dt = R

∫

[0,T ]
f(t) dt.

Proof of Lemma 2.4. We introduce the Banach space of everywhere bounded
function B∞(R) whose norm is naturally given by ‖f‖B∞(R) = supξ∈R |f(ξ)|.
Obviously, Cb(R) is included in B∞(R). We define (α, β, γ) as the solution of

(2.19) in [B∞(R)]3 ∩
[

L2(R)
]3

with initial data as given above. Thus, strictly
speaking, this is a different definition than the one given in the lemma but we
will see that they are in fact equivalent. We note that the system (2.19) is affine
(it consists of a sum of a linear transformation and a constant) and therefore it

is not hard to prove, by using a contraction argument in [B∞(R)]
3 ∩

[

L2(R)
]3

,
the short-time existence of solutions. Moreover, the solution exists on [0, T ],
the interval on which (ζ, U, H) is defined. Let us assume the opposite. Then,
Z1(t) = ‖α(t, · )‖B∞(R)∩L2(R) + ‖β(t, · )‖B∞(R)∩L2(R) + ‖γ(t, · )‖B∞(R)∩L2(R) has

to blow up when t approaches some time strictly smaller than T . We rewrite
(2.19) in integral form:



































α(t) = α(0) +

∫ t

0

β(τ) dτ,

β(t) = β(0) +

∫ t

0

(

1

2
γ + (

1

2
U2 − P )(1 + α)

)

(τ) dτ,

γ(t) = γ(0) +

∫ t

0

(

−2Q U(1 + α) + (3U2 − 2P )β
)

(τ) dτ.

(2.21)

Note that in (2.21) all the terms belong to B∞(R) ∩ L2(R) and the equalities
hold in this space. After taking the norms on both sides of the three equations
in (2.21) and adding them term by term, we obtain the following inequality

Z1(t) ≤ Z1(0) + CT + C

∫ t

0

Z1(τ) dτ

where C is a constant which depends on the C([0, T ], H1(R))-norms of U , P
and Q, which, by assumption, are bounded. From Gronwall’s lemma, we get
Z1(t) ≤ (Z1(0) + CT )eCT and therefore Z1(t) cannot blow up and α, β and γ
belong to C1([0, T ], B∞(R) ∩ L2(R)). For any given ξ, the map f 7→ f(ξ) from
B∞(R) to R is linear and continuous. Hence, after applying this map to each
term in (2.21) and using Proposition 2.5, we recover the original definition of
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α, β and γ as solutions, for any given ξ ∈ R, of the system (2.19) of ordinary
differential equations in R3. The derivation map ∂ξ is continuous from V and
H1(R) into L2(R). We can apply it to each term in (2.10) written in integral
from and, by Proposition 2.5, this map commutes with the integral. We end up
with, after using (2.13) and (2.14),



































ζξ(t) = ζ̄ξ +

∫ t

0

Uξ(τ) dτ,

Uξ(t) = Ūξ +

∫ t

0

(

1

2
Hξ + (

1

2
U2 − P )(1 + ζξ)

)

(τ) dτ,

Hξ(t) = H̄ξ +

∫ t

0

(

−2Q U(1 + ζξ) + (3U2 − 2P )Uξ

)

(τ) dτ.

(2.22)

The injection map from B∞(R)∩L2(R) to L2(R) is of course continuous, we can
apply it to (2.21) and again use Proposition 2.5. Then, we can subtract each equa-
tion in (2.22) from the corresponding one in (2.21), take the norm and add them.
After introducing Z2(t) = ‖α(t, · ) − ζξ(t, · )‖L2(R) + ‖β(t, · ) − Uξ(t, · )‖L2(R) +

‖γ(t, · ) − Hξ(t, · )‖L2(R), we end up with the following equation

Z2(t) ≤ Z2(0) + C

∫ t

0

Z2(τ) dτ

where C is a constant which, again, only depends on the C([0, T ], H1(R))-norms,
of U , P and Q. By assumption on the initial conditions, we have Z2(0) = 0
because α(0) = ζ̄ξ , β(0) = Ūξ, γ(0) = H̄ξ almost everywhere and therefore, by
Gronwall’s lemma, we get Z2(t) = 0 for all t ∈ [0, T ]. This is just a reformulation
of (2.20), and this concludes the proof of the lemma. �

It is possible to carry out the contraction argument of Theorem 2.3 in the
Banach space [W 1,∞(R)]3 but the topology on [W 1,∞(R)]3 turns out to be too
strong for our purpose and that is why we prefer E whose topology is in some
sense weaker. Our goal is to find solutions of (1.4) with initial data ū in H1

because H1 is the natural space for the equation. Theorem 2.3 gives us the
existence of solutions to (2.10) for initial data in E. Therefore we have to find
initial conditions that match the initial data ū and belong to E. A natural choice
would be to use ȳ(ξ) = y(0, ξ) = ξ and Ū(ξ) = u(ξ). Then y(t, ξ) gives the
position of the particle which is at ξ at time t = 0. But, if we make this choice,
then H̄ξ = ū2 + ū2

x and Hξ does not belong to L2(R) in general. We consider
instead (ȳ, Ū , H̄) given by the relations

ξ =

∫ ȳ(ξ)

−∞

(ū2 + ū2
x) dx + ȳ(ξ), Ū = ū◦ȳ , and H̄ =

∫ ȳ

−∞

(

ū2 + ū2
x

)

dx. (2.23)

Later (see Remark 3.10), we will prove that (ȳ − Id, Ū , H̄) belongs to G where G
is defined as follows.
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Definition 2.6. The set G is composed of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈
[

W 1,∞(R)
]3

, (2.24a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (2.24b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.24c)

where we denote y(ξ) = ζ(ξ) + ξ.

Note that if all functions are smooth and yξ > 0, we have ux ◦ y =
Uξ

yξ
and

condition (2.24c) is equivalent to (2.4). For initial data in G, the solution of
(2.10) exists globally.

Lemma 2.7. Given initial data X̄ = (ζ̄ , Ū , H̄) in G, let X(t) = (ζ(t), U(t), H(t))
be the short-time solution of (2.10) in C([0, T ], E) for some T > 0 with initial
data (ζ̄ , Ū , H̄). Then,
(i) X(t) belongs to G for all t ∈ [0, T ],
(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R,
(iii) For all t ∈ [0, T ], limξ→±∞ H(t, ξ) exists and is independent of time.

We denote by A the set where the absolute values of ζ̄ξ(ξ), H̄ξ(ξ), and Ūξ(ξ) all
are smaller than

∥

∥X̄
∥

∥

[W 1,∞(R)]3
and where the inequalities in (2.24b) and (2.24c)

are satisfied for yξ, Uξ and Hξ . By assumption, we have meas(Ac) = 0 and we
set (Ūξ, H̄ξ , ζ̄ξ) equal to zero on Ac. Thus, as allowed by Lemma 2.4, we choose
a special representative for (ζ(t, ξ), U(t, ξ), H(t, ξ)) which satisfies (2.12) as an
ordinary differential equation, for every ξ ∈ R.

Proof. (i) We already proved in Lemma 2.4 that the space [W 1,∞(R)]3 is pre-
served and therefore X(t) satisfies (2.24a) for all t ∈ [0, T ]. Let us prove that
(2.24c) and the inequalities in (2.24b) hold for any ξ ∈ A and therefore almost
everywhere. We consider a fixed ξ in A and drop it in the notations when there
is no ambiguity. From (2.12), we have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ = UξHξ + (3U2Uξ − 2yξQU − 2PUξ)yξ,

and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 3UξU
2yξ − 2PUξyξ + HξUξ − 2y2

ξQU.

Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we have

yξHξ(t) = (y2
ξU2 + U2

ξ )(t) for all t ∈ [0, T ]. We have proved (2.24c). Let us
introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t
′) ≥ 0 for all t′ ∈ [0, t]}.

Here we recall that we consider a fixed ξ ∈ A and dropped it in the notation.
Assume that t∗ < T . Since yξ(t) is continuous with respect to time, we have

yξ(t
∗) = 0. (2.25)
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Hence, from (2.24c) that we just proved, Uξ(t
∗) = 0 and, by (2.12),

yξt(t
∗) = Uξ(t

∗) = 0. (2.26)

From (2.12), since yξ(t
∗) = Uξ(t

∗) = 0, we get

yξtt(t
∗) = Uξt(t

∗) =
1

2
Hξ(t

∗). (2.27)

If Hξ(t
∗) = 0, then (yξ , Uξ, Hξ)(t

∗) = (0, 0, 0) and, by the uniqueness of the
solution of (2.12), seen as a system of ordinary differential equations, we must
have (yξ, Uξ, Hξ)(t) = 0 for all t ∈ [0, T ]. This contradicts the fact that yξ(0) and
Hξ(0) cannot vanish at the same time (ȳξ + H̄ξ > 0 for all ξ ∈ A). If Hξ(t

∗) < 0,
then yξtt(t

∗) < 0 and, because of (2.25) and (2.26), there exists a neighborhood
U of t∗ such that y(t) < 0 for all t ∈ U \{t∗}. This contradicts the definition of t∗.
Hence, Hξ(t

∗) > 0 and, since we now have yξ(t
∗) = yξt(t

∗) = 0 and yξtt(t
∗) > 0,

there exists a neighborhood of t∗ that we again denote U such that yξ(t) > 0
for all t ∈ U \ {t∗}. This contradicts the fact that t∗ < T , and we have proved
the first inequality in (2.24b), namely that yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us
prove that Hξ(t) ≥ 0 for all t ∈ [0, T ]. This follows from (2.24c) when yξ(t) > 0.
Now, if yξ(t) = 0, then Uξ(t) = 0 from (2.24c) and we have seen that Hξ(t) < 0
would imply that yξ(t

′) < 0 for some t′ in a punctured neighborhood of t, which
is impossible. Hence, Hξ(t) ≥ 0 and we have proved the second inequality in
(2.24b). Assume that the third inequality in (2.24c) does not hold. Then, by
continuity, there exists a time t ∈ [0, T ] such that (yξ + Hξ)(t) = 0. Since yξ

and Hξ are positive, we must have yξ(t) = Hξ(t) = 0 and, by (2.24c), Uξ(t) = 0.
Since zero is a solution of (2.12), this implies that yξ(0) = Uξ(0) = Hξ(0), which
contradicts (yξ + Hξ)(0) > 0. The fact that limξ→−∞ H(t, ξ) = 0 will be proved
below in (iii).

(ii) We define the set

N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.
Fubini’s theorem gives us

meas(N ) =

∫

R

meas(Nξ) dξ =

∫

[0,T ]

meas(Nt) dt (2.28)

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0} and Nt = {ξ ∈ R | yξ(t, ξ) = 0}.
Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets N n

ξ defined
as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t

′, ξ) > 0 for all t′ ∈ [t−1/n, t+1/n]\{t}},
then

Nξ =
⋃

n∈N

Nn
ξ . (2.29)

Indeed, for all t ∈ Nξ, we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.24c) and
(2.12) and yξtt(t, ξ) = 1

2Hξ(t, ξ) > 0 from (2.12) and (2.24b) (yξ and Hξ cannot
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vanish at the same time for ξ ∈ A). This implies that, on a small punctured
neighborhood of t, yξ is strictly positive. Hence, t belongs to some N n

ξ for n

large enough. This proves (2.29). The set N n
ξ consists of isolated points that are

countable since, by definition, they are separated by a distance larger than 1/n
from one another. This means that meas(N n

ξ ) = 0 and, by the subadditivity of

the measure, meas(Nξ) = 0. It follows from (2.28) and since meas(Ac) = 0 that

meas(Nt) = 0 for almost every t ∈ [0, T ]. (2.30)

We denote by K the set of times such that meas(Nt) > 0, i.e.,

K = {t ∈ R+ | meas(Nt) > 0} . (2.31)

By (2.30), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and, therefore,
y(t, ξ) is strictly increasing and invertible (with respect to ξ).

(iii) For any given t ∈ [0, T ], since Hξ(t, ξ) ≥ 0, H(t, ξ) is an increasing function
with respect to ξ and therefore, as H(t, · ) ∈ L∞(R), H(t, ξ) has a limit when
ξ → ±∞. We denote those limits H(t,±∞). Since U(t, · ) ∈ H1(R), we have
limξ→±∞ U(t, ξ) = 0 for all t ∈ [0, T ]. We have

H(t, ξ) = H(0, ξ) +

∫ t

0

[

U3 − 2PU
]

(τ, ξ) dτ. (2.32)

We let ξ tend to ±∞. Since U and P are bounded in L∞([0, T ] × R), we can
apply the Lebesgue dominated convergence theorem and it follows from (2.32), as
limξ→±∞ U(t, ξ) = 0, that H(t,±∞) = H(0,±∞) for all t ∈ [0, T ]. Since X̄ ∈ G,
H(0,−∞) = 0 and therefore H(t,−∞) = 0 for all t ∈ [0, T ]. �

We are now ready to prove global existence of solutions to (2.10).

Theorem 2.8. For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.10) admits a unique
global solution X(t) = (y(t), U(t), H(t)) in C1(R+, E) with initial data X̄ =
(ȳ, Ū , H̄). We have X(t) ∈ G for all times. If we equip G with the topology
inducted by the E-norm, then the mapping S : G × R+ → G defined as

St(X̄) = X(t)

is a continuous semigroup.

Proof. The solution has a finite time of existence T only if ‖(ζ, U, H)(t, · )‖E

blows up when t tends to T because, otherwise, by Theorem 2.3, the solution can
be prolongated by a small time interval beyond T . Let (ζ, U, H) be a solution of
(2.10) in C([0, T ), E) with initial data (ζ̄, Ū , H̄). We want to prove that

sup
t∈[0,T )

‖(ζ(t, · ), U(t, · ), H(t, · ))‖E < ∞. (2.33)

We have already seen that H(t, ξ) is an increasing function in ξ for all t and,
from Lemma 2.7, we have limξ→∞ H(t, ξ) = limξ→∞ H(0, ξ). This shows that
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supt∈[0,T ) ‖H(t, · )‖L∞(R) is bounded by
∥

∥H̄
∥

∥

L∞(R)
and therefore is finite. To

simplify the notation we suppress the dependence in t for the moment. We have

U2(ξ) = 2

∫ ξ

−∞

U(η)Uξ(η) dη = 2

∫

{η≤ξ|yξ(η)>0}

U(η)Uξ(η) dη (2.34)

since, from (2.24c), Uξ(ξ) = 0 when yξ(ξ) = 0. For almost every ξ such that
yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| =

∣

∣

∣

∣

∣

√
yξU(ξ)

Uξ(ξ)
√

yξ(ξ)

∣

∣

∣

∣

∣

≤ 1

2

(

U(ξ)2yξ(ξ) +
U2

ξ (ξ)

yξ(ξ)

)

=
1

2
Hξ(ξ),

from (2.24c). Inserting this inequality in (2.34), we obtain U 2(ξ) ≤ H(ξ) and
supt∈[0,T ) ‖U(t, · )‖L∞(R) is therefore finite. Then, from the governing equation

(2.10), it follows that

|ζ(t, ξ)| ≤ |ζ(0, ξ)| + sup
t∈[0,T )

‖U(t, · )‖L∞(R) T

and supt∈[0,T ) ‖ζ(t, · )‖L∞(R) < ∞. Let us prove that supt∈[0,T ) ‖Q(t, · )‖L∞(R) < ∞.

After one integration by parts, Q can be rewritten as

Q(t, ξ) = −1

4

∫

R

e−|y(ξ)−y(η)|yξ(η)
[

sgn(ξ − η)U(η)2 − H(η)
]

dη − 1

2
H(t, ξ).

Hence, we get, after a change of variable,

|Q(t, ξ)| ≤ C

∫

R

e−|y(ξ)−y(η)|yξ(η) dη + C ≤ 3C,

where the constant C is a constant which depends only on supt∈[0,T ) ‖H(t, · )‖L∞(R)

and supt∈[0,T ) ‖U(t, · )‖L∞(R). Similarly, one proves that that ‖P (t, · )‖L∞(R) < ∞.

We denote

C1 = sup
t∈[0,T )

{‖U(t, · )‖L∞(R) + ‖H(t, · )‖L∞(R)

+ ‖ζ(t, · )‖L∞(R) + ‖P (t, · )‖L∞(R) + ‖Q(t, · )‖L∞(R)}.
We have just proved that C1 < ∞. Let t ∈ [0, T ). Looking back at (2.16) and
the definition of R, we obtain that

‖R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for some constant C depending only on C1. Since A is a continuous linear map-
ping from L2(R) to H1(R), we get

‖A ◦ R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for another constant C which again only depends on C1. From now on, we
denote generically by C such constants that only depends on C1. From (2.16),
as
∥

∥e−ζ(t, · )
∥

∥

L∞(R)
≤ C, we obtain that

‖Q1(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))
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The same bound holds for Q2 and therefore

‖Q(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.35)

Similarly, one proves

‖P (t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.36)

Let Z(t) = ‖U(t, · )‖L2(R)+‖ζξ(t, · )‖L2(R)+‖Uξ(t, · )‖L2(R)+‖Hξ(t, · )‖L2(R), then

the theorem will be proved once we have established that supt∈[0,T ) Z(t) < ∞.

From the integrated version of (2.10) and (2.22), after taking the L2(R)-norms
on both sides, adding the relevant terms and using (2.36), we obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ.

Hence, Gronwall’s lemma gives us that supt∈[0,T ) Z(t) < ∞. From standard
ordinary differential equation theory, we infer that St is a continuous semi-group.

�

3. From Eulerian to Lagrangian coordinates and vice versa

As noted in [4], even if H1(R) is a natural space for the equation, there is no
hope to obtain a semigroup of solutions by only considering H1(R). Thus, we
introduce the following space D, which characterizes the solutions in Eulerian
coordinates :

Definition 3.1. The set D is composed of all pairs (u, µ) such that u belongs to
H1(R) and µ is a positive finite Radon measure whose absolute continuous part,
µac, satisfies

µac = (u2 + u2
x) dx. (3.1)

We derived the equivalent system (2.10) by using characteristics. Since y
satisfies (2.2), y, for a given ξ, can also be seen as the position of a particle
evolving in the velocity field u, where u is the solution of the Camassa–Holm
equation. We are then working in Lagrangian coordinates. In [13], the Camassa–
Holm equation is derived as a geodesic equation on the group of diffeomorphism
equipped with a right-invariant metric. In the present paper, the geodesic curves
correspond to y(t, · ). Note that y does not remain a diffeomorphism since it
can become non invertible, which agrees with the fact that the solutions of the
geodesic equation may break down, see [11]. The right-invariance of the metric
can be interpreted as an invariance with respect to relabeling as noted in [2]. This
is a property that we also observe in our setting. We denote by G the subgroup
of the group of homeomorphisms from R to R such that

f − Id and f−1 − Id both belong to W 1,∞(R) (3.2)

where Id denotes the identity function. The set G can be interpreted as the set
of relabeling functions. For any α > 1, we introduce the subsets Gα of G defined
by

Gα = {f ∈ G | ‖f − Id‖W 1,∞(R) +
∥

∥f−1 − Id
∥

∥

W 1,∞(R)
≤ α}.
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The subsets Gα do not possess the group structure of G. The next lemma provides
a useful characterization of Gα.

Lemma 3.2. Let α ≥ 0. If f belongs to Gα, then 1/(1+ α) ≤ fξ ≤ 1+ α almost
everywhere. Conversely, if f is absolutely continuous, f − Id ∈ L∞(R) and there
exists c ≥ 1 such that 1/c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for some α
depending only on c and ‖f − Id‖L∞(R).

Proof. Given f ∈ Gα, let B be the set of points where f−1 is differentiable.
Rademacher’s theorem says that meas(Bc) = 0. For any ξ ∈ f−1(B), we have

lim
ξ′→ξ

f−1(f(ξ′)) − f−1(f(ξ))

f(ξ′) − f(ξ)
= (f−1)ξ(f(ξ))

because f is continuous and f−1 is differentiable at f(ξ). On the other hand, we
have

f−1(f(ξ′)) − f−1(f(ξ))

f(ξ′) − f(ξ)
=

ξ′ − ξ

f(ξ′) − f(ξ)
.

Hence, f is differentiable for any ξ ∈ f−1(B) and

fξ(ξ) ≥
1

‖(f−1)ξ‖L∞(R)

≥ 1

1 + α
. (3.3)

The estimate (3.3) holds only on f−1(B) but, since meas(Bc) = 0 and f−1 is
Lipschitz and one-to-one, meas(f−1(Bc)) = 0 (see, e.g., [1, Remark 2.72]), and
therefore (3.3) holds almost everywhere. We have fξ ≤ 1+‖fξ − 1‖L∞(R) ≤ 1+α.

Let us now consider a function f which is absolutely continuous and such that
f − Id ∈ L∞(R) and 1/c ≤ fξ ≤ c almost everywhere for some c ≥ 1. Since
fξ is bounded, f and therefore f − Id are Lipschitz and f − Id ∈ W 1,∞(R).
Since fξ ≥ 1/c almost everywhere, f is strictly increasing and, since it is also
continuous, it is invertible. As f is Lipschitz, we can make the following change
of variables (see, for example, [1]) and get that, for all ξ1, ξ2 in R such that
ξ1 < ξ2,

f−1(ξ2) − f−1(ξ1) =

∫

[f−1(ξ1),f−1(ξ2)]

fξ

fξ
dξ ≤ c(ξ2 − ξ1).

Hence, f−1 is Lipschitz and (f−1)ξ ≤ c. We have f−1(ξ′) − ξ′ = ξ − f(ξ) for
ξ′ = f(ξ) and therefore ‖f − Id‖L∞(R) =

∥

∥f−1 − Id
∥

∥

L∞(R)
. Finally, we get

‖f − Id‖W 1,∞(R) +
∥

∥f−1 − Id
∥

∥

W 1,∞(R)
≤ 2 ‖f − Id‖W 1,∞(R) + 2

+ ‖fξ‖L∞(R) +
∥

∥(f−1)ξ

∥

∥

L∞(R)

≤ 2 ‖f − Id‖L∞(R) + 2 + 2c.

�

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | y + H ∈ Gα},
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and

F = {X = (y, U, H) ∈ G | y + H ∈ G}.
For α = 0, G0 = {Id}. As we will see, the space F0 will play a special role. These
sets are relevant only because they are in some sense preserved by the governing
equation (2.10) as the next lemma shows.

Lemma 3.3. The space F is preserved by the governing equation (2.10). More
precisely, given α, T ≥ 0 and X̄ ∈ Fα, we have

St(X̄) ∈ Fα′

for all t ∈ [0, T ] where α′ only depends on T , α and
∥

∥X̄
∥

∥

E
.

Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t), H(t)) the solution
of (2.10) with initial data X̄ and set h(t, ξ) = y(t, ξ)+H(t, ξ), h̄(ξ) = ȳ(ξ)+H̄(ξ).
By definition, we have h̄ ∈ Gα and, from Lemma 3.2, 1/c ≤ h̄ξ ≤ c almost
everywhere, for some constant c > 1 depending only α. We consider a fixed ξ
and drop it in the notation. Applying Gronwall’s inequality backward in time to
(2.12), we obtain

|yξ(0)| + |Hξ(0)| + |Uξ(0)| ≤ eCT (|yξ(t)| + |Hξ(t)| + |Uξ(t)|) (3.4)

for some constant C which depends on ‖X(t)‖C([0,T ],E), which itself depends only

on
∥

∥X̄
∥

∥

E
and T . From (2.24c), we have

|Uξ(t)| ≤
√

yξ(t)Hξ(t) ≤
1

2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.4) gives us

1

c
≤ ȳξ + H̄ξ ≤ 3

2
eCT (yξ(t) + Hξ(t)),

and hξ(t) = yξ(t)+Hξ(t) ≥ 2
3ce−CT . Similarly, by applying Gronwall’s lemma for-

ward in time, we obtain yξ(t)+Hξ(t) ≤ 3
2ceCT . We have ‖(y + H)(t) − ξ‖L∞(R) ≤

‖X(t)‖C([0,T ],E) ≤ C for another constant C which also only depends on
∥

∥X̄
∥

∥

E

and T . Hence, applying Lemma 3.2, we obtain that y(t, · ) + H(t, · ) ∈ Gα′ and
therefore X(t) ∈ Fα′ for some α′ depending only on α, T and

∥

∥X̄
∥

∥

E
. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function f ∈ G,
we denote (y ◦ f, U ◦ f, H ◦ f) by X ◦ f .

Proposition 3.4. The map from G × F to F given by (f, X) 7→ X ◦ f defines
an action of the group G on F .

Proof. We have to prove that X ◦ f belongs to F for any X = (y, U, H) ∈ F and
f ∈ G. We denote X̄ = (ȳ, Ū , H̄) = X ◦ f . As compositions of two Lipschitz
maps, ȳ, Ū and H̄ are Lipschitz. We have

‖ȳ − Id‖L∞(R) ≤ ‖ȳ ◦ f − f‖L∞(R) + ‖f − Id‖L∞(R)

≤ ‖ȳ − Id‖L∞(R) + ‖f − Id‖L∞(R) < +∞.
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Hence, (ȳ − Id, Ū , H̄) ∈ [W 1,∞(R)]3. Let us prove that

ȳξ = yξ◦f fξ, Ūξ = Uξ◦f fξ and H̄ξ = Hξ◦f fξ (3.5)

almost everywhere. Let B1 be the set where y is differentiable and B2 the set
where ȳ and f are differentiable. Using Radamacher’s theorem, we get that
meas(Bc

1) = meas(Bc
2) = 0. For ξ ∈ B3 = B2 ∩ f−1(B1), we consider a sequence

ξi converging to ξ (ξi 6= ξ). We have

y(f(ξi)) − y(f(ξ))

f(ξi) − f(ξ)

f(ξi) − f(ξ)

ξi − ξ
=

ȳ(ξi) − ȳ(ξ)

ξi − ξ
. (3.6)

Since f is continuous, f(ξi) converges to f(ξ) and, as y is differentiable at f(ξ),
the left-hand side of (3.6) tends to yξ ◦f(ξ) fξ(ξ). The right-hand side of (3.6)
tends to ȳξ(ξ), and we get that

yξ(f(ξ))fξ(ξ) = ȳξ(ξ) (3.7)

for all ξ ∈ B3. Since f−1 is Lipschitz, one-to-one and meas(Bc
1) = 0, we have

meas(f−1(B1)
c) = 0 and therefore (3.7) holds everywhere. One proves the two

other identities in (3.5) similarly. From Lemma 3.2, we have that fξ > 0 al-
most everywhere. Then, using (3.5) we easily check that (2.24b) and (2.24c) are
fulfilled. Thus, we have proved that (ȳ − Id, Ū , H̄) fulfills (2.24). It remains to
prove that (ȳ − Id, Ū , H̄) ∈ E. Since f ∈ G, f ∈ Gα for some large enough α
and, by Lemma 3.2, there exists a constant c > 0 such that 1/c ≤ fξ ≤ c almost
everywhere. We have, after a change of variables,

∥

∥Ū
∥

∥

2

L2(R)
=

∫

R

(U ◦f )2 dξ ≤ c

∫

R

(U ◦f )2fξ dξ = c ‖U‖2
L2(R) .

Hence, Ū ∈ L2(R). Similarly, one proves that yξ − 1, Uξ and Hξ belong to L2(R)
and therefore (y, U, H) ∈ G. We have ȳ + H̄ = (y + H) ◦ f which implies, since
y + H and f belongs to G and G is a group, that ȳ + H̄ ∈ G. Therefore X̄ ∈ F
and the proposition is proved. �

Since G is acting on F , we can consider the quotient space F/G of F with
respect to the action of the group G. The equivalence relation on F is defined
as follows: For any X, X ′ ∈ F , X and X ′ are equivalent if there exists f ∈ G
such that X ′ = X ◦ f . We denote by Π(X) = [X ] the projection of F into the
quotient space F/G. We introduce the mapping Γ: F → F0 given by

Γ(X) = X◦( y + H)−1

for any X = (y, U, H) ∈ F . We have Γ(X) = X when X ∈ F0. It is not hard to
prove Γ is invariant under the G action, that is, Γ(X ◦ f) = Γ(X) for any X ∈ F
and f ∈ G. Hence, there corresponds to Γ a mapping Γ̃ from the quotient space
F/G to F0 given by Γ̃([X ]) = Γ(X) where [X ] ∈ F/G denotes the equivalence

class of X ∈ F . For any X ∈ F0, we have Γ̃ ◦ Π(X) = Γ(X) = X . Hence,

Γ̃ ◦Π|F0
= Id|F0

. Any topology defined on F0 is naturally transported into F/G
by this isomorphism. We equip F0 with the metric induced by the E-norm, i.e.,
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dF0
(X, X ′) = ‖X − X ′‖E for all X, X ′ ∈ F0. Since F0 is closed in E, this metric

is complete. We define the metric on F/G as

dF/G([X ], [X ′]) = ‖Γ(X) − Γ(X ′)‖E ,

for any [X ], [X ′] ∈ F/G. Then, F/G is isometrically isomorphic with F0 and the
metric dF/G is complete.

Lemma 3.5. Given α ≥ 0. The restriction of Γ to Fα is a continuous mapping
from Fα to F0.

Remark 3.6. The mapping Γ is not continuous from F to F0. The spaces Fα

were precisely introduced in order to make the mapping Γ continuous.

Proof. As for F0, we equip Fα with the topology induced by the E-norm. Let
Xn = (yn, Un, Hn) ∈ Fα be a sequence that converges to X = (y, U, H) in Fα.
We denote X̄n = (ȳn, Ūn, H̄n) = Γ(Xn) and X̄ = (ȳ, Ū , H̄) = Γ(X). By definition
of F0, we have H̄n = −ζ̄n (recall that ζn = yn − Id). Let us prove first that H̄n

tends to H̄ in L∞(R). We denote fn = yn + Hn, f = y + H , and we have
fn, f ∈ Gα. Thus H̄n − H̄ = (Hn − H) ◦ fn

−1 + H̄ ◦ f ◦ fn
−1 − H̄ and we have

∥

∥H̄n − H̄
∥

∥

L∞(R)
≤ ‖Hn − H‖L∞(R) +

∥

∥H̄ ◦ f − H̄ ◦ fn

∥

∥

L∞(R)
. (3.8)

From the definition of F0, we know that H̄ is Lipschitz with Lipschitz constant
smaller than one. Hence,

∥

∥H̄ ◦ f − H̄ ◦ fn

∥

∥

L∞(R)
≤ ‖fn − f‖L∞(R) . (3.9)

Since Hn and fn converges to H and f , respectively, in L∞(R), from (3.8) and
(3.9), we get that H̄n converges to H̄ in L∞(R). Let us prove now that H̄n,ξ

tend to H̄ξ in L2(R). We have H̄n,ξ − H̄ξ =
Hn,ξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1 which can be

decomposed into

H̄n,ξ − H̄ξ =

(

Hn,ξ − Hξ

fn,ξ

)

◦ fn
−1 +

Hξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1. (3.10)

Since fn ∈ Gα, there exists a constant c > 0 independent of n such that 1/c ≥
fn,ξ ≥ c almost everywhere, see Lemma 3.2. We have

∥

∥

∥

∥

(

Hn,ξ − Hξ

fn,ξ

)

◦ fn
−1

∥

∥

∥

∥

2

L2(R)

=

∫

R

(Hn,ξ − Hξ)
2 1

fn,ξ
dξ ≤ c ‖Hn,ξ − Hξ‖2

L2(R) ,

(3.11)
where we have made the change of variables ξ′ = fn

−1(ξ). Hence, the left-hand

side of (3.11) converges to zero. If we can prove that
Hξ

fn,ξ
◦ fn

−1 → Hξ

fξ
◦ f−1 in

L2(R), then, using (3.10), we get that H̄n,ξ → H̄ξ in L2(R), which is the desired
result. We have

Hξ

fn,ξ
◦ fn

−1 =
(H̄ξ ◦ f)fξ

fn,ξ
◦ fn

−1 = (H̄ξ ◦ gn)gn,ξ
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where gn = f ◦ fn
−1. Let us prove that limn→∞ ‖gn,ξ − 1‖L2(R) = 0. We have,

after using a change of variables,

‖gn,ξ − 1‖2
L2(R) =

∫

R

(

fξ

fn,ξ
◦ fn

−1 − 1

)2

dξ = c ‖fξ − fn,ξ‖2
L2(R) . (3.12)

Hence, since fn,ξ → fξ in L2(R), limn→∞ ‖gn,ξ − 1‖L2(R) = 0. We have

∥

∥H̄ξ ◦ gngn,ξ − H̄ξ

∥

∥

L2(R)
≤
∥

∥H̄ξ ◦ gn

∥

∥

L∞(R)
‖gn,ξ − 1‖L2(R)+

∥

∥H̄ξ ◦ gn − H̄ξ

∥

∥

L2(R)
.

(3.13)
We have

∥

∥H̄ξ ◦ gn

∥

∥

L∞(R)
≤ 1 since, as we already noted, H̄ is Lipschitz with

Lipschitz constant smaller than one. Hence, the first term in the sum in (3.13)
converges to zero. As far as the second term is concerned, one can always ap-
proximate H̄ξ in L2(R) by a continuous function h with compact support. After
observing that 1/c2 ≤ gn,ξ ≤ c2 almost everywhere, we can prove, as we have done

several times now, that ‖Hξ ◦ gn − h ◦ gn‖2
L2(R) ≤ c2 ‖Hξ − h‖2

L2(R) and h◦gn can

be chosen arbitrarily close to Hξ ◦ gn in L2(R) independently of n, that is, for all
ε > 0, there exists h such that

‖Hξ ◦ gn − h ◦ gn‖L2(R) ≤
ε

3
and ‖Hξ − h‖L2(R) ≤

ε

3
(3.14)

for all n. Since fn → f in L∞(R), gn → Id in L∞(R) and there exists a com-
pact K independent of n such that supp(h ◦ gn) ⊂ K. Then, by the Lebesgue
dominated convergence theorem, we obtain that h ◦ gn → h in L2(R). Hence, for
n large enough, we have ‖h ◦ gn − h‖L2(R) ≤ ε

3 which, together with (3.14), im-

plies
∥

∥H̄ξ ◦ gn − H̄ξ

∥

∥

L2(R)
≤ ε, and H̄ξ ◦ gn → H̄ξ in L2(R). From (3.10), (3.11),

(3.12) and (3.13), we obtain that H̄n,ξ → H̄ξ in L2(R). It follows that ζ̄n,ξ → ζ̄ξ

in L2(R) and, similarly, one proves that Ūn,ξ → Ūξ in L2(R). It remains to prove
that Un → U in L2(R). We write

Ūn − Ū = (Un − U) ◦ fn
−1 + U ◦ fn

−1 − U ◦ f−1. (3.15)

We have, after a change of variable,

∥

∥(Un − U) ◦ fn
−1
∥

∥

2

L2(R)
=

∫

R

(Un − U)2fn,ξ dξ ≤ c ‖Un − U‖2
L2(R) . (3.16)

We also have, after the same change of variable, that

∥

∥U ◦ fn
−1 − U ◦ f−1

∥

∥

2

L2(R)
≤ c

∫

R

(U − U ◦ f−1 ◦ fn)2 dξ. (3.17)

By approximating U by continuous functions with compact support as we did
before, we prove that

∫

R
(U − U ◦ f−1 ◦ fn)2 tends to zero. Hence, by (3.15),

(3.16) and (3.17), we get that Ūn → U in L2(R), which concludes the proof of
the lemma. �
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3.1. Continuous semigroup of solutions in F/G. We denote by S : F ×
R+ → F the continuous semigroup which to any initial data X̄ ∈ F associates
the solution X(t) of the system of differential equation (2.10) at time t. As
we indicated earlier, the Camassa–Holm equation is invariant with respect to
relabeling, more precisely, using our terminology, we have the following result.

Theorem 3.7. For any t > 0, the mapping St : F → F is G-equivariant, that is,

St(X◦f ) = St(X)◦f (3.18)

for any X ∈ F and f ∈ G. Hence, the mapping S̃t from F/G to F/G given by

S̃t([X ]) = [StX ]

is well-defined. It generates a continuous semigroup.

Proof. For any X0 = (y0, U0, H0) ∈ F and f ∈ G, we denote X̄0 = (ȳ0, Ū0, H̄0) =
X0 ◦ f , X(t) = St(X0) and X̄(t) = St(X̄0). We claim that X(t) ◦ f satis-
fies (2.10) and therefore, since X(t) ◦ f and X̄(t) satisfy the same system of
differential equation with the same initial data, they are equal. We denote
X̂(t) = (ŷ(t), Û(t), Ĥ(t)) = X(t) ◦ f . We have

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − y(η))
) [

U(η)2yξ(η) + Hξ(η)
]

dη.

(3.19)

We have ŷξ(ξ) = yξ(f(ξ))fξ(ξ) and Ĥξ(ξ) = Hξ(f(ξ))fξ(ξ) for almost every
ξ ∈ R. Hence, after the change of variable η = f(η′), we get from (3.19) that

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − ŷ(η))
)

[

Û(η)2ŷξ(η) + Ĥξ(η)
]

dη.

We treat similarly the other terms in (2.10), and it follows that (ŷ, Û , Ĥ) is

a solution of (2.10). Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same system of
ordinary differential equations with the same initial data, they are equal, i.e.,
X̄(t) = X(t)◦f and (3.18) is proved. We have the following diagram:

F0
Π

// F/G

Fα

Γ

OO

F0

St

OO

Π
// F/G

S̃t

OO

(3.20)

on a bounded domain of F0 whose diameter together with t determines the con-
stant α, see Lemma 3.3. By the definition of the metric on F/G, the mapping
Π is an isometry from F0 to F/G. Hence, from the diagram (3.20), we see that

S̃t : F/G → F/G is continuous if and only if Γ ◦ St : F0 → F0 is continuous. Let
us prove that Γ◦St : F0 → F0 is sequentially continuous. We consider a sequence
Xn ∈ F0 that converges to X ∈ F0 in F0, that is, limn→∞ ‖Xn − X‖E = 0. From
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Theorem 2.8, we get that limn→∞ ‖St(Xn) − St(X)‖E = 0. Since Xn → X in E,
there exists a constant C ≥ 0 such that ‖Xn‖ ≤ C for all n. Lemma 3.3 gives us
that St(Xn) ∈ Fα for some α which depends on C and t. Hence, St(Xn) → St(X)
in Fα. Then, by Lemma 3.5, we obtain that Γ ◦ St(Xn) → Γ ◦ St(X) in F0. �

3.2. Mappings between the two coordinate systems. Our next task is to
derive the correspondence between Eulerian coordinates (functions in D) and
Lagrangian coordinates (functions in F/G). Earlier we considered initial data
in D with a special structure: The energy density µ was given by (u2 + u2

x) dx
and therefore µ did not have any singular part. The set D however allows the
energy density to have a singular part and a positive amount of energy can
concentrate on a set of Lebesgue measure zero. We constructed corresponding
initial data in F0 by the means of (2.23). This construction can be generalized
in the following way. Let us denote by L : D → F/G the mapping transforming
Eulerian coordinates into Lagrangian coordinates whose definition is contained
in the following theorem.

Theorem 3.8. For any (u, µ) in D, let

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (3.21a)

H(ξ) = ξ − y(ξ), (3.21b)

U(ξ) = u◦y(ξ) . (3.21c)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G to be the equivalence class of
(y, U, H).

Proof. Clearly (3.21a) implies that y is increasing and limξ→±∞ y(ξ) = ±∞. For
any z > y(ξ), we have ξ ≤ z + µ((−∞, z)). Hence, ξ − z ≤ µ(R) and, since we
can choose z arbitrarily close to y(ξ), we get ξ − y(ξ) ≤ µ(R). It is not hard to
check that y(ξ) ≤ ξ. Hence,

|y(ξ) − ξ| ≤ µ(R) (3.22)

and ‖y − Id‖L∞(R) ≤ µ(R) and y − Id ∈ L∞(R). Let us prove that y is Lipschitz

with Lipschitz constant at most one. We consider ξ, ξ′ in R such that ξ < ξ′

and y(ξ) < y(ξ′) (the case y(ξ) = y(ξ′) is straightforward). It follows from the
definition that there exists an increasing sequence, x′

i, and a decreasing one, xi

such that limi→∞ xi = y(ξ), limi→∞ x′
i = y(ξ′) with µ((−∞, x′

i)) + x′
i < ξ′ and

µ((−∞, xi)) + xi ≥ ξ. Subtracting the these two inequalities one to the other,
we obtain

µ((−∞, x′
i)) − µ((−∞, xi)) + x′

i − xi < ξ′ − ξ. (3.23)

For i large enough, since by assumption y(ξ) < y(ξ′), we have xi < x′
i and

therefore µ((−∞, x′
i)) − µ((−∞, xi)) = µ([xi, x

′
i)) ≥ 0. Hence, x′

i − xi < ξ′ − ξ.
Letting i tend to infinity, we get y(ξ′)− y(ξ) ≤ ξ′ − ξ. Hence, y is Lipschitz with
Lipschitz constant bounded by one and, by Rademacher’s theorem, differentiable
almost everywhere. Following [19], we decompose µ into its absolute continuous,
singular continuous and singular part, denoted µac, µsc and µs, respectively. Here,
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since (u, µ) ∈ D, we have µac = (u2 + u2
x) dx. The support of µs consists of a

countable set of points. Let F (x) = µ((−∞, x)), then F is lower semi-continuous
and its points of continuity exactly coincide with the support of µs (see [19]). Let
A denote the complement of y−1(supp(µs)). We claim that for any ξ ∈ A, we
have

µ((−∞, y(ξ))) + y(ξ) = ξ. (3.24)

From the definition of y(ξ) follows the existence of an increasing sequence xi which
converges to y(ξ) and such that F (xi)+xi < ξ. Since F is lower semi-continuous,
limi→∞ F (xi) = F (y(ξ)) and therefore

F (y(ξ)) + y(ξ) ≤ ξ. (3.25)

Let us assume that F (y(ξ)) + y(ξ) < ξ. Since y(ξ) is a point of continuity of F ,
we can then find an x such that x > y(ξ) and F (x)+x < ξ. This contradicts the
definition of y(ξ) and proves our claim (3.24). In order to check that (2.24c) is
satisfied, we have to compute yξ and Uξ. We define the set B1 as

B1 =

{

x ∈ R | lim
ρ↓0

1

2ρ
µ((x − ρ, x + ρ)) = (u2 + u2

x)(x)

}

.

Since (u2 + u2
x) dx is the absolutely continuous part of µ, we have, from Besi-

covitch’s derivation theorem (see [1]), that meas(Bc
1) = 0. Given ξ ∈ y−1(B1),

we denote x = y(ξ). We claim that for all i ∈ N, there exists 0 < ρ < 1
i such

that x − ρ and x + ρ both belong to supp(µs)
c. Assume namely the opposite.

Then for any z ∈ (x − 1
i , x + 1

i ) \ supp(µs), we have that z′ = 2x − z belongs
to supp(µs). Thus we can construct an injection between the uncountable set
(x− 1

i , x + 1
i ) \ supp(µs) and the countable set supp(µs). This is impossible, and

our claim is proved. Hence, since y is surjective, we can find two sequences ξi

and ξ′i in A such that 1
2 (y(ξi) + y(ξ′i)) = y(ξ) and y(ξ′i)− y(ξi) < 1

i . We have, by
(3.24), since y(ξi) and y(ξ′i) belong to A,

µ([y(ξi), y(ξ′i))) + y(ξ′i) − y(ξi) = ξ′i − ξi. (3.26)

Since y(ξi) /∈ supp(µs), µ({y(ξi)}) = 0 and µ([y(ξi), y(ξ′i))) = µ((y(ξi), y(ξ′i))).
Dividing (3.26) by ξ′i − ξi and letting i tend to ∞, we obtain

yξ(ξ)(u
2 + u2

x)(y(ξ)) + yξ(ξ) = 1 (3.27)

where y is differentiable in y−1(B1), that is, almost everywhere in y−1(B1). We
now derive a short lemma which will be useful several times in this proof.

Lemma 3.9. Given a Lipschitz function f : R → R, for any set B of measure
zero, we have fξ = 0 almost everywhere in f−1(B).

Proof of Lemma 3.9. The Lemma follows directly from the area formula:
∫

f−1(B)

fξ(ξ) dξ =

∫

R

H0
(

f−1(B) ∩ f−1({x})
)

dx (3.28)

where H0 is the multiplicity function, see [1] for the formula and the precise
definition of H0. The function H0

(

f−1(B) ∩ f−1({x})
)

is Lebesgue measurable
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(see [1]) and it vanishes on Bc. Hence,
∫

f−1(B)
fξ dξ = 0 and therefore, since

fξ ≥ 0, fξ = 0 almost everywhere in f−1(B). �

We apply Lemma 3.9 to Bc
1 and get, since meas(Bc

1) = 0, that yξ = 0 almost
everywhere on y−1(Bc

1). On y−1(B1), we proved that yξ satisfies (3.27). It follows
that 0 ≤ yξ ≤ 1 almost everywhere, which implies, since Hξ = 1−yξ, that Hξ ≥ 0.
In the same way as we proved that y was Lipschitz with Lipschitz constant at

most one, we can prove that the function ξ 7→
∫ y(ξ)

−∞ u2
x dx is also Lipschitz with

Lipschitz constant at most one. Indeed, from (3.23), for i large enough, we have
∫ x′

i

xi

u2
x dx ≤ µac([xi, x

′
i)) ≤ µ([xi, x

′
i)) < ξ′ − ξ.

Since limi→∞ x′
i = y(ξ′) and limi→∞ xi = y(ξ), letting i tend to infinity, we

obtain
∫ y(ξ′)

y(ξ)
u2

x dx < ξ′ − ξ and the function ξ 7→
∫ y(ξ)

−∞
u2

x dx is Lipchitz with

Lipschitz coefficient at most one. For all (ξ, ξ′) ∈ R2, we have, after using the
Cauchy–Schwarz inequality,

|U(ξ′) − U(ξ)| =

∫ y(ξ′)

y(ξ)

ux dx

≤
√

y(ξ′) − y(ξ)

√

∫ y(ξ′)

y(ξ)

u2
x dx (3.29)

≤ |ξ′ − ξ|

because y and
∫ y(ξ)

−∞ u2
x dx are Lipschitz with Lipschitz constant at most one.

Hence, U is also Lipschitz and therefore differentiable almost everywhere. We
denote by B2 the set of Lebesgue points of ux in B1, i.e.,

B2 = {x ∈ B1 | lim
ρ→0

1

ρ

∫ x+ρ

x−ρ

ux(t) dt = ux(x)}.

We have meas(Bc
2) = 0. We choose a sequence ξi and ξ′i such that 1

2 (y(ξi) +

y(ξ′i)) = x and y(ξ′i) − y(ξi) ≤ 1
i . Thus

U(ξ′i) − U(ξi)

ξ′i − ξi
=

∫ y(ξ′

i)

y(ξi)
ux(t) dt

y(ξ′i) − y(ξi)

y(ξ′i) − y(ξi)

ξ′i − ξi
.

Hence, letting i tend to infinity, we get that for every ξ in y−1(B2) where U and
y are differentiable, that is, almost everywhere on y−1(B2),

Uξ(ξ) = yξ(ξ)ux(y(ξ)). (3.30)

From (3.29) and using the fact that
∫ y(ξ)

−∞
u2

x dx is Lipschitz with Lipschitz con-
stant at most one, we get

∣

∣

∣

∣

U(ξ′) − U(ξ)

ξ′ − ξ

∣

∣

∣

∣

≤
√

y(ξ′) − y(ξ)

ξ′ − ξ
.
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Hence, for almost every ξ in y−1(Bc
2), we have

|Uξ(ξ)| ≤
√

yξ(ξ). (3.31)

Since meas(Bc
2) = 0, we have by Lemma 3.9, that yξ = 0 almost everywhere on

y−1(Bc
2). Hence, Uξ = 0 almost everywhere on y−1(Bc

2). Thus, we have computed
Uξ almost everywhere. It remains to verify (2.24c). We have, after using (3.27)
and (3.30), that yξHξ = yξ(1−yξ) = y2

ξ (u2+u2
x)◦y and, finally, yξHξ = y2

ξU2+U2
ξ

almost everywhere on y−1(B2). On y−1(Bc
2), we have yξ = Uξ = 0 almost

everywhere. Therefore (2.24c) is satisfied almost everywhere. Up to now we
have proved that X = (y, U, H) satisfies (2.24a), (2.24c), the three inequalities
in (2.24b) and, by definition, y + H = Id. It remains to prove that X ∈ E
and limξ→−∞ H(ξ) = 0. From (3.24), we have H(ξ) = µ((−∞, y(ξ))) for any
ξ ∈ A. We can find a sequence ξi ∈ A such that limi→∞ ξi = −∞ and we have
limi→∞ H(ξi) = 0. Since H is monotone, it implies that limξ→−∞ H(ξ) = 0.
From (3.22) and (3.21b), we obtain ‖H‖L∞(R) ≤ µ(R). We have, since Hξ ≥ 0,

‖Hξ‖2
L2(R) ≤ ‖Hξ‖L∞(R) ‖Hξ‖L1(R) ≤ ‖H‖2

L∞(R) ≤ µ(R)

and H ∈ V . Since ζ = −H , we have ζ ∈ V . From (2.24c) we obtain

‖Uξ‖2
L2(R) ≤ ‖yξHξ‖L1(R) ≤ (1 + ‖ζξ‖L∞(R)) ‖H‖L∞(R) .

Hence, Uξ ∈ L2(R). Let B3 = {ξ ∈ R | yξ < 1
2}. Since ζξ = yξ − 1 and yξ ≥ 0,

B3 = {ξ ∈ R | |ζξ | > 1
2} and, after using the Chebychev inequality, as ζξ ∈ L2(R),

we obtain meas(B3) < ∞. Hence,
∫

R

U2(ξ) dξ =

∫

B3

U2(ξ) dξ +

∫

Bc
3

U2(ξ) dξ

≤ meas(B3) ‖u‖2
L∞(R) + 2

∫

Bc
3

(u ◦ y)2yξ dξ

≤ meas(B3) ‖U‖2
L∞(R) + 2 ‖u‖2

L2(R) ,

after a change of variables. Hence, U ∈ L2(R) and, finally, we have (y−Id, U, H) ∈
E. �

Remark 3.10. If µ is absolutely continuous, then µ = (u2 + u2
x)dx and, from

(3.24), we get
∫ y(ξ)

−∞

(u2 + u2
x) dx + y(ξ) = ξ

for all ξ ∈ R.

At the very beginning, H(t, ξ) was introduced as the energy contained in a strip
between −∞ and y(t, ξ), see (2.4). This interpretation still holds. We obtain µ,
the energy density in Eulerian coordinates, by pushing forward by y the energy
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density in Lagrangian coordinates, Hξ dξ. We recall that the push-forward of a
measure ν by a measurable function f is the measure f#ν defined as

f#ν(B) = ν(f−1(B))

for all Borel set B. We are led to the mapping M which transforms Lagrangian
coordinates into Eulerian coordinates and whose definition is contained in the
following theorem.

Theorem 3.11. Given any element [X ] in F/G. Then, (u, µ) defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ), (3.32a)

µ = y#(Hξ dξ) (3.32b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F we
choose for [X ]. We denote by M : F/G → D the mapping which to any [X ] in
F/G associates (u, µ) as given by (3.32).

Proof. First we have to prove that the definition of u makes sense. Since y is
surjective, there exists ξ, which may not be unique, such that x = y(ξ). It
remains to prove that, given ξ1 and ξ2 such that x = y(ξ1) = y(ξ2), we have

U(ξ1) = U(ξ2). (3.33)

Since y(ξ) is an increasing function in ξ, we must have y(ξ) = x for all ξ ∈ [ξ1, ξ2]
and therefore yξ(ξ) = 0 in [ξ1, ξ2]. From (2.24c), we get that Uξ(ξ) = 0 for all
ξ ∈ [ξ1, ξ2] and (3.33) follows.

Since y is proper and Hξ dξ is a Radon measure, we have, see [1, Remark 1.71],
that µ is also a Radon measure. For any X̄ = (ȳ, Ū , H̄) ∈ F which is equivalent
to X , we denote (ū, µ̄) the pair given by (3.32) when we replace X by X̄ . There
exists f ∈ G such that X = X̄ ◦ f . For any x, there exists ξ′ such that x = ȳ(ξ′)
and ū(x) = Ū(ξ′). Let ξ = f−1(ξ′). As x = ȳ(ξ′) = y(ξ), by (3.32a), we get
u(x) = U(ξ) and, since U(ξ) = Ū(ξ′), we finally obtain ū(x) = u(x). For any
function φ ∈ Cb(R), we have

∫

R

φ dµ̄ =

∫

R

φ ◦ ȳ(ξ′)H̄ξ(ξ
′) dξ′,

see [1]. Hence, after making the change of variables ξ ′ = f(ξ), we obtain
∫

R

φ dµ̄ =

∫

R

φ ◦ ȳ ◦ f(ξ) H̄ξ ◦ f(ξ) fξ(ξ) dξ

and, since Hξ = H̄ξ ◦ ffξ almost everywhere,
∫

R

φ dµ̄ =

∫

R

φ ◦ y(ξ)Hξ(ξ) dξ =

∫

R

φ dµ.

Since φ was arbitrary in Cb(R), we get µ̄ = µ. This proves that X and X̄ give raise
to the same pair (u, µ), which therefore does not depend on the representative of
[X ] we choose.
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Let us prove that u ∈ H1(R). We start by proving that ux ∈ L2(R). For any
smooth function φ, we have, using the change of variable x = y(ξ),
∫

R

u(x)φx(x) dx =

∫

R

U(ξ)φx(y(ξ))yξ(ξ) dξ = −
∫

R

Uξ(ξ)(φ ◦ y)(ξ) dξ, (3.34)

after integrating by parts. Let B1 = {ξ ∈ R | yξ(ξ) > 0}. Because of (2.24c),
and since yξ ≥ 0 almost everywhere, we have Uξ = 0 almost everywhere on Bc

1.
Hence, we can restrict the integration domain in (3.34) to B1. We divide and
multiply by

√
yξ the integrand in (3.34) and obtain, after using the Cauchy–

Schwarz inequality,

∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B1

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣

∣

∣

∣

≤
√

∫

B1

U2
ξ

yξ
dξ

√

∫

B1

(φ ◦ y)2yξ dξ.

By (2.24c), we have
U2

ξ

yξ
≤ Hξ. Hence, after another change of variables, we get
∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

≤
√

H(∞) ‖φ‖L2(R) ,

which implies that ux ∈ L2(R). Similarly, taking again a smooth function φ, we
have
∣

∣

∣

∣

∫

R

uφ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

U(φ ◦ y)yξ dξ

∣

∣

∣

∣

≤ ‖φ‖L2(R)

√

∫

R

U2yξ dξ ≤
√

H(∞) ‖φ‖L2(R)

because U2yξ ≤ Hξ from (2.24c). Hence, u ∈ L2(R).
Let us prove that the absolute continuous part of µ is equal to (u2 + u2

x) dx.
We introduce the sets Z and B defined as follows

Z =
{

ξ ∈ R | y is differentiable at ξ and yξ(ξ) = 0

or y or U are not differentiable at ξ
}

and

B = {x ∈ y(Z)c | u is differentiable at x} .

Since u belongs to H1(R), it is differentiable almost everywhere. We have, since
y is Lipschitz and by the definition of Z, that meas(y(Z)) =

∫

Z
yξ(ξ) dξ = 0.

Hence, meas(Bc) = 0. For any ξ ∈ y−1(B), we denote x = y(ξ). By necessity,
we have ξ ∈ Zc. Let ξi be a sequence converging to ξ such that ξi 6= ξ for all i.
We write xi = y(ξi). Since yξ(ξ) > 0, for i large enough, xi 6= x. The following
quantity is well-defined

U(ξi) − U(ξ)

ξi − ξ
=

u(xi) − u(x)

xi − x

xi − x

ξi − ξ
.

Since u is differentiable at x and ξ belongs to Zc, we obtain, after letting i tend
to infinity, that

Uξ(ξ) = ux(y(ξ))yξ(ξ). (3.35)



GLOBAL CONSERVATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION 29

For all subsets B′ of B, we have

µ(B′) =

∫

y−1(B′)

Hξ dξ =

∫

y−1(B′)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ.

We can divide by yξ in the integrand above because yξ does not vanish on y−1(B).
After a change of variables and using (3.35), we obtain

µ(B′) =

∫

B′

(u2 + u2
x) dx. (3.36)

Since (3.36) holds for any set B′ ⊂ B and meas(Bc) = 0, we have µac = (u2 +
u2

x) dx. �

The next theorem shows that the transformation from Eulerian to Lagrangian
coordinates is a bijection.

Theorem 3.12. The mapping M and L are invertible. We have

L ◦ M = IdF/G and M ◦ L = IdD .

Proof. Given [X ] in F/G, we choose X = (y, U, H) = Γ̃([X ]) as a representative
of [X ] and consider (u, µ) given by (3.32) for this particular X . Note that, from

the definition of Γ̃, we have X ∈ F0. Let X̄ = (ȳ, Ū , H̄) be the representative of
L(u, µ) in F0 given by the formulas (3.21). We claim that (ȳ, Ū , H̄) = (y, U, H)
and therefore L ◦ M = IdF/G. Let

g(x) = sup{ξ ∈ R | y(ξ) < x}. (3.37)

It is not hard to prove, using the fact that y is increasing and continuous, that

y(g(x)) = x (3.38)

and y−1((−∞, x)) = (−∞, g(x)). For any x ∈ R, we have, by (3.32b), that

µ((−∞, x)) =

∫

y−1((−∞,x))

Hξ dξ =

∫ g(x)

−∞

Hξ dξ = H(g(x))

because H(−∞) = 0. Since X ∈ F0, y + H = Id and we get

µ((−∞, x)) + x = g(x). (3.39)

From the definition of ȳ, we then obtain that

ȳ(ξ) = sup{x ∈ R | g(x) < ξ}. (3.40)

For any given ξ ∈ R, let us consider an increasing sequence xi tending to ȳ(ξ)
such that g(xi) < ξ; such sequence exists by (3.40). Since y is increasing and
using (3.38), it follows that xi ≤ y(ξ). Letting i tend to ∞, we obtain ȳ(ξ) ≤ y(ξ).
Assume that ȳ(ξ) < y(ξ). Then, there exists x such that ȳ(ξ) < x < y(ξ) and
equation (3.40) then implies that g(x) ≥ ξ. On the other hand, x = y(g(x)) <
y(ξ) implies g(x) < ξ because y is increasing, which gives us a contradiction.
Hence, we have ȳ = y. It follows directly from the definitions, since y + H = Id,
that H̄ = H and Ū = U and we have proved that L ◦ M = IdF/G.
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Given (u, µ) in D, we denote by (y, U, H) the representative of L(u, µ) in F0

given by (3.21). Then, let (ū, µ̄) = M ◦ L(u, µ). We claim that (ū, µ̄) = (u, µ).
Let g be the function defined as before by (3.37). The same computation that
leads to (3.39) now gives

µ̄((−∞, x)) + x = g(x). (3.41)

Given ξ ∈ R, we consider an increasing sequence xi which converges to y(ξ) and
such that µ((−∞, xi)) + xi < ξ. The existence of such sequence is guaranteed
by (3.21a). Passing to the limit and since F (x) = µ((−∞, x)) is lower semi-
continuous, we obtain µ((−∞, y(ξ))) + y(ξ) ≤ ξ. We take ξ = g(x) and get

µ((−∞, x)) + x ≤ g(x). (3.42)

From the definition of g, there exists an increasing sequence ξi which converges to
g(x) such that y(ξi) < x. The definition (3.21a) of y tells us that µ((−∞, x))+x ≥
ξi. Letting i tend to infinity, we obtain µ((−∞, x)) + x ≥ g(x) which, together
with (3.42), yields

µ((−∞, x)) + x = g(x). (3.43)

Comparing (3.43) and (3.41) we get that µ = µ̄. It is clear from the definitions
that ū = u. Hence, (ū, µ̄) = (u, µ) and M ◦ L = IdD. �

4. Continuous semigroup of solutions on D
Now comes the justification of all the analysis done in the previous section. The

fact that we have been able to establish a bijection between the two coordinate
systems, F/G and D, enables us now to transport the topology defined in F/G
into D. On D we define the distance dD which makes the bijection L between D
and F/G into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G(L(u, µ), L(ū, µ̄)).

Since F/G equipped with dF/G is a complete metric space, we have the following
theorem.

Theorem 4.1. D equipped with the metric dD is a complete metric space.

For each t ∈ R, we define the mapping Tt from D to D as

Tt = MS̃tL.

We have the following commutative diagram:

D F/G
M

oo

D

Tt

OO

L
// F/G

S̃t

OO

(4.1)

Our main theorem reads as follows.
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Theorem 4.2. T : D×R+ → D (where D is defined by Definition 3.1) defines a
continuous semigroup of solutions of the Camassa–Holm equation, that is, given
(ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory,
then u is a weak solution of the Camassa–Holm equation (1.4). Moreover µ is a
weak solution of the following transport equation for the energy density

µt + (uµ)x = (u3 − 2Pu)x. (4.2)

Furthermore, we have that

µ(t)(R) = µ(0)(R) for all t (4.3)

and

µ(t)(R) = µac(t)(R) = ‖u(t)‖2
H1 = µ(0)(R) for almost all t. (4.4)

Remark 4.3. We denote the unique solution described in the theorem as a
conservative weak solution of the Camassa–Holm equation.

Proof. We want to prove that, for all φ ∈ C∞(R+ × R) with compact support,
∫

R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt =

∫

R+×R

−Px(t, x)φ(t, x) dxdt

(4.5)
where P is given by (1.4b) or equivalently (2.6). Let (y(t), U(t), H(t)) be a
representative of L(u(t), µ(t)) which is solution of (2.10). Since y is Lipschitz in
ξ and invertible for t ∈ Kc (see (2.31) for the definition of K, in particular, we
have meas(K) = 0), we can use the change of variables x = y(t, ξ) and, using
(3.30), we get

∫

R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt

=

∫

R+×R

[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + U(t, ξ)Uξ(t, ξ)φ(t, y(t, ξ))] dξdt. (4.6)

Using the fact that yt = U and yξt = Uξ, one easily check that

(Uyξφ ◦ y)t − (U2φ)ξ = Uyξφt ◦ y − UUξφ ◦ y + Utyξφ ◦ y. (4.7)

After integrating (4.7) over R+ × R, the left-hand side of (4.7) vanishes and we
obtain
∫

R+×R

[−Uyξ φt◦y + UUξ φ◦y ] dξdt

=
1

4

∫

R+×R2

[

sgn(ξ−η)e−{sgn(ξ−η)(y(ξ)−y(η)}×
(

U2yξ+Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt

(4.8)

by (2.10). Again, to simplify the notation, we deliberately omitted the t variable.
On the other hand, by using the change of variables x = y(t, ξ) and z = y(t, η)
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when t ∈ Kc, we have

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

2

∫

R+×R2

[

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

u2(t, y(η)) +
1

2
u2

x(t, y(η))
)

φ(t, y(ξ))yξ(η)yξ(ξ)
]

dηdξdt.

Since, from Lemma 2.7, yξ is strictly positive for t ∈ Kc and almost every ξ,
we can replace ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η), see (3.30), in the equation above
and, using the fact that y is an increasing function and the identity (2.24c), we
obtain

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

4

∫

R+×R2

[

sgn(ξ−η) exp
(

−sgn(ξ−η)(y(ξ)−y(η)
)

×
(

U2yξ + Hξ

)

(η)yξ(ξ)φ(t, y(ξ))
]

dηdξdt. (4.9)

Thus, comparing (4.8) and (4.9), we get
∫

R+×R

[−Uyξ φt(t, y) + UUξ φ] dξdt = −
∫

R+×R

Px(t, x)φ(t, x) dxdt

and (4.5) follows from (4.6). Similarly, one proves that µ(t) is solution of (4.2).
From (3.32a), we obtain

µ(t)(R) =

∫

R

Hξ dξ = H(t,∞)

which is constant in time, see Lemma 2.7 (iii). Hence, (4.3) is proved. We
know from Lemma 2.7 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for almost every ξ ∈ R.
Given t ∈ Kc (the time variable is suppressed in the notation when there is no
ambiguity), we have, for any Borel set B,

µ(t)(B) =

∫

y−1(B)

Hξ dξ =

∫

y−1(B)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ (4.10)

from (2.24c) and because yξ(t, ξ) > 0 almost everywhere for t ∈ Kc. Since y is
one-to-one when t ∈ Kc and ux ◦ yyξ = Uξ almost everywhere, we obtain from
(4.10) that

µ(t)(B) =

∫

B

(u2 + u2
x)(t, x) dx.

Hence, as meas(K) = 0, (4.4) is proved. �

5. The topology on D
The metric dD gives to D the structure of a complete metric space while it

makes continuous the semigroup Tt of conservative solutions for the Camassa–
Holm equation as defined in Theorem 4.2. In that respect, it is a suitable metric
for the Camassa–Holm equation. However, as the definition of dD is not straight-
forward, this metric is not so easy to manipulate and in this section we compare it
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with more standard topologies. More precisely, we establish that convergence in
H1(R) implies convergence in (D, dD), which itself implies convergence in L∞(R).

Proposition 5.1. The mapping

u 7→ (u, (u2 + u2
x)dx)

is continuous from H1(R) into D. In other words, given a sequence un ∈ H1(R)
converging to u in H1(R), then (un, (u2

n + u2
nx)dx) converges to (u, (u2 + u2

x)dx)
in D.

Proof. We write gn = u2
n + u2

n,x and g = u2 + u2
x. Let Xn = (yn, Un, Hn) and

X = (y, U, H) be the representatives in F0 given by (3.21) of L(un, (u2
n +u2

nx)dx)
and L(u, (u2 + u2

x)dx), respectively. Following Remark 3.10, we have
∫ y(ξ)

−∞

g(x) dx + y(ξ) = ξ ,

∫ yn(ξ)

−∞

gn(x) dx + yn(ξ) = ξ (5.1)

and, after taking the difference between the two equations, we obtain
∫ y(ξ)

−∞

(g − gn)(x) dx +

∫ y(ξ)

yn(ξ)

gn(x) dx + y(ξ) − yn(ξ) = 0. (5.2)

Since gn is positive,
∣

∣

∣
y − yn +

∫ y

yn
gn(x) dξ)

∣

∣

∣
= |y − yn|+

∣

∣

∣

∫ y

yn
gn(x) dξ)

∣

∣

∣
and (5.2)

implies

|y(ξ) − yn(ξ)| ≤
∫ y(ξ)

−∞

|g − gn| dx ≤ ‖g − gn‖L1(R) .

Since un → u in H1(R), gn → g in L1(R) and it follows that ζn → ζ and Hn → H
in L∞(R). We recall that ζ(ξ) = y(ξ) − ξ and H = −ζ (as X, Xn ∈ F0). The
measures (u2 +u2

x)dx and (u2
n +u2

n,x)dx have, by definition, no singular part and
in that case (3.27) holds almost everywhere, that is,

yξ =
1

g ◦ y + 1
and yn,ξ =

1

gn ◦ y + 1
(5.3)

almost everywhere. Hence,

ζn,ξ − ζξ = (g ◦ y − gn ◦ yn)yn,ξyξ

= (g ◦ y − g ◦ yn)yn,ξyξ + (g ◦ yn − gn ◦ yn)yn,ξyξ. (5.4)

Since 0 ≤ yξ ≤ 1, we have
∫

R

|g ◦ yn − gn ◦ yn| yn,ξyξ dξ ≤
∫

R

|g ◦ yn − gn ◦ yn| yn,ξ dξ = ‖g − gn‖L1(R) .

(5.5)
For any ε > 0, there exists a continuous function h with compact support such
that ‖g − h‖L1(R) ≤ ε/3. We can decompose the first term in the right-hand side

of (5.4) into

(g ◦ y − g ◦ yn)yn,ξyξ = (g ◦ y − h ◦ y)yn,ξyξ

+ (h ◦ y − h ◦ yn)yn,ξyξ + (h ◦ yn − g ◦ yn)yn,ξyξ. (5.6)
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Then, we have
∫

R

|g ◦ y − h ◦ y| yn,ξyξ dξ ≤
∫

|g ◦ y − h ◦ y| yξ dξ = ‖g − h‖L1(R) ≤ ε/3

and, similarly, we obtain
∫

R
|g ◦ yn − h ◦ yn| yn,ξyξ dξ ≤ ε/3. Since yn → y in

L∞(R) and h is continuous with compact support, by applying Lebesgue domi-
nated convergence theorem, we obtain h◦yn → h◦y in L1(R) and we can choose
n big enough so that

∫

R

|h ◦ y − h ◦ yn| yn,ξyξ dξ ≤ ‖h ◦ y − h ◦ yn‖L1(R) ≤ ε/3.

Hence, from (5.6), we get that
∫

R
|g ◦ y − g ◦ yn| yn,ξyξ dξ ≤ ε so that

lim
n→∞

∫

R

|g ◦ y − g ◦ yn| yn,ξyξ dξ = 0,

and, from (5.4) and (5.5), it follows that ζn,ξ → ζξ in L1(R). Since Xn ∈ F0,
ζn,ξ is bounded in L∞(R) and we finally get that ζn,ξ → ζξ in L2(R) and, by
(3.21b), Hn,ξ → Hξ in L2(R). It remains to prove that Un → U in H1(R). Let
Cn = {x ∈ R | gn(x) > 1}. Chebychev’s inequality yields meas(Cn) ≤ ‖gn‖L1(R).

Let Bn = {ξ ∈ R | yn,ξ(ξ) < 1
2}. Since yn,ξ(gn ◦ yn + 1) = 1 almost everywhere,

gn ◦ yn > 1 on Bn and therefore yn(Bn) ⊂ Cn. From (5.1), we get that

meas(yn(B)) +

∫

yn(B)

gn(ξ) dξ = meas(B) (5.7)

for any set B equal to a countable union of disjoint open intervals. Any Borel set
B can be “approximated” by such countable union of disjoint open intervals and
therefore, using the fact that yn is Lipschitz and one-to-one, we infer that (5.7)
holds for any Borel set B. After taking B = Bn, (5.7) yields

meas(Bn) ≤ meas(yn(Bn)) + ‖gn‖L1(R)

≤ meas(Cn) + ‖gn‖L1(R)

and therefore meas(Bn) ≤ 2 ‖gn‖L1(R). For any function f1, f2 ∈ H1(R), we have

‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) =

∫

Bn

(f1◦yn−f2◦yn)2 dξ+

∫

Bc
n

(f1◦yn−f2◦yn)2 dξ (5.8)

and, as yn,ξ ≥ 0 on Bc
n,

∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2 dξ ≤ 2

∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2yn,ξ dξ ≤ 2 ‖f1 − f2‖2
L2(R) .

Hence,

‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) ≤ meas(Bn) ‖f1 − f2‖2

L∞(R) + 2 ‖f1 − f2‖2
L2(R)
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and, since meas(Bn) ≤ 2 ‖gn‖L1(R),

‖f1 ◦ yn − f2 ◦ yn‖2
L2(R) ≤ 2 ‖gn‖ ‖f1 − f2‖2

L∞(R) + 2 ‖f1 − f2‖2
L2(R)

≤ C ‖f1 − f2‖2
H1(R) (5.9)

for some constant C which is independent of n. We have

‖Un − U‖L2(R) ≤ ‖un ◦ yn − u ◦ yn‖L2(R) + ‖u ◦ yn − u ◦ y‖L2(R) . (5.10)

After using (5.9) for f1 = un and f2 = u and since, by assumption, un → u
in H1(R), we obtain that limn→∞ ‖un ◦ yn − u ◦ yn‖L2(R) = 0. We can find

continuous functions with compact support h which are arbitrarily close to u in
H1(R). Then, from (5.9), h◦yn and h◦y are arbitrarily closed in L2(R) to u◦yn

and u ◦ y, respectively, and independently of n. By the Lebesgue dominated
convergence theorem, as yn → y in L∞(R), we get that h ◦ yn → h ◦ y in L2(R).
Hence,

‖u ◦ yn − u ◦ y‖L2(R) ≤ ‖u ◦ yn − h ◦ yn‖L2(R)

+ ‖h ◦ yn − h ◦ y‖L2(R) + ‖h ◦ y − u ◦ y‖L2(R)

implies that limn→∞ ‖u ◦ yn − u ◦ y‖L2(R) = 0 and, finally, from (5.10), we con-

clude that Un → U in L2(R). It remains to prove that Un,ξ → Uξ in L2(R). Since
Hn,ξ = 1 − yn,ξ, (2.24c) can be rewritten as

U2
n,ξ = Hn,ξ − H2

n,ξ − U2
n + H2

n,ξU
2
n (5.11)

and there holds the corresponding identity holds for Uξ. We have ‖Un‖L∞(R) =

‖un‖L∞(R) and therefore ‖Un‖L∞(R) is uniformly bounded in n. Hence, since

Un → U in L2(R), Hn → H in V and ‖Un‖L∞(R), ‖Hn,ξ‖L∞(R) are uniformly

bounded in n, we get from (5.11) that

lim
n→∞

‖Un,ξ‖L2(R) = ‖Uξ‖L2(R) . (5.12)

Once we have proved that Un,ξ converges weakly to Uξ, then (5.11) will imply
that Un,ξ → Uξ strongly in L2(R), see, for example, [27, section V.1]. For any
continuous function φ with compact support, we have

∫

R

Un,ξφ dξ =

∫

R

un,x ◦ ynyn,ξφ dξ =

∫

R

un,x φ ◦ yn
−1 dξ. (5.13)

By assumption, we have un,x → ux in L2(R). Since yn → y in L∞(R), the support
of φ ◦ yn

−1 is contained in some compact that can be chosen to be independent
of n. Thus, after using Lebesgue’s dominated convergence theorem, we obtain
that φ ◦ yn

−1 → φ ◦ y−1 in L2(R) and therefore

lim
n→∞

∫

R

Un,ξφ dξ =

∫

R

ux φ ◦ y−1 dξ =

∫

R

Uξφ dξ. (5.14)

From (5.12), we have that Un,ξ is bounded and therefore, by a density argument,
(5.14) holds for any function φ in L2(R) and Un,ξ ⇀ Uξ weakly in L2(R). �
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Proposition 5.2. Let (un, µn) be a sequence in D that converges to (u, µ) in D.
Then

un → u in L∞(R) and µn
∗
⇀ µ.

Proof. We denote by Xn = (yn, Un, Hn) and X = (y, U, H) the representative
of L(un, µn) and L(u, µ) given by (3.21). For any x ∈ R, there exists ξn and ξ,
which may not be unique, such that x = yn(ξn) and x = y(ξ). We set xn = yn(ξ).
We have

un(x) − u(x) = un(x) − un(xn) + Un(ξ) − U(ξ) (5.15)

and

|un(x) − un(xn)| =

∣

∣

∣

∣

∣

∫ ξn

ξ

Un,ξ(η) dη

∣

∣

∣

∣

∣

≤
√

ξn − ξ

(

∫ ξn

ξ

U2
n,ξ dη

)1/2

(Cauchy–Schwarz)

≤
√

ξn − ξ

(

∫ ξn

ξ

yn,ξHn,ξ dη

)1/2

(from (2.24c))

≤
√

ξn − ξ
√

|yn(ξn) − yn(ξ)| (since Hn,ξ ≤ 1)

=
√

ξn − ξ
√

y(ξ) − yn(ξ)

≤
√

ξn − ξ ‖y − yn‖1/2
L∞(R) . (5.16)

From (3.22), we get

|ξn − ξ| ≤ 2µn(R) + |yn(ξn) − yn(ξ)| = 2 lim
ξ→∞

Hn(ξ) + |y(ξ) − yn(ξ)|

and, therefore, since Hn → H and yn → y in L∞(R), |ξn − ξ| is bounded by a
constant C independent of n. Then, (5.16) implies

|un(x) − un(xn)| ≤ C ‖y − yn‖1/2
L∞(R) . (5.17)

Since yn → y and Un → U in L∞(R), it follows from (5.15) and (5.17) that
un → u in L∞(R). By weak-star convergence, we mean that

lim
n→∞

∫

R

φ dµn =

∫

R

φ dµ (5.18)

for all continuous functions with compact support. It follows from (3.32b) that
∫

R

φ dµn =

∫

R

φ ◦ ynHn,ξ dξ and

∫

R

φ dµ =

∫

R

φ ◦ yHξ dξ (5.19)

see [1, definition 1.70]. Since yn → y in L∞(R), the support of φ◦yn is contained
in some compact which can be chosen independently of n and, from Lebesgue’s
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dominated convergence theorem, we have that φ ◦ yn → φ ◦ y in L2(R). Hence,
since Hn,ξ → Hξ in L2(R),

lim
n→∞

∫

R

φ ◦ ynHn,ξ dξ =

∫

R

φ ◦ yHξ dξ,

and (5.18) follows from (5.19).
�
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GLOBAL CONSERVATIVE MULTIPEAKON SOLUTIONS OF

THE CAMASSA–HOLM EQUATION

HELGE HOLDEN AND XAVIER RAYNAUD

Abstract. We show how to construct globally defined multipeakon solu-
tions of the Camassa–Holm equation. The construction includes in particu-
lar the case with peakon-antipeakon collisions. The solutions are conserva-
tive in the sense that the associated energy is constant for almost all times.
Furthermore, we construct a new set of ordinary differential equations that
determines the multipeakons globally. The system remains globally well-
defined.

1. Introduction

The Cauchy problem for the Camassa–Holm equation [8, 9]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = u0, (1.1)

has received considerable attention the last decade. With κ positive it models, see
[19], propagation of unidirectional gravitational waves in a shallow water approx-
imation, with u representing the fluid velocity. The Camassa–Holm equation has
a bi-Hamiltonian structure and is completely integrable. It has infinitely many
conserved quantities. In particular, for smooth solutions the quantities

∫

u dx,

∫

(u2 + u2
x) dx,

∫

(u3 + uu2
x) dx (1.2)

are all time independent.
In this article we consider the case κ = 0 on the real line, that is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1.3)

and henceforth we refer to (1.3) as the Camassa–Holm equation.
Solutions of the Camassa–Holm equation may experience wave breaking in the

sense that the solution develops singularities in finite time, while keeping the H1

norm finite. Continuation of the solution beyond the time of wave breaking is a
challenging problem. It is most easily explained in the context of multipeakons,
which are special solutions of the Camassa–Holm equation of the form

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)|, (1.4)

Key words and phrases. Camassa–Holm equation, multipeakons, conservative solutions.
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where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential equations

q̇i =
n

∑

j=1

pje
−|qi−qj |, ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |.

Observe that the solution (1.4) is not smooth even with continuous functions
(pi(t), qi(t)); one possible way to interpret (1.4) as a weak solution of (1.3) is to
rewrite Eq. (1.3) as

ut +
(1

2
u2 + (1 − ∂2

x)−1(u2 +
1

2
u2

x)
)

x
= 0.

Peakons interact in a way similar to that of solitons of the Korteweg–de Vries
equation, and wave breaking may appear when at least two of the qi’s coincide.
If all the pi(0) have the same sign, the peakons move in the same direction.
Furthermore, in that case the solution experiences no wave breaking, and one
has a unique global solution. Higher peakons move faster than the smaller ones,
and when a higher peakon overtakes a smaller, there is an exchange of mass,
but no wave breaking takes place. Furthermore, the qi(t) remain distinct, and
thus there is no collision. However, if some of pi(0) have opposite sign, wave
breaking or collision may incur, see, e.g., [4, 20]. For simplicity, consider the case
with n = 2 and one peakon p1(0) > 0 (moving to the right) and one antipeakon
p2(0) < 0 (moving to the left). In the symmetric case (p1(0) = −p2(0) and
q1(0) = −q2(0) < 0) the solution will vanish pointwise at the collision time t∗

when q1(t
∗) = q2(t

∗), that is, u(t∗, x) = 0 for all x ∈ R, see Fig. 1. Clearly, at
least two scenarios are possible; one is to let u(t, x) vanish identically for t > t∗,
and the other possibility is to let the peakon and antipeakon “pass through”
each other in a way that is consistent with the Camassa–Holm equation. In the
first case the energy

∫

(u2 + u2
x) dx decreases to zero at t∗, while in the second

case, the energy remains constant except at t∗. Clearly, the well-posedness of the
equation is a delicate matter in this case. The first solution could be denoted a
dissipative solution, while the second one could be called conservative, which is
the class of solutions we study here. Other solutions are also possible. Global
dissipative solutions of a more general class of equations were derived by Coclite,
Holden, and Karlsen [12, 13]. In their approach the solution was obtained by first
regularizing the equation by adding a small diffusion term εuxx to the equation,
and subsequently analyzing the vanishing viscosity limit ε → 0.

Global conservative solutions of the Camassa–Holm were recently studied by
using a completely new approach, see [5, 6, 15, 18]. In this approach the Camassa–
Holm equation is reformulated as a system of ordinary differential equations tak-
ing values in a Banach space, see Sect. 2. This allows for the construction of
a global and stable solution. To obtain a well-posed initial-value problem it is
necessary to introduce the associated energy as an additional variable.

We here study in detail this construction in the context of multipeakons, fol-
lowing [18] where the transformation into new variables can be interpreted as a
transformation from Eulerian into Lagrangian coordinates. The explicit nature
of multipeakons make them very interesting objects to study in a relation to wave
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breaking. In particular, the singularity corresponds to a focusing of the energy
into a Dirac delta-function.

The general construction in [18] is rather complicated, making the case of mul-
tipeakons involved. We show that multipeakons are given as continuous solutions
u that on intervals [yi(t), yi+1(t)] satisfy

u− uxx = 0 with boundary conditions u(t, yi(t)) = ui(t), u(t, yi+1(t)) = ui+1(t).

The (yi, ui) are given by a set of ordinary differential equations, which in addition
includes a third variable that measures the energy of the system. The variables
yi and ui denote the location of the point (for fixed time) where the solution u
has a discontinuous spatial derivative (the “peak”), and the value of u at that
point, respectively. The system of ordinary differential equations, which is new,
remains globally well-defined.

In addition to allowing for a detailed study of the property of solutions near
wave breaking, multipeakons are important as building blocks for general solu-
tions. Indeed, if the initial data u0 is in H1 and m0 := u0 − u′′

0 is a positive
Radon measure, then it can proved, see [17], that one can construct a sequence
of multipeakons that converges in L∞

loc(R; H1
loc(R)) to the unique global solution

of the Camassa–Holm equation. See also [6, 15].
The method is illustrated by explicit calculations in the cases n = 1 and n = 2

(see also [2, 3, 20]) and by numerical computations in the case n = 4 with and
without wave breaking.

Furthermore, the methods presented in this paper can be used to derive nu-
merical methods that converge to conservative solutions rather than dissipative
solutions. This contrasts finite difference methods that normally converge to
dissipative solutions, see [16]. See also [17]. Results will be presented separately.

2. Global conservative solutions

The goal of this section is to introduce the results obtained in [18], namely
the construction of the continuous semigroup of conservative solutions of the
Camassa–Holm equation with a change of variable to Lagrangian coordinates.
The equation can be rewritten as the following system

ut + uux + Px = 0, (2.1a)

P − Pxx = u2 +
1

2
u2

x. (2.1b)

It is not hard to check that the energy density u2 + u2
x fulfills the following

transport equation

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x. (2.2)

We denote yt(t, ξ) = u(t, y(t, ξ)) the characteristics and set

U(t, ξ) = u(t, y(t, ξ)) and H(t, ξ) =

∫ y(t,ξ)

−∞

(u2 + u2
x) dx,
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which corresponds to the Lagrangian velocity and the Lagrangian cumulative
energy distribution, respectively. We set ζ(ξ) = y(ξ) − ξ. From the definition of
the characteristics, it follows that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ). (2.3)

This last term can be expressed uniquely in term of U , y, and H . From (2.1b),
we obtain the following explicit expression for P ,

P (t, x) =
1

2

∫

R

e−|x−z|
(

u2(t, z) +
1

2
u2

x(t, z)
)

dz. (2.4)

Thus we have

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|
(

u2(t, z) +
1

2
u2

x(t, z)
)

dz,

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1

2
u2

x(t, y(t, η))

)

yξ(t, η)
]

dη.

Finally, since Hξ = (u2 + u2
x)◦y yξ,

Px◦y (ξ) = −1

4

∫

R

sgn(y(ξ) − y(η)) exp(− |y(ξ) − y(η)|)
(

U2yξ + Hξ

)

(η) dη (2.5)

where the t variable has been dropped to simplify the notation. It turns out that
yξ(t, ξ) ≥ 0 for all t and almost every ξ, see Definition 2.1 and [18, Theorem 2.8].
Thus, Px◦y is can be replaced by Q where

Q(t, ξ) = −1

4

∫

R

sgn(ξ−η) exp
(

−sgn(ξ−η)(y(ξ)−y(η))
)(

U2yξ+Hξ

)

(η) dη, (2.6)

and, slightly abusing the notation, we write

P (t, ξ) =
1

4

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)(

U2yξ + Hξ

)

(η) dη. (2.7)

Thus Px◦y and P ◦y can be replaced by equivalent expressions given by (2.6)
and (2.7) which only depend on our new variables U , H , and y. From (2.2), it
follows that

Ht =

∫ y

−∞

(u2 + u2
x)t dx + yt ◦ y(u2 + u2

x) ◦ y =

∫ y

−∞

(u3 − 2Pu)x dx = U3 − 2PU.

(2.8)
Finally, from (2.3) and (2.8), we infer that the Camassa–Holm equation is for-
mally equivalent to the following system











ζt = U,

Ut = −Q,

Ht = U3 − 2PU.

(2.9)
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We look at (2.9) as a system of ordinary differential equations in the Banach
space

E = V × H1(R) × V

where V = {f ∈ Cb(R) | fξ ∈ L2(R)}. By a contraction argument we establish
the short-time existence of solutions ([18, Theorem 2.3]). We have

Qξ = −1

2
Hξ −

(

1

2
U2 − P

)

yξ and Pξ = Qyξ, (2.10)

and, differentiating (2.9) yields


















ζξt = Uξ (or yξt = Uξ),

Uξt =
1

2
Hξ +

(

1

2
U2 − P

)

yξ,

Hξt = −2Q Uyξ +
(

3U2 − 2P
)

Uξ.

(2.11)

The system (2.11) is semilinear with respect to the variables yξ, Uξ and Hξ.
Global solutions of (2.9) may not exist for all initial data in E. However they

exist when the initial data X̄ = (ȳ, Ū , H̄) belongs to the set G ([18, Theorem 2.8])
where G is defined as follows:

Definition 2.1. The set G is composed of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈
[

W 1,∞(R)
]3

, (2.12a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (2.12b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.12c)

where we denote y(ξ) = ζ(ξ) + ξ.

The proof of the global existence of the solution for initial data in G ([18,
Theorem 2.8]) relies essentially on the fact that the set G is preserved by the
flow, that is, if X(0) ∈ G, then X(t) ∈ G for all time t, for any solution X(t)
of (2.9) with initial data in G ([18, Lemma 2.7]). We also have that, for almost
every t, yξ(t, ξ) > 0 for almost every ξ, which implies that for almost every t,
ξ 7→ y(t, ξ) is invertible [18].

To obtain a semigroup of solution for (2.1), we have to consider the space D,
which characterizes the solutions in Eulerian coordinates :

Definition 2.2. The set D is composed of all pairs (u, µ) such that u belongs to
H1(R) and µ is a positive finite Radon measure whose absolute continuous part,
µac, satisfies

µac = (u2 + u2
x) dx. (2.13)

The set D allows the energy density to have a singular part and a positive
amount of energy can concentrate on a set of Lebesgue measure zero. In [14],
the Camassa–Holm equation is derived as a geodesic equation on the group of
diffeomorphism equipped with a right-invariant metric. The right-invariance of
the metric can be interpreted as an invariance with respect to relabeling as noted
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in [1]. This is a property that we also observe in our setting. We denote by G
the subgroup of the group of homeomorphisms from R to R such that

f − Id and f−1 − Id both belong to W 1,∞(R) (2.14)

where Id denotes the identity function. The set G can be interpreted as the set
of relabeling functions. Let F be the following subset of G

F = {X = (y, U, H) ∈ G | y + H ∈ G}.
For the sake of simplicity, for any X = (y, U, H) ∈ F and any function f ∈ G,
we denote (y ◦ f, U ◦ f, H ◦ f) by X ◦ f . The map (f, X) 7→ X ◦ f defines an
action of the group G on F ([18, Proposition 3.4]), and we denote by F/G the
quotient space of F with respect to the action of the group G. The equivalence
relation on F is defined as follows: For any X, X ′ ∈ F , X and X ′ are equivalent
if there exists f ∈ G such that X ′ = X ◦ f , that is, if X and X ′ are equal up to
a relabeling.

As proved in [18, Lemma 3.3], F is preserved by the flow. Let us denote by
S : F × R+ → F the continuous semigroup which to any initial data X̄ ∈ F
associates the solution X(t) of the system of differential equation (2.9) at time t.
The Camassa–Holm equation is invariant with respect to relabeling, that is,

St(X ◦ f) = St(X) ◦ f (2.15)

for any initial data X ∈ F , any time t and any f ∈ F . Thus the map S̃t

from F/G to F/G given by S̃t([X ]) = [StX ] is well-defined and it generates a
continuous semigroup. The topology on F/G is defined by a complete metric
which is derived from the E-norm restricted to F .

In order to transport the continuous semigroup obtained in the Lagrangian
framework (solutions in F/G) into the Eulerian framework (solutions in D), we
want to establish a bijection between F/G and D. Let us denote by L : D → F/G
the map transforming Eulerian coordinates into Lagrangian coordinates defined
as follows: For any (u, µ) in D, let

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (2.16a)

H(ξ) = ξ − y(ξ), (2.16b)

U(ξ) = u◦y(ξ) . (2.16c)

We define L(u, µ) ∈ F/G to be the equivalence class of (y, U, H). In the other
direction, we obtain µ, the energy density in Eulerian coordinates, by pushing
forward by y the energy density in Lagrangian coordinates, Hξ dξ. Recall that
the push-forward of a measure ν by a measurable function f is the measure f#ν
defined as

f#ν(B) = ν(f−1(B))

for all Borel sets B. Given any element [X ] in F/G, let (u, µ) be

u(x) = U(ξ) for any ξ such that x = y(ξ), (2.17a)

µ = y#(Hξ dξ). (2.17b)
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Then (u, µ) belongs to D and is independent of the representative X = (y, U, H) ∈
F we choose for [X ]. We denote by M : F/G → D the map which to any [X ]
in F/G associates (u, µ) as given by (2.17). The map M corresponds to the
transformation from Lagrangian to Eulerian coordinates. In [18, Theorems 3.8,
3.11], it is proven that the maps L and M are well-defined and that L−1 = M ,
see [18, Theorem 3.12].

We define the metric dD on D as

dD((u, µ), (ū, µ̄)) = dF/G(L(u, µ), L(ū, µ̄)).

Since F/G equipped with dF/G is a complete metric space, D equipped with the
metric dD is a complete metric space. For each t ∈ R, we define the map Tt from
D to D as

Tt = MS̃tL.

We have the following commutative diagram:

D F/G
M

oo

D

Tt

OO

L
// F/G

S̃t

OO

(2.18)

Finally, we have the following main result from [18].

Theorem 2.3. T : D×R+ → D (where D is defined by Definition 2.2) defines a
continuous semigroup of solutions of the Camassa–Holm equation, that is, given
(ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory,
then u is a weak solution of the Camassa–Holm equation (2.1). Moreover µ is a
weak solution of the following transport equation for the energy density

µt + (uµ)x = (u3 − 2Pu)x. (2.19)

Furthermore, we have that

µ(t)(R) = µ(0)(R) for all t (2.20)

and

µ(t)(R) = µac(t)(R) = ‖u(t)‖2
H1 = µ(0)(R) for almost all t. (2.21)

Remark 2.4. We denote the unique solution described in the theorem as a
conservative weak solution of the Camassa–Holm equation.

3. Characterization of multipeakon solutions

Peakons are given by

u(t, x) =

n
∑

i=1

pi(t)e
−|x−qi(t)| (3.1)
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where pi, qi satisfy the system of ordinary differential equations

q̇i =
n

∑

j=1

pje
−|qi−qj |, (3.2a)

ṗi =

n
∑

j=1

pipj sgn(qi − qj)e
−|qi−qj |. (3.2b)

Note that (3.2) is a Hamiltonian system, viz.,

q̇i =
∂H(p, q)

∂pi
, ṗi = −∂H(p, q)

∂qi
,

with Hamiltonian

H(p, q) =
1

2

n
∑

i,j=1

pipje
−|qi−qj |.

Clearly, if the qi remain distinct, the system (3.2) allows for a global smooth
solution. By inserting that solution into (3.1) we find that u is a global weak
solution of the Camassa–Holm equation. See, e.g., [17] for details. In the case
where pi(0) have the same sign for all i ∈ {1, . . . , n}, then the qi(t) remain
distinct, and (3.2) admits a unique global solution, see [7, 11, 10, 17]. In this
case, the peakons are traveling in the same direction. However, when two peakons
have opposite signs, see, e.g., [5, 6], collisions may occur, and if so, the system
(3.2) blows up, or, more precisely, some of the pi blow up.

Our aim is to use the variables (y, U, H) to characterize multipeakons in a way
that avoids the problems related to blow up. In particular, we will derive a new
system of ordinary differential equations for the multipeakon solutions which is
well-posed even when collisions occur.

We consider initial data ū given by

ū(x) =

n
∑

i=1

pie
−|x−ξi|. (3.3)

Without loss of generality, we assume that the pi are all nonzero, and that the ξi

are all distinct. From Theorem 2.3 we know that there exists a unique and global
weak solution with initial data (3.3), and the aim is to characterize this solution
explicitly. The most natural way to define a multipeakon is to say that, given a
time t, there exist pi and ξi such that u can be expressed in the form given in (3.1).
However, the variables pi are not appropriate since they blow up at collisions.
That is why we will prefer the following characterization of multipeakons. Given
the position of the peaks xi and the values ui of u at the peaks, u is defined on
each interval [xi, xi+1] as the solution of the Dirichlet problem

u − uxx = 0, u(xi) = ui, u(xi+1) = ui+1.

Clearly, the function (3.1) satisfies this for each fixed time t, but we will now
show that this property persists for conservative solutions.
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A multipeakon is piecewise C∞ with discontinuous first derivative at the peaks.
From (3.2a), we infer that

q̇i = u(qi)

which means that the peaks and therefore the discontinuities follow the charac-
teristics. In this case, the Lagrangian point of view becomes very convenient, as
the location of the peaks is known a priori. Let us prove that X̄ = (ȳ, Ū , H̄)
given by

ȳ(ξ) = ξ, (3.4a)

Ū(ξ) = ū(ξ), (3.4b)

H̄(ξ) =

∫ ξ

−∞

(u2 + u2
x) dx, (3.4c)

is a representative of u in Lagrangian coordinates, that is, [X̄] = L(ū, (ū2+ū2
x)dx).

First we have to check that X̄ ∈ F . Since ū is a multipeakon, from (3.3), we have
that ū ∈ W 1,∞(R) ∩ H1(R). Hence, Ū and H̄ both belong to W 1,∞(R) while
ȳ−Id is identically zero. Due to the exponential decay of ū and ūx and since H̄ξ ∈
L∞(R), we have H̄ξ ∈ L2(R). The properties (2.12) are straightforward to check.
Furthermore, it is not hard to check that M([X̄]) = (ū, (ū2 + ū2

x)dx). Hence,
since L ◦ M = Id, we get [X̄ ] = L(ū, (ū2 + ū2

x)dx). We set A = R \ {ξ1, . . . , ξn}.
The functions Ū and H̄ belong to C2(A) (they even belong to C∞(A)). This
property is preserved by the equation, as the next proposition shows.

Proposition 3.1. Given X̄ = (ȳ, Ū , H̄) ∈ F such that X̄ ∈ [C2(A)]3, the solu-
tion X = (y, U, H) of (2.9) with X̄ as initial data belongs to C1(R+, [C2(A)]3).

Proof. We prove this proposition by repeating the contraction argument of [18,
Theorem 2.3], replacing E by

Ē = E ∩ [C2(A)]3.

The norm on Ē is given by

‖X‖Ē = ‖X‖E + ‖y − Id‖W 2,∞(A) + ‖U‖W 2,∞(A) + ‖H‖W 2,∞(A)

We have to prove that P : X 7→ P and Q : X 7→ Q are Lipschitz maps from
bounded sets of Ē into H1(R) ∩ C2(A). Given a bounded set B = {X ∈
Ē | ‖X‖Ē ≤ CB} where CB is a positive constant we have, from [18, Lemma
2.1], that

∥

∥Q(X) −Q(X̄)
∥

∥

L∞(R)
≤ C

∥

∥X − X̄
∥

∥

E
≤ C

∥

∥X − X̄
∥

∥

Ē

for a constant C which only depends on CB . The derivative of Q is given by (2.10).
When a map is Lipschitz on bounded sets, we will say that it is B-Lipschitz. It is
not hard to prove that the products of two B-Lipschitz maps from Ē into C(A) is
also a B-Lipschitz map from Ē into C(A). Hence, from (2.10), Q is B-Lipschitz
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from Ē into C1(A). In the same way, we obtain the same result for P . We can
compute the derivative of Pξ and Qξ on A, and we obtain

Qξξ = −1

2
Hξξ − (UUξ − Qyξ)yξ − (

1

2
U2 − P )yξξ, (3.5)

Pξξ = Qyξξ −
1

2
Hξyξ − (

1

2
U2 − P )y2

ξ . (3.6)

Since Qξξ and Pξξ are given as sums and products of B-Lipschitz maps from
Ē into C(A), we have that Q and P are B-Lipschitz from Ē into C2(A). The
system of equation (2.9) can be written in the condensed form

Xt = F (X)

where F : Ē → Ē is given by F (X) = [U,−Q, U3 − 2PU ]. We can see that each
component of F consist of products and sums of B-Lipschitz maps from Ē into
C2(A). Hence, F is B-Lipschitz from Ē to Ē and, by the standard contraction
argument, we obtain the short-time existence of solutions in Ē. As far as global
existence is concerned, we know that, for initial data in W 1,∞(R), ‖X‖W 1,∞(R)

does not blow up, see [18, Lemma 2.4]. For the second derivative, we have, for
any ξ ∈ A, that

yξξt = Uξξ,

Uξξt =
1

2
Hξξ +

[

1

2
U2 − P

]

yξξ +
[

UUξyξ − Qy2
ξ

]

,

Hξξt = [−2QU ] yξξ +
[

3U2 − 2P
]

Uξξ

+
[

UyξHξ + U3yξ − 2PUy2
ξ + 6UU2

ξ − 4QUξyξ

]

.

(3.7)

The system (3.7) is affine (it equals the sum of a linear transformation and a
constant) with respect to yξξ, Uξξ and Hξξ. Hence, on any time interval [0, T ),
we have

‖Xξξ(t, · )‖L∞(A) ≤ ‖Xξξ(0, · )‖L∞(A) + C + C

∫ t

0

‖Xξξ(τ, · )‖L∞(A) dτ

where C is a constant that only depends on supt∈[0,T ) ‖X(t, · )‖W 1,∞(R), which

is bounded. Gronwall’s lemma allows us to conclude that ‖X(t, · )‖W 2,∞(A) does

not blow up, and therefore the solution is globally defined in Ē. �

Next we want to prove that the solution given by Theorem 2.3 with initial
data (3.3) satisfies u − uxx = 0 between the peaks. Assuming that yξ(t, ξ) 6= 0,
we formally have

ux◦y =
Uξ

yξ

and

uxx◦y =

(

Uξ

yξ

)

ξ

1

yξ
=

Uξξyξ − yξξUξ

y3
ξ

.
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Hence,

(u − uxx)◦y =
Uy3

ξ − Uξξyξ + yξξUξ

y3
ξ

, (3.8)

and we are naturally led to analyze the quantity

A = Uy3
ξ − Uξξyξ + yξξUξ. (3.9)

For a given fixed ξ ∈ A, we differentiate (3.9) with respect to time and, after
using (2.9), (2.11), and (3.7), we obtain

dA

dt
= 3UUξy

2
ξ − Qy3

ξ − UξUξξ − yξ

(1

2
Hξξ + UUξyξ +

1

2
U2yξξ − Qy2

ξ − Pyξξ

)

+

(

1

2
Hξ + (

1

2
U2 − P )yξ

)

yξξ + UξUξξ

= 2UξUy2
ξ − 1

2
yξHξξ +

1

2
Hξyξξ . (3.10)

We differentiate (2.12c) with respect to ξ and get

yξξHξ + yξHξξ = 2yξyξξU
2 + 2y2

ξUUξ + 2UξUξξ. (3.11)

After inserting the value of yξHξξ given by (3.11) into (3.10) and multiplying the
equation by yξ, we get

yξ
dA

dt
= y3

ξUξU + (Hξyξyξξ − y2
ξyξξU

2) − UξyξUξξ.

Hence, by (2.12c),

yξ
dA

dt
= UξA

or, since yξt = Uξ,

yξ
dA

dt
= yξtA. (3.12)

Let us prove that A
yξ

is C1 in time (we recall that we keep ξ fixed in A). We have

A

yξ
= Uy2

ξ − Uξξ +
yξξUξ

yξ
(3.13)

= Uy2
ξ − Uξξ +

yξξUξ

yξ + Hξ
+

yξξHξUξ

(yξ + Hξ)yξ
. (3.14)

After multiplying (3.11) by
Uξ

yξ
, we obtain

yξξHξUξ

yξ
= −HξξUξ + 2yξξU

2Uξ + 2yξUU2
ξ + 2

U2
ξ

yξ
Uξξ (3.15)

= −HξξUξ + 2yξξU
2Uξ + 2yξUU2

ξ + 2(Hξ − yξU
2)Uξξ

because
U2

ξ

yξ
= Hξ + yξU

2, from (2.12c). Hence, we can rewrite (3.14) as

A

yξ
=

J(X, Xξ, Xξξ)

yξ + Hξ
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for some polynomial J . Since X ∈ C1(R, Ē), we have X , Xξ and Xξξ are C1 in
time. Since X(t) remains in G for all t, from (2.12b), we have yξ + Hξ > 0 and
therefore 1/(yξ + Hξ) is C1 in time. Hence, A/yξ is C1 in time. For any time t
such that yξ(t) 6= 0, that is, for almost every t (see [18, Lemma 2.7]) we have

d

dt

(

A

yξ

)

=
Atyξ − yξtA

y2
ξ

= 0

from (3.12). Hence, A
yξ

is constant in time, i.e.,

A(t, ξ) = K(ξ)yξ(t, ξ), (3.16)

for some constant K(ξ) independent of time. This leads to

y2
ξ (u − uxx)◦y = K(ξ)

which corresponds to the conservation of spatial angular momentum as defined
in [1], see [14]. For the multipeakons at time t = 0, we have y(0, ξ) = ξ and
(u − uxx)(0, ξ) = for all ξ ∈ A. Hence,

A

yξ
(t, ξ) = 0 (3.17)

for all time t and all ξ ∈ A.

Proposition 3.2. The energy µ admits a singular part µs only when two peaks
collide and the support of µs corresponds to the points of collision of the peaks.
Moreover, no more than two peaks can collide at the same time.

Proof. Let x be a singular point of µ. We claim that y−1({x}) then is a closed
interval of length µs({x}). Let us prove this. For any ξ, from the definition
(2.16a) of y, there exists an increasing sequence xi such that limi→∞ xi = y(ξ)
and

µ((−∞, xi)) + xi ≤ ξ. (3.18)

Since (−∞, xi) is an increasing sequence of sets and (−∞, y(ξ)) = ∪i∈N(−∞, xi),
we have limi→∞ µ((−∞, xi)) = µ((−∞, y(ξ))), and it follows from (3.18) that

µ((−∞, y(ξ))) + y(ξ) ≤ ξ. (3.19)

We set ξ̄ = µ((−∞, x))+x and, using (3.19), it is not hard to prove that ξ̄ is the
smallest element of y−1({x}). Let ξ ∈ y−1({x}), by definition of y, there exists a
decreasing sequence xi which converges to x such that

µ((−∞, xi)) + xi > ξ.

Letting i tend to infinity, we obtain

ξ ≤ µ((−∞, x]) + x

≤ µ((−∞, x)) + µs({x}) + x

≤ ξ̄ + µs({x}).
Hence, ξ ∈ [ξ̄, ξ̄ + µs({x})] and y−1({x}) ⊂ [ξ̄, ξ̄ + µs({x})]. Conversely, let us
consider ξ ∈ [ξ̄, ξ̄ +µs({x})]. Since y is increasing, y(ξ) ≥ y(ξ̄) = x. Assume that
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y(ξ) > x. Then, it follows from the definition of y that there exists x′ > x such
that

µ((−∞), x′) + x′ ≤ ξ.

Since x′ > x, we have

µ((−∞, x′)) ≥ µ((−∞, x])

= µ((−∞, x)) + µs({x})
= ξ̄ − x + µs({x}).

Hence, ξ̄ − x + µs({x}) + x′ ≤ ξ which implies ξ̄ + µs({x}) < ξ. This contradicts
the fact that ξ ∈ [ξ̄, ξ̄ + µs({x})]. Our claim is proved. This claim is a general
result and does not depend on the multipeakon structure of the initial data. For
solutions with multipeakon initial data, we have the following result.

Lemma 3.3. If yξ(t, ξ) vanishes at some point ξ̄ in the interval (ξi, ξi+1), then
yξ(t, ξ) vanishes everywhere in (ξi, ξi+1).

Proof of Lemma 3.3. Let B be the set

B = {ξ ∈ (ξi, ξi+1) | yξ(t, ξ) = 0} .

The set B is not empty as ξ̄ ∈ B. Since yξ(t, · ) ∈ C(A), B is closed (relatively
in (ξi, ξi+1)). Let us prove that B is also open. Take a point ξ0 ∈ B. We have
yξ(t, ξ0) = 0 and, by (2.12b), it implies Hξ(t, ξ0) > 0. Since Hξ(t, · ) ∈ C(A),
there exists an open interval I around ξ0 such that Hξ(t, ξ) > 0 for all ξ ∈ I .
After multiplying (3.17) by Uξ and using (2.12c), we obtain

UUξy
2
ξ − UξUξξ + yξξHξ − yξξyξU

2 = 0. (3.20)

We differentiate (2.12c) with respect to ξ and obtain

UξξUξ =
1

2
(yξξHξ + Hξξyξ) − yξyξξU

2 − y2
ξUξU. (3.21)

Inserting this into (3.20), we end up with an equation of the form

yξξHξ = f(ξ)yξ (3.22)

where f(ξ) is a continuous function of ξ. Since Hξ 6= 0 on I , we obtain

yξξ(ξ) =
f(ξ)

Hξ(ξ)
yξ(ξ),

yξ(ξ0) = 0.

The unique solution of this ordinary differential equation where yξ(ξ) plays the
role of the unknown, is yξ(ξ) = 0. Hence, yξ(ξ) = 0 for all ξ ∈ I . This implies
that I ⊂ B and therefore B is open. Thus B is an open and closed set, relatively
in (ξi, ξi+1). Since (ξi, ξi+1) is a connected set, it implies that B = (ξi, ξi+1),
which concludes the proof of the lemma. �
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Let us consider a time T when µ admits a singular point that we denote
{x}. Then, the interval of strictly positive length y−1({x}) intersects A and
there exists a point ξ̄ ∈ (ξi, ξi+1) for some i ∈ {1, . . . , n} such that yξ(T, ξ̄) = 0
(with the convention ξ0 = −∞ and ξn+1 = ∞). From Lemma 3.3, we get that
[ξi, ξi+1] ⊂ y−1({x}). In particular, y(ξi) = y(ξi+1) = x, which means that the
point x where the energy concentrates, is located at the collision point between
two peaks. We claim that

[ξi, ξi+1] = y−1({x}), (3.23)

which in particular means that no other peak than the ones originating from ξi

and ξi+1 can be found at x. Assume that (3.23) is not true, then, due to Lemma
3.3, y−1({x}) must take the form

y−1({x}) = [ξj , ξk]

where j ≤ i, k ≥ i + 1 and k − j ≥ 2. We introduce X̄ = (ȳ, Ū , H̄) defined as
ȳ(ξ) = y(T, ξ), Ū(ξ) = U(T, ξ), and

H̄(ξ) =







H(T, ξj)
ξk − ξ

ξk − ξj
+ H(T, ξk)

ξ − ξj

ξk − ξj
when ξ ∈ (ξj , ξk),

H(T, ξ) otherwise,

so that H̄ is linear in (ξj , ξk) and continuous. Since yξ(T, ξ) = Uξ(T, ξ) = 0 and
Hξ(T, ξ) > 0 in (ξj , ξj), it is not hard to check that all the conditions (2.12)
are fulfilled and X̄ ∈ F . Let us look at X(T ) and X̄ in Eulerian coordinates.
We write (u, µ) = M([X(T )]) and (ū, µ̄) = M([X̄]). Since ȳ(ξ) = y(T, ξ) and
Ū(ξ) = U(T, ξ), it is clear that ū = u. We have, using (2.17b),

µ({x}) =

∫

[ξj ,ξk]

Hξ dξ = H(ξk) − H(ξj) =

∫

[ξj ,ξk ]

H̄ξ dξ = µ̄({x}).

Hence, for any Borel set A,

µ(A) = µ(A \ {x}) + µ({x}) = µ̄(A \ {x}) + µ̄({x}) = µ̄(A)

and µ̄ = µ. Since M is injective, we have [X(T )] = [X̄ ], which means that X(T )
and X̄ are equivalent and there exists f ∈ F such that

X(T ) ◦ f = X̄. (3.24)

The point is that X̄ is linear in (ξj , ξk), and therefore it possesses a priori more

regularity than X(T ) on this interval. Introduce Ã = R \ {ξ1, . . . , ξj , ξk, . . . , ξn}.
We can solve (2.9) backward in time and, slightly abusing the notation, we denote
X̄(t) the solution which satisfies X̄(T ) = X̄ at time T . Proposition 3.1 gives us

that X̄(t) ∈ [C2(Ã)]3 for all time t. Since X(T ) and X̄(T ) are equivalent and
satisfy (3.24), by (2.15), we obtain that X(t) ◦ f = X̄(t) for all time t. At time
t = 0, it yields

f(ξ) = ȳ(0, ξ)

because y(0, ξ) = ξ. Since ȳ(0, ξ) ∈ C2((ξj , ξk)), f ∈ C2((ξj , ξk)). By definition,
see (2.14), the derivative of f−1 is bounded. It implies that fξ is bounded strictly
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away from zero, see [18, Lemma 3.2] for a detailed proof of this result. Hence, fξ >
0 in (ξj , ξk) and, by the implicit function theorem, f−1 belongs to C2((ξj , ξk)).
Hence,

u(0, ξ) = U(0, ξ) = Ū(0, f−1(ξ))

also belongs to C2((ξj , ξk)). This contradicts the fact that (ξj , ξk) contains either
ξi or ξi+1, which are points where the derivative of u(0, ξ) is discontinuous. �

Given (t, x) ∈ R+ × R, there exists ξ, which may not be unique, such that
x = y(t, ξ). If ξ ∈ Ac, then x corresponds to the position of a peak. For ξ ∈ A,
if yξ(t, ξ) = 0, then, by Lemma 3.3, yξ(t, ξ

′) = 0 for all ξ′ ∈ (ξi, ξi+1) where i
is such that ξ ∈ (ξi, ξi+1), and x again corresponds to a peak. If yξ(t, ξ) 6= 0
then, using again Lemma 3.3, we have yξ(t, ξ

′) 6= 0 for all ξ′ ∈ (ξi, ξi+1). By the
implicit function theorem, we obtain that y(t, · ) is invertible in (ξi, ξi+1) and its
inverse is C2. It follows that u(t, x) = U(t, y−1(t, x′)) is C2 with respect to the
spatial variable and the quantity (u − uxx)(t, x) is defined in the classical sense.
Moreover, by (3.17) and (3.8), we have

(u − uxx)(t, x) =
A(t, ξ)

y3
ξ (t, ξ)

= 0. (3.25)

We summarize our results in the following theorem.

Theorem 3.4. Given an initial multipeakon solution ū(x) =
∑n

i=1 pie
−|x−ξi|, let

(y, U, H) be the solution of the system (2.9) with initial data (ȳ, Ū , H̄) given by
(3.4). Between adjacent peaks, say xi = y(t, ξi) 6= xi+1 = y(t, ξi+1), the solution
u(t, x) is twice differentiable with respect to the space variable, and we have

(u − uxx)(t, x) = 0 for x ∈ (xi, xi+1).

We are now in position to start the derivation of a system of ordinary differ-
ential equations for multipeakons.

4. A system of ordinary differential equations for multipeakons

For each i ∈ {1, . . . , n}, we have, from (2.9),



























dyi

dt
= ui,

dui

dt
= −Qi,

dHi

dt
= u3

i − 2Piui

(4.1)

where yi, ui, Hi, Pi and Qi denote y(t, ξi), U(t, ξi), H(t, ξi), P (t, ξi) and Q(t, ξi),
respectively. For almost every t, the function y(t, · ) is invertible. We can make
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the change of variables x = y(t, ξ) so that Pi and Qi can be rewritten as

Pi =
1

2

∫

R

e−|yi−x|(u2 +
1

2
u2

x) dx, (4.2)

Qi = −1

2

∫

R

sgn(yi − x)e−|yi−x|(u2 +
1

2
u2

x) dx. (4.3)

Theorem 3.4 gives us a priori the shape of u and allows us to express Pi and Qi

as a function of the variables ui, Hi and yi only, thereby transforming (4.1) into
a well-posed 3n-dimensional system of ordinary differential equations.

For almost every time t, yξ(t, ξ) > 0 for almost every ξ and ξ 7→ y(t, ξ) is
invertible, see Sect. 2 . From now on, we will consider such time t and omit
it in the notation when there is no ambiguity. For such time, by Theorem 3.4,
no peak coincide. From the same theorem, we know that between two adjacent
peaks located at yi and yi+1, u satisfies u − uxx = 0 and therefore u can be
written as

u(x) = Aie
x + Bie

−x for x ∈ [yi, yi+1], i = 1, . . . , n − 1. (4.4)

The constants Ai and Bi depend on ui, ui+1, yi and yi+1 and read

Ai =
e−ȳi

2

[

ūi

cosh(δyi)
+

δui

sinh(δyi)

]

, (4.5)

Bi =
eȳi

2

[

ūi

cosh(δyi)
− δui

sinh(δyi)

]

, (4.6)

where we for convenience have introduced the variables

ȳi =
1

2
(yi + yi+1), δyi =

1

2
(yi+1 − yi), (4.7)

ūi =
1

2
(ui + ui+1), δui =

1

2
(ui+1 − ui).

The constants Ai and Bi uniquely determine u on the interval [yi, yi+1]. Thus,
we can compute

δHi = Hi+1 − Hi =

∫ yi+1

yi

(u2 + u2
x) dx

= 2ū2
i tanh(δyi) + 2δu2

i coth(δyi). (4.8)

At this point, we can get some more understanding of what is happening at a
time of collision. Let t∗ be a time when the two peaks located at yi and yi+1

collide, i.e., such that limt↑t∗ δyi(t) = 0. Since the solution u remains in H1 for
all time, the function u remains continuous so that we have limt↑t∗ δui = 0. Still,
Ai and Bi may have a finite limit when t tends to t∗. However, we know that the
first derivative blows up (see [5]), and this implies limt↑t∗ Bi = − limt↑t∗ Ai = ∞.
Thus δui tends to zero but slower than δyi. We can now be more precise: Letting
t tend to t∗ in (4.8), we obtain, to first order in δyi, that

δui =

√

δHi

2

√

δyi + o(δyi).
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Recall that H and y are increasing functions, and therefore δHi and δyi are
positive (δHi is even strictly positive in this case). Hence, we see that δui tends
to zero at the same rate as

√
δyi. Let us now turn to the computation of Pi as

given by (4.2). This computation is quite long but not difficult. We will not give
all the intermediate steps but enough so that a courageous reader will have no
problems filling in the gaps. We start by writing u as

u(t, x) =
n

∑

j=0

(Aje
x + Bje

−x)χ(yj ,yj+1)(x).

We have set y0 = −∞, yn+1 = ∞, u0 = un+1 = 0, and A0 = u1e
−y1 , B0 = 0,

An = 0, Bn = uneyn . We have

u2 +
1

2
u2

x =

n
∑

j=0

(

3

2
A2

je
2x + AjBj +

3

2
B2

j e−2x

)

χ(yj ,yj+1). (4.9)

Introduce

κij =

{

−1 if j ≥ i,

1 otherwise.

Inserting (4.9) into (4.2), we obtain

Pi =
1

2

n
∑

j=0

∫ yj+1

yj

e−κij(yi−x)

(

3

2
A2

je
2x + AjBj +

3

2
B2

j e−2x

)

dx. (4.10)

We have
∫ yj+1

yj

e−κij(yi−x)A2
je

2x dx = e−κijyiA2
j

e(2+κij)yj+1 − e(2+κij)yj

2 + κij
(4.11)

= e−κijyiA2
j exp ((2 + κij)ȳj)

2 sinh ((2 + κij)δqj)

2 + κij
.

From (4.5) and (4.8), we get

A2
j =

e−2ȳj

sinh2(2δyi)

[

ū2
j sinh2(δyj) + 2ūjδuj sinh(δyj) cosh(δyj) + δu2

j cosh2(δyj)
]

and

A2
j =

e−2ȳj

4 sinh(2δyi)
[δHj + 4ūjδuj ] . (4.12)

Similarly, we obtain

B2
j =

e2ȳj

4 sinh(2δyi)
[δHj − 4ūjδuj ] , (4.13)

and

AjBj =
1

4 sinh(2δyi)

[

4ū2
j tanh(δyj) − δHj

]

. (4.14)
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Hence, inserting (4.12) into (4.11), we get
∫ yj+1

yj

e−κij(yi−x)A2
je

2x dx

=
e−κijyieκij ȳj

2(2 + κij) sinh(2δyj)
sinh ((2 + κij)δyj) [δHj + 4ūjδuj ]. (4.15)

In the same way we find
∫ yj+1

yj

e−κij(yi−x)AjBj dx =
e−κijyieκij ȳj

2 sinh(2δyj)
sinh(δyj)[4ū2

j tanh(δyj) − δHj)],

(4.16)
and

∫ yj+1

yj

e−κij(yi−x)B2
j e−2x dx

=
e−κijyieκij ȳj

2(κij − 2) sinh(2δyj)
sinh ((κij − 2)δyj) [δHj − 4ūjδuj ]. (4.17)

After collecting (4.15), (4.16) and (4.17), we can rewrite Pi in (4.10) as

Pi =

n
∑

j=0

e−κijyieκij ȳj

4 sinh(2δyj)
(4.18)

×
[

δHj

[

3

2

( sinh ((2 + κij)δyj)

2 + κij
+

sinh ((κij − 2)δyj)

κij − 2

)

− sinh(δyj)

]

+ 6ūjδuj

[

sinh ((2 + κij)δyj)

2 + κij
− sinh ((κij − 2)δyj)

κij − 2

]

+ 4ū2
j sinh(δyj) tanh(δyj)

]

.

By using only trigonometric manipulations and the fact that κ2
ij = 1, we get the

following two identities

3

2

( sinh ((2 + κij)δyj)

2 + κij
+

sinh ((κij − 2)δyj)

κij − 2

)

− sinh(δyj) = 2 sinh(δyj) cosh2(δyj)

and
sinh ((2 + κij)δyj)

2 + κij
− sinh ((κij − 2)δyj)

κij − 2
=

4κij

3
sinh3(δyj)

that we use to simplify (4.18). We end up with

Pi =

n
∑

j=0

e−κijyieκij ȳj

8 cosh(δyj)

[

2δHj cosh2(δyj) + 8κij ūjδuj sinh2(δyj) + 4ū2
j tanh(δyj)

]

,

or

Pi =

n
∑

j=0

Pij (4.19)
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with

Pij =























e(y1−yi) u2
1

4 for j = 0,
e−κij yi eκij ȳj

8 cosh(δyj)

[

2δHj cosh2(δyj)

+8κij ūjδuj sinh2(δyj) + 4ū2
j tanh(δyj)

] for j = 1, . . . , n − 1,

e(yi−yn) u2
n

4 for j = n.

(4.20)

The term Qi can be computed in the same way. We have

Qi =

n
∑

j=0

−1

2

∫ yj+1

yj

sgn(qi − x)e−κij (yi−x)(u2 +
1

2
u2

x) dx

=

n
∑

j=0

−κij

∫ yj+1

yj

e−κij(yi−x)

(

3

2
A2

je
2x + AjBj +

3

2
B2

j e−2x

)

dx,

so that we end up with

Qi = −
n

∑

j=0

κijPij , (4.21)

where Pij is given by (4.20).
We summarize the result in the following theorem.

Theorem 4.1. Given a multipeakon initial data ū, as given by (3.3), let ȳi = ξi,

ūi = ū(ξi) and H̄i =
∫ ξi

−∞
(ū2 + ū2

x) dx for i = 1, . . . , n. Then, there exists a global

in time solution (yi, ui, Hi) of (4.1), (4.19)–(4.21) with initial data (ȳi, ūi, H̄i).
For each time t, we define u(t, x) as the solution of the Dirichlet problem

u − uxx = 0 with boundary conditions u(t, yi(t)) = ui(t), u(t, yi+1(t)) = ui+1(t)

on each interval [yi(t), yi+1(t)]. Then, u is a conservative solution of the Camassa–
Holm equation, and we denote it the multipeakon solution.

The simplest cases can be computed explicitly, and for completeness we include
the cases n = 1, 2. In addition we present the case n = 4 numerically (with and
without collisions).

Example 4.2. (i) Let n = 1. Here we find that P1 = 1
2u2

1 and Q1 = 0. Thus
u1 = c and y1 = ct + a for constants a, c, and we finally find the familiar one
peakon u(t, x) = ce−|x−ct−a|. Note that H1 = c2 is constant. However, we did
not use the energy to compute the solution. This is a general result; when there
is no collision, the first two equations in (4.1) decouple from the last one, and
the energy equation is not needed.

(ii) Let n = 2. We will solve analytically the case of an antisymmetric pair
of peakons when the two peakons collide. In this case, at the collision point the
energy concentrates in a single point, see [5]. We take the origin of time equal to
the time of collision. The initial conditions are

y1(0) = y2(0) = u1(0) = u2(0) = δH0(0) = δH2(0) = 0, δH1(0) = E2
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where E > 0 corresponds to the energy of the system. The solution remains
antisymmetric. Let us assume this for the moment and write

y = y2 = −y1,

u = u2 = −u1,

h = δH1,

(4.22)

and, since the total energy is preserved (H(t,∞) is constant), we have δH0 =
δH2 = 1

2 (E2 − h). We compute Pi and Qi using (4.19) and (4.21). After some
calculations, we obtain that, whenever the solution is antisymmetric, P1 = P2 =
P and Q1 = −Q2 = −Q where

P = (2u2 + h)
1 + e−2y

8
,

Q = u2 1− e−2y

4
− h

1 + e−2y

8
.

(4.23)

We are led to the following system of ordinary differential equations

yt = u,

ut = −Q,

ht = 2(u3 − 2Pu),

(4.24)

with initial conditions y(0) = u(0) = 0 and h(0) = E2. This system can be
solved and, after retrieving the original variables by (4.22), since the identities
P1 = P2 and Q1 = −Q2 hold, (y1, y2, u1, u2, H1, H2) is the unique solution of
(4.1) and therefore it is antisymmetric. From (4.23), we get Q = 1

2u2 − P .
Hence, ht = 4uQ = −4uut and, after integration,

h = −2u2 + E2.

We insert this in (4.24) which yields the following second-order differential equa-
tion

ytt +
y2

t

2
=

E2

8
(1 + e−2y)

with initial data y(0) = yt(0) = 0. We can get rid of the factor E2 by rescaling
the time variable, t 7→ Et, and the equation we have to solve is

ytt +
y2

t

2
=

1

8
(1 + e−2y), (4.25)

y(0) = yt(0) = 0. (4.26)

By a phase-plane analysis, one can prove that yt(t) < 0 for t < 0, yt(t) > 0 for
t > 0 and y(t) > 0 for all t 6= 0. We make the change of variables z = e−2y and
(4.25) becomes

−4zztt + 5z2
t = z2(1 + z). (4.27)

We multiply the equation by zαzt where α is a constant to be determined and
get

−4zα+1ztztt + 5z3
t zα = z2+α(1 + z)zt. (4.28)
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The term on the left is the derivative of zαz2
t if α = − 5

2 . Taking this value for
α, (4.28) can be integrated and we obtain, after some calculations,

z2
t = z2(1 − z). (4.29)

Hence,

zt = −εz
√

1 − z (4.30)

where ε = sgn(t). We use the change of variables v =
√

1 − z and obtain vt =
−ε/2(1− v2), which can be integrated and gives v(t) = ε tanh( t

2 ). Finally, going
back to the original variables, we obtain

y(t) = ln cosh(
Et

2
),

u(t) =
E

2
tanh(

Et

2
).

Note that the ordinary differential equation (4.30) does not satisfy the Lipschitz
condition and therefore does not have a unique solution. However, the solution
we are looking for is in fact the solution of the second-order ordinary differential
equation

ztt = z − 3

2
z2 (4.31)

which is obtained from (4.27) by inserting (4.29), which is perfectly well-posed.
It is not hard to check that the solution z(t) we obtained indeed satisfies (4.31).
In Fig. 1c, we plot δH0, δH1, and δH2 which represent the energy contained
between −∞ and y1, y1 and y2, y2 and +∞, respectively. We see how the energy
concentrates at collision time.

The case with two peakons has been computed by Wahlén [20] (see also [2, 3,
4]). For completeness, we reproduce his results here. We have1

y1 = ln

(

c1 − c2

c1e−c1t − c2e−c2t

)

, y2 = ln

(

c1e
c1t − c2e

c2t

c1 − c2

)

,

u1 =
c2
1 − c2e

(c1−c2)t

c1 − c2e(c1−c2)t
, u2 =

c2
2 − c1e

(c1−c2)t

c2 − c1e(c1−c2)t
,

H1 = u2
1, H2 = 2c2

1 + 2c2
2 − u2

2,

(4.32)

where c1, c2 denotes the speed of the peaks y1 and y2, respectively, when t tends
to infinity. The initial data is set so that, if there is a collision, it occurs at time
t = 0.

1The expressions in (4.32) differ slightly from [20] where two different expressions are given
for positive and negative time. This is due to the fact that a relabeling of the solution is
implicitly made at collision time so that the two peaks interchange their role at that time. This
has no consequence in the Eulerian picture and the resulting function u in Eulerian coordinates
is in both cases a conservative solution of the Camassa–Holm equation.
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Figure 1: antisymmetric multipeakon collision

(iii) Let n = 4. Consider first the case where there is no wave breaking with
all pi(0) positive for i = 1, 2, 3, 4. We take

y1(0) = −10, y2(0) = −5, y3(0) = 0, y4(0) = 5,

u1(0) = 4, u2(0) = u3(0) = u4(0) = 2.

The results are plotted in Fig. 2. Note that the characteristics do not intersect.
Consider finally the case when pi(0) is positive for i = 1, 2, 3, but p4(0) is

negative. The system (4.1) of ordinary differential equations can be solved nu-
merically. We use the explicit Runge–Kutta solver ode45 for ordinary differential
equations from Matlab. In Fig. 3, we present the results obtained for the initial
data

y1(0) = −10, y2(0) = −5, y3(0) = 0, y4(0) = 5,

u1(0) = u2(0) = u3(0) = 2, u4(0) = −2.
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Figure 2: Example of multipeakon without collision.
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Figure 3: Example of multipeakon with collision
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GLOBAL CONSERVATIVE SOLUTIONS OF THE

GENERALIZED HYPERELASTIC-ROD WAVE EQUATION

HELGE HOLDEN AND XAVIER RAYNAUD

Abstract. We prove existence of global and conservative solutions of the
Cauchy problem for the nonlinear partial differential equation ut − uxxt +
f(u)x − f(u)xxx + (g(u) + 1

2
f ′′(u)(ux)2)x = 0 where f is strictly convex or

concave and g is locally uniformly Lipschitz. This includes the Camassa–
Holm equation (f(u) = u2/2 and g(u) = κu+u2) as well as the hyperelastic-
rod wave equation (f(u) = γu2/2 and g(u) = (3− γ)u2/2) as special cases.
It is shown that the problem is well-posed for initial data in H1(R) if one
includes a Radon measure that corresponds to the energy of the system with
the initial data. The solution is energy preserving. Stability is proved both
with respect to initial data and the functions f and g. The proof uses an
equivalent reformulation of the equation in terms of Lagrangian coordinates.

1. Introduction

We solve the Cauchy problem on the line for the equation

ut − uxxt + f(u)x − f(u)xxx + (g(u) +
1

2
f ′′(u)(ux)2)x = 0 (1.1)

for strictly convex or concave functions f and locally uniformly Lipschitz func-
tions g with initial data in H1(R). This equation includes the Camassa–Holm
equation [4], the hyperelastic-rod wave equation [11] and its generalization [6, 7]
as special cases.

For f(u) = u2

2 and g(u) = κu + u2, we obtain the Camassa–Holm equation:

ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = ū, (1.2)

which has been extensively studied the last decade [4, 5]. It was first intro-
duced as a model describing propagation of unidirectional gravitational waves in
a shallow water approximation, with u representing the fluid velocity, see [18].
The Camassa–Holm equation has a bi-Hamiltonian structure, it is completely
integrable, and it has infinitely many conserved quantities.

2000 Mathematics Subject Classification. Primary: 65M06, 65M12; Secondary: 35B10,
35Q53.

Key words and phrases. Generalized hyperelastic-rod wave equation, Camassa–Holm equa-
tion, conservative solutions.
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For f(u) = γu2

2 and g(u) = 3−γ
2 u2, we obtain the hyperelastic-rod wave equa-

tion:

ut − utxx + 3uux − γ(2uxuxx + uuxxx) = 0,

which was introduced by Dai [11, 10, 12] in 1998. It describes far-field, finite
length, finite amplitude radial deformation waves in cylindrical compressible hy-
perelastic rods, and u represents the radial stretch relative to a pre-stressed state.

Furthermore, for f(u) = γu2

2 we find the generalized hyperelastic-rod equation

ut − uxxt +
1

2
g(u)x − γ(2uxuxx + uuxxx) = 0, (1.3)

which was recently studied by Coclite, Holden, and Karlsen [6, 7], extending
earlier results for the Camassa–Holm equation by Xin and Zhang, see [20]. They
analyzed the initial value problem for this equation, using an approach based on
a certain viscous regularization. By carefully studying the behavior of the limit of
vanishing viscosity they derived the existence of a solution of (1.3). This solution
could be called a diffusive solution, and will be distinct from the solutions studied
here. We will discuss this in more detail below.

We will not try to cover the extensive body of results regarding various aspects
of the Camassa–Holm equation. Suffice it here to note that in the case with κ = 0
the solution may experience wave breaking in finite time in the sense that the
function remains bounded while the spatial derivative becomes unbounded with
finite H1-norm. Various mechanisms and conditions are known as to when and
if wave breaking occurs. Specifically we mention that Constantin, Escher, and
Molinet [8, 9] showed the following result: If the initial data u|t=0 = ū ∈ H1(R)
and m̄ := ū − ū′′ is a positive Radon measure, then equation (1.2) with κ = 0
has a unique global weak solution u ∈ C([0, T ], H1(R)), for any T positive, with
initial data ū. However, any solution with odd initial data ū in H3(R) such that
ūx(0) < 0 blows up in a finite time.

The problem of continuation of the solution beyond wave breaking is intricate.
It can be illustrated in the context of a peakon–antipeakon solution. The one
peakon is given by u(t, x) = c exp(− |x − ct|). If c is positive, the solution is
called a peakon, and with c negative it is called an antipeakon. One can construct
solutions that consist of finitely many peakons and antipeakons. Peakons move
to the right, antipeakons to the left. If initial data are given appropriately, one
can have a peakon colliding with an antipeakon. In a particular symmetric case
they exactly annihilate each other at collision time t∗, thus u(t∗, x) = 0. This
immediately raises the question about well-posedness of the equation and allows
for several distinct ways to continue the solution beyond collision time. For an
extensive discussion of this case, we refer to [17] and references therein. We here
consider solutions, called conservative, that preserve the energy. In the example
just mentioned this corresponds to the peakon and antipeakon passing through
each other, and the energy accumulating as a Dirac delta-function at the origin
at the time of collision. Thus the problem cannot be well-posed by considering
the solution u only. Our approach for the general equation (1.1) is based on the
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inclusion of the energy, in the form of a (non-negative Radon) measure, together
with the function u as initial data. We have seen that singularities occur in
these variables. Therefore we transform to a different set of variables, which
corresponds to a Lagrangian formulation of the flow, where the singularities do
not occur.

Let us comment on the approach in [6, 7]. The equation (1.3) is rewritten as

ut + γuux + Px = 0, P − Pxx =
1

2
(g(u) − γu2) + γ(ux)2. (1.4)

By adding the term εuxx to the first equation, it is first shown that the modified
system has a unique solution.1 Subsequently, it is proved that the vanishing
viscosity limit ε → 0 exists. The limit is shown to be weak solution of (1.3).
In particular, that means that ‖u(t, · )‖H1 ≤ ‖u(0, · )‖H1 and that the solution
satisfies an entropy condition ux(t, x) ≤ K + 2/(γt) for some constant K. The
solution described above with a peakon and an antipeakon “passing through”
each other will not satisfy this entropy condition. Thus the solution concept is
different in the two approaches.

Here we take a rather different approach. Based on recent techniques developed
for the Camassa–Holm equation, see [1, 2, 15, 16], we prove that (1.1) possesses
a global weak and conservative solution. Furthermore, we show that the problem
is well-posed. In particular we show stability with respect to both perturbations
in the initial data and the functions f and g in a suitable topology.

The present approach is based on the fact that the equation can be reformu-
lated as a system of ordinary differential equations taking values in a Banach
space. It turns out to be advantageous first to rewrite the equation as

ut + f(u)x + Px = 0, (1.5a)

P − Pxx = g(u) +
1

2
f ′′(u)u2

x (1.5b)

where we assume2

{

f ∈ W 3,∞
loc (R), f ′′(u) 6= 0, u ∈ R,

g ∈ W 1,∞
loc (R), g(0) = 0.

(1.6)

We will use this assumption throughout the paper.
Specifically, the characteristics are given by

yt(t, ξ) = f ′(u(t, y(t, ξ)).

1In fact, it it is proved that a more general parabolic-elliptic system, allowing, e.g., for
explicit spatial and temporal dependence in the various functions, has a solution.

2Without loss of generality we may and will assume that g(0) = 0. Otherwise, (1.5b) should

be replaced by P − Pxx = g(u) − g(0) + 1

2
f ′′(u)u2

x
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Define subsequently

U(t, ξ) = u(t, y(t, ξ)),

H(t, ξ) =

∫ y(t,ξ)

−∞

(

u2 + u2
x

)

dx,

where U and H correspond to the Lagrangian velocity and the Lagrangian cu-
mulative energy distribution, respectively. It turns out that one can derive the
following system of ordinary differential equations taking values in an appropri-
ately chosen Banach space, viz.











yt = U,

Ut = −Q,

Ht = G(U) − 2PU,

where the quantities G, Q, and P can be expressed in terms of the unknowns
(y, U, H). Short-term existence is derived by a contraction argument. Global
existence as well as stability with respect to both initial data and functions f
and g, is obtained for a class of initial data that includes initial data u|t=0 = ū in
H1(R), see Theorem 2.8. The transition of this result back to Eulerian variables
is complicated by several factors, one being the reduction of three Lagrangian
variables to two Eulerian variables. There is a certain redundancy in the Lagra-
gian formulation which is identified, and we rather study equivalence classes that
correspond to relabeling of the same Eulerian flow. The main existence result is
Theorem 2.9. It is shown that the flow is well-posed on this space of equivalence
classes in the Lagrangian variables, see Theorem 3.6. A bijection is constructed
between Lagrangian and Eulerian variables, see Theorems 3.8–3.11. On the set D
of Eulerian variables we introduce a metric that turns D into a complete metric
space, see Theorem 3.12.

The main result, Theorem 3.13, states the following: There exists a contin-
uous semigroup on D which to any initial data (ū, µ̄) ∈ D associates the pair
(u(t), µ(t)) ∈ D such that u(t) is a weak solution of (1.5) and the measure
µ = µ(t) with µ(0) = µ̄, evolves according to the linear transport equation
µt + (uµ)x = (G(u) − 2Pu)x where the functions G and P are explicitly given.
Continuity with respect to all variables, including f and g, is proved. The total
energy as measured by µ is preserved, i.e., µ(t)(R) = µ̄(R) for all t.

The abstract construction is illustrated on the one and two peakon solutions
for the Camassa–Holm equation.

The paper is organized as follows. In Section 2 the equation is reformulated
in terms of Lagrangian variables, and existence is first proved in Lagrangian
variables before the results are transformed back to the original Eulerian vari-
ables. Stability of the semigroup is provided in Section 3, and the construction
is illustrated on concrete examples in Section 4.



CONSERVATIVE SOLUTIONS FOR A HYPERELASTIC ROD 5

2. Existence of solutions

2.1. Transport equation for the energy density and reformulation in

terms of Lagrangian variables. In (1.5b), P can be written in explicit form:

P (t, x) =
1

2

∫

R

e−|x−z|(g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, z) dz. (2.1)

We will derive a transport equation for the energy density u2 + u2
x. Assuming

that u is smooth, we get, after differentiating (1.5a) with respect to x and using
(1.5b), that

uxt +
1

2
f ′′(u)u2

x + f ′(u)uxx + P − g(u) = 0. (2.2)

Multiply (1.5a) by u, (2.2) by ux, add the two to find the following equation

(u2 + u2
x)t + (f ′(u)(u2 + u2

x))x = −2(Pu)x + (2g(u) + f ′′(u)u2)ux. (2.3)

Define G(v) as

G(v) =

∫ v

0

(2g(z) + f ′′(z)z2) dz, (2.4)

then (2.3) can be rewritten as

(u2 + u2
x)t + (f ′(u)(u2 + u2

x))x = (G(u) − 2Pu)x, (2.5)

which is transport equation for the energy density u2 + u2
x.

Let us introduce the characteristics y(t, ξ) defined as the solutions of

yt(t, ξ) = f ′(u(t, y(t, ξ)) (2.6)

with y(0, ξ) given. Equation (2.5) gives us information about the evolution of the
amount of energy contained between two characteristics. Indeed, given ξ1, ξ2 in
R, let

H(t) =

∫ y(t,ξ2)

y(t,ξ1)

(

u2 + u2
x

)

dx

be the energy contained between the two characteristic curves y(t, ξ1) and y(t, ξ2).
Then, we have

dH

dt
=
[

yt(t, ξ)(u
2 + u2

x) ◦ y(t, ξ)
]ξ2

ξ1
+

∫ y(t,ξ2)

y(t,ξ1)

(u2 + u2
x)t dx. (2.7)

We use (2.5) and integrate by parts. The first term on the right-hand side of
(2.7) cancels because of (2.6) and we end up with

dH

dt
= [(G(u) − 2Pu) ◦ y]

ξ2

ξ1
. (2.8)

We now derive a system equivalent to (1.5). The calculations here are formal and
will be justified later. Let y still denote the characteristics. We introduce two



6 H. HOLDEN AND X. RAYNAUD

other variables, the Lagrangian velocity U and cumulative energy distribution H
defined by

U(t, ξ) = u(t, y(t, ξ)), (2.9)

H(t, ξ) =

∫ y(t,ξ)

−∞

(

u2 + u2
x

)

dx, (2.10)

respectively. From the definition of the characteristics, it follows from (1.5a) that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y)

= (ut + f ′(u)ux) ◦ y(t, ξ)

= −Px◦y (t, ξ). (2.11)

This last term can be expressed uniquely in term of U , y, and H . Namely, we
have

Px◦y (t, ξ) = −1

2

∫

R

sgn(y(t, ξ) − z)e−|y(t,ξ)−z|(g ◦ u +
1

2
f ′′ ◦ u u2

x)(t, z) dz

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1

2

∫

R

[

sgn(y(t, ξ) − y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, y(t, η))yξ(t, η)
]

dη.

Finally, since Hξ = (u2 + u2
x)◦y yξ,

Px◦y (ξ) = −1

2

∫

R

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη (2.12)

where the t variable has been dropped to simplify the notation. Later we will
prove that y is an increasing function for any fixed time t. If, for the moment,
we take this for granted, then Px◦y is equivalent to Q where

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη, (2.13)

and, slightly abusing the notation, we write

P (t, ξ) =
1

2

∫

R

exp
(

− sgn(ξ − η)(y(ξ) − y(η))
)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

yξ +
1

2
f ′′(U)Hξ

)

(η) dη. (2.14)
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Thus Px◦y and P ◦y can be replaced by equivalent expressions given by (2.13)
and (2.14) which only depend on our new variables U , H , and y. We introduce
yet another variable, ζ(t, ξ), simply defined as

ζ(t, ξ) = y(t, ξ) − ξ.

It will turn out that ζ ∈ L∞(R). We have now derived a new system of equations,
formally equivalent (1.5). Equations (2.11), (2.8) and (2.6) give us











ζt = U,

Ut = −Q,

Ht = G(U) − 2PU.

(2.15)

Detailed analysis will reveal that the system (2.15) of ordinary differential equa-
tions for (ζ, U, H) : [0, T ] → E is well-posed, where E is a Banach space to be
defined in the next section. We have

Qξ = −1

2
f ′′(U)Hξ +

(

P +
1

2
f ′′(U)U2 − g(U)

)

yξ,

and Pξ = Qyξ. Hence, differentiating (2.15) yields















ζξt = f ′′(U)Uξ (or yξt = f ′′(U)Uξ),

Uξt =
1

2
f ′′(U)Hξ −

(

P +
1

2
f ′′(U)U2 − g(U)

)

yξ,

Hξt = −2Q Uyξ + (2g(U) − f ′′(U)U2 − 2P )Uξ.

(2.16)

The system (2.16) is semilinear with respect to the variables yξ, Uξ and Hξ.

2.2. Existence and uniqueness of solutions in Lagrangian variables. In
this section, we focus our attention on the system of equations (2.15) and prove,
by a contraction argument, that it admits a unique solution. Let V be the Banach
space defined by

V = {f ∈ Cb(R) | fξ ∈ L2(R)}
where Cb(R) = C(R)∩L∞(R) and the norm of V is given by ‖f‖V = ‖f‖L∞(R) +

‖fξ‖L2(R). Of course H1(R) ⊂ V but the converse is not true as V contains

functions that do not vanish at infinity. We will employ the Banach space E
defined by

E = V × H1(R) × V

to carry out the contraction map argument. For any X = (ζ, U, H) ∈ E, the
norm on E is given by

‖X‖E = ‖ζ‖V + ‖U‖H1(R) + ‖H‖V .

The following lemma gives the Lipschitz bounds we need on Q and P .

Lemma 2.1. For any X = (ζ, U, H) in E, we define the maps Q and P as
Q(X) = Q and P(X) = P where Q and P are given by (2.13) and (2.14),
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respectively. Then, P and Q are Lipschitz maps on bounded sets from E to
H1(R). Moreover, we have

Qξ = −1

2
f ′′(U)Hξ +

(

P +
1

2
f ′′(U)U2 − g(U)

)

(1 + ζξ), (2.17)

Pξ = Q(1 + ζξ). (2.18)

Proof. We rewrite Q as

Q(X)(ξ) = −e−ζ(ξ)

2

∫

R

χ{η<ξ}(η)e−(ξ−η)eζ(η)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

(1 + ζξ) +
1

2
f ′′(U)Hξ

)

(η) dη

+
eζ(ξ)

2

∫

R

χ{η>ξ}(η)e(ξ−η)e−ζ(η)

×
(

(

g(U) − 1

2
f ′′(U)U2

)

(1 + ζξ) +
1

2
f ′′(U)Hξ

)

(η) dη, (2.19)

where χB denotes the indicator function of a given set B. We decompose Q into
the sum Q1 + Q2 where Q1 and Q2 are the operators corresponding to the two
terms on the right-hand side of (2.19). Let h(ξ) = χ{ξ>0}(ξ)e

−ξ and A be the
map defined by A : v 7→ h ? v. Then, Q1 can be rewritten as

Q1(X)(ξ) = −e−ζ(ξ)

2
A ◦ R(ζ, U, H)(ξ) (2.20)

where R is the operator from E to L2(R) given by

R(ζ, U, H)(ξ) = eζ(ξ)
(

(g(U) − 1

2
f ′(U)U2)(1 + ζξ) +

1

2
f ′′(U)Hξ

)

(ξ). (2.21)

We claim that A is continuous from L2(R) into H1(R). The Fourier transform
of h can easily be computed, and we obtain

ĥ(η) =

∫

R

h(ξ)e−2iπηξ dξ =
1

1 + 2iπη
. (2.22)

The H1(R) norm can be expressed in term of the Fourier transform as follows,
see, e.g., [14],

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥ ? v

∥

∥

∥

L2(R)
.

Since ĥ ? v = ĥv̂, we have

‖h ? v‖H1(R) =
∥

∥

∥
(1 + η2)

1
2 ĥv̂

∥

∥

∥

L2(R)

≤ C ‖v̂‖L2(R) by (2.22)

= C ‖v‖L2(R) by Plancherel equality

for some constant C. Hence, A : L2(R) → H1(R) is continuous. We prove that
R(ζ, U, H) belongs to L2(R) by using the assumption that g(0) = 0. Then,
A◦R(ζ, U, H) belongs to H1. Let us prove that R : E → L2(R) is locally Lipschitz.
For that purpose we will use the following short lemma.
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Lemma 2.2. Let BM = {X ∈ E | ‖X‖E ≤ M} be a bounded set of E.
(i) If g1 is Lipschitz from BM to L∞(R) and g2 Lipschitz from BM to L2(R),
then the product g1g2 is Lipschitz from BM to L2(R).
(ii) If g1, g2 are two Lipschitz maps from BM to L∞(R), then the product g1g2

is Lipschitz from BM to L∞(R).

Proof of Lemma 2.2. Let X and X̄ be in BM , and assume that g1 and g2 satisfy
the assumptions of (i). We denote by L1 and L2, the Lipschitz constants of g1

and g2, respectively. We have
∥

∥g1(X)g2(X) − g1(X̄)g2(X̄)
∥

∥

L2(R)

≤
∥

∥g1(X) − g1(X̄)
∥

∥

L∞(R)
‖g2(X)‖L2(R) +

∥

∥g1(X̄)
∥

∥

L∞(R)

∥

∥g2(X) − g2(X̄)
∥

∥

L2(R)

≤
[

2L1L2M + L1 ‖g2(0)‖L2(R) + L2 ‖g1(0)‖L∞(R)

] ∥

∥X − X̄
∥

∥

E

and (i) is proved. One proves (ii) the same way. �

Let us consider a bounded set BM = {X ∈ E | ‖X‖E ≤ M} of E. For X =

(ζ, U, H) and X̄ = (ζ̄ , Ū , H̄) in BM , we have ‖U‖L∞(R) ≤ 1√
2
‖U‖H1(R) ≤ 1√

2
M ,

because 1√
2

is the constant of the Sobolev embedding from H1(R) into L∞(R),

and, similarly,
∥

∥Ū
∥

∥

L∞(R)
≤ 1√

2
M . Let IM = [− 1√

2
M, 1√

2
M ] and

LM = ‖f‖W 3,∞(IM ) + ‖g‖W 1,∞(IM ) < ∞. (2.23)

Then
∥

∥g(Ū) − g(U)
∥

∥

L2(R)
≤ ‖g‖W 1,∞(IM )

∥

∥Ū − U
∥

∥

L2(R)
≤ LM

∥

∥Ū − U
∥

∥

L2(R)
.

Hence, g1 : X → g(U) is Lipschitz from BM to L2(R). For X, X̄ in BM , we
have ‖ζ‖L∞(R) ≤ M and

∥

∥ζ̄
∥

∥

L∞(R)
≤ M . The function x 7→ ex is Lipschitz on

{x ∈ R | |x| ≤ M}. Hence, g2 : X 7→ eζ is Lipschitz from BM to L∞(R). Thus,
the first term in (2.21), g1(X)g2(X) = eζg(U), is, by Lemma 2.2, Lipschitz from
BM to L2(R). We look at the second term, that is, eζg(U)ζξ. For X, X̄ in BM ,
we have

∥

∥g(U) − g(Ū)
∥

∥

L∞(R)
≤ ‖g‖W 1,∞(IM )

∥

∥U − Ū
∥

∥

L∞(R)
≤ 1√

2
LM

∥

∥U − Ū
∥

∥

H1(R)
.

Hence, X 7→ g(U) is Lipschitz from BM to L∞(R) and, by Lemma 2.2, as X 7→ eζ

is also Lipschitz from BM to L∞(R), we have that the product X 7→ eζg(U) is
Lipschitz from BM to L∞(R). After using again Lemma 2.2, since X 7→ ζξ , being
linear, is obviously Lipschitz from BM to L2(R), we obtain, as claimed, that the
second term in (2.21), eζg(U)ζξ, is Lipschitz from BM to L2(R). We can handle
the other terms in (2.21) similarly and prove that R is Lipschitz from BM to
L2(R). Since A : L2(R) → H1(R) is linear and continuous, A ◦ R is Lipschitz
from BM to H1(R). Then, we use the following lemma whose proof is basically
the same as the proof of Lemma 2.2.
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Lemma 2.3. Let R1 : BM → V , R2 : BM → H1(R), and R3 : BM → V be three
Lipschitz maps. Then, the products X 7→ R1(X)R2(X) and X 7→ R1(X)R3(X)
are also Lipschitz maps from BM to H1(R) and BM to V , respectively.

Since the map X 7→ e−ζ is Lipschitz from BM to V , Q1 is the product of
two Lipschitz maps, one from BM to H1(R) and the other from BM to V , and
therefore it is Lipschitz map from BM to H1(R). Similarly, one proves that Q2

and therefore Q are Lipschitz on BM . Furthermore, P is Lipschitz on BM . The
formulas (2.17) and (2.18) are obtained by direct computation using the product
rule, see [13, p. 129]. �

In the next theorem, by using a contraction argument, we prove the short-time
existence of solutions to (2.15).

Theorem 2.4. Given X̄ = (ζ̄, Ū , H̄) in E, there exists a time T depending only
on
∥

∥X̄
∥

∥

E
such that the system (2.15) admits a unique solution in C1([0, T ], E)

with initial data X̄.

Proof. Solutions of (2.15) can be rewritten as

X(t) = X̄ +

∫ t

0

F (X(τ)) dτ (2.24)

where F : E → E is given by F (X) = (f ′(U),−Q(X), G(U) − 2P(X)U) where
X = (ζ, U, H). The integrals are defined as Riemann integrals of continuous
functions on the Banach space E. Let BM and LM be defined as in the proof
of Lemma 2.1, see (2.23). We claim that X = (ζ, U, H) 7→ f ′(U) and X =
(ζ, U, H) 7→ G(U) are Lipschitz from BM to V . Then, using Lemma 2.1, we can
check that each component of F (X) is a product of functions that satisfy one of
the assumptions of Lemma 2.3 and using this same lemma, we obtain that F (X)
is Lipchitz on BM . Thus, F is Lipschitz on any bounded set of E. Since E is a
Banach space, we use the standard contraction argument to show the existence
of short-time solutions and the theorem is proved. For any X = (ζ, U, H) and
X̄ = (ζ̄, Ū , H̄) in BM , we have ‖U‖L∞(R) ≤ 1√

2
M and

∥

∥Ū
∥

∥

L∞(R)
≤ 1√

2
M . Then,

∥

∥f ′(U) − f ′(Ū)
∥

∥

L∞(R)
≤ ‖f ′‖W 1,∞(IM )

∥

∥U − Ū
∥

∥

L∞(R)
≤ 1√

2
LM

∥

∥X − X̄
∥

∥

E

and X 7→ f ′(U) is Lipschitz from BM into L∞(R). Since f ′ is C1 and U ∈ H1(R),
using [19, Appendix A.1], we obtain that f ′(U)ξ ∈ L2(R) and

f ′(U)ξ = f ′′(U)Uξ.

As before, it is not hard to prove that X 7→ f ′′(U) is Lipschitz from BM into
L∞(R). It is clear that X 7→ Uξ is Lipschitz from BM into L2(R). Hence, it
follows from Lemma 2.2 that X 7→ f ′′(U)Uξ is Lipschitz from BM into L2(R).
Therefore, X 7→ f ′(U) is Lipschitz from BM into V . Similarly, one proves that
X 7→ G(U) is Lipschitz from BM into V and our previous claim is proved. �
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We now turn to the proof of existence of global solutions of (2.15). We are
interested in a particular class of initial data that we are going to make precise
later, see Definition 2.5. In particular, we will only consider initial data that

belong to E ∩
[

W 1,∞(R)
]3

where

W 1,∞(R) = {f ∈ Cb(R) | fξ ∈ L∞(R)}.

Given (ζ̄, Ū , H̄) ∈ E∩[W 1,∞(R)]3, we consider the short-time solution (ζ, U, H) ∈
C([0, T ], E) of (2.15) given by Theorem 2.4. Using the fact that Q and P are
Lipschitz on bounded sets (Lemma 2.1) and, since X ∈ C([0, T ], E), we can prove
that P and Q belongs to C([0, T ], H1(R)). We now consider U , P and Q as given
function in C([0, T ], H1(R)). Then, for any fixed ξ ∈ R, we can solve the system
of ordinary differential equations



























d

dt
α(t, ξ) = f ′′(U)β(t, ξ),

d

dt
β(t, ξ) =

1

2
f ′′(U)γ(t, ξ) +

(

− 1

2
f ′′(U)U2 + g(U) − P

)

(1 + α)(t, ξ),

d

dt
γ(t, ξ) = −2(Q U)(1 + α)(t, ξ) + (2g(U) + f ′′(U)U2 − 2P )β(t, ξ),

(2.25)

which is obtained by substituting ζξ , Uξ and Hξ in (2.16) by the unknowns α, β,
and γ, respectively. Concerning the initial data, we set (α(0, ξ), β(0, ξ), γ(0, ξ)) =
(ζ̄ξ , Ūξ, H̄ξ) if

∣

∣ζ̄ξ(ξ)
∣

∣ +
∣

∣Ūξ(ξ)
∣

∣ +
∣

∣H̄ξ(ξ)
∣

∣ < ∞ and (α(0, ξ), β(0, ξ), γ(0, ξ)) =
(0, 0, 0) otherwise. In the same way as in [16, Lemma 2.4], see also Lemma 2.6
below, we can prove that solutions of (2.25) exist in [0, T ] and that, for all time
t ∈ [0, T ],

(α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ), Hξ(t, ξ))

for almost every ξ ∈ R. Thus, we can select a special representative for (ζξ , Uξ, Hξ)
given by (α, β, γ), which is defined for all ξ ∈ R and which, for any given ξ, satis-
fies the ordinary differential equation (2.25) in R3. From now on we will of course
identify the two and set (ζξ , Uξ, Hξ) equal to (α, β, γ).

Our goal is to find solutions of (1.5) with initial data ū in H1 because H1 is
the natural space for the equation. However, Theorem 2.4 gives us the existence
of solutions to (2.15) for initial data in E. Therefore we have to find initial
conditions that match the initial data ū and belong to E. A natural choice would
be to use ȳ(ξ) = y(0, ξ) = ξ and Ū(ξ) = u(ξ). Then y(t, ξ) gives the position
of the particle which is at ξ at time t = 0. But, if we make this choice, then
H̄ξ = ū2 + ū2

x and H̄ξ does not belong to L2(R) in general. We consider instead
ȳ implicitly given by

ξ =

∫ ȳ(ξ)

−∞
(ū2 + ū2

x) dx + ȳ(ξ) (2.26a)
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and

Ū = ū◦ȳ , (2.26b)

H̄ =

∫ ȳ

−∞

(

ū2 + ū2
x

)

dx. (2.26c)

In the next lemma we prove that (ȳ, Ū , H̄) belongs to the set G where G is defined
as follows.

Definition 2.5. The set G is consists of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈
[

W 1,∞(R)
]3

, (2.27a)

yξ ≥ 0, Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (2.27b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.27c)

where we denote y(ξ) = ζ(ξ) + ξ.

Lemma 2.6. Given ū ∈ H1(R), then (ȳ, Ū , H̄) as defined in (2.26) belongs to G.

Proof. The function k : z 7→
∫ z

0
(ū2 + ū2

x)(x) dx+z is a strictly increasing continu-

ous function with limz→±∞ k(z) = ±∞. Hence, k is invertible and ȳ(ξ) = k−1(ξ)
is well-defined. We have to check that (ζ̄, Ū , H̄) belongs to E. It follows directly
from the definition that ȳ is a strictly increasing function. We have

ζ̄(ξ) = −
∫ ȳ(ξ)

−∞

(

ū2 + ū2
x

)

dx, (2.28)

and therefore, since ū ∈ H1, ζ̄ is bounded. For any (ξ, ξ′) ∈ R2, we have

|ξ − ξ′| =

∣

∣

∣

∣

∣

∫ ȳ(ξ)

ȳ(ξ′)

(ū2 + ū2
x) dx + ȳ(ξ) − ȳ(ξ′)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ȳ(ξ)

ȳ(ξ′)

(ū2 + ū2
x) dx

∣

∣

∣

∣

∣

+ |ȳ(ξ) − ȳ(ξ′)| (2.29)

because the two quantities inside the absolute values have the same sign. It
follows from (2.29) that ȳ is Lipschitz (with Lipschitz constant at most 1) and
therefore almost everywhere differentiable. From (2.28), we get that, for almost
every ξ ∈ R,

ζ̄ξ = −(ū2 + ū2
x)◦ȳ ȳξ

Since ȳξ = 1 + ζ̄ξ , it implies

ζ̄ξ(ξ) = − ū2 + ū2
x

1 + ū2 + ū2
x

◦ȳ(ξ) . (2.30)

Therefore ζ̄ξ is bounded almost everywhere and ζ̄ belongs to W 1,∞(R). We also
have

ȳξ =
1

1 + ū2 + ū2
x

◦ȳ (2.31)
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which implies that ȳξ > 0 almost everywhere. From (2.28), we see that H̄ = −ζ̄
and therefore H̄ belongs to W 1,∞(R). Since H1(R) ⊂ L∞(R), Ū = ū◦ ȳ is
bounded. We have, for almost every ξ ∈ R,

H̄ξ = (ū2 + ū2
x)◦ȳ ȳξ (2.32)

which, since Ūξ = ūx◦ȳ yξ almost everywhere, gives us

ȳξH̄ξ = ȳ2
ξ Ū2 + Ū2

ξ . (2.33)

Hence, Ū2
ξ ≤ ȳξH̄ξ and Ūξ is bounded and Ū belongs to W 1,∞(R). We have

(ζ̄, Ū , H̄) ∈ [W 1,∞(R)]3. It remains to prove that Ū , ζ̄ξ , Ūξ and H̄ξ belong to
L2(R). By making the change of variable x = ȳ(ξ) and using (2.31), we obtain

∥

∥Ū
∥

∥

2

L2(R)
=

∫

R

ū2(x)(1 + ū2 + ū2
x)(x) dx

≤ ‖ū‖2
L2(R) + ‖ū‖2

L∞(R) ‖ū‖
2
H1(R) .

Hence, Ū ∈ L2(R). Since 0 ≤ H̄ξ ≤ 1, H̄ is monotone and
∥

∥H̄ξ

∥

∥

2

L2(R)
≤
∥

∥H̄ξ

∥

∥

L∞(R)

∥

∥H̄ξ

∥

∥

L1(R)
≤ lim

ξ→∞
H̄(ξ) = ‖ū‖2

H1(R) .

Hence, H̄ξ , and therefore ζ̄ξ, belong to L2(R). From (2.33) we get
∥

∥Ūξ

∥

∥

2

L2(R)
≤
∥

∥ȳξH̄ξ

∥

∥

L1(R)
≤ (1 +

∥

∥ζ̄ξ

∥

∥

L∞(R)
)
∥

∥H̄
∥

∥

L∞(R)

and Ūξ ∈ L2(R). �

For initial data in G, the solution of (2.15) exists globally. To prove that we
will use the following lemma.

Lemma 2.7. Given initial data X̄ = (ζ̄ , Ū , H̄) in G, let X(t) = (ζ(t), U(t), H(t))
be the short-time solution of (2.15) in C([0, T ], E) for some T > 0 with initial
data X̄ = (ζ̄ , Ū , H̄). Then,
(i) X(t) belongs to G for all t ∈ [0, T ], that is, G is preserved by the flow.
(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R,
(iii) For all t ∈ [0, T ], limξ→±∞ H(t, ξ) exists and is independent of time.

We denote by A the set of all ξ ∈ R for which
∣

∣ζ̄ξ(ξ)
∣

∣+
∣

∣Ūξ(ξ)
∣

∣+
∣

∣H̄ξ(ξ)
∣

∣ < ∞
and the relations in (2.27b) and (2.27c) are fulfilled for ȳξ, Ūξ and H̄ξ . Since
by assumption X̄ ∈ G, we have meas(Ac) = 0, and we set (Ūξ , H̄ξ, ζ̄ξ) equal to
zero on Ac. Then, as we explained earlier, we choose a special representative for
(ζ(t, ξ), U(t, ξ), H(t, ξ)) which satisfies (2.16) as an ordinary differential equation
in R3 for every ξ ∈ R.

Proof. (i) The fact that W 1,∞(R) is preserved by the equation can be proved in
the same way as in [16, Lemma 2.4] and we now give only a sketch of this proof.
We look at (2.15) as a system of ordinay differential equations in E ∩ W 1,∞(R).
We have already established the short-time existence of solutions in E, and, since
(2.16) is semilinear with respect to yξ, Uξ and Hξ (and affine with respect to ζξ ,
Uξ and Hξ), it is not hard to establish, by a contraction argument, the short-time
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existence of solutions in E ∩ W 1,∞(R). Let C1 = supt∈[0,T ]

(

‖U(t, · )‖L∞(R) +

‖P (t, · )‖L∞(R) +‖Q(t, · )‖L∞(R)

)

and Z(t) = ‖ζξ(t, · )‖L∞(R) +‖Uξ(t, · )‖L∞(R)+

‖Hξ(t, · )‖L∞(R). We have C1 ≤ supt∈[0,T ] ‖X(t, · )‖E < ∞. Using again the

semi-linearity of (2.16), we get that

Z(t) ≤ Z(0) + CT + C

∫ t

0

Z(τ) dτ

for a constant C that only depends on C1. Hence, it follows from Gronwall’s
lemma that supt∈[0,T ) Z(t) < ∞, which proves that the space W 1,∞(R) is pre-

served by the flow of (2.15). Let us prove that (2.27c) and the inequalities in
(2.27b) hold for any ξ ∈ A and therefore almost everywhere. We consider a fixed
ξ in A and drop it in the notations when there is no ambiguity. From (2.16), we
have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ

= f ′′(U)UξHξ +
(

G′(U)Uξ − 2QUyξ − 2PUξ

)

yξ

= f ′′(U)UξHξ +
(

2g(U) + f ′′(U)U2
)

Uξyξ − 2Qy2
ξU − 2PUξyξ

and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 2f ′′(U)UξyξU
2 − 2y2

ξQU

+ 2Uξ

(1

2
f ′′(U)Hξ −

1

2
f ′′(U)U2yξ + g(U)yξ − Pyξ

)

.

Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we have

yξHξ(t) = (y2
ξU2 + U2

ξ )(t) for all t ∈ [0, T ]. We have proved (2.27c). Let us
introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t
′) ≥ 0 for all t′ ∈ [0, t]}.

Recall that we consider a fixed ξ ∈ A, and drop it in the notation. Assume that
t∗ < T . Since yξ(t) is continuous with respect to time, we have

yξ(t
∗) = 0. (2.34)

Hence, from (2.27c) that we just proved, Uξ(t
∗) = 0 and, by (2.16),

yξt(t
∗) = f ′′(U)Uξ(t

∗) = 0. (2.35)

From (2.16), since yξ(t
∗) = Uξ(t

∗) = 0, we get

yξtt(t
∗) = f ′′(U)Uξt(t

∗) =
1

2
f ′′(U)2Hξ(t

∗). (2.36)

If Hξ(t
∗) = 0, then (yξ , Uξ, Hξ)(t

∗) = (0, 0, 0) and, by the uniqueness of the
solution of (2.16), seen as a system of ordinary differential equations, we must
have (yξ, Uξ, Hξ)(t) = 0 for all t ∈ [0, T ]. This contradicts the fact that yξ(0) and
Hξ(0) cannot vanish at the same time (ȳξ + H̄ξ > 0 for all ξ ∈ A). If Hξ(t

∗) < 0,
then yξtt(t

∗) < 0 because f does not vanish and, because of (2.34) and (2.35),
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there exists a neighborhood U of t∗ such that y(t) < 0 for all t ∈ U \ {t∗}. This
contradicts the definition of t∗. Hence,

Hξ(t
∗) > 0, (2.37)

and, since we now have yξ(t
∗) = yξt(t

∗) = 0 and yξtt(t
∗) > 0, there exists

a neighborhood of t∗ that we again denote by U such that yξ(t) > 0 for all
t ∈ U \ {t∗}. This contradicts the fact that t∗ < T , and we have proved the first
inequality in (2.27b), namely that yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us prove that
Hξ(t) ≥ 0 for all t ∈ [0, T ]. This follows from (2.27c) when yξ(t) > 0. Now,
if yξ(t) = 0, then Uξ(t) = 0 from (2.27c), and we have seen that Hξ(t) < 0
would imply that yξ(t

′) < 0 for some t′ in a punctured neighborhood of t, which
is impossible. Hence, Hξ(t) ≥ 0, and we have proved the second inequality in
(2.27b). Assume that the third inequality in (2.27c) does not hold. Then, by
continuity, there exists a time t ∈ [0, T ] such that (yξ + Hξ)(t) = 0. Since yξ

and Hξ are positive, we must have yξ(t) = Hξ(t) = 0 and, by (2.27c), Uξ(t) = 0.
Since zero is a solution of (2.16), this implies that yξ(0) = Uξ(0) = Hξ(0), which
contradicts (yξ + Hξ)(0) > 0. The fact that limξ→−∞ H(t, ξ) = 0 will be proved
below in (iii).

(ii) We define the set

N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.
Fubini’s theorem gives us

meas(N ) =

∫

R

meas(Nξ) dξ =

∫

[0,T ]

meas(Nt) dt (2.38)

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0}
and

Nt = {ξ ∈ R | yξ(t, ξ) = 0}.
Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets N n

ξ defined
as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t

′, ξ) > 0 for all t′ ∈ [t−1/n, t+1/n]\{t}},
then

Nξ =
⋃

n∈N

Nn
ξ . (2.39)

Indeed, for all t ∈ Nξ , we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.27c) and (2.16)
and yξtt(t, ξ) = 1

2f ′′(U)2Hξ(t, ξ) > 0 from (2.16) and (2.27b) (yξ and Hξ cannot
vanish at the same time for ξ ∈ A). Since f ′′ does not vanish, this implies that,
on a small punctured neighborhood of t, yξ is strictly positive. Hence, t belongs
to some N n

ξ for n large enough. This proves (2.39). The set N n
ξ consists of

isolated points that are countable since, by definition, they are separated by a
distance larger than 1/n from one another. This means that meas(N n

ξ ) = 0 and,
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by the subadditivity of the measure, meas(Nξ) = 0. It follows from (2.38) and
since meas(Ac) = 0 that

meas(Nt) = 0 for almost every t ∈ [0, T ]. (2.40)

We denote by K the set of times such that meas(Nt) > 0, i.e.,

K = {t ∈ R+ | meas(Nt) > 0} . (2.41)

By (2.40), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and, therefore,
y(t, ξ) is strictly increasing and invertible (with respect to ξ).

(iii) For any given t ∈ [0, T ], since Hξ(t, ξ) ≥ 0, H(t, ξ) is an increasing function
with respect to ξ and therefore, as H(t, · ) ∈ L∞(R), H(t, ξ) has a limit when
ξ → ±∞. We denote those limits H(t,±∞). Since U(t, · ) ∈ H1(R), we have
limξ→±∞ U(t, ξ) = 0 for all t ∈ [0, T ]. We have

H(t, ξ) = H(0, ξ) +

∫ t

0

[G(U) − 2PU ] (τ, ξ) dτ (2.42)

and limξ→±∞ G(U(t, ξ)) = 0 because limξ→±∞ U(t, ξ) = 0, G(0) = 0 and G is
continuous. As U , G(U) and P are bounded in L∞([0, T ] × R), we can let ξ
tend to ±∞ and apply the Lebesgue dominated convergence theorem. We get
H(t,±∞) = H(0,±∞) for all t ∈ [0, T ]. Since X̄ ∈ G, H(0,−∞) = 0 and
therefore H(t,−∞) = 0 for all t ∈ [0, T ]. �

In the next theorem, we prove global existence of solutions to (2.15). We also
state that the solutions are continuous with respect to the functions (f, g) ∈ E
(cf. (1.6)) that appear in (1.5). Therefore we need to specify the topology we
use on E . The space L∞

loc(R) is a locally convex linear topological space. Let Kj

be a given increasing sequence of compact sets such that R = ∪j∈NKj , then the
topology of L∞

loc(R) is defined by the sequence of semi-norms h 7→ ‖h‖L∞(Kn).

The space L∞
loc(R) is metrizable, see [14, Proposition 5.16]. A subset B of L∞

loc(R)
is bounded if, for all n ≥ 1, there exists Cn > 0 such that ‖f‖L∞(Kn) ≤ Cn

for all f ∈ B, see [21, I.7] for the general definition of bounded sets in a linear

topological space. The topologies of W k,∞
loc (R) follows naturally from the topology

of L∞
loc(R) applied to the k first derivatives. We equip E with the topology

induced W 2,∞
loc (R) × L∞

loc(R). We will also consider bounded subsets of E in

W 2,∞
loc (R) × W 1,∞

loc (R). A subset E ′ of E is bounded in W 2,∞
loc (R) × W 1,∞

loc (R) if
for all n ≥ 1, there exists Cn such that ‖f‖W 2,∞(Kn) + ‖g‖W 1,∞(Kn) ≤ Cn for

all (f, g) ∈ E ′. In the remaining, by bounded sets of E we will always implicitly

mean bounded sets of E in W 2,∞
loc (R) × W 1,∞

loc (R).

Theorem 2.8. Assume (1.6). For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.15)
admits a unique global solution X(t) = (y(t), U(t), H(t)) in C1(R+, E) with initial
data X̄ = (ȳ, Ū , H̄). We have X(t) ∈ G for all times. If we equip G with the
topology induced by the E-norm, then the map S : G × E × R+ → G defined as

St(X̄, f, g) = X(t)
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is a semigroup which is continuous with respect to all variables, on any bounded
set of E.

Proof. The solution has a finite time of existence T only if ‖X(t, · )‖E blows
up when t tends to T because, otherwise, by Theorem 2.4, the solution can be
extended by a small time interval beyond T . Thus, We want to prove that

sup
t∈[0,T )

‖X(t, · )‖E < ∞.

Since X(t) ∈ G, Hξ ≥ 0, from (2.27b), and H(t, ξ) is an increasing function in ξ
for all t and, from Lemma 2.7, we have limξ→∞ H(t, ξ) = limξ→∞ H(0, ξ). Hence,
supt∈[0,T ) ‖H(t, · )‖L∞(R) =

∥

∥H̄
∥

∥

L∞(R)
and therefore supt∈[0,T ) ‖H(t, · )‖L∞(R) is

finite. To simplify the notation we suppress the dependence in t for the moment
and denote h =

∥

∥H̄
∥

∥

L∞(R)
. We have

U2(ξ) = 2

∫ ξ

−∞
U(η)Uξ(η) dη = 2

∫

{η≤ξ|yξ(η)>0}
U(η)Uξ(η) dη (2.43)

since, from (2.27c), Uξ(η) = 0 when yξ(η) = 0. For almost every ξ such that
yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| =

∣

∣

∣

∣

∣

√
yξU(ξ)

Uξ(ξ)
√

yξ(ξ)

∣

∣

∣

∣

∣

≤ 1

2

(

U(ξ)2yξ(ξ) +
U2

ξ (ξ)

yξ(ξ)

)

=
1

2
Hξ(ξ),

from (2.27c). Inserting this inequality in (2.43), we obtain U 2(ξ) ≤ H(ξ) and we
have

U(t, ξ) ∈ I := [−
√

h,
√

h] (2.44)

for all t ∈ [0, T ) and ξ ∈ R. Hence, supt∈[0,T ) ‖U(t, · )‖L∞(R) < ∞. The property

(2.44) is important as it says that the L∞(R)-norm of U is bounded by a constant
which does not depend on time. We set

κ = ‖f‖W 2,∞(I) + ‖g‖W 1,∞(I) .

By using (2.44), we obtain

‖f ′(U)‖L∞(R) ≤ ‖f ′‖L∞(I) ≤ κ. (2.45)

Hence, from the governing equation (2.15), it follows that

|ζ(t, ξ)| ≤ |ζ(0, ξ)| + κT,

and supt∈[0,T ) ‖ζ(t, · )‖L∞(R) is finite. Next we prove that supt∈[0,T ) ‖Q(t, · )‖L∞(R)

is finite. We decompose Q into a sum of two integrals that we denote Qa and
Qb, respectively,

Q(t, ξ) = −1

2

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|yξ(η)
(

g(U) − 1

2
f ′′(U)U2

)

dη

− 1

4

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|f ′′(U)Hξ dη

:= Qa + Qb.
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Since yξ ≥ 0, we have

|Qa(t, ξ)| ≤ C1

∫

R

e−|y(ξ)−y(η)|yξ(η) dη = C1

∫

R

e−|y(ξ)−x| dx = 2C1

where the constant C1 depends only on κ and h. Since Hξ ≥ 0, we have

|Qb(t, ξ)| ≤
κ

4

∫

R

e−|y(ξ)−y(η)|Hξ(η) dη

=
κ

4

∫

R

sgn(ξ − η)e−|y(ξ)−y(η)|H(η)yξ(η) dη (after integrating by parts)

≤ κh

4

∫

R

e−|y(ξ)−y(η)|yξ(η) dη (as yξ ≥ 0)

=
κh

2
(after changing variables).

Hence, Qb and therefore Q are bounded by a constant that depends only on κ
and h. Similarly, one proves that supt∈[0,T ) ‖P (t, · )‖L∞(R) is bounded by such

constant. We denote

C2 = sup
t∈[0,T )

{‖U(t, · )‖L∞(R) + ‖H(t, · )‖L∞(R)

+ ‖ζ(t, · )‖L∞(R) + ‖P (t, · )‖L∞(R) + ‖Q(t, · )‖L∞(R)}. (2.46)

We have just proved that C2 is finite and only depends on
∥

∥X̄
∥

∥

E
, T and κ. Let

t ∈ [0, T ). We have, as g(0) = 0,

‖g(U(t, · ))‖L2(R) ≤ ‖g‖W 1,∞(I) ‖U‖L2(R) ≤ κ ‖U‖L2(R) . (2.47)

We use (2.47) and, from (2.21), we obtain that

‖R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for some constant C depending only on C2, h and κ. From now on, we denote
generically by C such constants that are increasing functions of

∥

∥X̄
∥

∥

E
, T and

κ. Since A is a continuous linear map from L2(R) to H1(R), it is a fortiori
continuous from L2(R) to L2(R), and we get

‖A ◦ R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)).

From (2.20), as
∥

∥e−ζ(t, · )∥
∥

L∞(R)
≤ C, we obtain that

‖Q1(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)).

The same bound holds for Q2 and therefore

‖Q(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.48)

Similarly, one proves

‖P (t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.49)

Let Z(t) = ‖U(t, · )‖L2(R)+‖ζξ(t, · )‖L2(R)+‖Uξ(t, · )‖L2(R)+‖Hξ(t, · )‖L2(R), then

the theorem will be proved once we have established that supt∈[0,T ) Z(t) < ∞.
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From the integrated version of (2.15) and (2.16), after taking the L2(R)-norms
on both sides and adding the relevant terms, we use (2.49), (2.47) and obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ.

Hence, Gronwall’s lemma gives us that supt∈[0,T ) Z(t) < ∞. Thus the solution
exists globally in time. Moreover we have that

sup
t∈[0,T ]

‖X(t, · )‖E ≤ C(
∥

∥X̄
∥

∥

E
, T, κ) (2.50)

where C is an increasing function and κ = ‖f‖W 3,∞(I) + ‖g‖W 1,∞(I) with I =

[−
∥

∥H̄
∥

∥

1
2

L∞(R)
,
∥

∥H̄
∥

∥

1
2

L∞(R)
]. Note that in order to obtain (2.47), we needed a bound

on g in W 1,∞
loc (R), which explains why we are working on a bounded subset of E

in W 2,∞
loc (R) × W 1,∞

loc (R).
We now turn to the proof of the continuity of the semigroup. Let E ′ be

a bounded set of E in W 2,∞
loc (R) × W 1,∞

loc (R). Since G and E are metrizable,
it is enough to prove sequential continuity. Let X̄n = (ȳn, Ūn, H̄n) ∈ G and
(fn, gn) ∈ E ′ be sequences that converge to X̄ = (ȳ, Ū , H̄) ∈ G and (f, g) ∈ E ′. We
denote Xn(t) = St(X̄n, fn, gn) and X(t) = St(X̄, f, g). Let M = supn≥1

∥

∥X̄n

∥

∥

E
,

we have
∥

∥H̄n

∥

∥

L∞(R)
≤ M for all n ≥ 1. Hence, from (2.44), it follows that

Un(t, ξ) ∈ I := [−
√

M,
√

M ] (2.51)

for all n ≥ 1 and (t, ξ) ∈ R+ × R. Since E ′ is a bounded set of E in W 2,∞
loc (R) ×

W 1,∞
loc (R) and (fn, gn) ∈ E ′, there exists a constant κ > 0 such that

‖fn‖W 2,∞(I) + ‖gn‖W 1,∞(I) ≤ κ

for all n ≥ 1. Hence, as In := [−
∥

∥H̄n

∥

∥

1
2

L∞(R)
,
∥

∥H̄n

∥

∥

1
2

L∞(R)
] ⊂ I ,

κn = ‖fn‖W 2,∞(In) + ‖gn‖W 1,∞(In) ≤ κ (2.52)

for all n ≥ 1. Given T > 0, it follows from (2.50) and (2.52) that, for all n ≥ 1,

sup
t∈[0,T ]

‖Xn(t, · )‖E ≤ C(
∥

∥X̄n

∥

∥

E
, T, κn) ≤ C(M, T, κ) = C ′ (2.53)

and supt∈[0,T ] ‖Xn(t, · )‖E is bounded uniformly with respect to n. We have

‖Xn(t) − X(t)‖E ≤
∥

∥X̄n − X̄
∥

∥

E
+

∫ t

0

‖F (Xn, fn, gn) − F (X, f, g)‖E (s) ds

(2.54)
where F denotes the right-hand side of (2.15). We consider a fixed time t ∈ [0, T ]
and drop the time dependence in the notation for the moment. We have

‖F (Xn, fn, gn) − F (X, f, g)‖E ≤ ‖F (Xn, fn, gn) − F (Xn, f, g)‖E

+ ‖F (Xn, f, g) − F (X, f, g)‖E . (2.55)
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The map X 7→ F (X, f, g) is Lipschitz on any bounded set of E, see the proof of
Theorem 2.4. Hence, after denoting L the Lipschitz function of this map on the
ball {X ∈ E | ‖X‖E ≤ C ′}, we get from (2.53) that

‖F (Xn, f, g) − F (X, f, g)‖E ≤ L ‖Xn − X‖E . (2.56)

Denote by Qn and Q̃n the expressions given by the definition (2.13) of Q where
we replace X , f , g by Xn, fn, gn and Xn, f , g, respectively. We use the same
notations and define Pn and P̃n from (2.14), and Gn and G̃n from (2.4). For
example, we have

Gn =

∫ Un

0

(2gn(z) + f ′′
n (z)z2) dz and G̃n =

∫ Un

0

(2g(z) + f ′′(z)z2) dz.

Still using the same notations, we have, from (2.21),

(Rn − R̃n)(ξ) = eζn
(

gn(Un) − g(Un) − 1

2
(f ′

n(Un) − f ′(Un))U2
n)
)

(1 + ζn,ξ)

+
1

2
eζn(f ′′

n (Un) − f ′′(Un))Hn,ξ . (2.57)

Let δn = ‖fn − f‖W 2,∞(I) + ‖gn − g‖L∞(I). Since (fn, gn) → (f, g) in E , δn → 0

as n → ∞. Hence, from (2.57) and (2.51), we get
∥

∥

∥
Rn − R̃n

∥

∥

∥

L2(R)
≤ eC′( ‖gn(Un) − g(Un)‖L2(R) + C ′ ‖gn(Un) − g(Un)‖L∞(R)

+
1

2
C ′ ‖f ′

n(Un) − f ′(Un)‖L∞(R) (M +
√

M)

+
1

2
C ′ ‖f ′′

n (Un) − f ′′(Un)‖L∞(R)

)

. (2.58)

Let δ′n = ‖gn(U) − g(U)‖L2(R), we then have

‖g(Un) − gn(Un)‖L2(R) ≤ ‖gn(Un) − gn(U)‖L2(R) + δ′n + ‖g(Un) − g(U)‖L2(R)

≤ 2κ ‖Un − U‖L2(R) + δ′n. (2.59)

Since gn → g in L∞(I), gn(U) → gn(U) in L∞(R). As |gn(U) − g(U)| ≤ 2κ |U |
(because g(0) = 0 and ‖g‖W 1,∞(I) ≤ κ), we can apply the Lebesgue dominated

convergence theorem and obtain that limn→∞ δ′n = 0. From (2.58) and (2.59),
we obtain that

∥

∥

∥
Rn − R̃n

∥

∥

∥

L2(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

for some constant C which depends on M , T and κ. Again, we denote generically
by C such constants that are increasing functions of M , T and κ, and are inde-
pendent on n. Since A in (2.20) is continuous from L2(R) to H1(R), it follows

that
∥

∥

∥
Qn − Q̃n

∥

∥

∥

H1(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

. Similarly, one proves that
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∥

∥

∥
Pn − P̃n

∥

∥

∥

H1(R)
≤ C

(

δn + δ′n + ‖Un − U‖L2(R)

)

. We have

∥

∥

∥
Gn − G̃n

∥

∥

∥

V
=
∥

∥

∥
Gn − G̃n

∥

∥

∥

L∞(R)

+
∥

∥

(

2(gn(Un) − g(Un)) + (f ′′
n (Un) − f ′′(Un))U2

n

)

Un,ξ

∥

∥

L2(R)

≤
√

M
(

2 ‖gn(Un) − g(Un)‖L∞(R) + M ‖f ′′
n (Un) − f ′′(Un)‖L∞(R)

)

+ 2C ′ ‖gn(Un) − g(Un)‖L∞(R) + C ′M ‖f ′′
n (Un) − f ′′(Un)‖L∞(R)

≤ Cδn

by (2.59). Finally, we have

‖F (Xn, fn, gn) − F (Xn, f, g)‖E ≤ C
(

δn + δ′n + ‖Un − U‖L2(R)

)

. (2.60)

Gathering (2.54), (2.55), (2.56) and (2.60), we end up with

‖Xn(t) − X(t)‖E ≤
∥

∥X̄n − X̄
∥

∥

E
+ CT (δn + δ′n) + (L + C)

∫ t

0

‖Xn − X‖E (s) ds

and Gronwall’s lemma yields

‖Xn(t) − X(t)‖E ≤
(∥

∥X̄n − X̄
∥

∥

E
+ CT (δn + δ′n)

)

e(L+C)T .

Hence, Xn → X in E uniformly in [0, T ]. �

The solutions are well-defined in our new sets of coordinates. Now we want to
go back to the original variable u. We define u(t, x) as

u(x, t) = U(ξ) for any ξ such that x = y(ξ). (2.61)

Let us prove that this definition is well-posed. Given x ∈ R, since y is increasing,
continuous and limξ→±∞ y = ±∞, y is surjective and there exists ξ such that
x = y(ξ). Suppose we have ξ1 < ξ2 with x = y(ξ1) = y(ξ2). Then, since y is
monotone, y(ξ) = y(ξ1) = y(ξ2) for all ξ ∈ (ξ1, ξ2) and yξ = 0 in this interval.
From (2.27c), it follows that Uξ = 0 on (ξ1, ξ2) and therefore U(ξ1) = U(ξ2).

Theorem 2.9 (Existence of weak solutions). For initial data ū ∈ H1(R), let
(ȳ, Ū , H̄) be as given by (2.26) and (y, U, H) be the solution of (2.15) with ini-
tial data (ȳ, Ū , H̄). Then u as defined in (2.61) belongs to C(R+, L∞(R)) ∩
L∞(R+, H1(R)) and is a weak solution of (1.1).

Proof. Let us prove that u ∈ L∞(R, H1(R)). We consider a fix time t and drop
it in the notation when there is no ambiguity. For any smooth function φ, after
using the change of variable x = y(ξ), we obtain

∫

R

uφ dx =

∫

R

U(φ ◦ y)yξ dξ =

∫

R

U
√

yξ(φ ◦ y)
√

yξ dξ.

Hence, by Cauchy–Schwarz,
∣

∣

∣

∣

∫

R

uφ dx

∣

∣

∣

∣

≤ ‖φ‖L2(R)

√

∫

R

U2yξ dξ ≤
√

H(∞) ‖φ‖L2(R)
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as U2yξ ≤ Hξ from (2.27c). Therefore, u ∈ L2(R) and

‖u(t, ·)‖L2(R) ≤
√

H(t,∞) =
√

H(0,∞) = ‖ū‖H1(R) .

For any smooth function φ, we have, after using the change of variable x = y(ξ),
∫

R

u(x)φx(x) dx =

∫

R

U(ξ)φx(y(ξ))yξ(ξ) dξ = −
∫

R

Uξ(ξ)(φ ◦ y)(ξ) dξ. (2.62)

Let B = {ξ ∈ R | yξ(ξ) > 0}. Because of (2.27c), and since yξ ≥ 0 almost
everywhere, we have Uξ = 0 almost everywhere on Bc. Hence, we can restrict
the integration domain in (2.62) to B. We divide and multiply by

√
yξ the

integrand in (2.62) and obtain, after using the Cauchy–Schwarz inequality,

∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣

∣

∣

∣

≤
√

∫

B

U2
ξ

yξ
dξ

√

∫

B

(φ ◦ y)2yξ dξ.

By (2.27c), we have
U2

ξ

yξ
≤ Hξ. Hence, after another change of variables, we get

∣

∣

∣

∣

∫

R

uφx dx

∣

∣

∣

∣

≤
√

H(∞) ‖φ‖L2(R) ,

which implies that ux ∈ L2(R) and ‖ux(t, ·)‖L2(R) ≤ ‖ū‖H1(R). Hence, u ∈
L∞(R, H1(R)) and

‖u‖L∞(R,H1(R)) ≤ 2 ‖ū‖H1(R) . (2.63)

Let us prove sequential convergence in C(R+, L∞(R)). Given t ∈ R+ and a
sequence tn ∈ R+ with tn → t, converges to t, we set yn(ξ) = y(tn, ξ), Un(ξ) =
U(tn, ξ) and Hn(ξ)) = H(tn, ξ) and, slightly abusing notation, (y(ξ), U(ξ), H(ξ)) =
(y(t, ξ), U(t, ξ), H(t, ξ)). For any x ∈ R, there exist ξn and ξ, which may not be
unique, such that x = yn(ξn) and x = y(ξ). We set xn = yn(ξ). We have

u(tn, x) − u(t, x) = u(tn, x) − u(tn, xn) + Un(ξ) − U(ξ) (2.64)

and

|u(tn, x) − u(tn, xn)| =

∣

∣

∣

∣

∫ x

xn

ux(tn, x′) dx′
∣

∣

∣

∣

≤
√

|xn − x|
(
∫ x

xn

ux(tn, x′)2 dx′
)1/2

(Cauchy–Schwarz)

≤
√

|yn(ξ) − y(ξ)| ‖u‖L∞(R,H1(R))

≤ 2 ‖ū‖H1(R) ‖y − yn‖1/2
L∞(R) , (2.65)

by (2.63). Since yn → y and Un → U in L∞(R), it follows from (2.64) and (2.65)
that un → u in L∞(R).

Since u ∈ L∞(R+, H1(R)), g(u) + 1
2f ′′(u)u2

x ∈ L∞(R+, L1(R)) and, since

v 7→ (1 − ∂xx)−1v is continuous from H−1(R) to H1(R), P ∈ L∞(R+, H1(R)).
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We say that u is a weak solution of (1.5) if

∫

R+×R

(−uφt + f ′(u)uxφ + Pxφ) (t, x) dtdx = 0 (2.66)

for all φ ∈ C∞(R+ × R) with compact support. For t ∈ Kc, that is for almost
every t (see (2.41) in Lemma 2.7), yξ(t, ξ) > 0 for almost every ξ ∈ R and y(t, ·)
is invertible, we have Uξ = ux ◦ yyξ and, after using the change of variables
x = y(t, ξ), we get

∫

R+×R

[−u(t, x)φt(t, x) + f ′(u(t, x))ux(t, x)φ(t, x)] dxdt

=

∫

R+×R

[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + f ′(U(t, ξ))Uξ(t, ξ)φ(t, y(t, ξ))] dξdt.

(2.67)

Using the fact that yt = f ′(U) and yξt = f ′′(U)Uξ , one easily check that

(Uyξφ ◦ y)t − (f ′(U)Uφ ◦ y)ξ = Uyξφt ◦ y − f ′(U)Uξφ ◦ y + Utyξφ ◦ y. (2.68)

After integrating (2.68) over R+ × R, the left-hand side of (2.68) vanishes and
we obtain

∫

R+×R

[

− Uyξ φt◦y + f ′(U)Uξ φ◦y
]

dξdt

=
1

2

∫

R+×R2

[

sgn(ξ − η)e−|y(ξ)−y(η)|

×
(

(g(U) − 1

2
f ′′(U)U2))yξ +

1

2
f ′′(U)Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt

(2.69)

by (2.15). Again, to simplify the notation, we deliberately omitted the t variable.
On the other hand, by using the change of variables x = y(t, ξ) and z = y(t, η)
when t ∈ Kc, we have

−
∫

R+×R

Px(t, x)φ(t, x) dxdt =
1

2

∫

R+×R2

[

sgn(y(ξ) − y(η))e−|y(ξ)−y(η)|

×
(

g ◦ u +
1

2
f ′′ ◦ uu2

x

)

(t, y(η))φ(t, y(ξ))yξ(η)yξ(ξ)
]

dηdξdt.

For t ∈ Kc, that is, for almost every t, yξ(t, ξ) is strictly positive for almost every
ξ, and we can replace ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η) in the equation above.
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Using (2.27c), we obtain

−
∫

R+×R

Px(t, x)φ(t, x) dxdt (2.70)

=
1

2

∫

R+×R2

[

sgn(ξ − η)e−|y(ξ)−y(η)|

×
(

(g(U) − 1

2
f ′′(U)U2))yξ +

1

2
f ′′(U)Hξ

)

(η)yξ(ξ)φ◦y(ξ)
]

dηdξdt

(2.71)

Thus, comparing (2.69) and (2.71), we get
∫

R+×R

[−Uyξ φt(t, y) + f ′(U)Uξ φ] dξdt = −
∫

R+×R

Px(t, x)φ(t, x) dxdt

and (2.66) follows from (2.67). �

3. Continuous semi-group of solutions

We denote by G the subgroup of the group of homeomorphisms from R to R

such that
f − Id and f−1 − Id both belong to W 1,∞(R) (3.1)

where Id denotes the identity function. The set G can be interpreted as the set
of relabeling functions. For any α > 1, we introduce the subsets Gα of G defined
by

Gα = {f ∈ G | ‖f − Id‖W 1,∞(R) +
∥

∥f−1 − Id
∥

∥

W 1,∞(R)
≤ α}.

The subsets Gα do not possess the group structure of G. We have the following
characterization of Gα:

Lemma 3.1. [16, Lemma 3.2] Let α ≥ 0. If f belongs to Gα, then 1/(1 +
α) ≤ fξ ≤ 1 + α almost everywhere. Conversely, if f is absolutely continuous,
f − Id ∈ L∞(R) and there exists c ≥ 1 such that 1/c ≤ fξ ≤ c almost everywhere,
then f ∈ Gα for some α depending only on c and ‖f − Id‖L∞(R).

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | y + H ∈ Gα},
and

F = {X = (y, U, H) ∈ G | y + H ∈ G}.
For α = 0, we have G0 = {Id}. As we will see, the space F0 will play a special
role. These sets are relevant only because they are in some sense preserved by
the governing equation (2.15) as the next lemma shows.

Lemma 3.2. The space F is preserved by the governing equation (2.15). More
precisely, given α, T ≥ 0, a bounded set BM = {X ∈ E | ‖X‖E ≤ M} of E and
a bounded set E ′ of E, we have, for any t ∈ [0, T ], X̄ ∈ Fα ∩BM and (f, g) ∈ E ′,

St(X̄, f, g) ∈ Fα′

where α′ only depends on T , α, M and E ′.
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Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t), H(t)) the solution
of (2.15) with initial data X̄ . By definition, we have ȳ + H̄ ∈ Gα and, from
Lemma 3.1, 1/c ≤ ȳξ + H̄ξ ≤ c almost everywhere, for some constant c > 1
depending only α. Let h = H̄(∞) = H(t,∞). We have h ≤ M and, from (2.44),

‖U‖L∞(R+×R) ≤
√

h ≤
√

M . Let I = [−
√

M,
√

M ]. Since E ′ is bounded, there

exists κ > 0 such that ‖f‖W 2,∞(I) + ‖g‖W 1,∞(I) ≤ κ for all (f, g) ∈ E ′. We

consider a fixed ξ and drop it in the notation. Applying Gronwall’s inequality to
(2.16) to the function X(t − τ), we obtain

|yξ(0)| + |Hξ(0)| + |Uξ(0)| ≤ eCT (|yξ(t)| + |Hξ(t)| + |Uξ(t)|) (3.2)

for some constant C which depends on ‖f ′′(U)‖L∞(R), ‖P‖L∞(R), ‖g(U)‖L∞(R),

‖Q‖L∞(R), ‖U‖L∞(R) and ‖G′(U)‖L∞(R). In (2.46), we proved that ‖P‖L∞(R)

and ‖Q‖L∞(R) only depend on M , κ, T . Hence, the constant C in (3.2) also only

depends on M , T and κ. From (2.27c), we have

|Uξ(t)| ≤
√

yξ(t)Hξ(t) ≤
1

2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.2) gives us

1

c
≤ ȳξ + H̄ξ ≤ 3

2
eCT (yξ(t) + Hξ(t)),

and yξ(t)+Hξ(t) ≥ 2
3ce−CT . Similarly, by applying Gronwall’s lemma, we obtain

yξ(t) + Hξ(t) ≤ 3
2ceCT . We have ‖(y + H)(t) − ξ‖L∞(R) ≤ ‖X(t)‖C([0,T ],E) ≤

C(M, T, κ), see (2.50). Hence, applying Lemma 3.1, we obtain that y(t, · ) +
H(t, · ) ∈ Gα′ and therefore X(t) ∈ Fα′ for some α′ depending only on α, T , M
and E ′. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function r ∈ G,
we denote (y ◦ r, U ◦ r, H ◦ r) by X ◦ r.

Proposition 3.3. [16, Proposition 3.4] The map from G × F to F given by
(r, X) 7→ X ◦ r defines an action of the group G on F .

Since G is acting on F , we can consider the quotient space F/G of F with
respect to the action of the group G. The equivalence relation on F is defined
as follows: For any X, X ′ ∈ F , X and X ′ are equivalent if there exists r ∈ G
such that X ′ = X ◦ r. Heuristically it means that X ′ and X are equivalent up
to a relabeling function. We denote by Π(X) = [X ] the projection of F into the
quotient space F/G. We introduce the map Γ: F → F0 given by

Γ(X) = X◦( y + H)−1

for any X = (y, U, H) ∈ F . We have Γ(X) = X when X ∈ F0. It is not
hard to prove that Γ is invariant under the G action, that is, Γ(X ◦ r) = Γ(X)

for any X ∈ F and r ∈ G. Hence, there corresponds to Γ a map Γ̃ from the
quotient space F/G to F0 given by Γ̃([X ]) = Γ(X) where [X ] ∈ F/G denotes the

equivalence class of X ∈ F . For any X ∈ F0, we have Γ̃ ◦ Π(X) = Γ(X) = X .

Hence, Γ̃ ◦ Π|F0
= Id |F0

. Any topology defined on F0 is naturally transported
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into F/G by this isomorphism. We equip F0 with the metric induced by the
E-norm, i.e., dF0

(X, X ′) = ‖X − X ′‖E for all X, X ′ ∈ F0. Since F0 is closed in
E, this metric is complete. We define the metric on F/G as

dF/G([X ], [X ′]) = ‖Γ(X) − Γ(X ′)‖E ,

for any [X ], [X ′] ∈ F/G. Then, F/G is isometrically isomorphic with F0 and the
metric dF/G is complete.

Lemma 3.4. [16, Lemma 3.5] Given α ≥ 0. The restriction of Γ to Fα is a
continuous map from Fα to F0.

Remark 3.5. The map Γ is not continuous from F to F0. The spaces Fα were
precisely introduced in order to make the map Γ continuous.

We denote by S : F × E × R+ → F the continuous semigroup which to any
initial data X̄ ∈ F associates the solution X(t) of the system of differential
equation (2.15) at time t as defined in Theorem 2.9. As we indicated earlier, the
generalized hyperelastic-rod wave equation is invariant with respect to relabeling,
more precisely, using our terminology, we have the following result.

Theorem 3.6. For any t > 0, the map St : F → F is G-equivariant (for f and
g given), that is,

St(X◦r ) = St(X)◦r (3.3)

for any X ∈ F and r ∈ G. Hence, the map S̃ : F/G × E × R+ → F/G given by

S̃t([X ], f, g) = [St(X, f, g)]

is well-defined. It generates a continuous semigroup with respect to all variables,
on any bounded set of E.

Proof. For any X0 = (y0, U0, H0) ∈ F and r ∈ G, we denote X̄0 = (ȳ0, Ū0, H̄0) =
X0 ◦ r, X(t) = St(X0) and X̄(t) = St(X̄0). We claim that X(t) ◦ r satis-
fies (2.15) and therefore, since X(t) ◦ r and X̄(t) satisfy the same system of
differential equation with the same initial data, they are equal. We denote
X̂(t) = (ŷ(t), Û(t), Ĥ(t)) = X(t) ◦ r. We have

Ût =
1

2

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − y(η))
)

×
(

(g(U) − 1

2
f ′′(U)U2)yξ +

1

2
f ′′(U)Hξ

)

(η) dη. (3.4)

We have ŷξ(ξ) = yξ(r(ξ))rξ(ξ) and Ĥξ(ξ) = Hξ(r(ξ))rξ(ξ) for almost every ξ ∈ R.
Hence, after the change of variables η = r(η′), we get from (3.4) that

Ût =
1

4

∫

R

sgn(ξ − η) exp
(

− sgn(ξ − η)(ŷ(ξ) − ŷ(η))
)

×
(

(g(Û) − 1

2
f ′′(Û)Û2)ŷξ +

1

2
f ′′(Û )Ĥξ

)

(η) dη.
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We treat the other terms in (2.15) similarly, and it follows that (ŷ, Û , Ĥ) is

a solution of (2.15). Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same system of
ordinary differential equations with the same initial data, they are equal, i.e.,

X̄(t) = X(t)◦r ,

and (3.3) is proved. Let E ′ be a bounded set of E and T > 0. For t ∈ [0, T ], we
have the following diagram

F0
Π

// F/G

Fα

Γ

OO

F0 × E ′

St

OO

Π
// F/G × E ′

S̃t

OO

(3.5)

on a bounded domain of F0 whose diameter together with T and E ′ determines
the constant α, see Lemma 3.2. By the definition of the metric on F/G, the

map Γ̃ is an isometry from F/G to F0. Hence, from the diagram (3.5), we see

that S̃t : F/G × E ′ → F/G is continuous if and only if Γ ◦ St : F0 × E ′ → F0

is continuous. Let us prove that Γ ◦ St : F0 × E ′ → F0 is sequentially continu-
ous. We consider a sequence Xn ∈ F0 that converges to X ∈ F0 in F0, that is,
limn→∞ ‖Xn − X‖E = 0 and a sequence (fn, gn) ∈ E ′ that converges to (f, g) ∈
E ′ in E . From Theorem 2.8, we get that limn→∞ ‖St(Xn, fn, gn) − St(X, f, g)‖E =
0. Since Xn → X in E, there exists a constant C ≥ 0 such that ‖Xn‖ ≤ C for
all n. Lemma 3.2 gives us that for t ∈ [0, T ], St(Xn, fn, gn) ∈ Fα for some α
which depends on C, T and E ′ but is independent of n. Hence, St(Xn, fn, gn) →
St(X, f, g) in Fα. Then, by Lemma 3.4, we obtain that Γ ◦ St(Xn, fn, gn) →
Γ ◦ St(X, f, g) in F0 and uniformly in [0, T ]. �

3.1. From Eulerian to Lagrangian coordinates and vice versa. As noted
in [1] in the case of the Camassa-Holm equation, even if H1(R) is a natural space
for the equation, there is no hope to obtain a semigroup of solutions by only
considering H1(R). Thus, we introduce the following space D, which characterizes
the solutions in Eulerian coordinates :

Definition 3.7. The set D is composed of all pairs (u, µ) such that u belongs to
H1(R) and µ is a positive finite Radon measure whose absolute continuous part,
µac, satisfies

µac = (u2 + u2
x) dx. (3.6)

There exists a bijection between Eulerian coordinates (functions in D) and
Lagrangian coordinates (functions in F/G). Earlier we considered initial data
in D with a special structure: The energy density µ was given by (u2 + u2

x) dx
and therefore µ did not have any singular part. The set D however allows the
energy density to have a singular part and a positive amount of energy can
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concentrate on a set of Lebesgue measure zero. We constructed corresponding
initial data in F0 by the means of (2.26a), (2.26b), and (2.26c). This construction
can be generalized in the following way. Let us denote by L : D → F/G the map
transforming Eulerian coordinates into Lagrangian coordinates whose definition
is contained in the following theorem.

Theorem 3.8. [16, Theorem 3.8] For any (u, µ) in D, let

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (3.7a)

H(ξ) = ξ − y(ξ), (3.7b)

U(ξ) = u◦y(ξ) . (3.7c)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G to be the equivalence class of
(y, U, H).

Remark 3.9. If µ is absolutely continuous, then µ = (u2 + u2
x)dx and the

function y 7→ µ((−∞, y)) is continuous. From the definition (3.7a), we know that
there exist an increasing sequence xi and a decreasing sequence x′

i which both
converge to y(ξ) and such that

µ((−∞, xi)) + xi < ξ and µ((−∞, x′
i)) + x′

i ≥ ξ.

Since y 7→ µ((−∞, y)) is continuous, it implies, after letting i go to infinity, that
µ((−∞, y(ξ))) + y(ξ) = ξ. Hence,

∫ y(ξ)

−∞
(u2 + u2

x) dx + y(ξ) = ξ

for all ξ ∈ R and we recover definition (2.26a).

At the very beginning, H(t, ξ) was introduced as the energy contained in a
strip between −∞ and y(t, ξ), see (2.10). This interpretation still holds. We
obtain µ, the energy density in Eulerian coordinates, by pushing forward by
y the energy density in Lagrangian coordinates, Hξ dξ. Recall that the push-
forward of a measure ν by a measurable function f is the measure f#ν defined
as

f#ν(B) = ν(f−1(B))

for all Borel sets B. We are led to the map M which transforms Lagrangian
coordinates into Eulerian coordinates and whose definition is contained in the
following theorem.

Theorem 3.10. [16, Theorem 3.11] Given any element [X ] in F/G. Then, (u, µ)
defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ), (3.8a)

µ = y#(Hξ dξ) (3.8b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F we
choose for [X ]. We denote by M : F/G → D the map which to any [X ] in F/G
associates (u, µ) as given by (3.8).



CONSERVATIVE SOLUTIONS FOR A HYPERELASTIC ROD 29

Of course, the definition of u coincides with the one given previously in (2.61).
The transformation from Eulerian to Lagrangian coordinates is a bijection, as
stated in the next theorem.

Theorem 3.11. [16, Theorem 3.12] The map M and L are invertible. We have

L ◦ M = IdF/G and M ◦ L = IdD .

3.2. Continuous semigroup of solutions on D. On D we define the distance
dD which makes the bijection L between D and F/G into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G(L(u, µ), L(ū, µ̄)).

Since F/G equipped with dF/G is a complete metric space, we have the following
theorem.

Theorem 3.12. D equipped with the metric dD is a complete metric space.

For each t ∈ R, we define the map Tt from D × E to D as

Tt( · , f, g) = MS̃t( · , f, g)L,

for any (f, g) ∈ E . For a given pair (f, g) ∈ E , we have the following commutative
diagram:

D F/G
M

oo

D

Tt

OO

L
// F/G

S̃t

OO

(3.9)

Our main theorem reads as follows.

Theorem 3.13. Assume (1.6). T : D × E × R+ → D (where D is defined by
Definition 3.7) defines a continuous semigroup of solutions of (1.5), that is, given
(ū, µ̄) ∈ D, if we denote t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory,
then u is a weak solution of (1.5). Moreover µ is a weak solution of the following
transport equation for the energy density

µt + (uµ)x = (G(u) − 2Pu)x. (3.10)

The map T is continuous with respect to all the variables, on any bounded set of
E. Furthermore, we have that

µ(t)(R) = µ(0)(R) for all t (3.11)

and

µ(t)(R) = µac(t)(R) = ‖u(t)‖2
H1 = µ(0)(R) for almost all t. (3.12)

Remark 3.14. We denote the unique solution described in the theorem as a
conservative weak solution of (1.5).
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Proof. From (3.12), it follows that u ∈ L∞(R+, H1(R)). The function u is a weak
solution of (1.5) if it satisfies (2.66) and µ is a weak solution of (3.10) if
∫

R+×R

(φt + uφx) (t, x) µ(t, dx)dt =

∫

R+×R

((G(u) − 2Pu)φx) (t, x) dtdx (3.13)

for all φ ∈ C∞(R+ × R) with compact support. We already proved in Theorem
2.9 that u(t) satisfies (2.66). We proceed the same way to prove that µ satisfies
(3.13). We recall the proof of (3.11) and (3.12), which is the same as in [16].
From (3.8a), we obtain

µ(t)(R) =

∫

R

Hξ dξ = H(t,∞)

which is constant in time, see Lemma 2.7 (iii). Hence, (3.11) is proved. We know
from Lemma 2.7 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for almost every ξ ∈ R (see
(2.41) for the definition of K, in particular, we have meas(K) = 0). Given t ∈ Kc

(the time variable is suppressed in the notation when there is no ambiguity), we
have, for any Borel set B,

µ(t)(B) =

∫

y−1(B)

Hξ dξ =

∫

y−1(B)

(

U2 +
U2

ξ

y2
ξ

)

yξ dξ (3.14)

from (2.27c). Since y is one-to-one when t ∈ Kc and ux ◦ yyξ = Uξ almost
everywhere, we obtain from (3.14) that

µ(t)(B) =

∫

B

(u2 + u2
x)(t, x) dx,

which, as meas(K) = 0, proves (3.12). �

3.3. The topology on D. The metric dD gives to D the structure of a complete
metric space while it makes continuous the semigroup Tt of conservative solutions
for the Camassa–Holm equation as defined in Theorem 3.13. In that respect, it
is a suitable metric for the equation. However, as the definition of dD is not
straightforward, this metric is not so easy to manipulate. That is why we recall
the results obtained in [16] where we compare the topology induced by dD with
more standard topologies. We have that convergence in H1(R) implies conver-
gence in (D, dD), which itself implies convergence in L∞(R). More precisely, we
have the following result.

Proposition 3.15. [16, Proposition 5.1] The map

u 7→ (u, (u2 + u2
x)dx)

is continuous from H1(R) into D. In other words, given a sequence un ∈ H1(R)
converging to u in H1(R), then (un, (u2

n + u2
nx)dx) converges to (u, (u2 + u2

x)dx)
in D.

Proposition 3.16. [16, Proposition 5.2] Let (un, µn) be a sequence in D that
converges to (u, µ) in D. Then

un → u in L∞(R) and µn
∗
⇀ µ.
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Figure 1. Characteristics in the single peakon case.

4. Examples

We include two examples for the Camassa–Holm equation where f(u) = 1
2u2

and g(u) = u2.
(i) For initial data ū(x) = ce−|x|, we have

u(t, x) = ce−|x−ct|, (4.1)

which is the familiar one peakon solution of the Camassa–Holm equation. The
characteristics are the solutions of

yt(t, ξ) = u(t, y(t, ξ)), (4.2)

which can be integrated and, for initial data ȳ(ξ) = ξ, yields

y(t, ξ) = sgn(ξ) ln
(

e(sgn(ξ)ct) + e|ξ| − 1
)

.

Some characteristics are plotted in Figure 1. We have U(t, ξ) = u(t, y(t, ξ)) =
ce−|y(t,ξ)−ct|. It is easily checked that yξ > 0 almost everywhere. In this case y
is invertible, there is no concentration of energy on a singular set, and we have

H(t, ξ) =

∫

y−1((−∞,y(t,ξ)))

Hξ(η) dη =

∫ y(t,ξ)

−∞
(u2 + u2

x) dx,

from (3.14).
(ii) The case with a peakon–antipeakon collision for the Camassa–Holm equa-

tion is considerably more complicated. In [17], we prove that the structure of the
multipeakons is preserved, even through collisions. In particular, for an n-peakon
u, it means that for almost all time the solution u(t, x) can be written as

u(t, x) =
n
∑

i=1

pi(t)e
−|x−qi(t)| (4.3)

for some functions pi and qi that satisfy a system of ordinary differential equation
that however experiences singularities at collisions. In [17] we also present a
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Figure 2. The colliding peakons case. Plot of the solution at
different times.

system of ordinary differential equation satisfied by y(t, ξi), U(t, ξi) and H(t, ξi)
with i = 1, . . . , n where y(t, ξi) and U(t, ξi) correspond to the position and the
height of the ith peak, respectively, while H(t, ξi) represents the energy contained
between −∞ and the ith peak. In the antisymmetric case, this system can be
solved explicitly, see [17], and we obtain

y(t, ξ2) = −y(t, ξ1) = ln(cosh(
Et

2
)),

U(t, ξ2) = −U(t, ξ1) =
E

2
tanh(

Et

2
),

H(t, ξ2) − H(t, ξ1) = −E2

2
tanh2(

Et

2
) + E2.

(4.4)

The initial conditions were chosen so that the two peaks collide at time t = 0.
From (4.3) and (4.4), we obtain

u(t, x) =











−E
2 sinh(Et

2 )ex, for x < − ln
(

cosh(Et
2 )
)

,
E sinh(x)

sinh( Et
2

)
, for |x| < ln

(

cosh(Et
2 )
)

,

E
2 sinh(Et

2 )e−x, for x > ln
(

cosh(Et
2 )
)

.

(4.5)

See Figure 2. The formula holds for all x ∈ R and t nonzero. For t = 0 we find
formally u(0, x) = 0. Here E denotes the total energy of the system, i.e.,

H(t,∞) =

∫

R

(u2 + u2
x) dx = E2, t 6= 0. (4.6)

For all t 6= 0 we find

µ((−∞, y)) = µac((−∞, y)) =

∫ y

−∞
(u2 + u2

x) dx. (4.7)

For t = 0, H(0, ξ2)−H(0, ξ1) = E2, all the energy accumulates at the origin, and
we find

µ(x) = E2δ(x) dx, µac(x) = 0. (4.8)
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Figure 3. Characteristics in the colliding peakons case.

The function u(t, x) is no longer Lipschitz in x, and (4.2) does not necessar-
ily admit a unique solution. Indeed, given T > 0 and x0 such that |x0| <
ln
(

cosh(−TE
2 )

)

, the characteristic arising from (x0,−T ) can be continued past
the origin by any characteristic that goes through (x, T ) where x satisfies |x| <
ln
(

cosh(TE
2 )
)

, and still be a solution of (4.2). However by taking into account
the energy, the system (2.15) selects one characteristic, and in that sense the
characteristics are uniquely defined. We can compute them analytically and ob-
tain

y(t) = 2 tanh−1
(

C tanh2(
Et

4
)
)

with |C| < 1, for the characteristics that collide, and

y(t) = ε ln
(

C + cosh(
Et

2
)
)

with ε = ±1, C ≥ 1, for the others. See Figure 3.
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