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Abstract

This thesis is a collection of three research papers about data assimilation, and its appli-

cation to geological process modeling. Data assimilation is the task of bringing informa-

tion from observations into a statistical model of the evolution of a dynamical system.

Paper I applies the ensemble Kalman filter (EnKF), a popular data assimilation method,

to the problem of conditioning GPM, a geological simulation model, to measurements of

the real rock layers that were formed by the simulated sedimentation process. Paper II

concerns the implicit equal-weights particle filter (IEWPF), a data assimilation method

constructed to make the most of a small ensemble in a high-dimensional and strongly

non-linear setting. The original formulation of this particle filter produces biased esti-

mates because of a problem with the update step. Paper II proposes a revised version of

the IEWPF which potentially eliminates the bias. Paper III focuses once again on the

EnKF, which must estimate covariances between state variables in order to update its

ensemble with respect to observations. Errors in covariance estimates can have a large

effect on the update step, significantly reducing the quality of the estimates produced

by the filter. Paper III explores the idea of introducing simple parametric covariance

representations into this part of the EnKF in order to make the covariance estimation

more robust.





Acknowledgements

First, I would like to thank my main supervisor, Jo Eidsvik, for excellent supervision,

advice, direction, counselling, guidance and other synonyms. I would also like to thank

my co-supervisor, Henning Omre, for frequent encouragement and occasional discussion,

and for urging me to travel abroad during my studies. Thanks to Hilde Grude Borgos,

Bjørn Harald Fotland and the others at Schlumberger, Tananger for providing access to

data and software, for illuminating discussions, and for acting as de facto tech support.

Thanks to the technical group at the Department of Mathematical Sciences for acting

as actual tech support, and for being patient with me on the several occasions when my

poorly crafted scripts made a mess on the department computing servers. Thanks to my

friends, colleagues and fellow students for making the department a good place to study

and work. Thanks to Peter Jan van Leeuwen and Javier Amezcua for making me feel

welcome during my stay in Reading. To Kristoffer, thanks for lunch. To Xin, thanks

for being an exemplary office mate and traveling companion. To my family, thanks for

not giving me a hard time about not calling or writing more often. To Irene, thanks for

being there.

Jacob Skauvold

Trondheim

August 2018

vii



viii



Contents

Abstract v

Acknowledgements vii

Contents ix

Introduction 1

Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Data assimilation as an inverse problem . . . . . . . . . . . . . . . . . . . 6

Methods for data assimilation . . . . . . . . . . . . . . . . . . . . . . . . 10

Geological process modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Numerical models of geological systems . . . . . . . . . . . . . . . . . . . 20

Forward stratigraphic modeling . . . . . . . . . . . . . . . . . . . . . . . 22

Data assimilation for geological process modeling . . . . . . . . . . . . . 24

Summary of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Paper I. Data assimilation for a geological process model using the en-
semble Kalman filter 35

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I.2 Geological Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

I.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

I.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

I.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Paper II. A revised implicit equal-weights particle filter 67

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II.2 Implicit equal-weights particle filter (IEWPF) . . . . . . . . . . . . . . . 70

II.2.1 Problem description and background . . . . . . . . . . . . . . . . 70

II.2.2 Single-stage IEWPF . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



x

II.2.3 Properties of the single-stage IEWPF . . . . . . . . . . . . . . . . 74

II.3 Modifying the IEWPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

II.3.1 Two-stage IEWPF . . . . . . . . . . . . . . . . . . . . . . . . . . 79

II.3.2 Properties of the two-stage IEWPF . . . . . . . . . . . . . . . . . 80

II.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

II.4.1 Gauss-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II.4.2 Lorenz96 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

II.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Paper III. Parametric spatial covariance models in the ensemble Kalman
filter 95

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III.2 Approximate linear posterior sampling . . . . . . . . . . . . . . . . . . . 97

III.2.1 Notation and assumptions . . . . . . . . . . . . . . . . . . . . . . 97

III.2.2 Simulation and linear updating . . . . . . . . . . . . . . . . . . . 98

III.2.3 Empirical and parametric covariance specification . . . . . . . . . 99

III.2.4 Illustrative spatial example . . . . . . . . . . . . . . . . . . . . . . 101

III.3 Parametric covariance estimation in the EnKF . . . . . . . . . . . . . . . 104

III.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III.3.2 Parametric EnKF update . . . . . . . . . . . . . . . . . . . . . . 105

III.3.3 Choice of parametric models . . . . . . . . . . . . . . . . . . . . . 106

III.4 Simulation study for linear dynamic model . . . . . . . . . . . . . . . . . 108

III.5 Example: Geological process model . . . . . . . . . . . . . . . . . . . . . 112

III.5.1 Problem description and setup . . . . . . . . . . . . . . . . . . . . 112

III.5.2 Filtering results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

III.6 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119



Introduction

Earth sciences rely increasingly on computer simulations—numerical models which mimic

the physical processes that shape, sustain and evolve the natural environment. Since

the middle of the twentieth century, steady improvements in computing power have

led to the adoption of ever more sophisticated models capable of increasingly faith-

ful representation of the geophysical processes and phenomena under study. Today,

computer simulations are indispensable workhorses of oceanography, hydrology, climate

science and meteorology where they continue to provide critical insights. In other ap-

plied sciences, numerical modeling is brought to bear on long standing problems with

encouraging results, providing bountiful research opportunities for new generations of

scientists.

Gaining knowledge about the world through the use of computer simulations requires

that the simulations be anchored to reality. Suppose a numerical model is used to make

a prediction about the future state of the atmosphere. If we are to take the prediction

seriously, we need a reason to believe that the model resembles the actual atmosphere

as it really is, not merely as it could have been. In other words, it’s not enough that

the simulated atmosphere obeys the laws of physics. It also has to match the actual

atmosphere as we observe it.

Data assimilation is the task of establishing a connection between model and reality.

The solutions are many and varied but they all work by bringing models closer to data.

Adjusting the simulated system so that it matches measurements of the actual system

grounds the simulation in reality and justifies its use for prediction and inference.

1



Introduction 2

Data assimilation

This section gives a general introduction to data assimilation, placing it in the context

of inverse problems, and providing an overview of the kinds of approaches that are used

to solve data assimilation problems.

Inverse problems

Physical theories allow prediction. In most cases, given a sufficiently detailed description

of a physical system, a theory can predict the outcome of a future measurement to some

degree of precision. This kind of prediction task is sometimes referred to as a forward

problem because of the sense of motion from cause to effect, i.e. from the latent system

state to the measurement outcome (Tarantola, 2005). An inverse problem, by contrast,

is the task of inferring the state or properties of a system on the basis of an observation

or measurement. Figure 1 illustrates the complementary relation between the prediction

and inversion tasks.

System Observation

Prediction

Inversion

Figure 1: Forward problem and inverse problem.

Let x ∈ RNx denote a representation of the unknown system state in the form of a

vector. This could be a list of physical quantities describing the system or values of a

spatial field discretized onto a grid or lattice. Further let y ∈ RNy denote an observation

vector containing values obtained by carrying out some measurement operation on the

system. We also need a modeling operator G to represent the action of the measurement

operation on the system state. Thus, G(x) is the expected value of y provided that x is

the true state of the system and that G accurately represents the actual measurement

procedure. This procedure could be a direct sampling of some or all the elements of

x, or the relationship could be more indirect. In this notation, the generic form of the

inverse problem can be written as a measurement equation,

G(x) = y, (0.1)

where our objective is to solve for x given y. The inverse problem (0.1) is called well-

posed if (i) for every observation vector y there exists a solution x that satisfies (0.1),
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(ii) the solution x is unique, and (iii) the solution is stable with respect to perturbations

of y in the sense that if G(x) = y and G(x′) = y′ then x will be close to x′ as long

as y is close to y′. Problems which do not possess these three properties are called

ill-posed (Vogel, 2002).

Inverse problems that arise in practical applications—such as the use of statistical es-

timation techniques to solve problems related to numerical modeling in geology, as de-

scribed in the next section—tend to be ill-posed. When observations are subject to

measurement uncertainty, there may not exist a solution which satisfies (0.1) exactly.

Furthermore, measurement outcomes can be multiply realizable, meaning that several

distinct system states yield the same measurement outcome when the modeling opera-

tor is applied to them. Consider for instance an averaging operator G : x 7→ x̄ which

computes the average of all the elements of x. If x′ is defined by taking x and adding

a small quantity to one element, and subtracting the same quantity from some other

element, then it is clear that the two averages are equal so that G(x′) = G(x) even

though x′ 6= x. Stability poses a smaller challenge for practical applications, but if the

modeling operator involves forward integration of a dynamical system exhibiting chaotic

behaviour, small changes in x may lead to disproportionately large changes in y, i.e.

the observation vector may be unstable with respect to the system state. This does not

entail that x is unstable with respect to y, but it could still be harder to guarantee the

stability of the inverse problem solution in such cases.

Ill-posed inverse problems do not admit exact and unique solutions. Nevertheless, use-

ful solutions are available if we are willing to forgo one or both of these properties.

Regularization replaces the ill-posed problem with a related well-posed problem, in the

hope that the unique solution to the well-posed problem will be a good approximate

solution of the original problem. Tikhonov regularization (Tikhonov et al., 2013) seeks

the solution x which minimizes the smoothing functional

MΓ[x] = ‖G(x)− y‖2 + ‖Γx‖2. (0.2)

The minimizing solution xΓ = argminxMΓ[x] depends on the regularization matrix Γ.

The second term of the smoothing functional introduces a preference for some solutions

over others, thus resolving the ambiguity responsible for the ill-posedness of the original

inverse problem. If 0 is not a reasonable solution, the second term of (0.2) can be

changed to ‖Γ(x− x0)‖2. One then interprets x0 as a reasonable initial guess that the
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solution is expected to be close to. Then the data y is allowed to determine in which

direction and by how much to deviate from the initial guess.

For a linear modeling operator, say G(x) = g0 +G(x− x0), the smoothing functional is

MΓ[x] = ‖g0 +G(x− x0)− y‖2 + ‖Γ(x− x0)‖2, (0.3)

with a unique minimum at

xΓ = x0 + (GTG+ ΓTΓ)−1GT (y − g0). (0.4)

Another approach to obtaining an approximate solution of an ill-posed inverse prob-

lem of the form (0.1) is Bayesian inversion. In a Bayesian setting, the unknown system

state is regarded as a random vector X with an a priori probabilty density function p(x).

This prior distribution represents background information about X, known in advance

of experience. The observation vector is also considered a random vector Y, with the

actual measurement outcome y a realization of this random vector. The deterministic

modeling operator G is generalized to the conditional probability distribution of Y given

that X = x, with G(x) usually specifying the expected value E(Y|X = x). When viewed

as a function of x rather than y the conditional probability density function p(y|x) is
referred to as the likelihood. The immediate goal of Bayesian inference is determining

or approximating the posterior probability distribution of X given Y = y, i.e. the con-

ditional distribution of the unknown state vector given the available information. Once

a representation of the posterior distribution is obtained, all inference—such as the con-

struction of point and interval estimates—proceeds on the basis of that representation.

Bayes’ theorem gives the posterior density in terms of the prior density and likeli-

hood (Gelman et al., 1995),

p(x|y) = p(y|x)p(x)
p(y)

. (0.5)

Since p(y) does not depend on x, it can safely be omitted when y is fixed, yielding the

simplified relationship

p(x|y) ∝ p(x)p(y|x). (0.6)

Returning to the special case of a linear modeling operator, suppose we have a multi-

variate Gaussian prior on X with mean x0 and covariance matrix Σ. Further suppose

we have a likelihood specifying that the conditional distribution of Y given X = x is
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also multivariate Gaussian, with mean G(x) = g0 + G(x − x0) and covariance matrix

C. In this case the prior density is

p(x) =
1√

(2π)Nx|Σ|
exp

(
−1

2
(x− x0)

TΣ−1(x− x0)

)
(0.7)

while the likelihood density is

p(y|x) = 1√
(2π)Ny |C|

exp

(
−1

2
(y − g0 −G(x− x0))

TC−1(y − g0 −G(x− x0))

)
.

(0.8)

Multiplying the densities in (0.7) and (0.8) together, we find (Johnson and Wichern,

1998) that the posterior density is itself multivariate Gaussian, with mean

x̂ = x0 +ΣGT (GΣGT +C)−1(y − g0)

= x0 + (GTC−1G+Σ−1)−1GTC−1(y − g0)
(0.9)

and covariance matrix

Σ̂ = Σ−ΣGT (GΣGT +C)−1GΣ. (0.10)

If we choose the covariance matrices in the prior and likelihood such that C = I and

Σ−1 = ΓTΓ, then the posterior mean x̂ in (0.9) is equal to the solution xΓ in (0.4)

of the Tikhonov-regularized inverse problem. Moreover, with this choice of covariance

matrices, the log-posterior density is

log p(x|y) = −1

2
(y − g0 −G(x− x0))

T (y − g0 −G(x− x0))

− 1

2
(x− x0)

TΓTΓ(x− x0)

= −1

2

(
‖y − g0 −G(x− x0)‖2 + ‖Γ(x− x0)‖2

)
= −1

2
MΓ[x]

(0.11)

whereMΓ[x] is the smoothing functional in (0.3). In this example, therefore, minimizing

the smoothing functional in the regularization formulation is equivalent to maximizing

the posterior density in the Bayesian formulation. Hence, the Bayesian framework offers

an interpretation of regularization whereby the introduction of a seemingly arbitrary

regularization matrix Γ can be justified as imposing a specific prior distribution on X.
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Another way to view the equivalence between the regularization and Bayesian inference

approaches to this example problem is that the imposition of a prior distribution on the

unknown target variable has a regularizing effect on the ill-posed inverse problem. Cru-

cially, this regularizing influence can also be relied upon in more general cases involving

non-linear modeling operators. The main difference between the two approaches is that

in the Bayesian case one incorporates explicit assumptions about the unknown system

state via the probabilistic model, and then regularization follows as a consequence of

these assumptions. In the regularization case, on the other hand, a regularization matrix

and corresponding smoothing functional are introduced as a matter of necessity, usu-

ally in order to facilitate practical computation of the solution. The assumptions about

properties of the target variable that go along with the regularization are implicit in

this case. This difference in particular makes Bayesian inversion an attractive solution

method for inverse problems.

Data assimilation as an inverse problem

When discussing the Bayesian approach to inversion in the previous section, we consid-

ered the problem of estimating a random vector x. This section will concern Bayesian

inference, or inversion, for processes that evolve over time. We begin by introducing

stochastic processes, which are sets of related random variables, linked by an index vari-

able. In applied modeling, the index variable often refers to time, space or both. We

discuss indexing briefly before moving on to discretization of spatial domains and time

intervals, and presenting a convenient vector notation for spatially discretized fields.

A stochastic process is a set {Xt : t ∈ T} where t is an index variable belonging to the

index set T, and for each value of the index variable, Xt is a random variable. The

index variable can represent time, in which case the index set is some subset of R. For
models of spatiotemporal processes, the index variable can be a combination of spatial

coordinates and time, with the index set defined as a cartesian product D × T of a

spatial domain and a time interval.

The random variables Xt that belong to a stochastic process take values in state space,

and statistical models using this formulation are termed state space models. A state

space could be a space of continuous functions, but in an applied context it is common

to work with a discretization of the spatial domain. A spatially continuous random field
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X0 X1 X2 · · ·

Figure 2: Directed acyclic graph representing the causal relationship between ran-
dom variables belonging to a stochastic process, considered at different time points.

X(s), indexed by the coordinates s ∈ D is then represented by the random vector

X = (X1, X2, . . . , XN)
T = (X(s1), X(s2), . . . , X(sN))

T (0.12)

where {s1, s2, . . . , sN} is a set of discrete points in the spatial domain D. These points

could form a regular lattice, but could also be unstructured. The number of points N

depends on the spatial resolution, which may differ between directions. For example,

some three-dimensional grids have a higher vertical than lateral resolution.

Numerical models of temporal and spatiotemporal processes are usually discrete-time.

This is true even when the target process is assumed to be continuous in time, and when

the underlying mathematical model has a continuous-time formulation, such as a set of

partial differential equations. To get a discrete-time representation of a spatiotemporal

process X(s, t) with s ∈ D and t ∈ T that is continuous in both space and time, we

can discretize T into a sequence of time points t0 ≤ t1 ≤ . . . ≤ tK where t0 and tK are

the first and last times in T respectively. The number of time points K + 1 depends

on the temporal resolution, which is the duration ∆t = tk − tk−1 between each pair of

consecutive time points. Time points are usually equidistant, so that ∆t is the same for

all k, but they need not be.

With both space and time discretized, the spatiotemporal process X(s, t) is represented

by a sequence of vectors

X0,X1, . . . ,XK (0.13)

each one being a spatial discretization (X(s1, tk), X(s2, tk), . . . , X(sN , tk)) of the “time

slice” random field {X(s, tk) : s ∈ D}. In the remainder of this section, we will use

the vector notation of (0.13) for the general state space model with a process evolving

through time. This process could be, but does not have to be, a spatial field.

The causal structure of a state space model can be illustrated by a graph, as in Figure 2.

Each node in the graph represents a random variable, or random vector. Here, the nodes

correspond to states at different time points. A directed edge from one node to another,

say from Xk to Xk+1 means that there is a causal relationship between the variables
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X0 X1 X2 · · · Xk−1 Xk

Y1 Y2 Yk−1 Yk

Figure 3: Graph representation of the hidden Markov model.

represented by these nodes and that the direction of causality is, unsurprisingly, forward

in time. Statistically this means that we are able to specify the conditional probability

distribution of Xk+1 given Xk. The graphical model of Figure 2 constitutes a first-order

Markov chain, meaning that the conditional distribution of the current state Xk given

the entire history of past states X0, X1, . . . ,Xk−1 in fact depends only on the most

recent past state. In probability density terms, we may therefore write

p(xk|x1,x2, . . . ,xk−1) = p(xk|xk−1). (0.14)

It is frequently assumed that the transition density p(xk+1|xk) is Gaussian, i.e.

[Xk+1|xk] ∼ N(M(xk),Q), (0.15)

where Q is a model error covariance matrix and M is a forward model operator. This

is an example of additive model error, but the relationship between xk and Xk+1 may

be expressed more generally as

Xk = M(xk−1,Vk), (0.16)

which allows the model error Vk to be combined with the previous state in non-additive

ways, including multiplicative error.

The statistical model underlying data assimilation is the hidden Markov model (HMM),

illustrated by the graph in Figure 3. The HMM links a sequence of states X0,X1,X2, . . .

of a Markov process evolving according to a dynamical model equation of the form

(0.16) to a sequence of observations Y1,Y2, . . . of the Markov process at different times.

While the horizontal arrows in Figure 3 represent the causal structure imposed by the

dynamical forward model M, the vertical arrows represent the relationship between the

state at time tk and the observation yk of the state at that time. Nodes that are not



Introduction 9

directly connected in the graph are conditionally independent given the intermediate

nodes. This means, for example that since the causal link between Xk and Yk+1 goes

through Xk+1, observing the value of Yk+1 will not provide any new information about

Xk if the value of Xk+1 is already known. In many cases, the conditional distribution

of Yk given xk is assumed to be Gaussian,

[Yk|xk] ∼ N(H(xk),R), (0.17)

where R is an observation error covariance matrix, and H is an observation operator.

This is a special case of additive observation error, and a more general expression of the

relationship xk and Yk is

Yk = H(xk,Wk), (0.18)

where Wk is the observation error, which could be additive, multiplicative or have some

other form, like the model errorVk in (0.16). Taken together, the model and observation

equations (0.16) and (0.18) combined with suitable error probability densities p(vk) and

p(wk) provide a complete description of the HMM graphical model of Figure 3.

The joint distribution of all variables from time t0 up to and including time tK can now

be conveniently expressed as

p(x0:K ,y1:K) = p(x0)
K∏
k=1

p(xk|xk−1)p(yk|xk). (0.19)

A consequence of this product decomposition is that in principle the joint density can

be computed sequentially, or recursively, by starting with p(x0) and alternating between

forecasting

p(xk+1|y1:k) =

ˆ
p(xk+1|xk)p(xk|y1:k)dxk (0.20)

and updating

p(xk+1|y1:k+1) =
p(xk+1|y1:k)p(yk+1|xk+1)

p(yk+1)
. (0.21)

In practice, however, the marginal density of the observation vector yk cannot be com-

puted exactly (except in special cases, see the discussion on the Kalman filter on page 15).

This motivates the use of Monte Carlo methods and ensemble based inference methods

to avoid having to compute p(yk), and we will discuss these in the next section.

Data assimilation (DA) is used to refer to a range of inference procedures whereby

observations are assimilated into a statistical model of a dynamical system. In HMM
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terms, DA methods compute or approximate the conditional distribution of some or all

of the Xks given some or all of the yks. Three commonly distinguished kinds of DA

problem are filtering, smoothing and prediction.

Filtering entails inference of the state Xk at time tk from only those observations y1:k

that are available at time tk. Smoothing consists of inferring the entire trajectory X0:K

from all the observations y1:K . Prediction is estimation of the state Xl at time tl from

the observations y1:k available at time tk when l > k. The distinction between these

problem types is not always sharp, and solving one of them might entail solving another

as a part of the full solution. For example, an estimate of XK given y1:K is the solution

of the filtering problem when k = K, but it is also a part of the smoothing solution.

In fact, the full smoothing solution can be computed, at least in principle, by starting

from p(xK |y1:K) and doing a backwards pass of sequential updates analogous to (0.21).

Similarly, to predict Xl based on y1:k when l > k, one can start from p(xk|y1:k) and

forecast from time tk to time tl using an expression similar to (0.20). In the next section,

we describe practical methods for obtaining approximate solutions of the filtering and

smoothing problems.

Methods for data assimilation

There exist several kinds of methods for practical data assimilation. We begin by dis-

cussing methods that are used for smoothing, i.e. inference about the entire trajectory of

states. This includes variational methods, which are based on optimization, and Monte

Carlo methods, which make use of random sampling to explore the posterior distribu-

tion. We then move on to methods for filtering, i.e, estimating the current state given

all currently available data. This includes the Kalman filter, the ensemble Kalman filter

and the particle filter.

It should be noted that this way of dividing up data assimilation methods into smoothers

and filters is somewhat arbitrary. Monte Carlo methods can be used for filtering as well

as smoothing purposes, and smoothing problems can be solved sequentially. Never-

theless, emphasising typical areas of application for the various kinds of methods is a

convenient way to give a brief overview, and to highlight important differences between

methods.
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Variational data assimilation

Consider a hidden Markov model specified by a model equation of the form (0.16) and

an observation equation of the form (0.18). The forward model operator M determines

how the state changes from one time step to the next, and the observation operator

H describes the observation mechanism, and can be used to predict measurement out-

comes. The assimilation time interval is divided into K time steps, and observations

y1,y2, . . . ,yM are available at some or all of these time steps.

If the goal is to estimate the entire trajectory of states, X0,X1, . . . ,XK , then we are

solving the smoothing problem. If all we need is an estimate of the final state XK , then

we are solving the filtering problem. Either way, variational data assimilation can be

used.

The posterior density of the trajectory X0:K is

p(x0:K |y1:M) = cp(x0)
K∏
k=1

p(xk|xk−1)
M∏

m=1

p(ym|xkm), (0.22)

which is similar to the HMM decomposition (0.19), except that the transition density

and likelihood factors are indexed separately to account for observations not necessarily

being available at every time step. The normalization constant c comes from the de-

nominator in Bayes’ theorem and is not required to locate the posterior mode or mean,

or to determine the shape of the posterior density. The first product in (0.22) con-

sists of transition densities and favors trajectories with small model errors. The second

product contains the likelihood of every observation vector, and favors trajectories with

small observation errors. Variational data analysis proceeds by locating the trajectory

which maximizes the posterior density, usually by defining an objective function, or loss

function,

J(x0:K) = − log p(x0:K |y1:M) + log c

= − log p(x0)−
K∑
k=1

log p(xk|xk−1)−
M∑

m=1

log p(ym|xkm),
(0.23)

and then seeking the minimum of the objective. The maximum a posteriori estimate of

the trajectory is then

xMAP
0:K = argmin

x0:K

J(x0:K). (0.24)
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The objective function is similar in form to the log-posterior (0.11). One term leads to a

preference for solutions that fit the data closely, while another term leads to a preference

for solutions whose structure agrees with the modeling assumptions. To maximize the

posterior density is to seek a good compromise between these two objectives.

Estimation of the full model trajectory in the presence of non-negligible model error

is sometimes called the weak-constraint variational DA problem, to distinguish it from

the strong-constraint problem. In the latter case, the dynamical model is assumed

to be perfect in the sense of exactly matching the real process being simulated. A

deterministic forward model operator M is then used, so that the entire trajectory x0:K

is fully determined by the initial state x0. This reduces the DA problem to locating the

initial condition that produces the best fit with observations.

Uncertainty quantification is not an integral part of variational data assimilation, but

the posterior variance can still be approximated by taking the inverse of the Hessian

matrix of the log-posterior density ∇2 log p(x0:K |y1:M) = −∇2J(x0:K) evaluated at the

MAP estimate.

Monte Carlo methods

Monte Carlo methods aim to characterize the posterior distribution by generating sam-

ples from it. Like variational methods, this circumvents the need to compute normal-

ization constants, such as c in (0.22), which are often intractable.

One of the simplest Monte Carlo methods is approximate Bayesian computation, or

ABC (Tavaré et al., 1997; Beaumont et al., 2002). In each iteration of an ABC algo-

rithm, a proposal realization is drawn from the prior distribution. Then the proposal

is compared with all available observations, typically by predicting the measurements

based on the realization and then computing the distance between the predicted mea-

surements and the actual observations. If the match with data is sufficiently good

according to a preset threshold, the proposal is accepted. Otherwise, it is rejected.

This procedure is repeated until the desired number of accepted realizations has been

generated.

ABC as described here is an example of a likelihood-free inference method, since the

decision to accept or reject a proposed realization can be made without evaluating the

likelihood, which is sometimes a desired property in an estimation method. In situations
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where the likelihood is easy to evaluate, one can use a more efficient rejection sampling

algorithm with an acceptance probability proportional to the likelihood of the proposed

realization.

To estimate the trajectory X0:K in the HMM using likelihood-free ABC, we would draw

a realization of the initial state x0 from a prior distribution. Then we would generate

realizations of model error v1,v2, . . . ,vK , and use the forward model equation (0.16)

to generate a realization of the trajectory. Predicted observations ŷ1:M = H(x0:K) can

be obtained using the observation operator as in (0.18) with no observation error. We

then compute a summary statistic which measures the mismatch between the predicted

observations and the actual observations, such as

S(x0:K ,y1:M) =
M∑

m=1

‖ym − ŷm‖2 =
M∑

m=1

(ym −H(xkm))
T (ym −H(xkm)) . (0.25)

If S(x0:K ,y1:M) < ε the proposed trajectory x0:K would be accepted. The efficiency of

this sampling approach depends on the acceptance rate

A = P (S(X0:K ,y1:M) < ε) , (0.26)

which is the a priori probability that a proposal will be accepted. When iterations are

carried out independently, one expects to perform Ns/A iterations in order to generate

Ns accepted realizations. The acceptance rate itself depends on the width of the prior

distribution of the initial state and model errors, as well as the tolerance parameter ε

controlling the strictness of the acceptance criterion, and on the number of independent

observations. If the number of observation vectors M and the number of elements in

each observation vector Ny are large, the right hand side of (0.25) will tend to be large,

making the acceptance rate small. Increasing ε to compensate is only viable up to a

point, because making the acceptance criterion too loose will degrade the quality of the

approximation. In that case, the accepted samples will not be a good representation

of the true posterior distribution. Again, not having to evaluate the likelihood can be

highly useful in certain situations, such as when the likelihood contains unknown model

parameters that we are not interested in estimating. Still, due to the sensitivity to the

number of observations—an instance of the curse of dimensionality—ABC is not suitable

for data assimilation problems with high-dimensional data. Adopting a likelihood-based

acceptance criterion can improve the overall acceptance rate to some extent, and so

can importance sampling—drawing proposal realizations from a well-chosen importance
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function approximating the posterior distribution, combined with subsequent reweight-

ing of accepted realizations. Neither modification will improve efficiency enough to make

this kind of method suitable for high-dimensional data assimilation, however.

Markov chain Monte Carlo (MCMC) is another class of Monte Carlo methods. These

do not generate independent realizations of the posterior distribution. Instead, they

produce a Markov chain of correlated realizations. Because an accepted realization

can be used as a starting point for generating the next one, this is more efficient than

generating independent realizations. Nearly independent samples can still be obtained

by thinning out the full Markov chain, since correlation lengths are usually not too long.

The Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is

a particularly common MCMC method. In the following description, we will drop the

subscript time indices from the model trajectory and observation variables x and y.

The MH algorithm, and the Markov chain it produces, are initialized by generating a

realization from the prior distribution. Let x denote the current state of the Markov

chain. A proposal x′ for the next state is drawn from the proposal distribution q(x′|x).
Next, the acceptance probability

α(x,x′) = min

(
1,
p(x′|y)q(x|x′)

p(x|y)q(x′|x)

)
(0.27)

is computed. Here p(x|y) is the target posterior distribution (0.22), and since it appears

in both the numerator and the posterior, the normalization constant cancels so that

its value is not needed to compute the acceptance probability. The proposal is now

accepted with probability α(x,x′), in which case x′ is used as the new state. If instead

the proposal is rejected, x′ is discarded and x is re-used as the new state.

The Metropolis–Hastings algorithm and other MCMC methods are less vulnerable to the

curse of dimensionality than ABC, because acceptance of a realization is not conditional

on a good match with data, i.e. a high likelihood, but rather depends on the likelihood

ratio of the proposal relative to the current Markov chain state.

Variational inference, ABC and MCMC are well suited for solving smoothing problems

where the target of inference is a trajectory of states. In the rest of this section, we will

consider data assimilation methods which exploit the sequential structure of filtering

problems, targeting the state at a single time. Whereas smoothing is usually carried
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out after a dataset has been collected, filtering is sometimes done online, meaning esti-

mates are updated continuously, assimilating a stream of incoming observations. Online

estimation places severe constraints on the computational cost of potential solutions.

Kalman filter

For HMMs that are Gauss-linear, i.e. that have linear forward model and observation

operators and Gaussian model and observation errors along with a Gaussian prior dis-

tribution for the initial state, the sequential inference procedure comprised of equations

(0.20) and (0.21) can be realized very efficiently. Under Gauss-linear conditions the

filtering distribution, the conditional distribution of the current state given all observa-

tions available before or at the current time, will always be Gaussian. As such it is fully

characterized by its mean vector and covariance matrix. Rather than constructing a new

estimate of the filtering probability density at every time step, it is enough to update

the estimated mean and covariance matrix of the filtering distribution. The Kalman

filter (Kalman, 1960) does this efficiently using a set of forecast and update equations.

To keep the notation uncluttered, suppose there are observations at every time step

k = 1, 2, . . . , K. Extending the algorithm to the case with observations at only some

times is straightforward. Write x̂k|k−1 and Pk|k−1 for the mean vector and covariance

matrix of the one-step-ahead forecast distribution with density p(xk|y1:k−1). Write x̂k|k

and Pk|k for the mean vector and covariance of the filtering distribution with density

p(xk|y1:k). Denote the linear forward model and observation operators by M and H,

so that M(x) = Mx and H(x) = Hx. Let the prior distribution of the initial state

be Gaussian with mean x̂0|0 and covariance matrix P0|0. Moreover, let the model error

and observation error distributions be N(0,Q) and N(0,R) respectively. The forecast

equations corresponding to (0.20) are then

x̂k|k−1 = Mx̂k−1|k−1 (0.28)

for the forecast mean vector, and

Pk|k−1 = MPk−1|k−1M
T +Q (0.29)
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for the forecast covariance matrix. Similarly, the update equations corresponding to

(0.21) are

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) (0.30)

for the updated mean vector and

Pk|k = (I−KkH)Pk|k−1 (0.31)

for the updated covariance matrix. The gain matrix Kk appearing in (0.30) and (0.31)

is the optimal Kalman gain, given by

Kk = Pk|k−1H
T (R+HPk|k−1H

T )−1. (0.32)

The update equation (0.30) is linear in the observation vector yk. If the model is a correct

description of the dynamical model and data-generating process, then the Kalman filter

is optimal in that no other linear filter gives a smaller mean square error E((Xk− x̂k|k)
2).

In the filtering equations (0.28) to (0.32), the matrices M, H, Q and R are identical

for all time steps. This can be generalized so that some or all of these vary with k. If

observations are not available at every time step, the update step is simply skipped when

no observation is available, and the forecast estimates are used as updated estimates in

the next time step.

Ensemble-based methods

Ensemble-based data assimilation methods use a collection of realizations, called an

ensemble, to represent the forecast and filtering distributions. Each member of the

ensemble is advanced individually from one observation time point to the next using

the forward model. The ensemble is updated with respect to new observations either by

moving the ensemble members to new positions in state space, or by shifting the weight

of the ensemble onto the most representative realizations.

The ensemble Kalman filter, or EnKF (Evensen, 2009) is, as the name suggests, an

ensemble-based variant of the Kalman filter. The advantage of the EnKF over the stan-

dard Kalman filter is the ability to handle mild non-linearity in the forward model and

observation operators. The EnKF algorithm begins at time t0 with an Ne-member initial

ensemble {x1,a
0 ,x2,a

0 , . . . ,xNe,a
0 }. This could be a sample drawn from a prior distribution,

but it could also be a set of equally probable realizations generated in some other way.
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Not having to explicitly represent the prior distribution is an additional advantage of

ensemble-based data assimilation methods. The superscript a in the ensemble members

denotes analysis, while a superscript f is used to denote forecast.

The kth iteration proceeds by using the forward model operator to advance each ensem-

ble member from tk−1 to time tk as in (0.16),

xi,f
k = M(xi,a

k−1,v
i
k), (0.33)

where vi
k is drawn from the model error density p(vk). The forecast ensemble is then

{x1,f
k ,x

2,f
k , . . . ,x

Ne,f
k }. Next, a synthetic observation is created for each member of the

forecast ensemble, using the observation operator as in (0.18),

ŷi
k = H(xi,f

k ,w
i
k), (0.34)

where wi
k is drawn from the observation error density p(wk). The combined forecast

ensemble {(x1,f
k , ŷ

1
k), (x

2,f
k , ŷ

2
k), . . . , (x

Ne,f
k , ŷNe

k )} is now considered to be a sample from

the joint conditional distribution of Xk and Yk given y1:k−1. Based on the joint forecast

ensemble, the cross-covariance matrix between Xk and Yk and the covariance matrix of

Yk under this distribution are estimated,

Σ̂Xk,Yk
=

1

Ne − 1

Ne∑
i=1

(
xi,f
k − x̄f

k

) (
ŷi
k − ¯̂yk

)T
, (0.35)

Σ̂Yk
=

1

Ne − 1

Ne∑
i=1

(
ŷi
k − ¯̂yk

) (
ŷi
k − ¯̂yk

)T
. (0.36)

In the sample covariance expressions (0.35) and (0.36), x̄f
k and

¯̂yk refer to averages taken

over the ensemble members. Each forecast ensemble member is now updated according

to a formula analogous to (0.30)

xi,a
k = xi,f

k + K̂k

(
yk − ŷi

k

)
, (0.37)

where the estimated Kalman gain K̂k is given by

K̂k = Σ̂Xk,Yk
Σ̂

−1

Yk
. (0.38)

Unlike in the standard Kalman filter case, we are generally unable to compute the exact

value of the optimal Kalman gain since the required covariance matrices are unknown,
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so we use the estimate (0.38) instead. With Gauss-linear modeling assumptions, K̂k

converges in probability to the optimal gain as Ne → ∞, and the distribution of the

analysis ensemble {x1,a
k ,x2,a

k , . . . ,xNe,a
k } converges to the correct posterior distribution.

When Gauss-linear assumptions do not hold, there are no general convergence results.

Still, the EnKF has been successfully applied to many data assimilation problems where

either the forward model, the observation operator or both are weakly non-linear (Asch

et al., 2016).

Particle filters (Gordon et al., 1993; Van Leeuwen et al., 2018), sometimes also called

sequential Monte Carlo methods (Liu and Chen, 1998), are a class of Monte Carlo

methods for filtering that represent the filtering distribution as a weighted ensemble.

Like the EnKF, the particle filter starts with an initial ensemble, and alternates between

forecast and update steps. The forecast in the kth iteration is more or less identical to

the EnKF forecast (0.33), but the two methods differ in the update step. Instead of

changing the states of the ensemble members, or particles, the particle filter updates

their weights

wi
k =

wi
k−1p(yk|xi

k)∑Ne

j=1w
j
k−1p(yk|xj

k)
. (0.39)

The algorithm is initialized with equal weights wi
0 = 1/Ne for i = 1, . . . , Ne. After

the update (0.39) has been applied to every weight, the resulting weighted ensemble

{(x1
k, w

1
k), (x

2
k, w

2
k), . . . , (x

Ne
k , wNe

k )} weakly represents the filtering distribution in the

sense that for an arbitrary, suitably integrable function g, integrals of the form

I[g] =

ˆ
g(xk)p(xk|y1:k)dxk, (0.40)

can be approximated, using the ensemble representation, by

ÎNe [g] =

ˆ
g(xk)

Ne∑
i=1

wi
kδ(xk − xi

k)dxk =
Ne∑
i=1

wi
kg(x

i
k), (0.41)

where δ(x−x0) is the Dirac delta function centered at x0, with the approximation ÎNe [g]

approaching the true integral I[g] when Ne → ∞.

Both the EnKF and the particle filter are affected by the curse of dimensionality. In

the case of the EnKF this comes in the form of ensemble coupling between the en-

semble members, introduced by sampling error in the estimated gain. This unwanted
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correlation between nominally independent ensemble members causes systematic un-

derestimation of the variance of the state. Possible remedies include inflation of the

estimated covariance, decoupling of the ensemble members after updating and, for spa-

tial fields, localizing the updating scheme, so that observations are assimilated gradually

by location. In the particle filter, the curse of dimensionality causes the distribution of

weights w1
k, w

2
k, . . . , w

Ne
k to degenerate and become progressively more concentrated with

every iteration. The effect is exaggerated for high-dimensional observation vectors, but

can be enough to render the näıve particle filter useless for Ny & 3. When the weight

distribution degenerates, the effective sample size

Neff,k =
1∑Ne

i=1 (w
i
k)

2 (0.42)

decreases towards its minimum value of 1, as eventually the ensemble consists of a single

particle whose weight is close to 1, and Ne − 1 particles whose weights are all close to

0. One common way to avoid the issue of degenerating weights is resampling, as in

the sequential importance resampling (SIR) particle filter, due to Gordon et al. (1993).

Resampling is done after computing updated weights, and before the next forecast step.

A new ensemble is formed by drawing Ne particle indices from a multinomial distribution

with the probability of choosing particle i equal to the weight wi
k. Since the resampled

ensemble is likely to contain multiple instances of some particles, small perturbation are

added to every particle. The weights are then reset to 1/Ne before continuing to the

next iteration.

Geological process modeling

This section reviews some of the ways computer models are used to study geological

systems. In particular it presents the Geological Process Modeling simulation software,

and its use in forward stratigraphic modeling of clastic sedimentation. The chapter

closes by describing an important data assimilation problem arising in this setting, and

sketching out how techniques from the previous chapter can be brought to bear on it.
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Numerical models of geological systems

Computer models of subsurface geological structures are important in geology and hy-

drology as well as industrial applications like the mining and petroleum sectors. Al-

though they answer the same kinds of questions, different modeling approaches differ

widely in how they provide answers. The geological structures that exist today are

the result of processes happening over long time periods. One important distinction is

between models that try to capture the structure of the end result, and models that

attempt to trace the process of formation.

Geostatistics began as the application of spatial statistics to estimation problems in

mining engineering and related disciplines. Geostatistical models, once they have been

fit to observations, describe the statistical properties of spatial or spatiotemporal phe-

nomena. A typical application would be to assess the probability that a certain metal

is present in high concentrations at a given location in the model region.

One kind of geostatistical model is Kriging (Krige, 1951; Cressie, 1990), also called

Gaussian process regression, since it relies on the first two moments of the target distri-

bution, and is a linear preciction or interpolation method. It models a spatial process

{X(s) : s ∈ D} as a Gaussian random field with mean E(X(s)) = µ(s) and covariance

Cov(X(s), X(s′)) = σ(s)σ(s′)ρ(s, s′) (0.43)

where σ(s) is the marginal standard deviation at location s and ρ(s, s′;θ) is a function

specifying the correlation between the random field at locations s and s′. Using suitable

parmetrizations of µ(s), σ(s) and ρ(s, s′), the Kriging model can be used for interpola-

tion by computing the conditional expectation and variance of the field at unobserved

locations, given observed values.

A Kriging model could also be fitted to realizations of a random field, such as a forecast

ensemble produced by a forward model. In that case, the entire field is observed, and

having several realizations improves estimation of marginal variance as well as pairwise

covariances.

Another type of geostatistical model is multiple-point statistics, or MPS (Strebelle,

2002). This method takes as input one or more training images that are representative

of the prediction target. The pixels of the training images represent grid cells, while the
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color or brightness of each pixel represents the value of the modeled process. MPS iden-

tifies patterns in the training images by looking for frequently occuring configurations of

neighboring or nearby pixels. As the name suggests, it does not rely on two-point statis-

tics, or pairwise covariances, like Kriging. Instead it analyses collections of more than

two points simultaneosly. Found configurations, along with their observed frequencies,

are then used to compute an empirical estimate of the conditional distribution of the

value of a pixel given nearby pixel values that have already been determined. The sim-

ulation can be initialized by filling in pixels whose values are specified by observations,

and conditionally simulating the other pixels one at a time. Sometimes it is assumed

that the value of each pixel, or grid cell, belongs to a discrete set of classes. One then

seeks estimates of posterior probability mass functions instead of densities.

If the covariance structure has the Markov property of localized dependence, then the

spatial process can be represented as a Markov random field (MRF). An MRF defined

on a regular grid or lattice can further be described as a Markov mesh model. This class

of models enables parametric representations of the same kind of heterogeneous spatial

structure that MPS is typically used to extract from training images.

Geostatistical models are geared towards representing observed present-day configura-

tions of geological systems, and are comparatively easy to condition to measurements.

Their main drawback is that they do not explicitly model the physics involved in the

formation of the geological structures under study. To make use of such information, and

to avoid physically implausible estimates, one must impose constraints through careful

specification of the prior distribution, which can be difficult in practice.

Process models differ from geostatistical models in that they use representations of

geological processes. These methods span a continuum from essentially geostatistical

techniques with some physical constraints, via process mimicking simulation procedures

involving objects that get stacked on top of each other, to purely physics based simu-

lators (Pyrcz and Deutsch, 2014). Process models vary in terms of the scale of anal-

ysis, level of detail and intended use. For example, the gravity current simulations of

Necker et al. (2002) are highly detailed, but are only applicable to a single phenomenon.

Delft3D (Roelvink and Van Banning, 1995) is a less detailed but more comprehensive

modeling system for studying sediment transport in fluvial systems and formation of

deltas. Another example is BARSIM (Storms et al., 2002; Storms, 2003a) which is

a two-dimensional simulator focussed on shallow marine systems dominated by wave

action, and includes carbonate growth.



Introduction 22

Generally, the more faithfully a modeling approach represents real processes, the harder

it is to assimilate data into it. Simulation can create realizations of subsurface structures

that are highly geologically and physically plausible, in and of themselves. They will

not be useful for prediction purposes, however, unless relevant information from mea-

surements is taken into account. Since most process models produce representations of

intermediate states of the modeled system between the simulation start and end times,

they should, in principle, fit into a HMM framework, as illustrated in Figure 3. We do

not, however, have access to observations of the actual geological processes that have

formed present-day geological structures. All available observations are of the current

state, which does not quite fit the HMM causal structure. We will return to this issue

when discussing application of data assimilation methods to geological process models

at the end of this section.

Forward stratigraphic modeling

Stratigraphy is the part of the geology that concerns layered structures of rock. It deals

with sedimentary processes, formation of sedimentary structures and the temporal and

spatial variation in those structures. Sequence stratigraphy is specifically concerned with

identifying sequences of sedimentary rock layers that share a common origin. Features

such as subaerial unconformities and flooding surfaces are assumed to have been formed

at one time. The structure of the rock units bounded above and below by such surfaces

can be explained by variations in the conditions that the sedimentation process occurred

under, including sea level, sediment supply and tectonic uplift or subsidence (Bryant,

1996).

Stratigraphic analyses can be based on data from seismic surveys, which show the loca-

tions of reflective layer boundaries, and well logs, which are observations of local physical

properties taken by lowering a train of measurement tools attached to a wire into a bore-

hole passing through the sedimentary rock. Measured properties can include porosity,

levels of naturally occurring gamma radiation and the speed of sound waves passing

through the rock. Based on this information, stratigraphic analysis can be used to pre-

dict the type and physical properties of the rock in an unobserved location (Catuneanu,

2002).

Stratigraphy in this sense has the structure of an inverse problem, as discussed in Sec-

tion 4. Forward stratigraphic modeling (FSM) is the corresponding forward problem.
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Given an initial state of the modeled region, and a specification of the external controls

that affect the sedimentation process, i.e. sea level, sediment supply and tectonics, a

simulation can be used to predict the system state at a later time. The state in this

case includes both the spatial structure and the composition of the sedimentary layers.

In other words, the forward stratigraphic model must keep track of where the layers

are located, and what kinds of sediment they contain. Sediment composition can be

characterized in terms of the distribution of grain sizes at each location.

Geological Process Modeling (Tetzlaff et al., 2014; Christ et al., 2016), hereafter re-

ferred to as GPM, is an example of an FSM simulator. GPM models the effect of

erosion, transport and deposition of clastic sediment in areas spanning tens to hundreds

of kilometers over time periods of millions of years. To enable simulation of long periods

of geologic time, GPM avoids explicitly modeling repetitive phenomena, such as wave

action, accounting instead for their aggregate effect over time. This abstraction allows

the simulator to use time steps on the order of years. Several processes are simulated in

parallel, the most important ones being sediment advection due to water flowing over

the surface, and sediment diffusion. Modeling of the latter entails forward integration

of a diffusion equation of the form

∂z

∂t
= kD∇2z (0.44)

where z denotes the elevation of the current top surface of the deposited sediment, ∇2

is the Laplacian operator and kD is a constant controlling the strength of the diffusion

process.

Inputs to GPM include the total duration of the simulated time interval, the temporal

resolution of the simulation, the spatial dimensions and resolution of a two-dimensional

grid covering the model region, the initial Bathymetry defined on the grid, a specification

of the rate of tectonic uplift or subsidence at each grid point and the locations of sediment

sources and sinks along with their intensities. For modeling surface flow of water, sources

and sinks for the water, and the mixture of sediment types suspended in the water, must

be specified as well. The direction and strength of ocean currents can also be specified. A

sea level curve giving the changing sea level over the simulation time period is required.

Sediment supply and tectonic uplift and subsidence rates can be constant over time, or

can vary in both time and space. Together with the sea level curve, the overall rate at

which sediment enters the model region at source locations and the change in this rate
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over time, is of special interest due to the important joint influence of these parameters

on the architecture of the deposited layer package.

GPM outputs the state of the simulated system after each display time step, which are

usually much longer than the internal simulation time steps. For example, a simulation

covering 5 million years of geologic time might have 10, 50 or 100 display time steps,

depending on the desired level of detail. The sediment deposited during one display

time step gives rise to a single layer in the model representation of the complete layer

package. All layers are bounded above and below by layer boundary surfaces defined

on the two-dimensional model grid. A model run with K display time steps and a

grid with nx × ny cells will therefore produce a three-dimensional grid of Knxny cells.

Each cell is assumed to contain sediment of L discrete types. A proportion vector

p = (p1, p2, . . . , pL)
T describes the sediment composition of a single cell. The model

state after k display time steps can be represented by a set Sz,k of layer boundary

surface locations

Sz,k = {zijk : i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny},
k ∈ {0, . . . , k}}

(0.45)

and a set Sp,k of sediment proportions

Sp,k = {pijkl : i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny},
k ∈ {1, 2, . . . , k}, l ∈ {1, . . . , L}} .

(0.46)

A corresponding state vector xk can be formed by arranging all the elements of Sk into

a single column vector. The state dimension after k display time steps is

Nx,k = |Sz,k ∪ Sp,k| = (k + 1)nxny + kLnxny = [(L+ 1)k + 1]nxny. (0.47)

Data assimilation for geological process modeling

Data assimilation for the GPM simulator fits into the HMM framework from Section 4

with the forward model operator M representing forward simulation from one display

time step to the next. There are several different data assimilation problems to consider

depending on which variables are targeted, and what kind of data are available.
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Perhaps the most immediate estimation problem is to infer the present-day state of the

system given all available information. Most of the modeled sedimentary layer structure

will be buried and not directly observable. Available observations tend to have either

high precision but limited coverage, such as borehole measurements, or to have good

spatial coverage but poor precision, such as seismic data. An important advantage of

process models is the ability to create geologically plausible realizations of the complete

system. Observations, even if they are imperfect and incomplete, can constrain the

process models so that realizations are not only plausible in and of themselves, but also

probable in light of available information, and likely close to the actual, unobservable

state of the real system. We assume that the observation operator H represents or

approximates the data generating mechanism for whichever combination of observation

types is used.

Another estimation problem is to infer one or several process-controlling parameters,

such as the sea level and sediment supply curves. Parameters that are internal to the

simulation, such as the diffusion strength kD in (0.44), could also be targeted. In this

sense, the model itself contributes to the uncertainty in the unobserved state of the

system, along with natural sources of uncertainty like the unknown initial condition and

environmental controls.

Suppose we are only interested in estimating some parameters θ, the initial state x0, or a

combination of these. If the simulator is run through the entire simulation time interval

to produce realizations of the state x at the final time point, and model equivalents ŷ of

all observations y are generated from these realizations, then we can combine the forward

model operator M and the observation operator H into a single modeling operator G.
We then have an inverse problem of the kind discussed in Section 4. In this situation,

we assess the likelihood of the target variables θ and x0 directly,

p(y|θ,x0) =

ˆ
p(x|x0,θ)p(y|x)dx (0.48)

since we are not interested in the intermediate variable x. In the strong-constraint

case described in Section 4, the transition density p(x|x0,θ) collapses to a Dirac delta

function δ(x−M(x0,θ)) because the dynamical model is deterministic. Equation (0.48)

then simplifies to

p(y|θ,x0) = p (y|x = M(x0,θ)) . (0.49)
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Figure 4: Illustration of forward model runs. The initial ensemble members
xA
0 , . . . ,x

F
0 are drawn from the prior distribution. Curves represent model trajec-

tories. Model states are shown as filled circles and observations as empty circles. If
the eventual poor fit of ensemble member E had been detected and adressed at t1 or
t2, computational effort spent on integrating it to t3 could have been put to better

use.

In the weak-constraint case, the integral in (0.48) can be approximated using Monte

Carlo methods where samples are generated by running the simulation several times.

In practice, if the goal is to estimate the posterior distribution, it is not necessary

to evaluate the likelihood at all combinations of x0 and θ. Instead, we could draw

a sample (xi
0,θ

i), i = 1, . . . , Ne from the prior distribution with density p(x0,θ) and

evaluate the likelihood for each sampled realization. An approximation of the posterior

distribution is then given by the resulting weighted ensemble (xi, wi), i = 1, . . . , Ne

where xi = M(xi
0,θ

i) and wi ∝ p(y|xi).

Estimation of the model trajectory x0:K or of the final state xK only, could proceed

along the same lines, since realizations of both of these are produced as a by-product of

Monte Carlo based parameter estimation. However, if evaluation of the forward model

is computationally intensive and time consuming, this approach will be not be preferred,

as it is likely to cause considerable waste of computational effort. Figure 4 shows how

continuing to run ensemble members that ends up fitting the data poorly is inefficient

and diminishes the useful part of the ensemble. A drastic, but sometimes justifiable

reaction to this is to forgo the uncertainty quantification capabilities of Monte Carlo

methods, and move to optimization based solutions, like variational data assimilation

methods. A more moderate compromise would be to use an ensemble based method

which exploits the sequential nature of the modeled process. By halting the simulation

mid-process and assessing how well each ensemble member fits the data, we can prevent
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Figure 5: Graph representation of the causal relationship between states of the GPM
simulator at different time points and the available observations.

the waste of computational effort either by adjusting the ensemble to make it more

representative, as in the ensemble Kalman filter, or by resampling wayward ensemble

members that match the data poorly, as in the particle filter.

An obstacle to applying sequential data assimilation to geological process models specif-

ically is the structure of the causal relationship between the model trajectory and the

available data. The sedimentation process was not observed while it unfolded, meaning

that causal influence of earlier model states on actual observations is mediated by the

final model state. That is, instead of the usual HMM graph of Figure 3, we have a

structure more like the graph in Figure 5. To get around this one can use the avail-

able observations, perhaps in combination with other information, to construct pseudo-

observations that can be used as if they were actual observations of the system at earlier

time points.
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Summary of papers

We end the introduction by briefly summarizing each of the three papers included in

the thesis, discussing potential improvements and extensions of the work.

Paper I

Data assimilation for a geological process model

using the ensemble Kalman filter

Co-author: Jo Eidsvik

Published in Basin Research, 30(4):730–745, 2018

The first paper describes an effort to apply sequential Bayesian inversion to stratigraphic

forward modeling. GPM, introduced in the previous section, is a geological process-based

simulation software, which produces three-dimensional models by simulating transport

and deposition of sediments. Data derived from borehole measurements provide infor-

mation about the sedimentation process, and can be used to constrain the simulation

so that it outputs more realistic models. Considerable uncertainties in initial condition

and environmental controls make it difficult to obtain a good match between simulation

and observations.

Using Bayesian inversion to tackle the problem of constraining the simulation, we empha-

sise uncertainty quantification by putting prior distributions on unknown parameters.

Moreover, imposing a state space model on the dynamical system exploits the sequen-

tial nature of the process-based simulation, where a layer package forms gradually over

geological time. The variables which make up the system state describe the geometry

and sediment type composition of the layer package.

Samples from the posterior distribution of the state variables are produced using a

variant of the ensemble Kalman filter. Two test cases are considered. The first in-

volves synthetic data and is used to assess the performance of the proposed estimation

method, and to compare the filtering method with an ensemble-based smoothing algo-

rithm that assimilates the data all at once rather than sequentially. The EnKF and the
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smoother are also compared with a multiple data assimilation (MDA) implementation

of the smoother, whereby several updates are carried out iteratively on the same obser-

vations, using an inflated observation error covariance matrix when computing the gain

matrix. The second and more realistic test case involves real well data from the Colville

foreland basin, North Slope, Alaska. This is a difficult test case where it is necessary

to make many assumptions about unknown parameters. To construct a reasonable ob-

servation operator for well log data, free runs of the simulation are used to learn the

approximate relationship between deposition time and cumulative thickness under the

prior distribution.

New contributions in this paper include the application of the EnKF to an inverse prob-

lem in forward stratigraphic modeling, the modification of the state variable representa-

tion to accommodate a spatially varying field of proportion vectors, and an observation

operator using information from free runs of the dynamical model to determine which

subset of the data to include in the conditioning.

Extending the model from using data from a single well to using data from multiple wells

would be relatively straightforward, as one could essentially use the existing observation

operator in parallel for each well. Generalizing to other data types such as seismic data,

is also possible but requires more work. Since the lateral resolution, and the distance

between neighboring traces, in a typical seismic survey are several orders of magnitude

smaller than the model grid resolution in the real data test case, using the seismic data

directly is likely not an acceptable solution.

It is possible to run the GPM simulator at different spatial and temporal resolutions,

and to switch on or off various simulated processes. This makes it possible to trade off

speed against fidelity, suggesting some sort of gradual model refinement approach where

a large number of fast but rough model runs are used to update the prior distribution to

a preliminary posterior distribution which then serves as the prior for the next iteration,

where a smaller number of slower but more accurate simulation runs are used to further

update the distribution, and so on.
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Paper II

A revised implicit equal-weights particle filter

Co-authors: Peter Jan van Leeuwen, Javier Amezcua and Jo Eidsvik

Submitted to the Quarterly Journal of the Royal Meteorological Society, 2018

The second paper presents a revised version of the implicit equal-weights particle filter,

a particle filter variant first introduced by Zhu, Van Leeuwen and Amezcua in 2016. As

an ensemble-based filtering algorithm the IEWPF is an alternative to the EnKF, yet it

avoids the assumption of a Gaussian filtering distribution. This makes it better suited

for applications which involve highly non-linear, possibly chaotic dynamical systems. As

model resolution increases and observation operators become more complex, the data

assimilation problem becomes more non-linear. Hence there is a need for fully non-linear

methods. The standard importance sampling particle filter, which involves a resampling

step, becomes degenerate when used on high-dimensional systems. Recent developments

point the way to new particle filters which are free of this limitation.

The IEWPF is an efficient particle filtering scheme which avoids filter degeneracy by

forcing all particle weights to be equal by construction. This allows the filter to be used

in very high-dimensional systems with a large number of independent observations. To

achieve this, the method uses implicit sampling whereby perturbation vectors are drawn

from a proposal distribution and transformed according to a certain mapping before

being applied to each particle. The exact mapping used varies between particles and is

determined by solving a non-linear scalar equation.

In the original formulation of the IEWPF, the proposal distribution has a gap causing all

but one particle to have an inaccessible region in state space, leading to biased estimates.

This paper describes a modification of the proposal distribution that eliminates the gap

by adding an additional random perturbation. The variance of this extra perturbation

is the same for every particle in the ensemble. We also discuss the properties of the

new mapping, with a view to ensuring complete coverage of state space, and keeping in

mind the aim of re-sampling as few particles as possible. The revised filtering algorithm

is tested in synthetic experiments using a Gauss-linear dynamical system and the non-

linear Lorenz96 model.
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New contributions in this paper include an improved two-stage IEWPF proposal scheme

which samples two perturbation vectors instead of one. This ensures that the proposal

distribution has positive probability density at every point in state space. Furthermore,

the scaling of the extra perturbation can be adjusted to fine-tune the ensemble variance,

providing a means of reducing or eliminating bias.

The new tuning parameter controls the spread of the updated ensemble, so choosing the

right value is necessary for the filter to be well calibrated. A procedure for identifying a

good parameter value could be made part of the IEWPF algorithm. For example, one

could generate multiple ensembles of synthetic observations, and compute the rank of

the actual observation relative to each of these. The distribution of these ranks would

depend on the value of the tuning parameter, and this procedure could be repeated with

different parameter values until an approximately uniform rank distribution is achieved.

To initialize the search, the optimal value from the previous assimilation time step could

be used.

Paper III

Parametric spatial covariance models in the ensemble Kalman filter

Co-author: Jo Eidsvik

Submitted to Spatial Statistics, 2018

The third paper examines the potential for improving ensemble-based filtering algo-

rithms by using a combination of simple parametric covariance models and maximum

likelihood estimation instead of standard covariance estimators.

Ensemble-based data assimilation methods, like the ensemble Kalman filter, are widely

used for prediction and parameter estimation in high-dimensional spatiotemporal appli-

cations. In methods like the EnKF, which require estimates of covariances between state

variables to form the gain matrix, spurious correlations in these estimates can severely

influence the updates applied to the ensemble members in the conditioning step of the

algorithm. As a consequence, these methods are sensitive to the quality of observa-

tions and to the choice of the initial ensemble. To improve the robustness of estimation
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methods, we propose to replace the sample covariance estimator by a parametric esti-

mate obtained by applying maximum likelihood estimation to a sparsely parametrized

covariance model. We also consider semi-parametric estimation, where the variance is

fit empirically from samples, while correlation parameters are determined by maximum

likelihood estimation. Two covariance parametrizations for random fields are studied:

An exponential covariance function and a Gaussian Markov random field (GMRF) spec-

ification with a parametrized precision matrix. For each of these, we demonstrate how

parametric covariance estimation can work in the context of the ensemble Kalman filter

and apply the methods to a test case involving the GPM simulator.

New contributions in this paper include an exploration of the advantages and disad-

vantages of parametric covariance estimation in a data assimilation setting, and an

approach to incorporating available information on spatial non-stationarity induced by

the dynamical model when estimating the precision matrix of a GMRF.

Estimation of non-stationary correlation structures with the GMRF specification relies

on basis functions to represent spatial variation in precision matrix entries. These basis

functions could be created by smoothing out sample variances, as in the GPM example.

They could also be constructed using information about the kind of correlation structure

the simulator tends to induce, perhaps based on free runs carried out in advance.

Many implementations of the EnKF and related methods never actually compute and

store an estimate of the full covariance matrix of the state vector. Indeed, the update step

only requires the cross-covariance matrix between the state vector and the observation

vector, and the covariance matrix of the observation vector. If the observation vector

has fewer elements than the state vector, it makes sense to avoid computing the full

state covariance matrix. This applies to parametric covariance estimation too. We may

want to directly estimate the actual covariances needed to perform the update step.
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Abstract

We consider the problem of conditioning a geological process-based computer simulation,

which produces basin models by simulating transport and deposition of sediments, to

data. Emphasising uncertainty quantification, we frame this as a Bayesian inverse prob-

lem, and propose to characterize the posterior probability distribution of the geological

quantities of interest by using a variant of the ensemble Kalman filter, an estimation

method which linearly and sequentially conditions realisations of the system state to

data.

A test case involving synthetic data is used to assess the performance of the proposed

estimation method, and to compare it with similar approaches. We further apply the

method to a more realistic test case, involving real well data from the Colville foreland

basin, North Slope, Alaska.

I.1 Introduction

Process-based geological models are important for exploring connections between geo-

logical variables in a theoretical setting. The potential predictive value of the process-

based approach has begun to receive recognition, but effective prediction requires that

the model can be conditioned to observations. Conditioning methods for process-based

35
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models are typically impractical relative to data conditioning in other modelling settings,

such as more traditional geostatistical models. Hence, examples of successful predictive

application of process-based models are rare (Pyrcz and Deutsch, 2014).

This paper considers the problem of data assimilation for a geological process computer

simulation, referred to as the Geological Process Model (GPM), where we specifically use

the simulator developed by Tetzlaff (2005), which produces basin models by simulating

transport and deposition of sediments, and erosion of existing geological layers. By data

assimilation we mean bringing together information from well or seismic data and from

the geological model, in a consistent manner, such that the result correctly characterises

our knowledge about the system state–the geological details of the area under study–as

well as other relevant parameters describing the depositional environment.

In this paper, data assimilation for the GPM is carried out using the ensemble Kalman

filter (EnKF). In this filter, realisations of the model state, referred to as ensemble

members, represent a sample from the probability distribution of the geological state

variables. When observations, such as measurements of part of the actual geological

system are to be assimilated, the simulation is halted and each ensemble member is

modified to better match these observations. Then the simulation is resumed on the

basis of the updated ensemble. The end result of completing the simulation, and assim-

ilating all data, is a final updated ensemble which represents the posterior probability

distribution of the geological quantities of interest given all available data. This is the

desired solution to the data assimilation problem (Evensen, 2009).

There has been recent interest in uncertainty quantification and data conditioning for

complex geological models. Promising approaches include the ones due to Charvin

et al. (2009a), who use an iterative Monte Carlo sampling scheme to condition a 2D

simulation of a shallow-marine sedimentation process to observations of thickness and

grain size, Bertoncello et al. (2013), who condition a surface-based model with iterative

matching of sub-problems for a turbidite application, and Sacchi et al. (2015), who use a

mismatch criterion for well log and seismic data from simulations. By assimilating data

gradually, the approach taken in the current paper exploits the way that the simulated

sedimentation process forms layers in sequence. In cases where it is applicable, it has

the potential to be considerably more efficient than other methods.

The next section provides a more detailed description of the GPM simulator, its inputs

and outputs, and how the model state is represented. The subsequent Methodology sec-

tion gives an overview of the EnKF, and how it is implemented to work with the GPM
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(details are in the Appendix). In the Numerical experiments section, the EnKF/GPM

combination is tested on two different data sets: One synthetic case created using the

GPM, and one real case with well data from North Slope, Alaska. We close with a

discussion section, reviewing the strengths and weaknesses of the proposed data assim-

ilation scheme in light of the results from the two test cases, and pointing out possible

directions for further development.

I.2 Geological Process Model

During the last three decades, the field of stratigraphic and sedimentological process

modelling has seen much development, with simulation efforts including SEDSIM (Tet-

zlaff and Harbaugh, 1989), SEDFLUX (Syvitski and Hutton, 2001; Hutton and Syvitski,

2008), BARSIM (Storms, 2003b) and FLUMY (Lopez et al., 2009). See Paola (2000) or

Tetzlaff and Priddy (2001) for details.

Process-based geological models differ from other geological and geostatistical models

in that they seek to capture not only the nature of geology existing today, but also the

processes which formed it. Process-based models, sometimes called process-response

models, are powerful tools for establishing relationships between processes and results,

especially when the processes in question cannot be simulated by a physical experiment

in a laboratory. On the other hand, we require validation using field measurements or

experimental observations in order to have confidence in process-based models, as well

as any inferences drawn on the basis of their output.

One rather indirect way of using process-based models for prediction is to use the process

simulation output as training data for some geostatistical prediction method, like mul-

tiple point statistics (Edwards et al., 2016; Strebelle, 2002). In doing this, one assumes

that the process realisations used as training data are representative of the spatial struc-

ture of the geological features of interest so that, for instance, the variability in shape and

size of features produced by simulation matches the variability observed in nature. One

further assumes that the geostatistical method is able to extract the relevant structural

information from the training data, and that this information generalises well enough

to the geology of the prediction target. In other words, this “digital analogue” way of

using process-based models to inform prediction requires essentially the same fundamen-

tal assumptions as do traditional geostatistical methods (Pyrcz and Deutsch, 2014). By
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Table I.1: Input and output variables of the GPM simulator. The dimensions nx

and ny define the size of the horizontal grid, and nt is the number of discrete time
steps used, starting at geological time t0 and moving forward until time tnt . Some
input variables have no symbol as they are not modelled explicitly in this paper.

Variable Symbol Dimensions, Type
Input Initial bathymetry z0 nx × ny matrix

Sea level curve θSL nt × 1 vector
Sediment supply rate θSS nt × 1 vector
Sediment source locations - nx × ny matrix
Tectonic uplift/subsidence rate - nx × ny matrix
Initial surface sediment proportions - 4× 1 vector

Output Surface elevation zk nx × ny matrix
(kth layer, k = 1, . . . , nt)
Sediment proportion pk,l nx × ny matrix
(kth layer, lth sediment type)

x0

θ

F x1x0 = (z0,p0) x1 = (z1,p1)

θ = (θSL,θSS)

constraining the simulation one avoids these assumptions, introducing in their stead the

assumption that the process-based model is valid.

The GPM considered in this paper produces basin models by simulating transport and

deposition of sediments, and erosion of existing geological layers (Tetzlaff, 2005; Christ

et al., 2016). The same software is also capable of simulating other processes, such

as carbonate growth, though that is not discussed in this paper. The basin is filled by

sediments entering at a defined source location. In this case there is no sink in the model,

and a gradual basin-filling process takes place, where the layer composition is defined

by the sediment supply at the source and the sea level. The composition of particles

in the sediment supply is kept fixed in our case, but since it can be modified in the

software, it could be included in the statistical model as a set of uncertain parameters

to be estimated from data. An overview of the simulator’s input and output variables is

given in Table I.1. The graph just below the table illustrates the relation between input

and output. We next discuss each element in more detail. Figure I.6 shows an example

of model output from the GPM conditioned to data (the context will be clarified in the

examples).
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Figure I.6: Cross section of a simulated layer package with colours indicating pro-
portions of sediment types (sand, silt, clay) in each position. The elevations and
sediment proportions shown here are the ensemble mean of the final analysis ensemble
in the North Slope, Alaska test case. The dotted vertical line near the centre indicates
the location of the Tunalik 1 well. Inset map shows locations of section and well in

modelled basin.

The forward model F represents the GPM simulation software. We treat F as a black

box which accepts as input the system state xk at time tk, and the vector θ of environ-

mental parameters, and returns the system state xk′ at a later time tk′ > tk. We are free

to choose the time interval tk′ − tk, but can only go forward in time. The forward model

F is deterministic. Given the same input, it will always produce the same output. We

thus make the important assumption that F is a correct representation of reality in the

sense that there is no stochastic model error associated with it. The state uncertainty

will be represented by an ensemble; multiple input realisations at time tk are propagated

through F to give multiple output representations at time tk′ .

The parameter vector θ consists of the sea level curve θSL, which describes the evolution

of the sea level over simulated geological time, and the sediment supply curve θSS which

specifies, as a function of time, the rate at which sediment enters the model area from

outside (sediment source locations must also be specified, but the details of this will
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not be considered here). The sea level and sediment supply curves are represented as

piecewise linear functions over time, with the vectors θSL and θSS containing function

values at a shared set {ti : i = 0, . . . , nt} of discrete time points. Other quantities could

have been included as parameters, such as the intensity of erosion as a function of water

depth, or the rate of tectonic uplift and subsidence as a function of time and horizontal

location. In the interest of a limited scope, however, we have chosen to focus on the sea

level and sediment supply curves in this study. Other parameters which are required

input for the simulator, are treated as known quantities, and kept fixed throughout.

The state vector x represents the physical configuration of the modelled system at a given

moment in time. Together with the parameter vector θ, it contains all the information

necessary to compute the system state at a later time. The rationale for treating x and

θ as separate entities is the asymmetry of the causal relationship between them; namely

that the parameters influence how the state evolves over time, but the state does not

influence the parameters.

There are two components of the state vector x: The elevation component z and the

sediment proportion component p, which specifies how much sediment belongs to each

of the categories coarse sand, fine sand, silt, and clay. Both are defined over a two-

dimensional grid of discrete locations. (Additional details about the state vector are

given in the Appendix.)

The elevation component z is a set of surfaces corresponding to the boundaries between

layers of sediment deposited during successive time steps. The initial state x0 has

only one elevation surface, z0, referred to as the initial bathymetry. After running

the simulator F from time t0 to time t1, there will be two elevation surfaces, z0 and

z1, corresponding to the bottom and top of the layer formed during the time interval

(t0, t1). Due to erosion and tectonics, the new bottom surface z0 at time t1 will generally

be different from the original bottom surface z0 at time t0.

The sediment proportion component p is a field of proportions characterising the type

of sediment present in each location. To each three-dimensional grid cell c—defined

horizontally by the two-dimensional model grid, and bounded vertically by two successive

elevation surfaces in z—is associated a vector p(c) = (p1(c), p2(c), p3(c), p4(c)) specifying

the proportion of each of four discrete sediment types (coarse and, fine sand, silt, and

clay) present in the cell. In the following, the cell index c will be suppressed from the

notation when the meaning is clear from the context.
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I.3 Methodology

Uncertainty quantification

To meaningfully characterise quantitative geological variables of interest, it is necessary

to assess the uncertainty associated with predictions and parameter estimates. For non-

linear systems it is natural to quantify uncertainty with a sample or an ensemble of Monte

Carlo realisations. As mentioned above, the GPM forward model F is assumed to be

deterministic, and realisations of the geological system state are obtained by propagating

sampled initial conditions forward in time under different versions of the sea-level and

sediment supply parameters, which are also drawn from their prior distributions. The

resulting output of GPM is an ensemble of state variables at relevant geological times.

As this ensemble is purely model-driven and has not been conditioned to data, we refer

to it as a prior ensemble.

In its Bayesian flavour, the approach described in Charvin et al. (2009a) is quite similar

to that of the current paper. But unlike their Markov chain Monte Carlo sampling pro-

cedure for assessing the posterior probability density function (pdf), the EnKF approach

described here performs sequential updating of the state variables.

EnKF conditioning approach

The graph in Table I.2 illustrates the geological variables as a latent process. The

variables are coupled in time according to the GPM forward model F , which is assumed

to be Markovian in the sense that only the current state is relevant to the future evolution

of the system, not the history leading to the current state. The top nodes in the graph

illustrate data on which the process simulation is conditioned. Here, we assume that

the data are well log observations of elevations and sediment proportions at discrete

intervals in geological time, although other sources of information could also be used,

such as attributes derived from seismic data. We assume that the observations are

made in one well, at grid coordinates (iobs, jobs), for layers deposited at nt different time

points; t1 < . . . < tnt . The synthetic data used in the simulation study have the form

yk = (zk(i
obs, jobs),pk(i

obs, jobs)), while the data in the Alaska North Slope case consist

of thickness and gamma ray observations linked to sediment proportions.
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Table I.2: Generic variables and model components in the hidden Markov model
(HMM) view of dynamical processes, and corresponding entities in the GPM setting.
The graph illustrating the HMM dependence structure of the state and observation
variables at discrete time points t0, t1, . . . , tnt as well as the parameter vector θ. Arrows

between nodes indicate statistical dependence.

Generic GPM-specific
System state x Layer elevation z

Layer sediment composition p

Initial state x0 Initial bathymetry z0
Base layer sediment composition p0

Parameters θ Sea level θSL

Sediment supply θSS

Dynamic model F Geological process simulator

Observations y Well logs

Observation model h Synthetic well logs

x0 x1 x2 · · · xnt

y1 y2 ynt

θ

The well log data are modelled by a likelihood function. This means that a conditional

pdf for the data is specified given the geological variables. Conditional on the geological

elevation and sediment proportion at a time tk, the measurement has an expectation

defined by a functional relationship h(xk) and an additive, zero-mean Gaussian noise εy

with covariance Cov(εy, εy). The observation operator h could simply select values of the

state variables (here elevation and sediment proportions) at the observation site, i.e. the

location of the well in the model grid. In realistic settings however, h will typically have a

more complex form, such as a local spatial average or a nonlinear function of one or more

state variables. Such operators may involve parameters which require tuning to provide

an adequate likelihood model for a specific application. The observation operator for

gamma ray measurements used in the North Slope, Alaska case is an example of this.

In real applications the likelihood model will also require some form of matching between

simulated depth at the time of deposition and measured depth at the time of observation.



Paper I. Data assimilation for geological process modeling 43

The data y1, . . . ,ynt shown in the graph in Table I.2 are assumed to be informative of the

system state at the time of deposition. In the synthetic simulation study, this matching

problem is avoided altogether by recording synthetic observations during, rather than

after, the simulation. For the North Slope, Alaska case, a time-to-thickness relationship

is established ahead of time as a part of model calibration. This involves sampling initial

states and parameters from the prior distribution, and running the simulation based on

these without assimilating data. The resulting unconditional model runs are used to

construct a time-to-depth curve.

The goal of data assimilation is to characterise the posterior pdf of the system state,

given all data by the current time step: (y1, . . . ,yk). In the EnKF, the solution is

constructed sequentially; forecasting one step ahead using the GPM model F , and then

conditioning on one more part yk of the data, at every time step k. It is convenient

for conditioning purposes to build an augmented state vector that includes geological

layer variables for all previous geological times. The sea level and sediment supply

parameters are also part of this augmented state vector. These parameters are distinct

from the geological layer variables only in the sense that they are not changed by the

GPM forward model. Hence, the geological state variables change in both the forecast

and update steps, while the parameters change only in the update step.

The details of the EnKF implementation are provided in the Appendix, but the impor-

tant elements are summarised here. To apply the EnKF to the GPM data assimilation

problem, ne samples from the initial state x0 and parameters θ are generated from the

prior pdf. Then the GPM runs from time t0 until t1 for all ne ensemble members, giving

an ne-member forecast ensemble at time t1. Using a generic notation where v1 denotes

the state vector after one time step, the forecast ensemble at that time is

v1,f
1 ,v

2,f
1 , . . . ,v

ne,f
1 .

Next, for each ensemble member b, pseudo-data are created by evaluating the expecta-

tion in the likelihood h1(v
b,f
1 ) and adding a random Gaussian perturbation εby,1 with the

likelihood covariance. Thus, the pseudo-data are

yb
1 = h1(v

b,f
1 ) + εby,1. (I.50)
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Finally, the Kalman filter update is applied to each ensemble member b = 1, . . . , ne,

vb,a
1 = vb,f

1 + K̂1

(
y1 − yb

1

)
, (I.51)

K̂1 = Ĉov[vf
1,h1(v

f
1)]
(
Ĉov[h1(v

f
1),h1(v

f
1)] + Cov(εy, εy)

)−1

.

The covariances are estimated empirically from the forecast ensemble (see Appendix).

Once all ensemble members have received their respective updates, an analysis ensemble

v1,a
1 ,v2,a

1 , . . . ,vne,a
1 .

of size ne is available after time step 1.

This forecast-update cycle is then repeated, using the newly formed analysis ensemble

instead of the prior ensemble used initially, producing first a t2-forecast ensemble, then

a t2-analysis ensemble, and so on. With each update, data from one observation vector

is integrated into the ensemble. In probability density terms, the conditional pdf of v2

given y1 and y2 is p(v2|y1,y2) ∝ p(y2|v2)p(v2|y1), where the first term on the right

hand side is the likelihood model of y2, which is conditionally independent of the other

variables given v2 (see dependence structure in Table I.2). The second term is the

forecast pdf which is represented by taking each ensemble member from the previous

time step forward one step using the GPM. When all data have been assimilated into

the analysis ensemble at the last time point tnt , the ensemble is representative of the

posterior pdf of all geological variables, given all the data.

In the simulation study below, this EnKF approach is compared with two alterna-

tive methods. The first is often called the Ensemble Kalman Smoother (EnS), see e.g.

Evensen (2009). It runs the ensemble members forward through all time steps before

updating. The benefit of this approach in the geological process setting is that data

are compared at the same geological time, which makes the likelihood model easier to

specify. The downside is that it is very difficult to match present-day geology directly.

In contrast, a filtering approach which integrates data sequentially is guided towards

more realistic solutions as it steps forward through geological time.

The second alternative approach is EnS with multiple data assimilation (MDA), as de-

scribed by Emerick and Reynolds (2013). The MDA approach relies on the following

relation between pdfs: p(yk|vk) =
∏R

r=1 p(yk|vk)
1/R. Just like EnS, the ensemble mem-

bers are now run all the way through the geological time interval, and updating is done
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at the end. But the MDA approach runs forward R times, with each update using an

inflated likelihood covariance, R times larger than the actual observation covariance. A

larger covariance means that the linear updates are smaller than the ones in the EnS.

It can be difficult to tune R in practice, and if an application calls for a large number

of iterations, the computational cost will be high.

I.4 Numerical experiments

Synthetic data

To demonstrate how the data conditioning works in practice, we apply it to an artificial

test case. Our case is inspired by, but distinct from, the case considered by Charvin

et al. (2009a). A reference realisation has been created by simulating sediment diffusion

over 20 000 years. We use a grid consisting of nx = 72 by ny = 16 cells. Each cell has

a horizontal size of 100 by 100 meters, so that the modelled region is a rectangle, 7.2

kilometers long in the cross-shore direction and 1.6 kilometers wide in the along-shore

direction. The initial surface is roughly planar, with a downward slope of approximately

0.4◦ in the positive x-direction, but it also has smoothly varying deviations from this

trend, drawn from a Gaussian random field with a correlation range of 10 grid cells, or 1

kilometer. Sediments enter the modelled area along the landward edge of the grid, at the

top of the slope. New sediments appear here at a rate controlled by the sediment supply

parameter θSS. Over time they diffuse downhill, and are deposited at various distances

down slope, depending on grain size. Figure I.7 shows an example of a realisation, at

the final time of the simulation.

We assume that data are layer elevations and sediment proportions from a vertical well.

The location of this conditioning well is shown in Fig. I.8. The goal is then to recover

the layer package of the reference realisation by conditioning new GPM simulations to

the data from this well. The initial bathymetry, sediment supply rate and sea level

curve are all considered unknown, and must be estimated. The setting is an ideal case

for the filtering method in the sense that the ensemble members are generated by the

same process as the reference. Thus, model misspecification is essentially eliminated as

a source of error. Any observed mismatch between the reference case and the filtering

prediction will be due to limitations of the methodology, and not the simulation model

itself. This is not the case when working with real data.
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Figure I.7: An example of a reference realisation created with GPM.
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Figure I.8: Locations of the conditioning well and the 7 blind wells in the modelled
area. The source area at the top of the slope, where new sediment is introduced, is

also indicated.

We refer to the experiment of generating a GPM reference realisation, assigning well

log data, and predicting the model state from this data, as one trial. To assess the

performance of the filtering method, 100 independent trials were performed. Results

of each trial, including both the reference realisation and the prediction, are stored for

seven different “blind wells” placed at regular intervals down the length of the modelled

area. The positions of the blind wells in relation to the conditioning well are indicated

in Fig. I.8.
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Table I.3: EnKF trial results for z and p.

Well number
1 2 3 4 5 6 7

z MSE 18.96 13.55 14.37 9.62 3.62 6.80 15.36
CRPS 1.48 1.13 1.01 0.80 0.53 0.74 0.99
Cov.Pr.(80) 0.67 0.70 0.70 0.70 0.73 0.72 0.72

p MSE 49.98 51.74 37.58 30.42 12.45 23.96 16.59
CRPS 1.29 1.34 1.08 0.98 0.52 0.85 0.79
Cov.Pr.(80) 0.77 0.73 0.74 0.76 0.84 0.76 0.73

From the 100 trial results, we compute the following statistics to gauge the quality of

the predictions obtained from the ensemble representation in the EnKF:

• Mean square error (MSE) which measures the average square difference between

reference realisation and prediction. Smaller values of MSE mean better prediction.

• Continuously ranked probability score (CRPS) which measures the accuracy of

the predictive distribution represented by the ensemble, relative to the reference

blind well data (Gneiting and Raftery, 2007). Smaller CRPS is preferred since it

means more precise predictions.

• Empirical coverage probability (Cov.Pr.) of 80% confidence intervals, which is

the empirically observed proportion of trials producing confidence intervals which

actually cover the corresponding value of the reference realisation. A probability

near 80% means the ensemble members correctly quantify the uncertainty associ-

ated with the prediction. With an ensemble size of 100 it is convenient to form an

80 percent confidence interval by trimming 10 ensemble members from each tail

of the distribution.

The results are given in Table I.3, where we averaged over all 20 layers. The smallest

values of MSE and CRPS are the ones for blind well number 5, which is closest to the

conditioning well. This holds both for the layer depths and for the proportions. It is

more difficult to predict far from the conditioning well. The coverage probabilities tend

to be a little below 80%, but no spatial trends are apparent. Nor is there any dramatic

underestimation of the uncertainty.
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Table I.4: Trial results for EnKF, EnS and MDA compared in terms of MSE, CRPS
and coverage probability.

EnKF EnS MDA
z MSE 11.76 978.50 996.69

CRPS 0.95 22.98 24.93
Cov. Pr. 0.70 0.07 0.01

p MSE 31.82 177.08 134.04
CRPS 0.98 3.88 2.76
Cov. Pr. 0.76 0.31 0.48

θSL MSE 125.78 528.62 335.72
CRPS 4.56 12.43 12.00
Cov. Pr. 0.58 0.37 0.23

θSS MSE 13.72 181.19 153.15
CRPS 1.42 8.57 9.66
Cov. Pr. 0.66 0.23 0.08

Next, we compare the EnKF approach with EnS and MDA. Summary statistics over

100 trials are given in the Table I.4. In this case, both the EnS and MDA are clearly un-

derestimating the uncertainty, which lessens the quality of the predictions significantly.

The MDA used R = 4 iterations, which is not necessarily optimal, but it is not obvious

how the number of iterations R should be tuned.

The statistics reported for p in Table I.3 and Table I.4 are not computed directly from

the proportion vector itself, but a different variable s related to p via a logistic trans-

formation. The reason for using a transformation is that while the elements of p must

be valid probabilities, the elements of s can take any real value. See the Appendix for

details.

Figure I.9 shows the posterior distributions for sea level and sediment supply as a func-

tion of geological time for a single trial. The EnKF results (left) are clearly better at

covering the reference values. EnS (middle) and MDA (right) tend to give biased re-

sults. The sea level prediction obtained by EnKF only covers the larger geological time

trends. Based on only one conditioning well, it appears difficult to capture the smaller

fluctuations giving coarsening and fining upwards trends in Fig. I.7.
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Figure I.9: Example trial results for the sediment supply (top) and sea level (bottom)
parameters. The shaded areas indicate empirical 80% confidence intervals constructed
from ensemble members obtained from the EnKF (left), the EnS (middle) and MDA
(right). The true parameter values for the trial in question are shown as solid lines.

Real data case: North Slope, Alaska

The northern part of Alaska is an important oil and gas region, with much available

data in the form of well logs and seismic surveys. In this section, we use GPM to

model the Colville foreland basin. The area is indicated in Fig. I.10. This is the area

studied by Schenk et al. (2012). Starting with an initial bathymetry corresponding to

the top surface at 120 Ma, we use GPM to simulate deposition in the basin until 115

Ma. The simulation is conditioned on gamma ray well log data from the Tunalik 1 well,

located at 70.20◦ N, 161.07◦ W, indicated by a circle on the map in Fig. I.10. The

gamma ray (GR) data are measurements of natural gamma radiation taken at regular

depth intervals along the trajectory of the borehole. It is measured in API (American

Petroleum Institute) units, defined as a scaling of the observed radioactivity count rate

by that recorded with the same logging tool in a reference depth zone (Killeen, 1982;

Keys, 1996).
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Figure I.10: Location of Tunalik 1 well relative to the Colville foreland basin study
area (shaded region), and to the present-day coastline of northern Alaska. Parts of the
northern and eastern boundaries of the simulation grid are shown as dashed lines. The
southern and western boundaries are located outside the area covered by the figure.

The map shown here is an adaptation of Fig. 1 in Schenk et al. (2012)

The lateral model grid covers a rectangular geographical area measuring approximately

1600 km in the east-west direction and 1300 km in the north-south direction, which

is discretised into 110 × 87 grid cells, yielding a lateral resolution of ∼15 km in either

direction. The Colville foreland basin is located in the northeast corner of the rectangle

(see Fig. I.10). The southern and western parts of the rectangle are included in order

to properly model sediment entering the actual basin region.

The Tunalik 1 well is approximately 6 km deep and, given the coarse horizontal spatial

resolution of the model grid, can safely be assumed to be vertical. Based on the existing

conceptual model of the study area by Christ et al. (2016), the part of the well log

relevant to the modelled time interval is believed to be the ∼1900 m depth interval

between 1300 m and 3200 m of depth relative to the present-day surface. The right

panel of Fig. I.11 shows this part of the Tunalik 1 gamma ray log. The Tunalik 1 well

data is available in LAS-format online (U.S. Geological Survey, 1981).

The time interval between 120 Ma and 115 Ma is discretised into 50 time steps of 100 000

years each. Consequently, the completed model output will consist of 50 distinct layers.

We choose to update the model once every fifth time step. This means that the forecast
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Figure I.11: Left: Prior realisations of cumulative thickness of deposited sediment at
well location over simulated geological time. Right: The part of the Tunalik 1 gamma
ray well log believed to be informative of the sedimentation happening between 120

Ma and 115 Ma.

ensemble after 5 time steps consists of only the first 5 layers, and is updated based on the

deepest part of the gamma ray log shown in the right panel of Fig. I.11. Similarly, after

10 time steps, each member of the forecast ensemble contains 10 layers, and they are all

updated based on the next segment of the well log, and so on, at times 15, 20, . . . , 50.

Time steps of 100 000 years were chosen as a compromise between model resolution,

both temporal and spatial, on the one hand, and computational efficiency on the other

hand. Using shorter time steps would produce a larger number of thinner layers, which

would allow us to resolve smaller details. At the same time, limiting the number of layers

by using longer time steps reduces the amount of information that has to be passed to

and from the simulator during data assimilation, making the procedure more efficient.

Based on our experience with the simulator, we believe that time steps of 100 000 years
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give us the resolution necessary to capture relevant changes in grain size over time, such

as the progradational Brookian sequences we are trying to model in this case (Christ

et al., 2016).

The reason for assimilating data only once every five time steps, and observing blocks

of five layers at a time, is that early experiments showed that updating on every time

step tended to cause overfitting. That is, observations would be matched closely by the

estimated system state, but the latter would have changed so much to accommodate

the observations as to be unrealistic. At the other extreme, updating every tenth time

step, and observing larger blocks of ten layers tended to produce very smooth estimates

of the system state.

In order to carry out updates, it is necessary to identify which segment of the well log

corresponds to the most recent five-layer block in the state forecast. This matching relies

on a mapping between simulated time and thickness of the part of the well log relevant

to the layers which have been simulated after that amount of time. In other words, a

curve specifying cumulative present day thickness of the deposited layer package as a

function of time. Rather than resorting to traditional back-stripping and decompaction

methods, we obtain an estimate of this time-to-thickness map using results of uncondi-

tional simulations (i.e. model runs without data assimilation) carried out in advance,

with initial state and environmental parameters drawn from the prior pdf. The left

panel of Fig. I.11 shows 100 realisations of the time-to-thickness relationship at the

location of the Tunalik 1 well. The curves shown in the figure give the thickness at 115

Ma. Dividing each curve by its final thickness and multiplying by the thickness of the

relevant well log depth interval gives standardised thickness curves. The specific map

used for conditioning is a single sequence of depths {∆z0,∆z1,∆z2, . . . ,∆z50} chosen

for being representative of the ensemble of curves shown.

After k ∈ {5, 10, 15, . . . , 50} time steps, we want to update the forecast state vector xf
k

with respect to the observation vector yk, given by

yk = (∆zk, γ̄k)
T ,

where ∆zk is the standardised cumulative thickness after k time steps, and γ̄k is a

harmonic mean of gamma ray values,

γ̄k =

(
1

nγ,k

∑
zi∈Ik

1

γ(zi)

)−1

.
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The average is taken over the depth interval Ik, corresponding to the newest five-layer

block, and nγ,k is the number of gamma ray measurements in the well log which belong

to this interval. The depth interval of each block begins where the previous one ended,

so that after 50 time steps, the ensemble will have been conditioned to all the well log

data in the depth interval shown in the right panel of Fig. I.11.

The term hk(x
f
k) in the update equation (I.50) entering in equation (I.51) corresponds

to the expected value of yk given the state forecast xf
k To compute

hk(x
f
k) = (∆zfk, γ̄

f
k)

T

based on xf
k , we first extract the current thickness ∆zfk of the simulated layer package

at the well location by taking the difference in elevation between the top and bottom

surfaces. The synthetic gamma ray value for grid cell i is given by

γfi =
4∑

`=1

pf`,iγ̃`.

where pf`,i is the forecasted proportion of sediment type ` ∈ {1, 2, 3, 4} in grid cell i,

and γ̃` is the expected gamma ray measurement for a grid cell containing only sediment

of type `. If, for instance, grid cell i′ contains pure clay, then we will have γfi′ = γ̃4.

The expected gamma ray values are parameters which must be chosen in advance to

calibrate the model. Here, they were chosen so that the distribution of gamma ray

values obtained by simulating from the prior distribution matches the marginal, depth-

averaged distribution of gamma ray measurements in the relevant part of the Tunalik 1

well log.

Once the cell-wise gamma ray values have been synthesised, we average them over the

most recent five-layer block. Let the 5 top grid cells in the well, after k time steps, be

numbered i1,k, i2,k, . . . , i5,k. Then the synthetic gamma ray block average is

γ̄fk =

(
1

5

5∑
j=1

1

γfij,k

)−1

.

The covariance of the measurement noise terms, denoted Cov(εy, εy) in equation (I.51),

must be specified. Here, we used a very large standard deviation of σ∆z = 3 km for

the cumulative thickness observations, and a standard deviation of σγ̄ = 3 API for the
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local gamma ray averages. The thickness and gamma ray noise terms are assumed to be

independent of each other. Choosing a very large standard deviation for the thickness

means we are modelling the thickness as highly uncertain. As a result, observations of

thickness will not contribute much to the shape of the likelihood function, and will have a

limited influence on the posterior ensemble. As the effect of compaction between the end

of the simulation time period and the time of observation is not explicitly accounted for

in the model, it is reasonable that the uncertainty associated with observations of depth

will be much larger than the uncertainty associated with gamma ray measurements. To

illustrate the effect of σ∆z on estimates, we also run the EnKF with σ∆z = 30 m.

When assessing the estimates of the system state and parameters in the North Slope

case, we do not know the true state of the system, neither today nor at 115 Ma. Unlike

for the simulation study in the previous section, there are no reference values of the

estimated quantities to be used for judging the quality of the estimates. Still, we may

get some insight by looking at the evolution of the system state estimate over time, and

by comparing the synthetic data associated with the final system state estimate with

the observations used for conditioning.

The top left panel of Fig. I.12 shows, for the case where σ∆z = 3 km, the evolution

over the simulated time interval of total thickness at the location of the Tunalik 1 well,

represented by all 100 members of every forecast and analysis ensemble. Updates occur

every 5 time steps, as can be seen by the vertical shifts. The bottom left panel shows

the same thickness as represented by the final analysis ensemble. Values extracted from

unconditional simulations are included for reference (the same prior thickness curves are

shown in the left panel of Fig. I.11). The right panels show the same for the case where

σ∆z = 30 m.

Figure I.13 shows the match between estimated and observed well log measurements.

The left panel shows layer-wise gamma ray values synthesised from prior simulation

results, while the middle and right panels shows gamma ray values synthesised from

posterior ensemble members with large and small observation uncertainty for cumulative

thickness, respectively. All three panels also include the layer-wise ensemble mean and

the observed block-wise average. The latter being identical in all panels.

Figure I.14 shows a comparison of the prior and posterior distributions of the sediment

supply (top) and sea level (bottom) parameters in the form of point-wise, empirical 90%

confidence intervals computed from ensemble members. Estimates for both large (left)

and small (right) σ∆z are shown.
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Figure I.12: Top: Evolution of estimate of total thickness of deposited sediment at
Tunalik 1 well location. Bottom: Final analysis (posterior) ensemble compared with
prior (unconditional) realisations. Results shown correspond to observing cumulative

thickness with high (left) and relatively low (right) uncertainty.

I.5 Discussion

The conditioning problem

Loosely speaking, the data assimilation task considered in this paper consists of inferring

causes from partially observed results. Since the measurable outcomes of the simulated

geological processes are multiply realisable in terms of the various inputs, this inference

problem lacks a unique solution. In this regard, it is a typical inverse problem.

Taking a Bayesian approach is natural for two reasons. First, introducing a prior pdf for

the unknown quantities to be estimated provides necessary regularisation of the solution

of the inverse problem. Second, Bayesian inference is a consistent and principled way of
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Figure I.13: Synthetic and observed gamma ray measurements in the Tunalik 1
well. Left: Realisations of the prior distribution, obtained by simulating without con-
ditioning. Middle: Ensemble members after final update at time t50 when thickness
observations are highly uncertain. Right: Posterior ensemble when thickness observa-

tions are informative. Observed gamma ray values are block-wise averages.
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Figure I.14: Prior and posterior distributions of sediment supply (top) and sea level
(bottom) parameters represented by empirical point-wise 90 percent credible intervals
computed from 100 realisations of each distribution. As in Fig. I.12, estimates corre-
spond to the two cases where cumulative thickness is observed with high uncertainty

(left) and relatively low uncertainty (right).

combining quantitative observations of a physical system with relevant subject matter

knowledge, while taking into account varying degrees of uncertainty associated with

different sources of information (Tarantola, 2005; Evensen, 2009).

The EnKF is an appealing method for assimilating data to process-based numerical

models like the GPM, as the sequential fashion in which the ensemble members are

updated is well suited for exploiting the temporally ordered nature of the simulated

sedimentation process. For situations beyond purely accumulative basin filling scenarios,

however, the suitability of the EnKF is not assured. In scenarios characterised by more

complex dynamical environments, for instance significant erosion events or faulting [see

e.g. Chap 4.5 in (Pyrcz and Deutsch, 2014)], comparing a layer forming early in the

simulated time period with present-day observations may be ill-advised, since the layer

could be partially eliminated or moved in a later stage of the simulation. We outline
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possible extensions of the data assimilation method in the discussion at the end of this

paper.

Synthetic test case

In the Numerical experiments section, to provide a context for assessing the performance

of the EnKF on the synthetic test case, two additional estimation methods were tested:

EnS and MDA. These methods update the ensemble only at the final geological time

point.

With regard to the performance measures reported in Table I.3 and Table I.4, it is worth

keeping in mind that both MSE and CRPS depend on the scale of the variable estimated.

Hence, comparing values between methods for the same variable is always valid, while

comparisons between estimated variables, whether within-method or between-method,

are not necessarily meaningful.

The overall conclusion to be drawn from the results of the synthetic test case is that

the EnKF performs reasonably well on this problem, which has the important property

that the reference realisation, or ground truth, was generated using the same simulator

which was used in the estimation. Furthermore, the observations used in the condition-

ing were generated from the reference realisation according to the specified likelihood

model. This guarantees that the prediction target is realisable by the simulator, and

that the likelihood model accurately represents the data generating process. This test

case, therefore, represents an ideal case, and the filter’s performance here should not be

expected to generalise to cases without these properties. Nevertheless, comparing the

EnKF with other estimation methods on an idealised, synthetic test case, is informative

of relative performance between the methods in question, at least when applied to cases

with a similar structure.

Compared with the EnKF, both the EnS and the MDA perform poorly on the synthetic

test case, with larger MSE and CRPS for all variables. Empirical confidence interval

coverage probabilities, while a little below the mark for EnKF, are surprisingly small

for both of the other estimation methods, indicating that the large linear updates that

they apply to the ensemble result in underestimation of posterior uncertainty.



Paper I. Data assimilation for geological process modeling 59

Real data test case

In the second, more realistic test case, we model a piece of the Colville foreland basin in

North Slope, Alaska, by conditioning a simulation of five million years of sedimentation

on gamma ray well log data from the Tunalik 1 well, located within the basin. This is an

example of the kind of basin filling scenario that we expect sequential data assimilation

to be applicable to.

The depths in the Tunalik 1 well corresponding to the top and bottom of the simulated

layer package were picked based on a conceptual model of the same region. Since our a

priori confidence in this model is high relative to the level of uncertainty associated with

the initial state and parameters, we treat the two depth markers as known constants.

Nor do we attempt to explicitly model how the studied layer package changes between

the end of the simulated time interval and the present day. The EnKF implementation

used on the North Slope test case generally conditions on both locally averaged gamma

ray measurements and observations of cumulative thickness. When the thickness ob-

servations are treated as very imprecise, by letting σ∆z = 3 km, the system state and

parameters are, in effect, being conditioned on gamma ray measurements only.

An alternative approach would be to explicitly model changes happening after the stud-

ied layer package was deposited, either by extending the simulated time period beyond

the time interval of primary interest, or by using a less computationally expensive model

to account for these changes. This could be a proxy model, based on a more coarse

grained representation of the same processes as in the full model, or it could be a sur-

rogate model, built by identifying regularities in the relationship between inputs and

outputs of the full model [see e.g. (Frolov et al., 2009)]. In either case, an estimate of

the present-day system state would be produced, and synthetic observations would be

created by applying the likelihood model to this intermediate estimate.

The results of the real data test case are harder to interpret than the synthetic case

results. Lacking a reference realisation to compare the estimates to, we resort to com-

paring the observations used in conditioning to predictions of the same observed quanti-

ties, synthesised from the estimated system state. In the North Slope, Alaska case, this

means producing a synthetic gamma ray log from the estimated sediment proportions at

the location of the Tunalik 1 well, and comparing this with the corresponding observed

gamma ray measurements.
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Although the data match for locally averaged gamma ray measurements in the Tunalik

1 well does leave something to be desired, it is clear, from comparing the panels of

Fig. I.13, that both posterior ensembles fit the well log better than the prior ensemble

does, with the σ∆z = 3 km estimate achieving the closest match. For the sea level and

sediment parameters, we see a marked tightening of the confidence intervals in Fig. I.14

going from the prior ensemble to the posterior ensembles, yet in both cases the posterior

is still quite diffuse, suggesting that conditioning on gamma ray measurements from a

single well yields only a modest reduction in uncertainty. The estimates of θSS and θSL

obtained with σ∆z = 3 km and σ∆z = 30 m are broadly similar, the main difference being

that the 30 m estimate (bottom right panel of Fig. I.14) detects a sea level decrease in

the first half of the simulated time interval, which is less apparent in the 3 km estimate

(bottom left).

Assumptions and limitations

When developing our problem-adapted version of the EnKF, we have assumed that

the system dynamics are deterministic, so that identical inputs at one time will always

produce identical outputs in the next time step. A consequence of this is that all the

stochastic variation in a forecast ensemble is derived from variation in the updated

ensemble one time step earlier. Adding a stochastic element to the time-evolution of

the system state could be a way to account for possible model error, that is a possible

discrepancy between the simulation and the actual physical processes being simulated.

As mentioned at the start of this section, we do not expect sequential data assimilation to

be practical for geological scenarios deviating significantly from the kind of accumulative

or additive behaviour which dominates the two test cases in this paper. Effectively

conditioning simulations of more general geological processes likely requires a different

approach.

Potential for further development

The modifications made to the standard EnKF in this paper concern only the obser-

vation likelihood and the representation of the system state and parameters. Other

modifications, affecting how covariances are estimated, and how updates are applied

to ensemble members, are possible. For example, updates could be localised in time,
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so that layers formed recently receive a more substantial update than older layers. In

many applications, localisation can have a stabilising effect on the posterior ensemble

(Nychka and Anderson, 2010; Sakov and Bertino, 2011). Another possible modifica-

tion is to inflate the variance of the ensemble for a more accurate representation of

uncertainty (Sætrom and Omre, 2013).

With respect to extending the ensemble-based simulation conditioning approach to make

it more widely applicable, two directions of extension seem especially pertinent. First,

one might wish to condition a simulation to several different kinds of data at the same

time. In the North Slope case, for instance, we could imagine using not just gamma ray

observations, but also observations of porosity or electric potential in the same well, or we

could condition the simulation to well log data from several distinct wells. We may also

want to combine information from well logs with data from seismic or other geophysical

surveys. What is required in either case, is a likelihood model describing how the

measurable quantities relate to the unobserved system state. Given the relatively coarse

lateral resolution of the North Slope case, assuming conditional independence between

observations at different sites might be reasonable. If so, the task of specifying the

likelihood model for a seismic survey is effectively reduced to the problem of synthesising

a seismic trace at a given grid location given the system state at only that location.

The other notable direction to expand the approach in is to try and get beyond accu-

mulative basin filling. For this to work, data cannot be assimilated sequentially, as in

the straightforward implementation of the EnKF. One alternative sampling approach

is Markov chain Monte Carlo sampling, see e.g. Charvin et al. (2009a) or Laloy et al.

(2017) for applications on similar problems. It is not always clear, however how to guide

such samplers to give reasonable results for complex high dimensional problems. An-

other possibility is to move to the particle filter (PF) or similar conditioning methods.

The PF has the distinct advantage over the EnKF that it never manipulates simulator

outputs directly, instead performing conditioning by updating a set of weights associ-

ated with the ensemble of model realisations. On the other hand, the PF is typically

less efficient than the EnKF at sampling the space of possible parameters and states,

so that a relatively large number of realisations may be needed to obtain useful esti-

mates and to prevent weights from collapsing (Chen, 2003). Whether the accompanying

computational cost is prohibitive or not seems a worthwhile question to pursue.
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Appendix: Implementation details of the EnKF

In our situation, the EnKF is used to build a sequential approximation to the conditional

probability density function (pdf) of the geological state variables, given information

from the well log.

Let vk be the state vector of variables at geological time tk, k ∈ {1, . . . , nt}. This state
is constructed from two distinct parts: a) the layer elevations zk and the layer sediment

compositions pk, b) the sediment supply θSS and sea level θSL. Parts in a) are layer

variables represented on a grid of lateral coordinates, while part b) variables do not vary

with location. The elevations and sediment compositions in part a) are connected over
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Figure I.15: Graph illustrating how the dimension of the state variable increases
with each time step.

geological time by the GPM forecast model, so that with k′ < k, we have

(zk,pk) = F (zk′ ,pk′ ,θSS,θSL). (I.1)

The sediment proportions pk have a one-to-one relation with another variable sk, in the

form of a logistic transformation (Dobson and Barnett, 2008). The transformation is

identical for all grid cells. Considering one time step and one grid cell only, and the

four sediment types, we have sj = log
(

pj
p4

)
, j = 1, 2, 3, with inverse transformation

pj = esj

1+
∑3

j=1 e
sj

and p4 = 1
1+

∑3
j=1 e

sj
. Here, pj ≥ 0, j = 1, 2, 3, 4, and

∑4
j=1 pj = 1,

while sj ∈ (−∞,∞), j = 1, 2, 3, which makes it more robust to the linear updating

in the EnKF. Layers are built up over geological time according to equation (I.1), and

we include in the state vector all layers generated up to the current time (Fig. I.15).

Part b) variables are represented as curves indexed by time, and the entire curve (for

the whole simulated geological time interval) is included in every state vector. There is

hence no change in part b) variables in the forecast step. Altogether, the state vector

at time k is then

vk = (z0, s0, . . . , zk, sk,θSS,θSL).

The EnKF is based on Monte Carlo sampling. At the initial time, ne ensemble members

are sampled independently from the prior pdf p(z0, s0,θSS,θSL). For later time steps

k, the EnKF consists of two steps: i) the forecast step and ii) the analysis step (also

referred to as the update step). In i) the state vector is propagated forward in geological

time as described above. We denote the ne members of the forecast ensemble by v1,f
k ,
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. . ., vne,f
k . The assimilation in ii) is done by building a regression model between the

state variables and the data, and then using a linear update formula:

vb,a
k = vb,f

k + K̂k(yk − yb
k), K̂k = Σ̂vy,kΣ̂

−1

y,k.

Here, the yb
k are pseudo-data obtained from vb,f and the likelihood model, while Σ̂vy,k

and Σ̂y,k are the empirical cross-covariance and covariance matrices of the data:

Σ̂y,k =
1

ne

ne∑
b=1

(yb
k − ȳk)(y

b
k − ȳk)

T , ȳt =
1

ne

ne∑
b=1

yb,

Σ̂vy,k =
1

ne

ne∑
b=1

(vb,f
k − v̄f

k)(y
b
k − ȳk)

T , v̄f
k =

1

ne

ne∑
b=1

vb,f.

In our context, the likelihood model is yk = hk(vk) + εy,k, where εy,k is a zero-mean

Gaussian vector with covariance matrix Cov(εy, εy), which gives the form described in

the main body of this paper [equation (I.51)], with

Ĉov[vf
k,hk(v

f
k)] =

1

ne

ne∑
b=1

[vb,f
k − v̄f

k][hk(v
b,f
k )− h̄k(v

f
k)]

T , h̄k(v
f
k) =

1

ne

ne∑
b=1

hk(v
b,f),

Ĉov[hk(v
f
k),hk(v

f
k)] =

1

ne

ne∑
b=1

[hk(v
b,f
k )− h̄k(v

f
k)][hk(v

b,f
k )− h̄k(v

f
k)]

T .

After the final analysis step the ensemble represents an approximation of the posterior

pdf of the geological variables, given all data. For Gauss-linear dynamical systems, the

EnKF is asymptotically correct, and the approximation becomes exact in the limit as

ne → ∞. For other situations, there are no theoretical results regarding the quality of

the approximation, but it has shown very useful in many practical applications.
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Abstract

Several applications rely on data assimilation methods for complex spatio-temporal prob-

lems. The focus of this paper is on ensemble-based methods, where some approaches

require estimation of covariances between state variables and observations in the assim-

ilation step. Spurious correlations present a challenge in such cases as they can degrade

the quality of the ensemble representation of probability distributions. In particular,

prediction variability is often underestimated. We propose to replace the sample co-

variance estimate by a parametric approach using maximum likelihood estimation for a

small number of parameters in a spatial covariance model. Parametric covariance and

precision estimation is employed in the context of the ensemble Kalman filter, and ap-

plied to a Gauss-linear autoregressive model and a geological process model. We learn

that parametric approaches reduce the underestimation in prediction variability. Fur-

thermore rich, non-stationary models do not seem to add much over simpler models with

fewer parameters.

III.1 Introduction

The ensemble Kalman filter (EnKF) is a popular Monte Carlo method for sequential data

assimilation in complex systems (Evensen, 2009). At each step of this approach, Monte

95
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Carlo samples, also called ensemble members, are first forecasted using the forward

model and then updated with repect to data. The update step of the EnKF is based

on covariances between forecast variables and data, the updated ensemble members

being linear combinations of the forecast ensemble members with weights determined

by estimated covariances. Empirical covariance matrices are typically used to specify the

Kalman gain, i.e. the matrix of update weights. Although this empirical approach gives

unbiased estimates of covariances, the formulation tends to produce inaccurate state

estimates, especially when the number of state variables is much larger than the Monte

Carlo sample size. The effect is undesired overfitting, and ensemble representations

produced by the standard EnKF typically underestimate variability.

Localization and inflation of the covariance are common remedies for reducing the un-

derestimation of variance in the EnKF (Furrer and Bengtsson, 2007; Asch et al., 2016).

Hierarchical Bayes formulations have also been considered as a means of stabilizing

the EnKF matrix expressions (Myrseth and Omre, 2010; Ueno and Nakamura, 2016;

Tsyrulnikov and Rakitko, 2017; Stroud et al., 2018). In a similar vein, penalization of

the inverse covariance matrix has been used in various ways, for instance by imposing a

sparse neighborhood structure (Ueno and Tsuchiya, 2009) or by an `1 norm penalty to

get a sparse graph structure (Hou et al., 2016).

Albeit promising in many applications of the EnKF, none of the mentioned approaches

make explicit use of the spatial elements seen in many application domains (Cressie and

Wikle, 2011; Katzfuss et al., 2016). In this paper we advocate stronger links between

spatial statistics and EnKF approaches to improve the properties of the analysis ensem-

ble. Our focus is to use Gaussian random field models and spatial covariance functions

in the specification of covariances entering in the Kalman gain. Within this framework

we apply maximum likelihood estimation to specify covariance parameters. This geo-

statistical approach means that only a small number of covariance parameters must be

estimated on the basis of the ensemble, reducing the risk of overfitting and giving less

underestimation of prediction variability. Ueno et al. (2010) used likelihood analysis

within the EnKF for estimation of parameters in the measurement model. Similarly,

Ueno and Nakamura (2016) and Stroud et al. (2018) used a Bayesian formulation for

parameter estimation. Our approach is different in that we embed the forecast ensemble

in a Gaussian process framework, and estimate the parameters of that approximation

to the forecast distribution.
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Many applications for which the EnKF has turned out to be useful are characterized

by complex dynamical behavior giving rise to non-stationarity. Irregular data sampling

design can also lead to non-stationarity because some regions are densely sampled while

others are hardly informed by data at all. A parametric approach must accommodate

these aspects in a realistic manner, and we explore how a trade off between model

flexibility and complexity is sought.

In Section III.2 we describe the ideas underlying linear updating of an ensemble in a

static situation. In Section III.3 we extend this to a dynamic state-space model, using

parametric covariance or precision matrices in the EnKF update. In Section III.4 and

III.5 we study the performance of the suggested approaches on a linear model and on

an example from geology.

III.2 Approximate linear posterior sampling

Here we describe the underlying idea of posterior sampling with linear conditioning to

data, considering a static situation. The time-dependent case is studied in Section III.3.

III.2.1 Notation and assumptions

Let x = (x1, . . . , xn)
′ denote the uncertain variables of interest, and p(x) the prior

probability density function of x. The size n of the target vector is in our case equal to

the number of grid cells in a discretized spatial domain, typically in the order of 105 or

higher. We assume, as is often the case for numerical simulations of physical systems,

that it is comparatively easy to generate samples from p(x), but that density evaluation

is difficult or infeasible. The prior ensemble consists of B independent, equally likely

realizations

{x1,f , . . . ,xB,f}. (III.1)

The superscript f denotes forecast in this context. In applications involving computer-

intensive numerical simulations, the ensemble size B is usually on the order of 10 to 100

because of limitations in computing resources (processing and memory).

The data are denoted by y = (y1, . . . , ym)
′. In our context we use the common linear

and Gaussian likelihood model; p(y|x) = Normal(Gx,T ). The posterior distribution of
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the target vector x, given the data y, is defined by p(x|y) ∝ p(x)p(y|x). We consider

approaches that construct a posterior ensemble

{x1,a, . . . ,xB,a}, (III.2)

of equally weighted realizations, approximately representative of the posterior p(x|y).
The superscript a denotes analysis or assimilated.

III.2.2 Simulation and linear updating

When the prior is represented by a forecast ensemble (III.1) it is possible, in principle,

to use the likelihood p(y|xb,f ) to re-weight the prior samples and get a posterior repre-

sentation. However, methods going in this direction, such as the particle filter (Doucet

et al., 2000), tend to place all weight on one ensemble member in high-dimensional set-

tings (Snyder et al., 2008). Hence, practical use of these approaches is limited. One can

try to reduce the data dimension in various ways, for instance by conditioning only on

some summary of the data as in approximate Bayesian computation (Beaumont, 2010),

but methods of this type typically require that a large number of proposed realizations

be generated, to the point of having a prohibitive computational cost in the kind of

setting we are envisioning. Nor is it clear how to construct viable summary statistics or

acceptance criteria for large spatial models.

We focus on approaches that use linear updating to get construct the analysis ensemble

(III.2). This class of updating schemes correctly approximates the posterior distribution

when the prior distribution and likelihood are both Gaussian, and when the ensemble

size tends to infinity. While no performance guarantees can be given in the general

case, for instance when assumptions of Gaussianity cannot be justified, this approach

has shown itself to be very useful in several applications (Asch et al., 2016).

The linear update means that approximate posterior samples are generated by

xb,a = xb,f + K̂(y − yb), (III.3)

where K̂ is a weight matrix or gain that must be specified, and yb is a synthetic obser-

vation or perturbed model equivalent given by

yb = Gxb,f + εb, (III.4)
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and the observation error realization εb is drawn from a zero-mean multivariate normal

with covariance matrix T . Underlying the update in (III.3) is the joint covariance

Cov

([
x

y

])
=

[
Σx Σx,y

Σy,x Σy

]
, (III.5)

from which the gain matrix K is defined as

K = Σx,yΣ
−1
y . (III.6)

When the model is correctly specified, the gain matrix in (III.6) is the optimal linear

regression weight for regressing the forecast state ensemble in (III.3) on the ensemble

of synthetic observations in (III.4). In practice, the optimal gain is unknown, and an

estimated gain matrix K̂ is obtained from samples xb,f and yb, b = 1, . . . , B. Since we

assume that the likelihood model, including G and T , is known, the ensemble is only

used to estimate the prior covariance matrix Σ = Σx. The estimated gain then becomes

K̂ = Σ̂x,yΣ̂
−1

y = Σ̂G′(GΣ̂G′ + T )−1. (III.7)

We will also use a formulation with the precision matrix Q = Σ−1, which sometimes has

a sparse (Markovian) structure. Moreover, for some models one can incorporate non-

stationarity directly through the precision structure (Section III.3.3). An algebraically

equivalent formulation of the assimilation step specified by (III.3), (III.4) and (III.6) is

then [
Q̂+G′T−1G

]
(xb,a − xb,f ) = G′T−1(y − yb). (III.8)

Computing the updated ensemble using this expression requires the solution of a system

of linear equations with coefficient matrices that are sparse in most cases.

III.2.3 Empirical and parametric covariance specification

An empirical or non-parametric estimate of the covariance based on the prior ensemble

is

Σ̂ =
1

B

B∑
b=1

(xb,f − x̄f )(xb,f − x̄f )′, x̄f =
1

B

B∑
b=1

xb,f . (III.9)
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When the dimension of x is large, compared with the sample size B, the empirical

estimates of the sample covariances are prone to large Monte Carlo errors (Furrer and

Bengtsson, 2007; Sætrom and Omre, 2011).

In a parametric approach, the covariance is defined by a few model parameters θ, and

we use Σθ to denote the covariance matrix controlled by this parameter vector. The pa-

rameters must be chosen so that the resulting covariance matrix describes the simulation

results well. Using a likelihood function

l(θ) = l(θ;x1,f , . . . ,xB,f ) (III.10)

for this purpose, the parameter estimate is

θ̂ = argmax
θ

l(θ). (III.11)

We assume that the likelihood is representative of a Gaussian process, where the mean is

computed directly from the ensemble. Moreover, the B ensemble members are assumed

to be independent and identically distributed, so that the likelihood is given by

l(θ) = −B
2
log |Σθ| −

1

2

B∑
b=1

(xb,f − x̄f )′Σ−1
θ (xb,f − x̄f ). (III.12)

The parametric estimate of the covariance matrix Σ is then Σ̂ = Σθ̂.

For common parametrizations of spatial dependence in Σθ, there are closed form expres-

sions for the derivatives of the likelihood (III.12), see e.g. Petersen et al. (2008). These

are calculated at every iteration of the optimization procedure. Parameter estimates

typically converge after no more than 5 to 10 Fisher-scoring iterations,

θ̂ = θ̂ +

[
E

(
d2l(θ̂)

dθ2

)]−1
dl(θ̂)

dθ
. (III.13)

If derivatives are not available, other optimization schemes must be used, such as Nelder-

Mead search (Lagarias et al., 1998).
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Table III.5: Performance of different covariance specifications. Matrix norms are
means of 100 replicates, and parentheses represent the standard deviation of these.

B = 100 Kullback–Leibler Bhattacharyya Frobenius
emp 96 000 (741) 558 (0.212) 63.3 (2.6)
emp, loc 113 (1.6) 26.2 (0.3) 88.1 (0.2)
par 0.01 (0.01) 0.002 (0.002) 4.54 (3.2)
semi-par 11.5 (0.9) 2.78 (0.2) 31.1 (1.4)
B = 1000 Kullback–Leibler Bhattacharyya Frobenius
emp 370 (2.7) 40.3 (0.2) 20.2 (0.8)
emp, loc 52.1 (0.07) 16 (0.07) 87 (0.02)
par 0.001 (0.001) 0.0004 (0.0003) 1.8 (1.3)
semi-par 5.6 (0.5) 1.36 (0.1) 13.6 (1.6)

III.2.4 Illustrative spatial example

We compare the results of empirical and parametric covariance estimates for different

sample sizes (B = 100 and B = 1000). The spatial variable x is here represented on a

regular 25 × 25 grid, and entry xi represents the variable in grid cell i ∈ {1, . . . , 625}.
The prior mean values are 0, and the covariance model is stationary with variance

σ2 = 1 in all grid cells and an exponential correlation function. Defining D to be

the 625 × 625 matrix of distances between all grid cells, the true covariance matrix is

Σ = σ2 exp(−3D/η), where η = 10 indicates an effective correlation range of 10 grid

cells.

We study covariance estimation performance using three criteria: Kullback-Leibler di-

vergence, Bhattacharyya distance and the Frobenius norm. For all these measures we

compare the specified covariance Σ̂ with the true covariance matrix Σ. For zero-mean

multivariate Gaussian vectors, the Kullback-Leibler divergence DKL, Bhattacharyya dis-

tance DB and Frobenius norm distance DF between Σ̂ and Σ are

DKL(Σ̂,Σ) =
1

2
[trace(Σ̂

−1
Σ)− n+ log |Σ̂| − log |Σ|], (III.14)

DB(Σ̂,Σ) =
1

2
log |Σ̃| − 1

4
| log |Σ̂| − 1

4
log |Σ|, Σ̃ = [Σ+ Σ̂]/2, (III.15)

DF(Σ̂,Σ) =

√
trace[(Σ̂−Σ)(Σ̂−Σ)′]. (III.16)

Results of the covariance estimation are presented in Table III.5. The empirical estimate
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Table III.6: Performance of linear updating using different covariance specifications.
The results are means of 500 replicates, and the parentheses represent the standard

deviation of these.

B = 100 MSPE CovPr(80) CRPS
emp 0.372 (0.035) 32.3 (2.1) 0.241 (0.007)
emp, loc 0.263 (0.009) 76.7 (1.8) 0.209 (0.007)
par 0.245 (0.008) 79.2 (1.9) 0.197 (0.006)
semi-par 0.246 (0.008) 79.1 (1.9) 0.198 (0.006)
B = 1000 MSPE CovPr(80) CRPS
emp 0.252 (0.011) 72.7 (1.9) 0.216 (0.007)
emp, loc 0.2622 (0.008) 79.7 (1.7) 0.205 (0.006)
par 0.2470 (0.008) 80.0 (1.6) 0.198 (0.006)
semi-par 0.2471 (0.007) 80.0 (1.6) 0.198 (0.006)

(emp) is poor for all measures, even though the norms decrease when the sample size

B is increased. When using a localized version of the empirical approach (emp, loc),

the performance is clearly improved from the straightforward empirical covariance spec-

ification method, except for the Frobenius norm which might carry some localization

artifacts. Localization is here done by elementwise multiplication of the estimated co-

variance matrix with a tapering matrix setting covariance entries beyond a 10-cell range

to 0. In Table III.5 we further see that the parametric approach (par), which has the

same form as the generating mechanism in this case, is clearly the best for all norms.

For a semi-parametric approach (semi-par), the norms are smaller than for the localized

empirical approach. In the semi-parametric approach we set the diagonal entries of the

covariance matrix from sample variances, while a single exponential correlation decay

parameter is estimated by maximizing the likelihood, given the assigned variances. (See

Section III.3.) In summary, the results indicate that the empirical approaches have very

large Monte Carlo errors. They do not estimate Σ very well.

We next simulate data to study properties of the different covariance specification ap-

proaches under linear data updating. Data are collected at all locations in the 25× 25

grid, according to y(si) = x(si) + N(0, τ 2), i = 1, . . . ,m = n = 625, with τ = 0.5.

We study the performance in terms of posterior mean square prediction error (MSPE),

ensemble coverage probabilities (CovPr) at the 80 % nominal level and continuously

ranked probability score (CRPS), see e.g. Gneiting et al. (2007).

Table III.6 summarizes the results. For all prediction measures, the fully parametric and
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Figure III.30: Coverage probabilities for different measurement noise levels in the
data.

semi-parametric approaches give the best results. The localized empirical method is a

little worse, but much better than the straightforward empirical estimate. When the

sample size increases, the latter improves markedly, but for B = 1000 it is still not at

the performance levels of the other approaches. The poor performance of the empirical

approach is largely due to sampling variability causing erroneous covariances which are

again influencing the linear updating. In particular, the coverage probabilities of this

empirical approach are very small at the 80 % nominal level.

Figure III.30 shows the relationship between the coverage probabilities and the mea-

surement noise standard deviation τ . The two parametric approaches are close to the

nominal level of 80 % for all noise levels, for B = 100. The localized empirical specifi-

cation also performs well, while the straightforward empirical approach is very poor for

small noise levels and only gradually goes towards the nominal level for larger noise lev-

els. It is not surprising that the deviation from the nominal coverage level gets smaller

for large measurement errors since the data has little influence on the update in that

case. The very low coverage (10%) for noise standard deviation 0.1 is more surprising.

In fact, one might expect the gain Σ(Σ + τ 2I)−1 to be close to the identity matrix,

because the addition of τ 2 is negligible. In this case, however, the Monte Carlo errors

in the sample covariance matrix are too large relative to τ 2.

Since the computing time is larger for the parametric approaches one could argue that

for a fair comparison a larger sample size should be used for the empirical approaches.

Then again, typical applications of linear updating have long evaluation times for the
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mechanism providing xb,f , b = 1, . . . , B, so the additional time spent on covariance

estimation is negligible in comparison.

III.3 Parametric covariance estimation in the EnKF

Here we extend the parametric covariance estimation approach to dynamical systems.

We begin by presenting some modeling and methodological assumptions. Then we

describe the updating scheme incorporating parametric covariance estimation. Finally

we show how this scheme can be applied to non-stationary models.

III.3.1 Assumptions

The state vector is denoted xt = (xt,1, . . . , xt,n)
′, for time t = 0, 1, . . . , N . Assuming a

prior density p(x0) at the initial step, the state evolves according to a dynamic model

xt = f t(xt−1, δt), t = 1, . . . , N, (III.17)

where δt is a noise term and the functional relationship defined by f t is known. In

realistic situations, this relationship is often obtained by forward integration of a system

of differential equations. Moreover, data at time t = 1, . . . , N is denoted by yt =

(yt,1, . . . , yt,m)
′ and the likelihood model is defined by

yt = Gtxt + εt, εt ∼ Normal(0,T t), t = 1, . . . , N, (III.18)

where the design matrix Gt and covariance matrix T t are known.

The goal of filtering is assessing the conditional density p(xt|y1, . . . ,yt), for times t =

1, . . . , N . Because of the non-linear relationship in (III.17), there is no closed form

expression for the filtering density. The EnKF sequentially computes and maintains an

ensemble representation of the filtering distribution at all times. Assimilation is effected

by linear updates of ensemble members with respect to observations. Starting from

an analysis ensemble representation xb,a
t−1, b = 1, . . . , B, at the previous time step, the

EnKF iteration proceeds in two steps:
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i) Forecasting by advancing each ensemble member through time by forward inte-

gration of the dynamical model,

xb,f
t = f(xb,a

t−1, δ
b
t), b = 1, . . . , B. (III.19)

ii) Updating the ensemble members with respect to data, based on a linear relation-

ship between the two,

xb,a
t = xb,f

t + K̂
−1

t (yt − yb,f
t ) (III.20)

K̂t = Σ̂tG
′
t(GtΣ̂tG

′
t + T t)

−1. (III.21)

As in the static case described in Section III.2, the Kalman gain relies on an estimate

of the forecast covariance matrix Σt = Cov(xt|y1, . . . ,yt−1). The standard formulation

of the EnKF uses the empirical or non-parametric covariance matrix of the forecast

ensemble for this purpose,

Σ̂t =
1

B

B∑
b=1

(xb,f
t − x̄f

t )(x
b,f
t − x̄f

t )
′, x̄f

t =
1

B

B∑
b=1

xb,f
t . (III.22)

However, as was discussed in the previous section, this direct empirical estimate is prone

to large Monte Carlo errors. We proceed instead by describing parametric estimates of

this covariance matrix, or the associated precision matrix.

III.3.2 Parametric EnKF update

Denote a parametric specification of the forecast covariance by Σt = Σt,θt . As suggested

in (III.11) and (III.12), a parametric specification of the covariance is defined by Σt,θ̂t

where

θ̂t = argmaxθt
l(θt;x

1,f
t , . . . ,xB,f

t ). (III.23)

Again we assume this likelihood is that of a Gaussian process and, although there will be

coupling over time because the Kalman gain is formed from ensemble-based covariance

estimates, we proceed as if the B ensemble members are independent and identically

distributed. This means that the likelihood is

l(θt) = −B
2
log |Σt,θt | −

1

2

B∑
b=1

(xb,f
t − x̄f

t )
′Σ−1

t,θt
(xb,f

t − x̄f
t ). (III.24)
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In our formulation the parameters will vary over time. However, the change from one

time point to the next tends to be small, so we start the optimization of the likelihood

using the estimate from the previous time step. The actual maximization will depend

on the functional form of the parametric covariance model, and whether derivatives are

available (see (III.13)).

Again, it can sometimes be useful to fit parameters of the precision matrix Qt,θt
, rather

than working with the covariance matrix (see Section III.3.3).

III.3.3 Choice of parametric models

Common spatial covariance functions include the spherical and Matern-type with the ex-

ponential and the Gaussian as extreme cases (Cressie and Wikle, 2011). The exponential

covariance function was used in Section III.2.4.

In the simplest, stationary model, the forecast variances Diag(Σt,θt), are the same at all

spatial locations, and pairwise correlation depend only on distance and not on specific

locations. This is attractive from a computational point of view because there are only a

few model parameters to estimate. For instance, the exponential covariance function has

one variance parameter and one correlation decay parameter. Assuming that the target

random field is stationary might be unrealistic in situations where the dynamical model

affects various parts of the domain differently. Also, sparse data would lead to much

smaller variance near data locations than far away, and possibly to a non-stationary

correlation decay.

Non-stationary models are more flexible and, in the context of data assimilation for

non-linear dynamical systems, arguably better suited at capturing relevant features of

the spatio-temporal process. The main challenge of building a non-stationary model is

that there are several kinds of non-stationarity. Which kind is useful for our situation?

We discuss some approaches, and then pursue a couple of them in more detail.

There are several popular non-stationary covariance models, e.g. Paciorek and Schervish

(2006) and Jun and Stein (2008). Various attempts have been made to impose structure

in the spatial domain or via spatially varying covariates (Neto et al., 2014; Parker et al.,

2016). However, non-stationary spatial models have been found to be relatively difficult

to parameterize, mainly due to the requirement that the fitted model must give positive

definite covariance matrices for any configuration of spatial sites. Another approach
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involves non-stationary modeling of the precision matrix or inverse covariance matrix:

Fuglstad et al. (2015a) used spatially dependent basis functions to represent the precision

structure. However, it has been difficult to estimate model parameters in such rich model

formulations, particularly when many basis functions are involved, and sometimes much

simpler parsimonious models perform equally well in practice (Fuglstad et al., 2015b).

The first non-stationary model we consider here is a semi-parametric approach where

marginal variances can differ between spatial locations, while the correlation structure is

the same everywhere (semi-par in Section III.2.4), see also Asfaw and Omre (2016). This

model entails that the diagonal entries σ̂2
1,t, . . . , σ̂

2
n,t of the forecast covariance matrix Σ̂t

are specified empirically from the data,

σ̂2
i,t =

1

B

B∑
b=1

(xf,bt,i − x̄ft,i)
2. (III.25)

Assuming a parametric spatial correlation function, the likelihood is maximized using

fixed variances as calculated in (III.25), meaning the likelihood is

l(θt) = −B
2
log |Σt,θt | −

1

2

B∑
b=1

(xb,f
t − x̄f

t )
′Σ−1

t,θt
(xb,f

t − x̄f
t ),

Σt,θt = diag(σ̂1,t, . . . , σ̂n,t)Rt,θtdiag(σ̂1,t, . . . , σ̂n,t), (III.26)

where Rt,θt is the correlation matrix with unknown parameters, and diag(·) forms a

diagonal matrix of the vector input.

Another parametric model we consider here is based on a stochastic partial differential

equation (SPDE) formulation (Lindgren et al., 2011). Let ∆ be the Laplacian operator,

κ a model parameter and W(s) a white noise spatial process, and define the process

x(s) by

(κ2 −∆)α/2x(s) = W(s), s ∈ R2. (III.27)

Lindgren et al. (2011) showed how spatial discretization naturally connects the SPDE

in (III.27) to the precision matrix coefficients of the Gaussian Markov random field

representation. The model parameters κ and α are not directly interpretable like the

marginal variance or correlation decay, but Lindgren et al. (2011) showed closed-form

relations between these parameters and variance, correlation range and smoothness pa-

rameters for the Matern covariance function. Fuglstad et al. (2015a) extended the SPDE
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in (III.27) to a non-stationary formulation,

(κ2(s)−∇ ·H(s)∇)α/2x(s) = W(s). (III.28)

Here, ∇ is the differential operator and the 2× 2 matrix H(s) contains basis functions

with location-dependent covariates, giving non-stationarity. We present a particular

parameterization for the geological example in Section III.5, where the shape of a basis

function is set on the basis of information from the forecast ensemble.

With precision matrix Qt,θt
, the likelihood equals

`(θt) =
B

2
log |Qt,θt

| − 1

2

B∑
b=1

(xb,f
t − x̄f

t )
TQt,θt

(xb,f
t − x̄f

t ). (III.29)

The maximum likelihood estimate of parameter θt is computed by optimizing (III.29).

As stated in Fuglstad et al. (2015a), the parametrization should not be too rich, as

the optimization procedure can be hampered by a difficult likelihood surface. Analyt-

ical expressions for log-likelihood derivatives are available in some cases. However, for

stability reasons, the numerical experiments of this paper use the simplex method for

derivative-free optimization.

III.4 Simulation study for linear dynamic model

In this part we extend the 25× 25 grid example to an autoregressive case in the spatio-

temporal domain (Cressie and Wikle, 2011). As in Section III.2.4, the Gaussian initial

distribution has mean 0, a covariance matrix Σ0 = Σ specifying a variance of 1 and

an exponential covariance function with effective correlation range η = 10 cells. The

dynamic model is

xt(s) = φxt−1(s) + δt(s), δt ∼ N(0, (1− φ2)Σ), t = 1, . . . , 10,

for all grid cells s. With this covariance structure for the additive noise terms, xt is a

stationary spatial process over time. In the experiments we set φ = 0.9.

The data gathering scheme is defined by sampling at m = 15 irregular sites, which are

the same at all 10 time steps. This sparse sampling scheme will induce non-stationarity
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Table III.7: Performance of EnKF variants using B = 100 ensemble members.
Results at time step 10 in the autoregressive process.

Far from data - Cell (2,13) Near data - Cell (18,13)
MSPE CovPr(80) CRPS MSPE CovPr(80) CRPS

emp 1.93 65 0.62 0.23 74 0.20
emp, loc 1.94 79 0.55 0.23 78 0.19
par 1.89 80 0.54 0.27 78 0.21
semi-par 1.89 80 0.54 0.23 78 0.19

in the covariance over time. The measurement noise terms are independent with variance

0.52.

Estimation approaches are again compared in terms of MSPE, coverage probability and

CRPS. We consider two locations: Grid cell (2,13), which is far from data locations,

and grid cell (18,13) which is near data locations. Results for ensemble size B = 100

are shown in Table III.7. These are averages over 500 replicates.
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Figure III.31: Coverage probabilities for the grid cell far from data, plotted over
time indices.

We notice that the straightforward empirical or non-parametric EnKF approach (emp)

underestimates the variability in the prediction, especially for the cell far from data.

Localization (emp, loc) improves this coverage problem, but it seems to give larger

MSPE than the other approaches for sites far from data. The performance of the
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Figure III.32: Prediction (left) and prediction standard deviation (right) of the
Kalman filter, at time step 10.

localized approach might be improved by tuning the tapering matrix, but considering the

results of a particular taper still gives a basis for comparison with the other estimation

methods. Perhaps surprisingly, the results of the simple parametric approach (par) are

rather good even for this sparse design, where the true covariance is non-stationary. For

the cell near data, however, its MSPE and CRPS are larger than those of the semi-

parametric (semi-par) approach, which has the overall best performance.

Figure III.31 shows the coverage probabilities (at the 80 % nominal level) plotted against

time indices. All approaches are shown for the grid cell far from data. The probabilities

are roughly constant over time, except for the empirical approach where probabilities

decline, likely due to the coupling of the ensemble members in the estimation of the

Kalman gain (Sætrom and Omre, 2013). This effect is much smaller with localization

and with parametric specification of the covariance parameters.

For this linear and Gaussian dynamical model, the optimal solution is provided by

the Kalman filter, and we next compare the filtering results at time step 10 with this

solution. The Kalman filter results are shown in Figure III.32, empirical EnKF results

in Figure III.33, and semi-parametric EnKF results in Figure III.34.

The prediction obtained by the semi-parametric approach shows less small-scale variabil-

ity than the straightforward empirical solution, because of smaller Monte Carlo errors

in the covariance estimates. This smoothness makes the semi-parametric prediction

more similar to the Kalman filter result. Moreover, the empirical approach has smaller

standard deviations on average, leading to the low coverage probability in Table III.7.
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Figure III.33: Prediction (left) and prediction standard deviation (right) of the
standard empirical EnKF, at time step 10.
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Figure III.34: Prediction (left) and prediction standard deviation (right) of the
semi-parametric EnKF approach, at time step 10.

Figure III.35 shows the exact prediction covariance (solid) of this model at time step

10. This is plotted for the grid cells near and far from data, with the horizontal axis

giving distance measured towards the south from each starting point. The covariance

at distance 0 is much higher for the cell far from data, but it is more difficult to detect

differences in the rate of decay with distance. Along with the exact calculation, the dis-

play shows the fitted prediction covariance using semi-parametric estimation (dashed).

There are random variations caused by the empirical variance estimates, but the covari-

ance decay appears similar to the Kalman filter results, indicating that non-stationarity

in correlation is moderate for this sampling design. This reasonably good fit in terms

of covariance seems to account for the good prediction efficiency of the semi-parametric

approach.
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Figure III.35: Prediction covariances in the south direction from two grid cells near
and far from data locations, at time step 10. Exact covariance (solid) and the fitted

by the semi-parametric approach (dashed).

III.5 Example: Geological process model

We now apply the EnKF with parametric covariance estimation to a non-linear data

assimilation problem from geology. The Geological Process Model (GPM) simulates

erosion, transport and deposition of clastic sediment on length scales of tens to hundreds

of kilometres over millions of years (Tetzlaff, 2005). In this case it is used to simulate

sedimentation taking place in block F3 of the Dutch sector of the North Sea between 5

and 3.5 million years ago, during the early to mid Pliocene (Ogg et al., 2016).

III.5.1 Problem description and setup

Figure III.36 shows the rectangular model region, which measures 66 kilometres in the

East-West direction and 37 kilometers in the North-South direction, discretized into a

regular two-dimensional grid with a 0.5 km × 0.5 km resolution, for a total of n = 9900

cells.

The 1.5 million year time interval covered by the simulation is discretized into 15 time

steps of 100 000 years each, indexed by t = 0, 1, . . . , 15. The simulator takes as input the

initial elevation of the model region, i.e the surface shown in Figure III.36. Sediment

then accumulates on top of this surface over time, producing a layered structure whose
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Figure III.36: Overview of the modeled region. The rectangular boundary of the
F3 block is indicated by the dashed, white lines. To facilitate simulation of sediment
influx the domain has been extended towards the north and east. Also included in the
figure are two well locations where the thickness of the accumulating layer package is
observed, and the location of the 2D section in Figure III.37, shown as a solid, white

line.

thickness tends to increase more or less monotonically over time. Figure III.37 shows a

2D section through a simulated stack of 15 layers.

Statistical inversion of geological process models has been studied by e.g. Charvin et al.

(2009b) who used Markov chain Monte Carlo sampling and Skauvold and Eidsvik (2018)

who used EnKF and ensemble smoother approaches. The example given here is one part

of a larger data assimilation problem. A more complete analysis would also track the

sediment type composition or grain size distribution in the layer structure, and might

additionally estimate changing environmental controls on the sedimentation process,

such as sea level and sediment supply.

At time t the representation of the simulated layer package consists of t+1 layer boundary

surfaces zkt ∈ Rn, k = 0, 1, . . . , t. These correspond to the black curves in Figure III.37.

The cumulative thickness of all deposited sediment at time t is

xt = ztt − z0t, (III.30)

and this will be the variable of interest here.

Noisy observations of cumulative thickness are available at every time step at two sites

in the F3 block domain: Well 1 near the western boundary of the block and Well 2 near

the northern boundary. These locations are shown in Figure III.36. For this example,
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Figure III.37: Two-dimensional section through estimated layer package at t = 15,
showing internal structure. One new layer is produced at the top of the stack every
time step, leading to a strict chronological ordering with the oldest layers at the
bottom. The location of the section is shown in Figure III.36 as a solid, white line.

the observations have been generated by running the simulator with known input to

produce a reference realization of zkt for k = 1, 2, . . . , t and t = 1, 2, . . . , N from which

thicknesses were computed. Finally, Gaussian noise was added to the reference thickness

values.

The goal of the data assimilation exercise is now to estimate the entire thickness field

xt at each time t, given the noisy measurements y1, . . . ,yt at the well locations. We

solve this filtering problem using three different versions of the EnKF: a) EnKF using a

semi-parametric covariance model with empirical variances and likelihood estimation of

a single correlation decay parameter. b) EnKF with a parametric representation of the

precision matrix in the SPDE representation described in Section III.3.3. c) Empirical or

nonparametric standard EnKF approach. Each EnKF variant is run once with B = 50

ensemble members.

In the precision parameterization, a three-element parameter vector θ = (θ1, θ2, θ3)
T is

used to specify H(s) and κ(s) in the non-stationary SPDE (III.28),

H(s) ≡ exp(θ1)I, κ(s) = exp(θ2) [1 + θ3ψ(s)] , (III.31)

where ψ(s) is obtained at every time step t by smoothing out the ensemble variance

of xt and normalizing the smoothed variance estimate so that maxs|ψ(s)| is equal to

1. In practice this leads to basis functions with larger values near the shoreline, i.e.
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Figure III.38: Ensemble mean and standard deviation of top surface ztt at time
t = 5 and t = 15 for three EnKF variants.

the intersection between the top layer and the sea surface, as this is where the largest

variances in thickness are found. An alternative way to create such basis functions would

be to compute the location of the shoreline explicitly, and calculate the distance from

every grid cell to the closest point on the shoreline.

This is a parsimonious parametrization of the precision structure, with only 3 parame-

ters. Tests with more complex basis functions either led to difficulties in the likelihood

optimization, or yielded prediction results that were very similar to those obtained using

the simpler parametrization. This is in line with the findings of Fuglstad et al. (2015b).

III.5.2 Filtering results

Figures III.38 shows estimates of the top surface ztt at t = 5 and t = 15 for the three

EnKF variants. While the estimated fields are rather similar between the three ap-
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Figure III.39: Ensemble estimates of cumulative thickness xt at time t = 0, 1, . . . , 15
at two locations in block F3. Left: Thickness at location (15,5) which is close to Well
1. Right: Thickness at location (46,3) which in the southeast corner of the F3 block

region, moderately far away from both wells.

proaches,there are differences in standard deviation. Relative to the empirical approach,

the parametric estimates have both a higher overall variance level, and a sharper tran-

sition between the high and low variability regions.

Figure III.39 shows how the filtering ensemble evolves from t = 1 to t = 15 in each case.

This display shows that the ensemble tracks the reference realization well in each case.

The variability appears to be smaller at all times for the empirical approach.

Figure III.40 shows the location-wise rank of the reference thickness relative to EnKF

ensemble thicknesses at time t = 5 and t = 15. The brighter a cell is, the larger the
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Figure III.40: Rank of reference realization total thickness relative to ensemble
total thickness at t = 5 and t = 15 for parametric covariance, parametric precision
and standard empirical EnKF variants. The strip of missing values along the northern
and eastern boundaries is due to all ensemble members being equal on this region.

reference value is relative to the ensemble members at the location in question. Since

the modeled field is spatially correlated, aggregating ranks over the domain may be

misleading. Still, for a well-calibrated filter one expects a uniform distribution of ranks

over the integers {1, 2, . . . , B,B+1}. In the present case, however, we find that all three

filter variants are overdispersive, with almost no ranks below 15 or over 35, which are

the limits of the color ranges in Figure III.40. The rank plots of the two parametric

filters have similar patterns, with the highest ranks concentrated near the shoreline, in

the region where the estimated standard deviation is largest. This indicates that both

parametric EnKF variants overestimate the variance in the high-variability region. In the

rank plots of the empirical filter we see a different pattern, featuring large, contiguous,

bright and dark regions of over- and underestimation. Furthermore, the rank plot at

t = 15 appear to retain some features of the earlier pattern. The rank patterns of the

parametric filters at t = 15 do not show clear traces of the earlier pattern.

III.6 Closing remarks

In this paper we have suggested some approaches for integrating more spatial statistical

modeling in ensemble-based filtering methods. By parametrizing the covariance going

into the updating step of the ensemble Kalman filter, we got results with improved

prediction properties. In particular, the underestimation of variance that is often seen

in ensemble Kalman filter predictions was reduced.
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The parametric models used include simple stationary covariance models, and semi-

parametric models for the covariance or precision matrix structure. In judging the

results, we noted that parsimonious covariance structures did surprisingly well.

Applying the EnKF with parametric covariance estimation to a synthetic data assim-

ilation test case, we found little difference between the results of using an exponential

covariance function specification and a GMRF precision matrix specification of the cor-

relation structure of the target random field. However, comparing these parametric

filters with a standard stochastic EnKF whose gain matrix is based on empirical sample

covariance estimators, we found clearer differences. In our non-linear test case, going

from empirical to parametric covariance estimation gave no obvious improvement in

estimates of the overall level of variance, but did appear to produce a less systematic

pattern of bias in the estimated random field.

While introducing parametric estimation into a larger workflow can improve the quality

of estimates, we find that very simple parametrizations tend to be preferable to even

slightly more complex ones, as the flexibility gained by adding an extra parameter sel-

dom makes up for the added difficulty in estimation. Using non-stationary variance

entries and single parameter correlation sometimes improved results, while having com-

plex precision structures led to difficult likelihood surfaces, without always improving

predictive power. This means that finding a useful parametric model to embed in the

ensemble Kalman filter update can be relatively easy, as one can bet on simplicity by

choosing an uncomplicated model. Even if increased flexibility gives a better description

of the random field being modeled, it does not follow that the estimates obtained under

the more flexible model will be better than ones obtained under the simpler model in

terms of predictive ability.

None of the parametric approaches studied here allow for anisotropy. This extension

would give a few extra model parameters to estimate, and could be interesting for some

applications. We conducted maximum likelihood estimation separately at every time

step. The procedure could be extended to have coupling of parameters at different time

steps. One could also apply Bayesian hierarchical models in this context.
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