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Chapter 1
Introduction

The main goal of this thesis has been to study and develop faster and more accurate
methods for pricing and hedging exotic options. This has involved work on the models
describing prices and hedges as well as the stochastics driving them. We have also
put effort into algorithmic interpretation and implementation of the models to enable
efficiency measurement with regards to computing time. In some of the articles we
have aspired to find criteria to decide whether the pricing methods we have developed
can be expected to perform well, enabling practicians to find a good numerical method
for their given pricing/hedging problem easier. However, the most optimistic reader
must be warned: We have not found one single method that works best for all types
of option pricing problems, and we do not think that such a method exists. Pricing
and hedging of exotic options involve thorough knowledge of the problem at hand,
and the mastering of a tool box of numerical methods from which a suitable one can
be picket. We believe, however, that the thesis contributes some to the enlargement
of the tool box.

The fundamentals for developing derivatives and their pricing methods is the theory
of mathematical finance. This theory gives a consistent model for the market, with
well defined assumptions and broadly studied shortcomings. The shortcomings of the
current theory and the methods based on it, are the background for striving for new
and more realistic treatment of the instruments and events in the market. This is done
both by searching for extensions of the theory itself to improve its ability to embrace
the abundance of the market and its random behavior, and by developing improved
models accepting the assumptions of the current theory. The research presented in
this thesis is mainly in the last category.

In very short terms I will sum up the research area of the thesis and give the mo-
tivation for the chosen themes and the main results. In this introduction chapter I
will also try to highlight the red thread of the work. The foundation on which all our
work rests is as follows: The theoretical market is denoted M. The consistency of
the market is achieved through formulation of a set of rather abstract properties and
limitations, which I will not go through in detail. It can be found in, e.g., [KS98].
It is, however, important to notice that the model of the price processes of the basic
assets in the market is very confined by M. That is; in order to fulfill basic intuitive
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principles in the market, such as no arbitrage, we have limited freedom in choosing
the models and the stochastics of the prices of the assets in the market. Our research
uses the standard market as a basis, and the formulation of the derivative contracts
we work with is consistent with this. A derivative instrument is a construction on
M to achieve a special exposure towards the basic assets contained in M. In the
standard market all derivatives are actually redundant, in that their exposure can
be constructed by trading in the basic assets (which includes the risk free asset). It
can, however, be cumbersome to achieve this in practice, and therefore a marketplace
for such redundant exposures have emerged. In addition, this market is continu-
ously developing towards more specialized needs, challenging both practicians and
researchers.

The modeling of the price processes of the basic assets in M is central for the devel-
opment of effective methods for pricing the derivative instruments. In the first five
articles® of the thesis the price processes of the N + 1 basic assets are modeled by the
geometric Brownian motion leading to the expressions

So (t) = e”

N N
1
S, (t) = Sn(0) exp ((r — 3 ;Ur%d)t + ;UndWéd)(t)), n=1,...,N,

T 2

where 7 is the risk free rate, and the volatility matrix o € RV %" is such that oo’ =&
is the covariance matrix of the returns of the assets. The stochastics of the prices are
modeled by the Brownian motion Wy (t). This process is an essential part of M. Let
6 € RN be given by the relation b — rl = ¢, where b € RY is the vector of drift
coefficients for the assets of the market. 6 is called the market price of risk. By using
the Girsanov theorem (see [Oks98]) it can be shown that

Wo(t) = W (t) + /0 tGds, vt € [0, 7]

is an N-dimensional Brownian motion under the risk free measure P, relative to the
filtration {F(¢)} of W(¢t). The process W (¢) is the Brownian motion observed for the
assets in the market under the market induced probability measure P. For a more
comprehensive survey of these aspects, see [KS98, Ch. 1]. Actually there are several
properties of the Brownian motion Wy (t) that can be utilized to construct fast pricing
algorithms for the derivatives. We particularly take advantage of this in the articles
where we price so called Asian options.

Next, to recapitulate for the reader the notion of a derivative instrument, let us look
at the pricing of a European call option contract on one asset in the market. The
holder of a call option contract is entitled to receive the underlying asset by paying the

n the last article of the thesis, we model the prices of the underlying processes by a Schwartz
mean reverting model. This does, however, not conflict with the construction of a well behaving
market M. Actually, analogous modeling aspects need to be performed in this setting to achieve
speed up, as in the GBM setting. Please refer to the article in chap. 7 for details.
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strike price? ¢ at the maturity time 7. He has earned money if the asset price S(T')
at T is above the strike price. If, however, the price is below the strike, a rational
actor will do nothing. The question we face at time ¢ = 0, is how much this option
contract should cost. In M, a unique solution to this problem exists. It is given by

V(0) = e "DE[f(S(T))], (L.1)

where f in this simple case is given by f(X) = (X — ¢)T. Most methods looked at
throughout the thesis will be valid for more general f, and in most of the articles
we consider a more general argument X to f than in (1.1). Actually, this simple
expression can be used and modified to elaborate on the finance semantics of the field;
We have call options and put options. If we use f(X) = (¢— X)T we get a put option.
That is the right to sell the underlying instead of buying it. If X = 2111\;1 Sn(T), we

have a basket option. If X = Zszl (S(tr)) we get an arithmetic average Asian option
contract, and the obvious combination gives an Asian basket option. Throughout the
thesis we will mainly look at these types of contracts in the numerical examples, even
if the methods we develop can be applied in more general settings. We do of course
give a more rigorous definition of the contracts as we use them in the articles. The
first article of the thesis elaborates on the question: How wrong is it to collapse the
basket and treat it as one asset, with a corresponding deduced volatility. This would
lead to a simpler pricing procedure® compared to the apparatus needed to price the
full basket option. The findings are interesting both from a practical and theoretical
point of view.

An interesting and sophisticated symbiosis exists between the option pricing prob-
lems and the complex field of random number generation. In order to be able to
price many of the option contracts we have to use so called Monte Carlo (MC) and
quasi-Monte Carlo (QMC) methods. In the thesis we look exclusively on these types
of methods, and especially try to identify and optimize the speedup that can be
achieved by employing the latter. The use and success of these methods are based
on basic properties of probability theory. The conventional mean-value estimator of
the expected value can, by the strong law of large numbers, be shown to converge to
the true expected value with probability one as the number of samples (n) goes to
infinity. This implies that the error of the Monte Carlo estimator, which is the process
defined by the difference between the expected value and the mean value, is normal
distributed with mean 0 and variance UJ% /n, where afc is the second moment of f. The
convergence speed of the MC method in its native form is therefore oy //n. In order
to put these methods to play in an optimal way in the option pricing problem, we
have to look into the price process as modeled in (1.1). By definition, the expected
value can be written as an integral. This is convenient, since we then can think of
the problem as an integration problem. The integration error stated above is large

2The strike price is labeled K in the article “On Derivatives of Claims in Commodity and Energy
Markets Using a Malliavin Approach” in chap. 7

3 Although the deduction of this one asset option pricing formula is by far not trivial, and in fact
highly celebrated. It leads to the famous Black and Scholes option pricing formula, for which its
originators received the Nobel prize in economics in 1994
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compared to deterministic methods if the goal is to evaluate integrals in one or two
dimensions. However, the convergence rate of the MC method remains the same as
the dimension of the problem is increased, while the convergence rate of any deter-
ministic integration method will degenerate with dimension, leaving the MC approach
superior as the dimension passes four or five. Since the challenge in option pricing
often occurs as a consequence of increased problem dimension, the MC and QMC
methods have gained broad popularity. Furthermore, the methods are easy to apply,
and benefit from the increasing power of computers. In the cases above where X is
defined as a sum, each element adds noise. But X} is seldom independent of X; V&, j.
Here the symbiosis between option pricing and random number generation come to
play, because in order to optimize the use of the quasi random number generators of
the QMC methods, we need to identify the orthogonal vector space of noise in the
problem. Actually the definition of M, and the properties of the Brownian motion
guarantee that such a space exists with full rank. In the articles we go through the
necessary modeling aspects concerning the prices, and give some background on the
QMC methods and the low-discrepancy sequences they are based upon. Especially
the second article; “Valuation of Asian Basket Options with QMC Techniques and
Singular Value Decomposition”, has a section devoted to this. The third article of the
thesis looks into questions concerning qualities of the orthogonal vector space of noise
in the Asian basket option problem. We wanted to find and compare the lengths of
the vectors, and investigate the bias introduced to the price by eliminating the set of
shortest vectors. For many types of problems it turned out that the complexity could
be reduced substantially without altering the accuracy of the prices. The increased
awareness of these mechanisms leads to the search for methods to take advantage
of it in other ways. In the fourth and fifth article we study and develop adaptive
integration methods to encompass these characteristics of the multidimensional op-
tion pricing problems. The work of these articles depend on the formulation of the
problem as an integral, and the methods developed can be used with success also for
integration problems with no relation to finance. A considerable part of these articles
deal with aspects concerning implementation of the methods. In order to achieve
reliable results and to pinpoint pro and cons of the different techniques, we had to
formulate comparable efficiency measures for the different methods. We performed
simulations summing up to about 6000 CPU-hours on a cluster of personal computers
with average CPU-speed of 1 GHz.

The last article of the thesis looks into the problem of hedging various option contracts
in the commodity and energy markets. Hedging of option contracts amounts to neu-
tralizing the risk inherent in the contract by trading in the underlying instruments or
other basic instruments which have suitable characteristics. In the standard market
M this is possible to achieve. It can, however, involve continuous trading, which is
not possible in practice. The risk of holding a derivative can be expressed by the sen-
sitivities of the price of the derivative contract with respect to the input parameters
(initial price of the underlying assets, volatility of underlying, etc.). By comparing
these sensitivities to the corresponding sensitivities of other alternative investments
(including the underlying instruments of the derivative contract) one can construct a
trading strategy that removes or reduces the risks of the derivative contract. This is
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important for an issuer of such contracts since he often do not want to be exposed to
the risks involved in the contract.

It is harder to formulate hedging problems as expected values and integrals than it
is for pricing problems, and a substantial part of the last article is devoted to this.
We have put particular focus on using the Malliavin approach developed in [FLL*99]
and [FLL*T01] to find tangible expressions for the sensitivities of various contracts in
the commodity and energy market. Once such formulations are reached, the methods
developed in the previous articles can be used to produce numerical solutions. In
the last part of the article we compare different numerical methods used on different
problem formulations. We show that the adaptive method developed and presented
in the articles of chap. 5 and 6 have very good performance for these problems.






Chapter 2

Valuation of European Call Options on
Multiple Underlying Assets by Using a

Quasi-Monte Carlo Method. A Case with
Baskets from Oslo Stock Exchange'

Author(s): Lars O. Dahl

KEYWORDS: BASKET OPTIONS, QUASI-MONTE CARLO METHODS, LOW-DISCREPANCY
SEQUENCES, MULTI DIMENSIONAL INTEGRATION

Abstract: The Black & Scholes formula will give a wrong price if used directly on basket
options, and most often the Black & Scholes price underestimates the real price. Depend-
ing on the parameters of the underlying assets the error could be substantial. This paper
briefly outlines the theoretical background for the above statement, and discusses the use of
simulation methods to solve the problem. The focus will be on a quasi-Monte Carlo method
which employ a low discrepancy Sobol sequence of numbers in [0, 1]° - s being the number of
assets in the basket. Some baskets consisting of the largest stocks on Oslo Stock Exchange
are constructed, and the prices of these baskets calculated by the quasi-Monte Carlo method
are compared to the corresponding Black & Scholes prices.

2.1 Introduction

When deducing the Black & Scholes formula one uses that the price process of the
underlying asset follows a Geometric Brownian motion (GBM). If one assumes that
each asset in a basket has a GBM price process, the basket itself can not have a GBM
price process because the sum of GBM is not GBM. This is equivalent to the fact
that the sum of log-normal distributed random variables is not a log-normal random

!Published in the AFIR 2000 proceedings. Full reference: [Dah00]
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variable. This means that we can not, in theory, use the Black & Scholes formula to
calculate the price of derivatives with several underlying assets.

It is known [KS98, Ch. 2.2] that the price of a European contingent claim can
be expressed as an expected value of an expression in which the price processes of
the assets are present. This expected value can be simulated by the use of Monte
Carlo methods. The conventional Monte Carlo method, however, is rather slow, and
we therefore apply quasi Monte Carlo methods (QMC) to the basket option pricing
problem. This leads to the need for a rewriting of the original integral, which is over
the domain RV, to an integral over the domain [0, 1]V.

Section 2.2 describes the market briefly and section 2.3 introduces the expressions for
the value of the claim. In section 2.4 we give a short motivation for the use of QMC,
and performs the rewriting of the integral which describes the value of the claim. In
section 2.5 we present some simulation results on the convergence speed of the QMC
compared to the standard Monte Carlo method. Section 2.6 gives the results on the
pricing of some baskets of assets from Oslo Stock Exchange.

2.2 The Market

We operate in the context of a complete, standard financial market M, with constant
risk-free rate r and volatility matrix o. The price processes of the assets in this
market are governed by a set of stochastic differential equations (SDEs). There are
N + 1 assets in the market, one risk free asset and N risky assets. The model for
the risky assets is the so called GBM. For a comprehensive survey of the assumptions
and properties of the market see [KS98]. The solution to the SDEs is achieved by the
development of a risk free measure P and straightforward use of the It6 Formula.
This leads to the following expressions for the price processes:

So(t) = €™, (because Sp(0) = 1) (2.1)
N N

Si() = S0 (0) exp[(r — % S 2)t+ S W W), n=1,...N. (22
d=1 d=1

The volatility matrix ¢ is an N x N matrix such that oco” = ¢2 is the covariance
matrix of the returns of the assets. The stochastic process Wy (t) is an N dimensional
Brownian motion under the risk free measure Py. In the following analysis it is
convenient to write the price process for the stocks like

Sn(u) = hn(u—t,5@),0(Wo(u) = Wo(t))), 0<t<u<T, (2.3)
where h : [0,00) x RY x RV — RY is the function defined by

N
A 1
hn(t,p,y):pnexp[(r—§ E a2 )t+yn, n=1,...,N. (2.4)
d=1
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The process Wy(t) is an essential part of the market M. When we use constant
coefficients as in our case, there is a constant § € RV called the market price of risk.
6 is given by the relation b — r1 = 0, where b € RY is the vector of drift coefficients
for the assets of M. By using the Girsanov theorem it can be shown that

Wo(t) = W (t) + /0 teds, vt € [0,T] (2.5)

is an N-dimensional Brownian motion under the risk free measure Py relative to the
filtration {F(¢)} of W(t). The process W(t) is the Brownian motion observed for
the assets in the market under the measure P induced by the market. For a more
general survey see [KS98, Ch. 1]. The Brownian motion W, has the property that
AWy (t) ~ Nn(0,v/At), and this is exploited when we deduce explicit formulas and
algorithms suited for the simulations in the next sections.

2.3 The Value of the Claim

A European contingent claim (ECC) is defined as a cumulative income process. With-
out going into the details and proofs which can be found in [KS98, Ch. 2.4], we state
that the value at time ¢ of European call options (ECQO), which is the class of claims
we are looking at, can be expressed as

VECO(t) = e (T=D Bo[p(S(T))|F(t)] - (2.6)

The function ¢(S(T')) is depending on the construction of the individual ECO. We are
developing a pricing formula for an ECO on a portfolio or basket of assets where the
different assets can be correlated. This contract is to be understood as the right (not
obligation) to get the basket consisting of an amount H,(0) of each of the underlying
assets at the expiration time T, by paying the strike price gp. Thus the function ¢(-)
in this particular case is given by

N
P(S(T)) = (O Ha(0)Sn(T) —gp)*, n=1,...,N, (2.7)

and this leads to the price process of the particular ECO we are considering

N

VEOO(t) = e T EG[(D Ha(0)Sn(T) — qp) | F(1)] (2.8)
N

= e "TIE (> Ha(0)ha(T —t,5(2), (2.9)

a(Wo(T) = Wo(t))) — ap)T|F(1)] - (2.10)
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For simplicity we prefer to consider the value at ¢ = 0, which is the value at the time
you are buying the ECO. The expression then becomes

N
VECO(0) = e Eo[(Y_ Ha(0)ha(T, S(0),0(Wo(T))) — qr)*] - (2.11)
n=1

From elementary probability theory we have that this expected value can be expressed
as an integral over RV, see for instance [@ks98, Ch. 2.1].

(=llzlP/T))
(2rT)N/2 '

N
VRO = e [ (50 HuOha(T.5(0),02) - ap) T

(2.12)

2.4 Quasi-Monte Carlo Methods

The motivation for the development of quasi-Monte Carlo methods is that the conven-
tional Monte Carlo method only converges at an order of O(1/v/K), where K is the
number of simulations. The idea with quasi-Monte Carlo methods is to increase this
rate. The literature on quasi-Monte Carlo methods yields an integration error that
is proportional to the discrepancy of the used point sequence. The discrepancy is a
measure of nonuniformity of this point sequence. An upper bound for the discrepancy
is O((log K)*/K), where s is the dimension of the problem. See e.g. [MC98], [MC94]
or [Nie92] on this subject. The error bound for the quasi-Monte Carlo methods is
thus better than that of the conventional Monte Carlo method as K — oo, but it is
evident that K needs to be extremely large for reasonable sized s in order for the ben-
efit to appear. In practice however one experiences better performance than the given
theoretical bounds when employing quasi-Monte Carlo methods, see e.g. [KW97].

The uniform distributed sequences are the basis of the quasi-Monte Carlo methods,
and are objects of extensive research [Nie92], [Owe99], [Owe98]. A low discrepancy
sequence which is rather simple to implement yet with good performance is the Sobol
sequence. It was first presented in [Sob67], and an improved implementation of it was
presented in [AS79]. Computational tests were carried out in [KW97] and indicates
that the Sobol method works well, also for higher dimensional problems. In [Pas97] it
is reported that they had success with the Sobol method also for very high dimensions,
but other literature like [CMO97] report that the so called effective dimension d; for
the problem is actually lower than the real dimension s.

One problem with the Sobol sequence approach is that it is difficult to find the
sequence for dimensions s > 45, but for the purpose of this paper in which s < 13 the
Sobol method is well suited. For an extension of the dimension to include a larger
portfolio, other techniques may be employed. See [Owe98] on this subject.

If we were to employ a standard Monte Carlo method for the evaluation of the ex-
pressions (2.11) or (2.12) we could simply use the fact that Wo(T) ~ N (0,/T) in
(2.11) and use some known algorithm like the Polar Marsaglia or the Marsaglia Bray
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to simulate values from the standard normal distribution, see [Rip87, Ch. 3] for an
overview of such methods. These methods are known as rejection methods, which
means that some combinations of the uniform distributed variables used in the al-
gorithms are rejected. When using quasi-Monte Carlo methods however, we need to
ensure that we do not reject any of the uniform distributed numbers. This is because
we have to maintain the low discrepancy characteristics of the uniform distributed
sequence. To cope with this we have to rewrite the integral in (2.12) to be over the
unit cube [0,1]" instead of RY. The integral is rewritten

L exp (—12112/2)
VECC(Q) = =17 /R Nw(h(T,S(O),azx/T))(m—dez (2.13)

— / o(h(T, S(0), %~ (y)VT)) dy , (2.14)
[0.1]~

where ¥~ : [0,1]V — RY is a vector of inverse cumulative normal distribution
functions with mean 0 and variance 1: ¥~ (y) = (7' (y1),..., ¥ (yn)). In fact we
use that W' (y,) = erf ! (2y, — 1), where

erf(z) = % /Ow e dt , (2.15)

in order to calculate the elements of ¥~1(-). We do the evaluation of the expression
in (2.15) by a suitable rational approximation (the same as the one used in MATLAB
from The MathWorks Inc.). Given this conversion we approximate the integral by
using samples from the Sobol sequence as input to ¥~!(-), and calculate the mean
value of the integrand in the domain of integration which is [0,1]¥. The value of the
ECO-price in (2.12) is thus approximated by

e—rT K N

VECO(0) » — ;(;Hn(O)hn(T,S(O),U\I!_l(ﬂj)\/f)—qp)+, (2.16)

where 6; € [0,1]" is the jth vector in the low discrepancy sequence used. As K is
increased in (2.16) we get better approximations. In the next section we do some
simulations to investigate how K should be chosen in order to get trustworthy ap-
proximations.

2.5 Convergence of the Simulations

In order to test the convergence speed of the quasi-Monte Carlo method compared
to the standard Monte Carlo method we simulate the price of an ECO for different
number of simulations for both the methods and compare the prices. The plot of
the results in figure 2.1 indicates that the convergence rate is much faster for the
quasi-Monte Carlo method than for the conventional method. We see that the faster
convergence is obtained both for baskets with two and twelve assets. Whether this
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large difference in convergence rate is maintained as N is increased is not investigated,
but other literature report that the quasi-Monte Carlo methods looses some of the
advance as N grows larger. Note that we have used logarithmic scaling on the x-
axis of the plots to specify number of simulations. The solid horizontal lines are
the corresponding Black & Scholes prices for each of the baskets, and is included
to illustrate the size of the simulation error compared to the difference between the
simulated prices and the Black & Scholes price. We emphasize that the Monte Carlo
and quasi-Monte Carlo methods converge to the correct price of the option given the
assumptions on the market M.

2.6 Results

The price of the ECO depends on the risk free rate r, the volatility matrix ¢ and
the strike price gp of the basket. For special structures of o the price calculated
with the conventional Black & Scholes and the QMC method will differ significantly.
See [Dah99]. We wanted to investigate the corresponding price difference for the
correlation structure between the largest companies on OSE. We construct a portfolio
consisting of assets from two to twelve of the largest companies on OSE. The sum of
the market cap of the twelve companies constitute about half of the total market cap
on OSE. We have constructed each of the baskets in such a way that their market
value at t = 0 is 100. We set time to maturity to one year (I' = 1) and vary the
strike price from 50 to 150. The figure 2.2 gives the graphs of the findings by plotting
the difference in percent between the Black & Scholes price and the QMC price as
a function of the strike - stock price ratio for different baskets. We see that the
differences grows as the call option goes from in the money to out of the money, but
that the difference is not directly affected by the number of companies in the basket.
The difference is more affected by the correlation structure between the assets. This
can be read from the second plot in figure 2.2 in which the basket constructed with
four securities give an error of up to 11 percent.

2.7 Conclusion

The use of Quasi Monte Carlo methods gives faster convergence than the use of con-
ventional Monte Carlo methods for the problem we are studying. Furthermore the
Black & Scholes formula will give a too low price for the ECO, and more sophisticated
methods must be used. We have suggested a method involving the use of low discrep-
ancy sequences of Sobol type resulting in a quasi-Monte Carlo numerical integration.
For the actual baskets we are considering, the difference in price calculated with the
Black & Scholes method and the quasi-Monte Carlo method is up to 11 percent when
the European call option is out of the money.
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Figure 2.1: Convergence rate for conventional Monte Carlo and quasi-Monte Carlo
simulation methods for an ECO on a basket of assets. We have set the initial price

S(0) of the basket to 100, and the strike price gp to 125.
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Figure 2.2: Difference in percent between prices calculated with the Black & Scholes
method and the quasi-Monte Carlo Method. We have used 5E5 simulations for each
point in the graph. The market value of the baskets at ¢ = 0 is 100. We set time to
maturity to one year (I' = 1) and vary the strike price ¢p from 50 to 150.
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Abstract: We propose pricing methods for European-style Asian arithmetic average basket
options in a Black-Scholes framework based on a QMC method. The nature of QMC methods
enables us to enhance the accuracy by decomposing the correlation structure of the noise
in the problem using singular value decomposition. This leads to optimal utilization of the
low discrepancy sequence, and gives several orders of magnitude enhanced performance over
conventional QMC and standard MC methods.

3.1 Introduction

There are no closed form pricing formulas for the European-style Asian arithmetic
average options (hereafter Asian options), neither the single asset option nor the
basket option. Both problems must be solved by numerical solution methods, and
are computer intensive tasks. The option price is given by an expected value, and the
pricing is therefore an integration problem. In this paper we formulate the pricing
problems explicitly as multi-dimensional integrals, which enables us to use quasi-
Monte Carlo (QMC) methods to approximate their values. The main goal is the

1Submitted for publication February 2001 to Journal of Computational Finance. Full reference:
[DBO1]
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3The second author is grateful to MaPhySto and the Norwegian Computing Centre for financial
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pricing of the Asian basket option, but the single asset option is also discussed as an
introduction to the basket case and for comparative studies between different path
discretization schemes.

It is well known that Asian options and other path dependent options hold certain
properties that can be exploited to increase the convergence rate when calculating
their values with QMC methods. This is done by combining the QMC method with
variance reduction techniques. Singular value decomposition (SVD) of the noise term
in the problem is suggested. We propose to use a combination of SV-decomposition
of the covariance matrix of the Brownian paths, and a representation of the volatility
matrix for the assets in the basket by using SV-decomposition of the covariance matrix
of asset returns. We demonstrate that this approach leads to considerably better
convergence properties than in the case where conventional discretization is used
on the Brownian paths, and Cholesky-decomposition is used to create the volatility
matrix from the covariance matrix of the returns. We have also included the Brownian
Bridge method for the discretization of the Brownian paths in order to compare with
the SVD approach for the single asset case, and we show that the proposed SVD
method work better than the Brownian Bridge method as well.

For Asian basket options the number of dimensions in the problem may grow signif-
icantly as it is the product of the number of assets in the basket and the number of
time discretization points. We show how to avoid performing an SV-decomposition
of the full problem by using the direct matrix product to combine the decompositions
of each of the covariance structures (the path and the basket) into a matrix that
describes the full system. This reengineering of the problem enables us to exploit the
QMC method better. This is because low discrepancy sequences, which is the basic
part of the QMC approach, often have the property that some elements of the sample
vector have better discrepancy characteristics than other, and by reengineering the
problem we adapt it to this property.

Section 3.2 describes the financial market in which we will do our analysis, and sec-
tion 3.3 gives some background information on multi-dimensional Brownian motion
which is useful in our context. In section 3.4 we give a short motivation for the use
of QMC methods and give arguments for why the methods we use in our approach
do work. Section 3.5 introduces the general expression for the value of the claim. In
section 3.6 we point out the properties of the asset price process we have to use in or-
der to formulate the Asian basket option problem as an integral. The section focuses
on the conventional QMC approach to outline the general concept and to show how
we construct the algorithms we compare the SVD methods with. We describe the
Brownian Bridge technique in section 3.7, and the SVD in section 3.8. In section 3.9
we present numerical results comparing the different methods, and finally we conclude
in section 3.10.
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3.2 The Market

We operate in the context of a complete, standard financial market M, with constant
risk-free rate r and volatility matrix o. The price processes of the assets in this market
are governed by a set of stochastic differential equations (SDEs). There are N + 1
assets in the market, one risk free asset and N risky assets. The model for the risky
assets is the so called geometric Brownian motion. For a comprehensive survey of the
assumptions and properties of the market see [KS98]. The solution to the SDEs is
achieved by the development of a risk free measure Py and straightforward use of the
It6 Formula. This leads to the following expressions for the price processes:

So(t) = e (3.1)
1 N
Sp(t) = Sn(0)exp ((r — 3 Z a2 )t + Z UndWéd) t), n=1,...,N. (3.2)
d=1 d=1
The volatility matrix ¢ € RV*¥ is such that co” = ¢? is the covariance matrix of

the returns of the assets. Note that the relation defining o is not unique, and this is
a key feature for the enhancement of the numerical methods. The stochastic process
Wo(t) is an N dimensional Brownian motion under the risk free measure Py. In the
following analysis it is convenient to write the price process for the risky assets like

Sn(u) = hn(u - t,S(t),O’(WO(U) - WO(t)))a 0 <t<u< T ’ (33)
where h : [0,00) x RY x RV — RY is the function defined by

N

1
hn(t, p,w) = ppexp ((r — 3 Zaid)t +w,), n=1,...,N. (3.4)
d=1

The process Wy(t) is an essential part of the market M. # € RN is given by the
relation b — rl = o#, where b € RV is the vector of drift coefficients for the assets
of M. @ is called the market price of risk. By using the Girsanov theorem it can be
shown that

t
Wo(t) = W(t) +/ fds, Vte[0,T] (3.5)

0
is an N-dimensional Brownian motion under the risk free measure Py relative to the
filtration {F(¢)} of W(¢t). The process W (¢) is the Brownian motion observed for the

assets in the market under the market induced probability measure P. For a more
comprehensive survey of these aspects, see [KS98, Ch. 1].

3.3 Useful Properties of the Brownian Motion

In this section we present some well-known properties of Gaussian processes which
are useful for our approach. The Brownian motion Wy (t) € RV is a Gaussian process,



20 3 Asian Basket Options and QMC

which means that the random variable Z = (Wy(to),..., Wo(tx) € RNE+D has a
normal distribution. The covariance matrix of Z is given by

tol tol ... tol
tol HI ... tI

Ccz=1. . . S (3.6)
tol I ... tgl

where I is the N x N identity matrix, see e.g. [Oks98]. Let C? be the covari-
ance matrix of Z for the case where N = 1. If we construct the process X =
(6Wo(to),...,oWo(tr)) € RVNEHD where Wo(t,) € RY and o2 € RVXN is positive
semidefinite, the covariance matrix C% € RN(KFUXN(K+1) of the process X is given
by

toO‘ t00'2 t00'2
toO‘2 t10'2 t10'2

Cx =1 . S : (3.7)
too? ti02 tgo?

In the notation of the direct product of matrices we can write C% = C? ® o*. To
see that C% is given by (3.7), consider the process Zo = oWy(to) € RY: We know
that Zo ~ N, ~n(0,too0™). By using this for each of the N processes Zx contained in
Z € RN(K+D) we get to the expression (3.7). It can be shown that the eigenvalues of
C% are found directly from the eigenvalues of the matrix ¢ and the eigenvalues of
C? by the relation Aps = Acz @ Ay2 € RY TN “gee [Lam1] and [Lan69]
for a full treatment of the direct matrix product. The eigenvalue property enables us
to find an ordering of the total set of eigenvalues. In section 3.4 we will look into the
QMC method, and reveal the advantage of knowing the eigenvalues and their ordering
in finance problems.

3.4 Quasi-Monte Carlo Methods

In this section we give a brief survey of the QMC-technique. The goal is to evaluate
an integral of the form

R Py
/{w Fy)dy ~ =7 ;f(y). (3.8)

The sequence {y'} of vectors y* = (y!,...,4%) € [0,1]*, I = 0,...,L used for the
approximation can be generated by a systematic combinatorial approach, giving a
conventional grid-based numerical integration algorithm. The problem with this ap-
proach is that the complexity grows exponentially with the dimension s, leading to
practically useless algorithms for s > 5. If, on the other hand, the sequence is created
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by letting each vector y' be independent uniform random variables in [0, 1]*, we get
the conventional MC approach. This enables us to increase the number of evalua-
tion points in a smooth manner, filling the domain of integration gradually. QMC
methods keep this nice feature of the MC approach, but uses number sequences which
are not random. These number sequences are constructed with the intention of fill-
ing the domain of integration as evenly as possible, resulting in methods where the
approximation of the integral can be obtained with even fewer integrand evaluations
than in the conventional MC Methods. Conventional MC method only converges at
an order of O(1/+v/L), but QMC methods are able to increase this rate. The employ-
ment of QMC methods are closely linked to the formulation of the problem as a multi
dimensional integral, and strict control of the use of the number sequence {y'} in
the construction of the distributions used. QMC methods are based on the approach
of removing randomness from the generation of sampling sequences. The idea is to
look for fixed sequences that perform better than random sequences in a well defined
sense. The measurement of this behavior is not trivial in general, and these uniform
distributed sequences are objects of extensive research, see e.g. [NX98], [Owe99],
[Owe98]. The discrepancy of the sequence is used to measure how well distributed
the samples are, see e.g. [JBT96], [PT97], [Pas97] for more details. Discrepancy is
defined as follows

Figure 3.1: An illustration of the ability to fill the domain [0,1]? uniformly by the
use of the conventional pseudo-random numbers (left), and the Halton leaped low
discrepancy sequence (right).

Definition 3.4.1. Let B be a family of shapes which are subsets of [0,1]°. Given a
sequence {y'} of sample points. The discrepancy of {y'} with respect to B is

#{y'e B}

7 A\B)| , (3.9)

Dr(B,{y'}) = sup
BeB

where \(B) is the volume of B and y', l = 1,..., L are elements of the sequence {y'}.

The definition says that we are finding the maximum difference between the fraction
of points inside one of the shapes and the volume of the shape. When the set of shapes
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B is the set of boxes with a corner at the origin, this is called the star discrepancy
Di({y'}).

The Koksma-Hlawka theorem gives an upper bound for the error in QMC methods,
see e.g. [KNT74], [Nie78], [Nie87]. It is given as the product of the variance of the
function that is integrated and the discrepancy.

Theorem 3.4.1 (Koksma-Hlawka theorem). Let I be the estimator of the integral
I over the domain Q). Then an upper bound for the error is

-1 <v(HDiy'D, (3.10)

where V (f) is the total variation of the function f over Q in the sense of Hardy and
Krause.

See [MC94], [MC95] or [Nie92] for extensive surveys on this subject, and [Woz91] and
[MC94] for the alternative approach involving the so called Wozniakowski’s identity.
The theorem says that QMC methods yields an integration error that is proportional
to the discrepancy of the point sequence used. In s dimensions, it is possible to find
sequences {y'} such that

D;({y'y) = o1y (3.11)

The given error bound is thus better than that of the conventional MC method as
the number of simulations L grows to infinity, but it is evident that L needs to be
very large for reasonable sized s (the dimension of the problem) in order for the
benefit to appear. In practice, however, the theoretical bounds for QMC methods are
conservative, (see [KW97] for a general survey or [Dah00] for an example involving
European basket options). The measure of discrepancy is mainly used as a criteria
for constructing good low discrepancy sequences rather than finding error bounds of
integration rules.

In conventional MC methods it is common to use some known algorithm like the
Polar-Marsaglia or the Marsaglia-Bray to simulate values from the standard normal
distribution, (see [Rip87, Ch. 3] for an overview of such methods). These methods
are known as rejection methods, which means that some combinations of the uniform
distributed variables used in the algorithms are rejected. When using QMC methods
however, we need to ensure that we do not reject any of the uniform distributed
numbers. This is because we have to maintain the low discrepancy characteristics of
the uniform distributed sequence. Standard rejection methods can therefore not be
used directly in QMC methods. Smoothed rejection methods developed in [CM95]
and [Caf98] can however be used with QMC methods, but are harder to implement.

A low discrepancy sequence which is rather simple to implement is the Halton se-
quence. It was first presented in [Hal60]. In this paper we are going to use an
extension of the Halton sequence denoted the Halton leaped sequence. It was pre-
sented in [KW97], together with good leap values. We have used the leap value 31
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for the numerical experiments in this paper. We are not going to dwell on the choice
of sequence here, but mention that other types exist; We have the Sobol sequence
first introduced in [Sob67], with an improved implementation presented in [AS79].
We also have the Faure sequence [Fau82] and the Van der Corput sequence [Pag92).
These named sequences have been shown to belong to a generalized family of (¢, s)-
sequences for which [Nie92] is a comprehensive reference. An other family of sequences
are produced by so called lattice methods for which [SJ94] is the definitive reference.
The research in this field is rich and extensive, both in comparative studies between
sequences (and their extensions) for a variety of dimension and integrands (e.g. in
[KW97], [MC94] and [LLOOb]), in connection with variance reduction techniques (e.g.
[Owe98] and [LLO00a]), and in solution of concrete problems in finance (e.g. [Pas97],
[PT95], [MC95], [LL98], [BGI6] and [PAGIS]).

In many finance problems the so called effective dimension d, for the problem is
actually lower than the real dimension s. (See e.g [CMO97] and [CM96] for finance
problems, and [SW98] for a general discussion). This property is present both for
path dependent option problems and multi-asset options. The problem of pricing
Asian basket options has a mix of both, and some of the challenge is to pinpoint
the effective dimensions of the problem. The concept of effective dimension is closely
linked to the so called ANOVA decomposition. (See e.g. [Hoed8], [ES81] or [Owe98,
Owe99]). It is used to find a representation of the integrand as a sum F 4 of orthogonal
functions. If each of these orthogonal functions depends only on a distinct subset of
the coordinates, the integrand can be written as a sum of integrals of functions of
lower dimension, and the complexity of the problem has been reduced with regards to
the integral dimension. Even if we are not able to reduce the dimension of the original
integrand by this approach, we can find that some of the orthogonal functions in F 4,
say F4c, have little effect on the value of the integral. Then if F4 — F4c have
dimension ds, and d; is lower than the dimension of original integral, but estimates
the true value within acceptable limits (¢), we say that the original problem has
effective dimension ds;. In finance problems we can often achieve a representation
involving matrices describing the connection between the different variables linearly
as arguments to the exponential function, i.e f(z) = exp (}_, cizi), ¢; < ¢ip1, Vi < s.
This is the case in the problem we are studying, and we achieve this by using the
SV-decomposition. If we truncate the sum ), c;z; at some point d, where c¢; <
€ K ¢p we will get a good approximation of the original problem by evaluating
the integral over this lower dimensional integrand. The effective dimension found
by the SV-decomposition approach and the effective dimension from the ANOVA
approach are compatible, since we can write the exponential function as a sum of
polynomials through a series expansion. This means that QMC-methods are well
suited for integrals of functions with low effective dimension. Especially if we can find
the dimensions having effect, and are able to employ a low discrepancy sequence {y'}
for which we know the elements y! having the lowest discrepancy. A numerical test
to find the effective dimension of the single asset Asian option problem is performed
in subsection 3.9.1.
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Figure 3.2: The initial elements have better abilities to fill the domain than the one
further back in the low discrepancy vector. Projections onto [0, 1] of Halton leaped.
(0,1 and 42,43).

3.5 The Value of the Claim

An Asian option is actually a special type of European contingent claim, which is
defined as a cumulative income process. Without going into details (which can be
found in [KS98, Ch. 2.4]), we state that the value at time ¢ of an Asian option is

V() = e " T IEo[p(Y(T)IF ()] (3.12)
where ¢(+) is a Borel measurable function. This function can for example be given by
e(X(T)) = (X(T) - )", (3.13)

resulting in the European-style Asian option. A variety of different option contracts
fits into this framework by choosing different functions Y(7) : RE*L - R, o(-) € R
and 7 € RE+!. All of them, however, are European contingent claims.

The theoretical definition of the Asian option is

T
(For single asset option) Y (t,T') = S(u) p(du) (3.14)
to
T N
(For basket option) T (fo,T) = / S Sap(d),  (3.15)
to p=1

for some Borel measure p on [tg,T]. Our formulation is rather general, but the
measure 4 is usually given by p(du) = (T — to) ~‘du. Other candidates can, however,
easily be handled by our setup. If we for example choose u(du) = d7(du), where o7 is
the Dirac point mass at T', we get a European call option. Other examples are given
in, e.g. [RS95]. Note also that contracts often are specified with t, = 0, but in our
discussion we only need to < T
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In real applications the integrals in the formulations of T (tg,7") and Y n(to,T") must
be approximated, and often these approximations are specified in the contracts by
specifying the number of sampling points along the path. For this purpose let u(du) =
(T —to)"'du and T = (to,t1,...,tk), tx = T, and specify the number K + 1 of
sampling points. The length of the intervals ¢, — tx_; need not be equal, but we
shall assume this here for simplicity. Approximations of (3.14) and (3.15) can then
be carried out by using the expressions

K
. . : 1
(For single asset option) T1(7) = 1l kZ:O S(tr) (3.16)
) | KX
(For basket option) YTn(T) = K+l ,;,; Sn(te) - (3.17)

Note that by choosing N = 1 in (3.17), the basket option is a single asset option.
These types of approximations are also necessary in order to apply the MC and QMC
framework. We will briefly discuss the convergence of (3.14) to (3.16) and (3.15) to
(3.17) in section 3.9. For simplicity we prefer to consider V' (¢) at ¢ = 0, which is the
value at the time the option is bought. Note that this does not imply tg = 0. The
expression we are going to use throughout the rest of the paper for the value of the
Asian basket option thus becomes

Vn(0) = e " Eolp(Tn(T))] - (3.18)

In section 3.6 we will show the conventional way of how the price processes for the
risky assets can be expressed as models where the the noise is implemented as inde-
pendent stochastic processes. This independence formulation enables us to express
the expected value in expression (3.18) as an integral over RV(X+1) see for instance
[Pks98, Ch. 2.1]. Furthermore we will show that in the particular case of inte-

grals involving distribution functions, we can convert the integral from RN(E+1 to
0, V<),

3.6 The Conventional Way of Formulating E; as an
Integral

In the standard formulation of the asset price processes given by (3.3) and (3.4), the
Brownian motion used as the driving noise has a built-in correlation structure. In
order to formulate the Asian basket option pricing problem as an integral we have
to model the price processes in terms of independent stochastic variables. This can
be done in several ways, resulting in algorithms with different properties when used
together with QMC methods. In this section we outline the conventional way of
doing this. This approach exploits that the increments AWy(t) are independent,
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and results in the following expressions:

K
> Salts) = Zh (tk, S(0), 0 Wo (ts)) (3.19)
k=0
= Sn(O)h (to, 1,&) (1 + hn(Aty,1,€) (14 hn(Aty, 1,&)(1+--+)))  (3.20)
= Sn(to)dk 1 (€1, - - -, €k) , (3.21)

where Aty =t — tr—1, & ~ Ny (0,Atr0?), 0 < k < K are independent of F;, _,,
while & ~ Ny (0,to02). The notation including the ¢ function is achieved by letting

Ok, i (€x) = 1+ hn(Atk, 1,€x) (3.22)
5}1{’,«(@1«, coy€x) = 1+ hy (Aty, 1,€k)5?(,k+1 (Ekt1y---,€K), (3.23)
k=K-1,...,1. (3.24)

Note furthermore that the most common method of finding o is by use of the Cholesky
decomposition of o2, even if other types like the SV-decomposition exists, and are
more suited in finance problems. In section 3.9, where we compare different ap-
proaches, we have used the Cholesky decomposition when calculating values of the
Asian basket option by the conventional approach, while we have used the SV-
decomposition in the SVD approach described in section 3.8.

With the expression (3.21) we can write the value of the Asian basket option as

Va(0) = e " TEo[p(Tn(T))]
N

Sl e > St a (2))(a) dz (3:25)

N

= [ e ?(EwT T2 Sl (V@) v, (326)

where ¢ : RVNE+D  RN(K+1D) g the density of an N(K + 1) - dimensional cen-
tered Gaussian random variable with covariance matrix equal to the identity, and
Tt [0, PNEHD 5 RVEHD g a vector of inverse cumulative normal distribution
functions with mean 0 and variance 1: ¥~'(y) = (¥ (y1),..., \IJEI(KH)(yN(KH))).

In the following it is convenient to introduce the notation ¢(Y) = @(KLH) in order to

simplify the expressions. The transformation of the integral over RV(X+1) in (3.25)
to [0, 1]NVE+1D) in (3.26) is due to the mapping performed by the function ¥~'(-), and
is valid for any inverse cumulative distribution function. In order to find the inverse
of ¥(-) we use that ¥ '(y,) = erf ' (2y, — 1). We do the evaluation by a rational
approximation suggested in [Mor95]. Other types of methods for calculating ¥~1(-)
could be employed, but caution must be taken when used together with QMC. (See
comments in section 3.4 on this.) It is evident at this stage that we can approximate
the option price by making use of a convenient set of points {y} C [0,1]¥ (K+1) | In
the conventional QMC approach this is done by using samples y' from the Halton
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leaped sequence as input to ¥ ~!(-), and calculating the mean value of the integrand
in the domain of integration. The value for an Asian basket option for this approach
is thus approximated by

L N
Vi (0) m =37 (D Sulto) 37 (¥ 1)) (3.27)

=1 n=1

where y* € [0, 1]VE+D is the I’th vector in the low discrepancy sequence. As L
is increased in (3.27) we get better approximations. The approach in this section,
however, does not take into account any special structures of the integrand. This
must be done in order to exploit that some of the elements of the low discrepancy
vector in the QMC method are more evenly distributed than others. In section 3.4 we
have discussed methods of reengineering the integrand to reduce the complexity and
to improve convergence rates. The next sections are devoted to the specification of
two types of decompositions, the Brownian Bridge approach and the SVD approach.

3.7 The Brownian Bridge Approach

The Brownian Bridge approach is presented for the pricing of Asian options on a single
underlying asset only. This is because the coupling between the asset dependency
and the time dependency in the basket case is hard to define for the Brownian Bridge
approach. We will show in the next section that this coupling can be handled rather
easily in the SVD approach. The inclusion of the Brownian Bridge approach is solely
for reason of comparison. In section 3.9 we present results showing that the SVD
approach turns out to be better among the two.

When evaluating path dependent options we have to simulate the path — one way
or the other. In the formulation leading to the conventional approach, involving the
0(+) function, this is done by using the independent increment property of Brownian
motion. We can, however, achieve a representation of the path by using another
approach — the so called Brownian Bridge approach:

1. Before entering the simulation loop: Choose T', and the number of equal time
steps K = 2P. Set At = % and tp = kAL, k=1,..., K.

2. Inside the simulation loop: Generate Gaussian independent variables eé-, for
each of the L turns in the simulation loop, distributed according to

&=L ) ~ N (0,E), =0, K —1 (3.28)
T

where 1?0 =T and fj = m, J

=1,....,K -1 (3.29)
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3. The Wiener path w;(t) is sampled at each ¢, as

wi(to) =0 (3.30)
wy(tx) = o€l (~ N(0,0°T)) 3.31)
wilt) = 3ll) +wilto) +od (v NO0PF) (332
wiltise) = %(wl(to) wi(ti)2)) + e (~ N(0, &’% ) (333)
wiltsrg) = glwiling) +wilic) vod  (~NO°T) (334

4. The price path is then calculated by using
1
S'(tx) = S(to) exp ((r — 502)'% + wi(tr)) (3.35)

5. The price of the option is found by averaging:
e—rT L K

2%

1 =

Vl (0) ~

Sl(tk)) (3.36)
0

Although the total variance in this representation is the same as in the standard
discretization, much more of the variance is contained in the first few steps of the
Brownian Bridge formula. This reduces the effective dimension of the simulation
and increases the effect of the low discrepancy sequence used. It turns out that this
decomposition is not optimal, and the optimal decomposition is given by the SVD
method presented next.

3.8 The SVD Approach

A random variable Y ~ Ny (0,%%7) can be written ¥ = ¥X where X ~ Ny(0,1),
and I is the NV x N identity matrix. In section 3.3 we discussed properties of mul-
tidimensional Brownian motion, and concluded in expression (3.7) with the covari-
ance matrix of the process. Given a covariance matrix 2 = XX7 there are sev-
eral alternatives of finding the matrix ¥. The Cholesky decomposition produces a
Y matrix which is triangular, while the ¥ matrix from the SV-decomposition can
be written as Ev/A, where E contains the eigenvectors of 2 and A is a diago-
nal matrix with the corresponding eigenvalues in decreasing order on the diagonal.
We will use the SV-decomposition both for the Wiener path along the time dimen-
sion and to find a volatility matrix ¢ used in the modeling of the price process of
the underlying assets. The properties of Brownian motion enables us to perform
two separate SV-decompositions instead of one large: One for the covariance matrix
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C? € REFDX(K+1) given in section 3.3, describing the path-dependencies, and one
for the covariance matrix o> € RV*N for the underlying assets. The eigenvalues
of C? and ¢? can then be combined by the direct matrix product into an ordering
O : N x N — N of the total set of eigenvalues for the full problem to give us Ao.,.
such that A\; > Ao > -+ > An(k41)- This method enables us to allocate specific
elements y! from the low discrepancy vector y' to the different orthogonal noise gen-
erators (represented by the eigenvalues \) of the full problem. If ¢! is a vector from
the Halton leaped sequence, the noise term with the biggest eigenvalue is mapped to
y! the next biggest to yl and so forth. In order for this approach to be effective, the
discrepancy of 4! should be lower than the discrepancy of y} etc. This is a property
of many low discrepancy sequences, and the Halton leaped sequence seems to have
this characteristic. (See e.g. [KW9T7]).

The principles of the SVD method for the basket option problem given as a list of
tasks are as follows:

1. Before entering the simulation loop: Find o € RY*N by performing an SV-
decomposition of the covariance matrix 02, and C € REFDX(E+D 1y an SV-
decomposition of the covariance matrix C?. Find a relation O(-,-) between the

time discretization point k, the asset n and the ordering of the eigenvalues A by
sorting the output from the direct matrix product in reverse order:

A= A2 ® Ace (3.37)

2. Inside the simulation loop: Create a low discrepancy vector y' € [0, 1]V (K+1)
for each of the L turns in the simulation loop.

3. Find the corresponding inverse cumulative normal values

Ompy =¥ Wh)n=1,...,N, k=0,... K (3.38)

4. Find the asset price for each of the IV assets in each of the K + 1 points along
the time line. This is done by

N N K
1
S (ty) = Sn(to) exp ((r — 3 g o2 )tk + g Ond E ijelo(d,j)) (3.39)

5. Find the average of all the asset prices computed in (3.39) and evaluate ¢(T ).

6. The option price is approximated by performing the described loop L times,
averaging the L results of (), and discounting by e~"7.

The full expression for the approximate value of the Asian basket option by the SVD
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approach is therefore given by
L N K
L Z ‘p(z Z Sn(tO)

N
exp ((r —%Z ) tk+20nd20k]60 (4.) ) (3.40)

VN (O) ~

N
I
—
3
Il
=
=~
Il
=

where 0,4 and C}; are elements of the matrices resulting from the SV-decompositions.
The matrices o and C together with the function O(:,-) are the essential parts of this
approach.

3.9 Numerical Results

We present, the numerical results from simulations of prices of both single asset Asian
call options and Asian basket call options. The simulations for single asset options
is performed to show the difference between the convergence of the conventional re-
cursive approach, the Brownian Bridge and the SVD method, while the basket op-
tion simulations only compare the conventional recursive approach with the SVD
approach. We will also look briefly into the convergence of the sum in (3.16) to the
value of the integral (3.14) as the number of evaluation points K along the path in-
creases. For the numerical calculations we specify ¢(-) to be the payoff function of a
call option. This specification also effects ¢(-), giving:

p(¥)= (VY —q)" (3.41)

HY) = (e — ) =

(F71 K+1(Y_q)+’ (3.42)

where ¢ = ¢(K + 1). In addition we let to = 0 in the numerical examples.

3.9.1 Convergence of T

The integrand in the expression for T (T') must be approximated when calculating the
value of the theoretical expression for the Asian option, and therefore it is interesting
to investigate how fast the convergence of the sum in (3.16) to the value of the integral
(3.14) is achieved. We do this numerically by looking at the expressions:

T K
e " TEo[e( /0 S(u) T du)] = dim e "TEo[p ZS tr))] (3.43)
k=0
e T L K
= lim ——3 o(> S'(h) . (344)
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When performing the calculation we use the SVD method since this have the lowest
variance, i.e we can keep L smaller than for the other methods. Figure 3.3 gives the
level of accuracy for a given K compared to the true value of the integral. We see
that the convergence is rather fast, and that for K = 10, we are well within 0.1% of
the value of the integral. This indicates that an effective dimension of ds = 10 for
this problem is a conservative estimate. Notice that we do not know the real value
of the integral, and therefore these convergence results are purely indicative. Note
that 0 = 0.3 for the underlying asset in this case, while the other parameters are
equivalent to those given in subsection 3.9.2.

7938 |

Figure 3.3: The convergence of the option price as K — oo

3.9.2 Single Asset Asian Options

We will simulate prices for options where time to maturity is one year T' = 1.0, initial
price S(0) = 100 and strike ¢ = 100. Furthermore the risk free rate in the market is
r = 0.05, the volatility is constant ¢ = 0.4, and the assets pay no dividends. With
this setup we calculate the price for K = 2P, p € {1,2,3,4,5,6,7,8,9}, by using L
number of simulations in the range L € [103,10°]. The standard MC method (STA),
the conventional QMC method by the use of the recursive 6(-) function (REC), the
Brownian Bridge method (BB) and the SVD method (SVD) are compared by use of
a set of graphs. The variance of the resulting series are also given as a measure of
convergence speed. Notice that each new point in each of the graphs are calculated
by using non-overlapping sequences of low discrepancy vectors. The results is shown
as graphs where the price of the option is on the Y-axis and the X-axis show the
number of simulations on log;, scale. See Figure 3.4 and Figure 3.5.

It is important to quantify the performance of the different approaches, and we have
done this by simply calculating the variances of the graphs. Although the prices have
been calculated by a deterministic approach, and we therefore can not truly trust
statistical measures on the behavior, we believe that the used measure will give some
insights. The result of this measurement for an Asian option on a single underlying
asset is given for K = 2P, p = 1,...,9 in Table 3.1. We have done two sets of
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104 . 104 .
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Figure 3.4: Comparing SVD method with STA and REC. For these simulations,
N =1and K = 256, and REC does not perform better than STA for dimensions this
high.
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Figure 3.5: Comparing SVD with BB. We see that SVD is slightly better than BB.
N =1 and K = 256.

simulations, one for L € [10%,10%] and one for L € [10%,10].

When we plot these results (for p < 9) we get the rather illustrative picture in
Figure 3.6, showing that the SVD method has close to constant variance as the number
of dimensions 2P are increased, while the variance of the conventional method increases
linearly (note that the scale on both axis are logarithmic). The standard (non QMC-
approach) has constant high variance, and the Brownian Bridge approach increases a
bit in the start but stabilizes on a lower level than the SVD method.
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Table 3.1: The variances are calculated for each series of 100 prices calculated by
simulating for L in the range [10%,10%] and [10%, 10°]. The mapping onto these ranges
are logarithmic, i.e there are fewer samples from the end of the interval than the

beginning. N =1 and K = 2P.

L p STANDARD REC BB SVD
10° - 10* 1 0.0750028 0.000164428 0.000234812 0.000349644
10° — 10* 2 0.0880283 0.000484648 0.000313312 0.000217205
10° = 10* 3 0.0943216 0.00216916  0.00030832  0.000221485
10° — 10* 4 0.074528 0.00749465  0.000311825 0.000220451
10®° - 10* 5 0.0789701 0.021403 0.000303524 0.000221139
10° = 10* 6 0.0750914 0.01854 0.000307054 0.000221403
10° = 10* 7 0.0805887 0.0351491 0.000305817  0.000221582
10° — 10* 8 0.0490915 0.258421 0.000309338  0.00022173
10° — 10* 9 0.053857 0.407136 0.00031079  0.000221813
L p STANDARD REC BB SVD
10* - 10° 1 0.00611862 2.32071e-006  2.16537e-006 3.09931e-006
10* = 10° 2 0.00542252 6.30376e-006 3.75607e-006 2.78211e-006
10* = 10° 3  0.00637498 3.73341e-005  5.16935e-006 2.79055e-006
10* = 10° 4 0.00827774 0.000298189  6.74235e-006 2.77861e-006
10* - 10° 5 0.00709202 0.000459984  7.33869e-006 2.78717e-006
10* = 10° 6 0.00766036 0.000888891  7.40184e-006 2.80059e-006
10* = 10° 7 0.00605674 0.00134237 7.23032e-006  2.8036e-006
10* = 10° 8 0.00528101 0.00532122 7.38271e-006 2.80411e-006
10* —10° 9 0.0059849 0.0312871 7.45808e-006  2.80269e-006

3.9.3 Basket Asian Options

When we calculate the value of the basket option, an additional element concerning
the N assets in the basket comes into consideration. In section 3.3 we described how
to find the eigenvalues of the full system, and in section 3.8 we showed how to utilize
this to optimize the use of the low discrepancy sequence. In this section we will use
a setup of the simulation similar to the one used for the single asset option, but in
addition we will let the number of assets vary: N € {2,4,8,16,32,64}.

The results are given in Table 3.2 and illustrated in Figure 3.8. In the illustrations
we have kept the number of sampling points K constant and increased the number of
assets IV in the basket. The different methods are labeled REC for the conventional
QMC method, SVD1 for the full SVD method including an ordering of the total noise
in the problem by the use of the O(-, -) function, and SVD2 for an SVD method where
we have decomposed both time and asset dimensions, but not combined them into
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Figure 3.6: The plots have p on the X-axis, and log;, of the variance on the Y -axis.
There are 9 estimated variance values for each approach, one for each p. Each series
of prices contains 100 values, and are created by simulating prices for L in the range
[10%,10%] (left) and [10%,10°] (right). The mapping onto these ranges are logarithmic,
i.e there are fewer samples from the end of the interval than the beginning. N =1
and K = 2P,

8.2
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Figure 3.7: Comparison of the methods for different baskets. N and K given in the
labels of the plots.

an overall ordering. In SVD2 the N first elements of the low discrepancy vector are
used for the noise in the problem stemming from the time discretization point giving
the biggest contribution, and these N elements are used in an ordering according to
the contributions from the different assets. This should theoretically give the SVDI-
method best performance, but for the example we have tested, this conclusion can not
be drawn. In the numerical studies of the Asian basket option, we have estimated the
matrix o2 by using asset return time-series from the Oslo Stock Exchange in Norway
to get a realistic case.
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Table 3.2: The variance of the option price as the number of assets N = 2¢ in the
basket is increased. Here K = 2° = 32.

L i REC SVD2 SVD1
10> - 10* 1 0.00727686 0.000156036 0.000141992
10> - 10* 2 0.0108797  0.000231383 0.000234575
10> —» 10* 3 0.00988478 0.000276212 0.00019724
102> - 10* 4 0.0240513  0.000312554 0.000224188
10> - 10* 5 0.0374931  0.000709355 0.00073982
10> - 10* 6 0.0486269  0.00028011  0.000391925

...........

Figure 3.8: The variance of the option price as the number of assets in the basket is
increased. N = 2¢, i on the X-axis. Time discretization is K = 2% = 32 (left) and
K = 2% =4 (right).

3.10 Conclusions

The use of QMC methods gives faster convergence than conventional MC Methods
for both single asset and basket Asian options. By using the low discrepancy se-
quence more effectively, the examples we have simulated show a large performance
gain compared to the conventional QMC method. Furthermore we get better results
when using the SVD approach than the Brownian Bridge approach for single asset
Asian options. The benefit of the SVD approach increases as the number of sam-
pling points in the time interval increase due to the fact that the conventional QMC
method becomes less effective, while the SVD method maintains its efficiency. The
conventional QMC method is actually outperformed even by the conventional MC
method for very high dimensions (K > 256), while the QMC method based on SVD
remains very good also for high dimensions. The problem clearly has low effective
dimension, but while we can estimate this to about 10 for the single asset Asian op-
tion, the effective dimension of the basket Asian option will depend on the covariance
structure of the assets in the basket, and can therefore vary among different baskets.
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The numerical tests show that as we increase the number of assets in the basket, the
difference between the conventional QMC method and the SVD method is seemingly
constant, or slightly increasing as N becomes large.
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Abstract: We investigate the use of singular value decomposition of the noise term in the
Asian basket option problem. By performing this decomposition the problem can be formu-
lated as an integral. We find a criterium for deciding the effective dimension of the integrand
in the framework of the singular value decomposition. The resulting integration problem is
calculated by a suited quasi Monte Carlo method. The simulation results show that the
proposed criterium works well, and that the computing time can be reduced significantly
compared to the full problem.

4.1 Introduction

It is well known that many finance problems hold certain properties that can be
exploited to increase the convergence rate when calculating their values with quasi
Monte Carlo (QMC) methods. This is done by combining the QMC method with
variance reduction techniques. Singular value decomposition (SVD) of the noise term
in the problem is suggested. In the pricing of the European-style Asian arithmetic
average basket option (hereafter Asian basket option), the correlation structure of the
noise is a mix of the correlation structure of the Brownian paths and the correlation
structure of the assets in the basket. We have in [DB01] developed a method to de-
compose the full problem into orthogonal factors. For the single asset Asian option
the correlation structure is static, and the effective dimension only depends on the
chosen time discretization. This problem is often referred to in the QMC literature,

!Published in the MCQMC2000 proceedings. Full reference: [DB02]
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see e.g. [PAG98]. The Asian basket option, however, has a more complex, non-static,
correlation structure — depending also on the basket. The effective dimension will
therefore vary among different baskets. The goal of this paper is to show how the
decomposition of the full Asian basket option problem is performed, and to quan-
tify the effective dimension for the single asset Asian option and for different Asian
basket options. We discuss the link of our approach to the notion of the ANOVA
decomposition discussed in [Owe98] and [Owe99].

The outline of the article is as follows: We give some required properties of the
Brownian motion in sec. 4.2. In sec. 4.3 we formulate the Asian basket option pricing
problem as a multi-dimensional integration problem. In sec. 4.4 we implement the
SVD solution into this framework. We develop a criterium for finding the effective
dimension of the integrand, and formulate the pricing problem in accordance with
the reduced dimension as an approximate solution in sec. 4.5. Numerical results
illustrating convergence and accuracy are presented in sec. 4.6, and we conclude in
sec. 4.7.

4.2 Useful Properties of the Brownian Motion

In this section we present some well-known properties of Gaussian processes required
to formulate the Asian basket option problem as an integral in the SVD framework.
The Brownian motion Wy(t) € RY is a Gaussian process, which means that the
random variable Z = (Wy(to),..., Wo(tx)) € RVE+D has a normal distribution.
The covariance matrix of Z is given by

tol tol ... tol
tol tI ... t©I

C% = : o : , (4.1)
tol tI ... tgl

where I is the N x N identity matrix, see e.g. [Oks98]. Let C? be the covari-
ance matrix of Z for the case where N = 1. If we construct the process X =
(cWo(to),...,oWo(tr)) € RNEFD where Wy(t) € RN and o> € RV*N is positive

semi-definite, the covariance matrix C% € RN(KFUXN(K+1) of the process X is given
by
t00'2 t00'2 t00'2
t00'2 t10'2 t10'2
o . (4.2)
t002 ti02 txo?

In the notation of the direct product of matrices we can write C% = C? @ 2. The
eigenvalues of C% can be found directly from the eigenvalues of the matrix o2 and the

eigenvalues of C? by the relation Aoz = Ac2®Ap2 € RTKH)XN(KH). See [Lam91]
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and [Lan69] for a full treatment of the direct matrix product. The eigenvalue property
enables us to find an ordering of the total set of eigenvalues.

4.3 The Integral Formulation of the Asian Basket
Option

We operate in the context of a complete, standard financial market with constant risk-
free rate r and volatility matrix . The price processes in the market are modeled
by:

So(t) = et (4.3)

N N
Su(t) = Sn(0) exp ((r — %Zaid)t 3 0 OW), n=1,...,N. (44)
d=1 d=1

The volatility matrix ¢ € RV*¥ is such that co” = ¢? is the covariance matrix of
the returns of the assets. Note that the relation defining o is not unique, and this is
a key feature for the enhancement of the numerical methods. The stochastic process
Wo(t) is an N dimensional Brownian motion under the risk free measure Fj.

An Asian option is actually a special type of European contingent claim, which is
defined as a cumulative income process. Without going into details (which can be
found in [KS98]), we state that the value at time ¢ of an Asian option is

V(t) = e " T IEo[p(X(T))IF(B)] (4.5)

where ¢(-) is a Borel measurable function. In our study we will use the function
oY) = (Y — ¢)*, resulting in the European-style Asian option. Furthermore we are
interested in V(t) at ¢ = 0, i.e. at the time the option is bought. In the theoretical
definition of the Asian option the function Y(-) is given by

T N
Tn(to.T) = [ 3 Su) ) (4.6)

0 n=1

for some Borel measure p on [tg, T]. We will use the measure p(du) = (T — to)~'du,
and specify tg = 0. For a discussion of a more general setup, see e.g. [RS95]. The
integral must be discretized in order to do calculations with QMC. Note that this
discretization often is specified in the contract by specifying the number of sampling
points along the path. For this purpose let T = (to,t1,...,tx), tx = T, and specify
the number K + 1 of sampling points. The length of the intervals ¢, — ;1 need not
be equal, but we shall assume this here for simplicity. The approximations of (4.6)
can then be carried out by using the expression

R 1 K N
TN(T) = K1 D> Salt) - (4.7)

k=0n=1
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Note that by choosing N =1 in (4.7), the basket option is a single asset option. The
convergence of of (4.6) to (4.7) is discussed in [DBO1].

The expression for the Asian basket option problem thus becomes:
Viv(0) = e~ T Eo[p(Tn(T))] - (4.8)

In order to replace the expected value Eq in (4.8) with an integral over [0, 1]V (K+1),
we need to formulate go(Y N(’T)) in terms of independent stochastic processes. For
path dependent options, this can be done in many ways, resulting in different methods
(see [DBO1]). Here we outline the basic principle of how to obtain an integral repre-
sentation. We introduce the notation S, (tx,e,k) to be able to see the independent
stochastic processes explicitly. The value of the claim can then be written

- 1 K&
VN(O) =T /RN(K_H) W(_K 1 kzzongl Sn(tk,ﬂl'))’gb(m) dx (4.9)
—r 1 & B
= /[O,I]N(K+1) "D(K +1 k;; Sultr, (1)) ) dy (4.10)
] e~rT i(p( 1 i i gl (t \Il_l(yl))) (4.11)
L =1 K+1k:0n:1 e ’ ’

where ¢ : RN(E+D 5 RN(K+1D) g the density of an N(K + 1) - dimensional cen-
tered Gaussian random variable with covariance matrix equal to the identity, and
U1 [0, PVEHD 5 RNKHD g a vector of inverse cumulative normal distribution

functions with mean 0 and variance 1: ¥='(y) = (¥ (x1),. .., \IIEI(KH)(yN(KH))).

The vector y* € [0, 1]V(E+1 is the I’th sample from the low discrepancy sequence {y'}
of the QMC method. We do the evaluation of ¥~!(-) by a rational approximation
suggested in [Mor95]. The specification of (4.11) will be performed in sec. 4.4.

4.4 The Singular Value Decomposition

A random variable Y ~ Ny (0,%%7) can be written ¥ = ¥X where X ~ Ny(0,1),
and I is the N x N identity matrix. In our problem, and other finance problems,
the covariance matrix is often given or observable. With a known covariance matrix
Y2 = ¥%7 there are several alternative ways of finding the matrix ¥. Since ¥? is
a positive semi-definite matrix, the SVD produces ¥ such that ¥ = EvV/A, where E
contains the eigenvectors of ¥? and A is a diagonal matrix with the corresponding
eigenvalues in decreasing order on the diagonal. We will use the SVD both for the
Wiener path along the time dimension and to find a volatility matrix ¢ used in the
modeling of the price process of the underlying assets. The total collection of noise in
the Asian basket option problem can by the use of the properties of Brownian motion
be produced by two separate SVDs instead of one large: One for the covariance matrix
C? € RK+ADX(K+D) given in sec. 4.2, describing the path-dependencies, and one for
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the covariance matrix 02 € RV*N for the returns of the underlying assets. The

eigenvalues of C? and ¢ can then be combined by the direct matrix product into an
ordering O : N x N — N of the total set of eigenvalues for the full problem to give
us Ao(.,.) such that A\; > Ao > --+ > Ay(g41). This method enables us to allocate
specific elements y! from the low discrepancy vector y' to the different orthogonal
noise generators (represented by the eigenvalues \) of the full problem. The noise
term with the biggest eigenvalue is mapped to y! the next biggest to y4 and so forth.
In order for this approach to be effective, the equidistribution properties of y! should
be better than that of y} etc. This is a property of many low discrepancy sequences,
see e.g. [KW97].

The principles of the SVD method for the basket option problem given as a list of
tasks are as follows:

1. Before entering the simulation loop: Find o € RV*N by performing an SVD of
the covariance matrix o2, and C' € REFTDX(K+1) by an SVD of the covariance
matrix C?. Find a relation O(-,-) between the time discretization point k, the
asset n and the ordering of the eigenvalues A by sorting the output from the
direct matrix product in reverse order:

A=Ap2 ® g2 . (4.12)

2. Inside the simulation loop: Create a low discrepancy vector y! € [0, 1]N(K+1)
for each of the L turns in the simulation loop.
3. Find the corresponding inverse cumulative normal values
comp =¥ Wh)n=1,...,N, k=0,....K. (4.13)

4. Find the asset price for each of the IV assets in each of the K + 1 points along
the time line. This is done by

N N K
1
S (k) = Sn(to) exp ((r — 3 Soondte+ Y ona ¥ Cricowy) - (4.14)

5. Find the average of all the asset prices computed in (4.14) and evaluate G(Y ).

6. The option price is approximated by performing the described loop L times,
averaging the L results of (), and discounting by e~"7.

The full expression for the approximate value of the Asian basket option by the SVD
approach is therefore given by

N N K

exp ((7’ — % Z O’,Qld)tk + Z Ond Z ijglO(d,j))) R (4.15)

d=1 d=1 =0
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where 0,4 and C}; are elements of the matrices resulting from the SVDs. The matrices
o and C together with the function O(-,-) are the essential parts of this approach.

To show the effectivity of the SVD method compared to a standard QMC approach in
which Cholesky factorization is used and no ordering of noise terms is performed, we
have priced a basket option with the two methods and plotted the result in Fig. 4.1.
A way of quantifying the difference is to measure the variance of the graphs as the
number of simulations is increased. According to this measure the SVD method has
a variance of about 1 percent of the standard method for the given configuration. Le.
the standard method need 10? times more simulations to achieve the same accuracy.
See e.g. [DBO1] for other configurations and more details. The low discrepancy

8.2 : . |
N=64,K= svd halton 64,30 ——
? o rec halton 64,30 -------

66 1 1 1
3 3.5 4 4.5 5

Figure 4.1: Comparison of the SVD method and the standard method (labeled REC)
for a basket option where N = 64 and K = 30. The price of the option is given on the
Y-axis, while the number of drawings in log,, scale is given on the X-axis for each
simulated price. The option is at-the-money with strike ¢ = 100, T' = 1 (one year to
maturity), and is priced in a market with risk free rate r = 0.05

sequence used in this simulation, and in the calculations performed in sec. 4.6, is
the Halton leaped sequence with leap number 31. This sequence was presented in
[KW97], together with other good leap values. In the next section we show how we
can exploit the SVD method to further reduce the problem complexity and required
computing time for a given accuracy.
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4.5 Reducing the Problem Complexity

In sec. 4.4 we presented a method to find an ordering of the noise components of
the problem, and this ability together with the mentioned property of many low
discrepancy sequences that the equidistribution of some components are better than
other, can be exploited to achieve faster convergence. The questions we want to
elaborate on in this section are how we can measure this increased convergence, how
we can reduce the problem complexity by using the SVD technique, and which criteria
we can use to perform this reduction. By using a general concept, labeled the ANOVA
decomposition, it is possible to find a representation of the integrand as a sum F
of orthogonal functions. If each of these orthogonal functions depends only on a
distinct subset of the coordinates, the integrand can be written as a sum of integrals
of functions of lower dimension, and the complexity of the integral problem has been
reduced with regards to the dimension. Even if we are not able to reduce the dimension
of the original integrand by this approach, it may be that some of the orthogonal
functions in F, say G C F, have little effect on the value of the integral. Then if
F — G have dimension M, and M is lower than the dimension NK of the original
integrand, but estimates the true value of the integral within acceptable limits a when
integrated, we say that the original integrand has effective dimension M.

It is hard to use this concept directly on the Asian basket option problem, because we
have a complex function where both ¢(-) and exp (-) are present. However, it turns
out that we can find an approximation that works very well: Consider the noise term
in (4.15);

N K
k= Z Ond Z ijgb(d,j) : (4.16)
=1 j=0

The matrices C' and o are results of SVDs, and can be written Eg2+/Ac2 and Ej24/A,2
respectively, where |E,2| = 1 and |Eg2| = 1. The variance of the noise term can
therefore be written

N K
Var[Gue] = Y Y ((Bo2v/Ag2)na(Ec2 v/ Ac2)is)’ (4.17)
d=1j=0
N K
= (Eo2)na(Bo2)ij(Ne2)a(Ao2); - (4.18)
d=1j=0

If the product of the eigenvalues in (4.18) is small for a pair of indexes (d,j), the
contribution to Var[(,] from this element of the sum is small, and can be neglected
in an approximate solution. Note that A = A\,2 ® A2 are entries of the matrix Ac§
defined in sec. 4.2, and the ordering of them is given by O(-,-). Our hypothesis is
that by choosing an error tolerance « for the integration, we can find an approximate
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effective dimension M of the problem by the relation

M NK
inf[Y An] 2(1=a) Y Am, (4.19)
m=1 m=1

and by the mapping O(-,-) we find which pairs (d,, jm) of the noise term we should
use in the approximate integration to minimize the work-load. The resulting approx-
imation of the noise term is therefore given by

Cnk & Z Ondm Ckijm Em - (4.20)
m=1

Actually the proposed approach in (4.19) will eliminate the smallest noise terms in a
problem defined by a linear function: Let f(¢) = Y.~ 3K Cuk, then f has variance

N K N K
Var[f(()] = Z Z Z Z deJ (4.21)
d=1 j=0 n=1k=0
N K
=2 (Ae2)a(Acn); (4.22)

Y
Il
A

<.
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=

and the smallest entries can easily be found by considering the eigenvalues alone.

In sec. 4.6 we do calculations on the integrand of the Asian basket option problem to
show that (4.19) represents a good method to reduce the problem complexity within
known accuracy constraints, and that the method produces a good estimate for the
effective dimension. Furthermore we fix a = 0.01 and find the effective dimension
M (N, K) for different sized baskets by using (4.19). The results are given in tabular
and plotted form.

4.6 Numerical Results

We have chosen to test the method in (4.19) for three different configurations. All
of them, however, are at-the-money options with strike ¢ = 100, T = 1 (one year
left to maturity), and priced in a market with risk free rate » = 0.05. All simulation
results are obtained by using L = 10* number of drawings. The first result is given
in Fig. 4.2 for a basket option consisting of N = 32 assets using K = 32 time
discretization points. The next two is given in Figs. 4.3 and 4.4 for basket options
with N = 2, K = 256 and N = 64, K = 2, respectively. The number of assets
and time discretization points are specified in the upper left corner of each figure.
We need some notation to describe the plots: Let vps(«) be the value of the option
by using the M biggest noise terms, M is given by specifying « in (4.19), and let
@um(a) be the integrand by the same logic. The plots include five graphs each: The
Value fraction which is the ratio vp(a)/vnk (1), the Var fraction which is the ratio
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Figure 4.2: Different ratios (explained in sec. 4.6) between calculation with full di-
mension and calculation for dimension M as a function of the preset fraction (1 — «).
The basket contains NV = 32 assets, and the time discretization is given by K = 32

Var[@a (a)]/ Var[pnk (1)], the Preset fraction which is simply (1 — «), the Actual
preset fraction which is Y"™_ A,/ S2NE X, and the Work fraction which is M/NK.
Note that the work fraction uses the right Y-axis as scale. The work fraction is also
given in Table 4.1 and in Fig. 4.5 for a broader range of configurations. The different
baskets contains assets from Oslo stock exchange, and therefore represents a realistic
correlation structure for this part of the noise in the problem.

An interesting special case of the above calculations is the single asset Asian op-
tion. This is because the results are static, as opposed to basket options where
the results can be different for different equal-sized baskets. In this special case
we have calculated the effective dimension for a broader range of K by the use of
(4.19). The result is given in Fig. 4.6. Here we have included the analytic func-
tion r(z) = ceil(13.5 atan(0.07x)) that mimics the behavior of the effective dimension
curve, and can serve as a rule of thumb. The equivalent results for the single asset
Asian option as the ones presented in Figs. 4.2, 4.3 and 4.4 looks very much like those
in Fig. 4.3, that is the Value fraction and the Var fraction is close to, but above, the
Actual preset fraction. This means that the effective dimension plotted in Fig. 4.6
can be used as a close but conservative estimate. Furthermore the Work fraction is
below 20 percent for o = 0.005, and about 8 percent for a = 0.01.
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Figure 4.3: Different ratios (explained in sec. 4.6) between calculation with full di-
mension and calculation for dimension M as a function of the preset fraction (1 — «).
The basket contains N = 2 assets, and the time discretization is given by K = 256

Table 4.1: Effective dimension for different basket sizes and discretization schemes.
The entries in the table are % where M is found for « = 0.01 and NK is the
dimension of the full problem. The ratio is the work-load needed for the approximate
simulation in each case

N 8 16 24 32 40 48 56 64

8 25 3 43 51 56 60 63 65
64 128 192 256 320 384 148 512
16 41 52 61 69 77 84 89 92
128 256 384 12 640 768 896 1024
24 65 381 90 99 107 116 123 129
192 384 576 768 960 1152 1344 1536
39 86 104 114 123 132 140 148 156
256 512 768 1024 1280 1536 1792 2048
40 105 127 138 147 156 164 173 181
320 640 960 1280 1600 1920 2240 2560
48 120 145 157 167 176 184 193 201
384 768 1152 1536 1920 2304 2688 3072
56 142 173 187 197 206 215 223 231
148 896 1344 1792 2240 2688 3136 3584
64 169 209 225 237 246 255 264 272

512 1024 1536 2048 2560 3072 3584 4096
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Figure 4.4: Different ratios (explained in sec. 4.6) between calculation with full di-
mension and calculation for dimension M as a function of the preset fraction (1 — «).
The basket contains IV = 64 assets, and the time discretization is given by K = 2

4.7 Conclusion

The proposed method gives a rather easy-to-use tool to decide an approximate effec-
tive dimension of Asian basket options. From the calculations it is evident that as
the number of assets N in the basket is increased, the work-load of the approximate
method increases more than by a similar increase in time discretization points K.
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N=1..64,K=1..64

Figure 4.5: A contour map of the ratio between M and NK for different K and N,
given a = 0.01. The contour lines encapsulate configurations in which the work-load
is less than 7-20 percent — starting at 7 percent in the upper right corner. The X-axis
represents K and the Y-axis N
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Figure 4.6: The effective dimension M as a function of the dimension K of the single
asset Asian option problem. We have included the graph of the function r(z) =
ceil(13.5 atan(0.07z)), showing that we can use this as a rule of thumb to set the
effective dimension for the problem






Chapter 5

An Adaptive Method for Pricing
Contingent Claims. Part I'

Author(s): Lars O. Dahl

KEYWORDS: ADAPTIVE INTEGRATION, MULTI DIMENSIONAL INTEGRATION, PRICING OF
CONTINGENT CLAIMS, QUASI-MONTE CARLO METHODS

Abstract: The paper presents an adaptive method for the evaluation of multidimensional
integrals over the unit cube. The measure used to partition the domain is suited for in-
tegrands which are monotonic in each dimension individually, and is therefore suitable for
problems stemming from finance where this is often the case. We use a QMC method for
each sub-problem resulting from the partitioning of the domain. The article is part one of a
work on this topic, and presents the method together with various local variance reduction
techniques. The material is presented with an alignment to option pricing problems. In the
companion paper we present an option pricing problem and simulation results on different
setups of this. We compare the convergence properties of the adaptive method with the
convergence properties of the QMC method used directly on the problem. We find that the
adaptive method in many configurations outperform the conventional QMC method, and we
develop criteria on the problem for when the adaptive method can be expected to outperform
the conventional.

5.1 Introduction

The fair value of contingent claims can be expressed as an expected value, which in
turn can be written as an integral. In many situations these integrals are multidimen-
sional. The value of the integrand can vary significantly in the domain of integration,
and in some cases there can be only small parts of the domain in which the integrand

1Submitted for publication August 2002 to Journal of Applied and Theoretical Finance. Full
reference: [Dah01]
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is non-zero. Since Monte Carlo methods and QMC methods distribute the evaluation
points as evenly as possible, they will waste calculations on regions which are not
important. An adaptive method tries to allocate the resources to the important parts
of the domain.

In option pricing problems where the option is written on several underlying assets
and/or the option price is path dependent in time, the price is found by calculating
a multidimensional integral. QMC methods are often deployed for these problems,
and additional methods for reducing the variance of the estimator for the price of the
option can be found. The adaptive technique incorporates some common variance
reduction principles implicitly, but the modifications of the integrand are not exactly
the same. In particular the adaptive method is closely related to importance sam-
pling and stratified sampling. References on these methods are [GHS99a], [GHS98],
[GHS99b], [GHS00], [0Z00], [PF90], [VAD98]. The purpose of these methods, as the
adaptive, is to use the samples from the QMC generator in a more effective way than
distributing them evenly in the domain. Some knowledge of the integrand must be
present, or collected, for the success of these methods. Importance sampling can be
dangerous in that one is not guaranteed lower variance. The variance can actually
blow up for special cases. The advantage of the adaptive method is that information
is collected as the calculation is done, and function evaluations of the integrand is
used to guide the distribution of the points in the domain.

The challenge in getting the adaptive method to perform well is to find good measures
of the behavior of the integrand in local domains, and to find a data structure that
minimizes overhead from the process of analyzing the domain. The basic algorithmic
approach in the article is partly based on the work presented in [BEG91], but the ap-
proach is modified in some essential aspects concerning the use of function evaluations
in local domains. In addition to presenting the principles of the adaptive method,
we develop and formulate variance reduction techniques applied to the local domains
produced by the sub-division process of the adaptive method. This, together with
the use of MC and QMC for the evaluation of the sub-problems resulting from the
adaptive process is to our knowledge not investigated before.

In the companion paper [Dah02a] we perform numerical tests and find criteria for
deciding when the adaptive method can be expected to perform well.

5.2 QMC Integration

The goal is to evaluate multidimensional integrals over the region Q = [0,1]” accu-
rately, effectively and robust. When D > 4 the MC and QMC methods are com-
petitive with any advanced numerical integration method for general integrands. For
large D they are the only realistic alternatives. The estimator most commonly used
for the integral is given by

1 L
S RCLET SIS (.1)
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where {y;} is a sequence of vectors from a pseudo random number generator or a low
discrepancy sequence. The MC method is based on drawing random or pseudo random
numbers as arguments to f, while the QMC methods use sequences of arguments
to f designed to be as evenly distributed as possible in 2. In this article we use
the Mersenne Twister as pseudo random number generator and an extension of the
Halton? sequence as basis for the QMC method. References on low discrepancy
sequences are e.g. [NX98], [Owe99], [Owe98].

5.3 The Adaptive Method

It is easy to construct a QMC estimator for the integral over a part of €2, and we
therefore can construct a method to evaluate the integral over all of 2 as a sum of
such estimated values. Let = Ujw;, Njw; = 0,7 =1,..., P. Then

P
F = f(z)dx (5.2)
=1 v Wi
P Li—1
e lwil
~D AL > fw), (5.3)
i=1 l=L;_1

where AL; = L; — L;_; and y; is scaled such that y; € w; when | € [L;—1,L;]. |wil
is to be understood as the volume of w;. The adaptive algorithm should decide on
the number of sub-domains and their sizes. That is P and |w;|, Vi. Furthermore, the
algorithm has to pick the best set of sub-domains, and how many simulation points
AL; to use in each of them. Alternative approaches use information from the inte-
grand to develop approximations of the integral in sub-domains with a deterministic
approach rather than with simulation. This is done in e.g. [BEG91], [GC97], [C0o097],
[PF90].

We have chosen to use a binary tree to represent the domain decomposition. Each
node in the tree corresponds to a distinct part of the domain, and when we expand
the tree we divide the domain represented by a node in two parts (not necessarily of
equal size). The criteria we use to decide on division are twofold: First we find an
estimate of how much the domain contributes to the overall variance of the integral,
and if this is more than a preset amount we split the domain. In order to avoid
an explosive increase in partitions, we only create two new subdomains from each
domain that meets the variance criterion. They are produced by dividing the domain
across the axis corresponding to the dimension along which the integrand has largest
variability according to a well behaving measure. The divide and conquer algorithm
is terminated when the estimated variability in all sub-domains are less than a preset
limit. This approach could ideally produce an answer with guaranteed accuracy, but
the measure we use for the variance contribution is only indicative. The variance

2We have in previous work ([DBO01] and [DB02]) found that the Halton leaped sequence with leap
number 31, presented in [KW97], performs well compared to other easily implemented sequences
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contribution from a node is calculated by the following approach: Consider a sub-
domain w;. Place one point pf in the middle of w; and two points p,, i, on each line
l; going through the middle of w;, parallel with the axis A;. The points p; are located
on each of the borders of w;. For each point, find the value f (p;) of the integrand.
This setup is illustrated in fig. 5.3 for a two dimensional example. We estimate the
contribution to the variance from each sub-domain by the expression

D i i )
= Lo 2 T )y (54)

=1

d;

where the volume of the sub-domain is calculated by |w;| = H]-Dzl (p;2 - pj-l). The axis
we divide in order to create a finer partitioning is found by one of the expressions

A= sblp{j; |£(0ia) — F0O)] + | £(h1) — F0b)|} (5.5)

or A; = sblp{j; |F(0he) + F(0l) — 27 (0D)| (5.6)

depending on the problem. These calculations are performed recursively as given in
alg. 1. In [BEG91] they use a fourth difference operator, but we find that the rule
(5.5), which is a second difference operator, suits our setup better and gives better
overall performance for the types of problems we have tested.
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Figure 5.1: Illustration of the placement of points in w; in order to calculate the axis
of division and the estimated variance of the sub-domain. Note that Q = [0,1]* in
this illustration

If the adaptive algorithm performs perfectly in accordance with the assumptions, the
contribution from each sub-domain to the overall variance should be equal. Therefore
0; lwi] = ¢, Vi ideally. But even if the adaptive process aspire to use the simulation
points as effectively as possible, we get some sub-domains in which the measured
variability is close to the preset limit, and some where the variability is considerably
lower than the limit. To circumvent this behavior we use less simulation points in the
sub-domains where the variability is low. Theoretically, the fraction for the optimal



5 An Adaptive Method. Part I 55

allocation of points in each sub-domain can be shown to be
1o

C Siimo
where 7; is the probability for a point to be contained in each bin represented by w;.

Therefore r; = |w;| in our setting. This leads to the allocation of simulation points
by the relation

*

q; ,i1=1,...,P, (5.7)

g; |wz|
P b
> =1 01w

where L is the total budget of simulation points. This approach, however, assume
knowledge of all o;, and the adaptive approach does not provide this knowledge at
the stage in the process where the contributions to the value of the total integral are
calculated. Instead, we have chosen to implement a simpler approach to finding the
number of simulation points in each bin. We use the relation

o;
6 9
where ¢ is the stopping criterion for the adaptive process on the variance estimates.
This approach avoid the overhead by traversing the tree to collect the o; values, and in

our tests the approach works well compared to using the same number of simulations
in each bin.

ALy =1L (5.9)

. /

W

Figure 5.2: Tllustration of method for partitioning the domain 2 = U;w;. The framed
boxes in the tree cover the domain without overlapping

The adaptive approach is of course infested with overhead compared to plain simula-
tion. For the adaptive method to be competitive with regards to computing time, one
must focus on building good data structures and use effective algorithms for the ad-
ministration of the simulation. In addition to the overhead connected to the creation
and traversing of the binary tree holding the information about the segmentation of
the domain, extra integrand evaluations must be performed in order to guide the par-
titioning of the domain. See fig. 5.2 for an illustration. We are unfortunately not able
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Figure 5.3: An example (in the right part of the figure) of how the adaptive method
would partition the domain for the payoff function of a two asset basket option graphed
in the left figure

to use the calculated points in the adaptive process in the estimation of the integral,
because a bias will be introduced. In many classes of problems, however, the domain
can be reused when finding other parameters of the problem. An example of this can
be found in finance where one often need to calculate the hedges (derivatives with
respect to certain parameters) of an option contract as well as the price, see [BG96]
on simulation of hedging parameters, and [FLL"99] and [FLL*01] for a formulation
of the hedges by Malliavin calculus. In the adaptive setting the hedges can be cal-
culated effectively without having to recreate the partitioning of the domain, see e.g.
[DBKO02] or [Dah02b] for formulation and calculation of hedging parameters using this
framework. The extra computer work involved in the adaptive method must therefore
be accounted for in the comparison with the conventional method. In many classes
of problems the adaptive method has a far better performance, even when all aspects
of increased time consumption are taken into account. For a full discussion of the
criteria on the problem for this to be the case, look at the companion paper [Dah02a].

In addition to simply sub-dividing the problem, there are several techniques that can
be applied to the integrand in each sub-domain to improve the performance further.
We notice, however, that the performance is not always increased. An investigation
and discussion of these aspects are also carried out in the companion paper [Dah02a].
In the next section we present the techniques for variance reduction on the estimator
of the integral, and focus on methods which can be applied to each sub-problem from
the domain-decomposition in the adaptive process.

5.4 Local Variance Reduction

The estimator F' for the unknown integral is sensitive to the choice of sampling points.
This is the background for the possibility to find estimators and techniques delivering
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a low variance estimate. Variance reduction techniques may involve using calculation
methods, such as QMC, designed to remove uncertainty. A supplementary approach
often used together with the QMC principle, is to find alternative estimators for F’
than the mean value. The only requirement on the new estimator is that it has
no, or neglectable, bias. Control variates (CV), weighted uniform sampling (WUS),
stratified sampling (SS) and importance sampling (IS) are categories of techniques to
provide such estimators. In our adaptive setting, we aim at employing such techniques
also locally in each sub-domain. If we denote by G, the exact integral of a chosen
function g, (x) in a sub-domain w, the estimator F,, of the unknown integral in a local
domain can be found by the modified estimators;

Liy1

CV: Fo= Y (ful) = gu(u)) + G (5.10)
I=L;

El T fw(yl)
zgwm) TS ©

z+1

IS: Fw_z

WUS: F, = (5.11)

o Zl) (5.12)

where y ~ w uniformly, while z ~ % (which is also in w, but not uniformly). A

description of how to generate z for a general g is given in e.g. [099]. Stratification
is somewhat different than the techniques formulated in (5.10)-(5.12), and aims at
distributing the arguments to f evenly, so as to guarantee that the average is actually
representable for f. We explain the connection between SS and the adaptive method
in the next section. In the following sections we handle CV and IS. WUS is very
similar to CV and the same considerations apply. We therefore refrain from covering
WUS in addition to CV.

5.4.1 Stratification

Stratification is a powerful technique and is related with the principles of the QMC
method. The goal is to create a distribution of points in the domain for which a
guaranteed fraction lies in specific bins. This is actually what is going on in special
types of low discrepancy sequence generators such as the Latin hyper-cube sampling
method. The adaptive method is an advanced sort of stratification in that we adapt
the need for stratification as the integrand is changing. To gain further benefit from
the stratification, it is for some problems possible to modify the integrand so that one
can stratify the dimensions of the problem contributing the most to the variance of
the integral estimator. In the option pricing problem one can re-engineer the problem
so that the dimensions in the resulting integration problem correspond to indepen-
dent stochastic processes in the original problem of finding an estimated expected
value. By doing this, we can find the dimensions of the problem having the biggest
contribution to the uncertainty of the final answer. By using more sampling points
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along the most important dimensions and by guaranteeing that these sampling points
are evenly distributed, we can reduce the uncertainty, while keeping the number of
sampling points low. Stratification is in the option pricing problem taken care of by
the use of an SV-decomposition of the covariance matrix observed from the market
or derived from the problem, and a rearranging of the independent noise components
according to the size of the corresponding eigenvalues. When we then use a QMC
method as the engine for simulating the values, stratification is, depending of the
low discrepancy sequence used, more or less taken care of implicitly. In addition to
change the integration problem to be able to identify the biggest noise components,
we have locally experimented with rearranging the noise components according to the
axis along which the integrand changes most rapid, but this does not seem to give
consistent gain in overall variance levels of the final estimator.

5.4.2 Control Variates

One method of achieving further variance reduction is to use the so called Control
variate technique. We will employ this technique locally in each sub-domain. It must
be adjusted to the limitations in number of integrand evaluations we need to impose
on our selves to maintain speed, and we therefore use the integrand values in the points
Dj1,Pj2, Do, which we have already calculated, to find a function g;(x) replicating the
integrand f as closely as possible in each domain w;. This approach enables us to
use the sampling points in the QMC approach to evaluate a modified integral with
lower value, and thus smaller variance. The unbiased estimator of the integral in the
domain w; is obtained by adding the known deterministic value G; of the integral of
the function g; to the integral of the difference between f and g;. Lets introduce some
notation to state this exact: Pricing an option corresponds to evaluating the integral
f[O,l] b f(z)dz. In each sub-domain we evaluate fwi f(x)dz. The idea is to find an
approximate function g;(z) for f(z) in each sub-domain w;, having the property that
the integral G; of g; in this domain can be found deterministic. That is,

F; :/ flz)dz (5.13)
:/ (@) — gi(x) dz + G . (5.14)

If the integral of the difference between the functions f and g; is smaller than the
integral of f in w;, this approach will give an estimate of F; with lower variance than
evaluating the integral of f(z) in w; directly.

Finding ¢; and G; have to be relatively cheap for this approach to be competitive.
We have developed three different function classes that meet these demands. In the
following we drop the subscripts 4 and w; on the functions for cleaner notation. Note,
however, that all parameters, functions and integrals in the remaining part of the



5 An Adaptive Method. Part I 59

section are found for a general local domain. The three function classes are given by

D D
ZL") = Z(J,j(]}j - hj)el + Z bj(.’I}j — hj)e2 +c (515)
j=1 j=1
D ’ D
= exp Z —hy)) — eXp(Z bj(wj — hj)) +c (5.16)
. j
g(z) = Zaj(exp (bj(z; —hy)) —1) +c, (5.17)

where h; = (pj1 + pj2)/2. These functions are accommodating with regard to the
placement of the points in the sub-domains of the adaptive algorithm, since we as
part of the adaptive process already have evaluated f in these points. To find the
parameters a;,b; and ¢ we only need to solve D equations in two variables and one
equation for ¢. First we consider the polynomial function in (5.15). The solution of
the equations for a;,b; Vj for this function has the structure:

(5.18)

, (5.19)

where h; = (pj2 — pj1)/2 and ¢ = f(h1,ha,...,hp). The value of the integral of g
over a sub-domain is

D h )61+1 _ (_Bj)eri-l)

B D
2(h) (61 +1 ; 27Lj
L g bi((Ry)! = (<hy)=H!
Z ( ) +c) .

+ _
es +1 2h]’

k=1

(5.20)

j=1

It is not difficult to see that if (e; 4+ 1) is divisible by two, the first part does not
contribute to the integral, and similarly for the second part if (es + 1) is divisible by
two. The relation between e; and ey must be controlled in order for the equations
to have solution: Without loosing generality assume a; > as. We must have a; =
as + (2n + 1), where n € {0,1,...}.

The class of functions where we have a sum of exponential functions, given in (5.16), is
also rather easy to handle: Let r;1 = f(pj1)—c, rja = f(pj2)—cand hj = (pja—pj1)/2.
Then the parameters of this class are given by

s In(—rii /7s
aj = — '7’J17°12‘ b = In(=rj1/7j2) T_Jl./rﬂ) , (5.21)
rj2 + 151 hJ
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and the value of the integral is

D D 7 7
- exp(bjh;) — exp(—bjh;)
T1 2% Z%’( ) 2SRk ) el (5.22)
j=1 j=1 77

It is, however, evident that this function class is not very adapted to the option pricing
problem in general, because the sum of variables in the argument to the exponential
function is not taken into account. If we look at the last function class, given in (5.17),
this is taken better care of. We can find the parameters of this class by solving a set
of equations as before. Using the same notation as above, the parameters are

111(27}]1 (leTJQ + \ j]. ]2 41“]17“]2)) (5 23)

hy

aj=

In(—rjo + 57— 2T - (rjirje £ ]1 ]2 —4rj11j2))
b = _ : (5.24)
J h
j

where we pick the root which ensures that we get a positive argument to the In(-)
function. Note however, that we are not able to find a solution to all a;, b; for general
f, and the function class therefore is not sufficiently robust to be used alone. To be
employed in applications, it must be combined with one of the other classes for the
dimensions resulting in a negative root as argument to the In(-) function. The value
of the integral of the function in (5.17) is given by

exp(a;h;j) — exp(—ajh;)
G= H o

_He"p ] ‘exp +cH2h (5.25)

The function class capturing the mix of the two exponential function classes, (5.16)
and (5.17), is given by

g(x) =exp (D aj(x; — hy)) —exp (D bj(x;
jeb jED
+ > aj(exp (bj(z; — b)) = 1) + ¢, (5.26)
i#D
where D C {1,...,D} is the set of dimension where the root is positive. The pa-
rameters are given by (5.23) and (5.24) for respectively a; and b; for j € D, and by
(5.21) for j € {1,...,D} \ D. c is equal to the value of f in the mid-point of the

domain. The integral is the sum of the expressions given in (5.22) and (5.25) for the
appropriate sets of indices.
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As a closure of this section I will briefly mention aspects concerning a common control
variate technique in Asian option pricing; namely to use the geometric average Asian
option as a control variate (for which there exists an easier calculation routine) when
pricing the arithmetic average Asian option. In the adapted routine this would not
serve as a local variance reduction technique, because it would not take advantage
of the gathered information about the local behavior. Instead, the parameters used
throughout would be static, amounting to alter the problem only in a global fashion.

5.4.3 Importance Sampling

We have been looking at the possibility to perform importance sampling locally for
each sub-domain by finding general distribution functions suited for this approach.
As we shall see however, the attempts turned out to produce functions which were to
hard to calculate as part of the adaptive process. Therefore we have only implemented
a version in which the importance sampling is applied to the globally defined func-
tion before the adaptive procedure is started. The main result of these calculations
with regards to the adaptive method, is that the adaptive method performs equally
well together with importance sampling compared to the non-adaptive method. It
is, however, not always improvements tied to the use of either importance sampling
nor the adaptive method. For details on these results, consult the companion pa-
per [Dah02a]. References on importance sampling for finance problems are [GHS99a],
[GHS98], [KP92]. The first part of this section investigates local IS, and show that it
is difficult to apply.

In order to formulate the inverse cumulative distribution function appearing in the
general IS framework, we use the approach described in [099] on the basis of the
function classes (5.16) and (5.17). Let y be the low discrepancy sequence in [0, 1], and
let g(z1,...,2p) be a probability density function and G(z1,...,xp) its distribution
function. Denote by g1, x(z1,...,2) the marginal density function for zq,...,zg,
in general given by

g1, k(@1 .., xp) = /[ o g(x1,...,xp)dTpsr ...dp . (5.27)
0,1]P-

The distribution function Gy, (xy) associated with the conditional density for zj, given
T1,...,Tkp—1, is then given by

Th
g1,k (T, xp)
Gr(x :/ — dx . 5.28
() 0o 91, k—1(T1,...,Tx_1) (5:28)

To obtain a g-distributed sequence z in [0, 1]P, we need to find the function G ' (-).
Then z, = (zn1,.-.,2np) Where z,; = G:l(ym) This principle can theoretically
be applied to each sub-domain by changing the function g(x1,...,2p) to mimic the
function f in each domain. For the function class (5.17), the integration in (5.27),
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without the integration limits, yields

k D
g1 k(T .. T) = Zai exp(b;i(z; — h;)) H z;
i=1 j=k+1
D D D D
+ Z [b_l exp(b;(z; — h;)) H zj] + (c— Zai) H xzj, (5.29)
i=k+1 " F’iﬂ i=1 j=k+1
VER

where D is the total dimension of the integrand. When the integration limits are
inserted for the local domain, and the expression for Gy (zy) is calculated, we get a
complicated expression in terms of the constants. This expression can, however, be
reduced to a rather tangible function in one variable when the constants are collected,
giving

Gr(zr) = cr1 exp(crati — Ck3) + Cray , (5.30)

where ¢i; are constants. We therefore have to solve an equation of the form (5.30) to
find the g-distributed sequence {z;} for this class of functions. The solution is

x = ap1 W(agz exp (ar3y + ara)) + ags , (5.31)

where W is the so called Lambert W function and ay; are constants. References on
the Lambert W function are e.g. [CGH'96] and [CJK97].

In a similar manner we can develop the distribution function for the class given in eq.

(5.16);

exp(Di_y ai(x; — hy))

Srelmnseoom) = ==
B exp(Zf:s1 bi(zi — hi)) te f[ zi, (5.32)
[Tizgi s i=k+1
giving
Gr(zr) = cp1 exp(cra@r — Ck3) — Cha €xp(crsTr — Cr6) + Cr7 (533)

where ci; are general constants. The inversion of this function is given by
xp = ag1 R(agz exp (Z) + ags exp (ara Z + aps) + are + agry) + ags , (5.34)
where the function R means that we have to find the roots with regards to Z of the

argument to R.

Both the Lambert W function and the root in (5.34) can probably be implemented,
but would be rather slow to use in the adaptive setting as they require numerical esti-
mation or series expansion approximation. I have also developed the G~!(-) function
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for the class of polynomial functions described in eq. (5.15). In order to apply the IS
technique with this function class as a base, we need to find the roots of a polynomial
of degree (el 4+ 1), and in order for the method to be effective we need el > 1. The
consequence is that we have to find the roots of at least a cubic polynomial.

The previous discussion shows that it is hard to find a general function class suited
for the IS technique together with the adaptive method. An alternative is to try to
change the measure under the constraint that distribution is still normal, but with
other parameters. This amounts to choosing the function g to be a version of the
normal distribution function. Following the deduction in e.g. [GHS99a] we look at
functions g(z) > 0 = h(z) > 0, Vz € Q. Then

B, [G(2)] = /Q G(2)g(z) dz (5.35)

_ 9(2) _ 9(2)

where the subscript of the expectation indicates which measure it is taken under.
The factor g(Z)/h(Z) is the Radon-Nikodym derivative. The function h now gives a
degree of freedom with respect to minimizing the variance.

/Q <G(z) ) Eg[G(Z)]) h(z)dz . (5.37)

In our setting g is a normal distribution, and we want h to be a normal distribution
as well, with the same variance structure as g. The importance sampling estimator
then becomes

By[6(2)) = EAlG(Z) exp(~u" Z + L") (5.38)
= B,[G(Z + n) exp(~u"Z — 5" ). (5.39)

In [GHS99a] a detailed discussion of constructing the optimization problem for finding
the best p for h is presented. In [GHS99b] a simpler interpretation is given. It states
that if we let G(z) = exp(F(z)), and F is approximately linear near yu, then F'(Z + )
in (5.39) is approximately F'(1) + VF(u)Z. The substitution yields
T L7
exp (F(Z +p) —p Z —gp p) =
1

exp (F(p) + VF(W)Z = p" Z = Sp"p) - (5:40)

In order to make this expected value a non-stochastic variable we need to ensure that

VF(wZ -ptZ=0 (5.41)
= VF(u) =p. (5.42)
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The solution to (5.42) can under conditions stated in [GHS99a] be found from a
fix-point equation. We limit ourselves to stating that the method is working in the
setting of our test problems. Numerical results are presented in the accompanying
article [Dah02a].
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Appendix A

In this appendix we give the pseudo-code for the adaptive subdivision algorithm.
Note that the value of the integral can be calculated as the tree is created, and no
additional traversion is necessary.

Algorithm 1: Adaptive subdivision

Description: The basic element of the algorithm is a node Nw
representing a sub-domain. Nw has one left and one right pointer
which are able to point to other nodes. Each node know its volume,
can hold an estimate of the contributed variance, and knows the
coordinates of its corners.
Input: A pointer ptrNw pointing to a node Nw
Output: A binary tree where the leaf nodes cover the domain ex-
actly. The sum of the values in the leaf nodes is the value of the
integral.
Dc(ptrNw)
if FINDAXISANDVARIANCE(ptrNw) > MaxVar

CREATE(ptrNw.Left)

Do(ptrNw.Left)

CREATE (ptrNw.Right)

Dc(ptrNw.Right)
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Abstract: This is part two of a work on adaptive integration methods aimed at multidi-
mensional option pricing problems in finance. It presents simulation results of an adaptive
method developed in the companion article [Dah01] for the evaluation of multidimensional
integrals over the unit cube. The article focuses on a rather general test problem con-
structed to give insights in the success of the adaptive method for option pricing problems.
We establish a connection between the decline rate of the ordered eigenvalues of the pricing
problem and the efficiency of the adaptive method relative to the non-adaptive. This gives
criteria for when the adaptive method can be expected to outperform the non-adaptive for
other pricing problems. In addition to evaluating the method for different problem parame-
ters, we present simulation results after adding various techniques to enhance the adaptive
method itself. This includes using variance reduction techniques for each sub-problem re-
sulting from the partitioning of the integration domain. All simulations are done with both
pseudo-random numbers and quasi-random numbers (low discrepancy sequences), resulting
in Monte Carlo (MC) and quasi-Monte Carlo (QMC) estimators and the ability to compare
them in the given setting.

The results show that the adaptive method can give performance gains in the order of
magnitudes for many configurations, but it should not be used incautious, since this ability
depends heavily on the problem at hand.

1Submitted for publication August 2002 to Journal of Applied and Theoretical Finance. Full
reference: [Dah02a]
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6.1 Introduction

The fair value of contingent claims can be expressed as an expected value, which in
turn can be written as an integral. In many situations these integrals are multidimen-
sional. The value of the integrand can vary significantly in the domain of integration,
and in some cases there can be only small parts of the domain in which the integrand
is non-zero. Since MC and QMC methods distribute the evaluation points as evenly
as possible, they will waste calculations on regions which are not important. An
adaptive method tries to allocate the resources to the important parts of the domain.

In option pricing problems where the option is written on several underlying assets
and/or the option price is path-dependent in time, the price is found by calculating
a multidimensional integral. QMC methods are often deployed for these problems,
and additional methods for reducing the variance of the estimator for the price of the
option can be found. The adaptive technique incorporates some common variance
reduction principles implicitly, but the modifications of the integrand are not exactly
the same. In particular, the adaptive method is closely related to importance sam-
pling and stratified sampling. References on these methods are [GHS99a], [GHS98],
[GHS99b], [GHSO00], [0Z00], [PF90], [VAD98]. The purpose of these methods, as the
adaptive, is to use the samples from the QMC generator in a more effective way than
distributing them evenly in the domain. Some knowledge of the integrand must be
present, or collected, for the success of these methods. Importance sampling can be
dangerous in that one is not guaranteed lower variance. The variance can actually
blow up for special cases. The advantage of the adaptive method is that information
is collected as the calculation is done, and function evaluations of the integrand is
used to guide the distribution of the points in the domain.

In this article we design a parameterized test problem which has similarities with op-
tion pricing problems. We do a number of numerical simulations on this problem for
various parameters of the problem, and various adjustments of the adaptive method.
The purpose is to find good criteria for when the adaptive method can be expected to
outperform a conventional method for different problems. In particular we experiment
with local control variates in each sub-domain from the adaption process. Further-
more, we investigate the effect of using the Halton Leaped low discrepancy sequence
compared to the Mersenne Twister pseudo random sequence as an engine for the re-
sulting QMC respectively MC methods, and look at the impact these methods have
on the adaptive method compared to the non-adaptive method. We test the methods
on the problem after applying importance sampling to investigate if the performance
of the methods are affected by this. The use of variance reduction techniques in local
domains and the use of MC and QMC for the evaluation of the sub-problems resulting
from the adaption process is to our knowledge not investigated before. The numerical
tests show that the adaptive method has good performance compared to non-adaptive
methods for many problems. In particular we get good results for out-of-the-money
options and general functions having different behavior in different parts of the do-
main. Furthermore we are able to identify easy implementable criteria for when the
adaptive method is preferable over the non-adaptive method.
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In sec. 6.2 we describe a finance problem suited as an example to test the algorithms.
In sec. 6.3 we generalize this problem by parameterizing it, and describe how to
find the introduced parameter for general option pricing problems with the same
structure. We show that the introduced parameter can be used to characterize real
world problems in sec. 6.4, and we introduce two efficiency measures for the methods
in sec. 6.5. In sec. 6.6 and sec. 6.7 we give numerical results, and in sec. 6.8 we
elaborate further on the findings by looking at two functions with less resemblance to
finance.

6.2 Pricing of Exotic Options

The integrand f(-) in our problem is a function in C°([0,1]%) and is, in its initial form,
monotone in each variable. The different variance reduction techniques described
below can alter the monotonic behavior, but the continuity is maintained. Motivated
from applications of finance, we may assume in this paper that the function has only
one hyper-plane in which it is not differentiable, and that it in the rest of the domain
is in C*°([0,1]%). Note that the method is applicable for more general integrands, but
this would involve a more complicated and time consuming routine to investigate the
integration domain to insure a proper subdivision. The method used in this paper
is tailored for finance problems, and enables us to get proper subdivisions by using
relatively few resources.

We have chosen to investigate the pricing problem of an Asian option on multiple
underlying assets as an example (called an Asian basket option). The adaptive method
is also suited for other option contracts which can be formulated as an integration
problem, and is especially successful for problems where it is possible to identify
a subset of dimensions/variables for which the integrand is most dependent, and
problems where the integrand is zero or constant in parts of the domain. We give a
brief description of the Asian basket option pricing problem below.

We operate in the context of a complete, standard financial market with constant risk-

free rate r and constant volatility, see e.g. [KS98] for a definition of such a market.
A stock in this market is modeled by

N
Sn(t) = Sn(0)exp (Po+ Y 0naWil(t)), n=1,...,N, (6.1)
d=1

where ¢ is the volatility matrix of the IV assets in the market and the stochastic
process Wy(t) is an N dimensional Brownian motion under the risk free measure.
The term P, is introduced for easier notation and is given by (r — %fo:l o2 t.
Without going into details (which can be found in [KS98]), we state that the value at
time t of an Asian option is

V(t) = e " T Eo[p(X(T))IF(#)] (6.2)

where (-) is a Borel measurable function given by ¢(Y) = (Y — ¢)*, resulting in the
European-style Asian option with strike q. Furthermore we are interested in V'(¢) at
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t = 0, i.e. at the time the option is bought. The argument 7 is a vector of discrete
points in time T = (to,t1,...,tk), tx = T, where the number of sampling points
K + 1 is specified. The length of the intervals ¢; — tx_; need not be equal. For a
discussion of an even more general setup, see e.g. [RS95]. The T function for the
Asian basket option is given by

N

K
(T) = m > ZISn(tk) : (6.3)

k=0n

The price of the Asian basket option thus becomes:
V(0) = e " Eolp(Y(T))] - (6.4)

In order to replace the expected value in (6.4) with an integral over [0, 1]”, where D =
N(K+1), and to be able to solve the integral effectively with QMC methods and apply
the adaptive approach, we must formulate go(T(T)) in terms of independent stochastic
processes. This can be done by constructing the o matrix from an SV-decomposition
of the covariance matrix of returns for the assets over some period, and by performing
an SV-decomposition of the covariance structure of the discretized Brownian motion
to simulate the W (#;) process. See e.g. [@ks98] on the Brownian motion or [DBO01]
for the full treatment with regards to the Asian basket option. We then obtain
a formulation where we have identified the eigenvalues of 02, and are able to give
priority to the parts of the problem corresponding to the biggest eigenvalues. The
unveiling and ordering of the eigenvalues leads to a formulation where the integrand
is most volatile along the first dimensions, with decreasing volatility for consecutive
dimensions. Note that there are other approaches to achieve a formulation in terms
of independent stochastic processes for path dependent options (see [DBO01]), but
the method described here is the only one for which we are able to identify the most
important sources of noise for the full problem, and therefore the best suited model for
the adaptive approach. To expose the independent stochastic processes we introduce
the notation S(tx,er). The price of the option at ¢ = 0 can then be written

1 K N
V(0)=eT /RDL,O(EZZSn(tk,m))w(m) dz (6.5)
=0 n=1
T I; OK N
- /[0,1]1) \D 1;7; Sn(tk,E(y))) dy (6.6)

where 1 : RP — RP is the density of a D - dimensional centered Gaussian random
variable with covariance matrix equal to the identity, and ¢ : [0, I]D — RP is a vec-
tor of inverse cumulative normal distribution functions with mean 0 and variance 1:
e(y) = (e1(y1),...,ep(yp)). We do the evaluation of &(-) by a rational approxima-
tion suggested in [Mor95]. The final problem formulation in (6.6) is suitable for the
adaptive algorithm. Note that the independent stochastic variables in the problem
represents the coordinate axis of the integration problem, and the identification and



6 An Adaptive Method. Part II 69

ordering of the orthogonal noise components leads to a problem formulation where the
integrand is “most active” in an area of the domain as small as possible. Furthermore
the activity is localized to as few quadrants as possible, which also are neighbors.
These characteristics are all favorable to the adaptive method. In the next section we
will look at how the eigenvalues of the single asset Asian problem is altered by chang-
ing the time discretization, and use this to formulate a more general test problem
suited for testing the performance of the adaptive method for general option pricing
problems.

6.3 Parameterizing the Noise Structure of the Op-
tion Problem

We know from previous work in e.g. [BEG91], and from tests of our own algorithm,
that the adaptive approach is not always competitive with conventional MC and
QMC methods. The integrand need to have special characteristics as the dimension
becomes high for this to be the case. The adaptive method should therefore not
be used incautious. We want to formulate criteria for deciding when the adaptive
method is competitive with conventional QMC for general option pricing and hedging
problems. These problems are often on a similar form as the problem described in
sec. 6.2, and the model of the underlying assets for a range of problems can generally
be written as

Sp=58nexp (P, +Cre);1<n< N, (6.7)

where C), is the n’th row of a positive semidefinite matrix C' and ¢ is vector of indepen-
dent normal distributed variables with length N. The matrix C' can be constructed
by setting C' = ©A'/2, where A is the eigenvalue matrix of C2, and ¥ is the matrix of
eigenvectors. The matrix C? is a parameter depending on the market and the type
of option to be priced. In the single asset Asian option problem C? is only depending
on the form of the time discretization, and we can therefore use this problem to alter
the contents of C, and to find a criterion based on the eigenvalues of C? to measure
the relative efficiency of the adaptive approach.

We have formulated a functional behavior of the time discretization as
f(t,a) =t*,t €]0,1] and a € [0.001,1] . (6.8)

When the time discretization given by this function is applied to the pricing of the
asian option, each value of a give a different set of eigenvalues and eigenvectors for
the matrix C?. In fig. 6.1 we have plotted the square root of the normed eigenvalues
in descending order for a typical configuration together with the function

I(i)=4" i=1,...,D,b<0, (6.9)

where the parameter b is found by a least squares fit of the function to the square root
of the eigenvalues in descending order. As can be seen from the graphs, the fitted
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function is rather similar to the graphed square root of the eigenvalues. To extend
the discussion to the range of b > —1.37 in (6.9) not captured by the adjustment of a
in (6.8) we have constructed an artificial parameterized problem class where we start
out with the Asian option problem with D equidistributed time discretization points,
and the parameter a equal to 1. The resulting C' matrix of this problem is changed
by exchanging the A matrix with a new A matrix where the diagonal elements are
A11(i), A1 being the largest eigenvalue of the original C? matrix. By simulating on this
artificial problem for b € [—1.4,0] we can extend the range in which we can evaluate
the relative performance of the adaptive method. The reason for switching approach
is that we are not able to produce eigenvalue dependence in the range b < 1.37 for any
a in (6.8). As a is increased above one, b will increase rather than decrease further.
In fig. 6.1 we have illustrated the dependence between a and b.

Since option pricing problems often share the structure described above, and the
behavior of the square root of the eigenvalues can be matched satisfactorily with the
function (i), the conclusion of our numerical tests can be used to decide when to
employ the adaptive method for new problems. The graphed results to illustrate the
relative performance of the adaptive method will be done as a function of b rather
than a, because the parameter b is the one that can be extracted from general option
pricing problems.

6.4 Comparison with Actual Pricing Problems

The parameterization in sec. 6.3 turned out to give a very close relationship between
the rate of decline of the square root of the ordered eigenvalues and the function given
in 1(i) = i for a fitted b. To argue that the survey we have performed can be put
to use, we give the eigenvalues and the appurtenant b for some real world problems.

brisa(1) (log) —— Sqrt o eigenvalues when N=1,K=64 ———
X"(-2.3812) -

20 30 40 50 60

Figure 6.1: In the left plot the parameter b is given as a function of log,q(a). The
dependence is close to linear. In the right plot a the square root of the eigenvalues
(for a = 0.1) and func. 6.9 (for the fitted b) is given for D = K = 64 eigenvalues
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These are graphed in fig. 6.2. These plots show that for noise structures emerging

Sqrt of eigenvalues when N=1,K=64 —— Sqrtof eigenvalues when N=8.K=8 ——
X(2.3812) - X(:0.75778) -
09 R 1

0.8
07

0.6

05

Sqrt of eigenvalues when N=64,K=1 —— Sqrt of eigenvalues of Schwartz model when N=1,K=64 ——
X(-0.4004) - X(-1.2899) -

Figure 6.2: The eigenvalues for the noise structure for a set of examples. The first
three cases are for the Asian basket option case with (N = 1, K = 64), (N =8, K =38)
and (N =64, K = 1). The last example is from an asian option on a forward contract
in the energy market, and (N = 1, K = 64). We have used a = 0.1 in eq. 6.8 for the
propagation of time. As before N is number of assets, while K is number of time
steps. We have included the appurtenant least-squares fit of func. 6.9. On the z-axis
is the dimension corresponding to the eigenvalues. On the y-axis is the square root
of the normed eigenvalues

from a discretized Brownian motion, like in the Asian option cases, the fit is very
close. For noise structures extracted from market data, the fit is not that good. It
is, however, the decline rate of the largest eigenvalues that influences the convergence
rate most, and this shape is captured well by the functional relationship including
b. Note furthermore that the eigenvectors should not have a large impact on the
convergence rate as they have unit length.
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6.5 Efficiency Measures

In order to compare the performance of the adaptive method with the conventional
we need suitable measures. We focus on two such measures; one where the extra time
consumption in the adaptive approach is accounted for, and one based purely on the
difference in convergence speed in terms of variance. In detail I have measured the
variance of 100 simulations of the integral by the adaptive and the non-adaptive for
each combination of the parameters. The series of estimators for the adaptive method
depend both on the distribution of points in each sub-domain from the adaption
process and on the ability of the method to sub-divide the domain well. In order for
the variance v, of the 100 samples from the adaptive method and the variance v,
of the conventional method to be comparable, the point estimates of the price are
calculated by using different values § for the subdivision accuracy in the adaptive
method. This is to avoid using the exact same subdivision of the domain over and
over, which would give the adaptive method an advantage when comparing with the
non-adaptive. A specification of § = 1072 as input to the simulation, therefore results
in the adaptive method using § € [1073,2-10~?] descending linearly as the simulations
are performed to force different subdivisions for each estimated value. Furthermore
it must be mentioned that the estimators are based on drawings from consecutive
parts of the pseudo- and quasi-random number sequences for respectively the MC
and QMC methods.

The first measure of efficiency, labeled DE (for definite efficiency) is constructed by
the relation

DE = logy(vaTa) — logyo(vnTh) (6.10)

where T, and T}, are the computing times for resp. the adaptive and the conventional
method. The DE-measure gives us a scale for the relative efficiency of the adap-
tive method to the conventional, where a negative number indicates preference for
the adaptive method, while the same positive number gives an equivalent preference
for the conventional. The scale is logarithmic, so a number of —1 would indicate
that the adaptive was ten times better than the conventional, and so on. To see
that the product of computing time and variance %\irves a good measure of efficiency
for a method, consider the estimator Xy = % o Xi with X; iid., E[X;] = X
and Var[X;] = 0% < oco. The central limit theorem asserts that as the number of
replications N increases we have

VN(Xy — X) = N(0,0%) . (6.11)

Suppose that we use a fixed amount of computing time 7 for each replication, then
the number of replications we can calculate given a computational budget 7 is |7 /7].
This gives

VT(Xy = X) = N(0,0%7) , (6.12)

which suggests that, asymptotically, we should prefer an estimator having the lowest
value of the product 6% 7. It should be mentioned that the above arguments are



6 An Adaptive Method. Part II 73

valid for truly stochastic variables only, and applicable for pseudo random variables.
The same arguments may therefore not be used incautious to crate a measure for
QMC methods (which are deterministic). QMC methods and their low discrepancy
sequences are constructed with the purpose of improving the convergence beyond the
VN rate, An extensive literature on these subjects exist, see e.g. [NX98], [Owe99],
[Owe98]. It can be shown that when a low discrepancy sequence is used, the con-
vergence of an integral to its true value is proportional to the star discrepancy of
the sequence multiplied by the variation of the integrand in the sense of Hardy and
Krause. This is formalized through the Koksma-Hlawka theorem (see e.g. [KNT4],
[Nie78], [Nie87]). If we assume that the Koksma-Hlawka theorem can be interpreted
similarly for the adaptive and the non-adaptive method, we can use the arguments
above to justify the use of the DE-measure of efficiency also in the QMC setting. We
can not, however, use the DE measure to compare calculation methods with differ-
ing underlying sequences. Therefore we will always construct the DE measure with
common sequences for the underlying estimators.

The second measure of efficiency we have chosen to present, does not include the
computing time. The background for presenting this measure, is that, although we
have coded the algorithms as effectively as we could, there could still be ways to make
them faster. The second measure therefore serves as comparison between the variances
of a set of 100 replications of the adaptive method compared to the conventional. This
measure is in the graphs denoted by F' (for fractional efficiency). It is calculated as

F =log;o(va) — logo(vn) - (6.13)

A further aspect worth noting is that the efficiency-measures we have chosen are
indifferent of the level of the integral itself: If we in order to normalize the integral,
multiply by a factor of d, the variance will change by a factor of d*. The estimators,
however, are not affected since logo(d?v,) — logo(d*v,) = logyo(va) — logo(vn)-
Therefore the changes in the measures are due to the change of parameters, not other
trivial effects. This is important, because the value of the integral will change as we
change parameters of the option contract, and changes of parameters have to be done
to reveal the characteristics of the integration methods.

6.6 Numerical Results of the Parameterized Prob-
lem

In this section we will draw attention, and try to explain the main findings of the
numerical simulations. We have simulated the price of the options by using different
configurations in order to compare the performance of the adaptive algorithm with
the conventional? non-adaptive. For the market, we have used a risk free rate of

2Note that the label conventional is here used on a highly sophisticated method using principal
component analysis (SVD) to find the most important dimensions of the noise sources combined,
and using a low discrepancy sequence as uniform number generator
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0.05 and a volatility of 0.5331 for the asset in the single asset Asian option (the
volatility of Kveerner? in 2000). The varied parameters of the model are the number
of time discretization steps (K): {2,64}, moneyness (m): {—25,0,25,50}, sequence
generator: (method) {H,M} (Halton Leaped, Mersenne Twister), Control variate
technique: (CV) {Y,N} (yes, no), importance sampling: (IS) {Y,N} (yes,no), the
parameter a in eq. 6.8: (a): [0.001, 1] - leading to a decline rate for the square root of
the eigenvalues in the range [—5.88, —1.37] (see sec. 6.3 on the relation between a and
b and how we find an extended range for b). In the figures these different parameters
are varied and plotted against each other. We have also varied the variance estimator
limit &, which controls the subdivision coarseness, (§): {1072,1072,10~*}. Note that
when the DE - efficiency measure is negative, the adaptive method has the best
performance. In the relevant plots, we have included the horizontal line at 0 to ease
the reading of the graphs.
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Figure 6.3: Plot of DE-efficiency vs. log;o(D) (dimension) for b = —1.55 (1) and
b = —2.38 (2) (equivalent to a = 0.5 and a = 0.1). In the left figure is the Halton
Leaped sequence used, while the Mersenne Twister is used in the right

First of all, the dimension of the problem is important for the relative performance,
and the ability of the adaptive method to outperform is better for lower dimensions
(fig. 6.3). Furthermore the adaptive method is relatively better for problems where
the eigenvalues decline rapid, and for out-of-the-money options (figs. 6.4, 6.5). These
findings are connected, and the explanation for them are twofold: first it is evident
that the adaptive method is able to exploit that the integrand has value zero in large
areas of the domain. This explains why out-of-the-money option are easier for the
adaptive method than in-the-money options (fig. 6.8). A rapid declining rate of the
eigenvalues tells us that the contribution to the variance of the integral is limited
to a small set of dimensions of the integrand, and the adaptive method is able to
exploit this. Further arguments for the connection between the effective dimension
of the problem and the behavior of the eigenvalues can be found in [DB02] where

3Kveerner is one of the largest companies in the main index of Oslo stock exchange, and had a
rather high volatility in 2000
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Figure 6.4: Plot of both efficiency measures (F and DE) vs. log;y(b) (eigenvalue
decline rate) for a typical case. In the left figure D = 16 and in the right D = 128
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Figure 6.5: Plot of DE-efficiency vs. b for different moneyness — (1) corresponds to
moneyness = 0, while (2) corresponds to moneyness = 50. In the left figure D = 16
and in the right D = 128

we have discussed and measured the relation between the eigenvalues of the noise of
the problem and the number of contributing dimensions, and concluded with a close
relationship.

Next we turn to the question; why does the ability to outperform decrease with
increasing dimension (fig. 6.3)7 The answer to this lies in the curse of dimensionality:
The hyper-surface of the cube increases as the dimension increases while the volume
is constant equal to 1. This results in the fraction of volume where the integrand
has value zero decreases as the dimension of the problem increases if the fraction of
important dimensions does not decrease. This is because the fraction of the volume
lying close to the borders of the domain is increasing as the number of dimensions
increases. To concretize; the volume fraction of the [0.01,0.99]% cube is about 0.96
relative to the [0, 1] cube, while the volume fraction of the [0.01,0.99]* cube relative
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to the [0,1]%* cube is about 0.27. The same argument in dimension 1024, which is a
realistic case with 32 assets and 32 time discretization points, gives a fraction of about
1079, The nested exponential functions in the integrand in option pricing problems
results in dominance for a variable as it goes to the border, so by the argument above
we have a situation where the adaptive method looses an important advantage as the
number of contributing dimensions increase.

Figure 6.6: Plot of DE-efficiency vs. b with the control variate technique (label (2))
and without (label (1)). In the left figure D = 16 and in the right D = 128

The local control variates technique enhance the performance only for problems having
the most rapid decline of the eigenvalues, (fig. 6.6). This is probably due to the failure
of generating a polynomial function behaving like the original function for the option
pricing integrand, even for very local domains, as the dimension is increased. Note,
however, that for less complicated integration problems we have experienced that the
control variate technique gives a huge performance gain. In sec. 6.8 we give some
numerical results showing this.

There can be various reasons for choosing a plain MC method when pricing options,
and the adaptive method can be used in this setting as well. The findings of our
numerical tests are that the relative performance of the adaptive method is better
in the MC setting than in the QMC setting (fig.6.7). Note, however, that the QMC
estimators gives the most accurate results for both the adaptive and the conventional
method, but because the non-adaptive MC method has considerably lower perfor-
mance than the corresponding QMC method the relative performance is better in
the MC setting. See e.g. [Dah00] or [DBO01] for illustrations on the performance
differences between MC and QMC.

It is interesting to note that as the variance estimator limit C, which controls the
subdivision coarseness, is changed, the measures of relative efficiency is changed in
a different way when the Halton sequence is used and when the Mersenne Twister
sequence is used. In the QMC setting the relative efficiency only changes for the set of
problems with a very high decline rate (b < —4.5), while it gets better for all problems
in the MC setting. The second observation reveals that the adaptive method gains
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Figure 6.7: Plot of DE-efficiency vs. b by using different uniform number generators —
(1) corresponds to the Halton Leaped sequence, while (2) corresponds to the Mersenne
Twister. In the left figure D = 16 and in the right D = 128
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Figure 6.8: The same comparison as in fig. 6.7, but now we do the plots for moneyness
= 50 rather than moneyness = 0. In the left figure D = 16 and in the right D = 128

more from adding computational work than the non-adaptive when a pseudo random
sequence is used, while the first observation means that this is only the case for the
QMC setting for b < —4.5. For b > —4.5, the relative efficiency is the same. An
illustration of these results is given in fig. 6.9.

To investigate the effect of applying importance sampling, we have to modify the ef-
ficiency measures. The background for this is that by applying importance sampling
we modify the integrand in such a way that the adaptive method will act differently
on the problem. This results in a different subdivision and a different number of sim-
ulation points than for the simulation on the non-altered problem. The DE-measure
is a compound measure and can still be used in the importance sampling (IS) setting
to find the effect of applying the adaptive method to an IS modified problem, but we
must use less compound measures if we want an answer to whether we have bene-
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Figure 6.9: Plot of DE-efficiency vs. b for § = 1072 in label (1) and § = 10~* in label
(2). The dimension of the problem is D = 32. In the left figure the Halton Leaped
sequence is used, while in the right the Mersenne Twister

fitted by applying importance sampling in the first place. This situation is different
from what was the case when applying the control variate technique, which only af-
fected the treatment of the integrand in the adaptive setting. We therefore introduce
the non-relative measures E, = log;,(Lv,) and E, = log,q(Lv,) for respectively
the adaptive and non-adaptive method. They can be used to compare the effects
of changing parameters and variance reduction techniques, but not to compare the
effect of changing method. The main finding is that the performance of the adaptive
method is virtually unchanged by applying importance sampling. The case for the
non-adaptive method, however, is different. Here the insertion of the IS technique
has a positive effect for D < 32. Furthermore, the variance of the estimator did
not increase by applying importance sampling for any of our simulations. The time
consumption, however, increased as a consequence of the fixed-point iteration. It is
interesting to note that the adaptive method had the ability to neutralize the effect
of importance sampling. Note that the importance sampling technique, which is ap-
plied to the problem globally, is only practical for integration problems of probability
density functions and can not be applied to the functions in sec. 6.8.

6.7 Numerical Results of Actual Pricing Problems

In sec. 6.4 we found that many option pricing problems have an eigenvalue structure
that can be imitated by the simple function (i) = i®, for some b. In this section we
are going to simulate the value of a European basket option with N = 8 underlying
assets to check if the resulting values for (b, DE) are in accordance with the ones
we have predicted by simulating on the corresponding parameterized Asian option
problem with K = 8 time discretization points. The results are given in fig. 6.11, and
shows a good match.
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Figure 6.10: Plot of E,-efficiency vs. b for respectively no importance sampling and
QMC (1), importance sampling and QMC (2), no importance sampling and MC (3)
and importance sampling and MC(4). In the right plot is the corresponding graphs
for the measure E, (for the adaptive method). The dimension is D = 32
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Figure 6.11: Plot of DE-efficiency vs. b with the control variate technique in label
(2) and without in (1). Included in the figures are the coordinates of a basket
option problem simulated with the same methods. The dimensions of the problems
are D = 8. In the left figure the Halton Leaped sequence is used, while in the right
the Mersenne Twister

6.8 Additional Test Functions

We have included two additional test functions, with less resemblance with the option
pricing problem. This is to show that the control variate technique can be a valuable
method for various integration problems, even if it did not perform very well in
general for the option pricing problems. Also for these functions a parameter b is
added in order to control fluctuations of the integrand for increasing dimensions.
Note, however, that there are no close relationship between the interpretation of b for
these functions and for the problem in sec. 6.3, except that it is used to parameterize
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the behavior of the integrand in different dimensions. The functions are given by

D

file) =) i1 +e™)), 2 € [0,1] (6.14)
=1 1 .

fow) = Dexp (35 i"6), x € [0,1], (6.15)

where b € [—4,—1]. Simulations on these functions shows that the control variate
technique enhance the adaptive method considerably (figs. 6.12 and 6.13), and that
the gain from applying CV is increasing as b is decreasing.
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Figure 6.12: Plot of DE-efficiency vs. b with the control variate technique in label
(2) and without in (1) for the function f». The dimensions of the problem is D = 32.
In the left figure the Halton Leaped sequence is used, while in the right the Mersenne
Twister

6.9 Conclusion and Discussion

It is rather obvious that an adaptive QMC integration method for some problems will
outperform a non-adaptive. And the integrands for which this will be the case have to
be sufficiently nice in parts of the integration domain to allow the more sophisticated
method to come out ahead. We wanted to find the set of option pricing problems where
this was the case, and criteria for pinpointing these problems in advance. The criteria
were formulated through a parameterized function fitted to the sorted eigenvalues in
descending order. Furthermore we established an indirect method for altering the
parameter. This gave us an apparatus to investigate the performance of the adaptive
method compared to the non-adaptive for different parameters of the problem, and
for various sophistication levels of the methods. The major part of this article focuses
on presenting and elaborating on these results. In the companion article [Dah01] the
method itself and the sophistication levels are developed. We do not include any
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Figure 6.13: Plot of DE-efficiency vs. b with the control variate technique in label
(2) and without in (1) function for f;. The dimensions of the problem is D = 32.
In the left figure the Halton Leaped sequence is used, while in the right the Mersenne
Twister

of the detailed findings in this section, as most of the article is dedicated to this,
but limit ourself to stating that we have found that the adaptive method can give
considerable performance gains for many problems. In general it will be the method of
choice for low dimensional problems, and for higher dimensional problems it can give
considerable performance gains for problems with certain characteristics. It should,
however, not be used incautious for high dimensional problems, since the performance
also can deteriorate for problems not having these characteristics.

It should be mentioned that a vast set of simulations has been performed, summing
up to about 6000 hours of computing time on a cluster of PC’s with average CPU
speed of about 1Ghz. Additional and deepening results can therefore be obtained by
contacting the author.
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Abstract: In this paper we investigate the recently introduced Malliavin approach com-
pared to more classical approaches to find sensitivities of options in commodity and energy
markets. The Malliavin approach has been developed in the paper [FLL199] and [FLL"01].
In commodity and energy markets, some special dynamics for the underlying security and
some new products different from Black & Scholes markets are encountered. In addition
to investigating the numerical values of the expressions by conventional Monte Carlo (MC)
and quasi-Monte Carlo (QMC) methods, we apply an adaptive approach developed in the
papers [Dah01] and [Dah02a]. This adaptive method is also applied to the so called Localized
Malliavin approach developed in the paper [FLL*01]. The numerical results show that we
can get substantial variance reduction in estimators by choosing sophisticated methods for
the simulations, and that the Malliavin approach is a very powerful tool for formulating the
sensitivity estimators.

7.1 Introduction

In commodity and energy markets, the underlying product of a derivative contract
may be either the spot or the forward/futures contract on the spot. A much used
model for spot prices in commodity and energy markets is Schwartz’ mean-reverting

'In preprint as working paper May 2002. Full reference: [DBK02]
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model (see [Sch97] and [KHO00]). Formulated in a risk-neutral world it has the dy-
namics,

dS(t) = a(u — A — In S(£))S(t) dt + oS(t) AW (2) . (7.1)

Here, a is the mean-reversion rate, o the volatility, e# the long-term level for the spot
price and A the market price of risk. W () is a standard Brownian motion defined on a
complete probability space (2, F, P), where F; is the augmentation with respect to P
of the filtration generated by W, 0 < t < T < oo. If we introduce v = a(u—\) —0?/2,
we may write S(t) = exp(X(t)) for the Ornstein-Uhlenbeck process

dX(t) = (y —aX(t)) dt + odW (t) , (7.2)

with X (0) =Inz,S(0) = z. The process X (¢) has an analytical expression

t
X(t)=e *Inz+y(1—e )+ a/ e (t—s) dW (s) .
0

This analytical expression is useful when calculating derivatives of claims.

Prices of forward instruments can be derived in an arbitrage-free way from the spot
price (see e.g. [CS00, Ben02, Pil98]). However, motivated from the Heath-Jarrow-
Morton approach in interest rate theory, one may instead write down the risk-neutral
dynamics of the forward price directly. We assume the dynamics of the forward
contract on the spot is given in the risk-neutral world as

dF(t,T) = o(t, T)F(t,T)dW (t), F(0,T)=z(T), (7.3)

where z(T') is todays forward curve. We assume o is an integrable function such

that fOT o%(t,T) dt < oo, which means that t — F(¢,T) is a martingale. An explicit
representation of F(t,T) is

t t
F(t,T):a:(T)exp(—%/O Uz(s,T)ds—l—/O o(s,T)dW (s)) . (7.4)

A frequently used volatility structure in commodity and energy markets is given by
o(t,T) = ge=*(T=1 (7.5)

This specification is motivated from the mean-reverting model of Schwartz for spot
prices, which implies this volatility structure for the forward price (see e.g. [CSO00,
Ben02]). When considering claims on spot prices, the dynamics in (7.1) will be
assumed. When we on the other hand analyze claims on the forward, we use the
forward dynamics (7.3) with volatility structure as in (7.5).

We focus in this paper on derivatives of the price of different claims with respect to
different parameters in the underlying. In sec. 7.2 we consider derivatives of European
options on spot prices of the commodity and energy market. In particular we find
expressions for delta, gamma and vega. In sec. 7.3 we find the derivatives of European
options on forward prices. The same parameters as for the spot are calculated. We
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advance in sec. 7.4 by looking at path dependent options, in particular the European-
style arithmetic average Asian option, which produces a multidimensional problem.
The sensitivities we find by differentiating the prices of such claims are extensively
used in the process of hedging contracts of this type. Practicians need to have a well
developed intuition of the dependence of their position on the movements and events
in the market, and a range of literature give interpretations of the parameters. See
e.g. [Hul97], [Ave97], [Tal97].

The derivatives can be expressed in various ways, depending on how they are deduced
and the assumptions made in the deduction. We will mainly focus on the Malliavin
approach recently introduced in the papers [FLLT99] and [FLLT01]. The approach
uses the Malliavin derivative together with properties of the Skorohod integral to pro-
duce formulas for the derivatives of options. These formulas are expressed in terms
of the expectation of the option’s payoff multiplied with some random variable which
is (usually) a function of the underlying. A neat feature of the Malliavin approach
is that this random variable is not dependent on the actual option (that is, f), but
on the underlying product. This means that Monte Carlo based algorithms for nu-
merically evaluating derivatives can be made for general options, and not specifically
for each option. This is in contrast to the direct method (also called infinitesimal
perturbation analysis (IPA) ), where one must deduce individual expressions for each
payoff function and underlying contract since the derivative is expressed in terms of
the differential of the payoff function. See e.g. [Gla91] for an overview of the direct
method or [BG96] for deduction of sensitivity expressions in the geometric Brownian
motion (GBM) setting. Another conventional method frequently used is the so-called
density approach, which relies on the existence of a density of the underlying product.
This method expresses the derivative in terms of the option’s payoff multiplied with a
random variable, very much similar to the Malliavin approach. However, the density
method deduces one such random variable, while the Malliavin method provides a
flexible class of variables. Also, when for instance the option is of Asian-type, there
exists no density, and the density approach fails. The Malliavin approach handles
this type of products, demonstrating the flexibility of the method.

To compare the Malliavin approach and the alternative methods, we deduce sensi-
tivities by the direct method and the density approach, whenever these methods can
be used. In this way we are able to illustrate both the flexibility gained with the
Malliavin approach in that it can be applied with success where other methods fail,
and to investigate how different numerical methods apply to the different derivative
approaches. A further improvement of the Malliavin approach is the localized ver-
sion introduced in [FLLT99, FLLT01]. The Localized Malliavin approach uses the
Malliavin methods around point where the payoff function is not smooth, and direct
method outside.

The contribution of the paper is twofold. First, we present formulas for derivatives of
options in commodity and energy markets based on the Malliavin approach and com-
pare these with the corresponding expression found by conventional methods. A large
portion of the present paper consists of such formulas. Secondly, we investigate effec-
tive numerical methods for estimating the sensitivities based on the different formulas
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derived in the first part. We have implemented a quasi-Monte Carlo method based on
the Halton? low discrepancy sequence as a basis for this exploration. Furthermore we
have adjusted an adaptive method developed by the authors in [Dah01] and [Dah02a]
to the current problem, resulting in an adaptive QMC method. The numerical tests
are performed both with and without the adaptive method in order to investigate
the effect of applying this. Furthermore we investigate the difference in numerical
stability and convergence speed for the estimators deduced by the three approaches;
Malliavin, Localized Malliavin and Forward Difference. We know from previous work
that the adaptive method is able to perform very well for low dimensional integrals,
and the results of this paper show that also in the current setting it gives enormous
speedup for many of the problems. The numerical results furthermore verify that
the Malliavin approach is the best alternative for finding sensitivities when the payoff
function of the option is discontinuous. Our numerical results, somewhat surprisingly,
also show that the Local Malliavin approach does not give an estimator with lower
variance than the Malliavin approach, but almost identical. However, we have not
numerically tested the Localized Malliavin approach to calculate the gamma, and it is
likely that the Localized Malliavin approach is able to perform better in this setting.

We emphasize that the adaptive method in this context is not “competing” with
the Malliavin approach, but a supplement used to refine the use of Monte Carlo
sampling points also in the Malliavin and Local Malliavin context. The results of the
simulations are collected in sec. 7.7.

7.2 Derivatives of European Options on Commod-
ity and Energy Spots

Consider a European option with maturity 7' and payoff f(S(T)), where f € L*(R)
and E[f(S(T))?] < oo . The price of the option is

u=e"TE[f(S(T))] . (7.6)

Recall that the spot is formulated directly in the risk-neutral setting. We shall use
the notation u(z) when we consider the price as a function of the strike spot price z,
and u(o) when we consider the price as a function of the volatility o. For simplicity,
we will assume throughout the rest of the paper that the risk-free interest rate is zero,
ie. r=0.

We are interested in calculating the delta, u'(x), of the option price. Before we go to
the Malliavin deduction, let us present the direct approach, also called infinitesimal
perturbation analysis (IPA). Provided we can move differentiation into the expecta-
tion (sufficient conditions for this are given in e.g. [L’E91], [Gla91], [BG96]), we can

2The Halton sequence was first presented in [Hal60]. In this paper we are using an extension of
the Halton sequence denoted the Halton leaped sequence. It was presented in [KW97], together with
good leap values. We have used the leap value 31 in the numerical experiments.
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simply write the delta as

dS(T)

u'(z) =E[f(S(T) ——]

—aT

:Mfwawaﬂ ].

When f(z) = (x — K)*, we have f'(z) = 1,>k. This method however gets into
trouble if f is discontinuous, for example f(z) = 1,>k. By the same argument, the
direct method is not suited if we want to find the second derivative (e.g. gamma)
of this f. Furthermore, the algorithmic treatment of this approach is depending
on the specific payoff function f, resulting in individual implementations for each
payoff function and each instrument. The method is therefore not very flexible in this
context. As we shall see, The Malliavin approach circumvent all these limitations.
An other approach that has the ability to circumvent this, but gives a bias, is the
finite difference (FD) method. The derivative is then simply found by the estimator

u(z + h) — u(zx)
h )
where we use the same Brownian trajectories for both function evaluations to reduce
the variance of the estimator. The parameter h should be small to reduce the bias of
the estimator, but a smaller h results in an estimator with larger variance. We use
h in the range [0.1,0.001] percent of z. See [BG96] for a discussion on finding the
optimal A for the FD estimator.

Next we turn to the Malliavin approach. However, before we can state the propositions
on the sensitivities , we need to introduce the Malliavin derivative and state some
useful properties of the Skorohod integral.

7.2.1 Some Results from the Malliavin Calculus

Let C be the set of cylinder functions on the probability space, e.g. the set of random
variables of the form

G :g(/ hl(t) dW(t),...,/ hn(t) dW(t)) s
0 0

where g € S(R"), the Schwartz space of rapidly decreasing and infinitely differentiable
functions on R”, and h; € L*(Q x R). The Malliavin derivative of G € C is the process
D; X defined as

0
DG = Z d i
Introducing the Banach space D"? as the completion of C with respect to the norm

T
Iﬁﬁg=mGﬂ+MA(DﬁfﬁL
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we can extend D to be a closed linear operator defined in D*?. If Y is an Ito-integrable
process, then the Malliavin derivative of fOT Y (s)dW (s) is

T
D, / Y (s)dW(s) = V() 1yer .
0

Furthermore, if ¥ € D' and g is a continuously differentiable function with bounded
derivative, then g(Y) € D2, and the chain rule holds for the Malliavin derivative:

Dg(Y) = g'(Y)D,Y .

We proceed with some results on the Skorohod integral, a stochastic integral for a
class of anticipating stochastic processes Y () which we denote [Y(s)dW(s). It is
defined as the adjoint operator of D in the following manner: Let Y be a stochastic
process. Then Y is said to be Skorohod integrable if for any G' € D'*? we have

T
]E[/ Y(H)D:G df] < C||Gl12 »
0

where C is a constant depending on Y. The Skorohod integral of Y, [Y (s) dW (s),
is defined by the following duality relation: For any G € D'

T T
]E[G/O Y (t) W (t)] :]E[/O Y (t)D,G dt] .

We state two basic properties of the Skorohod integral, which will be used frequently
in what follows. The first proposition tells us that Skorohod integration is a true
generalization of the Ito integral:

Proposition 7.2.1. Let Y be an Ito-integrable stochastic process. Then, Y is inte-
grable in the sense of Skorohod and

T T
/ Y () OW () = / Y () dW () .
0 0

The Skorohod integral possesses an integration-by-parts property:

Proposition 7.2.2 (Integration-by-parts). Let G € D2 be an Fr-adapted ran-
dom variable. Then, for any Skorohod integrable stochastic process Y

T T T
/GY(t)(SW(t):G/ Y(t)&W(t)—/ Y (t)D,G dt .
0 0 0

The proofs of the above propositions can be found in e.g. [Nua95], where a complete
account of the Malliavin Calculus can be found.
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7.2.2 Derivatives of Options on Spot

We now turn our attention to the computation of expressions of option derivatives
using the Malliavin approach. We remark that many of the results below follow from
the general results in [FLLT99, FLLT01]. For the sake of clarity we have chosen to
derive the expressions for the specific models we have in mind. Introduce the set of
functions

T
I'r={ac L2([O,T])|/O a(t)dt =1} .

Then,

Proposition 7.2.3 (Delta by the Malliavin approach). The delta of u(x) can
be represented as

T
o (z) = E[£(S(T)) / a(t)eet dw ()],

agxr

where a(t) € T'p.

Proof. Assume first that f is continuously differentiable with bounded derivative. It
can then be shown that differentiation and expectation commutes, and thus

! () = E[//(S(T) 5-S(T)
=2 e *TE[f'(S(T))S(T)] .

We have used that 0S(T)/0z = x~'e~ T S(T). The Malliavin derivative of the spot
price is

DS(T) = XM D X(T) = S(T)oe T D1y py .
Choose a function a(t) € I'r. Integrating both sides above give

T
S(T) =o"ted” / a(t)e=*'DyS(T)dt .
0

Using the properties of the Skorohod integral and the Malliavin derivative, this yields,
1 T
(@) = —Ef / F(S(T))DyS(T)a(t)e " di]
0
1 T
- Lg / Dy f(S(T))a(t)e" di]
Tro 0

ro

T
- i]E[ F(S(T)) /0 a(t)e™ " dW ()] .

By a density argument the formula can be extended to f € L% See [FLLT99] for
details on this. O
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In all the following deductions of option derivatives using the Malliavin approach we
shall use the method above with first assuming smooth payoff functions, and then
passing to the limit by a density argument. This will from now on be done without
being explicitly stated.

If we choose a(t) = e?®t/ fOT e2ot dt = 2ae?°t /(T — 1), we get

u'(x) =

2c T ot
SELAS@) [ et aw].

a:c(eQaT _

But

where v = a(u — \) — 02 /2. Hence,

2c

s =) (T mS@) —a =)} (1)

u'(x) = E[f(S(T))

If we differentiate the delta of u(x), we find the gamma:

Proposition 7.2.4 (The Malliavin approach). The gamma of u(x) can be repre-
sented as

where Z(T) = [, a(t)e”* dW (t) and a(t) € T'r.

Proof. From Prop. 7.2.3 we have

W(@) = E[F(S(T)2(T)]
for
T
Z(T) :/ a(t)e™*t dW (t)
0
Hence,
"(a) = L B[ {(S(T))Z(T)
-1 1
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We investigate the second expectation: Using that %S (T) =e 2TS(T)/x, and

T
S(T) = a_leo‘T/ a(t)e ™ D,S(T)dt ,
0
we obtain

T
B//(S(1)) 5-S(T) - 2(D)] = B[ [ F(S@)DS(T)att)e ' 2(T) d]
1 T
= Lg| /0 Df(S(T))a(t)e Z(T) di]
1 T
= B[f(S(T)) /0 a(t)e= L Z(T)sW (1)) ,

where W mean the Skorohod integral, which is present since Z(T') is anticipating.
By the integration-by-parts formula for Skorohod integrals,

T T T
/ a(t)e”*Z(T)oW (t) = Z(T) / a(t)e”t dW (t) — / a(t)e ™D, Z(T) dt
0 0 0
T
:Z(T)Q—/ a’(t)e 2 dt .
0

This proves the result.

Note that
T
E[Z(T)%] = / a*(t)e 2t dt
0

by the Ito isometry. Consider the specific choice a(t) = 2ae?***/(e**T — 1): Then

2« T at
Z(T)—m/o T AW (1)
_ 2 ot _ _ (eaT _
= ST D) ("' InS(T) —Inz —y(e 1),

where v = a(u — ) — 02 /2. Furthermore,

T
2c
2 —2at _
/0 a”(t)e dt = T

The FD estimator for the gamma is given by

u(z + h) — 2u(z) + u(x — h)
h? ’




92 7 On Derivatives of Claims Using a Malliavin Approach

where the same considerations to h as for the delta apply. In sec. 7.7 numerical tests
are presented for the Malliavin approach and the FD approach to compare convergence
speeds.

It is possible to derive the delta and the gamma by the density approach since the
probability density of X (¢) is known. We state the result for the delta only:

Proposition 7.2.5 (Delta by the density approach). The delta of u(zx) can be
represented as

W) = TE[f(Sr)

@ar—qy (¢ ST ~ Iz — (e — )] . (78)

Proof. Since

T
X(T)=e Tz —y1-eT)+ a/ e T=9) qw(s) ,
0

we have that X (T) is normally distributed with expectation e= T Inz — v(1 — e=T)

and variance o2(1 — e~22T) /2a. Denoting the density by ¢(z; ) (as a function of z),
we find by straightforward differentiation with respect to x

0. 1 _pz—y(1—e°T)—eTing
oz (Z,Z') - ¢(za$)we %(1 _ e—2aT)

Since differentiation and expectation commute in this case, we find
w(@) = 5 [ 1e)olea) dz
dx

- /f(ez)aw?ﬁ x) dz

= [ s temerzm 0 ) e T oy

%(1 _ e—2aT)

which yields the desired result. O

Note that the density approach leads to the same formula as in (7.7), which was
derived using the Malliavin approach with a specific choice of the weight function
a(t).

We consider the vega for the European option on spot using the Malliavin approach:

Proposition 7.2.6 (Vega by the Malliavin approach). The vega of u(c) can be
represented as

T
' (0) = a—lE[f(ST){Z(T)/O e T=0 qW, — Z(T)o(1 — e=°T) — 1}] . (1.9)

T

where Z(T) = [, a(t)e*T=Y dW, and a(t) € T'r.
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Proof. The Malliavin derivative of St is given by

DSt = STUe_a(T_t)1t<T .
By multiplying with a weight function a(t) € T'r, and integrating each side, we find
(after rearranging)

T
Sy =01 / a(t)ea(T_t)DtST dt .
0

The expression for the vega is now found by:

dST]
do

= E[f/(ST)ST{/T e T=9) qw, — (1 — e—aT)}]

u'(0) = E[f'(St)

T
/ f'(S7)DySro~te(T—0 (){/ e T qw, —o(1 —e 7))} at]
. 0
=0 'E] / Dy f(St)e*TVa(t){ / e T=9) qw, — (1 —e~°T)} di]
-1 O T (T—t) TO— (T—s) —aT
— 0 E[f(ST)/O o a(t){/o o W, — o(1— T} 6] .

The last stochastic integral dW; is the Skorohod integral. Using the integration-by-
parts formula for Skorohod integration, we get

T T
/ a(t)e"‘(T_t)/ e~ T=9) qw, sW,
0 0
T T T T
:/ a(t)e ™1 th-/ eo(T—3) dWs—/ a(t)ea(T_t)Dt/ e T=3) aw, dt
0 0 0 0
T T T
:/ a(t)e*(T=H th-/ ea(T—s) dWS—/ a(t)e®TDe=(T=071, 1 dt
0 0 0

T T
= / a(t)e T qw, - / e T qw, —1.
0 0

Hence,

u' (o) :a—lE[f(sT){/O a(t)e® Tt qw, - / AT=1) gy,
o(1 —e—aT)/O a(t)e® ™= qw, — 1}] .



94 7 On Derivatives of Claims Using a Malliavin Approach

Choosing the weight function
a(t) = 2ae 2T /(1 — e720T) |
yields, after some calculations,
T T
/ a(t)e =1 qw, - / e T8 qw, =

0 0
2a

—a —a 2
W(IHST—Q TIHSO—"}’(].—Q T))

and

T
o(l— e_aT)/ a(t)e® T qw, =
0

2a(1 — e=oT)

m(ln Sy —eTInSy — (1 — e—aT)) )

Note that the chosen a(t) gives

20 T
Z(T):mfo =10 aw,
—27(1 -1 _ ,—aT _ _ ,—aT
= T ezamy?  (n(S1) =™ In(So) —7(1—e™1)) ,

where we have used that fOT e~ "= W, = 0= (In(S7) —e~ T In(Sy) —y(1 —e=2T)).
Repeated use of this in (7.9), and insertion of Z(T') gives a computable expression for
the vega.

The FD estimator for the vega is given analogous to the delta as

u(o + h) —u(o)
—

7.3 Derivatives of European Options on Commod-
ity and Energy Forwards

Consider a European option with maturity 7 < 7' and payoff f(F(7,T')). The price
of this option is
u=E[f(F(r,T))] . (7.10)

Like for derivatives of spot options, we shall use the notation u(z(T")) and u(o) to
emphasize the parameters of interest. First, we are interested in calculating the delta
of u, that is, the derivative with respect of z(T'). Strictly speaking, x(T") is a function
of T', the maturity of the forward contract, and the derivative should be interpreted
as a functional derivative. However, we keep T fixed here, and therefore we may
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treat du(X (T))/dxz(T') as a standard derivative with respect to the variable (7). We
denote this derivative u'(z(T")), which measures the sensitivity of u with respect to
the initial forward price z(T").

By the direct approach we find the expression (under the assumption that f is suf-
ficiently regular so that differentiation can be moved inside the expectation, see e.g.
[L’E91], [Gla9gl], [BGI6] for conditions):

Proposition 7.3.1 (The direct approach). The delta of u(xz(T')) can be repre-
sented as

W/ (@(1) = B £ (F D) FGT)]

Proof. Direct differentiation gives (assuming sufficient regularity such that differenti-
ation and expectation interchange),

W (@lT) = B[ (P(r.T) o= P T)]
It is easily seen that 5 ( F(r,T) =z YT)F(r,T). O

The density of F(7,T) is known, which means that we can differentiate with respect
to the density function instead: By the density approach we find:

Proposition 7.3.2 (The density approach). The delta of u(xz(T)) can be repre-
sented as

W/ (2(1)) = —— B[ f(F(r, T))(l}lfiiz—;?)/z =
0 )

Proof. We write F(7,T) as
1 T T
F(r,T) =exp(lnz(T) — 5/ a?(t,T)dt +/ o(t,T)dW(t)) .
0 0

Since [ o(t,T)dW (t) ~ N(0, [, o*(t,T)dt), we have

1 T T
F(r,T) =exp(lnz(T) — 3 / o?(t,T)dt + e - / o2(t,T)dt) ,
0 0
where € ~ N(0,1) and the equality is in distribution. Hence,

/f g(z;2(T)) dz

for the density function

(2 2(T)) = ——— esp(~
2 [ 0%(t,T) dt

(z—Inz(T) + & [ o2(t,T) dt)? )
2 [y a?t,T)dt '
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Differentiation of g(z;z(T")) with respect to z(T') yields,

dg(z;2(T)) z—Inz(T)+ L [0t T)dt
) IEE D) — o I8 02(3, T)dt
Hence,
, _ . _ (z—lnx(T)+lfT02(t,T)dt
W) = [ S aterar) T R i
B In(F(r,T)/z(T)) + & [T o2(t,T)dt
= E[/(F(r,T)) T ONNCRL |-
Thus, the proposition is proved. O

Finally, using the Malliavin approach we find

Proposition 7.3.3 (The Malliavin approach). The delta of u(z(T")) can be rep-
resented as

WD) = o E[ D) [ ato ) aw ],

where a € T';.

Proof. We follow the argumentation in Fournié et al [FLL*99, Section 3.2]: Introduce
the process Y (¢,T) by

Y(t,T) = exp(—% /0 o2(t,T) dt + /O o(t,T)dW (1)) ,

which yields the representation F(t,T) = x(T)Y (¢,T). Let us do some calculations
with the Malliavin derivative of F'(t,T'): Straightforward application of the Malliavin
derivative yields

D F(1,T) = x(T)Y (7, T)o(t,T)1t<, .
Rearranging,

Y(r,T)li<r = 2 X (T)o~(t,T)DF(r,T) .

Multiplying both sides with a function a(¢) € I';, and then integrating from 0 to 7,
gives,

Y(r,T) =z~ 4(T) /OT DyF(1,T)a(t)o (¢, T)dt .



7 On Derivatives of Claims Using a Malliavin Approach 97

Direct differentiation gives

u'(2(T)) = E[f'(F(r,T))Y (1,T)]
f

= x_l(T)IE[/OT

IE[/OT Dif(F(r,T))a(t)o ™" (t,T) dt]

"(F(r,T))D¢F(r,T)a(t)o " (t,T) dt]

= OEEET) | " 4o (6, T)dW (D)) |

0

where we used the chain rule for Malliavin derivative in the second last equality and
the duality between Malliavin differentiation and Skorohod integration in the last. O

We consider different choices of the function a(t): Choose a(t) = Ko(t,T), where
K =1/ [] o(t,T)dt. Then

W(r) ]
Jg o, T)dtd"

A different choice could be a(t) = Ko?(t,T), where K = 1/ [ 0(t,T) dt. Then

u!(@(T)) = 2~ (T)E[ f(F(r,T)) (7.11)

foT o(t,T) dW(t)] , (7.12)

o ((T)) = E[f(F(T,T)) 7o, T)dt
0 9

which, after a slight rewriting, coincides with the delta obtained using the density
method.

We are also interested in calculating the gamma of u, that is, the double derivative
with respect of x(T'). Similar considerations as for the delta applies.

Proposition 7.3.4 (The Malliavin approach). The gamma of u(x(T)) can be
represented as

o"(@(1) = 2(D) B F D) 220, T) - 2,7 - [ (T at}]
0
where Z(1,T) = [ a(t)o=' (¢, T) dW (t) and a(t) € T;.

Proof. Write the the delta as
u'(2(T)) = «(T) ' E[f (F(r,T)Z(r,T)] ,

where Z(7,T) = [, a(t)o=*(t,T) dW (t). Then the gamma is given by differentiation
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of delta with respect to the initial condition z(T"):
u"(2(T)) = —a(T)*E[f (F(r,T)) Z(1,T)]
_ , F(r,T)
(1) ELS (P D) o
—a(T)*E[f (F(r,T))Z(1,T)]

)~
+2(T)~ 21E[/ f'(F(r,T))D¢F(1,T)a(t)o(t,T)Z(r,T) dt]
)"
(

Z(7,T)]

—z(T
+o(T) "2E[f (F(r, ))/()Ta(t) Nt T)Z(r, T) W (1)]

*E[f(F(r,T))Z(1,T)]

where we used the chain rule for Malliavin derivative in the second last equality and
the duality between Malliavin differentiation and Skorohod integration in the last.
Using that

Z(r,T) = /OT a(t)o™(t, T)dW (t), D Z(r,T) = a(t)o ™ (t,T)1i<r ,
the integration-by-parts formula of the Skorohod integral gives
/0 " a0 (t.T)Z(r.T) 6W (8) = Z(r.T) /O " a(®o- (. T) dW (1)
- /0 Ta(t)a_l(t,T)DtZ(T,T) dt
=Z(1,T)* - /OT a*(t)o%(t,T) dt .
The final formula for the gamma therefore reads

u'(z(T)) = w(T)—2E[f(F(T, T))((/OT a(t)o " (¢, T) alW(t))2

— Ta o1 - Ta2 o2 .
/0 (t)o ™ (¢, T) dW () /0 (D)o~ (t,7) dt))

O

In order to get an implementable expression for gamma, choose the weight function
a(t) =o(t,T) /f0 o(t,T)dt. Then

u'(z) = x(t) E[f(F(r,T)){W2C* - W.C — 7C*}],

where C' = ae= T (e®™ — 1) /0.
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7.4 Derivatives of Asian Options on Commodity and
Energy Forwards

Define an Asian claim with maturity 7 < T,
=E f(/ F(t,T)dt)] . (7.13)
0

Assume f € L*(R) and E[f(f, F(t,T) dt) ] < co. Here one of the drawbacks of

the density approach becomes evident. The density of fOT F(t,T)dt is not explicitly
known to us, so that the density approach is not applicable. Consider the Malliavin
approach.

Proposition 7.4.1 (The Malliavin approach). The delta of u(x(T)) can be rep-
resented as

o' (@(T)) = ]E[f(/OTF(t,T) at)X(r,T)] ,

where

2 —2 2
X(r,T) = - TTFET dt{a (r,T)F(r,T) — 0=2(0, T)z(T)

+2 /T oi(t, T)o 3 (t, T)F(t,T) dt
0

JS oW, T)F(t,T) f] o(u, T)F(u,T) dudt
i fs F(t, T)d }

Proof. Direct differentiation, and integration-by-parts yield
o' (z(T)) = E[f’(/OT F(t,T)dt) /OT Y (t,T)dt]
- ]E[f’(/OT F(t,T) dt)? /0 Y(t,T) /t Y (s, T)ds dt /0 Y (t,T) dt) "]
= E[/OT f’(/OT F(t,T)dt)2Y (¢,T) /tTY(s,T) ds dt /OTY(t,T) dt)~'at] ,
where F(t,T) = z(T)Y (t,T). A straightforward calculation reveals

DyF(s,T) = F(s,T)o(t, T)1{1<s) -

Thus

/ " DyF(s,T) ds = 2(T)o(t,T) / " Y(s,T)ds
0 t
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We therefore have (using the properties of Malliavin derivative)
u'(z(T)) = E[/O f (/0 F(s,T) ds)/o D,F(s,T)dsxz™ (T)o~ (t,T)2Y (¢, T)
« ( / Y(s,T) ds)~" di]
0
= "ol s s ’ s sz~ N (T)o ™t
_IE[/O f(/0 F(s,T)d )Dt/0 F(s,T) dsa~ (T)o~\(t, T)2Y (¢,T)
X (/ Y(s,T)ds)"" dt]
0
—E| /0 Do f( /0 F(s,T) ds)2Y (t, T)a~" (T)o~" (£, T)
X (/ Y(s,T)ds)"" dt]
0
— E[f( /O F(s,T)ds)X (r,T)] ,
where

X(rT) = —2 ) /OTY(t,T)a‘l(t,T)(/OTY(s,T) ds) =1 oW (1) .

2@

Let us calculate X (7,T'): Integration-by-parts for Skorohod integrals:

/T a‘l(t,T)Y(t,T)(/T Y (s, T)ds) " 6W(t)

0 0

:/ a‘l(t,T)Y(t,T)dW(t)(/ Y (s, T) ds)""
0

0

_ / a‘l(t,T)Y(t,T)Dt(/T Y (s, T) ds)~" dt
0 0
:/ a—l(t,T)Y(t,T)dW(t)(/ Y(s,T)ds)™"
0 0
+ /0 oL, T)Y (£, T)( /0 Y (s,T) ds)"2 /t Y (u, T)or(u, T) dudt .

Consider 0=2(t, T)F(t,T) and assume 9o (t,T)/0t := o4(t,T) exists. The It6 Formula
yields,
d(o™*(t, T)F(t,T)) = =207 %(t,T)oy(t,T)F(t,T) dt + o~ *(t,T)dF (t,T)
= —207%(t,T)oy(t, T)F(t, T)dt + o~ (t,T)F(t,T) dW (t) .

Integrating both sides from 0 to 7, and inserting into the expression for X (7,T'), gives
the desired result. O
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Let us consider the concrete choice of o(¢,T) given in (7.5). In this case it is straight-
forward to see that

2 {e2°‘T e 2TF(r,T) — x(T)

T —2at
sar Jo € 2NF(t,T)dt
(1) + 2ae

o2 fOT F(t, T) dt o2 fOT F(t, T) dt
Jo e F(t,T) [ e *“F(u,T) du dt
(fy F(t,T)dt)? } :

X(r,T) =

In practice one is interested in Asian options where the averaging is taken over discrete
dates, i.e. the arithmetic average Asian option. The payoff function will be

uw=E[f() Ft.1)], (7.14)
k=0

where 0 = tp < t; < ... <t, <T. The delta and gamma are given as follows:

Proposition 7.4.2 (The Malliavin approach). The delta and gamma of u(x(T'))
can be represented as

W (@(T) = B[ £(3 Pt ) 260, T)]
k=0

W) = S £ Pl 1) {220 7)
k=0

— Z(tn,T) — /Ot" Qo2 (t,T) dt}]

where Z(t,,T) = fot" a(t)o=L(t, T)dW (t) and a(t) is such that fotl a(t)dt = 1, and

[P+ a(t)ydt =0 fork=1,...,n—1.

tr

Proof. Direct differentiation leads to

k k

where Y (ty,T) = 21 (T)F(tx,T). Since
DyF(tg,T) = F(ty, T)o(t, T)1{1<t,} »
we find
Y (i, Tty =2 (1o (¢, T) D F (t, T) .

Introducing a function a(t) € Ty, for all k = 1,...,n, and integrating both sides after
multiplication with this function gives
tn

Y (tg, T) :x_l(T)/O a(t)o ' (t,T)DyF(ty,T) dt .



102 7 On Derivatives of Claims Using a Malliavin Approach

o (2(T)) = & (T)E] / S A Bt T)DeF (b, Ta(t)o™ (1, T) di]
k k

tn
= x_l(T)]E[/O th(z F(t,T))a(t)o (¢, T) dt]
* tn
0

:x—l(T)]E[f(Z F(tk,T))/ a(t)o™' (¢, T) dW (t)] .
k

Here is an example of a function a(t) satisfying the property in Prop. 7.4.2:

a(t) — { tl_la te [Oatl)a
t_%(tk+l+tk)7 te[tk7tk+1)7k:17"‘7n_1

For this a, the Itd integral inside the expression for u'(z(7T')) becomes:
tn n—1 tht1
/ a(t)o ™ (t, T)dW (t) = Y _ ek / oY (t, T) dW (t)
0 k=0 7t

nl et
+> / to~ (¢, T)dW (t) ,
k=1 2

where

C :{ t]_17 k=0
g —5(the1 +tr), k>0

Define X = ¢t [,** o~ 1(t,T) dW (t) and Yy = [[**' to~}(t,T)dW(t). It is easily
seen that {X}}, are independent random variables. Likewise for {Y;};. In addition,
X, and Yj are independent for all ¢ # j. Both are distributed as

trt1
X NN(O,ci/ o 2(t,T)dt),
i
and
trt1
Yy ~N(0,/ t?072(t,T) dt).
tr
The covariance between X and Y}, is

trt1
COV(Xk,Yk) :Ck/ tO'_z(t,T) dt .

tr
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A natural example to consider is o(¢,T) as given in (7.5).

In [FLL*01] they show that the representation of the derivative is of minimal variance
if the weight can be written as a functional of the underlying price process. We
demonstrate how this is here; Use Itos Formula on a(t)o~2(t,T) In F(t,T) to obtain

d(a(t)o™2(t,T)In F(t,T)) =
{a'(t)o™2(t,T) — 2a(t)o 3 (t, T)ou(t,T)} In F(t,T) dt
1
F(t,T)

1
F(t,T)?
= [d'(t)02(t,T) - 2a(t)o~ (tT)at(tT)—la (&)} I F(t,T) dt
+a(t)o Ht, T)dW (t) .

+a(t)o=2(t, T)—— dF (£, T) + la(t)a_2(t T) s (AF (1, T))’

Hence, integrating both sides and rearranging, we get,
tn .
/ a(t)a—l(t,T) dW (t) = a(tp)o 2(tn, T)In F(t,, T) — a(0)o2(0, T)x(T)
0

{a o7 2(t,T) — 2a(t)o > (t,T)oy(t, T) — 1 ()} InF(¢,T)dt .

This shows that the weight is a functional of the underlying process F(t,T).

We now look at the vega of an Asian option. Choose the volatility to be o(t,T) =
oa(t,T), and consider (7.13) as a function of o, that is, u(c). We are now interested
in calculating the vega of u(co), u'(c), using the Malliavin approach. We concentrate
the calculation to the discrete Asian case:

n
ZFtkra ’
k=0

where 0 =tg <t1 <...<t, <T.

Proposition 7.4.3 (The Malliavin approach). The vega of u can be represented
as

=E[/ ZF 0, 1)) X (), 7))

X({uhT) = -2+ Z{/ " a(tya ¢, T) dW (1)

k=1 “tk-1

1 b
x (10 F(t, T) ~ n Pty T) - 502/ o(t,7)dt) }

th—1

and a(t) is a function such that f a(t)dt =1 for k =1,.
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Proof. Direct differentiation gives

=E[f' O Ftx,T)) > F(ts, T)Z(t, T)] ,

where

tr tr
Z(ty,T) = / aft,T)dW (t) — a/ o?(t,T)dt .
0 0
The Malliavin derivative of F'(t;,T') is given by
DtF(tk7T) = Ua(tﬂT)F(tkaT)l{t<tk} .

Define as in Fournié et al [FLLT99, Section 3.3]:

ﬂa(t) = Za(t)(z(tk,T) - Z(tk—l,T))l{tk—1<t<tk} s
k=1

where ft t)dt =1,k =1,2,...,n. This yields (note that Z(0,7") = 0),

/ o e (4 T D T)Au(t) dt = F(tT) [ Balt)dt
0 0

k t;
F(ty, T 2/ a(t) dt(Z(t;, T) — Z(ti—1,T))

ti—1

F(te, T)Z(tr, T) -

Hence,

o) = 0 K| /0 73 Flt, T)DF (1, T (1, 7)) ]

T n
= o‘_lE /0 D f ZF tk,T))a_l t T),Ba( ) ]
k=0

T
—E[£(3 F(ty, T))o ™" / o~ (6, T)Ba(t) W (1)] .

k=0

Note that 3,(t) is F, -measurable for ¢ < t, and thus anticipating. We calculate the
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Skorohod integral using integration-by-parts formula:
T
X({uh 1) =0t [ a (0 D)A0 W (0
0
n_LT
ey / s ctcoya™ (6 T)a(t) (Z(t6,T) — Z(txs, T)) W (2)
k=170

n th
| Z/ a(t)a (t,T)(Z(t, T) — Z(ty_1,T)) SW (t)

kltkl

tr
—12 (te, T) — Z(t5—1,T)) / a(t)a™ (¢, T)dW (t)

te—1

tr
ot E/ a(t)o (t, T)Dy (Z(t4,T) — Z(ty-1,T)) dt
te—1
But, since
tk tk .
Z(ty,T) — Z(ty_1,T) :/ a(t,T) dW(t)—a/ o (t,T)dt ,
tk—l tk—l
we find (for ¢ € [tp—1,tx]),
Dy(Z(tx,T) — Z(tp—1,T)) = a(t,T) .

Hence, the last sum of integrals above becomes
_IZ dt—U_IZI——
Recalling that
1 tr tr
InF(ty, T) —InF(ty_1,T) = 502 / o (t,T)dt + a/ a(t,T)dW(t) ,

te—1 th—1

we find

tr
Z(te, T) — Z(tp—1,T) = %<lnF(tk,T) W F(ty_.,T) - %02/ o2(t,T) dt) .
t

k—1

Hence,

i
X)) = o5 [ alwa D) dw )

te—1

tr
(10 F (1. T) I F(t,T) - L2 / o2(t.T)dr) ~ "

2 tr—1
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Now consider a specific choice for a(t); let for ¢ € [tx—_1,tx)

tr

a(t) = &*(t,T)/ o (t,T)dt .

th—1

Then,
'-I;«k: Lo, T) dW (t)

[l e2(t,T)dt

- 1(/tk o (t,T) dt) ™"

0 Jty_y

/tk at)a " (t, T)dt =

th—1

1 th
X <1nF(tk,T) —InF(tp_1,T) + 502/ 2(t,T) dt)

th—1

by using
1 . tr tr
1nF(tk,T)—1nF(tk_1,T):—502/ a2(t,T)dt+a/ a(t,T)dW (t) .
te—1 th—1
Hence,
X({t}, 1) = =2 4 - Z/ o (t,T) dt) ™"
k _ 9 )
ag 0‘ —1 th—1
1 b
(mmk,:r) InF(tx1,T) ~ 0° / 02 (t,7) dt)
tr—1
1 b
(lnF th, T) —InF(tp_,T) + 502/ a?(t,T) dt) .
tre—1
Therefore,
n 1/ (nF(ty,T)—nF(ty1,T))° ot [
X({tx},T) = ——+ — ——/ o?(t,T)dt) .
({ } ) ag 3 g( tt: 1a2(t,T) dt 4 th—1 ( ) )

If we furthermore let a(t, T) = e~ *T=% for a constant a, we get
tr 1
/ a2(t,T) dt = — (e—2a(T—tk) _ e—?a(T—tk_l)) ,
et 2a

which inserted into the expression for X ({t;},T) gives

2
2a(In F(ty,T) — In F(ty_1,T))
X({te},T) ——+;Z< e—2a(T—tx) _ g—2a(T—tx1)

0_4 (e—2a(T—t1c) _ e—20¢(T—tk—1))) .
8a




7 On Derivatives of Claims Using a Malliavin Approach 107

Finally, note that by choosing n = 1 we get the vega for a European forward option:
Let t; = 7;
d

u'(0) = —B[f(F(r,T))] = E[f(F(r, T))X(r,T)] ,

where

X(rT)=-L41 {/Ta(t)a_l(t,T) AW (1)
o 0

=
X (ln F(r,T)—lnz(T) — %(72 /OT o (t,T) dt)}

and [ a(t) = 1.

7.5 Localized Malliavin Approach for Call Options

If a localized Malliavin technique is to be applied, we have to specify the payoff
function f prior to the deduction. We calculate here expressions using the payoff of
a call option, i.e. we choose

f(x) :max(x—K,O) = ($—K)+ ,

where K is the contracted strike price. As argued in Fournié et al, variance reduction
is achieved by using a localized Malliavin technique. Instead of using the Malliavin
approach to calculate expressions for derivatives globally, they suggest to use the
approach only around the singularity of the payoff function. That is, localize the
payoff function f(z) around x = K, and use the Malliavin approach on this piece of

f.

More specifically, introduce a “smoothened” Heaviside function

0, r<K-—a
Hy(z)=q =9 K _g<s<K+a , (7.15)
1, z>K+a

for a constant a (which is not necessarily small!). Introduce

x 0, r< K-—a
ga(a:):/ Ho(y)dy = Lf—a(w—(K—a))a r—K<z<K+a
o 1, z>K+a

Note that ¢} () = H,(z). Finally, let

fa(@) = f(2) = gal2) = (¢ = K)" = ga(2) ,

and notice that f,(z) = 0 whenever + < K —a or ¢ > K + a. We will understand
fa(z) as the localized version of f(x).
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Proposition 7.5.1. The delta and gamma of a call on the spot is given by resp.

1

/(@) = B[ fu(STNZ(T)] + —E[H(ST)S(T)]
" _ 1 2 -0 _ Taz e—Zat
W@) = S BTN ZT) = 2(D) - [ @(te e dr)]
1 , Cw o
+ WE[Ha(S(T))Tz(T)e T — Hy(5(T))S(T)(1 - e "],

where Z(T) = fOT a(t)e=*tdW (t) and a(t) € T'r.

Proof. Represent (v — K)T = f,(x) + go(x). Use Prop. 7.2.3 on the first term and
direct differentiation on the second to obtain

(@) = CE[[u(S(T)] + B [9a(S(T))
= B[ (S(T)Z(T)]

+E[go(S(T))a™ (T)e™*TS(T)] .

In the last equality we used that %S (T) = 2~ Y(T)e~2TS(T), which proves the for-
mula for the delta.

Using Prop. 7.2.4 on the first term and direct differentiation on the second yields,

d? d?
u"(x) = %E[fa(S(T))] + %E[ga(S(T))]
_ 1 20y _ _ T o —2at
= S ELR SO 2D —02(T) = [ (e a)]
+ %E[HG(S(T))x‘l(T)e‘O‘TS(T)] .
Differentiation of the last expectation yields the formula for the gamma. O

Proposition 7.5.2. The delta and gamma of a call on the forward is given by resp.

W' (2(T)) = ﬁE[fa(F(T, T)2(r,T)] + ﬁE[Ha(F(T, T)F(r,T)]
V(a0 = Sy

[fo(F(r,T)){Z*(r,T) — Z(7,T)

)]E
T -2 1 ! 2
—/0 a*(t)o (¢, T)dt}] + xQ(T)E[Ha(F(r,T))F (r,7)] ,

where Z(7,T) = [ a(t)o™(t,T) dW (t) and a(t) € T;.
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Proof. Using the Malliavin expression for delta and direct differentiation we get

W (@lT) = B (P T))] + T Elau(F(r )]
1 , d
= mE[fa(F(T, T)Z(r,T)] + E[g.(F(r, T))MF(T, T)] .
But dw‘(i )F(T T) =z Y(T)F(r,T), which yields the delta formula.

Using the expression for the gamma we have

u'(z(T)) = %(T)E[fa(F(Ta )] + %(T)

=2 (DE[fo(F(r,T){Z*(7,T) — Z(1,T) — /OT a*(t)o?(t,T)dt}]

Elga(F(7,T))]

N % (ﬁE[Ha(F(T, T)F(r,7)]) .

Differentiating in the last expression yields the desired result for the gamma of a call
on the spot. O

Proposition 7.5.3. The delta and gamma of a call on the Asian forward is given by
resp.

W' (z(T)) = E[f, ZF ti,T)) Z(tn, T)]
+_E ZFtk,T) Z F(ty,T))]
=0
Ull(x( ) = T) [fa ZFtk, { (tn,T) — Z(ts,T)

/ 202 (t,T) dt}]

x2(T)IE[H’ (Z F(ty, 1) (Y Ft, 7))

k=0 k=0

where Z( tn,T Jo" at)o™ (¢, T)dW (t) and a(t) is an integrable function on [0,t,]
satisfying fo t)dt =1 and ftk“ t)dt=0,k=1,...,n—1.

Proof. Using Prop. 7.4.2 and the fact that

d

WT)F(%T) = F(ty,T),

L
(T)

give the result. (see proofs for standard calls on forwards above). O
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7.6 The Adaptive Method

The adaptive method is introduced to enable better utilization of the sampling points
from the QMC method. The principle is very simple: Use more simulation points in
the parts of the domain where the integrand fluctuates than in parts of the domain
where it is zero or flat (linear). In the papers [Dah01] and [Dah02a] the current
adaptive method was presented for multidimensional integrals, but in this paper we
shall only need it for one-dimensional integration.

We give a brief overview of the adaptive method limited to one-dimensional problems:
It is easy to construct a QMC estimator for the integral g over a part of the integration
domain D, and we therefore can construct a method to evaluate the integral over all
of D as a sum of such estimated values. Let D = U;D;, N;D; =0,i=1,...,P. Then

where AL; = L; — L;_; and z; is scaled such that x; € D; when [ € [L;_y,L;].
|D;| is to be understood as the length of D; for integration of one-dimensional in-
tegrands, and the volume for multi-dimensional integrands. The adaptive algorithm
should decide on the number of sub-domains and their sizes, that is P and |D;|, Vi.
Furthermore, the algorithm has to pick the best set of sub-domains, and how many
simulation points AL; to use in each of them. Alternative approaches use information
from the integrand to develop approximations of the integral in sub-domains with a
deterministic approach rather than with simulation. This is done in e.g. [BEG91],
[GCI7], [Co097], [PFI0].

We have chosen to use a binary tree to represent the decomposition of the domain.
Each node in the tree corresponds to a distinct part of the domain, and when we
expand the tree we divide the domain represented by a node in two parts of equal
size. For one dimensional integrands, the criterion we use to decide on division is
simply to find the parts of the domain that contributes more than a preset amount to
the overall variance of the estimator. The divide and conquer algorithm is terminated
when the estimated variability in all sub-domains are less than a preset limit. We
estimate the contribution to the variance from each sub-domain by the expression

C, = %(g(pﬁ);g(p%) — o)

where |D;| is the length of the sub-domain.

If the adaptive algorithm performs perfectly in accordance with the assumptions, the
contribution from each sub-domain to the overall variance should be equal. Therefore
0; |D;| = ¢, Vi ideally. But even if the adaption process aspire to use the simulation
points as effectively as possible, we get some sub-domains in which the measured
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variability is close to the preset limit, and some where the variability is considerably
lower than the limit. To circumvent this behavior we use less simulation points in the
sub-domains where the variability is low. Theoretically, the fraction for the optimal
allocation of points in each sub-domain can be shown to be

_ Tio;

- —P
Zl:l oy

where r; is the probability for a point to be contained in each bin represented by D;.

Therefore r; = |D;| in our setting. This leads to the allocation of simulation points
by the relation

*

q i=1,...,P, (7.16)

P b
> 11 01 |Di]

where L is the total budget of simulation points. This approach, however, assume
knowledge of all o;, and the adaptive approach does not provide this knowledge at
the stage in the process where the contributions to the value of the total integral are
calculated. Instead, we have chosen to implement a simpler approach to finding the
number of simulation points in each bin. We use the relation

ALy =1L (7.17)

i

C 9
where C' is the stopping criterion for the adaption process on the variance estimates.
This approach avoid the overhead by traversing the tree to collect the o; values, and in

our tests the approach works well compared to using the same number of simulations
in each bin.

AL =1L (7.18)

For more details on the adaptive method, further variance reduction techniques and
numerical simulations on multidimensional problems, see [Dah01] and [Dah02a].

7.7 Numerical Examples and Comparison

In the examples presented below, we set the risk-free rate to zero (r = 0), use o = 0.3
for the constant o in (7.5), and calculate the different measures for at-the-money
call options with three months left to maturity (I = 0.25). The options on the
forward contracts are calculated on forwards with six months left to expiration. For
the parameters of the Schwartz mean-reverting model we use a = 0.5, 4 = 5, A = 1.6.
We need to find the strike prices giving us at-the-money options: For contracts on
the forward this strike is simply given by K = (T since t — F(¢,T) is a martingale
in the risk-free setting (recall that z(T') is todays forward curve). For options on spot
the at-the-money strike is given by

K = E[S(T)] = E[exp(X(T)] = exp (B[X(T)] + 5 Var{X(7))

2(1 _ e—QaT)

=exp (e T 1InS(0) + y(1 —eT) + z 1o ).
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In the simulations we use z(T') = 100 for options on forwards, and S(0) = 100 for
options on spot prices.
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Figure 7.1: Delta for European option on commodity and energy spot

In the label of the plots the two numbers in the parenthesis are mean value and
variance of the series of 100 estimators making up the plots. To label the plots we
have used the abbreviations; DS: Delta Spot, GS: Gamma Spot, VS: Vega Spot, DF:
Delta Forward, GF: Gamma Forward, VF: Vega Forward, Ad: Adaptive method is
used, M: Malliavin approach is used, LM: Localized Malliavin approach is used, HA:
The Halton Leaped method is used as low discrepancy sequence generator (used in
all simulations in this article).

Note that when neither the Malliavin or the localized Malliavin method are used, the
FD estimator is used. The given abbreviations are combined to indicate the numerical
experiment currently investigated. An example of an abbreviation is “LMDF_Ad
HA”, indicating that the simulation is performed by the localized Malliavin approach
for the delta of a forward contract using the adaptive method and the Halton leaped
sequence.

The number of samples for each of the 100 estimated values are in the range 800
to 1600, given as a result of the accuracy demanded of the adaptive method (this
accuracy is given on the y-axis of the plots, and is in the range [le-7,1e-8]. For
an MC-estimator this is a very low sample size, but for the adaptive method it is
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Table 7.1: Sensitivity parameters for European option on commodity and energy spot

Parameter Method Value (mean) Variance
Delta FD 0.33289 2.33e-007
Delta FD Adaptive 0.33291 6.30e-010
Delta Malliavin 0.33316 9.00e-006
Delta Malliavin Adaptive 0.33284 2.30e-012
Delta Local Malliavin 0.33314 9.00e-006
Delta Local Malliavin Adaptive 0.33283 2.30e-012
Gamma FD 0.01636 6.44e-003
Gamma FD Adaptive 0.01205 1.29e-004
Gamma Malliavin 0.015331 5.88e-008
Gamma Malliavin Adaptive 0.015293 5.47e-014
Vega FD 14.548 2.31e-003
Vega FD Adaptive 14.539 5.67e-009
Vega Malliavin 14.574 4.44e-001
Vega Malliavin Adaptive 14.54 4.19e-008

Table 7.2: Sensitivity parameters for European

option on commodity and energy

forward
Parameter Method Value (mean) Variance
Delta FD 0.52483 7.16e-007
Delta FD Adaptive 0.52479 1.19e-009
Delta Malliavin 0.52491 1.86e-005
Delta Malliavin Adaptive 0.52485 4.17e-012
Delta Local Malliavin 0.52489 1.86e-005
Delta Local Malliavin Adaptive 0.52482 1.30e-010
Gamma FD 0.032778 2.07e-002
Gamma FD Adaptive 0.027123 3.60e-004
Gamma Malliavin 0.032031 1.96e-006
Gamma Malliavin Adaptive 0.032022 1.87e-013
Vega FD 16.527 2.87e-003
Vega FD Adaptive 16.526 1.70e-008
Vega Malliavin 16.531 5.23e-001
Vega Malliavin Adaptive 16.527 4.98e-008

enough to reach the prescribed accuracy (see [Dah01] for further details on the adap-
tive method). In [Dah02a] we find an estimator for comparing the efficiency of the
adaptive approach with the conventional, where also the extended computing time of
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the adaptive method is taken into account. In one-dimensional problems, however,
the extended computing time is small. Thus, the method with the lowest variance is
preferred in the following cases.

In the last plot of the figs. 7.1 and 7.4, where the accurate estimators resulting from
the adaptive method are compared, we see that some of the methods are biased. Based
on the fact that the Malliavin approach gives an unbiased estimator, it is evident that
the FD and the local Malliavin estimators are biased. This occurs also for the FD
estimators of the calculations of vega in figs. 7.2 and 7.6. If we look at figs. 7.3 and
7.5 we see that the FD estimators are not able to capture the discontinuity in the
first derivative and give an estimator with large variance.
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Figure 7.2: Vega for European option on commodity and energy spot

7.8 Conclusion

The article deduces expressions for sensitivities of various derivative instruments in
the commodity and energy market. The main focus is on the Malliavin approach,
since we by this method can produce unbiased estimators under milder conditions
on the payoff functions f than with conventional methods. The numerical results
show that there are no apparent sacrifices connected to the Malliavin approach. The
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estimators of the Malliavin approach and the conventional FD approach have very
similar convergence properties in the cases where they both exist, at least when the
adaptive approach is employed to the problems.

The authors are currently working with numerical algorithms to use QMC methods on
the estimators for the Asian contracts in the commodity and energy market presented
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in the paper. Some of the challenges lie in using the low discrepancy sequence in an
optimal way. The results of these investigations will be reported elsewhere.
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