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The basic law of the seaway is the apparent lack of any law.

Lord Rayleigh
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Chapter 1

Introduction

The challenge to calculate the response statistics of nonlinear, compliant offshore structures
subjected to a random seaway is still substantial. The topic has been studied intensively
for decades, and a substantial amount of work has been done to derive methods for efficient
analysis of these processes for engineering applications. The main object in this thesis is
calculating the mean level upcrossing rate of such response processes. Since the mean
upcrossing rate is a key parameter for estimating the large and extreme responses, it is
clearly of importance to develop methods for its calculation.

Chapter 2 is a collection of mathematical definitions and objects, providing the reader
with some background in stochastic analysis and probability densities.

The focus on chapter 3 is the representation of the horizontal motions of a moored, large
volume floating structure in random seas in terms of a second order stochastic Volterra
series, and numerical methods for calculating the mean level upcrossing rate of such se-
ries. For one of these methods, no approximations are made. Hence, the only source of
inaccuracy is in the numerical calculation, which can be controlled. It is demonstrated
how the method of steepest descent can be applied to the numerical calculation of the
mean crossing rate. In addition to the exact method, two approximate methods are also
discussed.

In chapter 4 the reader is introduced to the Path Integral technique. This method used
to evaluate solutions of the Fokker-Planck equation, corresponding to stochastic differential
equations describing e.g. the motion of moored large volume structures in random sea.

The main part of this thesis is chapter 5. Here the results of a renewed effort to use
the method of numerical path integration for this purpose presented. In particular, the
goal is to calculate the response statistics of a nonlinearly moored large volume floater
designed for use in oil production in deep waters. Specific emphasis has been placed on
the modelling of nonlinear wave loads in addition to the nonlinear mooring characteristics.
The calculated results for the response statistics are compared with the results obtained
by Monte Carlo simulations, and the agreement is found to be very good.

Chapter 6 is an extension of chapter 5, estimating the response statistics of the sys-
tem described earlier, by use of more powerful tools. Different approaches to handle the
Rayleigh process are studied, some without success. The cause of numerical errors are dis-
cussed, as well as what difficulties one should expect using the Path Integration technique

1



2 CHAPTER 1. INTRODUCTION

on the Rayleigh process. Understanding the causes of these problems are important for
further studies in this area of research.



Chapter 2

Theory of random variables and

processes

Before entering the world of stochastic processes, it is necessary to define some mathemat-
ical objects. This to give some background theory for the proceeding chapters. For further
details, consult e.g. Øksendal (1995), Cramer and Leadbetter (1968) or Williams (1991) .

2.1 σ-algebra

Definition 2.1 If Ω is a given set, then a σ-algebra F in Ω is a family F of subsets of Ω
with the following properties:

1. Ω ∈ F

2. F ∈ F ⇒ FC ∈ F , where FC = Ω \ F is the complement of F in Ω

3. A1, A2, . . . ∈ F ⇒ A :=
⋃∞

i=1Ai ∈ F .

Ω is called sample space. The pair (Ω,F) is called a measurable space.

Definition 2.2 A probability measure P on a measurable space (Ω,F) is a function
P : F → [0, 1] such that

1. P (∅) = 0

2. P (Ω) = 1

3. If A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e. Ai ∩ Aj = ∅ if i 6= j), then

P (

∞
⋃

i=1

Ai) =

∞
∑

i=1

P (Ai)

.

3



4 CHAPTER 2. THEORY OF RANDOM VARIABLES AND PROCESSES

The triple (Ω,F , P ) is called a probability space.
Every subset F ∈ F is called F -measurable. In a probability context these sets are

called events and we use the interpretation

P (F ) = ’the probability that the event F occurs’.

In particular, if P (F ) = 1 we say that “’F occurs with probability 1, or almost surely (a.s.)’

Definition 2.3 Given two subsets A,B ∈ F , and P (A ∩B) is the probability that both A
and B occur. The conditional probability of A, given that B has occurred, is given by

P (A|B) =
P (A ∩B)

P (B)
, P (B) 6= 0. (2.1)

If the event A is unaffected by whether or not B has occurred, P (A|B) = P (A), which
together with equation (2.1) implies

P (A ∩B) = P (A) · P (B).

In this case we say that the events A and B are independent.

2.2 Random variables and probability distributions

From now on, (Ω,F , P ) denote a given complete probability space.

Definition 2.4 A random variable X is an F-measurable function X : Ω → Rn.

Let B be the Borel σ-algebra on Ω, and the elements B ∈ B are the Borel sets. B contains
all open sets, all closed sets, all countable unions of closed sets, all countable intersections
of such countable unions etc.

Definition 2.5 Every random variable induces a probability measure FX on Rn, where

FX(B) = P (X−1(B)).

FX is called the probability distribution function of the random variable X(t), and has the
following properties for X : Ω → R;

1. FX ∈ [0, 1].

2. FX is a nonnegative, continuous to the right, and nondecreasing function of the real
variable x. In addition, FX(−∞) = 0 and FX(∞) = 1.

3. If a and b are two real numbers such that a < b, then

P (a < X < b) = FX(b) − FX(a).
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Definition 2.6 For a continuous random variable X : Ω → R, the function

fX(x) =
dFX(x)

dx
(2.2)

exists for all x, and is called the probability density function (PDF) of X(t).

The PDF of X(t) has the following properties;

1. fX(x) ≥ 0

2. FX(x) =
∫ x

−∞
fX(y)dy

3.
∫∞

−∞
fX(x)dx = 1

4. If a and b are two real numbers such that a < b, then

P (a < X < b) =

∫ b

a

fX(x)dx.

The results above may easily be extended for X(t) : Ω → Rn. Consider n random
variables X1(t), . . . , Xn(t). Their joint probability distribution function (JPDF) is defined
by

FX1...Xn
(x1, . . . , xn) = FX(x) = P (X1 ≤ x1 ∩ . . . ∩Xn ≤ xn),

introducing a probability distribution in an n-dimensional Euclidean space,
X = (X1, . . . , Xn), x = (x1, . . . , xn). The corresponding joint density function is

fX(x) =
∂nFX(x)

∂x
.

Various properties possessed by these function may be found in Papoulis (1984); Soong
and Grigoriu (1993). If n = 2, they may be summarised as

fX1X2
(x1, x2) =

∂2FX1X2
(x1, x2)

∂x1∂x2
,

FX1X2
(x1, x2) = P{X1 ≤ x1 ∩X2 ≤ x2} =

∫ x2

−∞

∫ x1

−∞

fX1X2
(y1, y2)dy1dy2,

P{x1a ≤ X1 ≤ x1b ∩ x2a ≤ X2 ≤ x2b} =

∫ x1b

x1a

∫ x2b

x2a

fX1X2
(x1, x2)dx1dx2,

∫ ∞

−∞

∫ ∞

−∞

fX1X2
(x1, x2)dx1dx2 = 1,

∫ ∞

−∞

fX1X2
(x1, x2)dx2 = fX1

(x1), (2.3)

∫ ∞

−∞

fX1X2
(x1, x2)dx1 = fX2

(x2). (2.4)

The functions on r.h.s. in equation (2.3) and equation (2.4) are called the marginal density
functions of X1 and X2, respectively.
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2.3 Conditional distributions and densities

Assuming a two dimensional distribution function as in section 2.2, we may define a con-
ditional distribution function.

Definition 2.7 The conditional distribution function of a random variable X2(t), given
that another random variable X1(t) has taken a value x1 is

FX2|X1
(x2|x1) = P (X2 ≤ x2|X1 = x1).

Let X1(t), X2(t) be continuous random variables. The conditional density function is

fX2|X1
(x2|x1) =

dFX2|X1
(x2|x1)

dx2
=
fX2X1

(x2, x1)

fX1
(x1)

, fX1
(x1) 6= 0. (2.5)

Of course, when X1 and X2 are independent, equation (2.5) is simply

fX2|X1
(x2|x1) = fX2

(x2),

and

fX2X1
(x2, x1) = fX2

(x2)fX1
(x1).

For the case of n random variables X = (X1, . . . , Xn), we can write

fX(x) = fXn|Xn−1,...,X1
(xn|xn−1, . . . , x1)

· fXn−1|Xn−1,...,X1
(xn−1|xn−2, . . . , x1) · . . . · fX2|X1

(x2|x1)fX1
(x1), (2.6)

or

fXn...X1
(xn, . . . , x1) = fXn

(xn) · . . . · fX1
(x1)

if the random variables are independent.

2.4 Expectation

Let (Ω,F , P ) be a probability space and let X : Ω → Rn be a continuous random variable.
If
∫

Ω
|X(ω)|dP (ω) <∞, then the number

E[X] :=

∫

Ω

X(ω) dP (ω) =

∫

Rn

x dFX(x)

is called the expectation of X (w.r.t. P). If g : Ω → Rn is Borel-measurable and
∫

Ω
|g(X(ω))|dP (ω) <∞, then

E[g(X)] :=

∫

Ω

g(x(ω)) dP (ω) =

∫

Rn

g(x) dFX(x). (2.7)
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2.5 Moments and the characteristic function

Let (Ω,F , P ) be a probability space and let X : Ω → R be a random variable. Besides the
probability density fX(x) from equation (2.2), the characteristic function

ΘX(u) = E[exp(iux)] =

∫

exp(iux) fX(x) dx

completely characterises the random variable X1. fX(x) is just the Fourier transform of
ΘX(u),

fX(x) =
1

2π

∫

exp(−iux) ΘX(u) du.

Choosing g(x) = xn in equation (2.7), the simple moments,

mn = E[Xn], n = 1, 2, . . .

of the random variable X can be obtained from the characteristic function by differentiation

mn =
1

in
dnΘX(u)

dun

∣

∣

∣

u=0
.

We can also write ΘX(u) as a Maclaurin series

ΘX(u) = 1 +

∞
∑

n=1

(iu)n

n!
mn. (2.8)

Of course, we can only write equation (2.8) when the moments mn are finite and do not
grow to rapidly as the index n is increased.

Definition 2.8 The n-th central moment of X, µn, are

µn = E[(X −m)n] =

∫

(x−m)nfX(x) dx n > 1,

where m = E[X].

The central moment of a random variable X are moments of X with respect to its mean.
The variance of X is the second central moment µ2, commonly denoted by σ2

X or Var(X),
-a measure of dispersion of a distribution of X about its mean. The relation between
variance and simple moments is σ2

X = m2 −m2
1.

1When limits of integration are omitted, they will always be understood to be from −∞ to ∞.
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2.6 Stochastic processes

Definition 2.9 A stochastic process (SP) is a parameterised collection of random variables
{Xt}t∈T defined on a probability space (Ω,F , P ), and assuming values in Rn.

The parameter space T is usually the half-line [0,∞), but it may be an interval [a, b],
the non-negative integers and even subsets of Rn for n ≥ 1. For each t ∈ T fixed, we
have a random variable ω → Xt(ω);ω ∈ Ω. Fixing ω ∈ Ω, we can consider the function
t→ Xt(ω); t ∈ T , which is called a path of Xt. We usually think of t as ’time’ and each ω
as an individual ’particle’. Xt(ω) would represent the ’result’ at time t of the particle ω.
We may also regard the process as a function of two variables

(t, ω) → X(t, ω)

from T × Ω → Rn.
A stochastic process is, in other words, a mathematical model of a dynamic process

whose dependence on a parameter t is governed by probabilistic laws.
Practical examples of stochastic processes could be thermal noise in electrical circuits,

wind or wave loads on structures, ground acceleration due to earthquakes, turbulence, or
material imperfections.

2.7 Classification of stochastic processes

A stochastic process X(t) can be characterised in several ways. Following Risken (1989),
we may classify the processes based upon memory. Other ways may be found for example
in Soong and Grigoriu (1993).

2.7.1 Purely random processes

The simplest stochastic process is one without memory. A SP X(t), t ∈ T , has no memory
or is completely stochastic, when a random variable defined by X(t) at a given t is inde-
pendent of the random variables defined by X(t) at all other t’s. Since
P (xn, tn|xn−1, tn−1; . . . ; x1, t1) = P (xn, tn), it follows that the n-th distribution function is
given by

Fn(xn, tn; . . . ; x1, t1) = P (xn, tn) · Fn−1(xn−1, tn−1; · · · ; x1, t1) =

n
∏

j=1

P (xj, tj), ∀n.

Thus the complete information of the process is contained in P (x1, t1) = F1(x1, t1). As
Soong and Grigoriu (1993) points out, although mathematically simple, a continuous-
parameter, completely stochastic process is not physically realizable because it implies
absolute independence between its states at any two distinct time instants, no matter how
closely they are spaced. On the other hand, discrete-parameter, completely stochastic
processes are not uncommon, for example throwing a die.
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2.7.2 The Markov process

The next in order of complexity are stochastic processes whose statistical information is
completely contained in their second probability distribution functions. An important class
of stochastic processes possessing this property, are called Markov processes, named after
A. A. Markov, who in 1906 initiated the study of stochastic processes of this type. Books
devoted entirely to Markov processes and their applications include Bharucha-Reid (1960);
Stratonovich (1968). A Markov process is also called a process without aftereffect.

Definition 2.10 A stochastic process X(t), t ∈ T , is called a Markov process if for every
n and for t1 < . . . < tn in T we have

F (xn, tn|xn−1, tn−1; . . . ; x1, t1) = F (xn, tn|xn−1, tn−1). (2.9)

For a continuous-valued process, equation (2.9) is equivalent to

f(xn, tn|xn−1, tn−1; . . . ; x1, t1) = f(xn, tn|xn−1, tn−1), (2.10)

provided the density function exist. We see that the conditional probability density func-
tion only depends on the value of the random variable at the latest time. Rewriting
equation (2.6) and applying equation (2.10) and equation (2.5), gives, for n ≥ 2 and
t1 < . . . < tn,

f(x1, t1; . . . ; xn, tn) = f(x1, t1)
n−1
∏

i=1

f(xi+1, ti+1|xi, ti; . . . ; x1, t1)

= f(x1, t1)
n−1
∏

i=1

f(xi+1, ti+1|xi, ti)

A great number of physical situations are modelled or can be closely approximated by
processes of this type. The Brownian motion in section 2.10 is Markovian, noise and signal
processes in engineering systems, communication networks, and transport phenomena are
also frequently modelled by Markov processes. And the Path Integral solution described
in chapter 4, rely heavily on the Markov property.

2.7.3 General processes

Next, it is natural considering processes where the conditional probability density function
depends only on the values of the random variable at the two latest times. However, accord-
ing to Risken (1989), this further classification is not suitable to describe non-Markovian
processes. Solutions to this includes several time-dependent variables or generalised Fokker-
Planck equations which contains a memory function.
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2.8 Second order statistics and stationary processes

Many of the most important properties of a stochastic process can be expressed as prop-
erties of their first and second order moments. Let X(t) be a Rn-valued process in
L2(Ω,F , P ), that is, the coordinates of X(t) have finite second moments at all times.
Then

µ(t) = E[X(t)]

r(t, s) = E[X(t)X(s)T ]

c(t, s) = E[(X(t) − µ(t))(X(s) − µ(s))T ],

where µ(t), r(t, s), and c(t, s) are called mean -, correlation -, and covariance function,
respectively.

Definition 2.11 A stochastic process X(t) is said to be weakly stationary or stationary in
the weak sense if

1. The mean function µ(t) = µ is time invariant, and

2. The correlation and the covariance functions r(t, s) and c(t, s) depends on only the
time lag τ = t− s, that is, r(t, s) = r(τ) and c(t, s) = c(τ).

Let Xt : Ω → R be a stationary process, and E[|Xt|2] <∞ , then

E[Xt] = µ

cX(t, t+ τ) = E[(Xt − µ)(Xt+τ − µ)] = cX(τ).

If cX(τ) → 0 rapidly enough and
∫∞

−∞
|cX(τ)| < ∞, we know from Fourier analysis

(Grigoriu, 2002; Kreyszig, 1988) that the covariance cX(τ) and the spectral density SX(ω)
constitute a Fourier transform pair;

cX(τ) =

∫ ∞

−∞

SX(ω) exp(iωτ)dω,

SX(ω) =
1

2π

∫ ∞

−∞

cX(τ) exp(−iωτ)dτ. (2.11)

Thus knowledge of the covariance function is sufficient to determine the energy spectral
density exactly by equation (2.11), and vice versa.

An appealing property one often assumes, is that stochastic processes are ergodic.

Definition 2.12 A stochastic process X(t) is said to be ergodic if ensemble averages equal
time averages, that is, if we have

E[g(X(t))] = lim
τ→∞

1

τ

∫ τ
2

− τ
2

g(X(s)) ds

for any real-valued measurable function g such that E[g(X(t))] <∞.
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By assuming that the stochastic process is ergodic, the expectation, variances and covari-
ances may be calculated from a single time history.

Using equation (2.11) and equation (A.2), it’s seen that the stochastic process X(t) =
Nt, which has a constant spectral density SN(ω) = S0/2π, has the covariance function

cN(τ) =

∫ ∞

−∞

S0

2π
exp(iωτ)dω = S0 δ(τ),

where δ(τ) is the impulse function described in appendix A. Such a process Nt is (roughly
speaking) called Gaussian white noise (see also section 2.10 or Schuss (1980)), although
such a process exists only in mathematic theory and not in real life.

Also strictly stationary processes may be defined.

Definition 2.13 A stochastic process Xt is called stationary (or strictly stationary) if
{Xt} has the same distribution as {Xt+h} for any h > 0.

Calculus like continuity, differentiation and integration, are well defined in Grigoriu
(2002), emphasised at second order processes.

2.9 Normal random variables

Definition 2.14 Let (Ω,F , P ) be a probability space. A random variable X : Ω → R is
normal if the distribution of X has a density of the form

fX(x) =
1

σ
√

2π
exp

(

−(x−m)2

2σ2

)

where σ > 0 and m is constant.

Following definition 2.8, we find

E[X] =

∫

Ω

XdP =

∫

R

xfX(x)dx = m

and

Var[X] = E[(X −m)2] =

∫

R

(x−m)2fX(x)dx = σ2.

More generally, a random variable X : Ω → Rn is called multi-normal N (m,C) if the
distribution of X has a density of the form

fX(x1, · · · , xn) =

√
detA

(2π)
n
2

exp

(

−1

2

∑

j,k

(xj −mj)ajk(xk −mk)

)
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where m = (m1, · · · , mn) ∈ Rn and C−1 = A = [ajk] ∈ Rn×n is a positive definite matrix,
i.e. a symmetric matrix where the eigenvalues are strictly greater than zero. If this is the
case then

E[X] = m

and

A−1 = C = [cjk]

is the covariance matrix of X, i.e.

cjk = E[(Xj −mj)(Xk −mk)].

There are good reasons why Gaussian processes are important. First of all, the central
limit theorem states that for statistically independent samples, the probability distribution
of the sample mean tends to become Gaussian as the number of statistically independent
samples is increased without limit, regardless of the probability distribution of the random
variable or process being sampled, as long as it has a finite mean and a finite variance. Since
many real life random phenomena are a sum of a large number of independent fluctuations,
one often expect that a Gaussian process will approximate well. Secondly, the response
of constructions with a small damping coefficient will be more Gaussian than the loading
is. And finally, Gaussian distributions provide us a significant analytical simplicity. An
essential property is that this class of random variables is closed under linear operations; if
a linear MDOF-system subjected to a Gaussian vector process excitation, then the response
vector process will also be Gaussian.

2.10 Brownian motion and the Wiener process

An important class of stochastic processes are those with independent increments, that is
for which the random variables X(tj+1) −X(tj), j = 0, . . . , n− 1 are independent for any
finite set of time instants t0 < t1 < . . . < tn in T . If t0 is the smallest time instant in T ,
then the random variables X(t0) and X(tj)−X(t0) for any other tj in T are also required
to be independent.

In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended
in liquid performed an irregular motion. The chaotic motion was later explained by the
random collisions with the molecules of the surrounding liquid. The first explanation of the
phenomenon of Brownian motion was given by Einstein in 1905. However, the preceding
concise definition of this stochastic process underlying Brownian motion was given by
Wiener in a series of papers originating in 1918.

An important example of a continuous time stochastic process with independent in-
crements is the standard Wiener process, Wt = W (t), t ≥ 0. The Wiener process is often
called Brownian motion, but separate terminology is often used to distinguish between the
mathematical and physical processes.
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Einstein was able to show that, assuming

P{W (0) = 0} = 1,

the PDF of ∆Wts = W (t) −W (s), t > s is Gaussian with

E(∆Wts) = 0

E(∆W 2
ts) = Var(W (t) −W (s)) = 2D(t− s) = ∆ts,

for all 0 ≤ s < t, and D is a physical constant. This process was proposed by Wiener as
a mathematical description of Brownian Motion. A standard Wiener process is a Wiener
process as described above, with D = 1/2. It is easy to show that the Wiener process
W (t), t > 0 is a Gaussian process. Rewriting

W (t) = [W (t) −W (tn)] + [W (tn) −W (tn−1)] + . . .+ [W (t1) −W (0)]

where 0 ≤ t1 < . . . < tn < t, it’s seen that the Wiener process is a linear sum of Gaussian
random variables and is of course a Gaussian random variable itself.

The Wiener process has continuous samples with probability one, since for any ε > 0,

lim
h→0

P{|W (t+ h) −W (t)| < ε} = lim
h→0

{

1 − 2Φ

(

− ε√
2Dh

)}

= 1,

where

Φ(x) =
1√
2π

∫ x

−∞

exp

(

−1

2
u2

)

du

denotes the standard Gaussian random variable. However, since

lim
h→0

P

{∣

∣

∣

∣

W (t+ h) −W (t)

h

∣

∣

∣

∣

> ε

}

= lim
h→0

2Φ

(

− εh√
2Dh

)

= 1,

the Wiener process has non-differentiable samples with probability one. In Soong and
Grigoriu (1993) it is shown that the Wiener process is not even differentiable in mean
square. So any attempt to derive any results due to the derivative of a Wiener process
is doomed to fail. However, we often talk about Gaussian white noise, a wide sense
stationary process with constant nonzero spectral density S(ω) = S0/2π. The name white
noise comes from the fact that its average power is uniformly distributed in frequency,
which is characteristic of white light. Considering the process

Xh(t) =
W (t+ h) −W (t)

h
, t ≥ 0,

as shown in Kloeden and Platen (1992), is a wide-sense stationary Gaussian process with
zero means, covariances

c(t− s) =
1

h
max

{

0, 1 − 1

h
|t− s|

}

,
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and a spectral density

Sh(τ) =
1

h

∫ h

−h

(

1 − |s|
h

)

cos(2πτs) ds =

(

sin(2πτh)

πτh

)2

.

This density is very broad for small h, and converges to 1 for all τ 6= 0 as h → 0. This
suggests that the process Xh(t) converges to a Gaussian white noise process Nt = Ẇ as
h → 0, and that a Gaussian white noise process is the derivative of a Wiener process.
However, a Gaussian white noise process cannot be a stochastic process in the usual sense,
but must be interpreted in the sense of generalised functions like the Dirac delta function. It
cannot be realized physically, but it can be approximated to any desired degree of accuracy
by the conventional stochastic processes with broad banded spectra, such as Xh(t), which
is called coloured white noise.

2.11 Ito stochastic calculus

During the first decade of the 20th century, attempts were made to formulate dynamics
caused by Brownian motion in terms of differential equations. The resulting equations
were written in the form

dXt = u(t, Xt) dt+ v(t, Xt) dWt, (2.12)

which is a short-hand notation for

Xt(ω) = Xt0(ω) +

∫ t

t0

u(s,Xs(ω)) ds+

∫ t

t0

v(s,Xs(ω)) dWs(ω) , (2.13)

where u(t, Xt) is a drift term and v(t, Xt) dWt is the noisy, diffusive term. Equation (2.12)
and equation (2.13) are usually called Ito stochastic differential equation and Ito stochastic
integral, respectively.

One problem is that a Wiener process is nowhere differentiable, so strictly speaking the
process dWt does not exist as a conventional function of t; -indeed a flat spectral density
implies that its covariance function is a constant multiple of the Dirac delta function. Thus
the integral in equation (2.13) cannot be an ordinary Riemann or Lebesgue integral. Worse
still, the continuous sample path of a Wiener process are not of bounded variation on any
bounded time interval, so the latter integral in equation (2.13) cannot even be interpreted
as a Riemann-Stieltes integral for each sample path. For a constant v(t, x) ≡ v one would
expect the second integral in equation (2.13) to equal v [Wt(ω) −Wt0(ω)]. This is the
starting point for Ito’s definition of a stochastic integral, as written in Kloeden and Platen
(1992). The conclusion is that the first integral in equation (2.13) is made as a Lebesgue
(or Riemann) integral for each sample path, and the second integral is an Ito integral. The
second integral could optionally be done as a Stratonovic integral, as well explained in
Kloeden and Platen (1992).
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In general, the solutions of a stochastic differential equation (2.12) are diffusion pro-
cesses with their TPDs (section 2.12) satisfying certain properties for the drift u(t, Xt) and
diffusion coefficient v(t, Xt).

In the multidimensional case, the vector process Xt = (X1(t), . . . , Xn(t))> will satisfy
the stochastic differential equation

dXt = m [t, Xt] dt+Q [t, Xt] dWt, (2.14)

where m[·] = (m1(·), . . . , mn(·))>, dWt = (dW1(t), . . . , dWm(t))>, and Q = (Qij) denotes
an n×m matrix. m[·] is usually called a drift vector, and QQ> is called a diffusion matrix.
dWt is a vector of increments of independent Wiener processes.

2.12 Transition probability density

We limit our discussion to real one dimensional processes for simplicity. The extension to
Rn-valued processes is straight forward.

Let X(t) be a real-valued random process, and X(t1), . . . , X(tn) be a set of values at
the consecutive time instants t1 < . . . < tn. The conditional probability density of the
value of X(t) at the most recent time tn is

fXn|Xn−1...X1
(xn|xn−1, . . . , x1) =

fXnXn−1...X1
(xn, xn−1, . . . , x1)

fXn−1...X1
(xn−1, . . . , x1)

,

where X(ti) = Xi, i = 1, . . . , n. Hence for a Markov process (section 2.7.2), we may write

fXn|Xn−1...X1
(xn|xn−1, . . . , x1) = fXn|Xn−1

(xn|xn−1) = p(xn, tn|xn−1, tn−1) (n ≥ 2).

p(xn, tn|xn−1, tn−1) is called the transition probability density, denoted as TPD. Equa-
tion (2.6) may be rewritten as

fX(x) = p(xn, tn|xn−1, tn−1) · . . . · p(x2, t2|x1, t1)fX1
(x1). (2.15)

If we know the one-dimensional probability distribution fX1
(x1) and the transition proba-

bility p(xn, tn|xn−1, tn−1) of X(t), we may find the probability distributions of X(t), i.e., the
two mentioned functions completely characterise a process without aftereffect. Naturally,
the TPD has to satisfy the normalisation condition

∫

p(xn, tn|xn−1, tn−1) dxn = 1.

An important equation for Markov processes,

∫

p(x3, t3|x2, t2) p(x2, t2|x1, t1)dx2 = p(x3, t3|x1, t1), (t3 > t2 > t1), (2.16)



16 CHAPTER 2. THEORY OF RANDOM VARIABLES AND PROCESSES

known as is known as the Chapman-Kolmogorov equation. Equation (2.16) essentially
describes the flow or transition of probabilities associated with X(t) from an instant t1 to
another instant t3 via any intermediate instant t2. The equation occupy a central role in
the theory of Markov processes.

Studying the time dependence of the one-dimensional probability density, we may
choose n = 2 in equation (2.15), integrating with respect to x1, obtaining

fX2
(x2) =

∫

p(x2, t2|x1, t1) fX1
(x1) dx1. (2.17)

2.13 Intensity coefficients

One way of converting equation (2.17) into a differential equation, as done by Stratonovich
(1963), is by choosing t1 close to t2. Denoting t1 = t′, t2 = t, τ = t2 − t1, X1 = X ′, and
X2 = X, we may rewrite equation (2.17) into the simpler form

fX(x) =

∫

p(x, t|x′, t′) fX′(x′) dx′. (2.18)

Remembering the theory from section 2.5, we introduce a new characteristic function,

Θ(u; x′) = E[exp (iu(x− x′))] =

∫

exp (iu(x− x′)) p(x, t|x′, t′) dx (2.19)

of the random increment x − x′ which occurs during the time interval [t′, t] given x′.
Substituting its inverse transform

p(x, t|x′, t′) =
1

2π

∫

exp(−iu(x− x′)) Θ(u; x′) du

into equation (2.18), we find

fX(x) =
1

2π

∫ ∫

exp(−iu(x− x′)) Θ(u; x′) du fX′(x′) dx′.

According to equation (2.8), the characteristic function in equation (2.19) equals

Θ(u; x′) = 1 +
∞
∑

s=1

(iu)s

s!
ms(x

′) (2.20)

in terms of the moments

ms(x
′) = E[(X −X ′)s]

of the increment x− x′. Now

fX(x) =

∞
∑

s=0

1

s!

1

2π

∫ ∫

exp(−iu(x− x′)) (iu)s dums(x
′) fX′(x′) dx′
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Since

1

2π

∫

exp(−iu(x− x′)) (iu)s du = (− ∂

∂x
)s 1

2π

∫

exp(−iu(x− x′)) du

= (− ∂

∂x
)sδ(x− x′),

where δ(·) is defined in appendix A, we find

fX(x) = fX′(x′) +

∞
∑

s=0

1

s!
(− ∂

∂x
)s [ms(x) f(x)].

where f(x) = fX(x). Dividing by τ , and passing to the limit τ → 0, we obtain

∂f(x)

∂t
=

∞
∑

s=0

1

s!
(− ∂

∂x
)s[Ks(x)f(x)], (2.21)

and

Ks(x) = lim
τ→0

ms(x)

τ
, (2.22)

provided that these limits exists. According to equation (2.22), the moments depend on τ
in the following way:

ms(x) = Ks(x) τ + O(τ 2), s = 1, 2, . . ..

Ks is called the intensity coefficients of the derivative dx(t)/dt, t > t′.
Wong and Hajek (1985) and Kloeden and Platen (1992) provides optional ways in

obtaining equation (2.21).

2.14 The one-dimensional Fokker-Planck equation

Definition 2.15 A Markov process is said to be continuous if its higher-order intensity
coefficients K3, K4, . . . in equation (2.22) equals zero.

In this case, equation (2.21) takes the form

∂f(x)

∂t
= − ∂

∂x
[K1(x) f(x)] +

1

2

∂2

∂x2
[K2(x) f(x)], (2.23)

and is called the Fokker-Planck equation (FP) (or the diffusion equation). The FP-equation
deals with the fluctuations of systems which stem from many tiny disturbances, -each
of which changes the variables of the system in an unpredictable, but small way. The
FP-equation is just an equation of motion for the distribution function of fluctuating
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macroscopic variables, and according to Risken (1989) was first used by Fokker and Planck
early in the 20th century to describe the Brownian motion of particles (section 2.10).

Introducing the probability current

G(x) = K1(x) f(x) − 1

2

∂

∂x
[K2(x) f(x)],

the Fokker-Planck equation may be written

∂f

∂t
+
∂G

∂x
= 0, (2.24)

which we may understand as the equation of conservation of probability.
In order to obtain solutions to the FP-equation, we have to add initial conditions

and boundary conditions. If we use an arbitrary initial distribution f(x, t0) = f0(x) at
some initial time t0, we can find the function f(x, t), t > t0. Using f0(x) = δ(x − x0), it
can be shown (Stratonovich, 1963) that the resulting probability density is just the TPD
p(x, t|x0, t0). Therefore, the transition probability can be found as the solution of the
equation

∂p(x, t|x0, t0)

∂t
= − ∂

∂x
[K1(x) p(x, t|x0, t0)] +

1

2

∂2

∂x2
[K2(x) p(x, t|x0, t0)] (2.25)

with initial condition

p(x, t0|x0, t0) = δ(x− x0).

It can be shown (Bharucha-Reid, 1960) that regarded as a function of x0 and t0, the TPD
p(x, t0|x0, t0) satisfies another differential equation

∂p(x, t0|x0, t0)

∂t0
= −∂p(x, t0|x0, t0)

∂x0
K1(x0) −

1

2

∂2p(x, t0|x0, t0)

∂x2
0

K2(x0)

called the Kolmogorov equation. In the case of a stationary random process where K1(x)
and K2(x) do not depend on t, the TPD p(x, t|x′, t′) depends only on the timelag τ and
not on t.

If the function X(t) can take all possible values from −∞ to ∞, the boundary conditions
take the form of conditions there. Integrating equation (2.24) with respect to x from −∞
to ∞, and remembering that the normalisation condition

∫

f(x) dx = 1 is satisfied for all
t, the conditions are;

G(−∞, t) = 0 = G(∞, t)

f(−∞, t) = 0 = f(∞, t).

Considering the FP-equation in an interval x1 ≤ x ≤ x2, the boundary conditions take the
form

G(x1, t) = 0 = G(x2, t).
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There is a close connection between the FP-equation and SDE. According to Grigoriu
(2002), given a one-dimensional stochastic differential equation

dX(t) = u(X(t), t)dt+ v(X(t), t)dW (t), t ≥ t0

starting at X(t0) = x0, the TPD f = p(x, t|x0, t0) satisfies the FP-equation

∂f

∂t
= − ∂

∂x
(u f) +

1

2

∂2

∂x2
(v2 f). (2.26)

Comparing the equations (2.23) and (2.26), the connection between intensity factors and
the drift- and diffusion term are

K1(X(t), t) = u(X(t), t) ,

K2(X(t), t) = v(X(t), t)2 .

2.14.1 Solutions to the Fokker-Planck equation

The PDF f(x, t) satisfying the FP-equation (2.23) is uniquely determined by the prescribed
initial and boundary equations. In a special case where K1(x) and K2(x) do not depend
on time, the distribution f(x, t) will, according to Kloeden and Platen (1992), usually
approach a stationary distribution f̄(x).

The stationary distribution does not depend on the initial distribution f(x0, t) or on
the time. Hence,

∂

∂t
f̄(x) = 0. (2.27)

Combining equation (2.27) and equation (2.24), we find

Ḡ(x) = const.

It may now be shown (Stratonovich, 1963) that the stationary distribution is

f̄(x) ∝ 1

K2(x)
exp

{

2

∫ x

x1

K1(y)

K2(y)
dy

}

. (2.28)

However, investigation of transient processes, which involves calculation of the TPD by
solving the non-stationary equation (2.23), is a much more difficult problem. In some
instances, the non-stationary FP-equation can be solved by applying the method of sepa-
ration of variables.
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2.14.2 The Rayleigh process

One important example of a stochastic equation driven by white noise, is the Rayleigh
equation, also called the Rayleigh process,

Ṙ = − ε

2

(

R − κ

R

)

+
√
ε ηt. (2.29)

Here ηt is Gaussian white noise with the following properties

E[ηt] = 0,

E[ηtηt+τ ] = κδ(τ) ,

and R = R(t) > 0 may be regarded as the amplitude of a narrow-banded process. κ is the
noise intensity.

The theory from section 2.14 allow us to rewrite equation (2.29) as a FP-equation,

2

ε

∂f

∂t
=

∂

∂R

[

−
(

R− κ

R

)

f
]

+ κ
∂2f

∂R2
. (2.30)

Combining equation (2.28) and equation (2.30), we find the stationary distribution

f̄(R) =
R

κ
exp

(

−R
2

2κ

)

, (2.31)

which is the well-known Rayleigh distribution.
As shown in chapter 5 and 6, the Rayleigh equation plays an important role in statistical

response predictions for nonlinearly moored large volume structures in random seas.

2.14.3 The exact transition probability density for a Rayleigh

process

Changes in R represent a Markov process, and the expression for the TPD p(R, t|R′, t′) =
p(R|R′), where as usual t = t′ + τ , may now be found;

f(R,R′) = p(R|R′)f(R′). (2.32)

It can be shown (Davenport and Root, 1987) that

f(R,R′) =
RR′

κ2(1 −Q2)
I0

(

Q

1 −Q2

RR′

κ

)

exp

(

− R2 +R′2

2κ(1 −Q2)

)

, (2.33)

where Q = exp(−ε|τ |/2) and I0(z) = J0(iz) is the modified Bessel Function of first kind,
of order zero. Combining equations (2.31) to (2.33), the exact TPD

p(R|R′) =
R

κ(1 −Q2)
I0

(

Q

1 −Q2

RR′

κ

)

exp

(

−R
2 +Q2R′2

2κ(1 −Q2)

)

(2.34)

may be found.
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2.15 The multidimensional Fokker-Planck equation

Considerations made in section 2.12 can be generalised to the case of a multidimensional
Markov process, which consists of several random functions X1(t), . . . , Xm(t). Such a pro-
cess is described by a transition probability p(x1(t), . . . , xm(t)|x1(t

′), . . . , xm(t′)), in terms
of which we can write the multidimensional probability densities. This TPD is just the
conditional probability density

p(x1(t), . . . , xm(t)|x1(t
′), . . . , xm(t′)) =

f(x1, . . . , xm|x′1, . . . , x′m)

f(x′1, . . . , x
′
m)

of the random variables X1(t) = X1, . . . , Xm(t) = Xm at the time t, given the fixed values
X1(t

′) = X ′
1, . . . , Xm(t′) = X ′

m at a previous time t′. In the case of a continuous Markov
process, the probability density f(x1(t), . . . , xm(t)) satisfies the multidimensional Fokker-
Planck equation

∂f

∂t
(x1, . . . , xm) = −

m
∑

α=1

∂

∂xα
[Kα(x1, . . . , xm)f(x1, . . . , xm)]

+
1

2

m
∑

α=1

m
∑

β=1

∂2

∂xα∂xβ
[Kαβ(x1, . . . , xm)f(x1, . . . , xm)], (2.35)

where the intensity coefficients Kα and Kαβ are defined by the formulas

Kα = lim
τ→0

1

τ
E[Xατ −Xα],

Kαβ = lim
τ→0

1

τ
E[(Xατ −Xα) (Xβτ −Xβ)].

As in the one-dimensional case, there is also a close connection between the FP-equation
and the SDE in the multi-dimensional case. Let X : Ω → Rm be a diffusion process
described by the stochastic differential equation

dX(t) = u(X(t), t)dt+ v(X(t), t)dW (t), t ≥ t0,

where u(X(t), t) and v(X(t), t) is the drift- and diffusion term as described in section 2.11.
Assume that u and vv> satisfies certain boundary conditions, and that the process starts
at X(t0) = x0. Then, according to Grigoriu (2002), the TPD f = p(x, t|x0, t0) satisfies the
FP-equation

∂f

∂t
= −

m
∑

i=1

∂

∂xi

(u f) +
1

2

m
∑

i=1

m
∑

j=1

∂2

∂xi∂xj

(

vv> f
)

.
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2.15.1 Solutions to the multidimensional Fokker-Planck equation

The FP-equation from equation (2.35) can be written in the form

∂f

∂t
= −

m
∑

α=1

∂Gα

∂xα

where

Gα = Kαf − 1

2

m
∑

β=1

∂

∂xβ
[Kαβf ]

are the components of a probability current vector G = (G1, . . . , Gm) in the m-dimensional
space. Now the stationary PDF f̄ satisfies the equation

m
∑

α=1

∂Ḡα

∂xα

= 0.

However, if m > 1, the probability current G does not have to vanish inside the region R

under consideration, even if G satisfies zero boundary conditions

Ḡα(x) = 0

on the boundary of R, since rotational probability flows can occur. The current G vanishes
in the whole region R, i.e.,

Kα(x)f̄(x) − 1

2

m
∑

β=1

∂

∂xβ
[Kαβ(x)f̄(x)] = 0 (2.36)

only in a special case called the potential case. Substituting f̄(x) = exp(−U) into equa-
tion (2.36), we obtain the equations

∂U

∂xγ
=

m
∑

α=1

m
∑

β=1

Aγα
∂Kαβ

∂β
− 2

m
∑

α=1

AγαKα, (2.37)

where Aγα is the inverse of the matrixKαβ and γ = 1, . . . , m. It follows from equation (2.37)
that the potential conditions now take the form

∂

∂xδ

m
∑

α=1

Aγα

(

m
∑

β=1

∂Kαβ

∂xβ

− 2Kα

)

=
∂

∂xγ

m
∑

α=1

Aδα

(

m
∑

β=1

∂Kαβ

∂xβ

− 2Kα

)

, (2.38)

where γ, δ = 1, . . . , m. If these conditions are met, and if there is no flow of probability
through the boundary of the region R, then the assumption that the probability current
vanishes everywhere in R is justified, and we can find the stationary probability density
by calculating the potential function U from equation (2.37). This, of course, implies that
the matrix Kαβ is nonsingular so that it has an inverse.

Special cases may simplify equation (2.38) and equation (2.37). For example when
the matrix Kαβ is isotropic, i.e., Kαβ = κδαβ, when Kαβ is independent of the argument
x1, . . . , xm and when K1, . . . , Km are linear functions of x1, . . . , xm.
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2.16 Approximate TPD

2.16.1 1D case

The discretized version of the continuous SDE in equation (2.12) may be written as

X(t) = X(t′) + ũ(t′, X(t′), τ) + v(t′, X(t′)) ∆Wt′ , (2.39)

where the finite positive increment τ = t − t′. ũ(t′, X(t′), τ) is the discretized version of
the drift term u(t′, X(t′)) dt in some manner at time t′, and using e.g. the basic Euler
approximation, ũ(t′, X(t′), τ) = u(t′, X(t′))τ . v(t′, X(t′)) is diffusion term at time t′, and
∆Wt′ = W (t) −W (t′). From equation (2.39) it follows that the conditional PDF of X(t),
given that X(t′) = x′, is given as

p(x, t|x′, t′) =
1

√

2πv(t′, x′)τ
exp

(

− [x− (x′ + ũ(t′, x′, τ))]2

2v(t′, x′)τ

)

. (2.40)

As mentioned in section 2.11, equation (2.12) is only a short hand notation for equa-
tion (2.13), so the exact expression for X(t) is

X(t) = X(t′) +

∫ t

t′
u(s,X(s)) ds+

∫ t

t′
v(s,X(s)) dWs, (2.41)

and the accuracy in the solution is determined by how one decides to represent the integrals.
Often, when the diffusion term is a constant, the latter integral in equation (2.41) may be
found using an Euler-Maruyama approximation, but this is not the case of the Rayleigh
process. This topic is further discussed in section 4.6.5.

Other approaches in obtaining equation (2.40), may be found in e.g. Risken (1989).

2.16.2 Multidimensional case

Assume X(t) = (X1(t), . . . , Xn(t))> is a real-valued vector process satisfying equation (2.14).
Rewriting it as a discretized system, we find

X(t) = X(t′) + m̃(t′, X(t′), τ) +Q(t′, X(t′)) ∆Wt′, (2.42)

where the finite positive increment τ = t − t′. m̃(t′, X(t′), τ) is the discretized version of
the drift term m(t′, X(t′)) dt in some manner at time t′, Q(t′, X(t′)) is diffusion term at
time t′, and ∆Wt′ = W (t) −W (t′). The diffusion matrix is

G(x) = (gij(x)) = Q(x)Q(x)> =

(

n
∑

k=1

qik qjk

)

and assuming the first r < n rows of the matrix Q to be zero, i.e.

Qij = 0, i = 1, . . . , r.
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This implies that

G =

[

0 0

0 G̃

]

,

where 0 denotes zero-matrices and G̃ denotes a (n − r) × (n − r) matrix with elements
gij(·), i, j = r+ 1, . . . , n, and are called a reduced diffusion matrix, assumed to be positive
definite.

Proceeding in a manner similar to the derivations in section 2.16.1, from equation (2.42)
it follows that the conditional PDF of X(t), given that X(t′) = x′, is given as

p(x, t|x′, t′) =
r
∏

i=1

δ {xi − (xi + m̃i(x
′, t′, τ))} · (2πτ) r−n

2

[

detG̃(x′)
]− 1

2

· exp

{

− 1

2τ

n
∑

i=r+1

n
∑

j=r+1

[xi − (x′i + m̃i(x
′, t′, τ))]

×
[

G̃(x′)−1
]

i−r,j−r
[xj − (x′j + m̃j(x

′, t′, τ))]

}

, (2.43)

where the determinant assumed to be greater than zero, G̃(x)−1 is the inverse of matrix
G̃, and δ(·) is the delta-function described in Appendix A.

As in the one-dimensional case, equation (2.14) is only an short-hand notation of

X(t) = X(t′) +

∫ t

t′
m(s,X(s)) ds+

∫ t

t′
Q(s,X(s)) dWs, (2.44)

the accuracy of the solution again depends on how one decides to handle the integrals of
equation (2.44).



Chapter 3

Structural response

This chapter is based on the articles Naess and Karlsen (2004) and Naess et al. (2006).

3.1 Introduction

Stationary vessels floating or submerged in irregular waves are subjected to large first order
wave forces and moments which are linearly proportional to the wave height and contain
the same frequencies as the waves. They are also subjected to small second-order mean
and low frequency wave forces and moments which are proportional to the square of the
wave height. The frequencies of the second order low frequency component are associated
with the frequencies of the wave groups occurring in irregular waves.

The first order wave forces and moments are the cause of the well known first order
motions with wave frequencies. Due to the importance of the first order wave forces and
motions they have been subjected to investigation for several decades. As a result of these
investigations, methods have evolved by means of which these may be predicted with a
reasonable degree of accuracy for many different vessel shapes (Pinkster, 1980).

From the point of view of practical assessment of the response statistics of engineering
structures subjected to stochastic load processes, a quantity of particular importance is the
average rate of upcrossings of high levels by the response. This is the key to e.g. estimation
of extreme values.

In this chapter the focus is on response processes that can be expressed as a second
order stochastic Volterra series, that is, a stochastic Volterra series that has been truncated
after the second order term. Even if the Volterra series model was formulated more than
30 years ago, it is not until quite recently that general numerical methods have become
available that allows accurate calculation of the probability distribution, and perhaps more
importantly, the mean upcrossing rate of the total response process. While the method is
mathematically sound, initial efforts to carry out the requisite calculations have revealed
that some care is needed in setting up the numerical algorithms.

A substantial amount of work has been done to derive methods for efficient analysis
of this model for engineering applications, starting with the seminal paper by Kac and
Siegert (1947). Later contributions toward applications in ocean and offshore engineering

25
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have been made, among many others, by Neal (1974), Vinje (1983), Næss (1985), Donley
and Spanos (1990) and Næss (1990).

3.2 The response process

The response process Z(t) that is considered here is assumed to be represented as a second
order stochastic Volterra series. This would apply to the state of the art representation of
e.g. the surge response of a large volume, compliant offshore structure in random waves.
This response would consist of a combination of the wave frequency component Z1(t) and
the slow-drift component Z2(t), as described in Næss (1990),

Z(t) = Z1(t) + Z2(t), (3.1)

where

Z1(t) =

∫ ∞

0

h1(τ)X(t− τ)dτ (3.2)

Z2(t) =

∫ ∞

0

∫ ∞

0

h2(τ1, τ2)X(t− τ)X(t− τ)dτ1dτ2. (3.3)

Equation (3.1) describes the standard representation of the two response components lead-
ing to a second order Volterra series model for the total response. In equation (3.2)
and (3.3), X(t) denotes a stationary, real Gaussian process, representing a unidirectional
random wave elevation process or a stochastic wind-velocity field. How to deal with the
multidimensional case is also shown in Næss (1990). h1(τ) and h2(τ1, τ2) are real, contin-
uous functions characterising the physical system that is modelled.

h1(τ) is an ordinary impulse response function defining a linear physical problem.
h2(τ1, τ2) is by analogy called the quadratic impulse response function, but as opposed
to the linear impulse response function h1(τ), h2(τ1, τ2) does not have a simple physical
interpretation. h2(τ1, τ2) characterises the second-order properties of the physical system.
h1(τ) and h2(τ1, τ2) are found by the equations

h1(τ) =
1

2π

∫ ∞

0

Ĥ1(ω) exp(−iω τ) dω

h2(τ1, τ2) =
1

4π2

∫ ∞

0

∫ ∞

0

Ĥ2(ω1, ω2) exp(−iω1 τ1) exp(−iω2 τ2) dω1dω2.

Ĥ1(ω) and Ĥ2(ω1, ω2) are called linear and quadratic transfer functions (QTF), respec-
tively. The problem of estimating Ĥ2(ω1, ω2) with particular reference to nonlinear ocean
engineering problems has been treated extensively in literature (Faltinsen and Løken, 1979;
Neal, 1974). The function h2(τ1, τ2) may without loss of generality be considered symmet-
rical (Neal, 1974). Writing

X(t) =
N
∑

j=−N

[SX(ωj)∆ω]
1

2 Bje
iωjt,
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it is shown (Næss, 1990) that for practical numerical calculations the following relations
can be worked out

Z1(t) =
N
∑

i=−N

qiBie
iωit (3.4)

Z2(t) =

N
∑

i=−N

N
∑

j=−N

QijBiB
∗
j e

i(ωi−ωj)t (3.5)

where

qi = Ĥ1(ωi)

[

1

2
SX(|ωi|)∆ω

]
1

2

Qij =
1

2
Ĥ2(ωi,−ωj) [SX(|ωi|)SX(|ωj|)]

1

2 ∆ω, (3.6)

and SX(ω) denotes the one-sided spectral density of X(t). {Bi}N
i=1 is a set of indepen-

dent, complex Gaussian N(0, 1)-variables with independent, identically distributed real
and imaginary parts. These variables are assumed to satisfy the relation B−i = B∗

i , where
* signifies complex conjugation. Throughout this chapter, when the summation index
runs from negative to positive values, it invariably omits zero. 0 < ω1 < · · · < ωN is an
equidistant discretization of the pertinent part of the positive frequency axis; ω−i = −ωi

and ∆ω = ωi+1 − ωi. The assumption of an equidistant discretization is adopted for sim-
plicity of presentation and is not necessary, in fact, often a non-equidistant version is used
to avoid having too many frequencies, which is sometimes convenient. The formulas are
easily adapted to cover the situation of non-equidistant discretization.

It is shown Næss (1985, 1990) that by solving the eigenvalue problem (assumed non-
singular)

Qvj = λjvj (3.7)

to find the eigenvalues λj and orthonormal eigenvectors vj, j = −N, . . . ,−1, 1, . . . , N , of
the matrix Q = (Qij), the quadratic response can be represented as

Z2(t) =

N
∑

j=−N

λj W̄j(t)
2 (3.8)

Here W̄j(t), j = −N,−1, 1, . . . , N are real stationary Gaussian N(0, 1)-processes which
can be represented as follows

W̄j(t) =
N
∑

k=−N

vj(ωk)Bke
iωkt (3.9)

where vj(ωk) denotes the kth component of vj, and it can be assumed that vj(ω−k) =
vj(ωk)

∗. For each fixed t, {W̄j(t)} becomes a set of independent Gaussian variables.



28 CHAPTER 3. STRUCTURAL RESPONSE

Since slow-drift response of offshore structures often occurs at periods of the order
of minutes, it is usually a very good approximation to neglect second-order effects at
frequencies higher than wave frequencies. In such cases, what is known as the slow-drift
approximation may be adopted. It corresponds to neglecting forces of oscillations occurring
at frequencies corresponding to the sum of frequencies in the input spectral density. In
mathematical terms this approximation applied to e.g. the second-order response amounts
to putting the QTF

Ĥ2(ωi, ωj) = 0, ωi · ωj > 0,

implying that the kernel Qij = 0 in equation (3.5), when ωi · ωj < 0. When the kernel
has this property, the eigenvalue problem in equation (3.7) will generate exactly double
eigenvalues (Næss, 1986). Rewriting equation (3.8), we are now able to write the slow drift
response, still denoted Z2(t), like

Z2(t) =

∞
∑

j=1

λj

{

W̄2j−1(t)
2 + W̄2j(t)

2
}

(3.10)

Note that the second order theory is based on the assumption that the QTF

Ĥ2(ωi,−ωj) = Ĥ(ωi − ωj) K̂2(ωi,−ωj),

where K̂2(·, ·) is a QTF characterising the slowly varying sway (or surge) forces on the
vessel, and Ĥ(·) is a linear transfer function characterising the sway (or surge) motion of
the vessel, that is

Ĥ(ω) =
1

M [−ω2 + 2iξω0ω + ω2
0]
,

where M is mass, ω0 is the natural frequency, and ξ is the damping ratio of the system.
In the slow-drift case, the stochastic process {W̄j(t)} may optionally be represented as

follows

W̄2j−1(t) + iW̄2j(t) =
√

2

N
∑

k=1

vj(ωk)Bke
iωkt.

The representation can be arranged so that W̄2j becomes the Hilbert transform of W̄2j−1,
cf. Næss (1990).

Having achieved the desired representation of the quadratic response Z2(t), it can then
be shown that the linear response can be expressed as

Z1(t) =
N
∑

j=−N

βjW̄j(t) (3.11)
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The (real) parameters βj are given by the relations

βj =
N
∑

k=−N

Ĥ∗
1 (ωk)

√

SX(ωk)∆ω vj(ωk)

Based on the representations given by equations (3.8) and (3.11), Næss (1987) describes
how to calculate the statistical moments of the response process Z(t). However, for im-
portant prediction purposes the crucial quantity is the mean rate of level upcrossings by
the response process.

3.3 The mean crossing rate

Let (Ω,F , P ) be a complete probability space as defined in section 2.1, and let Z(t) be a
real (strictly) stationary stochastic process with continuously differentiable sample paths
(a.s.). It is assumed throughout that the distribution function of Z(0), denoted by FZ(z) =
P (Z(0) ≤ z) is absolutely continuous. For every fixed level ζ ∈ R, let N+

Z (ζ) denote the
rate of upcrossings of the level ζ by Z(t), cf. Leadbetter et al. (1983), and let

ν+
Z (ζ) = E[N+

Z (ζ)].

Under the assumed conditions on Z(t), it can be proved (Zähle, 1984) that if E[|Z(0)|] <∞,
then

ν+
Z (ζ) = E

[

Ż+|Z = ζ
]

fZ(ζ),

where the equality holds a.s. (Lebesgue) with respect to ζ, and z+ = max(z, 0).
Assuming that the distribution of (Ż|Z = ζ) is absolutely continuous with a probability

density function (PDF) fŻ|Z(s|ζ), it follows that for a.e. ζ

ν+
Z (ζ) =

∫ ∞

0

s fŻ|Z(s|ζ) ds fZ(ζ)

=

∫ ∞

0

s fZŻ(ζ, s) ds (3.12)

where fZŻ(·, ·) denotes the joint PDF of Z(0) and Ż(0) = dZ(t)/dt|t=0. Equation (3.12) is
often referred to as the Rice formula (Rice, 1954). ν+

Z (ζ) is assumed throughout to be finite,
and it is referred to as the mean upcrossing rate of the level ζ. With additional assumptions
on the joint densities of Z(0), Ż(0) and Z(0), h−1

(

Z(h) − Z(0)
)

for small values of h, it
can be shown that equation (3.12) is valid for every ζ, cf. Marcus (1977) or Leadbetter
et al. (1983). However, the required conditions to ensure equality in equation (3.12) for
every value of ζ are not easy to verify, but most importantly, the stronger version is rarely
needed. In reliability applications the critical levels for which the crossing rate is required
can in general only be given with finite accuracy. This means that the crossing rate needs
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to be known for values of ζ belonging to small intervals who’s length is determined by the
level of the accuracy. Hence, the a.s. result is sufficient under such circumstances.

To calculate the mean crossing rate of a stochastic process represented as a second
order stochastic Volterra series directly from equation (3.12) has turned out to be difficult
due to the difficulties of calculating the joint PDF fZŻ(·, ·) (see chapter 4). However, the
situation can be improved by invoking the concept of characteristic function.

Denote the characteristic function of the joint variable (Z, Ż) by MZŻ(·, ·), or, for
simplicity of notation, by M(·, ·). Then

M(u, v) = MZŻ(u, v) = E
[

exp
(

iuZ + ivŻ
)

]

Assuming that M(·, ·) is an integrable function, that is, M(·, ·) ∈ L1(R2), it follows that
(a.s.)

fZŻ(z, s) =
1

(2 π)2

∫ ∞

−∞

∫ ∞

−∞

M(u, v) exp (− iuz − ivs) du dv (3.13)

By substituting from equation (3.13) back into equation (3.12), the mean crossing rate
is formally expressed in terms of the characteristic function, but this is not a very practical
expression.

The solution to this is obtained by considering the characteristic function as a function
of two complex variables. It can then often be shown that this new function becomes
holomorphic in suitable regions of C

2, where C denotes the complex plane. As shown in
detail in Næss (2002), under suitable conditions, the use of complex function theory allows
the derivation of the following two alternative expressions for the crossing rate, which hold
true for a.e. ζ,

ν+
Z (ζ) = − 1

(2 π)2

∫ ∞−ia

−∞−ia

∫ ∞−ib

−∞−ib

1

v2
M(u, v) e− iuζ du dv , (3.14)

where 0 < a < a1 for some positive constant a1, and b0 < b < b1 for some constants b0 < 0
and b1 > 0. As pointed out by Næss (2001), in the case of a stationary process,

ν+
Z (ζ) = − 1

(2 π)2

∫ ∞

−∞

(

–

∫ ∞

−∞

1

v2
M(u, v) dv

)

e− iuζ du, (3.15)

where the inner integral wrt v is interpreted as a principal value integral in the following
sense:

–

∫ ∞

−∞

= lim
ε→0+

{∫ − ε

−∞

+

∫ ∞

ε

}

.

The upcrossing frequency may optionally be evaluated with the formula

ν+
Z (ζ) = − 1

(2 π)2

∫ ∞

−∞

(

–

∫ ∞

−∞

1

v

∂M(u, v)

∂v
dv

)

e− iuζ du, (3.16)
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as done in Machado (2002), but equation (3.15) is faster to evaluate, numerically. Equa-
tion (3.16) has some value though, been used to check the results from equation (3.15).

To actually carry out the calculations, the joint characteristic function need to be
known. It has been shown (Næss, 2001) that for the second order stochastic Volterra series,
it can be given in closed form. To this end, consider the multidimensional Gaussian vectors

W̄ = (W̄−N , . . . , W̄N)> and ˙̄W = ( ˙̄W−N , . . . ,
˙̄WN)>. It is obtained that the covariance

matrix of (W̄>, ˙̄W>)> is given by

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where

Σ11 = I = the 2N × 2N identity matrix,

Σ12 = (rij) = (E[W̄i
˙̄Wj]),

Σ21 = (E[ ˙̄WiW̄j]),

Σ22 = (sij) = (E[ ˙̄Wi
˙̄Wj]),

for i, j = −N, . . . ,−1, 1, . . . , N . The identities rij = − rji and Σ12 = Σ>
21 may also be

shown. It follows from equation (3.9), that the entries of the covariance matrix Σ can be
expressed in terms of the eigenvectors vj, cf. Næss (1985). Let

Rij =

N
∑

k=1

−iωkvi(ωk)vj(ωk)
∗

Sij =

N
∑

k=1

ω2
kvi(ωk)vj(ωk)

∗.

Then

r2i−1,2j−1 = r2i,2j = < (Rij)

r2i−1,2j = −r2i,2j−1 = = (Rij)

s2i−1,2j−1 = s2i,2j = < (Sij)

s2i−1,2j = −s2i,2j−1 = −= (Sij) .

Let Λ = diag(λ−N , . . . , λN) be the diagonal matrix with the parameters λj on the
diagonal, and let β = (β−N , . . . , βN)>. It can now be shown (Næss, 2001) that

MZŻ(u, v) = exp

{

−1

2
ln(det(A)) − 1

2
v2 β> V β +

1

2
α>A−1 α

}

(3.17)

where

A = I − 2iuΛ − 2 i v (Λ Σ21 + Σ12 Λ) + 4 v2ΛV Λ,

V = Σ22 − Σ21 Σ12,

α =
(

iu I + i vΣ12 − 2v2 ΛV
)

β.
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3.4 Numerical calculation

Previous efforts to carry out numerical calculation of the mean crossing rate using equa-
tion (3.15) has been reported in Naess and Machado (2000) and Næss (2001). These initial
investigations indicated that the method had the potential to provide very accurate nu-
merical results. In this chapter, the focus will be on the alternative expression given by
equation (3.14), which is rewritten as

ν+
Z (ζ) = − 1

(2 π)2

∫ ∞−ia

−∞−ia

1

w2
I(ζ, w) dw (3.18)

where

I = I(ζ, w) =

∫ ∞−ib

−∞−ib

M($,w) e− i$ζ d$

=

∫ ∞−ib

−∞−ib

exp{− i$ζ + lnM($,w)} d$. (3.19)

A numerical calculation of the mean crossing rate can start by calculating the func-
tion I(ζ, w) for specified values of ζ and w. However, a direct numerical integration of
equation (3.19) is made difficult by the oscillatory term exp{−i< ($) ζ}, where <($) de-
notes the real part of $. This problem can be avoided by invoking the method of steepest
descent, also called the saddle point method. For this purpose, we write

g($) = − i$ζ + lnM($,w)

= φ(x, y) + iψ(x, y) (3.20)

where $ = x + iy. φ(x, y) and ψ(x, y) become real harmonic functions when g($) is
holomorphic. The idea is to identify the saddle point of the surface (x, y) → φ(x, y) closest
to the integration line from −∞− ib to ∞− ib. By shifting this integration line to a new
integration contour that passes through the saddle point, and then following the path of
steepest descent away from the saddle point, it can be shown that the function ψ(x, y)
stays constant, and therefore the oscillatory term in the integral degenerates to a constant.
This is a main advantage of the method of steepest descent for numerical calculations. It
can be shown that the integral does not change its value as long as the function g($) is
a holomorphic function in the region bounded by the two integration contours and if the
integrals vanish along the contour segments required to close the region.

If $s denotes the identified saddle point, where g′($s) = 0, the steepest descent path
away from the saddle point will follow the direction given by − g ′($), for $ 6= $s, where
z denotes the complex conjugate of z, cf. Henrici (1977). Typically, the singular points
of the function g will be around the imaginary axis, which indicates that the direction of
the paths of steepest descent emanating from the saddle point will typically not deviate
substantially from a direction orthogonal to the imaginary axis. This provides a guide for
setting up a numerical integration procedure based on the path of steepest descent. First
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the saddle point $s is identified. Then the path of steepest descent starting at $s and
going ’right’, is approximated by the sequence of points {$j}∞j=0 calculated as follows:

$0 = $s $1 = $s + h (3.21)

∆$j = − g′($j)

|g′($j)|
h, j = 1, 2, . . .

$j+1 = $j + ∆$j, j = 1, 2, . . .

where h is a small positive constant.
Similarly, the path of steepest descent going ’left’ is approximated by the sequence

{$j}−∞
j=0 calculated by

$−1 = $s − h

∆$j = − g′($j)

|g′($j)|
h, j = −1,−2, . . .

$j−1 = $j + ∆$j, j = −1,−2, . . .

A numerical estimate Î of I can be obtained as follows.

Î = Î+ + Î− (3.22)

where

Î+ = <
(

h

2
exp{g($s)} +

K
∑

j=1

∆$j exp{g($j)}
)

and

Î− = <
(

h

2
exp{g($s)} −

−K
∑

j=−1

∆$j exp{g($j)}
)

for a suitable large integer K.
An example of how the method works may be found in Figure 3.1. Along the path of

steepest descent, we see how quickly φ(x, y) from equation (3.20) descends to a number
small enough to give a sufficient approximation of the integral Î in equation (3.22). ψ(x, y)
is zero at the saddle point $s, and stays close to zero all along the path, with a maximum
deviation of 4.8 · 10−3.

A numerical estimate ν̂+
Z (ζ) of the mean crossing rate can now be obtained by the sum

ν̂+
Z (ζ) = − 1

(2 π)2

L
∑

j=−L

1

w2
j

Î(ζ, wj) ∆wj (3.23)
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Figure 3.1: Logarithmic plot of φ(x, y) along the path of steepest decent.

where wj = vj − ia, {vj}L
j=−L denotes a discretization of a suitable part of the real line,

and ∆wj are consistently chosen increments to approximate the integral in equation (3.18).
Actually, a closer scrutiny of this integral shows that the points wj in equation (3.23) can
be chosen to follow the negative real axis from a suitably large negative number up to a
point at −r, where 0 < r ≤ a, then follow a semi-circle in the lower half plane to r on the
positive real axis, and finally follow this axis to a suitably large positive number.

3.5 Numerical example

The performance of the proposed method for numerical calculation of the mean level up-
crossing rate of Z(t) is illustrated by invoking an example that was used previously for
the same purpose, cf. Næss (1986). It concerns the slowly varying forces and motions of a
moored half submerged long circular cylinder (2D problem) in random unidirectional beam
sea waves. The cylinder is assumed to have radius Rs = 10 m, and total mass (including
added mass) M = 3.21 · 105 kg/m. The damping ratio is set equal to ξ = 0.06, and the
natural frequency in sway is ω0 = 0.1 rad/s. This is, according to Standing et al. (1990),
suitable values. The QTF Ĥ2(ωi,−ωj) used here is then the same as in Næss (1986).

The random stationary sea state is specified by an ISSC spectrum, which is given as
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follows

SX(ω) =
173H2

s

T 4
1ω

5
exp

(

− 691

T 4
1 ω

4

)

,

where Hs = significant wave height and T1 = mean wave period. For the subsequent
calculations, Hs = 2.0 m and T1 = 5.5 s. The natural frequency in sway is 0.1 rad/s, which
is well below the range where the waves have noticeable energy. This is why the second,
nonlinear term in the Volterra expansion is needed to capture the resonant motions in sway
of the moored cylinder.

The upcrossing rate is known in closed form for the case of only one slow-drift compo-
nent. In particular, for the reduced slow-drift response process

Y2(t) = λ1

(

W̄1(t)
2 + W̄−1(t)

2
)

the upcrossing rate ν+
Y2

(y) is given by the relation (Næss, 1985)

ν+
Y2

(y) =
σ̂1√
2π

exp

(

− y

2λ1
+

1

2
ln

(

y

λ1

))

where σ̂1 =
√

s1,1 − (r1,−1)2. The corresponding expressions for the reduced slowly varying
sway forces F2(t) are entirely similar. This special case provides a suitable test for the
accuracy of the numerical method.

For the specific example considered here it was found that the first four eigenvalues (as
per decreasing absolute value) for the sway forces were µ1 = 0.4963 (kN/m), µ2 = −0.0513,
µ3 = 0.0280, µ4 = 0.0168. For the sway response, the eigenvalues were λ1 = 0.2937 (m),
λ2 = 0.2580, λ3 = 0.2277, λ4 = 0.2070. Note that the eigenvalues for the forces decrease
rapidly with one dominant eigenvalue, while the eigenvalues for the sway response decrease
much more slowly.

Let ν̃+
Y2

(y) (resp. ν̃+
F2

(s)) denote the mean upcrossing rate of Y2(t) (resp. F2(t)) cal-
culated by the numerical method. Table 3.1 compares the analytical with the numerical
upcrossing rate of the forces for different levels, while Table 3.2 gives the corresponding
results for the response. It is seen that the agreement is remarkably good in both cases.

ζ ν+
F2

(η) ν̃+
F2

(η)

1.0 3.0508 · 10−2 3.0506 · 10−2

2.0 1.5753 · 10−2 1.5752 · 10−2

4.0 2.9702 · 10−3 2.9696 · 10−3

7.0 1.9128 · 10−4 1.9121 · 10−4

9.0 2.8916 · 10−5 2.8902 · 10−5

10.0 1.1129 · 10−5 1.1123 · 10−5

Table 3.1: Comparison of analytical and numerical upcrossing rate (η = s/µ1).
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ζ ν+
Y2

(ζ) ν̃+
Y2

(ζ)

1.0 6.1402 · 10−3 6.1397 · 10−3

2.0 1.5822 · 10−3 1.5822 · 10−3

4.0 7.4287 · 10−5 7.4271 · 10−5

7.0 5.9447 · 10−7 5.9424 · 10−7

9.0 2.2378 · 10−8 2.2367 · 10−8

10.0 4.2981 · 10−9 4.2954 · 10−9

Table 3.2: Comparison of analytical and numerical upcrossing rate (ζ = y/λ1).

The upcrossing rate may be approximated if we use more than one slow-drift compo-
nent. Writing the slow-drift component as a sum

Y2(t) =

k
∑

i=1

λi

(

W̄i(t)
2 + W̄−i(t)

2
)

and the eigenvalues λ1 > |λ2| > . . . > |λk| in descending order, the upcrossing rate ν̂+
Y2

(y)
is given by the relation (Næss, 1985)

ν̂+
Y2

(y) ≈ n̂1√
2π

exp

(

− y

2λ1
+

1

2
ln

(

y

λ1

))

, (3.24)

where n̂1 = σ̃1

∏k
j=2 k

−1
j , σ̃1 =

√

s1,1 − (r1,−1)2, and kj = 1 − λj/λ1. The corresponding
expressions for the sway forces F2(t) are entirely analogous.

Table 3.3 compares the approximated with the numerical upcrossing rate of F2(t) for
different levels for k = 4. It is seen that the agreement is still very good. The reason for the
good agreement is that the approximation in equation (3.24) is valid if µ1 >> |µj|, j ≥ 2.
Clearly, this condition is satisfied to good approximation in this case.

ζ ν̂+
F2

(η) ν̃+
F2

(η)

1.0 3.0333 · 10−2 3.0387 · 10−2

2.0 1.5663 · 10−2 1.5835 · 10−2

4.0 2.8530 · 10−3 2.9581 · 10−3

7.0 1.9018 · 10−4 1.8740 · 10−4

9.0 2.8750 · 10−5 2.8161 · 10−5

10.0 1.1066 · 10−5 1.0792 · 10−5

Table 3.3: Comparison of approximate and numerical upcrossing rate using k = 4 (η =
s/µ1).

The corresponding results for the sway response are presented in Table 3.4. The agree-
ment between the numerical and the approximate calculations are not very good for this
case. The reason is the violation of the validity condition λ1 � |λj|, j ≥ 2.
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ζ ν̂+
Y2

(ζ) ν̃+
Y2

(ζ)

1.0 1.67 · 10−2 2.99 · 10−3

2.0 4.30 · 10−3 1.01 · 10−3

4.0 2.02 · 10−4 6.40 · 10−5

7.0 1.62 · 10−6 6.26 · 10−7

9.0 6.09 · 10−8 2.51 · 10−8

10.0 1.17 · 10−8 4.92 · 10−9

Table 3.4: Comparison of approximate and numerical upcrossing rate using k = 4 (ζ =
y/λ1).

3.6 Numerical considerations and difficulties

The path of steepest decent is a powerful technique, allowing us to calculate the integral
of equation (3.15). However, some numerical problems arrive. Equation (3.15) is a double
integral, an finding a stopping criteria in both directions is crucial. And how should one
integrate?

Clearly, integrating with $ as a variable, the midpoint approach was chosen, as seen
in equation (3.23). The stopping criteria was chosen so the integration along the path of
steepest decent in one direction ended when the additional contribution was at order 10−9

of the total, which seems sufficient. As seen in Figure 3.1, the main contribution to the
integral is close to the imaginary axis, so an accurate calculation there should give a good
numerical result. This calls for a small h in equation (3.21), giving a precise numerical
result and allowing us to stay on the path of steepest decent, -or as close to it as possible.
However, choosing a too small h may not throw us off the saddle point, and choosing a
too large one throws us off the path. Since h does not have to be a constant, the solution
is to first choose a fairly large h, and afterwards using a smaller h. Since the contribution
to the integral diminish as $ grows, the h was chosen large in the end, speeding up the
program.

Finding an integration path in the w-direction was described in the end of section 3.4.
The main part is to avoid w = (0, 0) (complex notation), and the remedy was to integrate
along a semi-circle in the lower plane. The integral from equation (3.18) was first parted
into 3,

ν+
Z (ζ) = − 1

(2 π)2

∫ ∞−ia

−∞−ia

1

w2
I(ζ, w) dw

= − 1

(2 π)2
[I1(ζ) + Ir(ζ) + I2(ζ)] ,
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where

I1(ζ) =

∫ −r−ia

−∞−ia

1

w2
I(ζ, w) dw,

Ir(ζ) =

∫ r−ia

−r−ia

1

w2
I(ζ, w) dw, (3.25)

I2(ζ) =

∫ ∞−ia

r−ia

1

w2
I(ζ, w) dw.

a was chosen to be zero. Other integrating patterns, like rectangles and triangles, were
used testing the program. The radius r of the semi-circle had to be tested, because of
large oscillations of the integrating function close to zero. A radius of 0.4 seemed to work
fine. The semi-axe was divided into smaller parts, each part calculated using a variable
transformation,

w = r exp(i θ),

allowing us to rewrite equation (3.25) as

Ir(ζ) =

∫ r

−r

1

w2
I(ζ, w) dw

= i

∫ 0

−π

1

r
I(ζ, r exp(i θ)) exp(−i θ)dθ

= i
N−1
∑

i=1

∫ αi+1

αi

1

r
I(ζ, r exp(i θ)) exp(−i θ)dθ,

where −π = α1 < α2 < . . . < αN = 0. The number N was chosen to be 10, giving a good
approximation of the integral. Both I1(·) and I2(·) was found by dividing the integral in
smaller pieces, e.g.

I2(ζ) =

∫ ∞

r

1

w2
I(ζ, w) dw ≈

M
∑

i=1

∫ si+1

si

1

w2
I(ζ, w) dw,

where r = s1 and si+1 = si + 1. A similar stopping criterion as in the case with $, was
used finding I1(·) and I2(·). Each integral was evaluated using a gauss-quadrature, found
for example in Abramowitz and Stegun (1972), usually using 8 or 10 points, giving an
accurate approximation.

A problem giving a lot of headache, was a numerical type. It occurred evaluating the
function MZŻ(u, v) from equation (3.17). Since the vector β = 0,

MZŻ(u, v) =
1√

detA
,

and evaluating this square root gives 2 answers. The program usually pick the right one,
but occasionally the wrong one. This is done by both FORTAN and MATLAB. The remedy
is to force the solution to be of the same type as the previous one, since M is assumed
continuous.
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3.7 Approximations

In general, the CPU time required to carry out the computations in equation (3.23) can
be quite long, depending on the number N of eigenvalues. It is therefore tempting to
look for approximations. The first approximation considered is the Laplace approximation
for the inner integral over the saddle point (Henrici, 1977). The simplest version of this
approximation, adapted to the situation at hand, leads to the result

I = I(ζ, w) ≈
√

2π

−∂2g($s;w)
∂x2

exp{ g($s;w)} (3.26)

which can be substituted directly into equation (3.23), leading to an approximation of
ν+

Z (ζ), which is denoted by ν̃+
Z (ζ).

This approximation can be exploited in the following way:

1. The full method is used for an inner interval of w-values, which contribute signifi-
cantly to the integral in equation (3.18).

2. A Laplace approximation is then used in an outer interval of w-values where the
contribution is less than significant. Of course, the level of significance is chosen
according to some suitable criterion. By this procedure, the CPU time was reduced
by factor of about 3. This method will be referred to as the hybrid method, and the
corresponding approximation of ν+

Z (ζ) is denoted by ν̌+
Z (ζ).

A simple approximation proposed in Teigen and Naess (1999a,b) is worth a closer
scrutiny. It is based on the widely adopted simplifying assumption that the displacement
process is independent of the velocity process. This leads to a further approximation of
ν+

Z (ζ), which we shall denote by ν+
Z(ζ). It is given by the formula

ν+
Z(ζ) = ν+

Z (ζref)
fZ(ζ)

fZ(ζref)
(3.27)

where fZ denotes the marginal PDF of the surge (horizontal translation) response, and
ζref denotes a suitable reference level, typically the mean response. Here, ζref has been
chosen as the point where fZ assumes its maximum, which corresponds well with the
mean response level. A general approximation for ν+

Z (ζref) is given in Teigen and Naess
(1999a). If only slow-drift response is considered, a good approximation is obtained by
putting ν+

Z (ζref) ≈ 1/T0, where T0 = 2π/ω0 is the slow-drift period. The advantage of
equation (3.27) is that the rhs is much faster to calculate than the exact formula.

An approximation developed by Langley and McWilliam (1993) expresses the joint
PDF of Z(t) and Ż(t) as a series in the following way,

fZŻ(z, ż) = fZ(z)fŻ(ż) +

∞
∑

n=1

∞
∑

m=1

(−1)n+mAnmf
(n)
Z (z)f

(m)

Ż
(ż), (3.28)
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where f
(n)
Z (z) is the nth derivative of fZ(z) and f

(m)

Ż
(ż) is the mth derivative of fŻ(ż). Both

fZ(z) and fŻ(ż) are given by infinite series expressions, which are truncated in practice,
cf. Grime and Langley (2003); Langley and McWilliam (1993). The coefficients Amn are
defined in terms of comulants for the displacement and velocity. Expressions for calculating
the mean crossing rate are provided in McWilliam and Langley (1993). Since explicit
expressions are given, the computational burden incurred by adopting this approximation
is practically negligible. For an example structure studied in Grime and Langley (2003),
it is shown that the approximation expressed in equation (3.28) gives results very similar
to equation (3.27).

3.8 Distribution of extreme response

To provide estimates of the extreme values of the response process, it is necessary to know
the probability law of the extreme value of Z(t) over a specified period of time T , that is,
MZ(T ) = max{Z(t); 0 ≤ t ≤ T}. An exact expression for this probability law is in general
unknown, but a good approximation is usually obtained by assuming that upcrossings
of high response levels are statistically independent events. Under this assumption, the
probability distribution of MZ(T ) can be written as

P (MZ(T ) ≤ ζ) = exp{−ν+
Z (ζ)T}, (3.29)

which clearly displays the crucial role of the mean upcrossing rate ν+
Z (ζ) in determining

the extreme value distribution.
As already pointed out, equation (3.29) is only an approximation to the true extreme

value distribution. If this is so, why is it of practical significance to be able to perform an
accurate calculation of the upcrossing rate? It is a well known fact that the exact extreme
value distribution is not completely determined by the upcrossing rate alone. That would
be true only when the upcrossing events of the high response levels can be assumed to
be statistically independent. Usually that is a good approximation except when the total
damping is small. For such cases, Naess (1999) has developed an effective method to
account for the effect of low damping on the extreme value distribution, and the key to
an accurate estimation of the extreme value distribution is good estimates of the mean
upcrossing rate at high response levels.

So far the analysis has been limited to a short-term sea state characterised by a wave
spectrum. This means that the extreme value distribution of equation (3.29) applies to
the response values within this short-term sea state. In the context of a design situation,
this would imply that the sea state has to be chosen as a design sea state. In practice
this would usually mean that the spectral parameters would be chosen along a sea state
contour having a prescribed return period.

An alternative approach is to use a long-term analysis. Let us assume that a short-term
sea state is characterised by significant wave height Hs and a spectral period Ts, which
have a joint PDF fHsTs

(hs, ts). Then, for each set of values Hs = hs and Ts = ts, the
mean upcrossing rate can be calculated as we have described above. Let it be denoted by
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ν+
Z (ζ | hs, ts). As shown by Næss (1984), the distribution of the long-term extreme value

over the time period T is given as follows

P (MZ(T ) ≤ ζ) = exp

{

−T
∫ ∞

0

∫ ∞

0

ν+
Z (ζ|hs, ts)fHsTs

(hs, ts)dhsdts

}

.

Haver and Nyhus (1986) have proposed a model for the joint PDF fHsTs
(hs, ts).

3.9 Numerical example II

We shall illustrate the developments above by carrying numerical calculations for a specific
example structure. It is a moored deep floater (MDF) with main particulars as detailed in
Table 3.5. Figure 3.2 shows the submerged part of the floater in the form of a computer

Table 3.5: Main particulars of the MDF

Draught (m) 80.0
Column diameter (m) 10.0
Natural period surge/sway (s) 133.5
Natural period yaw (s) 121

mesh, which is used for calculating the hydrodynamic transfer functions. The total mass
(including added mass) of the MDF is M = 12.5 ·106 kg. The damping ratio is set equal to
ξ = 0.06, and the natural frequency in sway is ω0 = 0.047 rad/s. The random stationary
sea state is specified by a JONSWAP spectrum, which is given as follows

SX(ω) =
αg2

ω5
exp

{

−5

4

(ωp

ω

)4
}

· γexp

»

− 1

2σ2

“

ω
ωp

−1
”2

–

,

where

g = 9.81 (m/s2),

σ =

{

0.07 ω ≤ ωp

0.09 ω > ωp

ωp denotes the peak frequency in rad/s, and α, γ and σ are parameters related to the spec-
tral shape. The parameter γ is chosen to be equal to 3.0. The parameter α is determined
from the following empirical relationship

α = 5.06

(

Hs

T 2
p

)2

(1 − 0.287 ln γ ) .

Hs = significant wave height and Tp = 2π/ωp = spectral peak wave period. For the
subsequent calculations, Hs = 10.0 m and Tp = 12 s. The natural frequency in surge is
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Figure 3.2: Computer mesh of the submerged part of the moored deep floater.

0.047 rad/s, which is well below the range where the waves have noticeable energy. This is
why the second order, nonlinear term in the Volterra expansion is needed to capture the
resonant motions in surge of the MDF.

To get an accurate representation of the response process, there is a specific requirement
that must be observed. Since the damping ratio is only 6%, the resonance peak of the
linear transfer function for the dynamics is quite narrow. Hence, to capture the dynamics
correctly, the frequency resolution must secure a sufficient number of frequency values over
the resonance peak. This usually leads to an eigenvalue problem (equation (3.7)) with the
Q-matrix of size of the order of magnitude 100× 100. Using the full representation of this
size in calculating the mean crossing rate by the general method described here, would
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Figure 3.3: The 100 normalized eigenvalues λj/λ1.

lead to very heavy calculations. In order to reduce this, we have investigated the effect of
restricting the calculations by retaining only some of the terms in equation (3.10).

For the specific example considered here, where we have used exactly 100 (positive)
frequencies, the values of the obtained eigenvalues λj have been plotted in Figure 3.3. It
is seen that a substantial portion of the response variance, which is equal to Var[Z2(t)] =
4
∑N

j=1 λ
2
j , would be lost if only 10 or 20 eigenvalues were retained. This is also a factor

to consider when deciding on the number of terms to retain.

As previous in this chapter, we have focused on the slow-drift response. Hence, only
results for Z2(t) will be presented. In the tables, ν̂+

Z2
(ζ), ν̌+

Z2
(ζ), ν̃+

Z2
(ζ), and ν+

Z2
(ζ)) denote

the mean upcrossing rate of Z2(t) calculated by the full numerical method, the hybrid
method, the Laplace approximation, and the simplified method of equation (3.27), respec-
tively.

To highlight the effect of the increment parameter h, Table 3.6 compares the results
obtained by the full numerical method for two values of h for 10 eigenvalues, that is, for
a response representation retaining the first 10 terms. The CPU time differs by a factor
of roughly 10 between the two choices of a value for h. Since the differences between the
calculated crossing rates are fairly small, we have chosen to use the larger value to save
CPU time.

In Tables 3.7 - 3.10 we have written down the results obtained for 10, 20, 30 and 50
eigenvalues, respectively. It is apparent that there is some variability of the calculated
upcrossing rates depending on the number of eigenvalues included in the analysis. Ideally,
it would therefore be desirable to carry out the calculations with at least 50 eigenvalues.
However, our present implementation of the exact method is too expensive computationally



44 CHAPTER 3. STRUCTURAL RESPONSE

η = ζ/λ1 h = 1.0 · 10−3 h = 1.0 · 10−2

2.0 8.38 · 10−3 8.38 · 10−3

5.0 3.93 · 10−3 3.93 · 10−3

10.0 5.53 · 10−4 5.50 · 10−4

15.0 5.70 · 10−5 5.65 · 10−5

20.0 5.34 · 10−6 5.26 · 10−6

25.0 4.81 · 10−7 4.71 · 10−7

Table 3.6: Comparison of calculated upcrossing rate ν̂+
Z2

(η) for different step lengths.

to allow for more than about 50 eigenvalues. Even if this can be improved significantly,
like for the hybrid method, it would still be a method requiring heavy computations.

To get a more detailed picture of how the crossing rate varies with the number of
eigenvalues retained, the mean upcrossing rate was calculated for the level η = 20 as a
function of the number of eigenvalues. The result is shown in Figure 3.4. It was also
decided to investigate the effect of updating the truncated response representation so that
it had the correct variance. This was achieved by multiplying the retained eigenvalues
by a suitable factor. The effect of this updating on the calculated upcrossing rate is also
shown in Figure 3.4. The figure indicates a couple of interesting conclusions. Updating for
variance can lead to inaccurate results for the crossing rate for small to moderate num-
ber of eigenvalues retained. Comparing Figures 3.3 and 3.4 it is seen that surprisingly
accurate results are obtained for even a small number of retained eigenvalues when the
truncation is done exactly where negative eigenvalues are followed by positive eigenvalues.
This seems to provide the right balance between the terms in the response representation,
and it indicates a useful criterion for truncating the response representation for crossing
rate calculations. It is also of great interest to observe that the simple Laplace approxi-

η = ζ/λ1 ν̂+
Z2

(η) ν̌+
Z2

(η) ν̃+
Z2

(η)
2.0 8.38 · 10−3 8.38 · 10−3 7.41 · 10−3

5.0 3.93 · 10−3 3.93 · 10−3 3.59 · 10−3

10.0 5.50 · 10−4 5.50 · 10−4 5.23 · 10−4

15.0 5.65 · 10−5 5.65 · 10−5 5.59 · 10−5

20.0 5.26 · 10−6 5.26 · 10−6 5.36 · 10−6

25.0 4.71 · 10−7 4.71 · 10−7 4.92 · 10−7

Table 3.7: Calculated upcrossing rates for 10 eigenvalues

mation in fact provides quite accurate estimates of the mean upcrossing rates, and for this
method the number of eigenvalues has practically no effect on the computational burden.
Hence, from a practical point of view, this is an extremely appealing method. In Table 3.11
we have listed the results obtained by the hybrid method, the Laplace approximation and
also the simple approximation of equation (3.27) for 100 eigenvalues. It is seen that while
there is excellent agreement between the hybrid method and the Laplace approximation,
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Figure 3.4: The crossing rate as a function of the number of retained eigenvalues. (−):
Simple truncation. (− ·): Truncation and updating for correct variance.

η = ζ/λ1 ν̂+
Z2

(η) ν̌+
Z2

(η) ν̃+
Z2

(η)
2.0 8.09 · 10−3 8.10 · 10−3 7.27 · 10−3

5.0 4.19 · 10−3 4.19 · 10−3 3.82 · 10−3

10.0 6.51 · 10−4 6.51 · 10−4 6.06 · 10−4

15.0 6.95 · 10−5 6.95 · 10−5 6.74 · 10−5

20.0 6.56 · 10−6 6.56 · 10−6 6.58 · 10−6

25.0 5.91 · 10−7 5.91 · 10−7 6.11 · 10−7

Table 3.8: Calculated upcrossing rates for 20 eigenvalues

η = ζ/λ1 ν̂+
Z2

(η) ν̌+
Z2

(η) ν̃+
Z2

(η)
2.0 7.21 · 10−3 7.21 · 10−3 6.51 · 10−3

5.0 3.58 · 10−3 3.58 · 10−3 3.27 · 10−3

10.0 5.48 · 10−4 5.48 · 10−4 5.11 · 10−4

15.0 5.85 · 10−5 5.85 · 10−5 5.67 · 10−5

20.0 5.54 · 10−6 5.54 · 10−6 5.55 · 10−6

25.0 5.00 · 10−7 5.00 · 10−7 5.17 · 10−7

Table 3.9: Calculated upcrossing rates for 30 eigenvalues

the simple approximation leads to significantly lower values. In terms of extreme value
predictions, for the example structure at hand the Laplace approximation is within about
1% of the hybrid method, while the simple approximations would lead to an underestima-
tion of typically 5-10% compared with the two more accurate methods. While the results
obtained by the simple approximation is somewhat lower than those obtained by the more
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η = ζ/λ1 ν̂+
Z2

(η) ν̌+
Z2

(η) ν̃+
Z2

(η)
2.0 6.55 · 10−3 6.55 · 10−3 5.93 · 10−3

5.0 3.25 · 10−3 3.25 · 10−3 2.98 · 10−3

10.0 5.04 · 10−4 5.04 · 10−4 4.70 · 10−4

15.0 5.44 · 10−5 5.44 · 10−5 5.28 · 10−5

20.0 5.19 · 10−6 5.19 · 10−6 5.20 · 10−6

25.0 4.71 · 10−7 4.71 · 10−7 4.86 · 10−7

Table 3.10: Calculated upcrossing rates for 50 eigenvalues

η = ζ/λ1 ν̌+
Z2

(η) ν̃+
Z2

(η) ν̄+
Z2

(η)
2.0 6.17 · 10−3 5.59 · 10−3 6.03 · 10−3

5.0 3.03 · 10−3 2.78 · 10−3 2.74 · 10−3

10.0 4.71 · 10−4 4.40 · 10−4 3.65 · 10−4

15.0 5.11 · 10−5 4.96 · 10−5 3.44 · 10−5

20.0 4.88 · 10−6 4.90 · 10−6 2.93 · 10−6

25.0 4.44 · 10−7 4.63 · 10−7 2.44 · 10−7

Table 3.11: Calculated upcrossing rates for 100 eigenvalues

accurate methods, for some applications an accuracy within 5-10% would be considered
quite satisfactory. However, the discrepancy needs to be checked for each specific case at
hand. The results for the extreme value distributions are summarized in Figures 3.5 and
3.6, which show the exceedance probability

PF (η;T ) = 1 − P (MZ(T ) ≤ λ1 η) (3.30)

for the various cases.
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hours for 22 and 100 eigenvalues.
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3.10 Robustness of the upcrossing frequency

How much does the exceedance probability PF (η;T ) depend on ν+
Z (ζ)? Assuming that

the upcrossings are independent, the exact exceedance probability is found using equa-
tions (3.29) and (3.30), we write the exact and the approximate exceedance probability

pf = 1 − exp (−νT ) ,

pf ;ε = 1 − exp (−νεT ) ,

where pf = PF (η;T ), ν = ν+
Z (ηλ1) and νε = νε, and 0 < ε. Assuming the relative difference

between pf and pf ;ε is less than a certain positive number α, we get the equation

∣

∣

∣

∣

pf − pf ;ε

pf

∣

∣

∣

∣

=

∣

∣

∣

∣

exp(−νεT ) − exp (−νT )

1 − exp (−νT )

∣

∣

∣

∣

≤ α, (3.31)

where 0 ≤ α ≤ 1, but preferably small. Equation (3.31) provides us with a condition on ε,

ln[A+ α(1 − A)]

−νT ≤ ε ≤ β (3.32)

where A = exp(−νT ), and

β =

{

∞ if νT ≥ log
(

1 + 1
α

)

− 1
νT

ln[A− α(1 − A)] otherwise

Assume α small. For the case that β = ∞, νT has to be large. This is not physically
a very interesting incident, since the exceedance probability will be close to unity. νT is
small in most cases we are interested in.

Assume νT small, so 1 − exp (−νT ) ≈ νT . A corresponding condition on ε is simply

1 − α ≤ ε ≤ 1 + α. (3.33)

As an example, using α = 0.05, T = 3h, η = 15; ν = 5.11 · 10−5s−1, we have from
equation (3.32) that

0.934 ≤ ε ≤ 1.068,

or from the simplified version of equation (3.33)

0.95 ≤ ε ≤ 1.05,

allowing us to calculate the upcrossing frequency with a small error, but still have a rea-
sonable result.
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3.11 Improvement

As shown in Appendix B, equation (3.23) may be found in an even easier way, by using
equation (B.6),

ν+
Z (ζ) = − 1

2 π2
<
{

lim
ε→0+

∫ ∞

ε

1

v2

∫ ∞

0

[M(u, v) +M(u,−v)] e− iuζ du dv

}

,

which is supposed to be approximately 4 times faster than the original one. Unfortunately,
this was discovered after the articles Naess and Karlsen (2004); Naess et al. (2006) was
written. The new and simpler equation for finding the upcrossing frequency has afterwards
been tested numerically with good agreement to previous calculations.





Chapter 4

The path integration technique

4.1 Introduction

The theory of predicting structural response statistics of moored large volume structures
subjected to random waves in chapter 3 has its limitations; -the equation of motion has
to be linear and time-invariant. Unfortunately (and luckily!), the real world is not linear
and time-invariant. The challenge of estimating response statistics of non-linear, time-
dependent dynamic systems subjected to random forcing processes, has been a demanding
challenge for several decades.

An early method of studying stochastic equations, was the methods of stochastic lin-
earization (Caughey, 1963; Roberts and Spanos, 1990). The idea was to replace the non-
linear equations with linear ones, -the difference between the sets being minimised in some
appropriate sense, often the mean square. Its main value lies in the fact that, -unlike other
methods, it can readily be used to deal with complex systems having many degrees of
freedom, and with complex types of excitation. Since linear systems are easier analysed,
the linear equations were studied intensively. Stochastic linearization is perhaps the most
frequently used analytical method for analysing the response of many nonlinear systems,
as it provides reasonable estimates for the mean square response. However, the method
is not, in general, well suited for estimating the power spectra of stationary responses of
randomly excited nonlinear systems. Donley and Spanos (1990) shows that the response
spectral densities obtained using equations with non-linearities, exhibit significant reso-
nance responses which can not be accounted for by linearization because they occur at
frequencies outside the range of excitation frequencies. And for a Gaussian excitation, the
linearized solution leads to a Gaussian probability distribution, whereas the true response
is non-Gaussian.

Due to the rapid growth of computer power, Monte-Carlo techniques for calculating the
response statistics of offshore and marine systems subjected to random seas are attractive,
in the sense that non-linearities and time-dependence can be easily dealt with (Rubinstein,
1981). However, for some applications it can still be computationally very heavy, if not
prohibitive. One such application is the estimation of the extreme slow drift response of
moored offshore structures.

The method of Path Integration (PI) is a way to calculate a stationary PDF as a

51
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solution to the Fokker-Planck equation of a corresponding Stochastic Differential Equation
(SDE). PI may in addition to relatively short Monte-Carlo simulations be used with great
success calculating upcrossing frequencies, even when the SDE has both non-linear and
time-dependent terms.

4.2 Theory

The transition probabilities in section 2.16 and subsection 2.14.3 are needed to obtain
the Path Integral (PI) solutions. They are derived by repeatedly applying the Chapman-
Kolmogorov equation (2.16).

Assume X(t) is a stochastic Markov process, having a known TPD p(xn, tn|xn−1, tn−1)
and a distribution f0(x0) as a starting probability. Now

p(xN , tN |x0, t0) =

∫

. . .

∫ N
∏

i=1

p(xi, ti|xi−1, ti−1)f0(x0)dxN−1 . . . dx1

may be found directly, but in practice we first use equation (2.16) finding

p(x2, t2|x0, t0) =

∫

p(x2, t2|x1, t1) p(x1, t1|x0, t0)dx1,

which is used iteratively finding

p(xN , tN |x0, t0) =

∫

p(xN , tN |xN−1, tN−1) p(xN−1, tN−1|x0, t0)dxN−1 N ≥ 3. (4.1)

Comparing equation (2.23) and equation (2.25) it’s seen that finding the solution fX(x, t)
to the FP-equation is the same as finding p(xN , tN |x0, t0). Assuming that the system has
a stationary solution, we find

f̄(x) = lim
t→∞

fX(x, t) = lim
N→∞

p(xN , tN |x0, t0).

4.3 System

From now on, the system we are interested in is

ẋ = m(x, t) +Q(x, t)Nt (4.2)

where x is a n-dimensional vector, t is time, m(x, t) is the drift term, Q(x, t) is the diffusion
term, and Nt is Gaussian random noise. In general Q is a diffusion matrix and Nt is a
vector of Gaussian random noise input. By choosing the nth equation of equation (4.2) to
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be a Rayleigh process, equation (4.2) may be written as

ẋi = mi(x, t) i = 1, . . . , n− 1

ẋn = mn(xn) + q Nt

mn(xn) = a

(

1

xn

− xn

)

q =
√

2a, (4.3)

where Nt is Gaussian white noise.

4.4 TPD

Now, a conditional PDF of X(t) given that X(t′) = x′ has to be found. Assuming the sys-
tem in equation (4.2) to be autonomous and r = n−1 in equation (2.43), the approximate
TPD will take the shape

p(x, t|x′, t′) =
n−1
∏

i=1

δ (xi − (x′i +mi(x
′)τ))

× 1√
4πaτ

exp

(

− [xn − (x′n +mn(x′)τ)]2

4aτ

)

. (4.4)

The exact TPD of the system of equations (4.3) may also be found,

p(x, t|x′, t′) =
n−1
∏

i=1

δ (xi − (x′i +mi(x
′)τ)) pR(xn, t|x′n, t′), (4.5)

where

pR(x, t|x′, t′) =
x

1 − exp(−2aτ)
I0

(

exp(−aτ)
1 − exp(−2aτ)

xx′
)

exp

(

−x
2 + exp(−2aτ)x′2

2(1 − exp(−2aτ))

)

.

(4.6)

As before, the δ(·) denotes the Dirac delta function and I0(·) denotes the modified Bessel
function of first kind. Equation (4.6) is of course similar to equation (2.34). The TPD in
equation (4.4) and equation (4.6) are describing the same movement of probability, and
given the same problem, they should give the same stationary PDF as a solution to the
corresponding Fokker-Planck equation.
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4.5 Integration

In some way, the integration in equation (4.1) has to be done. By inserting equation (4.5)
in equation (4.1) we get

p(x, t|x0, t0) =

∫

p(x, t|x′, t′) p(x′, t′|x0, t0)dx
′

=

∫ n−1
∏

i=1

δ (xi − (x′i +mi(x
′)τ))

× 1√
4πaτ

exp

(

− [xn − (x′n +mn(x′)τ)]2

4aτ

)

p(x′, t′|x0, t0) dx
′ , (4.7)

where p(x, t|x0, t0) = p(xN , tN |x0, t0), p(x, t|x′, t′) = p(xN , tN |xN−1, tN−1), p(x
′, t′|x0, t0) =

p(xN−1, tN−1|x0, t0), and x = [x1, . . . , xn]>. This integral is actually an integral over n
variables, but because of the form of the TPD, and the fact that integrating a delta
function is easy (see appendix A), equation (4.7) reduces to a one-dimensional integral,

p(x, t|x0, t0) =

∫

|J(x′)| p(xn, t|x′n, t′) p(x′, t′|x0, t0) dx
′
n, (4.8)

where

p(xn, t|x′n, t′) =
1√

4πaτ
exp

(

− [xn − (x′n +mn(x′)τ)]2

4aτ

)

, (4.9)

and J(x) is a Jacobi determinant, due to integrating the delta functions. This is shown in
appendix A for one dimension. This correction term has not been mention in any previous
papers, except from Iourtchenko et al. (2006). Integration of exact TPD may be found in
a similar way,

p(x, t|x0, t0) =

∫

|J(x′)|pR(xn, t|x′n, t′) p(x′, t′|x0, t0) dx
′
n, (4.10)

where pR(x, t|x′, t′) is as described in equation (4.6).

4.6 Numerical interpretation

4.6.1 Time-stepping

Choosing a parameter τ for the time stepping procedure of the TPD in equations (4.8)
and (4.10) is not an easy task. Johnsen (1992) uses the criterion

τc = min(fτc
(x)), x ∈

{

x : p(x) ≥ 10−6
}
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as a characteristic time when using an approximate TPD. Here,

fτc
(x) =

Qn(x)

mn(x)2
,

where m(·) and Q(·) are as defined in section 4.3 As the author points out, the criterion
works well in most cases. But it is not suitable when dealing with the Rayleigh process,
where τc = 10−9 is a number far too low for any practical use.

Depending on whether or not we are using an approximate or an exact TPD, different
τ has been chosen. In the latter case, as described in section 5.3, τ has to be quite large
(≥ 0.40). An approximate TPD demands a small τ , often of the order 10−2.

4.6.2 Interpolation

In equation (4.1), integration over the variable xN−1 has to be done. Although the PDF
p(xN−1, tN−1|x0, t0) is known, it is only known for some points, and the integrating pro-
cedure in equation (4.1) often requires the value of the PDF in a large number of points.
Hence, an interpolation procedure has to be chosen.

One uses polynomials for approximation because they can be evaluated, differentiated,
and integrated easily and in finitely many steps using the basic arithmetic operations of
addition, subtraction, and multiplication. The limitation of polynomials is that global
dependence on local properties may give poor approximations everywhere. This may be
avoided using piecewise polynomials (pp).

Broken lines, i.e. piecewise linear approximation, are neither smooth nor efficient ap-
proximators. The use of piecewise linear interpolation for problems larger than 1-D, was
in Skaug (2000) shown to be insufficient. As pointed out in Johnsen (1992), in order to
maintain the flexibility of piecewise polynomials while at the same time achieving some
degree of global smoothness, B-splines (basis splines) have to be chosen, relying heavily
on the theory given by de Boor (2001). The most popular choice is a cubic approximating
function, and will be discussed later. However, because we want our probability density
functions to stay positive everywhere, it is sometimes necessary to use e.g. linear approxi-
mations in certain troublesome areas, often found in the boundary of the PDFs. This may
be due to large local oscillations, similar to what one observes using global polynomials as
described above.

Parabolic splines have also been investigated, and although faster evaluated than cubic
splines, they didn’t provide results as good as results using cubic splines in the inner area
of the PDF. Another nice property we may exploit using cubic splines, is the not-a-knot
condition, described in section 4.6.3.
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4.6.3 B-splines

A procedure for piecewise B-spline interpolation will here be given.

Definition 4.1 Let t = (tj) be a finite, nondecreasing sequence. The jth B-spline of order
k for the knot sequence t is denoted by Bj,k,t, and is defined by the rule

Bj,k,t(x) = (tj+k − tj)[tj, . . . , tj+k](· − x)k−1
+ ∀ x ∈ R.

Here (· − x)+ = (t− x)+ := max [t− x, 0],

[ti, . . . , ti+r]g =
[ti+1, . . . , ti+r]g − [ti, . . . , ti+r−1]g

ti+r − ti
,

and

[ti, ti+1]g =
g(ti) − g(ti+1)

ti − ti+1
.

Often Bj,k,t(x) is written Bj,k(x), assuming a given knot sequence t. A spline function of
order k with knot sequence t is any linear combination of B-splines of order k for the knot
sequence t.

The B-splines may be found using a recursive algorithm, found in the books mentioned
above. An example of a cubic B-spline is shown in figure 4.1, with knots at integer values
of x.
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x
Figure 4.1: Four cubic polynomials p1, . . . , p4 build a basis cubic B-spline

Some nice properties of the B-spline includes

1. Bi has local support, i.e. Bi(x) = 0 for x 6= [ti, ti+k].
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2. The B-splines forms a partition of unity, that is
∑

iBi(x) =
∑s−1

i=j−k+1Bi(x) = 1 for
all tj < x < ts.

3. Bi is positive on its support, i.e. Bi(x) > 0 for all ti < x < ti+k.

4. f(x) may be written in a unique way,

f(x) =
n
∑

i=1

αiBi(x).

The numbers {αi} are called B-spline coefficients. In particular, if tj ≤ x ≤ tj+1 for some
j ∈ {k, . . . , n} then property 1 and property 4 gives

f(x) =

j
∑

i=j−k+1

αiBi(x). (4.11)

This means that the value at a site depends only on k of the coefficients, which is a huge
advantage when setting up a numerical scheme.

Given the data g(t1), . . . , g(tn) with a = t1 < . . . < tn = b, where t = [t1, . . . , tn] are
knot points, we construct an interpolant f to g as follows. On each interval [ti, ti+1], f will
agree with some polynomial Pi of order k,

f(x) = pi(x), ti ≤ x ≤ ti+1, i = 1, . . . , n− 1 . (4.12)

Each polynomial pi has a degree of k − 1, and the spline is k − 2 times continuously
differentiable in the knot points and infinite differentiable elsewhere.

To produce a spline representation, the number of unknowns necessarily have to match
the number of conditions. We now assume that a cubic spline representation is to be found,
i.e. k = 4. Having L polynomial functions, and each function has 4 unknown coefficients,
the total number of unknown coefficients are 4L. For each interior point, there are 3
continuity conditions over each knot, providing us with 3 (L−1) equations. In addition we
know the value in each knot, providing us with L+1 conditions. This leaves us short with
2 conditions. In order of getting a solvable system of equations with one solution, we need
to add two conditions. The two most common ways of obtaining these conditions, are the
not-a-knot condition and the natural end condition.

The natural end condition is to assume that the function in some way goes to zero
outside the interpolated area, often assuming the f ′′ = 0. This is suitable for many PDFs.

When nothing is known about the end point derivatives, the not-a-knot condition is
reasonable. Here one chooses P1 = P2 and Pn−2 = Pn−1 from equation (4.12), -the first and
the last interior knots are not active. This is the same as assuming t2 = t1 and tn−1 = tn,
reducing the number of polynomial functions by 2.

A third way to handle the two missing equations, and applied here in section 4.6.4, is
to assume that the PDF is zero outside the chosen interval, putting the spline coefficients
for basis functions with support outside the interval, to zero.
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Many of the simple algebraic properties of ordinary polynomial splines in one dimension
can be carried over and easily generalised to multivariate approximating problems by tensor
product methods. The theory may be found e.g. in Johnsen (1992) and Schumaker (1981),
and is not repeated here.

4.6.4 Fast numerical procedure

This is a procedure made by Eirik Mo, which is a fast numerical procedure for interpolation
when using uniform grid and the third method of handling missing equations, as described
in the previous section.

We divide the interval x into n points xi, and use a knot sequence t where ti = xi, 1 ≤
i ≤ n. The value in each point xi is g(xi), and α is the B-spline coefficients of f . Assuming
a cubic B-spline interpolation, each spline is a translation of the previous one, allowing us
to write for x ∈ t,

g(x) = Aα, (4.13)

where

A =
1

6


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






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









.

Now, the spline coefficients α of equation (4.13) have to be found. Since A has its special
form, the LU factorisation may be done analytically. This is an advantage, providing us
with a numerical procedure finding α. But the benefit by constructing A in this way, is
that the Bi(x) from equation (4.11) may now easily be found quickly, speeding up the
program.

However, when using general grid and a not-a-knot condition, A loses its nice form.
This is no practical problem, but we may not find Bi(x) so fast.

4.6.5 Taylor approximations

We shall use truncated stochastic Taylor expansions to derive time discrete approximations
appropriate for the weak convergence criterion. This may be found in e.g. Kloeden and
Platen (1992), which is highly recommended for readers interested in different numerical
schemes.

We consider a Ito process X = {Xt, t0 ≤ t ≤ T} satisfying the SDE

dXt = u(Xt, t) dt+ v(Xt, t) dWt (4.14)
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on t0 ≤ t ≤ T with the initial value Xt0 = X0, and a time discretization

t0 = τ0 < τ1 < . . . < τN = T.

on the time interval [τ0, T ]. The simplest time discrete approximation is the stochastic
generalisation of the Euler approximation, which sometimes is called the Euler-Maruyama
approximation, but often just Euler approximation. For the SDE in equation (4.14), the
Euler approximation is a continuous time stochastic process Y = {Y (t), t0 ≤ t ≤ T}
satisfying the iterative scheme

Yn+1 = Yn + u∆n + v∆Wn, (4.15)

for n = 0, 1, . . . , N − 1 with initial value Y0 = x0. ∆n = τn+1 − τn is the length of the time
discretization subinterval [τn, τn+1] , ∆Wn = Wτn+1

− Wτn
is the N(0,∆n) increment of

the Wiener process Wt on [τn, τn+1], u = u(Yn, τn) and v = v(Yn, τn). The maximum time
step δ is defined as the largest of all ∆n. Usually we use a equidistant time discretization,
τn = t0 + nδ, with δ = ∆n = (T − t0)/N for some N large enough so that δ ∈ (0, 1).

The following definition is a criterion for the closeness of the sample paths of the Ito
process X and the approximation Y at a time T .

Definition 4.2 An approximating process Y converges in the strong sense with order γ ∈
(0,∞) if there exists a finite constant K and a positive δ0 such that

E(|XT − YT |) ≤ Kδγ

for any time discretization with maximum step size δ ∈ (0, δ0).

However, in many practical situations it is not necessary to have a close pathwise approx-
imation of an Ito process. Often one is only interested in some function of the value of the
Ito process at a given final time T, such as the expectation E(g(XT )) for some function g.
The objective may be to have a good approximation of the PDF of the random variable XT

rather than a close approximation of sample paths. This type of approximation required
then is much weaker than that provided by the strong convergence criterion.

Definition 4.3 An approximating process Y converges in the weak sense with order β ∈
(0,∞) if for any polynomial g there exists a finite constant K and a positive δ0 such that

|E(g(XT )) − E(g(YT ))| ≤ Kδβ

for any time discretization with maximum step size δ ∈ (0, δ0).

Equation (4.15) represents the simplest strong Taylor approximation and generally attains
the order of strong convergence γ = 0.5. The simplest useful weak Taylor approximation
is the weak Euler scheme

Yn+1 = Yn + u∆n + v∆Ŵn, (4.16)
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for n = 0, 1, . . . , N−1. The random increments ∆Wn of the Wiener process from the strong
case may in the weak case be replaced by other and more convenient approximations ∆Ŵn

which have similar moment properties to the ∆Wn. It can be shown that equation (4.16)
has a weak order β = 1.0 if the coefficients a and b are four times continuously differentiable
with these derivatives satisfying a growth bound. This contrasts the order γ = 0.5 of the
strong Euler scheme.

Assuming u to be autonomous and v is a constant, -as in the Rayleigh equation (2.29),
the weak Taylor approximation of order β = 2.0 has the form

Yn+1 = Yn + u∆n + v∆Ŵn +
1

2
u′ v∆Ŵn ∆n +

1

2
u u′ ∆2

n, (4.17)

under certain conditions for u and v. Numerical schemes for multi-dimensional cases may
for example be found in Kloeden and Platen (1992).

4.6.6 Discretized system

For the numerical solution Y of equation (4.2), a discretization procedure has to be imple-
mented. For a finite time increment τ , the basic version is the Euler-Maruyama approxi-
mation, which can be expressed as

Yn+1 = Yn +m[Yn]τ + q∆Ŵ , (4.18)

as described in section 4.6.5. As discussed by Naess and Moe (2000), to achieve higher
numerical accuracy it is advantageous to replace the Euler-Maruyama approximation with
the Runge-Kutta-Maruyama approximation. Considering only the deterministic part of the
SDE (4.2), equation (4.18) reduces to the Euler approximation Yn+1 = Yn +m[Yn]τ . As is
well known, this approximation is only accurate to order O(τ 2). To improve the accuracy of
the discretization process in following the evolution in time of the deterministic part of the
system, a 4th order Runge-Kutta approximation is implemented, which is accurate to order
O(τ 5). This amounts to replacing the function m[Yn]τ by the corresponding Runge-Kutta
approximation, r[Yn] = (r1[Yn], r2[Yn], r3[Yn])

T say. The explicit expression for r[Yn] will
not be given here since the procedure to obtain it is described in any elementary book on
numerical methods, e.g. Abramowitz and Stegun (1972). Equation (4.15) will therefore be
replaced by what will be referred to as the Runge-Kutta-Maruyama (RKM) approximation

Yn+1 = Yn + r[Yn] + v∆Ŵn. (4.19)

The corresponding TPD for the RKM approximation in equation (4.19), will now become

p(xn, t|x′n, t′) =
1√

4πaτ
exp

(

− [xn − (x′n + r(x′))]2

4aτ

)

. (4.20)

instead of the TPD found in equation (4.9).
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The weak Taylor approximation of order β = 2.0 in equation (4.17) may equally be
modified,

Yn+1 = Yn + u∆n + v∆Ŵn +
1

2
u′ v∆Ŵn ∆n +

1

2
u u′ ∆2

n

= Yn + r[Yn] + v̂∆Ŵn, (4.21)

where

v̂ = v +
1

2
u′ v τ

is the updated noise term. The corresponding TPD for the weak Taylor approximation of
order β = 2.0 found in equation (4.21) is

p(xn, t|x′n, t′) =
1√

2πv̂2
exp

(

− [xn − (x′n + r(x′))]2

2v̂2

)

, (4.22)

and will be used in chapter 6.

4.6.7 The back-stepping procedure

The integral of equation (4.8) and equation (4.10) is supposed to be over R+ = [0,∞〉.
Since this numerically is not possible, we have to integrate a certain part Γ ∈ R+. In
this thesis two different integration schemes have been developed, depending on whether
or not an exact or an approximate TPD was used. Since the integral is to be found in the
previous time-step, the first problem is to find where to integrate. Secondly, x′ has to be
found.

x′i, i = 1, . . . , n are found using a back-stepping procedure. Using an Euler-Maruyama
approximation for the discretized system, we find the first n − 1 unknown solving the
equations

xi − (x′i +mi(x
′)τ) = 0, i = 1, . . . , n− 1. (4.23)

For a more accurate calculation of x′i, i = 1, . . . , n, it is possible, -as discussed in sec-
tion 4.6.6, to replace the equations (4.23) by a 4th order Runge-Kutta scheme,

xi − r(x′i, τ) = 0, i = 1, . . . , n− 1,

giving precise values of x′i, i = 1, . . . , n − 1. In addition, the last variable x′n has to be
found.

Using an exact TPD, it is seen from equation (4.10), that xn has to be chosen for all
positive x′n. Hence, the integration area is Γ = [0, s], where s is a suitable large number.

The integral in equation (4.8) is build up by multiplying the known TPD p(x′, t′|x0, t0)
with a Gaussian TPD, p(x, t|x′, t′). Since most of the probability mass of the latter TPD
is centred around its mean value, we assume that the product of these two TPDs is small
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outside a certain range r, say six times the standard deviation. We choose an interval
around xn, [xn − r, xn + r] = [xn1, xn2]. Now the back-stepping procedure using a 4th order
backward Runge-Kutta scheme on xn1 and xn2 provide us with two points at the previous
time, x′n1 and x′n2. Hence, the integral area is Γ = [x′n1, x

′
n2].

In order for the backward RK4 scheme to work properly, singularities giving large
derivatives throwing x′i far away from xi have to be avoided. The Rayleigh process in
equation (2.29) has a singularity at R = 0. Hence, calculation of RK4 steps close to R = 0
has to be done with great care. This can be done in different ways, but in this thesis
two different approaches have been chosen. The first approach is using a uniform grid for
xn, and adapting the τ to the back-stepping. The advantage is that a uniform grid may
be applied, but τ is now dependent on how many grid points you use. More grid points
implies smaller τ . The second approach is using a general grid, making sure the xn1 may
withstand a backward RK4. This allows a much larger τ , but may give bad interpolation
values because the first and the second grid point is not as close as they should.

4.6.8 Numerical integration

Given an integral area Γ = [x′A, x
′
B], one may choose an integrating technique which suits

best to evaluate the integral in equations (4.8) and (4.10). Popular choices includes Simp-
son’s approximation, the Trapezodial approximation and Gauss quadrature. Using e.g. a
Simpson’s approximation, p(x, t|x′, t′) from equation (4.8) may be approximated

p(x, t|x0, t0) =

∫

Γ

F (x′) dx′n

=
∆xn

3

p
∑

i=0

γF (x′i;n), (4.24)

where

γ =







1 , i ∈ {0, p}
4 , mod (i, 2) = 1
2 , mod (i, 2) = 0

∆x′n =
x′B − x′A

p

x′i;n = x′A + i · ∆x′n

and p is an even number.
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4.6.9 Number of iterations

In practice, finding p(xN , tN |x0, t0) in equation (4.1) is done repeatedly until the difference
between two following TPDs are less than or equal to a certain number. (Johnsen, 1992)
uses the criterion

∣

∣

∣

∣

p(xm+1, tm+1|x0, t0) − p(xm, tm|x0, t0)

p(xm, tm|x0, t0)
· τ
∣

∣

∣

∣

≈ 0.01 − 0.03, (4.25)

where τ is the time increment, but warns that although the criterion gives a solution that
normally is close to the stationary solution, it is not always the situation. Our experience
of a stopping time, is that it depends heavily on the damping factor of each system, and
that it is not as easy finding a suitable stopping time as the criterion in equation (4.25)
suggests. A visual inspection in addition of the PDF or a marginal PDF, has been proven
effective. By visual inspection, either in a normal or a logarithmic scale (or both), it is
easily seen when the system settles down, approaching the stationary solution.





Chapter 5

Statistical response predictions

This chapter is based on the article Karlsen and Næss (2005), and deals with statistical
response prediction for a nonlinearly moored large volume structure in random seas.

5.1 Introduction

For the design of floating structures to be used in the production of oil or gas offshore,
it is mandatory to carry out a statistical response analysis to verify compliance with the
design code provisions applicable to the location in question. Final design verification
is very often accomplished by model testing. However, computational methods based
on numerical models are now commonly applied during the first phases of the design
process. Monte Carlo simulation methods is for example widely used for systems with
significant nonlinearities. Its wide spread use has been facilitated by the rapid growth in
computing power over the last decade. Nevertheless, for some applications it can still be
computationally very heavy, if not prohibitive. One such application is the estimation of
the extreme slow drift response of moored offshore structures. In this case a significant
nonlinear element in the analysis is the slowly varying wave drift forces, which is due to
the presence of a nonlinear transfer mechanism between the waves and the wave forces
on the structure. The modelling of the resulting nonlinear wave forces is carried out
to include second order effects. This means that the wave forces on the structure will
include components at the difference frequency and the sum frequency of every pair of
wave components at frequencies in the wave spectrum. This implies that the wave forces
on the structure contain slowly varying and rapidly varying components in addition to
linear force terms at the wave frequencies. This provides the force mechanism necessary
to excite the slow drift motions of a moored large volume structure, which typically has
a natural period in e.g. surge of 1-2 minutes. Clearly, there is no wave energy at these
periods. Hence, according to linear theory there is no structural response. Since such
response is observed, it points to the presence of nonlinear force mechanisms.

For structural response that can be modelled as linear, the calculation of the response
statistics of moored large volume structures subjected to random waves has been described
by Næss (1990), Naess and Ness (1992), Grime and Langley (2003) and Naess and Karlsen

65
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(2004), to mention but a few. These papers contain extensive references to previously
published work on this topic.

For nonlinear structures the paper by Naess and Johnsen (1993) describes the use of
numerical path integration (PI) to calculate the response statistics. Lin and Yim (2004)
also deals with stochastic characteristics of the surge response of a nonlinear singe-degree-
of-freedom moored structure subjected to random wave exitations using PI. The results
were good, although the forces were modelled differently than in this thesis. PI is based
on the theory of Markov diffusion processes. The application of the theory of Markov
processes to estimate the response statistics of offshore structures was pioneered by Roberts
(1981). He used this theory to investigate the slowly varying motions of nonlinearly moored
floating vessels subjected to random waves. The problem was formulated in terms of a
three-dimensional Markov vector process. The joint PDF of this vector process satisfies
a Fokker-Planck equation, but no attempt was made to solve this equation. Instead, the
problem was simplified by assuming that the slow drift forces could be approximated by a
Gaussian white noise process for small damping. As shown by Naess and Johnsen (1993),
this assumption cannot be justified in general, especially if large or extreme responses
are to be estimated. Early efforts to solve the Fokker-Planck equation associated with a
three-dimensional Markov process similar to the one formulated by Roberts (1981) using
a Galerkin technique may be noted, cf. Marthinsen (1987). However, the obtained results
were rather of an indicative nature since it was very hard to assess their accuracy.

In this chapter we shall apply the PI method to study the response statistics of the
slow drift motions of a moored large volume structure intended for oil production in deep
waters. So in determining the response of the system due to a randomly applied force,
we shall obviously not expect to know it in any greater detail than in which we can
describe the excitation. Our aim in determining the response of a system due to random
loading, is therefore to be able to specify the probability density of the response, when the
corresponding properties of the excitation are known, i.e. the wave spectrum.

5.2 The dynamic model

A typical equation of motion may be written as

MZ̈(t) + g
[

D(t), Ż(t)
]

+ h [Z(t)] = F (t), (5.1)

where Z(t) denotes the surge displacement, M is the mass of the structure and may include
added mass, g[·] denotes a nonlinear, time-variant damping term, F (t) is the wave-drift
excitation force, e.g. in surge, and h[·] is a nonlinear restoring force of the mooring system.
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5.2.1 Wave drift excitation

A significant nonlinear element in the analysis is the slowly varying wave drift forces, which
is due to the presence of a nonlinear transfer mechanism between the waves and the wave
forces on the structure. An example, the Morison’s equation (Donley and Spanos, 1990;
Roberts and Spanos, 1990; Vinje, 1980),

F (t) =
CMρπd

2

4

dU(t)

dt
+
CDρD

2
U(t)|U(t)|, (5.2)

was introduced by Morison et.al. in 1950, and show a non-linear expression of the hy-
drodynamic forces on a circular cylinder in regular waves. Here CM and CD denotes the
inertia and drag coefficients, ρ is the density of water, d is the pile diameter, and U(t) is
the particle velocity in the direction of the wave travel.

Assume that the ocean surface elevation can be modelled as a zero-mean, stationary
Gaussian process. On the basis of this assumption it has been shown (Næss, 1990) that
the commonly accepted model for the wave drift excitation force in long-crested or short-
crested random seas can be expressed as follows. Let F (t) denote the wave drift force in
a given direction, e.g. surge, on a given large volume structure subjected to a random
seaway. Then F (t) can be represented by the relation

F (t) =
N
∑

j=1

λj

{

W̄2j−1(t)
2 + W̄2j(t)

2
}

, (5.3)

where the λj are the eigenvalues of a matrix G, which for the long-crested seas case is given
in terms of the (one-sided) wave elevation spectrum SX(ω), and the so-called quadratic
transfer function K̂2(ω, ω

′), which characterises the wave drift force. Specifically, for the
(equidistant) discretization 0 < ω1 < . . . < ωN of the frequency axis (∆ω = ωj − ωj−1):

G = (Gjk) =

(

1

2

√

SX(ωj)SX(ωk)∆ω K̂2(ωj,−ωk)

)

(5.4)

Each W̄j(t) is a stationary Gaussian N(0,1)-process determined by the corresponding eigen-

vector vj = (vj(ω1), . . . , vj(ωN))> of the same matrix. In particular, the spectral density
Sj(ω) of W̄j(t) is given as S2j−1(ωk) = S2j(ωk) = |vj(ωk)|2. The processes W̄j(t) are con-
structed in such a way that W̄2j−1(t) and W̄2j(t) are Hilbert transform pairs for each j, as
described in section 3.2. Thus, F (t) can be expressed as

F (t) =
N
∑

j=1

λj Rj(t)
2,

where Rj(t) = {W̄2j−1(t)
2 + W̄2j(t)

2}1/2 is a Rayleigh process. For more information on
these points, the reader is referred to Næss (1990).

For many structures, it turns out that a good approximation to F (t) is obtained by
retaining only the first term on the rhs of equation (5.3), and this is also the case for the
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example structure studied in this chapter. It has been assumed here that the eigenvalues
have been ordered so that λ1 > |λ2| > . . .. Hence, we shall adopt the approximation

F (t) = µ+ µR(t)2 , (5.5)

where R(t) = R1(t) and where we have introduced the two parameters µ and µ in order to
obtain correct mean value and variance. It can be shown (Næss, 1985) that

E[F (t)] = 2
N
∑

j=1

λj ,

Var[F (t)] = 4
N
∑

j=1

λ2
j ,

which leads to the requirement

µ+ 2µ = 2

N
∑

j=1

λj ,

µ2 =
N
∑

j=1

λ2
j .

According to Stratonovich (1963) the Rayleigh process R(t) can be described by an Itô
stochastic differential equation (SDE), that is, R(t) is a Markovian Rayleigh process if

S1(ω) = S2(ω) =
a

π

(

1

(ω − ωq)2
+

1

(ω + ωq)2

)

(5.6)

where a is a positive constant, and ωq is a suitably chosen frequency. In the section on
numerical results it will be shown that this equation is satisfied to a fair degree. By
adopting equation (5.6), R(t) satisfies the following SDE

dR(t) = −a
(

R(t) − 1

R(t)

)

dt+
√

2a dW (t) (5.7)

where W (t) is a Wiener process, cf. Wong and Hajek (1985). Remembering that the
derivative of a Wiener process is a mathematically construction (section 2.10), we in all
simplicity write equation (5.7) in the following manner

dR(t)

dt
= a

(

1

R(t)
− R(t)

)

+
√

2aN(t), (5.8)

where

N(t) =
dW

dt

is understood as Gaussian white noise.
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5.2.2 Damping term

Damping forces are modelled in different ways. The easiest way is stochastic linearization,
as done in chapter 3, assuming that the damping is proportional to the speed of the
structure, i.e.

g
[

D(t), Ż(t)
]

= DŻ(t), (5.9)

where D is a constant. However, this might be a crude simplification of the true behaviour.
In the Morison’s equation (5.2) for example, the damping force is quadratic. Another
equation of motion

Φ̈ +
(

β + n1|Φ̇|
)

Φ̇ +
(

ω2
n + n2Φ

2
)

Φ = bΦM(t), (5.10)

also describes how the damping term is non-linear. Here Φ is a roll angle for a ship rolling
in irregular beam waves for small to moderate angle of roll (|Φ| ≤ 35◦), M(t) is the roll
excitation moment, β and n1 are the linear and quadratic damping factors, respectively,
ωn denotes the undamped natural frequency of roll, n2 is a non-linear stiffness factor, and
bΦ is the inverse of a total, effective roll inertia of the ship. Assuming a linear damping
term, as discussed in Roberts and Spanos (1990), may not always be a good description of
the motion.

Due to strong coupling between the mean wave-drift force and mean-drift damping
coefficient in surge (Aanesland et al., 1990), an approximation of the damping is assumed

g
[

D(t), Ż(t)
]

= c1 + c2F (t),

where c1, c2 are constants chosen to obtain the correct mean value and standard deviation
of the wave drift damping, and F (t) is the wave-drift force. In Naess and Johnsen (1993),
c1 = 0 is assumed, making a further simplification.

As mentioned in Naess and Johnsen (1993), due to strong similarity between D(t) and
F (t), one may assume that the damping term D in equation (5.9) is

D(t) = ηS2(t). (5.11)

Here S(t) is a Markov-Rayleigh process and η is a mean damping parameter. To provide
coupling between the force and the damping, the SDE for S(t) is written

S(t) = b

{

1

S(t)
− S(t)

}

+
√

2b
{

βN(t) +
√

1 − β2Ñ(t)
}

(5.12)

where Ñ(t) are standard Gaussian noise, N(t) is the same Gaussian white noise process as
in equation (5.8), b is some positive constant, and 0 ≤ β ≤ 1. Varying degree of statistical
dependence between damping and force result as β increases from 0 to 1. For β = 0, D(t)
and F (t) are statistically independent.

In the main model, described in section 5.5, the damping is assumed linear, in lack of
more precise measurements.
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5.2.3 Restoring force

The restoring force is usually described as a polynomial,

h[Z(t)] =
N
∑

i=1

aiZ(t)i, (5.13)

where ai are constants. A constant term in equation (5.13), a0 6= 0, assuming a restoring
force subjected when the system is at a point of equilibrium, would not be physically
correct. Although, when N = 1, approximating the restoring force with a linear function,
one usually need a constant term not equal to zero. A restriction, h[−Z(t)] = −h[Z(t)],
due to the direction of the force, is usually added.

There are a number of applications where the restoring force is assumed to be linear,
i.e. simple spring examples with small excursions. Examples of non-linear restoring forces
are for example seen in equation (5.10) and also for the Duffing oscillators described in
Roberts (1983),

ÿ + 2ξω0ẏ + ω2
0y(1 + ρ3y

2) = f(t).

Here y(t) is the displacement, ξ is a non-dimensional linear damping parameter, ω0 is the
natural frequency of the system, ρ3 is a cubic stiffness factor, and f(t) is some force driving
the system.

In the main model described in section 5.5, the restoring force assumes both linear and
quadratic terms.

5.3 A numerical solution to the Rayleigh process

The Rayleigh process from equation (5.8) is discussed theoretically in section 2.14.2 and
section 2.14.3. An effort to achieve a stationary PDF using the PI-technique and an approx-
imate TPD found in equation (4.20), has to be done carefully. The presence of numerical
errors in the PDF was noted in Johnsen (1992), and the reason is that equation (5.8) has
a singularity for R = 0. If measures not are taken, the error in both the approximate
and the exact TPD near zero becomes large, and spreads into the numerical solution when
propagating forward in time.

Equation (5.8) has a corresponding Fokker-Planck, and 4 stationary solutions are pre-
sented in Figure 5.1; the theoretical solution from equation (2.31), the solution found using
a Monte Carlo simulation, the solution using the PI technique and the exact TPD from
equation (4.6), and the solution using the PI technique and the approximate TPD using a
Runge-Kutta-Maruyama approximation from equation (4.20).

As illustrated, the PI technique works superb when using an exact TPD, even with few
grid points (n = 51) in the R-variable and few integrating points (p = 41). We can hardly
distinguish it from the exact one, -even in the logarithmic plot of Figure 5.2. Increasing n
and p, the two graphs can be shown to be almost identical. Comparing the exact solution
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Figure 5.1: Stationary solutions of the Rayleigh process .
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Figure 5.2: Stationary solutions of the Rayleigh process, logarithmic scale.

with the Monte Carlo simulation, two differences is spotted. In Figure 5.1 we see that
the MC solution overestimates the PDF close to R = 1. Secondly, as seen in Figure 5.2,
the MC simulation has problems achieving good results for low probabilities. PI provides
good estimates also of the tails of the PDF. That is a quality we might use calculating
upcrossing frequencies. The PI technique using an approximate TPD does not perform
well. The approximate TPD is not well suited for this problem, and may not be used in
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the further calculations.
One huge advantage using an exact TPD, is that the time-step τ > 0 may be chosen

freely. However, numerically we run into problems evaluating values of the modified Bessel
function. The evaluation of the function are based on different series expansions depending
on the input value, and may be found in e.g. Abramowitz and Stegun (1972). However,
inputs above 1300 are not possible to calculate numerically.

Studying the theoretical solution from equation (2.31), it is obvious that R and R′ may
be chosen less than 7, since the PDF gives a probability around 10−10 and is low enough
for most applications. Assuming R ≤ 7, R′ ≤ 7, κ = 1, and the numerical boundary of the
input in the modified Bessel function of equation (2.34) to be 1300, the equation

exp(−aτ)
1 − exp(−2aτ)

RR′

κ
≤ 1300

leads to

exp(−aτ)
1 − exp(−2aτ)

≤ 26.53 = γ.

Now we get a restriction on τ ,

τ ≥ 1

a
ln

(

1 +
√

4γ2 + 1

2γ

)

≈ 0.01885

a
.

Choosing a = 0.047, -a number found in section 5.5, τ ≥ 0.40, which is a fairly large
number. A large a-value gives the opportunity to choose a small τ , improving the time-
stepping procedure, but at the cost of increase in CPU time.

5.4 Equation of motion, 3-D case

Combining the equations (5.1), (5.5) and (5.8), we now have 3 one-dimensional stochastic
differential equations,

ẋ1(t) = x2(t)

ẋ2(t) =
1

M

(

−g[x1(t), x2(t), x3(t)] − h[x1(t)] + µx2
3(t) + µ̄

)

(5.14)

ẋ3(t) = a

(

1

x3(t)
− x3(t)

)

+
√

2aN(t),

where [Z(t), Ż(t), R(t)]> = [x1(t), x2(t), x3(t)]
>. The system of equations (5.14) may be

written

ẋ(t) = m[x(t)] +
√

2aN̄(t), (5.15)
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where

x(t) = [x1(t), x2(t), x3(t)]
>

m[x(t)] =





m1[x(t)]
m2[x(t)]
m3[x(t)]



 =







x2(t)
1
M

(−g[x1(t), x2(t), x3(t)] − h[x1(t)] + µx2
3(t) + µ̄)

a
(

1
x3(t)

− x3(t)
)






,

N̄(t) =





0
0

N(t)



 .

We notice that equation (5.15) does not include time explicitly, indicating that this equation
of motion may have a stationary PDF.

The theory for the Path Integration technique, presented in chapter 4, may now be
applied on equation (5.15). As seen in section 5.3, an approximate TPD using the weak
Runge-Kutta-Maruyama approximation of order β = 1 for the Rayleigh process, gives a
wrong solution due to the singularity R = 0. And worse, the error close to R = 0 spreads
into the numerical solution when propagating in time, -also in the 3D-case. So the exact
TPD will be used in the rest of in this chapter. A further investigation in how to handle
equation (5.15) using an approximate TPD, is found in chapter 6.

5.5 Numerical example

The example structure has the main particulars as listed in Table 5.1, where the natural
period Te should be construed as pertaining to small oscillations around the mean displace-
ment position. The mass M includes added mass, and the wave drift damping is assumed
constant corresponding to a damping ratio ξ = 0.40. A sketch of the deep floater is shown
in Figure 5.3, while the mooring line arrangement is shown in Figure 5.4.

Table 5.1: The main particulars of the structure
Parameter Value

M 2.68 · 108 kg
D/M 0.0415 (s−1)
Te 121 s

The wave condition used in the calculations is described by the following JONSWAP
spectrum

SX(ω) = αg2ω−5 exp











−5

4

(ωp

ω

)4

+ ln γ · exp






−

(

ω
ωp

− 1
)2

2σ2
















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Figure 5.3: The deep floater (superstructure removed).

where

α = 5.78

(

Hs

T 2
p

)2.036

(1 − 0.298 ln γ)

ωp =
2π

Tp

σ =

{

0.07 : ω ≤ ωp

0.09 : ω > ωp

The specific parameter values chosen here are significant wave height Hs = 14.8 m, peak
period Tp = 14 s and peakedness parameter γ = 5.5.

The quadratic transfer function for the slowly varying hydrodynamic forces are given by
their diagonal values only, that is, only K̂2(ωj,−ωj)-values are available, which is typical
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Figure 5.4: Sketch of the floater with mooring lines.

for most practical response calculations of this type. The reason for this is that the diago-
nal values of K̂2 can be calculated from the first order velocity potential of the wave field,
which requires much less computational efforts than the off-diagonal terms, which involves
the second order velocity potential. However, to calculate the eigenvalues and eigenvectors
needed for our theory, it is necessary to populate the whole matrix K̂2(ωj,−ωk). There
are several possible ways of doing this. We shall adopt a version of what is known as the
Newman approximation. Loosely speaking, the method chosen is such that the elements
of the full matrix have the same value at positions along the orthogonals to the diagonal
values. Originally, only 12 diagonal values for K̂2(ωj,−ωj) were provided. This was aug-
mented to 37 values by interpolation to get a better representation of the force process.
The two quadratic transfer functions are shown in Figures 5.5 and 5.6.

A graphical representation of the G-matrix given by equation (5.4) is depicted in Fig-
ure 5.7.

It was mentioned earlier that the eigenvalues of the G-matrix usually showed a rapid
decrease in absolute value. To demonstrate this for the present example structure, the first
5 eigenvalues are listed in Table 2.

Another element in the model building was the assumption that the spectral density
S1(ωk) = |v1(ωk)|2 of the eigen-process W1(t) was equal to the spectral density given by
equation (5.6). To check this assumption, the result of fitting the last spectral density
to the first is shown in Figure 5.8. The parameter values that gave the chosen fit were
a = 0.047 and ωq = 0.46. The spectral density |v1(ωk)|2 has been plotted for both 12
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Figure 5.5: Quadratic transfer function K̂2(ωj,−ωk) for 12 frequencies populated according
to a Newman approximation.

Eigenvalue Value Relative value |λj|/λ1

λ1 2526035 N 1
λ2 -510869 N 0.2022
λ3 68455 N 0.0271
λ4 -14661 N 0.0058
λ5 11385 N 0.0045

Table 5.2: The first 5 eigenvalues of the G-matrix listed in decreasing absolute value

and 37 frequencies, and they are seen to be almost identical. The agreement obtained
between |v1(ωk)|2 and the rhs of equation (5.6) is seen to be fairly good, especially since
the important aspect of the fitting is to get the envelope process correct. Hence it is not
crucial to have agreement across all frequencies, but rather at the most energetic portions
of the spectral densities.

In the numerical calculations the effect of wind and current has been included as an
added constant force term. According to this, the total force used in the calculations can
be evaluated using equation (5.5) and written as

F (t) = 101.315 · 105 + 25.782 · 105R(t)2. (5.16)

The effect of the nonlinear mooring system is taken into account by fitting the restoring
force function h[·] to calculated values for the restoring force as a function of the platform
displacement from the mean response position, which was calculated to be 27.5 m. The
origin is at the equilibrium position when there is no external forcing. Figure 5.9 shows the
calculated values for the restoring force together with the fitted curves. The calculation of
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Figure 5.6: Quadratic transfer function K̂2(ωj,−ωk) for 37 frequencies populated according
to a Newman approximation.
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Figure 5.7: The G-matrix together with the corresponding JONSWAP wave spectrum.

the restoring forces was based on information about the mooring line characteristics and
the mooring line configuration using a program (MIMOSA), and provided by Marintek. In
Table 5.3 the fitted functions are presented.

The numerical input has then been fully specified, and the numerical PI procedures
can now be applied. An exact TPD was used, and the interpolation in the 3 dimensional
space was done by using cubic interpolation in the first two dimensions, and interpolating
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Figure 5.8: The spectral densities associated with the eigen-process W1(t).
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Figure 5.9: The static pull out characteristics of the mooring line system and fitted func-
tions.

linearly in the last one. The grid was uniform in all directions.

Figures 5.10 – 5.13 shows the marginal PDF of the surge displacement response of the
structure in head seas for the three fitted restoring force terms. In each figure is shown
the effect of grid size in the calculation domain. It is seen that the number of grid points
(nx × ny × nz) has significant influence on the results, especially for evaluating the top
of the PDF. It is seen that in all three cases very good agreement with the Monte Carlo
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Approx. h[z]

Linear −1333091 + 64552z
Quadratic 90545 + 431970z + 4745z2

Table 5.3: The fitted restoring force term

results is obtained with nx = ny = nz ≥ 71, although increasing the parameters to 101
gives almost perfect match. It may be noted that the tail behaviour of the marginal PDFs
appears to be close to exponential, which reflects the fact that the nonlinearities in the
equation of motion of the structure are quite weak. The effect of the nonlinear restoring
force is seen by a smaller probability for the large excursions.
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Figure 5.10: The marginal PDF of surge displacement for varying grid size for h[z] linear
compared with the results of Monte Carlo simulation.

In Figures 5.14 and 5.15 the marginal PDF of the surge velocity for h[z] quadratic and
the results of Monte Carlo simulation is plotted. It is seen that the PDF is almost symmet-
rical and exponential in the tails. This can again be explained by the weak nonlinearities.
It is also worth noting that the sensitivity to the grid size is not as pronounced as for the
displacement response.

The marginal PDF of the Rayleigh envelope process R(t) is shown in Figures 5.16 and
5.17 for varying grid size, which is shown to have only a moderate effect on the results.
The agreement with the exact solution is very good.

To check the sensitivity of the results to the value of the a-parameter, the results for
the two values a = 0.045 and a = 0.05 were also calculated. The influence on the marginal
PDF of surge displacement is shown in Figure 5.18. It is seen that there is negligible
difference between the results.
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Figure 5.11: The marginal PDF of surge displacement for varying grid size for h[z] linear
compared with the results of Monte Carlo simulation, logarithmic scale.

20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Displacement (m)

 

 

MC
nx=ny=nz=71
nx=ny=nz=91
nx=ny=nz=101

P
D

F

Figure 5.12: The marginal PDF of surge displacement for varying grid size for h[z]
quadratic compared with the results of Monte Carlo simulation.
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Figure 5.13: The marginal PDF of surge displacement for varying grid size for h[z]
quadratic compared with the results of Monte Carlo simulation, logarithmic scale.
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Figure 5.14: The marginal PDF of surge velocity for varying grid size for the quadratic
approximation h[z] compared with the results of Monte Carlo simulation.
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Figure 5.15: The marginal PDF of surge velocity for varying grid size for the quadratic
approximation h[z] compared with the results of Monte Carlo simulation, logarithmic scale.
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Figure 5.16: The marginal PDF of the Rayleigh process R(t) for varying grid size compared
with the results of Monte Carlo simulation.
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Figure 5.17: The marginal PDF of the Rayleigh process R(t) for varying grid size compared
with the results of Monte Carlo simulation, logarithmic scale.
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Figure 5.18: The marginal PDF of surge displacement for different values of the
parameter a.
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5.6 Mean upcrossing rate

A nice aspect of the PI is that the joint PDF of displacement and velocity fZŻ(z, ż)
is available. This makes it possible to calculate the mean level upcrossing rate, which
provides estimates of probabilities of exceedance for specified periods of time. Let ν+

Z (ζ)
denote the mean rate of ζ-upcrossings by Z(t). As mentioned in section 3.3, ν+

Z (ζ) is found
by the Rice formula

ν+
Z (ζ) =

∫ ∞

0

żfZŻ(ζ, ż) dż. (5.17)

In Figure 5.19 the upcrossing frequency is plotted as a function of ζ. It is seen that a linear
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Figure 5.19: The upcrossing frequency for different approximations of the restoring force
h(z), logarithmic scale.

restoring force gives an exponential behaviour in the tail of the upcrossing frequency. It is
also seen that introducing a non-linearity in the restoring force, the upcrossing frequency
changes shape, and e.g. lower the upcrossing frequency by a factor 10 for ζ = 90.

Let PF (T ) = PF (T ; ζ) denote the probability that Z(t) exceeds the value ζ during a
period of time of length T . Assuming that each upcrossing is independent of the previous
one, and the process Z(t) is not too narrow-banded, we may write

PF (T ) = 1 − exp(−ν+
Z (ζ)T ).

In Table 5.4 and 5.5 values of ν+
Z (ζ) and PF (T ) are listed for a set of levels ζ and for T =

3, 6, 18 hours. In Figure 5.20 curves showing the exceedance probability PF (T ) for the
case with the quadratic restoring force term are plotted.
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ζ (m) ν+
Z (ζ) PF (3) PF (6) PF (18)

25.0 6.780E-03 1.0 1.0 1.0
30.0 5.062E-03 1.0 1.0 1.0
35.0 2.495E-03 1.0 1.0 1.0
40.0 1.100E-03 1.0 1.0 1.0
45.0 4.621E-04 0.9932 1.0 1.0
50.0 1.889E-04 0.8699 0.9831 1.0
55.0 7.582E-05 0.5590 0.8056 0.9926
60.0 3.005E-05 0.2771 0.4775 0.8573
65.0 1.179E-05 0.1195 0.2248 0.5342

Table 5.4: Upcrossing rates and exceedance probabilities for linear restoring force.

ζ (m) ν+
Z (ζ) PF (3) PF (6) PF (18)

25.0 6.725E-03 1.0 1.0 1.0
30.0 4.839E-03 1.0 1.0 1.0
35.0 2.371E-03 1.0 1.0 1.0
40.0 1.022E-03 1.0 1.0 1.0
45.0 4.102E-04 0.9881 0.9999 1.0
50.0 1.565E-04 0.8155 0.9660 1.0
55.0 5.726E-05 0.4612 0.7097 0.9755
60.0 2.018E-05 0.1958 0.3533 0.7296
65.0 6.870E-06 0.07151 0.1379 0.3593

Table 5.5: Upcrossing rates and exceedance probabilities for quadratic restoring force.

Let MZ(T ) denote the maximum displacement, as done in section 3.8. The expected
maximum displacement may be found using the formula

E(MZ(T )) =

∫

PF (T ; ζ)dζ =

∫

(

1 − exp
(

−ν+
Z T
))

dζ . (5.18)

In our case the integration range is [0, 100]. Figure 5.21 presents curves showing the ex-
pected maximum displacement as a function of time for both linear and quadratic restoring
forces. It is seen that using a linear approximation gives a significant larger expected max-
imum displacement than using a quadratic approximation, and the gap between the two
graphs grows as time passes. This is due to the fact that non-linear restoring force becomes
more vital as the displacement increase.
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Figure 5.20: The exceedance probability as a function of the displacement response level
for T = 3, 6, 18 hours, logarithmic scale.
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Figure 5.21: Expected maximum displacement as a function of time.

5.7 Comparing results from different techniques

Data used in the previous section were provided by Marintek, Trondheim. Marintek has
made some calculations themselves, based on linearization techniques (MIMOSA), mea-
surements from a basin, and time series. As seen in Table 5.6, our results using PI with a
quadratic and linear restoring force, assuming an 18 hour storm, is compared with Mar-
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Marintek PI Quadratic PI Linear
Expected displacement 27.97 26.94 27.45
Standard deviation 4.93 5.45 5.49
Maximum displacement 54.49 51.08 52.80

Table 5.6: Comparing results from different techniques.

intek’s achievements. Note that the maximum displacement using the PI technique is the
expected maximum displacement based on equation (5.18). We observe that the results
from PI using a linear restoring force provide good match with the time series from Marin-
tek. The reason might be that Marintek base its calculations on a linear model. Figure 5.3
shows that a quadratic model is more likely to be a realistic representation of the restoring
force than a linear one, suggesting that a linear approximation might over estimate the
extreme values of the system.

The expected velocity, for both a quadratic or linear approximation of the restoring
force, is of the order 10−4. This indicates that the expected velocity is zero, giving the
structure no off-drift. This is in agreement with the actual situation, -the platform is held
by 16 mooring lines with anchors.

5.8 Empirical estimation of the upcrossing frequency

There are two alternative approaches of estimating the upcrossing frequency in addition
to the PI technique described in the previous sections. One approach is to estimate the
joint PDF fXẊ(·, ·) empirically from the time histories, and then use the Rice formula
from equation (5.17) to calculate upcrossing frequencies. However, assuming the requi-
site ergodic properties of the response process, the upcrossing frequencies are more easily
estimated from the ergodic mean value. That is, with probability one,

ν+
Z (ζ) = lim

t→∞

1

t
n+(ζ; t),

where n+(ζ; t) denotes a realization of N+(ζ; t), the rate of upcrossings of the level ζ by
the random variable X. n+(ζ; t) denotes the counted number of upcrossings of the level
ζ during time t from a particular simulated time history. In practice, m time histories
of a suitable, specified length, T say, are simulated. The appropriate ergodic mean value
estimate of ν+

Z (ζ) is then

ν̂+
Z (ζ) =

1

mT

m
∑

j=1

n+
j (ζ;T ),

where n+
j (ζ;T ) denotes the counted number of upcrossings of the level ζ by time history

number j.
For a suitable number m ≥ 30, and provided that T is sufficiently large, a good

approximation of the 95% confidence interval for the value ν+
Z (ζ) can be obtained as
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ν̂+
Z (ζ)± 1.96 ŝ(ζ)/

√
m, where the empirical standard deviation ŝ(ζ) is given as the positive

root of the empirical variance,

ŝ(ζ)2 =
1

m− 1

m
∑

j=1

(

n+
j (ζ;T )

T
− ν̂+

Z (ζ)

)2

,

as described in most books regarding basic statistics, e.g. Walpole et al. (2002).
The forward time-stepping procedure was done using a 4th order Runge-Kutta scheme.

Choosing a suitable time-step τ for the numerical scheme is always a challenge. If one
choose τ too large, one may experience a too large value for the upcrossing frequency.
Since the number of iterations N = T/τ for each time history, small values on τ gives
longer CPU-time. In Figures 5.22 and 5.23 the empirical estimation of the upcrossing
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Figure 5.22: Empirically estimated values of the upcrossing frequency ν̂+
Z (ζ)(-), confidence

interval (−·), and values found by a PI technique (×).

frequency ν̂+
Z (ζ) as well as the 95% confidence interval, and the upcrossing frequency from

a the PI technique, ν+
Z (ζ), are plotted. The main model from section 5.5 with a quadratic

restoring force was used, as well as the values T = 18 h and m = 30. As seen, ν̂+
Z (ζ) and

ν+
Z (ζ) are almost identical for ζ ≤ 60. The strength of PI are seen for large values of ζ.

The empirical estimation fails to get reasonable values, and the variance is seen to explode.
However, as seen in Figure 5.19, the PI technique shows its strength, giving precise results
for also large values of ζ.
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Figure 5.23: Empirically estimated values of the upcrossing frequency ν̂+
Z (ζ)(-), confidence

interval (−·), and values found by a PI technique (×), logarithmic scale.

5.9 Case study: Strong non-linear restoring force and

damping

In this section, an example of the robustness of the PI technique is demonstrated.
Again we study the dynamic model of equation (5.1). The damping term is a function

of the velocity Ż(t),

g
[

D(t), Ż(t)
]

·M−1 = βω0ζŻ + κŻ|Ż| , (5.19)

and the restoring force is a cubic polynomial of the displacement Z(t),

h(Z) = 129706 + 417641Z + 558Z|Z|+ 40Z3.

Here M is the mass of the structure, ω0 is the natural frequency, ζ is the damping ratio,
β ∈ [0, 2], and κ is a suitable constant. The cubic term in the restoring force is deliberately
set large, and is not fully comparable with the original example structure presented in
section 5.5. The damping term has been split up in a linear and a quadratic part, where
the expectancy and variance are the same as in the linear case, providing us with a value
of κ. The force is still approximated with the Rayleigh process of equation (5.16).
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5.9.1 Linear damping term and strong restoring force

As a first case study, the variable β from equation (5.19) has been chosen equal to 2, so
the system has linear damping. The restoring force is modelled as a cubic polynomial. As
seen in Figures 5.24 – 5.29 the PI technique works superb, and provides estimates of the
marginal PDFs very close to a Monte Carlo simulation. It also provides nice results for
low probabilities, where the Monte Carlo simulation fails.

Compared with earlier results, we observe that the mean response position as well as
the probability for large excursions from the mean response position, is lowered. This is in
agreement with what one should expect. The strong restoring force now pulls the structure
back harder when the displacement is large, compared to previous results using a linear
or quadratic approximation of the restoring force. The marginal PDF of the velocity is
almost similar to previous calculations, having an exponential behaviour.
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Figure 5.24: The marginal PDF of
surge displacement for strong non-linear
restoring force using a PI technique com-
pared with the results of Monte Carlo
simulation.
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Figure 5.25: The marginal PDF of
surge displacement for strong non-linear
restoring force using a PI technique com-
pared with the results of Monte Carlo
simulation, logarithmic scale.

5.9.2 Non-linear damping term and strong restoring force

As a second case study, the variable β from equation (5.19) has been chosen equal to 1,
balancing the damping on the linear and the non-linear term in some way. As seen in
Figures 5.30 – 5.35 again the PI technique works superb, and provides estimates of the
marginal PDFs very close to a Monte Carlo simulation. It also provides nice results for
low probabilities, where the Monte Carlo simulation fails.

Compared to earlier results, we see that the non-linearities lower the probability for
large deviations from the mean value both in the displacement and the velocity. This is
in agreement with what one should expect. As seen in section 5.9.1, the cubic term of the
restoring force pulls the structure back when the displacement is large. In addition, the
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Figure 5.26: The marginal PDF of surge
velocity for a strong restoring force using
a PI technique compared with the results
of Monte Carlo simulation.
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Figure 5.27: The marginal PDF of surge
velocity for a strong restoring force using
a PI technique compared with the results
of Monte Carlo simulation, logarithmic
scale.
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Figure 5.28: The marginal PDF of the
Rayleigh process for a strong restoring
force using a PI technique compared with
the exact solution.
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Figure 5.29: The marginal PDF of the
Rayleigh process for a strong restoring
force using a PI technique compared with
the exact solution, logarithmic scale.
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non-linear damping term slows the structure down when the speed is large. Compared to
earlier results, the marginal PDF of the velocity of the structure now has a more Gaussian
behaviour, with a large amount of probability mass centered around the origin.
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Figure 5.30: The marginal PDF of
surge displacement for non-linear damp-
ing and strong restoring force using a PI
technique compared with the results of
Monte Carlo simulation.
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Figure 5.31: The marginal PDF of
surge displacement for non-linear damp-
ing and strong restoring force using a
PI technique compared with the results
of Monte Carlo simulation, logarithmic
scale.

5.9.3 Conclusion

The main objection in this section was to show that the PI technique works well also when
strong non-linearities are introduced. This is a property highly appreciated, and the results
presented shows that the PI technique provides good estimations of the PDF, also down
to very low probabilities.

5.10 Numerical considerations and difficulties

Given a 3 dimensional SDE as in equation (5.15) and the theory for the PI technique, one
have to decide 5 parameters when starting a numerical calculation; -the number of grid
points nx, ny and nz in each dimension, how many integration points p needed for the
integral from equation (4.24), and τ , the time-length we step forward. As mentioned in
section 5.3, τ has to be chosen larger than 0.40, and although the TPD is exact, a large
value on τ should give a poorer result than smaller ones. The cause of this is the back-
stepping procedure, which is more precise for small time-steps than large ones. Choosing
τ = 0.4 gives 4 parameters to vary.

The size of the grid resolution and the number of integrating points clearly influence the
CPU time for the program, so keeping them as small as possible is an advantage. However,
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Figure 5.32: The marginal PDF of
surge velocity for non-linear damping
and strong non-linear restoring force us-
ing a PI technique compared with the re-
sults of Monte Carlo simulation.
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Figure 5.33: The marginal PDF of
surge velocity for non-linear damping
and strong non-linear restoring force us-
ing a PI technique compared with the
results of Monte Carlo simulation, log-
arithmic scale.
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Figure 5.34: The marginal PDF of the
Rayleigh process for non-linear damp-
ing and strong restoring force using a PI
technique compared with the exact solu-
tion.
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Figure 5.35: The marginal PDF of the
Rayleigh process for non-linear damp-
ing and strong restoring force using a PI
technique compared with the exact solu-
tion, logarithmic scale.
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small values for the 4 parameters gives poorer results than large ones, so there is a fine line
between CPU time and accuracy.

The most obvious way to keep the numerical costs down, and keeping the parameters
fixed, is to start as close to the solution as possible. The starting probability can be
a previously found PDF, either by a Monte Carlo method or an interpolated PDF found
earlier with fewer grid points, or it could be a normal distribution with the expectation and
covariance matrix found by a good guess (or a Monte Carlo method). A second strategy
is keeping the parameters nx, ny, nz and p as small as possible, giving the optimal CPU
time. This, of course, is a matter of testing, getting optimal parameters, and is highly
dependent on the problem one study. A third strategy is to improve the integrating process,
choosing e.g. a Simpson approximation instead of a midpoint approximation as described
in section 4.6.8. This may both improve the result and keeping the value of p low. And
last, but not least, making a fast program helps a lot. A lot of calculations may be done
only once and stored for later use. The program may also be rewritten and run on parallel
computers. This however, has not been studied.

5.11 Errors

Using a PI technique, 4 main types of errors occur,

1. Integration errors.

2. Interpolation errors.

3. Errors in handling the deterministic term of the SDE.

4. Errors in handling the stochastic term of the SDE.

Intergration errors occur when the integral of equation (4.10) has to be calculated, as
discussed in section 4.6.8. An efficient integration technique as well as small partitions
reduce this error.

Interpolation errors occur when we try to find the interpolated value p(x′, t′|x0, t0) of
equation (4.7). In section 4.6.2, 4.6.3 and 4.6.4, different interpolation techniques have
been discussed, and B-splines were chosen for their nice properties. High resolution of grid
points also reduce this error.

Different ways of handling the deterministic term of the SDE have been discussed in
section 4.6.7. The idea is to follow the dynamic in an efficient way. Clever numerical
schemes includes the Runge-Kutta 4th order, and reduce the error compared to the basic
Euler scheme. Small time-steps also provides better results.

In section 4.6.5, the stochastic term has been subjected to a closer scrutiny. Differ-
ent numerical schemes handle the stochasticity better than other, reducing the numerical
errors. Exact TPDs are optimal.
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5.12 Equation of motion, 4-D case

As mentioned in section 5.2.2, strong coupling between the force and the damping has
been observed. We now assume also the damping g(·) in equation (5.1) to be described
as a Markov-Rayleigh process. We combine equations (5.1), (5.8), (5.11), and (5.12) as 4
one-dimensional stochastic differential equations, and write it as a system of equations,

x(t) = m[x(t)] +QN̄(t), (5.20)

where

x(t) = [Z(t), Ż(t), R(t), S(t)]> = [x1(t), x2(t), x3(t), x4(t)]
>

m[x(t)] =









m1[x(t)]
m2[x(t)]
m3[x(t)]
m4[x(t)]









=













x2(t)
1
M

(−ηx2
4(t) − h[x1(t)] + µx2

3(t))

a
(

x3(t) − 1
x3(t)

)

b
(

x4(t) − 1
x4(t)

)













N̄(t) =

[

N(t)

Ñ(t)

]

Q =









0 0
0 0√
2a 0√
2bβ

√
2b
√

1 − β2









.

Varying degree of statistical dependence between damping and force result as β increases
from 0 to 1.

Following the approach used in section 5.4, we are interested in finding the TPD for
this system, similar to equation (4.5), i.e.

p(x, t|x′, t′) =

2
∏

i=2

δ {xi − (x′i + ri(x
′))} · pR(x3, x4, t|x′3, x′4, t′) ,

where pR(·) is the exact TPD for the system.
The 2-dimensional coupled Rayleigh case may be written as

ẋ1 = −ε1
2

(

x1 −
κ1

x1

)

+
√
ε1 η1

ẋ2 = −ε2
2

(

x2 −
κ2

x2

)

+
√
ε2

(

β η1 +
√

1 − β2 η2

)

, (5.21)

where ε1, ε2, κ1, κ2 are some positive constants, and 0 ≤ β ≤ 1. Rewriting equation (5.21),
we get the 2-dimensional stochastic equation

ẋ = m(x) +QNt



96 CHAPTER 5. STATISTICAL RESPONSE PREDICTIONS

where

x = [x1, x2]
>

m(x) =

[

m1[x(t)]
m2[x(t)]

]

=





− ε1
2

(

x1(t) − κ1

x1(t)

)

− ε2
2

(

x2(t) − κ2

x2(t)

)



 (5.22)

Q =

[ √
ε1 0√
ε2 β

√
ε2
√

1 − β2

]

Nt = [η1, η2]
>

As described in section 2.15, there is a close connection between the FP equation and
a SDE. The Fokker-Planck equation for system (5.21) is

∂f

∂t
(x1, x2) = −

2
∑

α=1

∂

∂xα
[mα(x1, x2)f(x1, x2)]

+
1

2

2
∑

α=1

2
∑

γ=1

∂2

∂xα∂xγ
[Kαγ(x1, x2)f(x1, x2)], (5.23)

where

Kαγ(x1, x2) =

(

ε1
√
ε1ε2 β√

ε1ε2 β ε2

)

,

and m is as described in equation (5.22). In order for the system in equation (5.23) to
have a stationary solution and an exact TPD to be found by the earlier described method
in section 2.14, the conditions in equation (2.38) has to be fulfilled. Because the matrix
Kαγ(x1, x2) is a constant matrix; ∂Kαγ(x1, x2)/∂xi = 0 for i ∈ {1, 2}, equation (2.38)
simplifies to

∂

∂xδ

2
∑

α=1

AγαKα =
∂

∂xγ

2
∑

α=1

AδαKα , (5.24)

where δ = 1 and γ = 2 for example. Now, our inverse,

A =
1

ε1ε2(1 − β2)

(

ε2 −√
ε1ε2 β

−√
ε1ε2 β ε1

)

,

in addition to equation (5.24), provides us with the condition

∂

∂x1

[

√

ε31ε2
2

β

(

x1 −
κ1

x1

)

− ε1ε2
2

(

x2 −
κ2

x2

)

]

=

∂

∂x2

[

−ε1ε2
2

(

x1 −
κ1

x1

)

+

√

ε1ε32
2

β

(

x2 −
κ2

x2

)

]

(5.25)
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to be true as long as β 6= 1. Of course, equation (5.25) is only true if β ≡ 0. But β = 0
means stochastic independence between the force and the damping, -the very effect we were
to study. So finding an exact analytical expression when β 6= 0 for the stationary PDF,
-and also a TPD, seems impossible with this method. An approximate TPD is therefore
needed, and is studied in the next chapter.





Chapter 6

TPDs using improved techniques

Bearing in mind the numerical problems from chapter 5 and the fact that an exact TPD
for the 4-dimensional stochastic system in equation (5.20) is not available, we head for
ways to use the approximate TPD in a PI scheme, to find a stable numerical solution to
systems of equations including the Rayleigh process (5.8). The tools used in this chapter
are a general grid, the not-a-knot condition, and handling the noise-term in a better way.

Different approaches to place the grid have been studied. Crucial is the integrating
area close to zero, as described in section 4.6.8. The grid for the Rayleigh process is made
so that the PDF has a fixed value of zero for our first point, and the next point has to be
placed so that the back-stepping procedure may be used without large numerical errors.
This is important in order to get the right solution as the number of interpolation points
increase, and to keep the CPU time of the program to a minimum. The rest of the points
are placed uniformly. Optionally we could use a uniform grid, and choose a small enough
τ so that the back-stepping procedure goes smoothly.

The not-a-knot condition replaces the method of explicitly setting spline coefficients for
basis functions with support outside the interval to zero, -as described in section 4.6.3.

But most important, the noise term has now been handled with a modified Order 2.0
Weak Taylor Scheme. The corresponding TPD is found in equation (4.22).

6.1 The Rayleigh process, 1-D case

Studying the 1-D case is always interesting, giving us hints and clues of what is possible
numerical approaches to the problem. We first study the 1-D Rayleigh process

Ṙ(t) = a

(

1

R(t)
−R(t)

)

+
√

2aN(t), (6.1)

where a = 0.047 and N(t) denotes standard Gaussian white noise with E[N(t)N(t+ τ)] =
δ(τ). We may easily rewrite this as a discretized system and construct a fast and efficient
program finding the stationary PDF in a short time.

The stationary solution is found in Figure 6.1 and Figure 6.2, together with the theo-
retical solution from equation (2.31). The calculation was done with parameters p = 21,

99
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Figure 6.1: Comparing the theoretical solution and the solution using an approximate TPD
of equation (6.1).
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Figure 6.2: Comparing the theoretical solution and the solution using an approximate TPD
of equation (6.1), logarithmic scale.

n = 35, and τ = 0.03. It is seen that the numerical results are very good, both on the top
of the distribution and in the tail. Compared with the results from using an exact TPD
from chapter 5, the results from using an approximate TPD is as good. The number of
calculations before reaching a stationary PDF, is however larger by a factor of 100. In a
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1-D case this is barely noticeable, but in the 3-D case it becomes a factor to consider.

6.2 Different approaches in trying to study the Rayleigh

process

We know the Rayleigh process from equation (2.29),

dR(t)

dt
= − ε

2

(

R(t) − κ

R(t)

)

+
√
εNt, (6.2)

studied in chapter 5 and section 6.1 with κ = 1 and ε = 2a, is hard to deal with numerically.
In order to get an easier equation, the following transformations have been done.

6.2.1 Variable transformation by squares

Attacking the Rayleigh process, we multiply equation (6.2) with R, obtaining the equation

RṘ = − ε

2

(

R2 − κ
)

+R
√
εNt. (6.3)

The lhs may be written as the derivative of R squared, providing us with the equation

1

2

∂

∂t

(

R2
)

= − ε

2

(

R2 − κ
)

+R
√
εNt.

Introducing a new variable, B = R2, the Rayleigh process may now be written as

Ḃ = −ε(B − κ) + 2
√
BεNt. (6.4)

Now, the drift term does not have any singularities, but the diffusion term now depends
on B.

Equation (6.4) may now be written as a FP-equation, and the stationary PDF of the
corresponding FP-equation may be found using equation (2.28),

f̄(B) =
1√
2 κπ

B− 1

2 exp

(

− B

2κ

)

, B > 0 .

The new problem lies in evaluating the approximated PDF close to B = 0, since the value
of f̄ goes to infinity as B approaches zero. Although using a general grid with lots of grid-
points close to zero, the numerical result is not good enough compared to the theoretical
solution. This is because the interpolation method in some way has to be told what to
expect near B = 0, and since B goes to infinity here, trying to rewrite equation (6.2) into
equation (6.3) seems impractical.
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6.2.2 Scaling

Using a transformation

R = γ B ,

and writing ε = 2a, equation (6.2) becomes

Ḃ = a

(

κ

γ2B
− B

)

+

√
2a

γ
Nt.

Although this seems simpler since γ 6= 0 may be chosen freely, it is numerically in fact the
same equation as equation (6.2) with its properties and difficulties regarding back-stepping
and number of grid and integrating points. So unfortunately, there is nothing to gain by
this rewriting.

6.2.3 Logarithmic variable transformation

Using a transformation

U = lnR ,

and writing ε = 2a, equation (6.2) becomes

U̇ = a (exp(−2U) − κ) +
√

2a exp(−U)Nt. (6.5)

The theoretical stationary solution to equation (6.5) is found to be

f̄(U) ∝ exp

(

(2 + κ)U − 1

2
exp(2U)

)

, (6.6)

and is shown in Figure 6.3 for κ = 1. Although this PDF seems simple in its form, it is
nearly impossible to use the PI technique on this problem. This is due to the back-stepping
procedure. As seen in Figure 6.3, we should expect to place our integrating points from
-8 to 2. With a time-stepping procedure on the deterministic term in equation 6.5, -where
we use a Runge-Kutta 4th order backwards, this will include a number exp(2 · 8), which
is a large number. Of course, a time-step τ as small as 10−9 has to be used, and far too
impractical.

In addition, using negative numbers in the noise-term in the same equation shows that
we would have to integrate over a large area, giving a poor numerical result.



6.3. THE RAYLEIGH PROCESS, 2-D CASE 103

−8 −6 −4 −2 0 2
−12

−10

−8

−6

−4

−2

0

U

 

 

Theoretical solution

lo
g 1

0
P

D
F

Figure 6.3: Theoretical stationary solution described by equation (6.6).

6.3 The Rayleigh process, 2-D case

In lack of a real physical 2-dimensional case study, the following system of equations

ẋ(t) = 0.02 x(t) − 0.05 x(t)2 + 0.01 y2(t)

ẏ(t) = a

(

1

y(t)
− y(t)

)

+
√

2aN(t), (6.7)

has been studied. The Rayleigh equation (the latter one) is as described in section 6.1 with
a = 0.047. Here we experience an interpolation problem. Using cubic B-splines in both
directions gives some negative spline-coefficients in the calculation, introducing numerical
errors that spreads through the solution. The remedy is to interpolate linearly in these
regions and using cubic splines everywhere else. This, however, increase the CPU time of
the program. The accuracy in the solution also decrease.

The results may be found in Figures 6.4 - 6.7, where the variables nx = 111, ny = 111
and τ = 0.001. As seen, the results are very good, but good results comes at a cost. The
number of grid points has increased dramatically compared with the 1-D case. More points
are needed in each direction, and this also leads to a small τ , in order to get grid points
close to zero in the y-dimension. It is also worth mentioning that a general grid has been
used here.



104 CHAPTER 6. TPDS USING IMPROVED TECHNIQUES

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

 

 

MC
Approximate TPD

x

P
D

F

Figure 6.4: Comparing the Monte Carlo simulation and the solution using an approximate
TPD of system (6.7), x-direction.
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Figure 6.5: Comparing the Monte Carlo simulation and the solution using an approximate
TPD of system (6.7), x-direction, logarithmic scale.
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Figure 6.6: Comparing the exact solution and the solution using an approximate TPD of
system (6.7), y-direction.
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Figure 6.7: Comparing the exact solution and the solution using an approximate TPD of
system (6.7), y-direction, logarithmic scale.
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6.4 The Rayleigh process, 3-D case

Returning to the system of equations (5.14), for which we are interested in finding the
stationary solution, we use the numerical information gathered from the previous sections.
The same problems as in section 6.3 occur here, and we have to use linear interpolation
where the spline coefficients are negative. A general grid has been applied.
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Figure 6.8: The marginal PDF of surge displacement for the approximate TPD compared
with the results of a Monte Carlo simulation.

As described in section 6.3 and 4.6.2, linear approximation are neither smooth nor
efficient approximators, and provide small errors in the density function. The system
responds by pushing probability mass into (or out of) troublesome areas, thereby inducing
errors in other parts of the PDF. The combination of an approximate TPD and a vast
amount of linear approximations, 18-22 % of the total number of interpolations (nx =
ny = nz = 101, p = 31, τ = 0.01), makes the system unstable. The system never reach a
stable solution, but oscillates between different solutions. The remedy, one should assume,
is to rise the number of grid and interpolation points and/or decrease the time step τ . The
drawback is the increase of CPU time.

By increasing the number of grid points to 151 in each direction, more interpolations
are done by cubic splines. But still a vast amount of interpolations, 11-13 %, are done
linearly, predominated at the edge of the grid. The PDF now reach a stationary solution,
but the solution is not equal to the PDF found in chapter 5, using an exact TPD. The
marginal densities is found in Figures 6.8 - 6.13, where nx = ny = nz = 151, p = 31, and
τ = 0.01.

Using an approximated TPD produce a different stationary solution than using an exact
TPD. They both describe the same system, but converges to different solutions. Increasing
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Figure 6.9: The marginal PDF of surge displacement for the approximate TPD compared
with the results of a Monte Carlo simulation, logarithmic scale.
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Figure 6.10: The marginal PDF of surge velocity for the approximate TPD compared with
the results of a Monte Carlo simulation.

the number of grid and integrating points or decreasing the time step τ , have no influence
on the stationary solution. The only change is the CPU time. This indicates that it is
not interpolation errors that causes the difference between the stationary solutions, -it is
the approximative TPD that is not good enough. A discretized system based on a more
accurate Taylor scheme of order 3 or higher, as mentioned in section 4.6.6, providing us
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Figure 6.11: The marginal PDF of surge velocity for the approximate TPD compared with
the results of a Monte Carlo simulation, logarithmic scale.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

Exact
Approximated TPD

R

P
D

F

Figure 6.12: The marginal PDF of Rayleigh process for the approximate TPD compared
with the results of a Monte Carlo simulation.

with an even better TPD, might improve the results. This, however, has not been studied.
Our main object is calculating the upcrossing frequency ν+

Z (ζ). The impact of this
difference in TPDs is described in Figures 6.14 and 6.15, where the upcrossing frequency
and exceedance probability PF (T ) using an exact and an approximate TPD are presented.
One can hardly see any difference at all between the two different techniques. This indicates
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Figure 6.13: The marginal PDF of Rayleigh process for the approximate TPD compared
with the results of a Monte Carlo simulation, logarithmic scale.
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Figure 6.14: The upcrossing frequency using an exact and an approximate TPD, logarith-
mic scale.

that in order to find the upcrossing frequency and the exceedance probability, one need
not necessarily use an exact TPD. In our case, an approximate TPD seems to be sufficient.
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Figure 6.15: The exceedance probability as a function of the displacement response level
for T = 3, 18 hours, using different TPDs, logarithmic scale.

6.5 Numerical considerations

The choice of an interpolation routine is important in path integration. Cubic spline in-
terpolation was chosen because it seemed to work well when the distribution is sufficiently
smooth and the borders of the computational domain does not have a large impact on
the global dynamics of the system. However, some problems occur in areas close to a
large jump in the interpolated values. Here, the interpolating spline often will have un-
reasonable oscillations, in form of negative spline coefficients and negative values of the
PDF. The methods investigated were parabolic splines, bezier splines, and tension splines.
Unfortunately, these methods did not improve the results.

In Naess and Mo (2004), a conditional path integration method was suggested. Here, a
4 dimensional PDF is pointwise divided by the marginal density for 2 variables. This way,
a more flat density is obtained, which should be more suitable for integration procedures,
-possible with high accuracy even for linear approximation and for a very coarse grid.
The interpolated value of the PDF is obtained by multiplying the interpolated values in
the conditional density with the given marginal density (or for example a Gaussian). As
stated in the article, the method has some serious drawbacks. In many cases it turns out
that the conditional density is in fact less flat than the original PDF. In addition, when
the marginal density is unknown, and one instead uses a Gaussian, some non-Gaussian
problems seem to converge more to a Gaussian solution rather than a correct stationary
distribution. This method was tested on the system of equations (5.14). Here, the marginal
PDF in z-direction was known, but unfortunately, this did not improve the result.



Chapter A

The impulse function

The unit impulse function δ(x− x0), also called the Dirac delta function, is defined to be
infinite when its argument is zero, to be zero when its argument is nonzero, and to have a
unit area,

δ(x− x0) =

{

∞ when x = x0

0 when x 6= x0
∫ ∞

−∞

δ(x− x0)dx = 1 .

Of course, the fact that δ(·) is infinite at one point, tells us that it is not a function. Instead
we define (Haberman, 1987) it as an operator with the property that for any continuous
f(x) at x = x0,

f(x0) =

∫ ∞

−∞

f(x)δ(x− x0)dx. (A.1)

The impulse function is so concentrated that in integrating it with any continuous function
f(x), it sifts out only the value at x = x0, and the integral in equation (A.1) are often
referred to as the sifting integral. Further, it is often desirable to define the impulse function
to be an even function.

The Fourier transform F̂ of the unit impulse function is defined

F̂ (u, x0) =

∫ ∞

−∞

δ(x− x0) exp(−iux)dx = exp(−iux0),

and hence

F̂ (u, 0) = 1.

Formal application of the Fourier inversion integral then gives

1

2π

∫ ∞

−∞

exp(−iux0) exp(−iux)du = δ(x− x0)

1

2π

∫ ∞

−∞

exp(−iux)du = δ(x). (A.2)
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An integral is defined

I =

∫ ∞

−∞

δ(x− f(y)) g(y) dy, (A.3)

and by introducing a transformation of variables,

ζ = f(y) ⇒ y = f−1(ζ) ,

we may rewrite equation (A.3) as

I =

∫ ∞

−∞

δ(x− ζ) g(f−1(ζ))
∂f−1(ζ)

∂ζ
dζ

= g(f−1(x))

∣

∣

∣

∣

∂f−1(x)

∂x

∣

∣

∣

∣

.

The last term, a Jacobi determinant, corresponds to the change of integral measure due to
the non-linearity, and normally has to be approximated from the system equations.



Chapter B

Simplified Integral

From section 3.3, we know that the up-crossing frequency may be written

ν+
Z (ζ) = − 1

(2 π)2
–

∫ ∞

−∞

1

v2

∫ ∞

−∞

M(u, v) e− iuζ du dv (B.1)

where the outer integral wrt v is interpreted as a principal value integral in the following

sense: –
∫∞

−∞
= limε→0+

{

∫ − ε

−∞
+
∫∞

ε

}

and M(u, v) is given by

M(u, v) = E
[

exp
(

iuZ + ivŻ
)]

=

∫ ∞

−∞

∫ ∞

−∞

ei(u z+v ż) fZ Ż (z, ż) dzdż. (B.2)

Rewriting equation (B.1), we find

ν+
Z (ζ) = − 1

(2 π)2
lim

ε→0+
[I1(ζ) + I2(ζ)]

where

I1(ζ) =

∫ ∞

ε

1

v2

∫ ∞

−∞

M(u, v) e− iuζ du dv

I2(ζ) =

∫ −ε

−∞

1

v2

∫ ∞

−∞

M(u, v) e− iuζ du dv

=

∫ ∞

ε

1

v2

∫ ∞

−∞

M(u,−v) e− iuζ du dv.

Now

ν+
Z (ζ) = − 1

(2 π)2
lim

ε→0+

∫ ∞

ε

1

v2

∫ ∞

−∞

[M(u, v) +M(u,−v)] e− iuζ du dv (B.3)

reducing the numerical effort in finding the up-crossing frequency almost in half.
A further simplification of equation (B.3) may be done in this manner

ν+
Z (ζ) = − 1

(2 π)2
lim

ε→0+

∫ ∞

ε

1

v2
I(v, ζ)dv ,
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where

I(v, ζ) =

∫ ∞

−∞

[M(u, v) +M(u,−v)] e− iuζ du

=

∫ 0

−∞

[M(u, v) +M(u,−v)] e− iuζ du+

∫ ∞

0

[M(u, v) +M(u,−v)] e− iuζ du

=

∫ ∞

0

[M(−u, v) +M(−u,−v)] eiuζ du+

∫ ∞

0

[M(u, v) +M(u,−v)] e− iuζ du

=

∫ ∞

0

{

M(u, v) e− iuζ +M(−u,−v) eiuζ

+M(u,−v) e− iuζ +M(−u, v) eiuζ
}

du (B.4)

=2

∫ ∞

0

<
[

M(u, v) e− iuζ +M(u,−v) e− iuζ
]

du (B.5)

=2<
{
∫ ∞

0

[M(u, v) +M(u,−v)] e− iuζ du

}

.

The step between equation (B.4) and equation (B.5) is found by inspection of equa-
tion (B.2), where the relations

M(−u, v) = M(u,−v)∗,
M(−u,−v) = M(u, v)∗,

are easily seen. In addition, the fact that

A+ A∗ = 2< (A)

for any complex number A, is used.
Finally equation (B.1) may be written

ν+
Z (ζ) = − 1

2 π2
<
{

lim
ε→0+

∫ ∞

ε

1

v2

∫ ∞

0

[M(u, v) +M(u,−v)] e− iuζ du dv

}

. (B.6)
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