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Introduction

The theory of bounded operators on Hilbert spaces has been a subject of
great interest for the last six decades, in particular norm closed, self-adjoint
algebras of operators. These were shown by the Gelfand-Naimark-Segal con-
struction to be the C*-algebras. A number of fruitful problems concerning
C*-algebras have been posed and answered during the years. One of the
earlier questions was posed by R. V. Kadison in [3], namely are there non-
linear states on C*-algebras. A state is here assumed to be a complex valued
function on a C*-algebra which is a positive functional on subalgebras gene-
rated by a single self-adjoint element. If the C*-algebra is unital a state is
assumed to map the unit to 1 € R. The answer came as late as 1990, by Jo-
han F. Aarnes in (1], where non-linear states were constructed explicitly on a
unital commutative C*-algebra. The commutative C*-algebras are classified
by the Gelfand theory. That is, a unital commutative C*-algebra is isomorp-
hic to the continuous functions on some compact Hausdorff space. For the
non-unital commutative case the C*-algebra is isomorphic to the continuous
functions ”vanishing at infinity” on some locally compact Hausdorff space.
The construction in [1] was done by realizing that a slight generalization
of regular Borel measures on compact Hausdorff spaces would represent any
state (linear or not) through an integral construction. These generalized
measures were refered to as quasi-measures, we include their definition:

Definition 1 Let X be a compact Hausdorff space. Let O and C denote the
open and closed subsets of X respectively. Furthermore, put A=0UC. A
positive set function ju: A — R is o quasi-measure if

1o (W, A = S0, puA; (where ) indicates disjoint union, and all A;
and W2, A; are assumed to be in A)

2. plU =sup{pC:C CcU,C e} fordlU € O.

Notice that their definition is identical to regular Borel measures except
for the domain of definition. The integral is now given by a transformation
of integrals (see e.g. the first article in this thesis for the construction of an
integral with respect to a quasi-measure).

Since their initial introduction the quasi-measures have gotten a life of
their own. They are no longer confined to the C*-algebra setting, and are
objects of interest in their own right.
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The six articles in this thesis are devoted to developping the theory of
quasi-measures, and to provide quasi-measures with substantial applications.
The articles can basically be divided into two categories, namely theory and
applications. The first and last article develops the theory of quasi-measires,
whereas the other four bring the quasi-measures into other fields of mathe-
matics.

Article 1: Unbounded quasi-integrals.

The first article goes back to the origin of quasi-measures and represents
states in non-unital commutative C*-algebras. Uniform continuity of states
in the unital case was initially proven by E. Christensen (c.f. [1]). We prove
that states are also uniformly continuous in the non-unital case. Moreover,
unbounded quasi-integrals are presented and constructed from unbounded
quasi-measures. The Riesz representation theorem is proved for unbounded
quasi-integrals and quasi-measures, presenting a proper generalization of the
Riesz representation theorem as it is stated in [4]. This of course is beyond the
setting of C*-algebras and examplifies that the quasi-measures have evolved
into an integration theory in its own right.

Article 2: Quasi-measures and probability -a new interpretation.

Once defined the quasi-measures are still difficult to construct. This article
presents a new and general construction technique: the g-functions. The -
functions demonstrate the existence of continuously varying quasi-measures
similar to Lebesgue measure. In particular, they give the construction of a
quasi-measure modelling a statistical problem. This was the first concrete
example where quasi-measures proved efficient for modelling purposes.

Article 3: Quasi-measures, Image transformations and self-similar
sets.

This article brings quasi-measures into the theory of Chaos and Fractals,
more precisely iterated function systems and self-similar sets. Iterated sy-
stems of continuous functions are not adequate for obtaining self-similar sets
from quasi-measures. The concept of an image transformation is introduced,
generalizing continuous maps. The classical theory for iterated function sy-
stems is generalized to iterated image transformation systems. Astonishing
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examples of quasi-measures modelling image structures impossible by ordi-
nary Borel measures are presented. Theory expanding these examples are
presented, the reader is encouraged to see the article for the " whole story”.

Article 4: Quasi-measures with image transformations as generali~
zed variables.

A more general image transformation than above is presented and shown
to generalize measurable maps. Their various mathematical properties are
given through a series of theorems. In probability theory the measurable
maps are the variables. This was the starting point of this paper. The last
section presents how basic concepts like the median and sample median are
modelled by quasi-measures in the general setting of a probability space.
However, the sample median is not a variable (as is expected), but turns out
to be an image transformation.

Article B: The multidimensional median and sample median defi-
ned as quasi-probabilities.

This article is a natural continuation of the work in the preceeding article.
The results are aimed at probability theorists, and accordingly address the
probabilistic properties of the median and sample median, whereas the pre-
vious article focused on the mathematical properties of the image transfor-
mations. Numerous results and examples are given, we will not present them
here. Still, we should point out that the solid variables are introduced. They
generalize continuous monotone maps on the real line to the generality of to-
pological spaces. They are shown to be median preserving transformations.
Moreover, any concept of a median being preserved under solid variables and
equal to the ordinary median on the real line is shown to be a quasi-measure.
Tt should be noted that this is the first time the median and sample median
have been defined for the general setting of probability spaces, although mul-
tidimensional constructions have been sought throughout the last century.

Article 6: Construction and properties of quasi-linear functionals.

The last article brings us back to the C*-algebra setting. Here we study quasi-
linear functionals on unital commutative C*-algebras, i.e. bounded maps on
the C*-algebra which are functionals on each C*-subalgebra generated by
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the unit and a self-adjoint element. They were represented by signed quasi-
measures in [2], and their integration theory was presented there. However,
most of the basic problems remained open, such as continuity, decomposition
and construction. These are all answered affirmatively in this paper.
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Unbounded quasi-integrals

Alf Birger Rustad
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim, Norway

March 16, 2001

Abstract

Let X be a locally compact Hausdorfl space. We define a quasi-measure
in X, a quasi-integral on Co(X), and a quasi-integral on Co(X). We show
that all quasi-integrals on Cg(X ) are bounded, continuity properties of the
quasi-integral on C,(X ), representation of quasi-integrals on C¢(X) in terms
of quasi-measures, and unique extension of quasi-integrals on Co{X ) to

Co(X).

1. Introduction

The notion of a quasi-measure was introduced in [1] by J. F Aarnes. In [1], physical
states on commutative unital C*-algebras where represented by quasi-measures.
The quasi-measure in [1] was defined as a regular, finitely additive set function
on open and closed subsets of a compact Hausdorff space X. The quasi-integral
(physical state) with respect to a quasi-measure was constructed on the space of
continuous functions on X (denoted C(X)). The quasi-integrals were shown to be
the maps linear on each uniformly closed, singly generated subalgebra of C'(X).

Recent results (c.f. [2], {4] and [6]) indicate that the quasi-measures are inte-
resting as a generalization of regular Borel measures. The restriction of a quasi-
measure to a compact Hausdorff space is therefore unfortunate. Accordingly, the
work presented here aims to extend the theory in [1] to X being a locally compact
Hausdorff space.



In the sequel we let X denote a locally compact Hausdorff space. A set is called
bounded if it’s closure is compact. F and @ denotes respectively the class of closed
and the class of open subsets of X. Similarly, C and O* denotes respectively the
class of compact and the class of open bounded subsets. Furthermore we put
A=FUQO and A*=C U O*

Definition 1.1. A quasi-measure in X Is a function i : A — [0, 00] satisfying
the following conditions:

1. p(A) < oo if A € A*

2. Lor any finite, disjoint collection {A;}2, € CU O with U 4 € CUQ,
then

3. wU) =sup{p(K) K cUKeCHLUe€®
4 p(F)=if{u(U): FCUUecOL,FeF

Qur quasi-measure corresponds to the quasi-measure in 3], and the reader
will find numerous properties of the quasi-measure there. The notion of a quasi-
measure in a locally compact Hausdorff space can also be found in [7]. The
definition in {7] is more restrictive than ours and does not produce the quasi-
integrals given below.

Let Co(X) denote the real-valued continuous functions on X vanishing at
infinity and let Co(X) be the functions in Cy(X) with compact support. The
support of a function a € Co(X) will be denoted by supp a and the range of a in
Rbyspa. Ifa € Cy(X), let Ag(a) denote the smallest uniformly closed subalgebra,
of Cy(X) containing a. For a subsets K,0 € X we will let X < g and @ < O
denote that @ € Co(X),spa C [0,1] and respectively that z € K = a(z) = 1 and
suppa C O,

Definition 1.2. A real valued function p on Co(X) is called a quasi-integral if
the following conditions are satisfied:

1. b2 0=>p(b) > 0 whenever b € Cy(X)

2. p is linear on Ag(a) for each a € Cy(X)

2



When sup{p{a) : a < X} < co we say that p Is bounded. If in addition
sup{p(a) : a < X} = 1 we say that p Is a quasi-state.

In the C*-algebra setting this corresponds to the commutative, nonunital case,
where p is characterized by linearity on closed subalgebras generated by self-
adjoint elements.

If o € C.(X) then we have Ag(a) C Co(X). Hence we may define a quasi-
integral on C.(X) similarly as above:

Definition 1.3. A real-valued function p on C.(X) is called a quasi-integral if:
1. £ > 0= p(f) > 0 whenever f € C.{X).
2. p is linear on Ag(f) for each f € C(X).

If in addition sup{p(f) : f < X} < oo, then p is bounded and we put ||pf =
sup{p(f) : f < X}.

The only difference between the definition above and Definition 1.2 is that
p is now restricted to Co(X). However we will show that if p is bounded these
two definitions coincide (Corollary 3.10). The key results in this article are bo-
undedness of quasi-integrals on Co(X) and a representation theorem between the
quasi-measures in X and the quasi-integrals on C.(X). The representation is a
generalization of the Riesz Representation Theorem in [5].

The section below presents some preparatory results on the guasi-measures
and quasi-integrals on Cy(X). The section ends with the boundedness theorem
for quasi-integrals on Co(X). The next and last section presents construction of
the quasi-integral on C,(X) with respect to a quasi-measure. Monotonicity and
continuity properties of the quasi-integral is given. The section highlights with the
representation theorem for quasi-measures and quasi-integrals on Co(X). Finally,
unique extension to Co{X) of quasi-integrals on C,(X) is given.

2. Quasi-integrals on Cy(X)

Throughout this article we will assume that X is a locally compact Hausdorfl
space. The results in the following proposition were given in [3]. We will only
give a brief outline of the proofs here.

Proposition 2.1. Let y be a gquasi-measure in X.

3



1 u(@) =0
AcC B= p(A)<u(B),A,Be A
IfK € C,F € F are disjoint, then y{F U K) = u(F) + u(K)

B e b

i I8 countably additive on open sets.

Let g be a quasi-measure in X. For any increasing family of open sets {Vi},
itV 'V (le. UVa=V) then u(Vy) /7 u{V).

Proof. With 4; = A; = § in Definition 1.1.2 we get u(§)) = 0. The monotoni-
city follows from regularity (1.1.3 and 1.1.4). The third statement follows from
regularity and a Urysohn's lemma argument. The fifth statement follows from
regularity (1.1.3). The fifth statement and finite additivity (1.1.2) implies the
fourth statement.

o

Proposition 2.2. A set function p : A — [0,00] satisfying 1., 3. and 4. of
Definition 1.1 is a quasi-measure if and only if

1. If 01,0, € O are disjoint, then p(O1 U Og) = u(01) + u(Os).
2. If K C O € O with K compact, then u(0) = p(O\K) + p(K).

Proof. The proof of the third statement in Proposition 2.1 holds for u. Hence
by induction u is finitely additive on C. Similarly, y is finitely additive on O by
assumption 2.2.1. Let {A;}, C C U O with disjoint union 4 = {J; 4; € CUO.
We may split the union to a disjoint union of a compact and an open set by
A= (Uggee AYV(Un,gc Ai). If Als open then p(A) = p(Ua,ec Ai) (U a.gc Ai) by
assumption 2.2.2. With g finitely additive on C and on @ we obtain pu(UL; 4;) =

T (A, If A is compact we may use a similar argument. Hence it suffices
to show that if O is open and O C K € C, then u(K) = p(K\O) + pu{0). Let
K’ € O be compact. Then since p is monotone p(K) > p(K\O) + p(K'). Taking
supremum of all K’ C O, regularity yields p(K) > p(K\O) + u(0). Conversely,
given € > 0 pick an open set U D K\O with (U} < u{K\O) + ¢. Observing that
K\U C O yields

ME) < wUUO0)=puU)+ pu(K\U)
< w(K\O) + p(O) + e

Equality follows. We have shown finite additivity for 4 on C U O which completes
the proof.



Lemma 2.3. A quasi-integral p on Co(X) is bounded on Ag(a) for each a €
Co(X).

Proof. Suppose sup{p(f) : 0 < f < 1,f € Aola)} = oo for some a € Co(X).
Choose ¢, with ¢; 0 a € Ao(a), p(¢;(a)) > 2% and 0 < ¢;{a) < Lfori=1,2,..,
then with ¢ = 322, 27, we have ¢ 0 a € Ag(a), 0 < ¢(a) < 1 and p(¢{a)) = oo,
which is a contradiction. Hence we must have p bounded on Aq(a).

Remark 1. Note that p is a linear functional on Ag(a) and thus boundedness
implies that p is continuous on Ag(a) for each a € Go(X). Hence

sup{p(a) 1 a < X} =sup{p(a)}):0<a<Ll0€ Co( X}

for all quasi-integrals p on Co(X). Moreover, the complexification of Apla) is a
C*-algebra so Lemma 2.3 is not a new result. We included it for completeness
and the readers convenience.

Lemma 2.4. Suppose a € C,(X) with 0 < a < 1. Then there is a function fe
C,(X) with suppa < f. Moreover, suppa < f < X implies that a, f € Agla+f)

and p{a) < p(f).

Proof. If a € Cy(X} then suppa = K is compact. There is an open bounded
set V containing K. By Urysohn’s lemma there is a function fwith K <f =<V
which implies that f € Co(X). Define ¢, and ¢, by

1,221 z—1 ,z 21

¢1($)={m <1 andqbzm{ 0 ,z<l’
Then ¢, (a+f) = [ and ¢y(a-+f) = athus e, f € Ag(a+f) and we get pla) < p(f).

Theorem 2.5 (Boundedness of quasi-integrals). All quasi-integrals on Co(X)
are bounded.

Proof. Let p be a quasi-integral on Co{X) and suppose sup{p(a):a < X} = oo.
By lemma 2.4 construct recursively a sequence {a;}{Z; where pla;) = 2% and
supp a; < as4q < X for each i. Let f = £, 2 %0; then f € Co(X) since Co(X)
is complete. Define ¢, for i =1,2,... by

] T > 2-i+1
biz) = | 2(@-27) 27 Sz <2
0 L <27



we have ¢, € C(sp f), ¢,(0) = 0 and ¢,(f) = a; for each 7 and thus {a;}2, C
Ao(f). Finally f > 2%, implies p(f) > 27%p(a;) > 2 for i = 1,2, ... which in its
turn implies that p(f) = co. This is a contradiction since p is supposed to be a
quasi-integral on Co(X) we may conclude that sup{p(a) : a < X} < coso p is
bounded.

Remark 2. Theorem 2.5 shows that the local linearity of the quasi-integrals im-
pose strong restrictions on their global behavior. This suggests that unbounded
quasi-integrals on C.(X) may exhibit nice properties. Indeed, this is what we will
devote the next and last section to.

3. Quasi-integrals on C,(X)

Proposition 3.1. Suppose that p is a quasi-measure in X and f € C.(X), then
there is a unique bounded regular Borel measure y1; on R\{0} with 1u;(O) =
p(f~HO)) for all open sets O C R\{0}.

Proof. Let f(z) = u(f~'(—o0,z)\{0}) which implies that f is increasing. Since
/€ C{X) we have that f(supp f) is compact. Hence f is constant outside an
interval [a, 8] for some a,b € R. By proposition 2.1 f(x DE f(z) for each z € R,
so f is continuous from the left. Thus pplr,y) = fly) - f(=) umquely determines
a regular Borel measure in R and by regularity p(z,y) = fly) — f(=®). If
Ty € (z,y) then fly ) w(f~H(za, )\{0}]) + f(z,) since u is monotone, hence
Fly) — Fla*) > w(f~ (2, 1)\{0}]). Conversely finite additivity and monotonicity
of p4 yields

Hy) (‘{(Sc MO + a(f 7 ({=\{0D) + F(e)

TH
p(F (@ yN{OH) + F(=a),
s0 f(y) - f(2¥) < (7" [(=, ) \{0}]). We have u(f~*[(2,y)\{0}]) = f(y)- f(z*) =

ps(z,y), and since both y and i, are countably additive on open sets the proof
is complete.

IA

Remark 3. We will call i, the measure corresponding to p and f. Notice that
Proposition 3.1 only is stated for open sets not containing {0}, whereas the proof
produces a measure on R with ¢({0}) = 0. This is convenient when the quasi-
measure Is an extended real-valued function. In fact, Lemma 3.3 is not valid
unless zero is omitted.



Definition 3.2. A map f — p; from C,(X) into the regular Borel~ measures in
R\{0} is consistent if 4, = psod ™" for each f € Ce(X) and ¢ € C(sp f),¢(0) =
0.

Lemma 3.3. Let p be a quasi-measure in X. Let py denote the measure corre-
sponding to pu and f € C.(X), then the map f v iy Is consistent.

Proof. Let f € C(X), ¢ o f € Ap(f) and K C R\{0} be compact. Now

0¢ ¢ '(K) implies:
poor(K) = pl{¢o f)7H(K))
= p(f (¢ H(E))
= (o7 (K)).
Note that since K is compact in R\{0}, then K is compact in R by the identity
map. So F~Y ¢ HK)) is a closed subset of supp f, and thus compact. The result
now follows from the regularity of p.
In the sequel we will assume that the measure corresponding to a quasi-
measure 4 and a function f € C.(X) is extended to R by p{0} = 0.

Proposition 3.4. Let p be a quasi-integral on C.(X). If f,g € Co(X}and f < g
then p(f) < p(9).

Proof. Given § > 0, suppose f > 0 and g(z) > 6 -+ f(z) when z € supp f. Pick
a natural number n such that né > max ¢ and define ¢, € C(sp f), 1 <4 < n by:

0 o< (1—1)6
dfz) =< z~(i-1) ,(i-1)6 <z<ib
) , T > 0.

Then z € supp ¢,(f) = &:(g9(z)) = 6, thus ¢:(f): ¢:(9) € Aol (f) + ¢:(9))

which imply p(6;(f)) < p(8:(g)). Now L ¢;(f) = f, 2 ¢:(g) = g implies p(f) <
p(g). Given e > 0, suppose now that 0 < f < g, choose h and § > 0 with

suppg < h € Co(X) and p(6h) < e. We have p(f) < p(g -+ 6h) < p(g) +¢. Let
f < g € Co(X) be arbitrary, then f*, f~ € A(f) and f* < g*, f~ > g~. We have
o{f) = p(f*) — p(f7) < plg™) — p(g™) = plg) by the previous argument. The
proof is complete.

Corollary 3.5. Let p be a quasi-integral on C.(X) and let K be an arbitrary
compact subset of X. Then there is a k € R such that whenever supp fi C
K, fi € C(X) fori == 1,2, we have:

o(h) = p(f) S kllf = foll.

7



Proof. Pickang > K and let p(g) = k. Then fi < fo+g|f — fal| which implies

that p(f1) — p(fa) < p(g) 1.1 — folf and conversely p(fa) — p(f1) < p{g) Ify ~ fol-
But then we must have [p(f1) — p(f2)| < k|| f1 — fal|.

Remark 4. In general p is not uniformly continuous (since it is a generalization
of regular Borel measures). However, p is continuous with respect to the topology
of uniform convergence on compacta. Hence this is a sharp result, we can not
expect stronger continuity properties.

Corollary 3.6. Let p be a bounded quasi-integral on C.(X). Then for each pair
f1, f2 € Co{(X) we have

() = o(f2)l < el L = fall -

Proof. Pick a function g > supp f; Usupp f;. Then p(g) < |ip|l and the result
follows from Corollary 3.5.

Proposition 3.7. Let u be a quasi-measure in X. Define

o(f) = f i du, for each f € Cu(X),

where iy is the measure corresponding to p and f and i is the identity map on
R. Then p is a quasi-integral on C,.(X).

Proof. By the transformation theorem for integrals and Lemma 3.3, the result
follows.

Lemma 3.8. Let p be a quasi-measure in X and Jet p be the corresponding
quasi-integral. Then for each open set O € X we have:

#(0) = sup{p(f): f < O}.
Moreover, if u(X) < oo then p is bounded and ||p|} = u(X).

Proof. First suppose 11(0) < co. Choose a compact set K ¢ O with w(K) >
#(0) — €, and a function f with K < f < 0. We have:

p(f) Jop gt dpy = fryy dps + fioay % dpsy
fay dep = pe({13) = u(f 711}

p(K) since K C f~1{1}.

VIV i
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On the other hand we have:

p(f) < foprdiy ; sp f < [0,1].
= Hf(Spf\{O})
= pu(f71(0,00)) ; f7{0,00) = f 1(Spf\{O})
< w0) L <0= f71(0,00) C

These together imply (0) = sup{p(f) : f < O}. If 4(O} = oo, then there is for
every natural number n, a compact set K C O with u(K) > n. By the previous
argument there is then a function f with K < f < O and p(f) > n. Hence
w(0) = sup{p(f) : f < O} = oo. If u(X) < oo put O = X in the previous
argument. Then p(X) = sup{p(f) : f < X} = ||p|| < co. The proof is complete.

Theorem 3.9 (The representation theorem). Let X be a locally compact
Hausdorff space.

1. To each quasi-measure y in X there is a unique quasi-integral p on Co(X)
such that for any f € C.(X) we have

= [ ¢ti) duy

for all $ € {¢p € C(sp f) : $(0) = 0}. Here u; is the regular Borel measure
in R corresponding to p and f.

2. Conversely, for any quasi-integral p on C.(X) there is a unique quasi-measure
w in X such that p is the quasi-integral corresponding to u. Specifically we
have, for any open set O C X:

#(0) = sup{p(f) : f < O}. (3.1)

Proof. The first part of the theorem follows from Proposition 3.7. Suppose pis a
quasi-integral on C,(X). Define a set function p : O — RU{oc} by (3.1). Extend
1 to the closed subsets F of X by p(F) = inf{u{0) : F C 0,0 is open}. Notice
that this implies u(K) = inf{p(f) : f = K} when K is compact by Urysohn’s
lemma and the monotonicity of p. We will show that g is a quasi-measure in
X. Note that pu{A) < co when A € A* by Urysohn’s lemma and Corollary 3.5.
Suppose that O; and O, are open disjoint subsets of X. Pick f; with fi < O; and
p(fi) > p(0;) — e for i = 1,2. We have fi fy == 0 which implies f1, f2 € A(fi ~ f2)

and thus
p(O1U02) 2 plfi+ f2) = p(fi) + p(f2)
= /,L(O1) + /.L(Og) + Ze.

9



Conversely if f < O; U Oy, the opposite equality follows from observing that
f = fi+ fo where fi(z) = f(z) if z € O; and elsewhere zero.

Let K C O C X where K is compact and O is open. By Urysohn’s lemma there
is an open bounded set U and functions fx, fy such that K ¢ U ¢ U C O,
K=< fK < QOand U < fU < O with p(fU) > ,U,(O) —¢€. Then fK:fU & A(f]("‘fU)
and fU — fx = O\K thus

p(O\K) = o(fv — fx) = p(fu) — o(fx)
> {0) — u(K) ~ e

Which yields 4(0) < u(O\K)+ p(K) when p(0) < oo and equality when p(0) =
oo. Conversely, if f < O\K with p(f) > u(O\K) — ¢, then K’ = supp f C O\ K,
so (X\K')NU is an open set containing K. Pick fx such that X < fx <
(XAKYNU, then ffx = 0. We have

(O} = plfx + ) =p(fx) + p(f)
> u(K) + p(O\K) — e

We have shown that u is a quasi-measure in X. The uniqueness of u follows from
Lemma 3.8. Let p, denote the quasi-integral corresponding to p, it remains to
prove that p, is equal to p. Let f € Co{X) be arbitrary. Then p; : ¢ — p(¢(f))
is a functional on {¢ : ¢ € C(sp f),$(0) = 0}. Extend p; to a functional F on
Clsp f) by F(¢) = py(¢ — 4(0)) + &0}, ¢ € C(sp f). Now sp f is compact and
thus F' determines a unique regular Borel measure v on sp f such that

F($) = p(@(f) = [ #(i) dv; when ¢ € C(sp f) and $(0) = 0.

So by regularity it suffices to show that u; = v; on the open subsets of F =
sp fA\{0}. Suppose ¢ > 0 and U C E open are arbitrary. Pick a compact set
K C U such that v¢(K) > v¢(U) — e. Choose an Urysohn function K < ¢ < U,
then v, (U) — ¢ < v, (K) < p(&(f)) < u(f~(U)) = 1, (U) since do f < f-U).
Conversely, pick a compact set K C f~HU) such that p(K) > u(f~}(U)) — ¢ and
a function ¢ with f(K)} < ¢ < U. Then since ¢ o f = f~1{K) we have

pp(U) — e = p(fHU)) — e <u(K) < p(po f) = ps(¢) < v(U).
The proof is complete.

Corollary 3.10. Let p be a quasi-integral on Co.(X). If p is bounded then p has
a unique extension to a quasi-integral on Cy(X).

10



Proof. By Corollary 3.6 p is uniformly continuous. Extend p by coﬁtinuity toa
function pg : Co(X) — R, for example by the functions ¢, defined by

0 T <€
gbe(m): 2c —2¢ ,e <3 X2
x LT > 2€

Obviously po(af) = apy(f) for all o € R, f € Co(X). Suppose f € Co{X) and

$1(£), do(f) € Ao(f). Then ¢,(¢.(f)) € Ao(g.(f)) for all € > 0 and i = 1,2.
Note that ¢,(é.(f)) converges uniformly to ¢;(f) when ¢ tends to zero. Hence by

continuity

p(h(fY + ¢o(F)) = limeo p(1 (8 (F)) + d2(0e(1)))
= dimenolp(1(@e(£))) + p(d2(¢(FN)]
= p(¢1 (1) + p(¢2(f))-

We have shown that p, is a quasi-integral on Co(X). The uniqueness of the
extension is immediate from the continuity of p,. The proof is complete.
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1. Introduction

Let X be a compact Hausdorff space, and let C (respectively O) denote the col-
lection of closed (respectively open) subsets of X. Let A=CUQO. A quasi-
measure in X is a function u : A -» R* which is monotone, additive and regular.
More precisely we have:

(1) p{Ar) < pu(Ag)if Ay C A4

(i) p(Wr, 4) = 305 pA; (4 indicates disjoint union, and we assume all A,
and ., A; in A)

(i33) pU =sup{pC:C CcU,C €C} for allU in O.



One may show that a quasi-measure has a (necessarily unigque) extension to a
regular Borel measure in X if and only if it is subadditive on C, i.e. if it satisfies

{(iv) p(CyUCy) < uCh + uCy for all Cy, Gy in C.

The whole point here is that quasi-measures that do mot satisfy condition
(v), exist. Their basic construction has been given in [1], [2] and [3]. The main
construction result ([1], Theorem 5.1) assumes that a set function g initially is
given on a fundamental family of sets A,, called the solid sets, and extended to
all of A (aset A € A is solid if A and its compliment are both connected). A
function p : As ~» RT is a solid set-function if it satisfies

(4) 377 puCi < pC whenever W, C; C C, C;,C el i=1,2,..,n
(B) pU =sup{pC:C CU;Cel}forallU e O,
(€) ph+ p(X\A) = X

Here C, (respectively ) denotes the family of closed (respectively open) solid
sets in X. We assume here that X is connected and locally connected, and for
simplicity we will also require that it has genus g = 0 (for details see [1]}. These
conditions will be met in standard spaces like balls and spheres, for instance. The
main construction theorem now states that each solid set function has a unique
extension to a quasi-measure in X. By this result, the construction problem is
reduced to that of obtaining the solid set-functions. It is the purpose of this note
to describe how to do this by means of applying certain functions to existing
(Borel or quasi-) measures. By this process we also obtain a new interpretation
in probability theory, presented in the final section in this paper.

2. Functions composed with measures
We first introduce the class of functions we are going to consider.

Definition 2.1. A function f : [0,1] — [0,1] is called a g-function if it is conti-
nuous from the right and satisfies

L f(0)=0, flz—)+ f(l-2)=1
2. 570 flzs)y < F(O°, =) whenever 1,29, ...,y € [0,1] and S, 2 < L.



Let v be a normalized Borel (or quasi-)} measure in X, i.e. ¥(X) = 1. We say
that v is non-splitting if there is no disjoint pair Cy,Cs € €, such that vy >0,
vCy > 0 and vCy + vCy = 1. For instance, Lebesgue-measure on the unit disk, or
the unit sphere {normalized) is non-splitting.

Proposition 2.2. Let f be a g-function, and let v be a normalized regular Borel
(or quasi-) measure in X. Define y1 on As by: pC' == f(wC);C e Cs and plU =
1 — w(X\U) ;U € O,. If either v is non-splitting or f is continuous, then u is a
solid set-function.

Proof. We first verify that f is non-decreasing: Let 0 <z <y < 1. By 2.12:
@) < f(@) + Fly—2) < @+ (y—2) = Fly). Also, by 2111 f(1-)+7(0) =
1= f(1-)= 1. Putting & = 0 in 2.1.1 yields f(0) + f(1) = 1 => f(1) = 1. Now
let C4,...,Co, C € Cs and suppose |, C; ¢ C. If 3, uC; <1 then by 2.1.2

S uCi =Y G < FO_vCi) = fvlH ) < fC) = e

since f is non-decreasing. If v is non-splitting then 3 vC; = 1 1s impossible unless
n = 1. This follows from lemma 3.3 in [1]. So, if 3 »C; = 1 we may assume that
f is continuous. Condition 2.1.1 then yields f(z) + f(1 —z) =1forall z € [0,1]
so that 3" pC; = 1 = uC. Next, to show that p is regular we first note that if
CcU;,CeC,U e O, then uC < pU. For if C' = X\U then CNC =0 and
it follows from the argument above that pC + pC’ < 1= pC <1 —pC' = pU.
Now let U € @, be arbitrary. Since » is (inner) regular we get

C = 1—p(X\U) = 1— f(X\D))
1= f(1 = vU) = f(vU-)

= sup f{vC) = sup uC
ccy ccu

i

We have now verified conditions (4} and (B) for a solid set-function, and (C) is
true by definition. M

We next turn to the question of determining what functions that are g-
functions.

Lemma 2.3. Let f :[0,1) — [0,1] be a function satisfying:

L f(0)=0, f(z) + f(1 —2) =1

2. f is convex on [0, 3]



Then f is non-decreasing and satisfies

Zf(:z:z) < f(Za:z-)whenever Z:;z:z SL o2,z €0,1ineZ. (%)
f=1 tw=]

i=]

Proof. Let 0 < ¢ < § and let | = I(z) be the straight line through the origin and
the point (¢, f(c)). By the convexity of f we have

flz) < l(z) ifo<z<e
flz) > Uz) ife<a<]

We first prove (*) when n = 2.

i) Let 0 < z; < 29 ;29 + 29 <
Way) + Uza) = ot + 22) < flo + 2

1“0 <z <2y < 2w +ap > L By 23.1 we get f(z) <z if z < 1 and
flz) 2z if 2 > 1. Hence f(21) + f(zs) <2y + 25 < flzy + x5).

W 0<z <3<za<liz 4+ <l We have 0 < 1~z — 2y < 1, and
(I—z —z)+a=1—a9 < —é,so by 2.3.1 and case i) abave we get

Taking ¢ = 2y we get f(z;) + flzy) <

Lo

[~

Jl=z —29) + fz;) <
1= floe+z) + flz) < 1 fzy)
= f(z1) + flzz) <

This establishes (*) when n = 2. An easy induction argument shows that it is
true in general. M

Corollary 2.4. Let f : [0,1] - [0,1] be a function satisfying 2.3.1 and 2.3.2 of
the lemma above , and which is continuous at z = L. Then f is a continuous

2
g-function.

Proof. Since f is non-decreasing and convex on [0,1) it is continuous on [0,3).
By 2.3.1 and continuity at z = % it follows that f is continuous on 0,1].m

Corollary 2.5. Let f : [0,1] ~ [0,1] be continuous, convex on [0,1] and satisfy
F0)=0;f(x)+ f(1—2) =1. Then yA = J(vA) ;A € A, is a solid set-function
for each normalized quasi-measure in X

4



Remark 1. As described in the introduction, each solid set-function extends to a
unique quasi-measure in X. In general the quasi-measures obtained by g-functions
will be proper quasi-measures, they are not subadditive. In fact, even if the initial
set-function v is a regular Borel measure, the only ordinary measure obtained from
the process is v itself, coming from f(z) = . To illustrate this, let X = D =unit
disk, and let v be normalized Lebesgue measure. If f is a continuous, convex
g-function which is not the identity function, we must have f(3) < ;. Let Ci
and C, be disks in X with area v(Cy) = v(Cy) = 2. Assume Cy N Cy # 0 and
CLUC, € Cs. We have uCy + uCy = f(vCy) + f(¥Ca) = 2f (%) < 5. On the other
hand, by making v(Cy N Cy) small we can have v(Cy U Cy) — %, and then by the
continuity of f we can get p(Cy UCs) = f(v(Cy U Ca)) > uCy + puCl. Hence p Is
not subadditive.

We conclude this section with some examples.

Example 2.6. Let n € Z" be arbitrary, and let

I = B k= 01,n—1

n+1? ntl

L =[23,1]
Define f(z) = £ on I k= 0,...,n. Then [ is a g-function. If v is a non-splitting
regular Borel measure we therefore obtain a quasi-measure . Ifn =1 p is sirnple,
ie. it only takes the values 0 and 1. For general n one may show that p is an
extreme point in the set Q(X) of all normalized quasi-measures in X.
Example 2.7. f(z) = sin®*(3z) =
is convex on [0, 1].

B fhe

(1 cosmz) is & continuous g-function which

Example 2.8. p(z) = 3z? —22% and g(z) = 22%+22° — 5a* -+ 22° are polynomials
of the type above.

3. Quasi-measures and probability

A normalized quasi-measure in X is called a guasi-probability. 'The preceding
section has shown how one may construct quasi-probabilities from g-functions
and a given probability measure v in X. We formalize this procedure. Let QR(X)
denote the set of quasi-probabilities in X and let ¢[0,1] denote the set of g-
functions. Both these sets are convex. If v is a fixed non-splitting element of

5



{f) where p is
given by Proposition 2.2 on A, and then extended to all of A (Theorem 5.1 in [1]).
Since g is uniquely determined by its values on A, it follows that F is an affine
map so the range of F, is a convex subset of Q(X) which we will denote by Q, (X)),
and consists of the quasi-probabilities that are associated with v. Note that if v
is simple then @, (X) only consists of v, 1. e. F,(f) = v for all f € ¢[0,1]. Our
goal here is to give a probabilistic interpretation of the quasi-probabilities that
are associated with an ordinary probability v. This will be done by considering
concrete examples. A more general approach to quasi-probabilities may be found
in [4].

Q(X) we obtain a map F, : ¢[0,1] — Q(X) by defining p = F

Example 3.1 (Quasi-probability). Let ) be the unit disk, and let v be the
normalized Lebesgue measure in D. Then (D, B(D),v) where B(D) is the Borel
sets in D is a probability space. Further let X; = idp (identity map) fori = 1,2,3
be independent random variables on D. Then P((_, X; € A;) = P(X; €
A1) - Po(Xy € A2) - Py(X3 € Ag) for any triple {A;}2., € B(D), where of course
F; is given by Fi(X; € A;) = v(X71(A)) = v(A;); i = 1,2,3. Note that P is the
product measure v° in D*.We define a set function p : A, — [0,1] on the solid
subsets of D by

1t(A) = {The probability of at least two X,’s being in A}. (3.1)

p may be calculated combinatorically considering D® with the X, occuring re-
spectively in the three disks. We then obtain p(A) = v(A)3 + (O)v(A)2v(D\A) =
3v(A)? — 2v(A)®. Notice that p € Q,(X) by the g-function p(z) in Example 2.8
and hence determines a unique quasi-measure in D. One might be tempted to
think that p determines a new probability measure on DD but this is not so (see
Remark 1). It is not difficult to imagine a situation where the set-function p is
interesting: Imagine an airdrop of three objects where in order for the drop to be
successful you need to find two objects and the ground you cover searching is a

solid set.

Remark 2. Although the specific problem above can be solved with ordinary
probability theory one should bear in mind that this is a very simple example to
illustrate that the quasi-measures arises naturally in probability theory. Note that
the construction above could analogously be done on the sphere. The resulting
quasi-measure p would then be translation invariant on solid sets and yet still not
a measure. The "quasi” behavior of ;i appears when the sets get larger.

6



Example 3.2. In the example above the observations are made in triples where
we can split the triple into three independent variables. However experimental
statisticians often face the problem of choosing a model for dependent observa-
tions. In the example above this can be illustrated by the three points being
charged particles dropped simultaneously onto the disk. The standard approach
is then to try to determine how the observations are dependent, an approach of-
ten without success (we might have incompatible experiments, for details see [4]).
Again consider observations on the disk in triples. After a series of experiments
one might find an estimate for p in 3.1. For instance, F (f) where v is the Le-
besgue measure and f is the function in Example 2.7 could be a suitable model.
A statistical interpretation of this model would be that the three points are more
likable to be further apart from each other than if they were independent. This
can easily be seen by looking at the function p(z) — f(z) = 32% — 2z — sinz(gm):

GOt
0.008
0.006T
0.004

0.002

Example 3.3 (Quasi-variable). Given any continuous function f : X — [0, 1]
and quasi-measure 1 € Q(X) one obtain a probability measure py on {0,1] by
ps{A) = p(f1(A)) for all open or closed sets A C [0,1]. Let X = D =unit
disk, let i be the quasi-probability in Example 3.1 and define f : D — {0, 1} by
re? — r. Then p0,r] is the probability of at least two points being within a
radius r of the origin. Using the formula 3.1 with D, being the disk with radius
z we find that
Fx{z) = p,{0,2) = 3zt —22° z e (0,1,

where Fy(z) is the cumulative distribution function of a random variable X on
(0,1]. Differentiating we find the Radon-Nikodym derivative f x(z) = 1223(1 —
a*) of p; with respect to the Lebesgue measure on 0,1] (of course fx(z) is the
probability distribution function of X ). Now we may calculate the expectation of

7



! 24
E(X)= | zfx(z)ds=—.
0 35
But what is X7 The variable X interpreted in this example is the radius of the
second point from the origin. Of course this problem can be solved by ordinary
probability theory considering the radius of each point as an independent variable

and then calculate the distribution of the second largest one.

Remark 3. The example above enables us to investigate the quasi-variable using
ordinary variables since the problem splits into three independent variables. Howe-
ver one might verify that the calculations above can be done with u as in Example
3.2, one of the essential properties being that any continuous map f : D — 0, 1]
maps p onto a probability measure in [0, 1].
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Abstract

This paper introduces a novel idea: the concept of an image trans-
formation. We also introduce the closely related concept of a quasi-
homomorphism, and study the properties of these mathematical ob-
jects, and give several examples. In particular we investigate iterated
systems of image transformations, which we believe give a more realis-
tic approach to the study of so called self-similar structures in nature
than what is obtained by iterated function systems.

1 Introduction

The theory of chaos and fractals has been a subject of great interest for
the last two decades. Hutchinson has given one of the major contributions
with his work in [9]. This contribution has also been applied to commercial
software for image compression, but the difficulties in finding effective general
algorithms are evident. Qur aim for the work presented here is to generalize
the theory of iterated function systems.

Advocates of chaos and fractals have argued that self-similarity is frequently
observed in a variety of objects. In particular we may observe such structu-
res in plants, animals and scenery (e.g. clouds, coastlines, mountains). The
mathematical model of the object is then given by a self-similar set. This
model is however not completely correct, as the structures will not continue

1



to repeat themselves forever, at some scale they break down and new struc-
tures may be formed (e.g. we cannot expect to find the same patterns in an
actual fern if we zoom in indefinitely). This is also the case for any image,
since the structures in any image of a fern will be limited by the resolution
of the media used. The random iteration algorithm is often used to generate
self-similar sets. More precisely, it generates the support of a Borel measure.
Our approach will be similar, but we will allow the fixed point measure to
be a quasi-measure (see the definition below).

Throughout the text we will assume that X is a compact Hausdorff space.
We will let O(X) and C(X) denote the open and closed subsets of X respecti-
vely. Furthermore we put A(X) = O(X)UC(X). When there is no confusion
concerning the space in question, we will omit the space from the notation.
A positive set function p : A(X) — R is a quasi-measure if

(1) (W, A) = 3o, #A; (where | indicates disjoint union, and all 4; and
LUA; are assumed to be in A)

(ii) pU =sup{puC:CcU,CeC}forallU € O.

We denote the set of all quasi-measures in X by @Q(X). The quasi-
measures originated in [1]. It was proved in {6] that quasi-measures are
countably additive. Their definition only differs from that of regular Borel
measures by their domain of definition. However, the main difference is that
they constitute a vastly larger class of set functions with a rich mathematical
structure.

We want our transformations to preserve quasi-measures, so ordinary
measure preserving transformations will not suffice. This leads to the concept
of an image transformation {for definition, see section 3). The image trans-
formations turn out to provide a great variety of examples, where two classes
are presented here. We present iterated image transformation systems as a
generalization of iterated function systems. They will have a quasi-measure
as a unique and attracting fix point. The most basic class of examples are
the "collapsing” quasi-measures. They behave like ordinary Borel measures
on large sets but vanish on small sets. The idea is that when a set is too
small, we do not have any information. The second class of examples are by
"volume measures”. They are quasi-measures measuring the volume or area
of an object depending on the resolution level chosen. The idea here is that
an object might have one structure at one level but then a totally different
structure on a smaller level (e.g. an object might look quite different in a
microscope).



2 Basic results

An integration theory has been developed with respect to a quasi-measure.
The integral is defined for all continuous functions f € C{X). Let u € Q(X),
f € C(X); then defining ps(4) = u(f 7 (A)), A € A(sp(f)) yields a regular
Borel measure gy in R. In general, such combination with a continuous
function maps quasi-measures to quasi-measures. However, on the real line
all quasi-measures extend uniquely to Borel measures.

Definition 1 Let € Q(X) and f € C(X). Then we define

ulf) = [ ady(a)
where iy is the Borel measure given by pe(A) = p{f AN, A € A(X).

Tn the study of quasi-measures and integrals the singly generated subalge-
bras of C(X) play a crucial part. For f € C(X) let Ay denote the uniformly
closed subalgebra generated by f and the constant functions. By the spectral
theorem this algebra is isomorphic to the continuous functions on the range

of f.

Definition 2 If a function p : C(X) — R is a positive linear functional on
Ay for every f € C(X) we call p o quasi-integral.

The quasi-integrals were shown in [1] to be exactly the integrals with
respect to quasi-measures. Furthermore, the Riesz representation theorem
holds, so that the measures and integrals are in one-to-one correspondence.
Quasi-integrals arc also shown to be monotone i.e. f < g implies o(f) < plg)
and hence also uniformly continuous (c.f. {1])

The family of normalized quasi-measures is a convex set. Its extreme
points are, however much more complex than the dirac measures. They are
not in general {0, 1}-valued.

Definition 3 The representable quasi-measures is the convez closure of the
{0,1}~valued quasi-measures, and will be denoted by Q.(X). The collection
of {0, 1}-valued quasi-measures will be denoted by X*.

Notation 4 We will denote the Borel probability measures in X with P(X).
Its extreme points, the dirac measures will be denoted by P.(X). Moreover,
the normalized quasi-measures in X (i.e. the quasi-measures where w(X) =

1) will be denoted by Q:(X).



The quasi-integrals, and hence measures, were shown in [1] to be uni-
formly continuous. That is, for p € Q(X) we have ||pi| = p(X), and
() — @) < ellllf — glly for all f,g € C(X). In [2] a weak topology
for @1(X) was introduced: Any function f € C(X) may be represented as a
functional f on Q(X) by f(1) = u(f). The topology on Q(X) is defined to be
the topology induced by the separating space of functionals {f : f € C(X)}.
This turns @, (X), @-(X) and X* into compact Hausdorff spaces. Moreover,
the sets V* = {p ¢ X* : pu(V) = 1} ;(V € O(X)) is a subbasis for the
topology on X*.

Definition 5 If o set A € A and its complement are both connected we will
call the set solid. A restriction to solid sets will be denoted with a subscript
s (e.g. Cs will denote the compact solid sets).

It was shown in [5] that {V* : V € O,(X)} actually is a subbasis for
the topology on X*. The solid sets play an important role in the theory
of quasi-measures. They constitute a small and manageable family of sets
that totally determines a quasi-measure. This is illustrated by the solid set-
functions, they were introduced in {3] and their properties were investigated
there. In particular they are invaluable tools for constructing quasi-measures.
We include their definition here for the convenience of the reader.

Definition 6 We say that X has genus zero of X = ., As ; (4 € A(X)
c1=1,2,...,n) implies that n < 2.

Remark 7 The genus requirement was treated in [3] and [11]. When X
has genus zero, then X can at most be the disjoint union of two solid sets.
This property is shared by a large class of spaces (e.qg. when X is stmply
connected,).

Definition 8 If X is a connected, locally connected, compact Hausdorff space
with genus zero, we call X @ g-space.

Let X be a g-space. Then a function u : A, — R7 is a solid set-function
if it satisfies

(A) Yo pCi < uC whenever 7, C; € C;C;,C €C, for i =1,2,..,n
(B) pU =sup{uC:CCU;Cel} foralllU € O
(C) pA+ u(X\A) = uX



Theorem 9 If X is a g-space and p is a solid set function, then y ertends
uniquely to a quasi-measure in X. Conversely, the restriction of a quast-
measure in X to the solid sets is a solid set function.

We have the following definition and Proposition from [12]:

Definition 10 Let X, and X, be compact Hausdorff spaces. A map [ :
X, — X, will be called a solid variable if f is continuous and FHA(X2)) C
As(X1).

Proposition 11 (Urysohn’s lemma for solid variables) Let X be any
connected and locally connected compact Hausdorff space. If C € C(X) and
F € C{X) are disjoint and non-empty, there is a solid variable f : X — [0, 1}
such that flc =0 and f|p = 1. If in addition X 1s a metric space we may
assume that f71(0) = C.

For our constructions the concept of non-splitting quasi-measures will be
important:

Definition 12 We say that a quasi-measure p on X is splitting if there exists
disjoint sets Cy, Co € Co(X) such that 1{Cy)+p{Cs) = 1 with u(Ch), up(Cs) >
0. If no such pair exists we call p non-splitting.

Note that Lebesgue measure in the unit square is non-splitting.

3 Image transformations and quasi-
homomorphisms

Definition 13 Let X and Y be compact Hausdorff spaces. An image trans-
formation is o map ¢ : A(X) — AY) with ¢{O(X)) C O(Y) satisfying

a) ANB=0= qAltgB =q(AUB)
b) ¢ X =Y

¢y Uy / U= qUy / qU whenever Uy, U € O(X) and A € A where Als a
directed set.

Note that the composition of two image transformations (when defined)

is again an image transformation.
We include some immediate properties of image transformations below.

5



Proposition 14 Let g : A(X) — A(Y) be an image transformation. The
followring hold:

1. g(C(X)) Cc C(Y)
2. ACB=q(A) Cq(B); A Be AX)

8 If Ay Ay, An are mutually disjoint sets in A(X) whose union also
belongs to A(X), then

4. IfK CqlU); KeC(Y),Ue€OX) there is C C U ; C € C(X) such
that K C ¢{C) ¢ ¢(U)

5. IfqCYcV;Cel(X),VeOY) thereis U D C; U € Q(X) such
that ¢(C) C q(U)CV

6. If Cy ™\, C in C(X) then ¢(Cy) \ ¢(C) in C(Y)
Example 15 Letw:Y - X be a continuous map and define
g{A) =w " (A) ={y € Y :wly) € A} for all A € A(X)

Then q s an image transformation, and we say that ¢ is derived from the
function w.

Example 16 Let ¥* : A(X) — A(X™) be defined by U*(A) = A*, where
At ={pe X" p(A) =1}

Then W™ is an image transformation. Moreover, if X # X* then ¥* is not
derived from a function.

Definition 17 Let ¢ :A(X) — A(Y) be an image transformation. The adjo-

int map ¢*: Q(Y) — Q(X) is given by (¢*1)(A) = u(qA) for all A € A(X),
pe QX).

It is straight forward to show that ¢*(u) is a quasi-measure. We leave
this verification to the reader.



Example 18 Let p € X*, and define ¢ : A(X) — A(X) by

q(A) = { 3} iﬁ% ~0 L AeA).

Then q is an image transformation. The adjoint g is the constant map
QX)) — {u}.

Let 1y : ¥ — Y* be the map which assigns to each point y € ¥ the cor-
responding Dirac measure y,. We may then formulate the structure theorem
for image transformations:

Theorem 19 There is o one-to-one correspondence between image transfor-
mations g : A(X) = A(Y) and continuous functions w: Y — X* such that
g=w""'oW*, moreover w = q*oty.

Proof. Let g : A(X) — A(Y) be an image transformation. It is imme-
diate from the definition that ¢* maps Y* into X*. Fix an arbitrary point
fho € Y™ and let W be an open neighborhood of ¢"py in X*. Then there are
open sets Vi, Vo, ,..., Vo in X such that ¢'py € V¥NVEN--NVy CW.
Let U; = q(Vi), @ = 1,2,...,n, and suppose p € Uy NU; N---NU;. Then
(" 1) (Vi) = plg(Vi)) = p(U;) == 1 = ¢ € W, which establishes the desired
continuity. It follows that w = ¢*oty : ¥ — X* is continuous. Let C' € C(X)
be arbitrary. Then y € ¢(C) < p,(q(C)) =1 & ¢'u, €™ & w(y) € C* &
y € w(C) = w Y (¥*(C)). Hence ¢ = w™* o ¥U*. Then ¢ is an image trans-
formation of A{X) into A(Y). Let y € Y and A € A(X) be arbitrary. We
have (g7, )(A) = i, (g{A)) = p,(w™ (A7) =1 &y € w(4") & wly) €
A* & w(y)(A) = 1. It follows that ¢* o1y = w, and the proof is complete. ®

Corollary 20 Let q : A(X) — A(Y) be an image transformation. the fol-
lowing are equivalent:

(1) q s derived from a continuous functionu:Y — X (i.e. q= ul).

(i) ¥V =Y1 = Upex al{z})
(i) ¢"(Fe(Y)) C Pe(X)

Proof, The implication (1)=>(ii) is obvious. Suppose y € g({z}} for some
€ XifCelC(X)thenz € C & g({z}) C q(C), 50 ("1, )(C} = p,(q(C)) =
1,(C). Hence ¢*ps, = p,, and (ii)=(iii). Now assume (iii) to hold. Then
w =13} 0 ¢* o ty is a continuous function on Y into X, and v l=w"loty
in the notation Theorem 19. Since the range of w is contained in Pp(X), we
must have wH{C* N ex(X)) = w (ex(C)). It follows that g =u"". =

The structure theorem provides the following useful construction:
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Proposition 21 Let X be a g-space. A map q : As(X) — A(Y) extends
uniquely to an image transformation § : A(X) — A(Y') if and only if the
following hold:

a’) UC,Ci€Ci=1,2,..,nand HC; C, then |f q(C;) C ¢C.

b’) If U, U, € O, and U, U, then q(Uy) /" qU with A € A where A is a
directed set.

c’) For any A € 4, we have g(A) Wae(X\A) =Y.

Proof. If § is an image transformation, then obviously a’), b’) and ¢’)
hold. Conversely, for any u € Q(Y), define ¢* : A, (X) = R by (g*u)(A) =
14(q{A4)). Then ¢*u is a solid set function and hence extends uniquely to a
quasi-measure on X. By Theorem 19 it suffices to show that w — qg* oy
is continuous (any two image transformations agreeing on solid sets must be
identical by uniqueness of extension of solid set functions). For V € O,(X)
we have g(V} = w™(V*) € O(Y). Since {V*}veo,(x) is a subbasis for the
topology of X, it follows that w is continuous. m

An image transformation may be applied to level sets of functions. This
leads to the concept of a quasi-homomorphism:

Definition 22 A functionr: C(X) - C(Y) is a quasi-homomorphism if r
is an algebra homomorphism of Ay onto Ay for each f € C (X).

Specifically this means that r(1x) = 1y, 7(f} =2 0if f > 0 and that r is
multiplicative and linear on each singly generated subalgebra Ay ; f € C(X).
We recall the following result from [2] (Proposition 4.1):

Proposition 23 Let ¥ : C(X) — C(X*) be given by U(f) = f, where
f(,u) = p{f) ; p € X*. Then ¥ is an algebra isomorphism of Af onto Az
for each f € C(X). Moreover, U is an order-preserving isometry with closed
range B C C(X*).

Remark 24 In particular, ¥ is an injective quasi-homomorphism.

Definition 25 Letr : C(X) - C(Y) be q quasi-homomorphism. The ad-
joint of 7 is the map 1 : Q(Y) — Q(X) given by (ru)(f) = p(r(f))
(f € C(X), neQ(Y)).

Theorem 26 There is a one-to-one correspondence between quasi-
homomorphismsr : C(X) — C(Y) and algebra homomorphisms h : C(X*) —
C(Y) such that r =h oW and h(f) = for* oy ; (f e C(X)).

8



Proof. Let r : C(X) - C(Y) be a quasi-homomorphism. By the de-
finition of the topology on quasi-measures, r* is continuous on Q(Y’) into
Q(X). Since r is multiplicative on each singly generated subalgebra. A(f),
it follows that v* maps Y* into X*. Hence u = r* oty is a continuous
map of ¥ into X*. Composition g — gou ; (g € C(X"}) then defines
an algebra homomorphism &k : C(X*) — C(Y). Let f € C(X). Then
r(£)(y) = sy (r(f) = () (f) = w(y)(f) = f(u(y)) for each y € Y. Hence
r(f) = fou=h(f) = h(¥(f)), ie. r = ho ¥, which proves the assertion
one way. Conversely, let b : C(X*}) — C(Y') be an algebra homomorphism,
and define r = h o ¥. Then r is a quasi-homomorphism of C(X} into C(Y).
There is a unique continuous function u : ¥ — X* such that h{g) = gou
: {g € C(X*)). Hence 7(f)} = fo u; (f € C(X)). Let y € Y be arbitrary.
Then u(y)(f) = flu@y)) = (fouw)(y) = r(fHy) = m(r(£) = ("))
which implies that u(y) = (r* o ty)(y) for all y € Y, and consequently that
u = r* o ty. The assertion now follows. m

On the basis of the two structure theorems 19 and 26 it is clear that there
is a one-to-one correspondence between image transformations ¢ : A(X) —
A(Y) and quasi-homomorphisms r : C(X) — C(Y), since they are both
uniquely determined by the set of continuous functions from ¥ to X*. We
make this correspondence more explicit below:

Proposition 27 There is a one-to-one correspondence between image trans-
formations q : A(X) — A(Y) and quasi-homomorphisms r: C(X} — C(Y)
such that if g « r, then

1Lor(f)y) =) f); (fECX),yeY)

2. q(C)=oly €Y :r(f)ly) =1} ; (C € C(X))

3. q(f~YD)) = (r(fNUD) ; (f € C(X), D open or closed in R}
Moreover, r* = ¢*

Proof. Let w:Y — X* be a continuous function. Define ¢ = w™' o ¥*
and 7 = ho®, where h(g) = gow ; (g € C(X™)). Then ¢ + 7, and (1) follows
from Theorem 19 and Theorem 26 which yields w = ¢* o ty = r* o ty. Next,
let C' € C(X) be arbitrary. By definition ¢(C) = w™H(C*) = w™ (Npyclr €
X" ( )= 1}) = Nyew e € X plf) = 1) = Npouw{{y €
v o w(y)(f) = 1}). Since 7(f) = f o w, the relation (2.) follows. To
cstabhsh (3.), let D be an arbitrary open or closed set in R, f an arbitrary
element in C(X). Then we have (f~1(D))* = f~1(D). Hence ¢(f™(D)) =

9



w ((fH(D))) = w”l(f“l(D)) (f ow) ™ (D) = (r(f))"X(D) as desired.

It remains to verify that r* = ¢*. It suffices to show that (r*u)(f) = (¢"1)(f)

s (f € C(X), p e Y™) or explicitly [ zdp,p( f:z:d q"1t) s{x). For any set
= g

D'e A(R) we have by (3.): (¢"n);(D) = (qu)(f YD) = pla(f(D))) =
p{(r(f)7ND)) = ty{D) and the assertion follows. m

Lemma 28 Let r : C(X) — C(Y) be a quasi-homomorphism. If f,g €
C(X) then

1. f<g=r{f)<r(g)
2. r(f) = r(@ee < I1f = 9o

Proof. For y € Y, f < g, we get 7(g)(y) — r(F)(y) = (ru,)(g) —
(r*14,)(f) 2 0,50 (1.) follows. For arbitrary f,g € C(X) we have |r(f)(y) — r{g)(v)|

|(r*, ) (F) = (r11,)(g)] < = ||If = 9llo, and (2.) follows. =

Proposition 29 Let r : C(X) — C(Y) be a quasi-homomorphism, and let
q be the corresponding image transformation. The following are equivalent:

1. g({z}) # 0 for allz € X.
2. q is one-to-one.
3. r is an isomelry.

4. T 18 one-to-one.

Proof. Assume (1.) and let A # B ; (4, B € A(X)). There is an
x € A\B and since g is monotone we have § # ¢{{z}) C q(4)\¢(B). Hence
q(A) # q(B) and (2.) follows. Obviously (2.)=(1.), so we get (1.)&(2.)
We next prove (2.)=>(3.). Let f,g € C(X) and choose z € X so that
If — gl = |f(2) — g(z)|. Assuming (1.), there is an element y € g({z}) so
we get py, = q*p, = "1, Hence

IF = glloe = (" 1) () = ("1, )(9)] = [r(F)) = (@)W < lIr(F) = 7(9)loo -

Combined with the preceding lemma this yields (3.) The implication (3.)=(4.)
is trivial, so it remains to show that (4.)=(1.). Suppose that for some z € X
we have g({z}) = 0. Let {Vi}aea be a basis for neighborhoods around z.
We may assume A to be a directed index set and that (,., Vi = {z}, i.e.
Vi N\ {z}. Then ¢(V}) ~\, ¢({z}) = @, so by compactness there is a Vj
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such that g(¥3) = 0 = g(Vy) = 0. Let f € C(X)satisfy {z} < f < Vi
Then f > 0 so by assumption 7(f) > 0, i.e. thereisan o >0 such that
8+ (r(f) (e, 00) = g{f e, 00)) C ¢(Va) = @ so we have a contradiction.
Hence g({z}) # 0 for all z € X and the proof is complete. =

Proposition 30 Let r : C(X) — C(Y) be a quasi-homomorphism, and let
g be the corresponding image transformation. The following are equivalent:

1. r is linear.
2. r is an algebra homomorphism.
3. (P(Y)) C Pe(X).

4. q is derived from a continuous functionu:Y — X (ie g= ut),

Proof. (1.)=(2.): Let f,g € C(X). We have fg = H(f+gy—(f =9
If 7 is a linear quasi-homomorphism it now follows by simple algebra that
r(fg) = r(f)r(g), i.e. 7 is an algebra homomorphism.

(2.)=(3.) is classical, and (3.)=+(L.} is trivial. (3.)e(4.) follows by
Corollary 20 since r* == ¢*. ®

Proposition 31 Let r: C(X) — C(Y) be a bijective quasi-homomorphism.
Then r is an algebra homomorphism.

Proof. By the preceding result we only have to verify that r*(Fe(Y)) C
P.(X). Since r is bijective it has an inverse s = rl s CY) - C(X)
which is a quasi-homomorphism. It is easily verified that s*r* =idg(y) and
r*s* =idgx). Let y € Y and suppose ™, = ¢ € X* le 80 = [,
Let p be the image transformation corresponding to s. Then a(p({y})) =
(o) ({y}) = (s*a){y}) = n,{y}) = 1 = p({y}) # 0. But then, sz €
p({y}) we have s*p, = p*u, = p, Since s* is one-to-one we must have
o = u, € P.(X) which proves the assertion. ®

4 TIterated image transformation systems

To study iterated image transformation systems more generally we need a
proper framework. The adjoint operation on image transformations is a
contravariant functor (the image transformation raimics the inverse image
of a map). We will study the dynamics of the image transformation by
investigating the adjoint.
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In this section we will assume that X is a compact metric space, equipped
with a metric d. This enables us to introduce the Hutchinson metric dy on
Q:(X), analogous to the metric on P(X) as given in 9]:

Notation 32 Let d : X x X — R* be a metric on X. For any r = 0 ;
(r € R) we put L, = {f € C(X) : | f(z) -~ f)l < rd(z,y) vz,y € X}.

Definition 33 The Hutchinson metric on Q1(X) is defined by
dir (s 1) = sup {u(f) — 1/ (£)}
fely
For the convenience of the reader we include a proof of the following:

Proposition 34 dy is a metric on Q1{X), and the topology it induces co-
incides with the weak topology.

Proof. The only non-trivial property to verify, for dy to be a metric, is
that p# p' = du(p, ') > 0. H g # i we may assume that p{C) — u(C) =
o > 0 for some set C' € C(X). There is an open set I/ O ' such that w(l) <
p{(C) + . We claim that there is a real number » > 0 and a function fel,
such that ' < f < U. Assuming this to be true, suppose du(p, p') = 0.
Then u(g) = ¢/(g} for all g € Ly, and consequently u and p' also agree on
Ly, so that (f) = p/(f). But then 1/(C) < j/(f) = u(f) < p(U) < u(C) +ax
which is a contradiction. To establish the claim, let K = X \U and define
g(z) = d(z,K) = infyex{d(z,y)}. Then g € L,, and g(z) > 0on C. Let
m = mingec{g(z)} and put f = LgAL Then0< f <1, f=0on K, f =1
on C and f € L, with r = _-. This verifies the claim, and shows that dy is
a metric in Q{X).

It remains to show that the topology induced by the metric coincides
with the weak topology on @;(X). It suffices to show that the identity
map id: (Q1(X),w) — (Q1(X),dy) is continuous, since Q1(X) is weakly
compact. By definition I is equicontinuous and therefore by the Ascoli-
theorem totally bounded in the uniform topology. Fix an arbitrary element
o € Q1(X) and let € > 0 be given. There are elements Fisfoy e fnin Iy
such that Ln C Ui, N(f;, §) where N(g,8) = {f € C(X) : {lg — fllee = 6}
Let W= {u € Qu(X) : [u(fi) ~ po(fi)l < §i=1,2,...,n}. Suppose u € W
and let f € L, be arbitrary. We have f ¢ N(fi,5) for some i € {1,2,...,n}
and consequently:

) = ol < (£ = n(F) L) = ol F + Ialf2) = 10 F)]
S f-fille+§<e

where we have used the uniform continuity of the quasi-integral. It follows
that dy{u, pg) < e which concludes the argument. =
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Remark 35 The metric dy is the usual Hutchinson metric on P(X) exten-
ded to Q,(X). With the proposition below this allows us to exploit the already
well developed theory for iterated function systems.

For non-void sets Oy, Cs € C(X) we define §(Cy, Co) = min{d(z,y) : T €
Cy,y € Cy}. Note that 8 is not a metric, but §(Cy,Cy) > 0 if and only if
CinCy = @.

Proposition 36 Let g : A(X) — A(X) be an image transformation, let
w=q* oy, and let s > 0 be a real number. The following are equivalent:

1. 6{Ch,Cy) < 55(@(01);51(02)) whenever Cy,Cy € C(X) and g{C1),q(Ch)

are both non-void.
2. q(Lq) C Ls.
3. dy(w(2),w(y)) < sd(z,y) whenever z,y € X.

4. dylqu, ¢*v) < s dy(p,v) for all p,v € Q(X)
The smallest s such that all conditions hold is called the contractivity

factor of q.

Proof. (1.)=>(2.): Suppose (1.) holds, let f € L; and 1,32 € X be ar-
bitrary. Suppose (qf) (1) = ai, @ = 1,2. By Proposition 27.3 ¢{f ' ({c:}) =
(qf)({e;}) # 0, so that by (1.)

“{en}), F ({en}) < s6(a(f 7 ({ea 1) oS (fe2})) < sy, 3)-

Since d is continuous on X X X there are points z; € [~ {{ai}) ;4 = 1,2,
such that d(z1, z2) < sd(y1,y2), which proves (2.).

(2.)=>(4.): Assume (2.) to hold, let X, € Q(X), f € Ly be given.
Suppose first, that s > 0. Then s~1g(f) € L, and consequently:

N = (@) = Ma(f) — wla(f) =s(Ms7 af) ~ p{s™ af))
< SdH()\au)'

If s = 0 the ¢(f) = k -a constant function, so (g*A)(f) — {¢"w)(f) = ME) —
p(k) = 0.

(4.)=(3.): We first observe that dg (i, t,) = d(z,y) whenever z,y € X.
Indeed, if f € Ly then p (f) — p{f) = f(ac) f(y) < d(z,y), showing
that dg(fig, t4,) < d(z,y). Let g( ) d(z',y) ; 2’ € X. Then g € L, and

1,(9) — (g} = d(z,9), s0 du(pg, py) = d(,y).
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(3.}=>(1.): Let 65 denote the distance between sets in C{X*) with respect
to the metric dy, i.e. §x(F,G) = infrerpcc{du(X, 1)} ; (F,G € C(X*)). We
claim that 65 {(C*, K*) =6(C,K) ; (C, K € C(X*}):

Since dp(pg, ) = d(z,y) ; (z,y € X) we must have 6x(C* K*) <
§(C,K). To show the opposite inequality we may assume that C N K =
@, otherwise there is nothing to prove. Let f(z) = d(z,C), so f € L.
Moreover f = 0 on C and 0 < a = §(K,C) £ f(z) for ¢ € K. Hence
Kl ={z: f(z) <a} D K. Let A€ C* and p € K* be arbitrary. Then
w(K) = 1= w(KL)=1= p(f) = o. For any # > 0 we have KéﬂC‘ = 0,
which implies that A(K]) = 0 for all 8 > 0. But then A(f) = 0. Therefore
w(f) = Mf) > a=6(C,K)=du(A ) > §(C K) = 65(C*,K*) 2 6(C,K)
since A € C*, u € K* were arbitrary. This establishes the claim.

Now assume (3.) to hold, let Cy, Cy € C(X) and suppose g(C1),¢(Cs) to
be non-void. Pick 3 € Ci ;4 = 1,2. By (3.) we get dy(w(y), w(yz)) <
sd(y1, ). Now w(y){Ci) = 1, so w(y;) € Cf ; ¢ = 1,2, and consequently
§g(CF,C3) < sd{1,12). Combining this with the previous claim we get
§(Cy, Cy) < sd(y1,y2). Since yy,y2 were arbitrary, (1.) follows. =

Remark 37 Since image transformations are often given by their values on
solid sets, one might hope it would suffice to verify (1.) for solid sets only.
This is not generally sufficient, as example 48 will show. However, for many
metric g-spaces it is sufficient to check (1.) for solid sets. We will prove this
for g-spaces whose metric is given by the length of a (geodesic) path between
the points, which includes spheres as well as convex subsets of R™.

Definition 38 If X is a melric g-space where the metric is given by the
length of a (geodesic) path between points, we will call X a convex g-space.

Theorem 39 Let X be a metric g-space.

If an image transformation q . A(X) — A(X) satisfies 86.1 for Cy, Cy
connected, then g has contractivity factor s.

If X is a convex g-space, then it is sufficient that 36.1 is satisfied for C,
Oy solid.

Proof. In the following, let C, C; be disjoint compact sets with ¢(C1),
q(Cy) nonempty.

First, assume that 36.1 holds for solid compact sets, and that X is a
convex g-space. Let Cy, C; be connected. Let O be the (solid open) compo-
nent of X \ €} containing C,, and similarly for Oz. Then H, = X \ O; and
Hy, = X \ O, are disjoint solid compacts containing C; and Cy, respectively.

Let 2y, € Hy, 29 € Hy be such that d(zy,z,) = §(Hy, He), and let p :
[0,1] =+ X be a geodesic path from ; to 2. Then p((0,1)) is disjoint from
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both H; and H,, and therefore z; is contained in the boundary of Hy, which
is itself a subset of the boundary of C;. We therefore have that z; € €1, and
similarly, 2o € Cy. From this we get 6(Hj, Hy) = 6(C1,Co).

Since H,, Ho are solid, we have (by assumption)

§(Ch, Ca) = 8(H, Ha) < s8(q(Hy), q(Hz)) < 56(q(Ch), a(C2))-

Secondly, we no longer assume that X is convex, but we instead as-
sume that 36.1 holds for any connected compact sets. Let C1, Cz have a
finite number of components C1,C%,... ,CT* and C3,C3, ... , C3? respecti-
vely, ny,ng = 1,2,.... Then

§(Ch,Cy) = min{8(CLCHIE=1,2,...,ny, j=12,... ,n2}
< min{s&(q(Cf),q(C{))li =1,2,...,n1,5=1,2,...,n9}
= s6(q(C1), ¢ C))-

Finally, assume that 36.1 holds for compact sets with a finite number of
components, and let Ci, Cp be arbitrary compact.

For each n = 1,2,..., 1 = 1,2 let OF = {z € X|d(z,C;) < 1/n}. For
each n = 1,2,..., choose C?, C} to be compact sets with a finite number of
components, OF"! C CF C OF. This is always possible since a finite set of
components of OF must cover the compact subset OF*.

Since CI \, C;, we have g(C?") ™\, ¢(C;), and so

5(C,Ca) = lim 8(CF,CF) < lim s8(a(CY),4(CF)) = 8(a(C1), a(C2)):
n

Definition 40 Let q1, g, ..., 4 be tmage transformations each with contracti-
vity factor smaller than or equal to s < 1. An image transformation system
is @ map M : Qi(X) — Qi(X) defined by M(p) = 31, cugi(p) where
a0,y > 0 and Y oo =1

Proposition 41 An image transformation system M is o contraction on
(Q1(X),dy) with contractivity factor s and hence has o unique (aftracting)
fiz point pyy in Q1(X).
Proof. Let A, p € Q1(X), f € Ly be arbitrary. Then
(M) — (M) = [T edlg A - Yt (g pd(F)]
< S o | Maf) - plaf)

By virtue of Proposition 36 ¢;f € L,. If s = 0 this implies that the expression
to the right above is equal to zero. If s > 0 then sHaf) € Lu s (2 =
1,2,...,n), the above is < s 3 oy cudp (A, ) = sdy(A, u). The assertion now
follows. o
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Remark 42 The approach chosen here is similar to the random iteration
algorithm, obtaining a fived quasi-measure as the attractor. It is possible
to draw this analogy further since {qf,q3, ..., q5; X*} is an iterated function
system with a corresponding probability measure p € P(X*). However, this
leads to an attractor in C(X™*). For modelling purposes this is not favorable
since X* is an abstract object. Stll interpreting a quasi-measure as an image
is not straight forward. The support of a quasi-measure is not appropriate
for our purposes (see [7] for a treatment of the support).

Proposition 43 ji;, is a representable quasi-measure.

Proof. An image transformation necessarily maps X* into X*. In addi-
tion image transformations preserve convex combinations and are continuous.
With the representable quasi-measures being a compact they must be inva-
riant under the image transformations. Hence iterating any representable
measure by M must converge to a representable measure, which must be

Hy- &

Remark 44 In view of Proposition 43, the representable quasi-measures are
our object of interest. FEven more so the proposition below ensures that we
may approximate any representable quasi-measure by image transformation
systems.

Proposition 45 Whenever p € Q.(X) there is a net of image transforma-
tion systems whose tnvariant quasi-measures converge weakly to .

Proof. bSince p is representable there is by definition a net of quasi-
measures {/, | converging weakly to u where each p, is a finite convex com-
bination of elements in X*. It suffices to construct an iterated image transfor-
mation system whose invariant quasi-measure is j,. Assume p, = > o, il
with p; € X* 0y > 0fori = 1,2,..,n and Y, a; = 1. By Theorem 19
there are constant image transformations ¢} : M(X) —— pu, (these image
transformations were given explicitly in Example 18). We have the desired
image transformation system M, = 3 . | «;qf whose contraction factor is
zero. M

Example 46 Let X = [0,1] x [0,1], and let r > 0. For each z € X let D,
denote the disk with radius v around z. Let C, be the boundary of D, N X
in R%, O, is a simple closed curve in X, and we let o, denote the “circle-
measure” associated with Cy, i.e. the quasi-measure determined by

1 fC,cC
0(C)=( 1 ifzeCandC,NC#£Q ;(C (X))

0 elsewhere
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We may note that if ¢ € 8X then o, coincides with the pointmass ot z.
The map w : T +— o, of X inte X* is continuous, so we may define an
image transformation by q == w™' o W*. First observe that if C € C{X),
CNOX =0 and diam(C) = sup{d{z,z') : z,2' € C} < r, then o,(C) = 0.
Now any set K C X\0X with diam(K) < § is contained in a circular disk
D with diameter < . It follows that o,{K) = 0 for all such sets and all
r € X. Consequently we have ¢(K) = @ for such sets. On the other hand, if
K is connected and diam(K) > r, there is an © € X such thot o.(K) =1,
which implies that q(K) # 0. This of course just says that connected sets
that are disjoint from the boundary of X must have a certain size to be
recognized by g. Similarly, the ability of q to distinguish between two sets
depends on their separation. For suppose C1 and Cy are connected and com-
pact, both have diameter > 2r and h(C1,Ce) > 7 (h denotes the Hausdorff
metric in C(X)). Then there is a point ¢ € Cy (or vice versa) such thai
d(z,Cy) > r. Now Cy is connected and diam(Cy) > 2r so there is a point 2’
in Oy such that d{z, ') = r. Then a’' ¢ Cy, and it follows that there is an
element = such that 04(Cy) = 1 and 0,(Cy) = 0. But then q(C1) # ¢(C2).

The quasi-measures are not in general subadditive, so quasi-measures
may vanish on small sets. The example above suggests that it is possible to
model the collapse of a self similar structure by image transformations. What
seems to be a fundamental image transformation to achieve this is given by
the following lemma:

Lemma 47 Let X be a ¢-space, let 0 < e < 3 and let m be a non-splitting
Borel probability measure on X. Now define g : Co(X) - Cs(X) by

(/. m{C) < ¢
@(C)=1¢ C ; e<m{C)<l—e¢
X ; m(Ch>21-¢

Then q. extends uniquely to an image transformation g : A(X) — A(X}).
Moreover, if X is a convex g-space, then q. has contractivity factor = 1.

Proof. By Proposition 21 it suffices to check a’), b’) and ¢’) for solid
sets. Clearly ¢. is monotone on C(X). Extending ¢ to open solid sets
by complement we trivially get ¢’). Let WC; € C € Co(X) be a finite
union of compact solid sets. If mC < e then | ¢;(C;) = 0 C ¢:(C). When
mC; < 1 — ¢ for all indices and mC > e we get | ¢,(C;) cWC; Cq:(C). I
m(C;) > 1 - ¢ for one 4, then m(C) > 1 — ¢ and ¢(C) = X which concludes
a’). Now let U; /' U be open solid sets. The regularity of m assures that if
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m(U) > 1—¢ then m(U;) > 1—¢ for some i (i.e. ¢(U;) = X) and hence for all
following indices. Accordingly ¢(U;) / X = q(U). Finally if m(U) < ¢ then
q(U;) = 0 = g(U) for all i. We have shown that ¢ satisfies the requirements
and hence extends uniquely to an image transformation by Proposition 21.

It is easily seen that g, has contractivity factor s = 1 on solid compact
sets. If X is a convex g-space then theorem 39 applies.

Example 48 Let X be the compact metric subspace of the complex numbers
given by

X={re®|l <r<+3,0<6<6}.

This space 1is homeomorphic to a disk and so is a g-space, but it is not conver.
If € is sufficiently small, then the compact sets

C; = {rewfl <r< x/g, £/2 <0< 3¢/2},
%(C1) = {re’|1<r<V3,0<06<3¢/2},

Cy = {rel1<r<3,6-3/2<0< 6 —¢/2},
9:(Ca) = {re®|l <r<V3,6-3¢/2<0<6}

will be counterezamples for the contractivity of g. constructed from Lebesgue
measure on this space.

We give a general example of iterated image transformation systems in the
proposition below, providing a large class of quasi-measures. The systems all
have the property that the unique invariant quasi-measure vanishes on small
sets.

Proposition 49 Let {f), fa,..., fa; (X,d)} be an iterated function system
with contractivity factor s < 1. Assume that X is a conver g-space with
a non-splitting Borel probability measure m. Now define q; : C(X) — R* by

@ ; m(C) < ¢
a(C) =4 fHC) ; e< m(C) <1 —¢
X p o m(C)Y>1—¢

then Y o i cugt whenever o, s, ....0, > 0 and Yoy =1 is an image
transformation system. Moreover the image transformation system has con-
tractivity factorr < s

Proof. Notice that ¢f = g¢’o fi, since ¢; = £t o g, and hence they
are image transformations by Lemma 47. Clearly each ¢; has contractivity
factor smaller than or equal to s. Since they are all image transformations
the assertion follows. ®
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Remark 50 Tt is casy to determine the values of py, in this particular class
of examples. In addition, the random iteration algorithm applies in illustra-
ting the measure.

Remark 51 Note that o similar approach as above applies to Example 46:
Let X and q be as in Example 46, i.e. g=w™ o U*, where w(z) = o4;(x €
X). Let {f1, .., fn; (X,d)} be an tterated function system with contractivity
factor s < 1. Define w; = wo f;, and let g; = w; o U* 4= 1, ..., n. One may
show that w is an isometry of (X, d) into (X*,dy), so by virtue of Proposition
96 any convex combination 3 ouql (0 <oy <1 fori=1,..,n) is an image
transformation system with contractivity factor s.

Example 52 (Structure within structure - the volume measure) When
we want to draw a picture of an object, the resolution chosen is of fundamen-
tal importance. What seems like a smooth surface on a macroscopic level,
may look more irregular and complex on a microscopic level. For instence,
a sandstone looks solid and compact atf a distance, but if we get up close we
will notice pores of millimeter size. Without such pores the world would have
considerably less oil. When looking at o sandstone in an electron microscope
we will be certain to discover yet another structure. This kind of behavior
cannot be modelled by ordinary measures, whereas we shall sec that the re-
presentable quasi-measures apply. We will construct a general example with
discrete transitions between structures below.

Proposition 53 Let u be o non-splitting Borel probability measure in o ¢-
space X. Let {A;}2, be a family of disjoint Borel sets in X. Puy Ay =
X\ U2, A, let tg =0 and {:}32, C [0, 3] and let {g:,}52, be the coprrespon-
ding image transformations in X, as defined by Lemma {7, with respect to

. Finally, let py, = pla; fori=20,1,2,.... Then the series

> a ) (0) )

converges for each f € C{X) and defines an element v € Q,(X). Moreover,
the convergence of the series is uniform on the unit ball of C(X) (viz: {f €

CX): il =13).
Proof. Let r;, be the quasi-homomorphism in C(X) corresponding to ¢
(Proposition 27). Then

Slaea)B = 3 [riea)(D = lea ()] <

=20 =) 1=
D lealliflle = 24D 1l = (X) 1Flle
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where we have used that each 7, i1s norm-reducing. Hence the series 1 is
absolutely convergent. It is straight forward to check that 1 defines a quasi-
state v on C(X)}. Since each summand is a representable quasi-measure it
follows that v is representable. The uniform convergence on the unit ball is
also clear. m

5 Integration with image transformations

In this section we will study integration of quasi-measures and image transfor-
mations, the latter then gives rise to affine transformations of quasi-measures.
The non-uniqueness of representations of quasi-measures gives both the space
of quasi-measures and the space of affine transformations a more subtle struc-
ture than in the analogous case with Borel measures. We will start by pre-
senting the classical constructions.

Notation 54 Let L(C(X)) denote the normalized, positive linear maps
from C(X) (here we also consider the complez-valued functions) into C(X).
That is, for T € L{{C(X)) we have: f > 0 = T(f) > 0 (positivity) and
T(l1x) = 1x -the function identical to one on X (normalized). Further-
more, we let Aff,.(P(X)) denote the weak!-weak* continuous, affine maps
from P(X) to P(X).

Recall that a map T € L{(C{X)) is representable by a function 7 €
C(X,X) (continuous function from X to X) such that T(f) = fo 7 if
and only if 7" 15 a »-homomorphism. We need one unpublished theorem by
Tonescu-Tulcea, a proof of which may be found in e.g. {13], Corollary 3.6:

Theorem 55 T € 9.L7(C(X)) (the extreme boundary) if and only if T is
a x-homomorphism.

Proposition 56 M € J. Affy,.(P(X)) if and only if M = 7, (i.e. M(u) =
por ) where T € C(X, X).

Proof. The proof is by constructing an affine one-to-one correspon-
dance between L (C(X)) and Aff,»(P(X)), and then applying Theorem
55. Define @ : LT (C(X)) — Aff,+(P(X)) by [@(T)@)(f) = [ T(F)dp ;
T € LY{(C(X)), p € P(X), f € C(X). By the Riesz representation the-
orem ®(T) takes P(X) into P(X). It is straight forward to verify that
® is affine, and that ®(T) is affine and weak*-weak*continuous. Now de-
fine ¥ : Aff,. (P(X)) — L{(C(X)) by [(M)(f)(z) = (M(5))(f) ; M €
Aff,» (P(X)), f € C(X), z € X. Again, it is straight forward to check that
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T{M) € L (C(X)) and that ¥ is affine. Moreover, ® o ¥ is the identity
map on Aff,.(P(X)) and ¥ o @ is the identity on Li (C(X)). Hence ® is
an affine one-to-one correspondance between LT (C(X)) and Aff,-(P(X)),
and must accordingly give a one-to-one correspondance between the extreme
boundaries of the two spaces. ®

The Krein-Milman theorem does not apply since our space is not compact,
and changing the topology of P(X) may introduce new extreme points in
Aff .+ (P(X)).

Proposition 57 3.Q.(X) = X*

Proof. By definition we have X* C 8,Q,(X). Let u be an extreme point
of Qp(X). Let K, = {) € P(X*): p=Xo¥* K, is a convex subset of
P(X*), for A, M € K,,;0 <a <1, A€ A(X) we have

(OJ)\l + (1 - Cl),\g)(\l’*(A)) e Oc’)\l(A*) + (1 - Of))\g(A*) =
(A + (1= a)u(4) = p(A")

K, is closed in P(X*) with respect to the weak*-topology. Let Ao be an
extreme point of K. We claim that Ao is an extreme point of P(X™*). For
suppose Ap = ad; + (I — )Xy with A, Ay € P(X*). Then X3, A2 ¢ K, s0
py = Ao U and py = Ay o U ave different from p, but g = aypy + (1 — &)y
is a contradiction since p is extreme. M

Proposition 58 M € 8, Af,.(Q, (X)) if M = ¢* where ¢ : C(X) — C(X)
is an image transformation.

Proof., Assume that ¢ is an image transformation and that ¢* = a; M; +
agﬂ/fg (M1 -‘,é M2 € Aﬁw*(QT(X)), 1, g > O, Qo Gy = 1) Then there
must be some g € X* such that M (i) # Ma(u). Since ¢*{) € X* we have
s My(p) + agMo(p) € X* and hence vy =0 oray =0. m

It is still an open problem whether the image transformations are all
the extreme points. This is connected with the fact that representations by
convex combinations of {0, 1}-valued quasi-measures are not unique, and the
relations are not well understood.

Examples of identical convex combinations are easily obtained: Take X
to be the unit square [0,1] x [0, 1], and let py = (0,0}, p; = (0,1}, ps = {1, 1)
and pg = (1,0). We may define the "three point quasi-measure” oz so,u4}
for any three fixed points {z;,2q,23} C X by:

N 0 if lAm{$1,.‘132,$3}}<2

O o wams} (A) = { 1if | AN {2y, .25} > 2 for all A € A,(X)
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Clearly oz, y0,36xtends to an extreme quasi-measure. With o, as the three
point quasi-measure corresponding to {p;};.; we have

O+ 0y == 01 + 03

In order to create examples with continuously varying transitions, we wish
to define integrals of functions with values that are quasi-measures or image
transformations.

We have already defined the weak*-topology of quasi-measures by po-
intwise application as integrals to single functions. This principle allows us
to define measurability as well as integration:

Definition 59 Let B be the o-algebra of sets in Q1(X) generated by sets
of the form {ulu(f) € [a,0)}, f € C(X), a,b € R. Then a function ¢ :
S =+ Qi{X) from a measurable space (S,B') into Q;(X) is measurable if
g M) e B for each M € B.

Equivalently, g : S — Q1(X) is measurable if g; : s +— g(s)(f) is Borel
measurable for each [ € C(X).

Let (S,v, B) be o finite measure space and let y: S — @1(X) be a mea-
surable function. Then we define [ p(s) dv(s) € Q:(X) by

( ] u(s) du(s))(f) = / w()(f) dv(s)
for each f € C(X).

The definitions for image transformations are similarly based on pointwise
application to measures, except that image transformations do not by them-
selves form a convex set, but (when considered via the adjoint as acting on
measures) just part of the convex set of affine maps from Qy(X) to Q1(Y),
which also includes the combined transformations given by iterated image
transformation systems.

Definition 60 We define the topology of the set AF(Q1(X), @1(Y)) of affine
maps from Q1{X) to Q1(Y) by pointwise convergence on each quasi-measure

in Q1(X).
We define measurability of a function g : S — AR(Q1{X), Q1(Y)) (into
this set) by measurability with respect to the o-algebra generated by sets of the

form {T € AR(Q1(X), (YT (p)(f) € [a,0)} for p € Qi(X), f € C(Y),
a,b € R. This is again equivalent to the measurability of the functions g, :

8+ g(s)(p), p € Qi{X).
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Again, let (S,v,B) be a finile measure space and this time let g : S —
AF(Q1(X),Q1(Y)) be a measurable function. Then we define [ g(s) dv(s) €
A1 (X), Q:1(Y)) by

( / g(s) dv(s))(u) = / o()(w) dw(s)

for each p € Q1{X).

6 Volume measures with continuous transi-
tions

We will recall some results on uniformly closed subalgebras of C(X). When
A is a uniformly closed subalgebra of C'(X) containing the constants, then A
is isomorphic to C (fi), where A is the compact Hausdorff space of characters
on A. Moreover, the isomorphism is established by the continuous surjection
i*: X — A, i*(z) : a = a(z). Precisely,

~

FeC(A) m foi* e A

Moreover, a function f € C{X) is in A if and only if it takes equal values
at points identified by 4*. Since :* maps a compact space onto a Hausdorft
space, the topology of A must be identical to the quotient topology.

Definition 61 An analytic subalgebra A of C{X) is a uniformly closed sub-
algebra containing the constants and with the property that whenever f e A,
feC(X) then f € A.

Remark 62 The concept of an enalytic subalgebra may be found in [4] and

110}

Proposition 63 Let A be a uniformly closed subalgebra of C(X) containing
the constants, and let i* : X — A be the corresponding surjection onto ils
character space. Then the following are equivalent:

1. A is analytic.
2. For each p € A, ©*7(p) is connected.

3. For each connected subset M C A, i*"*(M) is connected.
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Proof. For (1) = (2), assume to the contrary that ¢*~(p) is not con-
nected for a point p € A. Find disjoint open sets O;, Oy C X separating
#*71(p), and let O = Oy U Oa. Then (X' \0) C Ais a compact set not
containing p. By Urysohn’s lemma let § : A — [0,1] be a continuous function
with §(p) =1, §(i*(X \ 0)) =0. Then g = joi* € A. Define f: X - R by

g(ﬂf), T & Ol
flz) =< —g(z), z€ O,
0, r€X\O.

Then f is a continuous function, f? = g° andso f € A. But f takes different
values at different elements of 4*~*(p}, a contradiction.

For (3) = (1), assume to the contrary that f € C(X)\ A, f2 € A. Let
z1, Tz € X be two points such that i*(z,) = i*(zs) = &, while f(z;) # f(ze).
Since f2 € A, {f{z)] = f(z1) for i*(z) = 2. But then :*~}(%) is separated by
the closed sets {z € X|f(z) = f(z1)} and {z € X|f(z) = f(z2) = ~f(:1)},
a. contradiction.

For (2) = (3), assume to the contrary that M C A is connected with
#~Y(M) disconnected. Let i*~'(M) be divided into the (compact set se-
parated) sets My < C1, My C Cy. ¢*(M,) and *(Ms) cannot be disjoint,
as otherwise 4*(C;) and ¢*(Ca) would separate M. Let p be a common po-
int of ¢*(My) and i*(M,); then i*~(p) is itself separated by C; and Cs, a
contradiction. =

Remark 64 Proposition 63 conveniently expresses some facts about analy-
tic subalgebras in terms of the corresponding surjection i*. The equivalence
(1.)(2.) is essentiolly Theorem 16.30 and Lemma 16.81 in [4]. (2.) is
the definition of a monotone mapping, and the equivalence (2.)=(8.) holds
generally for closed maps of topological spaces.

Corollary 65 If A is analytic, then:
1. If M is a solid set in A, then i*~*(M) is a solid set in X.
If f is a solid function on A, then f o is a solid function on X.

If X is connected, then so is A.

™ S e

If X is locally connected, then so is A.

=2

If X has genus 0, then so does A.

6. If X is simply connected, then so is A.
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Proof. (1) is obvious from 63.3. (2) is obvious from (1). (3) and (6)
are obvious given just the continuity of i*. (5) is obvious from (1) and the
definition of genus by existence of non-trivial solid partitions.

For (4), assume now that X is locally connected. Let O be an open subset
of A, and let M be one of its components Then z*"‘“l(M ) is connected, and is
a component of the open set 7 “1O). Since X is locally connected, ¢*~ Y M)
is open, and so M is open. Since the components of open sets in A are open,
A is locally connected. m

The smallest analytic subalgebra containing a given function f € C(X),
will be denoted by A(f). The following theorem explains the main impor-
tance of analytic subalgebras for quasi-measure theory:

Theorem 66 Every quasi-integral is linear on each A(f).
Remark 67 For a proof, (generalized to quasi-linear functionals) see [8].

In the remainder of this section, X is also assumed to be connected and
locally connected.

Theorem 68 (Urysohn’s lemma for sums of solid functlons) Let Cy and
Cy be disjoint compact subsets of X. Then there exists a functzon u X —

[O 1], which is a finite sum of solid functions, and such that v 1(C’O) =

ucl 2(C1) = 1.

Proof. We will reduce the problem step by step to the case where one of
the sets is solid, for which the result is known (with a single solid function.)

First, separate Cp and C) by open sets Op and Oy, A finite number of
components of O; suffices to cover C;. By replacing C1 by the union of the
closures of these components, we may assume that C; has a finite number of
(compact) connected components.

Now, separate the components M;, i = 1,...,n of C; by open sets O,
disjoint from Cy. By replacing C; by each M; and Cp by the corresponding
X \ Oy, we reduce the problem to a number of sub-cases with Cy connected.
The solution to the original problem is then built from the sub-cases as

X\O
ucl E Upgt

Assuming now that C; is connected, its complement is a disjoint union
of open solid components, a finite number of which suffices to cover Co. Let
Ol,...,0% be such a finite collection of components. By replacing Cy by
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each X \ O; and Cy by Cy N O, we reduce the problem to a number of sub-
cases with Cy solid. The solution to the original problem is then built from
the sub-cases as

ugy = (Z “f(o\%oz) (n—1).
n

Corollary 69 Any function f € C(X) may be uniformly approzimated by
sums of solid functions contained in A(f), the analytic closed subalgebra ge-
nerated by f.

Proof. Let A = A(f). Since f € A4, we have f = foi*, f € C(A).
Assume f(A) = f(X) = [0,b}, 2 < b (The case a = b is trivial. ) Let € > 0 be
given, and let n > (b — a)/e. Then in the notation of theorem 68,

_ fmedlfsatijn}
=a+ - z {QIEA Hfzat(i4+1)/n)}

is an e-uniform approximation of f by sums of solid functions in C(4). It
follows from 65.2 that g = § o ¢* is a sum of solid functions in A(f) approxi-
mating f e-uniformly. m

Remark 70 It is not possible in general to write a continuous function
ezactly as a finite sum of solid functions. E.g. for X = [0,1], solid functions
are monotone, and so a sum of solid functions must be of bounded variation.
Therefore, no function of unbounded variation in C([0, 1})

0, z=0
(e.g f(;z:)z{ xsin%, 0«<z<1 )

may be such a sum.

We are going to conclude this paper by an explicit calculation of an inte-
gral of the type introduced in Definition 60. To this end some preliminaries
are necessary.

Let ¢ be a normalized quasi-measure in X and let ,u denote the corre-
sponding regular Borel measure in Sp(f) (f € C(X), S ( ) = {f(z):

X}),ie. (A} = u(f1(A)) ; A € A(Sp(f)). Then

u(f) = /S )
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It is useful to recognize that the integral is nothing but an ordinary Riemann-
Stieltjes integral with respect to the left-continuous function Fuls ) = p,( FH(-00,8))

; s € R. Indeed, if Sp(f) [)\1,)\2] we get fsopy§ diy(s) f)\ s df,(s) +
ho p(f7H{Ae}) = s fA fu(s) ds, Le.

2 ~
p(f)=Xre= [ fuls) ds
A1
Now let ¢, be the "cut-off” image transformation given by Lemma 47, with
e=1t¢ 0,3}, viz:

¢ if (U) <t
@U)=<{ U if t<m{U)<1-1¢
X if 1—-t<mlU)<1

Here m is a fixed non-splitting probability measure in X and U is an arbitrary
open solid set in X.

Proposition 71 ¢ — ¢ € AF(Q(X),Q(X))} s a continuous (and hence
measurable) function on [0,1/2].

Proof. We need to show that the map ¢ — ¢ (1)(f) is continuous for each
1 € Q(X) and each f € C(X). Suppose this is true for each solid function 7.
Let ¢ > 0 be arbitrary, and let g € C(X). By Corrolary 68 there is a finite
set of solid functions {f1, f2, .., fn} C Alg) such that [lg — 3 2, fil, < ¢
For any 1 € Q(X), t € [0,1] we have, by linearity on A(g):

#)(Zfi) <€

Now, if continuity holds for solid functions we obtain, for [t — ¢ sufficiently
small:

g () (3 £i) ~ i () Zﬁ I<Ziqa — g (i)l <e

By a standard 3s-argument it follows that |g; (u)(g) — qp (1) (g)] < 3e. We
are left with the task of showing that # — g {(p)(f) is continuous while f is
assumed to be a solid function. However, in this case an explicit calculation
can be made. We have

An

q:(#)(f) = (:U’ o Qt)(f) = Ay — f,uoq:(s) ds , where Sp(f) = [’\11 )\2]

Al
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In order to compute foq, (8) = 11(g:(f 1 (~00, 5))) we must look at m(f~H—o0,s)) =
fm(s). Let

si(t) = sup{s: fn(s) < t}

52(t) = sup{s: fn(s) <1 —1t}
We have A; < s1(t) < s2(2) < Ag for £ € [0, 3], and by left continuity of f,
we get

s < s1(t) = m(f(—00,8)) <t = @(f Y (~o0,s)) = @
s1{t) < s < 3(t) = t< m(f‘l(%oo,s)) <1-—t

= q{f 7 (—00,s5)) = ~H(—00,5)

s2(t) < s =>m(f ' (~00,8)) > 1 ~t = q(f (*oo s)) X

Consequently, for s € [A1, A

) 0 if s < s1(t)

Sruoq (8) = { fuls) i s1(8) < s < sy(8)

1 if 5> Sg(t)
Hence, we obtain
Sa(t Ao 321
G () = D - 51(;’ fule)ds+ [ = () - w‘ s ds (2)

Now observe that because m is non-splitting the function f,,, is s strictly increa-
sing on [A, Ao], possibly with jumps. For if @ < 3 and fm( ) = fm(B)
and we put C; = fH—o0,a], C; = f7135, oo}, then €y N Cy = § and
m(Cy) + m(Cy) =1 ; C‘I,Og % @ a contradiction. If f,, is continuous at
a point « and f,(a) = t we have $1(t) = a. If f,, has a jump from #; to

ty < & in @, then the function s, is constant with value o on [t1,85]. s

is therefore a continuous functionon [0, 3} which satisfies s;( f,.(s)) = s for

s € {A, Ao, where Mg = 1(2). Next, let v = 1 —¢, u € [1,1} and put
h(u) = s2{1l — u) = sup{s : fm(8) < u}. Then his a continuous function on
[£,1] which satisfies A{ fn(s)) = s for s € [Ao, Ao). Hence s3(1— fro(s)) = s
for $ € [Aa, Az]. By the continuity of s, and s, we obtain from 2 that g7 (u){f)
Is a continuous function of ¢ when f is a solid function. This completes the

proof. m

Proposition 72 With notation as above we have (1 € Q(X), f € Cy(X))
2 Ag doo

[ e @ = o ot d

0 A

[fm( 8) ~f ( )"’“f.u( ) m(s)] ds
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where Ag == s1(3) = $2(3)

Proof. From 2 we get

1 1

1= [T a= AL / “ / j:)” Fu(s) ds) dt

Changing the order of integration in the last integral we get

3 o Do _ Fm(s) do 1~ fm(s)
/ ([ Fsyds) di= [ F(s) f dyds+ | Fuls) / dt) ds
] s 1] 0

1) A1 Ao

where we have utilized the relation s;( fr(8)) = 5 if s € [\, Ao} and so(1 ~
Fm(s)) = s if 5 € [Mg, A, Calculating the expression above we obtain

)\u’_ )\QH

Fuls)fmls) ds+ | Fu(s)(1 = finls)) ds

A1 Ao

Since s5(t) is the "inverse” of 1 — fn(s) for s € [Ag, Aa), t € [0, 5] we must
have

3 A2 N
/0 so(t) dt +[\ (1~ frls)) ds = %)\2

Q

Hence I = % — [2(1— fu(s)) ds — [ fu(s)fm(s) ds— 2 Ful8) (1= ful9)
ds which yields the desired formula. =

Example 73 Toke X = [0,1] % [0, 1}, let m be normalized Lebesgue measure
in X and let ¢, be defined as above with respect to m. Now let p = O(zg o)
(=point-measure at (zq,70) € X ). We are going to compute the value of the
quasi-state

1
2
p=f0 q; () dt

applied to each of the three solid functions f(z,y) = x, g(z,y) = y, Mz,y) =
z +y. Straight forward calculations yield

fm(s) = gm(s)=s; s€[0,1]
- %52 if 0<s<1
(s) —1s%42s—1 4f 1<s<2
Fuls) = Xgon(s); s€10,1]
() Xwo)(8) 3 5 € [0,1]
(s) X{mg+yo,2](s) ; s €[0,2]
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Also, for f and g we get Ag = %, and for h we have Ay = 1. If 25 < % we
therefore get from Proposition 72:

3 ! 11
p(f):—f sds+ﬂ(s-—1+s)dsmg+§mg

0 2

1 ' 11
pf) = [ sds [ (1=s)ds=—2—Leh by
2 Zo
Similarily

1 1

1., 1 1 , 1
p(g)=~8-+§y§ if o <3, andp(g)z—§—§y8+yo fu>s

Forhwehave Ay =0, Ao=1, o= 2. If 20+ 10 < 1 we get

p(h) = ./lg(m%sg +2s—1) ds — /2 [1— (——%s2 +2s—1)] ds

6+yo
= 7y +~6(22(}+'y0) — (zo + y0)* + 2(zo + yo)

For instance, if zo = yo = 3, we obtain that p(f) = p(g) = %, while p(h) =
p(f +g) = 2 which shows that p is non-additive.
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Abstract
We introduce an image transformation as a generalization of mea-
surable maps. Structure properties of the image transformation is gi-
ven. Unique extension of image transformations from solid sets. The
multidimensional medain and sample median is presented as image
transformations, providing a construction suitable for probability the-
orists.

Keywords: Quasi-measure, image transformation, generalized variable, q-
function, quasi-probability

1 Introduction

The quasi-measure originated in [1] as a solution to the problem of finding
non-linear states on C*-algebras formulated by R. Kadison (cf. {10]). The
quasi-measures are topological measures in the sense that they are only de-
fined on closed and open sets. Let X be a compact Hausdorft space. We
will let C(X) and O(X) respectively denote the closed and open subsets of
X. In addition we put A(X) = C(X) U O(X). When there is no confusion
concerning the space in question, we will omit the space in the notation.
With a quasi-measure in X we mean a set function p : A —» RT such that
the following hold:



(1) p(, A) = 30 u(A;) (14 indicates disjoint union, and we assume
all 4; and {4 4; in A)

(if) pU =sup{pC : C CU;C €C} for all U in ©

Note that one immediate consequence of (i) and (ii) is the monotonicity

~of the quasi-probability. That is 4; ¢ A, implies pA; < pA, whenever

Ay, Ay € A. The quasi-measures are in fact countably additive (c.f. [9]), but

being defined only on closed and open sets they are a vastly larger class of set

functions than Borel measures. Perhaps the most characteristic difference is
that they are not in general subadditive.

With respect to a quasi-measure, an integration theory has been deve-
loped, where the quasi-integral differs from the usual integral in not being
linear. However, the quasi-integral is linear on different classes of functions
such as singly generated algebras of continuous functions.

In section 2 we introduce a generalized image transformation. The image
transformations map sets to sets and resemble the inverse images of maps.
The notion of an image transformation was first given in [4] as a genera-
lization of continuous functions. We show that our image transformations
naturally induce a mapping of measures into quasi-measures. In section 3
we present a structure theorem. The result states that our image transfor-
mations generalize measurable maps. From the structure theorem we deduce
that image transformations defined on solid sets extend uniquely to image
transformations on all open or closed sets (a set is called solid if both the
set and its compliment is connected). Next we establish a composition of
the image transformation with the set map into the closed and open sets
of the Stone space of the measurabie space in question. This enables us
to conclude that our image transformations correspond to continuous image
transformations. The continuity of the corresponding image transformation
implies that the image transformations map measures to representable quasi-
measures (i.e. those spanned by {0, 1}-valued quasi-measures). We conclude
section 3 by showing that an image transformation is naturally lifted to
a quasi-homomorphism of conitnuous functions into measurable functions
(quasi-homomorphism is defined in section 3)

‘The last section was the motivation for developing the theory presented
in this paper. The work in [6] presented the quasi-measure as a modelling
tool for statistical problems. In addition a simple and general construction
of the quasi-measures by ¢ — functions (see [6] for details) was given. The
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examples in [6] suggested that there was a connection between the quasi-
measure and the statistical median. A literature search indicated that the
median had no basis in probability theory. Still a median in spaces other
than R has been sought for throughout the twentieth century (many have
been suggested but none suitable for measure theory). This encouraged us to
investigate whether the quasi-measure could serve as a model for the median.
Indeed, it twrned out that basic desired properties of the median forces us
to consider a quasi-measure. We will not go into detail here, for a broader
exposition of the median the reader is referred to [13] ([13] is a preprint for
this article).

The g — functions mentioned above were inadequate for constructing a
median in general. The image transformation on the other hand proved to be
an efficient tool. In the last section we present definitions and constructions
of the median and sample median. Preservation {equivariance in statistical
literature) properties of the medians are given.

2 Quasi-measures and Image transformations

The letter X will denote a compact Hausdorff space and (Y, B) will denote a
measurable space in the sequel. The measurable spaces will be the domain
of our variables and hence we will impose no restrictions on the space. In
our construction we will however require some properties of the image space
of the variables. We formalize these properties in the definition below.

Definition 1 If X is locally connected, connected and has genus equal zero
(g(X) =0 ) we will call X o g-space.

Remark 2 These properties are shared by a large class of spaces such as
closed intervals and disks in addition to balls and spheres in R™,n > 3.
The genus requirement is treated (and defined) in [3] and [11], we will not
elaborate on that issue here. The reader may settle with the fact that simply
connected spaces have g = 0.

The restriction to compact spaces is unfortunate. The restriction was
made because the theory of quasi-measures is well established there. Howe-
ver, we hope that the results here may be generalized to the locally compact
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setting. To this extent the integration theory for quasi-measures in locally
compact spaces has been developed and may be found in (12].

If aset A € A and its compliment both are connected we will call the set
solid. The solid sets play an important role in the theory of quasi-measures..
‘They constitute a small and manageable family of sets that totally determines
a quasi-measure. This is illustrated by the solid set-functions, they were

.introduced in [3] and their properties were investigated there. In particular
they are invaluable tools for constructing quasi-measures. We include their
definition here for the convenience of the reader. The restriction to the solid
sets will be denoted with a subscript s (e.g. Cs will denote the compact
solid sets). Let X be a ¢-space. Then a function # Ay — RY is a solid
set~-function if it satisfies

(A) >0, 4Ci < puC whenever Wi, CiCCiC,LCed, for i = 1,2,..,n
(B) pU =sup{uC:C CU;CeC) forallU € O,
(C) pA+ p(X\A) = uX

Remark 3 For our purposes we will assume that {(X) = 1, accordingly
we will call the quasi-measure a quasi-probability. The basic construction of
quast-probabilities has been given in [1], [9] and [11]. The main construction
result ({3], Theorem 5.1) states that a solid set-function uniquely extends to
a quast-probability on A.

Image transformations were introduced in [4] as a generalization of conti-
nuous maps. In measure theory the measurable maps rather than the conti-
nuous maps are the natural variables and hence we will need a more general
tool. This is provided by the definition below.

Definition 4 We define an image transformation to be o mop q: A(X) —
B(Y') from the closed subsets of a metric Hausdorff space X into the sigma
algebra of a measurable space (Y,B), such that the Jollowing is satisfied

1. AlﬁBg=®:>qA1Lﬂqumq(A1UBg)
2. gX =Y
8. U S U= qU; /qU UL, U € O(X) fori=1,2, ...
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If in addition Y is a compact Hausdorff space and q(O(X)) C O(Y) we
will call g a continuous image transformation.

Remark 5 This definition generalizes the image transformations in [{] by
its image being measurable subsets of a measurable space rather than compact
subsets of a compact Hausdorff space. In addition we restrict ourselves to
the metric situation for the space X, as we will see in Proposition 10 this is
connected to property 3 of Definition 4.

Example 6 Let T .Y — X be o measurable map with respect to the Borel
sets in X. Then the map T~ 1 A(X) — B(Y')} is an image transformation.
In this case we say that the image transformation is derived from the function
T'. The image transformations derived from funclions are trivial in the sense
that their adjoint will map measures to measures.

The example above is very important as the image transformation is really
a generalization of measurable maps. However, an image transformation is
not in general the inverse image of a map.

The following proposition is a routine application of Definition 4 and
included for the reader’s convenience. The proofs are straight forward from
the definition of the image transformations.

Proposition 7 If ¢ : A(X) — B(Y) is an image transformation the fol-
lowing hold

1. AC B=>¢A C¢B for any A, B € A(X)
2. g, A) = W, 0As A W, Ai € Afor i = 1,2,.m
3. C;NC =qC; \qC;C;,CeC(X)fori=1,2,..

Remark 8 Notice that by compliment Proposition 7.3 is equivalent with De-
finition 4.8 under the assumption of 4.1 and 4.2.

Lemma 9 Let 4 be a monotone set function on A satisfying the additivity
(i) of a quasi-probability. Assume that X 1is a metric compact Hausdorff
space. If p satisfies pU; /' pU whenever U; is an increasing sequence of
open sets with \ JU; = U, then p is a quasi-probability.
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Proof. We will use the fact that metrizability is equivalent with second
countability (i.e. countable basis for the topology) for compact Hausdorft
spaces. First we show that if A is a directed set and U, /~ U; U,,U € O
and A € A then pU, /" pU. Let {O,} be a basis for the topology 7 of
X and pick an arbitrary Ay € A. Then recursively pick A;y; < \; such
that { [mOncUy, }O /" U as i — oco. By the assumption of the Lemma
Uy, / pU. From monotonicity of p it is clear that we must have puU, /' uU.
Let U € X be an arbitrary open set. Order all open sets Uy ¢ U with
Uy C U by inclusion. By Urysohn’s lemma we have U, /U, soul, /7 uU
by the previous argument. Now monotonicity twice yields ul/, /' U and
then ul = {uC : C C U,C € C}. We have proven the regularity of u, the
additivity was assumed. Hence, p is a quasi-probability. m

Proposition 10 If (Y, B, P) is a probability space and q : A(X) — B(Y)
is an wmage transformation, then q*(P) defined by (¢*P)A = P(qA) for all
A€ A(X) is a quasi-probability in X .

Proof. The additivity requirement (i) follows from Proposition 7.2. As-
sume that U; /' U is an increasing sequence of open sets. Then by Definition
4.3 q(U;) /" qU is an increasing sequence of measurable sets. Monotone con-
vergence of P implies P(qU;) / P(qU), so (¢*PY(U;) / (¢*P)(U). By
Lemma 9 ¢* P is regular (ii} and hence a quasi-probability. =

Notation 11 We will denote the probability measures of a measurable space
(Y,B) by M(Y'), and the quasi-probabilities of a compact Housdorff space X
by Q(X).

The map ¢* : M(Y) — Q(X) will be called the adjoint of q. Note that
if ¢ Is continuous and Y is compact Hausdorfl we are in the situation in [4]
where ¢* can be extended to Q(Y). If ¢ is derived from a measurable map
we of course get the well known situation of transformations of measures.
However, image transformations are in general not derived from maps. The
last section will provide examples of such in terms of the median.

If ¢ : A(X) — B(Y) is an image transformation, we may restrict it to the
solid sets. By Proposition 7 it is easy to verify that

(A*) If C,C; € Cy3i=1,2,...,n and W C; C C, then 4 ¢(C)) C ¢C.
(B’) If U, U; € Os;i = 1,2,... and Uz /‘ U, then Q(Ut) /l QU
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(C°) For any A € A, we have g(A) ) g(X\A) =Y.

Proposition 12 Let X be a g-space. If (Y, B, j1) is a probability space and q :
A (X) — B(Y) satisfies (A°), (B’) and (C), then q*(p) defined by (¢*11)A =
p{qA) for all A € A(X) extends uniquely to a quasi-measure in X.

Proof. This is a consequence of ¢*u being a solid set-function. Property
(A) and (C) is immediate from (A’) and (C’). The regularity can be shown
from (B’) and Lemma 3.3 in [3]. The lemma states that given any compact
solid set contained in any open set U, it is possible to find an open solid set
between them with closure in U/. ®

Remark 13 In the last section of this paper (Proposition 21) we will show in
that the image transformations corresponds 1-1 with solid set maps satisfying
(A°), (B’) and (C’). We will not distinguish between the two concepts, and
refer to both as image transformations.

3 Image transformations and structure

Throughout this section we will let (¥, B, P) denote a probability space where
the sigma algebra B contains the singleton sets (i.e. {y} € Bforally €Y).
Then we can define vy : Y — M(Y) which denotes the map assigning each
point ¥ € Y to the corresponding pointmass 8, in M(Y).

For the arguments to come we will need a topology on the space of quasi-
probabilities in a compact Hausdorff space X. The Riesz representation
theorem holds for quasi-probabilities and quasi-integrals (c.f. [1}). Hence we
can define a weak*-topology on Q(X) by identifying the quasi-probabilities
with the quasi-integrals. That is, we define the topology on Q(X) to be
topology of pointwise convergence on C(X) (the continuous functions on
X). This turns Q(X) into a compact Hausdorff space.

In the set of quasi-probabilities the {0, 1}-valued quasi-probabilities need
not be pointmasses (e.g. the median in section 4). The collection of {0,1}-
valued quasi-probabilities in a compact Hausdorff space X will be denoted
X*. Moreover we will refer to them as the simple quasi-probabilities. The
reason for not referring to them as extreme is due to the fact that they
generally (in contrast to measures) is a proper subset of the extreme quasi-
probabilities (see for instance [2]). The space X* is given the topology relative

to Q(X).



Example 14 For any compact Hausdorff space X we may define a map v
O(X) — O(Q(X)) by V2 (U) = U*, where U* = {p € Q(X): u(U) >a}
with & € R fized. The sets {U” : Ue O(X),a e R} can be shoun to be a
subbasis for the topology of Q(X) (c.f. [8]), furthermore the map U extends
to a continuous image transformation.

~ The result of the following proposition is known (c.f. {2]). However,
we will explicitly use the construction in our proof of Proposition 15, and
therefore we include the result.

Proposition 15 If X is a metric compact Hausdorff space, then Q(X) is
metric. In particular X* is metric.

Proof. Since X is second countable, there is a countable basis {O;} for
the topology of X. For any finite subset S C N put Og = ;e Oi- Then the
set F = {Og:S C N is finite} is countable. In particular the set

To= {¥(Os) : S C N is finite, » € Q} = E x Q

is countable. It suffices to show that this set is a subbasis for the topology
of Q(X). Let U € O(X) and « € R be arbitrary. Assume p € U, then pick
an increasing sequence {Og,} C E such that Og, /* U. Then JU,(Og) S uld
and so there is an Og € E with Og C U and p(Og) > a. Pick a rational
number r with & < r < u(Os), then u € ¥(Og) C U* which shows that g
is a subbasis for the topology of Q(X). =

Remark 16 In addition to proving the result, the proof also gives an explicit
way of constructing the subbasis through the image transformation and finite
unions of basis open sets. For the subspace X* the measures only takes the
values zero and one hence it suffices to fix o in U™ equal to zero.

Corollary 17 If X is a metric compact Hausdorff space, there is a countable
family of open sets {O;} in X such that {U}(0:)} is a subbasis for the topology
of X*.

Example 18 Let X be any meiric g-space, and suppose q : A(X) — B is an
image transformation. Then we can define a mapw : Y — X* byw = g*oty.
IfY is compact Hausdorff and q is a continuous image transformation, then w
is a continuous function (c.f. [{, Theorem 38.5]). This property is the reason
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for us labelling them continuous. We clarify this by our generalization of the
structure theorem for vmage transformations. In the structure theorem below
we shall see that our image transformations correspond to the measurable
maps from Y to X*.

Theorem 19 (The structure theorem for image transformations) Let
X be any metric g-space. Then there is a one-to-one correspondence between
image transformations ¢ : A(X) — B and measurable maps w : ¥ — X¥
such that the following diagram commutes

A(X™) w!
o1 A
DAX) — B (1)
q

where the measurable map w is given by w = g* oLy, and the o-algebra of X*
15 the Borel sets.

Proof. We start by showing that the diagram commutes with w = g*oty.
For any U € O(X) we have y € ¢(U) & §,(q(U)) =1 & ¢'6, € U &
w(y) € U* &y € wH{T5(U)). The closed sets follow by compliment. Hence
the diagram commutes. Next we show that w is measurable. Since the
diagram is commutative all sets of the form w™(¥5(U)),U € O(X) will be
measursble. By Corollary 17 a countable collection of such sets will be a
subbasis for the topology of X*. Since X* is second countable we can get
any open subset O of X* by finite intersections and countable unions of such
sets. Hence w~{0) € B for any O € O(X*}, accordingly w is measurable
with respect to the Borel sets in X*. Conversely, given a measurable map
w:Y — X*define ¢ = w™! o ¥;. Then ¢ is an image transformation, so it
suffices to show that w = ¢* o ty. For any y € Y and U € O(X) we have
(g*6,)(U) = 8,(q(U)) = 6,(w™ (U") = 1 & wly) € U" & w(y)lU) = 1.
The proof is complete. w

Remark 20 The adjoint ¢* of o continuous image transformation is defined
on all of QY. In [4] it was shown that the adjoint of a continuous umage
transformation is actually continuous on Q(Y).

Recall that any compact Hausdorff space has a neighborhoodbase around
each of its points consisting of compact connected sets.
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Proposition 21 If ¢ : A;(X) — B(Y) satisfies (A°), (B’) and (C’), then g
extends uniquely to an image transformation § : A(X) — B(Y).

Proof. The adjoint of ¢ is well defined, and we denote it by ¢*. Define
w:Y -+ X* by w = ¢* ouy. Analogous to the argument in the structure
theorem we may verify that g4 = w™(A4*) for all A € A,. We must now
show that w is measurable. By [3, Lemma 3.2] the compliment of any com-

pact connected set K is a disjoint union of open solid sets. Since X is second
countable this union must be countable. Let {4 O;; 0; € Oy(X) be a disjoint
union, and let 4 € X* with u(lt O;) = 1. Then by regularity and additivity
#(0;) = 1 for exactly one 4. This means that U}(lH0;) = | OF, implying
that w™' [T5(l4) O;)] € B. Hence, by compliment w~(K*) & B. In particular,
any finite union of compact connected sets can be written as a finite disjoint
union of compact connected sets (if two sets intersect their union is con-
nected). The argument above with additivity yields W3(l, Ki) = Wi, K.
Hence w™ ' [W5(lJ K;)] € B for any finite union of compact connected sets K.
Finally, assume that O € O is any open set. Then by Lemma, 21 it is a union
of compact connected neighborhoods of each of its points, O = Useo K- By
picking open neighborhoods inside each K, and using second countability we
may assume that the union is countable (i.e. O = (JK; = J O; with O; C K;)
. The proof of Proposition 15 now applies since | Ji_, 0; ¢ | JL, K; /" O,
so for any p € O* we can find a finite union of compact connected sets
Uiz, Ki € O such that [ J; KJ* C O* is a neighborhood of 1 in X*. Hence
w™! maps a subbasis for O(X*) into B. Again by second countability of X*
we must have w1 [O(X*)] C B. We have shown that w : ¥ — X* is measu-
rable. By the structure theorem for image transformations w corresponds to
a unique image transformation ¢ such that the diagram 1 commutes. By the
commutativity of the diagram we must have g(A4) = §(A) for all 4 € A,(X).
Accordingly ¢ is an extension of ¢ from the solid sets. By the structure the-
orem this extension must be unique since w is unique. The proof is complete.
]

Recall that any o-algebra B is naturally a Boolean algebra under union
and intersection. The Stone space K of B can then be constructed from a
subset of ZF endowed with product topology (see for instance [14] for details).
It can then be shown that the Stone space is an extremely disconnected
compact Hausdorff space. Further more there is a canonical map 7' : B ~»
O(K)NC(K) where T is a Boolean algebra isomorphism from the o-algebra

10



B to the Boolean algebra of closed and open subsets of K.

Lemma 22 If X is a metric compact Hausdorff space and ¢ : A(X) - B(Y)
is an image transformation, then T'oq : A(X) — A(K) is a continuous image
transformation.

The proof is a routine verification of the requirements of an image trans-
formation exploiting the fact that T is a Boolean algebra isomorphism.

In particular, 7" induces a bijection of measures 7% : M(K) — M(Y)
{c.f. [16]) canonically.

As mentioned earlier the {0, 1}-valued quasi-probabilities are not the only
extreme quasi-probabilities. We denote the closed convex span of X* with
R(X). The convex space R(X) is referred to as the representable quasi-
probabilities and is in general different from Q(X).

Proposition 23 Let X be metric compact Hausdorff space, and let g : A{X)
B be any image transformation. Then ¢*(M(Y")) C R(X).

Proof, The Stone space K of B is extremely disconnected, hence Q(K) =
M(K) =Borel probability measures in K (this was actually proven first in [7]
for quasi-integrals when the underlying space K was totally disconnected).
Now the adjoints of image transformations are affine maps (i.e. preserves
convex combinations). Hence [(T o ¢)* o ¢ }(K) € R(X) implies (T o g)*
maps the convex span of the Dirac measures into R(X). By continuity of w
in Lemma 22 this extends to the closed convex span and hence to M(K) =
Q(K). The result is now due to T* being a bijection of measures such that
(T o g) IM(K)] =g (M(Y)). m

It is well known that the map T into the closed and open sets of the Stone
space naturally induces an isometric algebra isomorphism 7™ : L(Y) —
C(K) of the measurable bounded functions on Y onto the continuous functions
on K. Both algebras are endowed with supremum norm. In the theory of
quasi-measures we can only expect linear behavior on the singly generated
subalgebras of functions. With X and Y compact Hausdorfl the image trans-
formation in [4] was lifted to a map ¢** : C(X) — C(Y) of the continuous
functions. The map was shown to be an algebra-homomorphism on singly
generated subalgebras, and named quasi-homomorphism. Inspired by the
quasi-homomorphisms in [4] we give the definition below.

For a normed unital algebra 20 we will denote the closed subalgebra ge-
nerated by 1y and an element f € % with Ay.

11



Definition 24 Let % and B be normed unital algebras. A function T :
A — B is a quasi-homomorphism if T is an algebra-homomorphism of Ay
onto Ares) for each self-adjoint f €

Hence a quasi-homomorphism ¢** : C(X) — §,(Y) is defined to be a
map which is an algebra homomorphism on each closed singly generated
subalgebra Ay; f € C(X) of C{X) onto each subalgebra of 1,(Y) generated
by ¢*(f) . Note that our interest is real valued functions here. One may
complexify linearly however, and formulate the definition for C*-algebras.

Proposition 25 An image transformation q : A(X) - B(Y) lifts naturally
to a quasi-homomorphism ¢** : C(X) —» L,(Y) .

Proof. The map T o ¢ is a continuous image transformation, and hence
corresponds to a unique quasi-homomorphism (T o ¢)* : C(X) — C(K)
by {4, Theorem 4.3]. The desired quasi-homomorphism is then obtained by
(Tog)* o (T™) . m

Remark 26 The corresponding quasi-homomorphism in [{] may be obtained
by moving level sets of the functions with the image transformations. Essenti-
ally this is the same construction as in Banach-Stones Theorem. Accordingly,
by composition of T** and ¢** one may show that the quasi-homomorphism
above 1s obtained by mouving level sets of the functions. We will not do so
here.

4 The median and the sample median

Throughout this section we will omit proofs. A more complete treatment of
the median is beside the scope of this treatment. At this point we want to
illustrate that the image transformations serve to generalize variables.

We will denote the cardinality of a finite set S with |S|. In addition, we
will put [,, = {{},.

Definition 27 Let (Y, B, P) be a probability space and X be a metric g-space.
F{T:Y - X }f_ffl is an odd numbered collection of measurable maps [(i.e.
random varicbles) with respect to the Borel sets in X we define the sample
median of {T;} to be a set function p : A (X) — R by uC = P(|T; € C| > n),
i.e. the probability of over half of the variables being in C.

12



Notice that our definition is with respect to any collection of variables
regardless of dependencies between them. This generality is particularly
amenable in situations where independence of observations can not be assu-
med, as often is the case in experimental statistics. Moreover, the definition
is topological where the geometry of the space is replaced by the concept
of solid sets. The definition is even independent on the choice of metric for
X. The simplicity of the definition should also make it easily accessible to
undergraduate students.

Theorem 28 The sample median extends uniguely to a quasi-probability in
X. The construction is given by an image transformation q : A{X) — B
with

gA = U INZHA) forall A A(X)

{8CIznq1:iSl>n} S

Remark 29 The crucial part of the proof is realizing that the sample median
is qiven by the image transformation. Even for the most basic examples this
image transformation is not the inverse tmage of a measurable map. Hence
we claim that the sample medion should not be thought of as a variable, but
in terms of its inverse images -the image transformation. We will denote the
sample median of {Ti};o; with py. Similarly the image transformation q in
the proof depends on the measurable maps and will be denoted Mr,y. In view
of Theorem 28 the sample median will be assumed to be a quasi-probability
defined on all open or closed sets.

The median (and sample median) in R is preserved under monotone maps.
For our general setting we will need a more general concept than monotone
maps. This is provided below with the solid variables.

Definition 30 Let X, and X, be compact Hausdorff spaces. A map [ :
X, — X will be called a solid variable if f is continuous and f1(A:(Xa)) C
A (X1). Similarly a continuous image transformation q : A(Xp) — A(X1)
will be called solid if g(As(X2)) C A(Xq).

Theorem 31 Let X; and Xy be metric g-spaces. Given a measurable space
(Y,B) and measurable maps T; 1 Y — X; fori=1,2,..,n. Then for any
solid variable [ Xy — Xy we have

f* o Mgy = Mjon,

on the set of probability measures in (Y, B).
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Remark 32 This result is the raison d’étre for our median allowing us to
preserve the sample median under an abundance of transformations. The pre-
servation property is usually referred to as equivariance in statistical termino-
logy. The theorem shows that the sample median is exactly the set function
on A X} that corresponds to the transformation of the (ordinary one di-
mensional) sample median under the solid variables. Hence the equivariance
properties forces us to consider a quasi-probability.

In the limiting case letting the number of variables tend to infinity we
should have the notion of a median. Hence, since we are dealing with a limit
of measures, the natural median should be a measure rather than points.
This is in contrast to the approach by statisticians where a point or even
a set of points is sought. For the construction we will need the notion of
splitting measures {c.f.. [3]). We say that a quasi~probability P in a compact
Hausdorff space X is splitting if there exists disjoint sets C1,Cy € Co(X)
such that P(Ci) + P(Cy) = 1 with P(C}), P(C3) > 0. If no such pair exists
we call P non-splitting. How to construct the median of splitting measures
is given in the preprint [13], we will not present that here.

Definition 33 Let (X, B, P) be o probability space where X is a g-space, B
consists of the Borel sets in X, and P is a non-splitting probability measure.
The median of P is defined to be a set function P, : Cs — {0,1} by

0, P(CY«?i
pm(c)m{ 1 PEC’%ZE

2
Proposition 34 The median uniquely extends to a quasi-probability in X.

Remark 35 Our construction differs fundamentally with the classical notion
of a median. We claim that the natural medion is o set function, namely a
quasi-probability rather than being a set of points. In R the medion will be a
point mass, where the point is the ordinary median in one dimension.

Note that when the median F,, can be constructed from an image trans-
formation Mp : Cs(X) — Co(X) by

_Jo PC)<li
M”O“{X P(C) >

Where the extension to open solid sets is by complement. Hence we have a
map M* : Q(X) — Q(X) where P — Mp(P) = P, which is just sending
the measure to the median in terms of image transformations.
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Theorem 36 If X1, X3 are g-spaces and g : A(Xo) — A(Xy) is a solid
image transformation, then the following diagram is commutative

*

Qua) 1 Qi)
M*? TM*

Q(X1) — Q(X2)

Remark 37 Notice that this theorem is the medians version of Theorem 31.
However, this statement is more general involving solid image transforma-
tions. Still an important class of examples is when the image transformation
is derived from a solid variable.

We have only presented the definitions and equivariance properties of
the median. However, it should be noted that the median has a non-linear
behavior in multidimensional spaces (in contrast to the mean). This is well
known, but has not been well understood. Introducing the quasi-measure
and quasi-integral we have a solution to the linearity problem. The linearity
of the median is reduced to determining whether the corresponding quasi-
integral is linear. In [17} it was shown that quasi-measures are restrictions of
regular Borel measures in one dimensional spaces. Accordingly the median
exhibits linear behavior in the one dimensional setting.

Acknowledgement 38 I want to thank Dan Grubb for making his exper-
tise in the theory of quasi-measures available. I also want to thank Mohsen
Pourahmadi for encouraging me to persue this work.
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The multidimensional median and sample
median defined as quasi-probabilities

A)f B. Rustad
Department of Mathmatical Sciences
Norwegian University of Science and Technology
Trondheim, Norway

March 16, 2001

Abstract

The objective of the paper is to give a theoretic and uniting ge-
neralization of the median and sample median for multidimensional
problems. The sample median is defined with respect to a finite col-
lection of variables. The median is defined for regular Borel measures.
Both concepts are shown to yield quasi-measures. The construction is
done by a generalized image transformation. Numerous examples are
provided throughout the paper.

Keywords: Multidimensional median, quasi-measure, quasi-probability, image

transformation.

1 Introduction

The concept of median in spaces of more than one dimension dates back to
the turn of the century. One of the earlier works was done by J. Hayford
and may be found in [9]. The problem was to find an estimator for the
center of the population of the United States. Hayford proposed to use the
vector of medians of the coordinates, although recognizing that this concept
is dependent on the choice of axis. Since then, several attempts have been
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made to give a natural definition of a higher dimensional median, but no
particular concept has prevailed. For a survey of different multidimensional
medians at hand the reader is referred to [14]. A main theme is the search of
a symmetry center, where various definitions of symmetry have been applied
(i.e. finding points which satisfies certain symmetry requirements, see [14] for
detajls). Researchers are left with no general and uniting concept. This can

. be illustrated by the fact that the distributional analogue to the median (i.e.
the median of a distribution rather than a sample) is missing, not well defined
or not in general existing. In this paper we concentrate on the theoretic
aspects of the multidimensional median, and we provide a measure theoretic
field of mathematics for handling the concept. We define the sample median
of any finite collection of measurable maps on a probability space with image
space being metric compact spaces. The median will be defined for any Borel
measure on compact spaces with some restrictions to the space.

Our median and sample median will be constructed as a quasi-measure.
The quasi-measure or quasi-probability originated in [1] as a solution to the
problem of finding non-linear states on C*-algebras formulated by R. Kadison
(c.f. [10]). With respect to a quasi-probability measure, an integration theory
has been developed, where the quasi-integral differs from the usual integral
in not being linear. However, the quasi-integral is linear on certain classes of
functions. In {15] it is shown that any quasi-measure on a one dimensional
space 1s necessarily a measure which goes to show that the sample median
and median is well behaved in one dimension.

Equivariance (i.e. preserving the median under transformations) has been
a major issue for the median. As mentioned initially the median in [9] was
dependent on choice of axis which is very unfortunate considering the problem
it was designed to solve. Different approaches have been made with defining
symmetry properties. However, the different symmetry properties are not in
general applicable. Perhaps the most natural equivariance property is with
respect to the different coordinates, that is, the transformation taking the
projection down to an axis should preserve the median. None of the proposed
medians have this property, which is not, strange since this property naturally
leads to a quasi-measure (c.f. section 4). On the real line the class of maps
for which the median is equivariant is the monotone maps. Hence there are
some limitations as for how large a class of maps we can expect equivariance.
In this respect we introduce solid variables as a multidimensional analogue
to the monotone maps.

Finally, we present how non trivial properties of the quasi-integral yields
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linearity and continuity properties for the median and sample median. In
particular, expectations are linear on singly generated subalgebras of variab-
les and uniformly continuous in general.

2 Basic properties of the sample median

We will start with identifying the basic properties of the sample median in
R leading to our definition. Let (X,B,P) be a probability space, and let
{T; ' X — R} be a collection of Borel measurable variables. Then the
median of the variables is well defined by the n'th order statistic () and
its distribution is given by a probability measure g in R. The standard
approach for constructing a measure in R is to start with sets of the type
{(—00,0), (—00,al},cp Or their compliments. Apart from being open or clo-
sed these sets have a particular topological property defined below.

Definition 1 An open or closed set is called solid if the set and its compli-
ment are both connected.

Notice that the sets given above are the only solid sets in R. For a solid
set A C R we have Tj,) € A if and only if T; € A for at least n values of
the index (that is, at least half the variables are in A). Accordingly we will
define the probability measure of the sample median. First some notation.
We denote the cardinality of a finite set S with |S]. Let C(X) and O(X)
respectively denote the closed and open subsets of a space X. In addition
we put A(X) = C(X)UO(X). When there is no confusion concerning the
space in question, we will omit the space in the notation. Similarly we let
the subscript s denote the solid sets (e.g. C are the closed solid sets).

Definition 2 Let the probability measure pi of the sample median be defined
by pA = P(|T; € Al > n) ; A€ A(R), i.e. the probability of over half of the
variables being in A.

Of course, the set function p is a probability measure for the variable
Tiny- 1t is also clear that the solid sets will determine u completely. None of
these statements are clear when the image space of the variables is higher di-
mensional. With the intent of generalizing the sample median this definition
has one obvious advantage. It is purely topological with no concerns to the
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ordering of the variables. The necessary geometry of the spaces is described
by connectedness.

Notice that this definition may easily be communicated to undergraduate
students. Even in a setting where R is replaced by a more general space (e.g.
R”). However, with an intuitive understanding of topology.

If we apply our definition to a more general space than R we would like

_to know what kind of set function our u is. Also we would like to be able to
describe the sample median in terms of a variable. To do this we need two
concepts given below.

"The letter X will denote a compact Hausdorff space and (Y, B) will denote
a measurable space in the sequel. The quasi-probabilities are topological
measures in the sense that they are only defined on closed and open sets.
With a quasi-probability in X we will mean a set function u: A4 -+ RT such
that the following hold:

() pldie, A) = 302, u(A) (1) indicates disjoint union, and we assume
all A; and 2, A in A)

(i) pU =sup{pC:CCU;Cel}lforallUin O
(i) p(X) = 1

Remark 1 Notice that one immediate consequence of (i) and (i) is the mo-
notonicity of the quosi-probability. That is A; C Ay implies pA; < pA,
whenever Ay, Ay € A.

The definition of the quasi-probability differs from that of a probability
measure only by its domain. We only define it for open and closed sets.
The quasi-probabilities are however a vastly larger class of set maps than the
Borel measures. Perhaps their most distinct difference is that they are not
in general subadditive.

Our vehicle for constructing the multidimensional median will be image
transformations. Our image transformation was introduced in [13] as a gene-
ralization of measurable maps. It describes inverse images rather than values
of the variable,

Definition 3 We define an image transformation to be a map q : A(X) —
B(Y') from the closed subsets of a metric (compact) space X into the sigma
algebra of a measurable space (Y, B), such that the following is satisfied

4



1. AlﬂBg——“@ﬁq}‘lg&JQngq(A-lUBg)
2. gX =Y
3. U2/U:>QU2/‘QU,UZ,UGO(X)fOT"L=1,2,

If in addition Y is a compact Hausdorff space and ¢(O(X)) C O(Y) we
will call ¢ a continuous image transformation.

Remark 2 We restrict ourselves to the metric situation for the space X, this
is connected to property 8 of Definition 3 (details may be found in [18].The
loss in generality by imposing metrizability on the image space is not crucial
since it enables us to define the median in R™ for arbitrary n € N (amonyg
other spaces).

Example 1 Let T': Y — X be o measurable map with respect to the Borel
sets in X. Then the map T~' : A(X) — B(Y) is an image transformation.
In this case we say that the image transformation is derived from the function
T. The image transformations derived from functions are trivial in the sense
that their adjoint map measures to measures.

3 Quasi-probabilities and Image transforma-
tions

Now that we have defined the quasi-probability and the image transformation
it is natural to ask what type of space is X (the image space of the variables).
This leads to the somewhat awkward definition below. The restrictions are
closely related to the problem of constructing quasi-probabilities.

Definition 4 If X is locally connected, connected and has genus equal zero
{ g(X) =0 ) we will call X a g-space.

Remark 3 These properties are shared by a large class of spaces such as
closed intervals and disks in addition to balls and spheres in R*,n > 3.
The genus requirement 1s treated (and defined) in [3] and [11], we will not
elaborate on that issue here. The reader may settle with the fact that simply
connected spaces have g = 0.



The solid sets play an important role in the theory of quasi-probabilities.
They constitute a small and manageable family of sets that totally determines
a quasi-probability. This is llustrated by the solid set-functions, they were
introduced in [3] and their properties were investigated there. In particular
they are invaluable tools for constructing quasi-probabilities. We recall their
definition. Let X be a g-space. Then a function i As — R* is a solid

_set-function if it satisfies

(A) X%, pC; < uC whenever iy Ci C C;CL C €, for i = L,2,..,n
(B) pU =sup{uC:CCU;CeC) forallU e O,
(C) uA+ u(X\A) = uX

Remark 4 Again we will only consider the case pX = 1. The basic con-
struction of quasi-probabilities has been given in [1], [8] end [11]. The main
construction result ({3], Theorem 5.1) states that a solid set-function uniquely
extends to a quasi-probability on A.

"The following propositions give the basic properties of the image trans-
formations. We include them for the readers convenience,

Proposition 1 If ¢ : A(X) — B(Y) is an image transformation the fol-
lowing hold

1L.ACB=qACqB for any A4, B € A(X)

2. gz A = W, ¢4y A, W, Ase Afori=1,2 .. n

3 GNC=¢C\ qC;C,C eC(X) for i = 1,2,..
Proposition 2 (Transformation of variables for image transformations)
If (Y, B, P} is a probability space and q : A(X) — B(Y) is an image trans-

formation, then q*(P) defined by (¢*P)A = P(qA) for all A € A(X) is a
quast-probability in X.

Notation We will denote the probability measures of a measurable space
(Y, B) by M(Y), and the quasi-probabilities of a compact Hausdorff
space X by Q(X).



Remark 5 The map ¢* : M(Y) — Q(X) will be called the adjoint of q. If q
is derived from a measurable map we of course get the well known situation
of transformations of measures. However, as we shall see examples of (both
the median and sample median may be interpreted as irnage transformations)
this is not the case in general.

If ¢ : A(X) — B(Y) is an image transformation, we may restrict it to the
solid sets. By Proposition 1 it is easy to verify that

(A" I C,C; € Coyi = 1,2, ..,n and W C; C C, then [ ¢(C) C ¢C.
(B*) If U, U; € O3 =1,2,... and U; /U, then ¢(Us) /" qU.
(C*) For any A € A, we have g(A)lg(X\A) =Y.

Proposition 3 Let X be a g-space. If (Y, B, 1) is a probability space and q:
A (X)) — B(Y) satisfies (A’), (B) and (C’), then ¢"(p) defined by (g*u)A =
p(gA) for all A € Ay(X) extends uniquely to a quasi-measure in X.

Remark 6 It is shoun in [13] that any solid set map satisfying (A°), (B’)
and (C) extends uniquely to an image transformation. Hence we will not
distinguish between the two concepts and refer to both as image transforma-
tions.

4 The sample median

For a finite collection of measurable maps {7} : Y — X} we will define the
sample median of {T;} when X is a metric q-space. In particular this will
include any closed ball in R™ and hence by inclusion any compact subset of
R™. More explicitly, if the natural image space does not satisfy the require-
ments of a g-space we may embed it into a g-space. Hence a natural sample
median is relative to an imbedding ® : X — K where K is a g-space. We
will therefore assume that the measurable maps {T;} have a g-space as image
space rather than considering the composite maps {® o T;}. Although the
study of different imbeddings $ relative to the median is of interest in itself,
we will not pursue that issue here.

Note that we are only considering the compact situation. The theory of
quasi-measures in compact Hausdorff spaces is well established through se-
veral articles. We conjecture however that our concept of a (sample) median
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may be generalized to locally compact Hausdorff spaces. The quasi-measures
in Jocelly compact spaces are presented in [4] and their integration theory
was developed in [12].

Notation We put I,, = {¢}._,.

Definition 5 Let (Y, B, P} be a probability space and X be a metric g-space.
IF{T Y — X} s an odd numbered collection of measurable maps (i.e.
random variables) with respect to the Borel sets in X we define the sample
median of {T;} to be a set function y : A(X) - R by uC = P(|T; € C| > n),
i.e. the probability of over half of the variables being in C.

Remark 7 Notice that our definition is with respect to any collection of
variables regardless of dependencies between them. This generality is par-
ticularly amenable in situations where independence of observations can not
be assumed, as often is the case in experimental statistics.

Example 2 Imagine o dart player. He has three arrows to throw, and the
first arrow will help him to improve his aim. Hence the three throws cannot
be assumed to be independent. However, different series of throws are more
likely to be independent. Accordingly we may estimate the median for any
particular fized solid set in the dart board (here we regard the dart board as
a closed disk) by using a series of throws.

Theorem 1 The sample median extends uniquely to o quasi-probability in
X.

Proof. Consider the set map ¢ : A,(X) — B defined by

d= J  INTHA)

{8Ciz2n-1:18]>n} S

We claim that ¢ is an image transformation. The regularity (B’) require-
ment is preserved by finite intersection and finite unions. The surjectivity
requirement (¢X = Y) is trivially true since the intersection will be of ¥
with itself. For the remaining claims notice that y € ¢C < |Tiy € C| > n.
To show (C’) we need to consider the case Al¢) B = X in which case it
is obvious that for each y € ¥ we must have over half of {Tiy} contained
in either A or B. Accordingly we have qAlfgB = Y. Finally, suppose
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C,C€Cqi=12..mwithifC, cC Ifye q{Cy)for some i' then since
the Cy's are disjoint we can not have [Ty € C;| = n for any j # 1. Hence
the sets ¢(C;);é = 1,2, ..., m are disjoint, and obviously if y € g(C;) for some
i, then y € qC. The proof is complete. B

Remark 8 We will denote the sample median of {Ti},c; with ji; when there
is no confusion about the set of measurable maps in question. Similarly the
image transformation q in the proof depends on the measurable maps and will
be denoted M(zy. In view of Theorem I the sample median will be assumed
to be a quasi-probability defined on all open or closed sets.

Definition 6 For an even numbered collection {T;:Y — X }le of measu-
rable maps (analogous situation as in Definition 5), we define the sample
median to be the quasi-probability

1
p=%;us B ={SC Iy |S|=2n~1}

Remark 9 The concept here is that the even numbered sample median is o
linear combination of sample medians rather than a transformation of the
variables (as in the one dimensional case where the mean value of the two
midpoints are taken). This definition is a suggestion, we realize that other
proposals might be more suitable.

Notice that given the measurable maps {T}} the sample median is a map
from the probability measures on Y, M(Y) into the quasi-probabilities in
a qspace X. We will denote this map with M, (corresponding to the
notation of the adjoint of an image transformation) when there is no confusion
concerning the probability space. In the odd nurnbered case the median can
be interpreted as an image transformation {c.f. proof of Theorem 1). This
image transformation will be denoted M{z;)-

Example 3 Let X be any melric g-space, and let © = (x1,T2,23,%4) be
any element of X*. Further, let T; - X* — X be the i’th projection map
(i.e. Ty(x) = z;). Then X* endowed with the Dirac measure by in x, 15 0
probability space where §; = g, X Oz, X 045 X b, 18 the product measure of the
Dirac measures in the coordinates. Hence the variables {T;} are independent,
but they are not identically distributed. Let p; denote the median of {T5} ;-
For any solid set A € Ay(X) we have p;(A) = P(|T; € A| = 2) where j €
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I\ {i}. Which gives us that p;(A) = 1 if and only if ‘A b epanp| 2 20
i.e. if and only if at least two of the three coordinates with index different

fromiis in A. We may now calculate the median of {T:}i_, as 31y, and
verify that for any A € A;(X) we have

Zf AN {x,;}ieh > 2
if |AN {:cz-}t.eh =2
Zf AN {xi}iGLL < 2

(M (6:))(A) =

O rop— =

In the one dimensional case ( X = [a,b] ) we will denote the n'th order
statistic of a sample {T; : Y — [a,b]},.; by Tiwy. That is Ty Y — [a,b] is
the function that assigns each y € Y to the n’th largest value of {Ty}.

Proposition 4 In the one dimensional case, i.e. {T::Y — |[a, bl}iers the
sample median of an odd numbered collection I = Topir will the probability
distribution of the n'th order statistic Ty, In the even numbered I = I,
case the sample median will be p = ﬁ%’f’ﬂwhere ¢y and u, respectively is the
probability distribution of the n'th and the (n+1)th order statistic of {13,
T(n} and T(n+1}-

Proof. First assume that I = I,,_; is odd numbered where I is the index
set of the variables. A solid subset of [a,b] is of the form [a, 7], [a,s) or a
complement of these. In any case u(4) is the probability of over a half of
the variables being in A. Note that since we are in a one dimensional space
p is actually a probability measure. Then for an open interval (r,s) C [a,b]
we have:

,U,(T, S) [(L, 3) —H [CL, T] = P(T(n) < S) - P(T(n) < T)

=
= P(T(n) e (T‘, S))

Now for I = Iy, the situation is somewhat more complicated. Put By =
{Tiy}ic; 1y € Y, then for any closed or half open interval .J € {la, 7], [a.m) }eoy
consider the set J N E,. If and only if |J N Ey| = n we will have y € ggJ for
exactly halfof thesets in {S C I: [S|=2n -1}, put B2 = {y e Y : [/ N E, | =n}
(notice that E7 is the event that exactly n of the variables is in J ). Hence the

sets {gsJ N ET} will constitute n copies of E7% , which can be done effectively

by taking intersections, difference sets and unions. The second consideration
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is the case where |J N E,| > n,soput E; = {y € Y : |JN Ey| > n}. Thenob-
serve that y € E;ifand onlyify € gsJ for allthesetsin {S C I : |S| = 2n —1}.
Now we can calculate the sample median g in terms of order statistics:

pt = 2 psl = £ Y Plas]) = 5, 3 Pllasd NET) Wias 0 Ey)]
= L S[P(gsJ N E}) + P(gsJ N Ey)]

L5 Plgsd NET) + 5 > PlasJ N Ey)

?{—Z S nP(EY) + & S 2nP(E;) = }P(E}) + P(E)
gP[(T(n) € J) N Ty € N + P(Tiniry € J)

il

I

Then for an open interval (r,s) C [a,b] we obtain

iaa S) - ,LL[CL, T]
[P(Ttay < 8) = P(Tiy < )] + 5P (Tinan) < 8) = P(Tiwyn) < 7))
P(T(n) e {r,s))+ %P(T(n+1) € (r,s))

plr,s) = p

2 b i

Remark 10 The even numbered median may be interpreted to be that any
of the n sample medians are equally likeable to represent the median of the
sample. Of course, one might question whether to weigh each of the n sam-
ple medians equally, a Bayesian approach using any a priori knowledge about
the variables at hand might suggest another convex combination of the quasi-
probabilities pg. Actually any convez combination ) | aspig, s 2 0, ag=
1 will still give a meaningful sample median. In elementary courses in statis-
tics the median of an even numbered sample is defined to be the mean value
of the two midpoints, i.e. the variable M“—*—'}«l Notice that this variable

has the same expectation as our distribution 1322, but it does not have the

e . Pon A Tonisy - . .

same distribution. Accordingly ~2 A2 gs g unbiased estimator for our
guy )

even numbered median.

Example 4 (Independent Identically Distributed Variables) Consider
a probability space (X,B,P) with X any g-space, B the Borel sets in X,
and P a regular Borel measure in X. Let (X™, B", P*) be the n’th product
space. Put T; equal the i’th projection map on X7, that is T; : X™ = Y
by (1,2, .0, Tn) F+ 2 fori=1,2,...,n. Then {T:} are independent iden-
tically distributed random variables in X with probability measure P. The

sample median p of an odd numbered collection {TVPT! on the solid sets
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A € A(X) can be caleulated binomially in terms of P(A) and 1 — P(A).
That is, calculating the probability of at least half of the variables being in A
we have

P(T.e Alzn)=)" ( 2”; ! ) P(A)(1 — P(A)y—1—

i>n

- An ezample with X being the unit disk, three variables and P the normalized
Lebesgue measure in the unit disk is outlined in [5, Ezample 3.1 /. However,
the construction in [5] is done by g-functions (see [5] for details). Also it is
noted in [5] that only in very special situations will this construction give a
measure. The even numbered median is a construction of odd numbered ones.
It turns out that the medion for {T;}2% is equal to the median of V)

This property relies on both independentness and equality of distributions.

Remark 11 Note that the projection maps in the example above have the
property that T HAs(X)) C A(X™). This is an important property which
is shared by a large class of continuous maps. We formalize this property in
the definition below.

Definition 7 Let X; and X, be compact Hausdorff spaces. A map f:Xi—
Xy will be called a solid variable if f is continuous and f~(A(X,)) C
As(Xy). Similarly a continuous image transformation q : A(X,) — A(Xy)
will be called solid if q(A(Xo)) C A (X1).

Theorem 2 Let X; and X, be metric g-spaces. Given a measurable space
(Y,B) and measurable maps T; : Y — X fori = 1,2,..,n. Then for any
solid variable f: X1 — X, we have

7o Mgy = Mipry
on the set of probability measures in (Y, B).

Proof. Let p be any probability measure in (Y, 5) and let A & A(X5) be
arbitrary. Recall that f~' defines the image transformation derived from f
where f* : Q(X1) — Q(X,) is the corresponding map of measures. Hence
for n odd it suffices to show that (M) o f~1)(A) = Misomy(A). Now
y € (Mizy o f"1)(A) if and only if [Ty € FHA) > 2 which is equiva-
lent to |f(Ti(y)) € A| > % which means that y € M for3(A), so the image
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transformations coincide, accordingly the mappings of measures coincide. If
n is even the same argument applies to all of the collections {Ti}se; with
I c{1,2,..,n} and [I| = n— 1. Assume that (Y, B) is given a probability
measure P. Let p, denote the sample median of {1} ikt f*u; = pg, and
py = Mfpor, }(P). Then by the previous argument, and by definition, we
have p; = £ 37 1y, Moreover, (f* o M )(P) = FHE Y ;). Finally, for any
set A € A(Xy) we have

FAETEIA) = Gl A = Dl A
= %Z#f,;(A)

Which completes the proof. &

Remark 12 This result is very important allowing us to preserve the sample
median under an abundance of transformations. The preservation property
is usually referred to as equivariance. Some of the transformations for which
the sample median is equivariant will be outlined below, an attempt to give a
complete description of the transformationclass at hand is beyond the scope
of this treatment. Note that the solid variables are neither a vector space nor
a convex space. However, the composition of two solid maps s solid.

Example 5 Homeomorphisms T: X; — Xo are solid variables. In particu-
lar the sample median is independent of choice of azis. T hat 1s, any linear
transformation by invertible matriz followed by a translation of g-spaces pre-
serve the sample median.

Example 6 On the real line the solid variables will be exactly the monotone
continuous maps. This is however typical for one dimension. If we again
consider an n-dimensional ball B® = {z € R™: ||z < r} with n = 2 then
the norm itself is a solid variable. That is, the function f R =R by
F(z) = ||zl is solid. Hence by composition also any monotone continuous
map of the norm, e.g. h(z) = g(l|z||) with g being a continuous monotone
real valued function, is solid. More generally, with appropriate choice of g-
space we have the unimodal variables being solid. Which is in sharp contrast
to the monotone maps in the one dimensional setting.

Example 7 Consider the closed n-dimensional ball with radius v € R, that
is Br = {z € R : ||z} < r} with euclidean norm. Let l be any straight line
in R*, ie. | = {ax+zo:a€R} where z,79p € R™. Then the orthogonal
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projection Py on the line | is a solid variable on B?. In particular the pro-
jections doun to the coordinate awis are solid variables. Since any compact
subset of R"™ is contained in B} for some r, this applies to any multivariate
sample median (assuming bounded image for the R™-valued variables).

Remark 13 The projections will especially give us the coordinates. This

- equivariance property necessarily forces us to consider a quasi-probability and
in itself should justify the use of quasi-measures to model the sample median.
We will make this property explicit in the results below.

Proposition 5 Let (Y, B, P) be a probability space and let X be a metric g-
space. Assume that {T; : Y — X} is a collection of measurable maps (with
respect to the Borel measures in X ). Then for any solid variable f : X — R
we have

Mizy(F4(@,8) = (£ o TY3(a,b) for any a,b € R

Here (f oT) ) denotes the n'th order statistic of {f o Ti}iry .

Proof. We have

Yoo M{R}(X) = M{Ti}(fml(_oo?a) U fM1(a>b) U f_l(b7oo )
= My(f~(~00,a)) U Mry(f~Ha, b)) U Mz (£~1(B, 00))

hence Mz (f~(a,0)) = Y\ [Myr(f7(—00,@)) U Mz (f (b, 00))] which
implies that y € Mry(f (e, b)) if and only if the median of {(f o T (y) Y]
isin (a,b). W

Proposition 6 (Urysohn’s lemma for solid variables) Let X be any ¢-
space. If C € Co(X) and F € C(X) are disjoint and nonempty, there is a
solid variable f : X — [0,1] such that fic = 0 and f|r = 1. If in addition
X s metric we may assume that f~10) = C.

Proof. The standard construction in Urysohn’s lemma is by an increa-
sing family of open sets indexed and ordered by rational numbers, e.g. [16].
That is we have a family {U; },.q C O(X) where C C U.,F NU, =0 ¥r € Q,
and r; < 1y = U, C U,. By [3, Lemma 3.3] there is for any C' € C,(X)
and C CU e O(X) aset V € Oy(X) such that C C V € V ¢ U. Hence we
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may assume that {Us},cq C Os(X). We then define a continuous function
frX —[0,1] by

ifx U.
f(CII) _ { 1 ¢ Ur(—:@

inf {r : z € U,} elsewhere
reQ)

We claim that £ is solid. It suffices to show that {f 7 (—o0, a}, f 7 {~00, 0]} sep C
As(X). Observe that f~(—o0,a) = {J,., Ur whenever a € (0,1]. For ot-
her values of @ we have f~1(—o0,a) == X or f~!(—oc,e) = 0 which both
are solid. Now |J,, U, is a union of connected sets with nonempty inter-
section and hence connected. For the compliment we have by DeMorgans
law the intersection of continua directed by inclusion, and hence connected.
For a € (—o0,1) notice that f~{(~00,a] = N5 Ur = (rsa U, hence the
arguments above applies and f1(—00,d} is also solid. We have shown that

f is a solid variable.

If X is metric we can construct {U,},¢o such that n{C,U,) < r¥r e Q,
where the Hausdorf distance h : C(X) — R is defined by h(Cy,Ca) =
max {maxzec, {d(z,Co)} ,maxyec, {d(y,C1}} (see [7] for details on Haus-
dorff distance). Then C = (oo U» and accordingly [ Hoy=C. .

Now assume that we have any general concept of a sample median, say
Tiny. Where Ty is typically a variable Ty @ X -1 _, X, Assume further
that this Tiny coincides with the ordinary sample median in one dimension
and is equivariant under the solid variables. If X is a metric g-space we will
for any A € A(X) have a solid variable f such that f~'(—co,0] = A if A s
closed or f~}(—c0,1) = A if A is open. By Proposition 5 we have

My (A) = T(:S (A) for any solid set A € A (X).

Conclusively, there is no other concept of a sample median being equiva-
riant under the solid variables.

Example 8 Consider a probability space with one possible outcome. T hat s,
a measure space (Y = {y},P(Y),6,), where P(Y') denotes all subsets of the
one point set {y} and &, is the one point (Dirac) measure in y. Any variable
onY will be defined by its value on y. Consider the three variables in the unit
square X = {(z,y) : 0 < 2,y < 1} given by Ty(y) = (3,3), o) = (3, 3) and
Ty(y) = (3,%). Denote the projections on the square down to the respective

azis with fi, and fa, te. fi o (z,y) = z and fo @ (z,y) — y. Then we
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have Mfflori}(ﬁsy) = MffgoTi}(éy) = 5% MI[0,1]. Moreover M{m(ff“l(%)) .
My (£ 5) =Y, bt [T SN 53) = (3,1). Hence we have

Y = Mgy (f7Y(5 ))ﬂM{T}(fz & ) # My (75 )N fi (1))=m

This illustrates that the image transformations, and in particular the sample
“median do not behave nicely under intersections in contrary to inverse images
of maps.

Remark 14 Notzce that the set Myry(fi*(3) N My (f51(2)) and the set
M3 (f7H(5) N f31(3)) both can be interpreted as events The first set being
the event that both of the medians of the coordinates is 5, which we know has
probability one. The second is the event that two of the variables is equal to

(3, 3) which of course none of them will be with probability one.

5 The Median

In the limiting case for Example 4 letting the number of variables tend to
infinity we should have the notion of a median. Hence, since we are dealing
with a limit of measures, the natural median should be a measure rather than
points. For the construction we will need the notion of splitting measures {c.f..
[3]). We say that a quasi-probability P in a compact Hausdorff space X is
splitting if there exists disjoint sets Cy, Cy € Co(X) such that P(C))+P(Cy) =
1 with P(C1), P(Cs) > 0. If no such pair exists we call P non-splitting. The
collection of sets that splits P such that P(Cy) = P(C3) = 1 will be denoted
by Cop(X, P).

Definition 8 Let (X, B, P) be a probability space where X is a g-space, B
consisls of the Borel sets in X, and P is a probabzlzty measure. The median
of P is defined to be a set functzon PriCo— {0,151} by

0, PC< -%—
F.(C) = % i PC =3 and C € C( X, P)
1 ; elsewhere

Proposition 7 The median uniquely extends to a quasi-probability in X.

16



Proof. Define the set function P, on open solid sets by Pn{U)} = 1 ~
P (X\U);U € O4(X), according to the additivity of a quasi-probability.
In the non-splitting case we will have Cop(X,P) = @ and so Py will be

. 1
constructed from the g-function f(z) = (1) ’z i { ,z €[0,1] applied to
T g

the measure P. Hence P, is a quasi-probability. If the measure is splitting,
we have to treat the splitting sets separately. We proceed by showing the
requiremnent (A) and (B) of a solid set function consecutively, property (C)
is clear by the definition of Py, on open solid sets.

(A): Let C € C,, if P(C) < 3, then any disjoint collection of solid compact
¢, ¢ C will have P(C;) < 1 and hence Pn(C;) = 0 for all 2. If 1 < P(O)

5
and C ¢ Cp(X, P), then at most one of the sets C; can have P(C) > 1

and s0 Po(Cy) = 1 with P,(C;) = 0 for j # 4. Two of the sets C; can havz
P(C;) = 1 but then they are splitting and so 1 = Po(C) = 3 Pl Cy) = 5+3
If C & C,p(X, P) we only have to consider the case P(C) = %, then at most
one of the sets C; can have P(C;) = § and since C; C C it must also be
splitting, so the assertion follows.

(B): Suppose P(U) < %, then P(X\U) > } and so Pn(U) =0 In
particular any compact solid set C' C U will have P(C) < 1 and so Pr(C) =
0, which shows regularity. If X\U € Cqp(X, P), any compact solid set C'C U
with P(C) = 1 is splitting, in particular there exists such a splitting set
C C U, hence the regularity holds for U. If P(U) = 3 and X\U ¢ Cep(X, P,
then Pn(U) = 0 also any compact subset C C U can not be splitting, hence
has P(C) < & = Pn(C) = 0. Finally if P(U) > 1, we have P(X\U) <
1 = Pn(U) = 1, furthermore by regularity of P there is a compact solid set
C C U with P(C) > £ = Pp(C) = L.

We have shown that P, is a solid set function, and hence it extends
uniquely to a quasi-probability B

Remark 15 It is clear that we are really dealing with two constructions, one
when the measure is splitting and one when it is not. This is illustrated in
statistics with the symmetry centre (c.f. [14]), typically the symmetry cendre
will be o set of points rather than a single point when the measure is splitting.
However, our construction differs fundamentally with the classical notion of a
median. We claim that the natural median is a set function, namely a quast-
probability rather than being a set of points. One might question whether
giving all the splitting sets measure 1 each or perhaps choosing a Bayesian

2
approach tmposing different conver combinations on the different pairs of
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splitting sets. If n > 1 this can not be done arbitrarily because the different
axis interact and may cause violation of the monotonicity of the median.

Proposition 8 If P is non-splitting the median coincides with the ordinary
median in one dimension. If P is splitting then in one dimension we get a
two point measure where the two points are the % quantiles of the distribution
P.

Proof. In the non-splitting case we will have a {0,1} valued quasi-measure
in a one dimensional space. Since the quasi-measure is a measure in one
dimension, Py, is necessarily a point mass. Obviously B, is the desired point
”chopping” the distribution in half. In the splitting case we will have a three
valued measure and hence a linear combination of two Dirac measures each
with weight . Taking solid sets downwards and upwards it is clear that the
two points are the {1 quantiles. W

Note that when the measure P ig non-splitting the median P, can be
constructed from an image transformation Mp : C, (X} - C(X) by

o ;P <3
MpC ={ C ;P(C’)‘——%,CGCSP(Bn,P)
X 5PC)>1

Where the extension to open solid sets is by complement. Hence we have a,
map M* : Q(X) — Q(X) where P v+ MA(P) = P,, which is just sending
the measure to the median in terms of image transformations.

Example 9 Consider the unit square F = {(z,9): 0< 2,y < 1}, fix four
distinct points {pi}?zl in E. Define P to be the probability measure in E
assigning the probability % to each of the four points. Then if a set Co(E)
contains two of the points, there is q compact solid set in the complement
containing the two other points. Hence the set is splitting. We can now
determine how the median Py, looks for any C € C4(E):

; [Cn{p} <1
i ICn{p} =2
; lIOn{p} >3

Fn(C) =

el ] [ |

Now P; be the probability measure obtained by giving each of the points {pj}jzl
probability % except p; which is given probability zero. Denote the median of
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P, with P:;,L. In similar manner as above we can then determine what these
medians are on compact solid sets. Since we now have odd numbered col-
lection of points with probability greater than zero, there will be now splitting
sets. The remarkable property is that we have Fm = éfol P:. This gives
o nice analogue to the definition of the sample median of an even numbered
sample.

Theorem 3 If Xy, Xa are g-spaces and g : A(Xy) — A(Xq) is a solid image
transformation, then the following diagram is commutative

*

Qun) 1 o)
M T T M*

Q(X1) -“*;"’ Q(Xz)

q
Proof. Let P € Q(X;) be arbitrary. lf C &€ Co(Xo)\Csp( X2, ¢* P) we have

[M*(g*P)IC = 0 & (¢*P)(MgpC) =0 & MppC =0
(P)C <t e PC)<je (M'P)IC=0%s [¢*(M*P)IC =0

Since zero and one are the only possible values for the non-splitting sets this
settles the problem for them. Now assume C € Csp(X2,¢q"P). Then there is
a set C' € Cop(X2,¢*P) such that CNC' =0 and (¢*P)C = (¢*P)C" = 3.
Hence qC € Cop( X1, P) and so {M*(¢"P)IC = [¢*(M*P)|C = 3.

Remark 16 Notice that this theorem is the medians version of Theorem 2.
However, this statement is more general involving solid image transforma-
tions. Still an important class of ezamples is when the émage transformation
is derived from a solid variable.

Example 10 The sphere with uniform measure (i.e. Lebesgue measure on
the sphere). Any attempt to find natural points of symmetry in the sphere
with this distribution would result either in the whole sphere or the empty
set. Which leaves us stripped of statistical concepts to model the median.
One might of course use some of the computational methods to any sample in
order to find some center location. But this would be strictly computational
with now clear definition of what is estimated. However, in terms of the
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coordinates on a map (as used by [9]) it does make sense to talk about sample
medians also in this setting. Those are essentially projecting spheric points
down to there coordinates which both are solid variables. The sphere being a
metric g-space will have a median as well as a sample median for any finite
number of variables in the sphere and any Borel measure.

6 Non-linearity and continuity of expectations

The (sample) median (i.e. the median and the sample median) defined in
balls is equivariant under projections. Hence we have a tool for investi-
gating the median in terms of the different coordinates, which is perhaps
the most natural variables in a multidimensional setting. In particular for
the sample median we get the distribution of the middle order statistic in
each coordinate. More generally we have the possibility of investigating the
expectations of any transformation by a real-valued solid variable in terms
of quasi-integrals. We will give a brief presentation of the integration theory
below.

The integral with respect to a quasi-probability 4 in a compact Hausdorff
space X is defined on C(X), i.e. the continuous real-valued functions on
X. Given any function f € C(X), the quasi-probability p is mapped to
a quasi-probability 1, given by u:(A) = u(f~*(A)) for A € A(R). Which
of course is just a transformation of & by the variable 7. Since R is one
dimensional y; is a regular Borel measure. Hence we can define the integral
or expectation of f with respect to u as E,(f) = [ #dps(z), i.e. the integral
of the identity function f(z) = x over R with respect to the measure u s One
of the remarkable properties of this integral is the lack of linearity. However,
the integral is linear on uniformly closed singly generated subalgebras of
C(X). We will denote the subalgebra generated by a function f € C(X)
with Ay = {¢of:¢ € Cspf)}, where spf = {f(z) : z € X} is the range
of f in R.

The singly generated subalgebras are abstractly defined and so it is not
always easy to decide wether two functions are contained in the same subalge-
bra or not. To complicate things further, it is known that the quasi-integrals
are linear on even larger classes of functions, e.g. analytic subalgebras (a pre-
sentation of analytic subalgebras can be found in [§]). Exactly when quasi-
integrals are linear is still not known. However, several results on explicitly
determining linearity are known.
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We will summarize the linearity problem in terms of medians below and
accordingly give an example of non-linearity.

Proposition 9 Let X be a metric ¢-space and let 11 be a (sample) median in

X. If f1, fa € As for some f € C(X), then Eu(fi + f2) = Eu(fi) + Eu(f2)-
For any a € R, f € C(X) we have E,(af} = aB.(f).

Remark 17 Some caution is necessary. The (sample) median is not equi-
variant under all the continuous functions in X. Hence the expectation need
not make much sense in terms of the (sample) median. However, splitting o
variable into o sum is often convenient in a computational setting. In that
case we need not be concerned with equivariance problems.

Example 11 Consider the 2-simplez
A= {(x,y) ceR*:z+y<randz,y2 0}

with > 0 and three predetermined ezperiments (0,0}, (0,7) and (r,0).
That is, we are considering three variables {T} : {p} — E'} by T1(p) = (0,0),
To(p) = (0,7) and T3(p) = (r,0), where {p} is o one point space endowed
with a probability measure which of course is the Dirac measure 6,. Denote
the sample median of {1;} with p. Then for any solid subset A C E we
have 1A equal zero if less than two of the points are contained in A and
one otherwise. Let Py and Py respectively be the projections doun to the
coordinates axmis, i.e. Px : {z,y) — z and Py : (z,y) = y. Then both
Px and Py as well as their sum Py + Py are solid variables. However
both pp, and pp, are poinimasses in zero, whereas p, ,p, 18 & POINIMASS
in r. Hence we have E,(Px + Py) = 1 but By(Px) = Bu(Py) = 0, s0
obviously for any 7 > 0 we have E,(Px + Py) # Eu(Px) + Eu(Py). Notice
that the supremum norm of the projections on the space A, are both r (i.e.
[ Pxll.. = [|Prlle = sup {|Pr(z, )} : (z,y) € A} = r). This states that the
loss of linearity is as bad as the maximum of the functions involved.

Remark 18 The example is rather disappointing. The coordinates which
are the most natural variables and a combination of three pointmasses which
perhaps is the simplest nontrivial sample median we can construct does not
obey linearity. Also the ezample illustrates that we must treat the medion
with caution. For an applied setting where linearity is o crucial property
this complicates the applicability of the median. In computational problems

21



the knowledge of linearity is often employed to avoid situations of numerical
instabilily. Proposition 9 suggests that we in some situations still can assume
linearity. This is exemplified in the example below.

Example 12 Assume that we are doing experiments where we are observing
n real valued solid variables Tv, Ty, ..., Ty, on a g-space X. Assume X is given a
- quasi-probability p according to the sample median of a collection of variables
(not the variables {T;}) in X. Whereas we are observing {T;}7, we may be
interested in estimating the expectation of a continuous variable f on some
subset of R, i.e. we want to estimate the expectation E,(f(Ty, Ty, ..., Th)).
For instance in the example above the function f is addition of the projections
Px and Py. Suppose the variables can be assumed to be transformations of
another variable T' € C(X}, i.e. {I;} C Ar (which is not the case for the
projections). Then we are in a linear situation and we may for instance
integrate the Taylor series of f term by term.

In [1] it is shown that the quasi-integral is uniformly continuous (this is
not a trivial result). We will restate that result in our setting:

Proposition 10 The expectation of the (sample}median is norm decreasing,
e |E(f) — Elg)l < IIf — gl for any f,g € C(X).

Remark 19 Notice that this result ensures that a small experimental error
or a small perturbation of a variable will not influence the expectation dra-
matically. In other words, the expectation E, : C{X) — R is robust.

Acknowledgements I want to thank Mohsen Pourahmadi for encourag-
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Abstract

Quasi-linear functionals are shown to be uniformly continuous, and
decomposable into a difference of two quasi-integrals. A predual space
for the quasi-linear functionals inducing the weak™*-topology is given.
General construction of quasi-linear funictionals by solid set functions
and g-functions are given.

1 Introduction

The theory of quasi-measures originated in [1], and was shown there to re-
present quasi-integrals (for definitions see basic results section}. The notion
of a signed quasi-measure in a compact Hausdorff space was introduced in
[6] and was shown there to represent bounded quasi-linear functionals. Basic
properties such as continuity and decomposition of signed quasi-measures re-
mained open problems. In this article we show that quasi-linear functionals
are indeed uniformly continuous, countably additive and they decompose
into a difference of quasi-measures in so called g-spaces. We also present a
predual space for the quasi-linear functionals as a direct limit. This turns
the topology of pointwise convergence into a weak*-topology.

Solid set functions have become the main tool for constructing quasi-
measures, hence it would be favourable with a similar concept for signed
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quasi-measures. It turned out that this is possible, but the definition of a
signed solid set function is more complex. The g-functions were introduced
in [4] as an optional construction technique for quasi-measures, a discussion
on signed g-functions is contained in the last section.

2 Basic definitions and results

Throughout the article we will let X denote a compact Hausdorff space. We
will let O(X) and C(X ) denote the open and closed subsets of X respectively.
Fuarthermore we put AX) = 0(X) U C(X). When there is no confusion
concerning the space in question, we will omit the space from the notation.

Notation 1 Whenever U € O, we let h'rn%cg J{C) denote the limit (if any)
[

of the net f(C) with index set {Cec:cCc U}, ordered by inclusion;
conversely, whenever C € C, we let ﬁmgcg f(U) denote the limit of f(U)
€

with index set {U € O : C c U }, ordered by reverse inclusion, (Here f(C)

may be any suitable ezpression in C. ) Subfamilies of C and © may be specified
to restrict the index set further.

Definition 2 4 reql valued, non-negative function #on A is called a signed
quasi-measure if the following hold:

LIf{A W 4 € A, then pllH, A) = Dt HA; (where I indica-
tes disjoint union),

2. There is a constant M < 0o such that whenever A € A, |uA| < M.

3. For any open set U

MU} = lim u(C).
ceC

Combining (1) and (2), we may also define

el = sup {3 " 1A : {4}2; < A disjoins)
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Remark 3 Our definition is different from the definition in [6], but it is
straight forward to prove that the fwo are equivalent. Qur definition is howe-
ver more convenient for the results presented here.

We denote the set of all signed quasi-measures in X by Qs(X). The
collection of quasi-measures will be denoted Q(X).

The quasi-measures originated in [1]. It was proved in [8] that quasi-
measurés are countably additive. Their definition only differs from that of
regular Borel measures by their domain of definition. Still they are a vastly
larger class of set functions with a rich mathematical structure.

With respect to a signed quasi-measure an integration theory hag been
developed. The integral is defined for all continuous functions f € C(X).
Let 4 € Qs(X), f € C(X); then defining p;(4) = p(f1(A4), A € AR)
yvields a regular Borel measure pir in R. (In general, such combination with
a continuous function maps quasi-measures to quasi-measures. However, in
one dimensional spaces it was shown in [7] that all signed quasi-measures
extend uniquely to Borel measures.)

Definition 4 Let € Qg(X) and f € C(X). Then we define

u(f) = [ adny(@

where pi; is the Borel measure given by p;(A) = p{fHA), A € AR).

In the study of quasi-measures and integrals the singly generated subalge-
bras of C(X) plays a crucial part. For f € C(X) let Ay denote the uniformly
closed subalgebra generated by f and the constant functions. By the spectral
theorem this algebra is isomorphic to the continuous functions on the range
of f.

Definition 5 A function p: C(X) — R is called a quasi-linear functional if
it is o linear functional on A; for every f € C(X) and there is an M < oo
such that o(f) < M||fll.:(f € C(X)). If p is positive (i.e. p(fy = 0
whenever f > 0} we call p a quasi-integral.

The quasi-linear functionals and signed quasi-measures were shown to be
in one-to-one correspondence through the integral (c.f. [6]). Accordingly we
will not distinguish between the two and denote both with @ s(X). Similarly
we will denote the quasi-integrals with Q(X).
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Definition 6 If a set A € A has connected complement we call A co-
connected. If a set A € A and its compliment are both connected we will
call the set solid. A restriction to solid sets will be denoted with o subscript
s (e.g. Cs will denote the compact solid sets). A restriction to connected sets
will similarly be denoted by c.

The solid sets play an important role in the theory of quasi-measures..
‘They constitute a small and manageable family of sets that totally determines
a quasi-measure. ‘This is illustrated by the solid set-functions, they were
introduced in [3] and their properties were investigated there. In particular
they are invaluable tools for constructing quasi-measures. We include some
definitions and results from [3] below.
Throughout the remainder of this section we will assume that X is con-
nected and locally connected.

Proposition 7 The following properties hold for X :

1. Let KeC,UecOad K CU. If either K or U is connected, then
there is a setV € O, such that K CVcVclU.

2. Let K € Cc. Then each connected component of V = X\K belongs to
O,.

3 Lt K€ G, U €O and K CU. Then there is a set V € O, such that
KcvcVcU.

Definition 8 A partition of X is a collection of mutually disjoint , non-void
sets {A;}ier C Ay, where at most finitely many of the sets A; are closed, and
such that X = | J;c; Ai. The number of closed sets in a partition P is called
the order of P.Partitions of order 1 is called trivial.

Definition 9 {A;}icr is irreducible if the Jollowing two conditions hold:

1. Uier asec As 18 not co-connected.

2. For any proper subset I' C {i € I: A; € C}, |J,cpp As is co-conmected.
Definition 10 Let n denote the mazimal order of any irreducible partition

of X. If n is finite, let g =n — 1. If X only permits trivial partitions we call
X a g-space and put g = 0.



Remark 11 The genus requirement was treated in [3] and [9]. When X
has genus zero, then X can at most be the disjoint union of two solid sets.
This property is shared by o large class of spaces (e. g. when X is simply
connected).

Proposition 12 Let F = {C;}; CC, (n > 1) be a farmily of disjoint sets
such that U?:z C; is not co-connected. Then F has a subfamaly F' such that
each conmected component Us (i € I) of U = X\ Ug,ex C; belongs to Os and
F''U (U, Us) s an irreducible partition of X.

Definition 13 A function i : A, — RT is a solid set-function if it satisfies

1. For any finite collection of disjoint sets {C1, ..., Co} C Cs such that
C;cCel fori=1,..,n we have

> uC; < pC.
=1
2. For all U € O, we have

w(U) = sup{p(C) : C CU,C € Cs}.

3. For any trivial or irreducible partition {A}ier of X we have

p(X) = }: p(As).

el

The main construction result (Theorem 5.1 in (3]} states that solid set
functions extends uniquely to quasi-measures.

We include the following Definition and Proposition from [4) (with the
generalization that we do not assume f(1) = 1):

Definition 14 A function f : [0,1) — [0,1] 4s called o g-function #f it is
continuous from the right and satisfies

L f(0)=0, fla—) + f(1 —2) = f{1)
2. " F(m) < F(S™, &) whenever 1, T, ..., Tn € [0,1] and 37 @ <
1.
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Let v be a normalized Borel (or quasi-) measure in X, i.e. v(X =1 We
say that v is non-splitting if there is no disjoint pair Cy,C, € C, such that
vC1 > 0, vCy > 0 and vCy + vCy = 1. For instance, Lebesgue-measure on
the unit disk, or the unit sphere (normalized) is non-splitting,

Proposition 15 Let X be o g-space. Let f be a g-function, and let v be
. normalized regular Borel (or quasi-) measure in X, Define i on A, by:
pC = f(vC) ;C € C, and pU = F() = w(X\U) ;U € O, If either v is
non-splitting or f is continuous, then # 18 a solid set-function.

3 Countable additivity

We present here a generalization to signed quasi-measures of the proof in [8]
that quasi-measures are countably additive.
We recall the following lemmas, stated or implicit in [8], Section 3:

Lemma 16 (The Sierpinski Theorem) A compact, connected Hausdorff
space cannot be decomposed into a countgble family of disjoint, non-empty
closed sets.

Lemma 17 Let i be o signed quasi-measure on X and suppose that C ¢ X
is closed and O-dimensional. Then the restriction of 1 to the closed subsets
of C extends to a signed Borel measure on C.

Proof. The restriction gives a finitely additive signed measure on the
algebra, of relatively clopen sets of C, which is then extended by standard
measure theory. m

Lemma 18 Let C C X be closed, and let Y = X/ ~ be the quotient space
obtained by identifying each component of C' to a point. Then Y is a Haus-
dorff space, and the image of C under the quotient map X = YV s
0-dimensional.

Theorem 19 Suppose {C :n € N} is a disjoint collection of closed subsets
of X with C = 4, Cy, closed. Then #(C) = 37w 1(C).

Proof. Let {K; : i € I'} be the collection of connected components of C.
Since K; = Woen(K;NC,), Lemma 16 gives that K; C Cy, for some n;. Asin
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Lemma. 18, let 7(C) be the image of C' by the quotient mapping identifying
cach K; to a point. Then n~}(n(Cy)) = C; and 77 ((C)) = C, since each
C, is a union of components of C, and also 7(C) = ,en 7(Chn)-

By Lemma, 17, the restriction of the signed quasi-measure o 7% to the
closed subsets of the O-dimensional subspace C extends to a signed Borel
measure on C, and in particular it is countably additive there. So

w(C) = (oY) = Y (po ) m(Ca)) = Y 1(Cn).

nel neN

Corollary 20 Every signed quasi-measure on & compact Housdorff space X
is countably additive.

Proof. As in [8], this follows from the above theorem together with the
known countable additivity on open sets (following easily from regularity.)
n

4 Quasi-measures as a dual space

Tn [2] a weak topology for Q(X) was introduced: Any function f € C(X)
may be represented as a functional fon Q(X) by f{p) = p(f). The topology
on Q(X) is defined to be the topology induced by the separating space of
functionals {f : f € C(X)}. This topology might equally well be defined
for Qg{X). The following theorem illustrates that this indeed gives a wealk*-
topology:

Theorem 21 Qg(X) is a dual space where the induced weak *-topology is the
topology of pointwise convergence on Qs(X).

Proof. For f € C(X) let A; denote the uniformly closed subalgebra
generated by f and the constant functions. Whenever g € As we let z'j; :
A, — Ay denote the inclusion map. We may now construct the algebraic
direct limit

% =lim{Ay,i}}



Defining ||-||: €@ Ay — R by &f; — L|fi]| the quotient norm turns ¥
feC(x)

into a seminormed space. The map @ : Qs(X) — X* is now given canonically
by (Pu){®fi) = Tulf;). Note that ®(u) is independent of representatives
in the equivalence classes of X. Furthermore one may check that ® is an
invertible isometry. In particular X* corresponds exactly to those quasi-
linear functionals on C{X) that are continuous at zero. Weak*— convergence
‘15 preserved both ways since pointwise convergence on single elements is
equivalent with pointwise convergence on direct sums of elements. =

Remark 22 Several comments are in order here. Constructing a predual
Banach space for Q(X) was done by D. Grubb. However it is not clear
what the topological properties will be for that construction. The predual
space X shows that the weak topology on Q(X) is really a weak*-topology.
Signed quasi-measures were suggested by D. Grubb in [6] as set functions
representing the quasi-linear functionals on C(X) continuous at zero. This
suggestion s supported by our predual.

5 Decomposition of a signed quasi-measure

In the following, p is a signed quasi-measure on X.

Definition 23 We define u. as a real-valued set function, as follows:
L p (U) =sup{u(K)|K C UK € C(X)}, U € O(X).
2. po (M) =inf{p, (U)|MCUU e OX)}, M e A(X).
We define pp_ = {—pu)4.

We note that because expression (1) is monotonic, open sets automatically
fulfill (2). Thus g is well-defined.

Proposition 24 We have the following properties for u.. :

1. . is non-negative and monotonic.

2. fy = 1



3. py (M) = sup{p (K)K C M,K € C(X)}, M € A(X). (Le p, is
inner reqular as well as outer reqular (equation (2) of the definition. })

4. (U) =sup{p(0)|0 C U,0 € O(X)}, U € O(X).

5. ,LL+(M1 U Mg) = ,[L+(M1) -+ M+(M2), when My N My = 0, and My, M-
are both compact or both open.

6. py (M) = 500 (M), when Wi, M; © M for MM, € A(X), i =
1,...,n,neN.

T p— =g

8 pyp(X) + p(X) = [lpl

Proof. (1) Equation (2) of the definition implies that p is monotonic.
Then i, (M) > 1, (0) = (0) = 0.

(2) If U is open, € > 0, then by the regularity of p we can find K ¢ U
with p(K) > u(U) — ¢, so that g (U) > u(U) —e. Thus p, (U) = u(U) for
U open, and 2, (K) > u{K) for compact sets follows by outer regularity of
poand g .

(3) For closed sets, (3) is obvious from monotonicity. For open sets it
follows from the definition, monotonicity and (2).

(4) Given U and € > 0, select K C U with u(K) > p, (U) — £/2. Then
select O, K C O C U with u(0) > w{K) —¢/2 > p,(U) — &. This gives (<)
in (4), while () follows from monotonicity and (2).

(5) If My, M, are disjoint open sets, then any compact within their union
is the disjoint union of compacts within each, and vice versa, so that (5)
follows from additivity of p. If My, M, are disjoint closed sets, (5) follows
from additivity of 4, on disjoint open sets Oy 2 My, Oz 2 Ma.

(6) Assume that (6) does not hold. By (3), we may then replace any open
M; by a compact contained within it, without making (6) true. But if M; are
all compact, (6) follows from (5) and monotonicity, giving a contradiction.

(7) By regularity it suffices to show equality on open sets. Given U open
and € > 0, select K C U such that u(K) > pu,(U) — ¢, then (e.g. by (4)
applied to p_) p(U) > —p(U\ K) = p(K) — p(U) > p,.(U) — p(U) —¢, or
p, (U) — p_(U) < p(U). Switching pz, and p_ gives the opposite inequality.

9



(8) Let &€ > 0. Note from (7) that if K € C(X) is such that |u(K) ~
(i (X)] <&, then {(—p(X \ K)) — p.(X)| < &. Then

lell 2 1B+ XN K 2 (K = X\ K) > py (X)) + 5 (X) — 2.

In the other direction, let (M), with M; € A(X),i=1,... ,n,n e Nbe
‘a disjoint family such that Y 2, |u(M;)] > fjull —e. Let I, = {i|u(M;) >
0,i=1,...,n} and I_ = {i|u(M;}) < 0,s=1,... ,n}. Then

pa () + (X)) 2 Y (M) + > (—p Z!# D> (el e

il el

We have seen that p, and p._ share many of the properties of (non-
negative) quasi-measures. In fact the only axiom missing so far is po (K) +

p (X \K) = p (X). As the following example shows, there is no hope of
getting this in general.

Example 25 Let p,p2, p3,ps be four distinct points in the disk D. Define
four solid set functions as follows: For M a solid set (open or closed)

B 1 card(M N{p1,pa,0s}) > 2
vi(M) = { 0 otherwise

_ J 1 card(M N {py,p3,ps}) > 2
vy(M) = {O otherwise

U3(M) = or {p21p37p4} g M

1 ;1€ M and M N0 {py,ps, pa} 5 0,
0 otherwise

ve(M) = or {p1,p2, 3} C M

1 ps€ M and M N {p1,pa,ps} # 0,
0 otherwise

It is readily verified that each of the above extends to a {0,1}-valued quasi-
measure, and that vy +ve =vs+vy. Then v = vy —va = vy — vy is a signed
quast-measure, and furthermore we must have v, < vy, vy.
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It follows that if v,. were a quasi-measure, it would be proportional to both
of the extreme quasi-measures vy and Vg, and thus identically zero. Let M be
a solid set containing pe and ps but not py or ps; then v (M) 2 v(M) =L
So v, cannot be a quasi-measure.

We will therefore define a suitable class of set functions containing g,
and p_.

Definition 26 If u : A(X) — [0,00) is regular and monotonic, and if it
sotisfies

v{M) > Zn: v(M;)

whenever M 2 Wi, M;, with M, M; € A(X),i=1,...,m, 7 € N, we shall
call it o deficient quasi-measure.

6 Continuity and decomposition of a quasi-
linear functionals

We now wish to define how to integrate continuous functions with respect to
tty. Like in the case of quasi-measures, our first step is to use the function
to move the deficient quasi-measure to the real line.

Definition 27

Flp ) (M) = p (F7(M)), feCX,R), MeAR).

Unlike in the case of quasi-measures, f(u,) cannot itself be extended
to a Borel measure, as it is not additive on complements. However, it is a,
deficient quasi-measure, in particular monotonic and regular, which means
that its restriction to leftward infinite closed intervals is extensible to some
Borel measure.

Definition 28 Given f € C(X,R), let df (1) be the Borel measure defined
by extension of

df (4 ) (=00, 2]) = £y )((—00,2]), z €R

i1



(equivalently, z — fpy)((—00,x]) is the cumulative distribution of df (p,).)
We then define the integral of f with respect to po, as

pelh) = | " 2 df (1) (0).

=00

We note that even such a simple change as using rightward infinite inter-
vals will in general give a different integral. We also note that if we use this
construction with a (possibly signed) quasi-measure v instead of p,, then
df () becomes equal to f{v), and so the integral is the usual quasi-integral.

Proposition 29 We have the following properties of the integral:

1 plaf +b)=ap, (f) +bp (X),a=0,beR
2. f < g implies ., (f) < py(g)
8.y (f) — p(f) = p(f)
Proof. (1) For a >0, = € R we have
(af +b) (., )((—o0, az + b)) = £y ) (=00, 2]);

so that

pilaf+0) = [z daf + D)@ = [ @+ @)

= o2 dp(ute) +b Jim £()((~00,])
= a,u+(f)+b,u,+(X).

For a = 0, f does not affect the value of the integral, so we may assume
f = 0; then a does not affect the value, and we may reduce to the a > ( case.
(2) If f < g, then for each z € R we have f~!((—oo0,2]) 2 g7 ({—00, zl)
and o f{s, )((—o0,2]) 2 g(p,)((—o00, }).
Let M > 0 be such that | f], lg] < M, so that both df (1, ) and dg(p..) have
support in [-M, M]. Since the identity z — x on [—M, M] is continuous,
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and both it and & — f(p.){{—o0, z]) are of bounded variation there, we may

integrate by parts:

uf) = [ 2 df (1) (2)

M

= (2f (1) (=00, 2]) ez pa

M
=-M~[MﬂmﬂPwﬂD®

< Mm[Mmmxemwnm
1(g).

(8) In addition to 24.8, we need merely note that for a fixed f, definitions
27 and 28 are all linear in the deficient quasi-measure. ®

Theorem 30 Every quasi-linear functional p : C(X,R) — R is uniformly

continuous; specifically, for f,g € C(X,R)

2(f) = 2l < llull 1 — glleo-

Proof. We have f — ||f — glloo £ 9 < f +[If — gllo, 50 by proposition 29

H-z-(f)—ﬂ—e(x) If—9glle < #+(9) <
po(f) = (X)If —glle < n(g) <

and then by 24.8

w(FY =Nl 11 = glle = ulf)

(
(g)
(
(

R VAN VAN
=

f
ulf

giving the result. m

S H+(f)"+"#+(X) ||f—9'“<x>
p_(F) +p (X)) 1~ glleo

LX)+ p (XN f - glle

p(f) + (e (X) + (XN S — 9lloo
)+ el 1 = glioos

Remark 31 With uniform continuity the choice of definition for quasi-linear

functionals seems to be the appropriate one.

13



7 Decomposition into quasi~measures

positions vy — v5 and V4 —~ vy of that example both are minima] in the sense
that none of the pairs (vq,v3) and (Vg,b’4) can bound any common posi-
‘tive quasi-measure other than zero, as the argument that v, is not a quasi-
measure would apply to it as well.

From its definition and properties, we may characterize Hy as follows: fhy
is the unique smallest positive monotone regular function bounding x from
above. Clearly if 4 = H1 — po, Where p, 1, are positive quasi-measures, then
#; must have the same properties. Thus we have the following proposition:

Proposition 32 4 positive quasi-measure # gives a decomposition of a 519~
ned guasi-measure t ko o difference of positive quasi-measures by JTES

W= =), if and only if 1 > thy-

In the following, let X be a a-space. We may then use the full power
of the solid set function construction to construct g positive quasi-measure
bounding 4 + from above, and thus giving a decomposition of fhe

Definition 33 Let v be g deficient quasi-measure, and let p € X be an
arbitrary point, We then define the solid set Function v® As(X) = R by

POy — ) VM), &M
Y (M)_{ V(X)) — (X \ M), ﬁeM

Proposition 84 We have the Jollowing properties for pP:
L v?(X) = v(X).
2. VP extends to a (positive) quasi-measure on X.
8 (M) > v(M), M e A(X).

Proof. (1) Obvious.

(2) Since v(X) — X\ M) > v(M) for any set in A(X), and since a set
containing p cannot be a subset of a set not containing p, 1? is monotonic on
solid sets.

14



If U is an open solid set, p € U, then we may add p to any compact
set approximating U from within, and then find a solid compact subset of
U/ containing the resulting compact set. If p € U, then any compact set
contained in U cannot contain p. Thus inner regularity of v follows from
the regularity of each defining expression.

Additivity on complements is built into the definition.

Let My, i=1,...,n, n €N be disjoint solid sets, M 2 lJ;_, M;, with M
a solid set. If none of the M; contains p, then

(M) 2 v(M) 2> v(M) =) VP (M),
i=1 i=1
If p € M, say, then by the above

X\ M) > ZVP(MI-)+VP(X\M);

P(M) = P(X)— "X\ M)
> V(X) = (X N\ M)+ V(M)

= ZUP(Mi)-

i=1

Thus v? extends to a quasi-measure.

(3) Let M be a connected compact set, and let (M;)ie; be the family of
(open solid) components of its complement. If p € M, then

(M) = vH(X)— ) V(M)

el



If p € My, say, then

V(M) = vP(X) =) vP(M)

= V(X)) - (X)) - v(X\ M) = > (M)
ie\{1}
= v(X\M)— > v(M:) > v(M).
ie\{1}

Let U be an arbitrary open set; then by inner regularity v?(U)} and v(U)
may be approximated by the values of v* and v on finite disjoint unions
of compact connected sets contained in U, and so satisfy the inequality.
Arbitrary compact sets then follow by outer regularity. m

Theorem 35 Any signed quasi-measure p on a g-space X may be written
as the difference of positive quasi-measures y, and p,. Moreover, |ju|l =

(X)) + pa (X}

Proof. Define u; = pff and p, = pP. Then for any solid set M not
containing p, u(M) = (M) — pp(M), and p(X) = p (X) ~ p_(X) =
p1(X) — po(X), which by taking complements gives u{M) = i, (M) — (M)
for solid sets M containing p. By uniqueness of extension of signed solid set
functions to signed quasi-measures, p = p; — u,.

Finally, ||pll = gy (X) 4 p_(X) = g (X) + pp(X). m

8 Signed solid set functions

We wish to extend to signed quasi-measures Aarnes’s construction of a quasi-
measure from its values at solid sets. The extension definition is quite similar,
replacing suprema by more general limits of nets. However, checking that a
“signed solid set function” corresponds to a signed quasi-measure presents
additional difficulties since the lack of monotonicity means that boundedness
of the measure on solid sets, or even connected sets, is no longer sufficient to
check boundedness of the quasi-measure; also, limits need special care since
sets “squeezed” between sets close in measure need no longer themselves be
close in measure.

16



8.1 Topological preliminaries

For the entirety of this section, X will be a connected, locally connected,
compact Hausdorff space.
We start with a generalization of Proposition 7.2:

Proposition 36 Let M be a subset of X, and let C be a component of M.
Then each co-component of C contains a co-component of M. In particular,
if M has o finite number of co-components, then so does C, and if M is
co-connected, C is solid.

Proof. Let D be a co-component of C, and assume that it contains
no co-component of M. Since any co-component of M is a connected set
contained in X \ M ¢ X \ C, D cannot intersect it without containing it,
and so D ¢ M. But then D must be contained in a component of M other
than €, and similarly that component must be contained in D. So D is a
component of M.

Since ¢ and D are distinct components of M, the closure of each does
not intersect the other. But then the closure of D is a connected set disjoint
from C, and containing D; since D is a co-component of C it must therefore
be its own closure.

But also D ¢ X\ C € X\ C, so D is a closed component of the open set
X\ C, a contradiction since X is locally connected. ™

Definition 87 By Cy we denote the family of closed sets with a finite number
of components. By Cy we denote the subfamily of Co consisting of those sets
whose complements each have a finite number of co-components. By Op we
denote the family of open sets whose complements are in Co.

Corollary 38 Each (open) component of an Op-set has a finite number of
co-components, each a compact solid set.

Proof. In Proposition 36, consider first M to be the open set in question,
and secondly consider M to be the complement of any of its components. ®

Proposition 39 Let C € C, U € O, C C U. Then there exists C' € C;s such
that C Cc C'c U.
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Proof. Only a finite number of components of U may intersect C, so
it suflices to consider the case of U connected. First by Proposition 7 let
C C C" C U with C” connected. Now we note that a finite number of co-
components of X \ C” cover X \ U; we obtain C’ as the complement of their
union. ™

Notation 40 For each A € Ay, we write its components with wndices, i.e.
Ay, Ay oy A, oy Ayl Likewise we write each (solid) co-component of A
as Al. Thus A = g (X \ k; Al). This notation is unique up to obvious
permutations.

Lemma 41 Let C € C, with X\C = |J;; C* where {C'}yer C O, is
disjoint collection. Then C'U (|U;e;, CF) € C, for any set of indices Iy C 1.

Proof. Obviously C' U (U;er, C°) = X\(Uigy, €°) € C. Suppose €' =
C'U Uz, C") is not connected. Then there must be disjoint open sets U
and V' such that §  C'NU,C"' NV € C, but C and {C*} are all connected,
hence they are all contained in either U or V respectively. We may assume
without loss of generality that C' C U, then C'NV = {Jgiy, C* € O. Now
we reach a contradiction since X is connected and therefore contains no
nontrivial clopen sets. m

8.2 Definition of signed solid set functions

‘The following Proposition describes our general plan for how to recover the
value of a signed quasi-measure from its values at solid sets.

Proposition 42 Let i be a signed quasi-measure. Then
1 w(C) = X, (w(X) = ;D)) C e Go
2. pU) = limgecg; w(C),UeO
5. 4(C) = p(X) - u(X\ C), CecC.
Proof. Equations (1) and (3) are obvious from additivity. That it suffices

to consider Cy-sets {or even Cy-sets) in the limit follows from Proposition 39.
=

18



Definition 43 A function p : A, ~» R is o signed solid set function ¢f it
satisfies

1. There exists M > 0 such that for all C € Cy,

> (M(X) - ;MC?))

(3

< M.

2. For all U € O, we have

pU) = lim u(C).
CeCs

3. For any trivial or irreducible partition {A;}ier of X we have

p(X)y = ulAs).

el

Proposition 44 Let i be a signed solid set function, then p may be extended
to .AQ by

1 wC) = 5 (mX) = 5, m(C)), C e
2. u(U) = (X)) — p(X\U), U € Op.
In particular, the extension of p is bounded on Ap.

Proof. If C € Cy then for any component C; of C, {uC?}; is nonzero
for at most a countable number of indices by Definition 43.1 and Lemma
41. Moreover, the sum 3 ; #{C?) is absolutely convergent. Hence p is well-
defined and real valued on Ag. Given £ > 0 let {C;}7; be the components
of C and for each ¢ pick n; such that

u(C) - (,u(X) - iﬂ(cg)) | < ,,2
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and such that Cy, C (J7, CY for k # 4. Then the set C' = Ur,[X \(U5: . CN)
is in Cy and we get

1(C) = WO < (G - (#(X) - 2#(05)) <e

-Accordingly u is bounded by M on Cy. By (2) 1 must be bounded by 2M
on Ag. One may verify that the extension is consistent with the definition of
pon 4, m

Remark 45 We will assume from now on that j is a signed solid set function
extended to Ay according to the proposition above.

Corollary 46 We have the following properties for p.

1. Let C,C" € Gy with CNC' =0, then u(C W C") = u(C) + u(C").
2. Let CeCy,Ue Oy CCU, then ,M(U\C) = u(U) — u(C).

3. Let C € C. with co-components {C7}. jeq- Then for any subset I C J

we have
w7 = _u(c)

Jer jel
4. Let (Ci)ier € Cy be a disjoint family of Co-sets, then >, |u(Ci)| < 2M.

5. Let (Uy)ier C Oy be a disjoint family of solid open sets, then Zz (U] <
2M.

Proof. (1) The family C; is closed under finite unions, and the compo-
nents of a (disjoint) union are the components of the individual sets.

(2) This follows from (1) by considering C’' = X \ U.

(3) C'=CU(U;¢; C7) € C. by Lemma 41 and hence

#(UC”') = p(X) - p(C) = w(X) - Zu (C%))
= > u(C)
jel
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(4) Tt suffices to consider finite families. Let I, = {i|u(C;) > 0}, and
I_=1TI\1I.. Then

DGl =3 IWCl + Sl = (| el +iu(|J Gl s 2M.

el i6l.. i€l il

5) Let 0 < ¢ < 1. By Definition 43.2 we may find C; € C;, C; C U, with
1(Ci)| = (1 — &)|u(Us)|, from which (4) gives the result. =

8.3 Regularity on Ay

We will now embark on proving the result (Proposition 51) that the signed
solid set functions are regular on Ay. For positive quasi-measures, this es-
sentially corresponds to condition (Q3)o of [3], section 4. Condition (Q1)o is
monotonicity, which we do not have; condition (Q2)o is additivity on disjoint
Co-sets, which is Corollary 46.1.

Lemma 47 Given e > 0 and C € C,, there is a U € O, such that K €
Co, K C U\C wmplies |u{K)} < €.

Proof. Assume to the contrary that no such set U € O, exists. Then
recursively there is a set K; € Co,K; C O;\C with |p(K;)! > € and by
Proposition 7.3 a set ;41 € Os with C C Oiq C O \ K; (O may be
taken to be X). Now for each finite set I C N we have J;; K: € Cp and
S |u(K)! > en violating the boundedness of p on Co. ®

Lemma 48 If U € O, has a finite number of co-components, which are all
solid, then

u(U) = lim u(C)

ccu
CeCp

Proof. Let {K,}7., denote the co-components of U. Given e > 0 pick
sets {U;}7, C O, such that K € Co, K C U;\ K implies |(K)| < £ and such
that U € O,, K; C U C U; implies |p(U) — p(K;)| < £ (by Lemma 47 and
Definition 43.2 respectively). By Proposition 7.1 there is a set C' € C; with
X\(U,e; Us) € € C U. By Lemma 41 we may assume that all co-components
C7 contain exactly one K; (replace C with C U (U{C? : C7n (UL, Ki) =
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0})}). We now claim that F € Cp,C € F C U implies |u(U) — p(F)| < 5
(completing the proof).

One of the components say F' of F' must contain C (since C is connected)
and F\F" € Co with F\F' C U, U\K;, F\F'NU, € Cy fori = 1,....n
Hence |p(F\F')| <e.

Let {V;}32, (possibly finite collection) be the co-components of F' where p

.1s noNzero and Vin(UiLy i) = 0. Pick F; € C,, F; C V; with |u(V;) — p(F)| <
= fori=1,2,. NOWUZ_ Fy C UL UA\K; and U, F; € Cg for m € N, so
Uiy F)l < . For m sufficiently large we have |u( 72, Vi) — p(UR, Fi)| <
2e, implying [p(lJ V)] = |3 u(V;)| < 3e (c.f. Corollary 46 3).

Finally, we have

k(U) = ) < W(U) = w(F) + & < |uU) — p(F U (JW3))] +4¢ < 5e

where the last inequality is due to each co-component of F' U (|JV;) being
an open solid set U with K; C U C U; for some choice of . The proof is
complete. m

Lemma 49 For all U € O,

hm uC = Z uU;.
CGCO

Proof. By Corollary 46.4 and monotone convergence we have

Z sup |pC| < 2M.
ccU;

Given £ > 0, we may therefore write U = U’ w U”, U/, U" € O, where
= [tf;=.; U} consists of a finite number of components of I/ and

|Z,u U < sup wC| < Z sup” |uC| < e.
CECo i ngﬂ

By Lemma 48 we then select C; € U] such that F € Cy, C; C F C U/ implies
u(U2) ~ u(F)| < e/n. Let C = WL, C:
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We then have that F' € Gy, C C F C U implies
1> " uli — u(F)] < Z!u (U) — p(FOU)| +] ZuU" — W(F U]

< Zs/n+2£ = 3e.

i=1

Lemma 50 Let U € Oy with solid co-components. Then

=y p(U

iel

Proof. Let {C;}., denote the co-components of U. We have the equi-
valent statement:

= > u(W) +Z#

igl

The proof is by induction on n. If n = 0, then U = X and the statement is
trivial. If n = 1, then U € @, and we have a trivial partition and equality
follows. Assume the equation to hold up to an arbitrary n € N. If U is
connected, then equality follows from the definition of p on Oy. If U is not
connected, then Proposition 12 applies to the collection {C; }”"’rl That is we
have a subfamily {Ci},e,, cardJ > 2 such that X = (U;e; Ci) U (User O:)
is an irreducible partition of X (here O = X\{J,.; Ci). By Definition 43.3
we have

=5 w0y + 3 u(C
el ieJ
For an arbitrary choice of ' € I' we have

Oy=(UC§ ul U w

CiCOi.' Ulf'COir
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Now the induction hypothesis applies to the collection {C;: C; C O} U{X\Oy}
since it consists of at most n solid compact sets. We have

pX) = Y0 pU)+ Y WG+ u(X\Oy) =

Ulcoy CiCO,
wOs) = N u(Ui)+ > Gy
U;CO,;: C,;COif
Finally, we obtain
re1
pX) =D 0+ (G =" p(U) + 3 ulCy)
Eer ied el i=1

The proof is complete. m
Proposition 51 For oll U € Oy we have

wU) = lim uC.
Celo

Proof. We will show that u{U) = . u(U;), from which the result follows
by Lemma 49. Throughout the proof let C = X\U € &,

We will first prove a special case. Assume that for each ¢ there is a § such
that Cx C Cf for all k. Let O = J,, {C{ : C, N C7 = ¢ for all k}.

Gonsider thesets &; = CU{U,.0,007m0 o o CF)- Wehave (K, i€ I} €

Cs, so O" = X\ (U K;) is an open set in O with solid co-components. By
Lemma 50, u(0’) =", O} Then

wU) = u(X)“Z(M(X)—Zu(Cf))

t

= wX) =Y (k) - Y u(ch)

CyNCY =0, Yk

= u(X) = D K + 3 u(0)
= w0+ ) _p(0:) = 3 (0} + 3 u(0))
= > p(Us),

i
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completing the proof for this case.

Let n = card {C; : ¢ € I'}. The remaining proof will be by induction on n.

For n < 2 we must be in the case already proved. Assume pu(U) = 3, p(Us)
to hold for n = 1,2,....k, and let C € Cp with card {Ci} = k + 1.

Having proved the first case, we may now assume that there are distinct

i, k1, ko together with j, such that Cy, C C? but Ck, N c! = 0.

Now the induction hypothesis applies to the collection K = X \ O =

{GuCiiu{C: Cen C! =0, k#1} and to the collection K' = X\ 0’ =
{(X\CIYU{Cy: Cr C CI}. Then KNK' = C, KUK’ = X {i.e. ONO" = 0)
and

D_uU) = ) u0)+ D05 = p(0) + p(0)

(by induction)
= (u(X) - pCUCH - > b(Ck)

Ck2§f=@
o (p(X) = p(X\CD = D p(Ce)
lo/R <o/
= ST (Ch + (CF) = D w(Ci) = p(X) = p(C:) = D klCh)
15 kostd keghi

= u(U).

8.4 Extension to A

Lemma 52 Let p be a signed solid set function extended to Ay. For any
open set U, limgey pC exists.

CeCy

Proof. Let C; C U, C; € Cy; then recursively there is a set V; € O

with CL C Vi ¢ Vi € U and aset Cy € Cp with Vi C Cy C U. We obtain
an increasing sequence {C;}. Now suppose to the contrary that the limit
does not exist. Then there is an € > 0 such that {C;} may be chosen with
|nCs — pCipa| > € and V; with |pV; — uCy < § fori=1,2,..

Weget e < |uCs — uCiypa| = |Ci = pVira + Viga ~ pCia| < |pCi — uVip |+

|1Visy — pCip| < WuCi — uViga|+£, accordingly |uC; ~ pViya| 2 5. We have
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constructed a disjoint sequence {V3;11\Coi} C Op with |1(Vas1\Cas)| > o
0= 1,2, ... Finally, pick K; C Va1 \Cuy, K; € Cp with |1 (Vaig\Cos) — K|
¢ implying [uK;| > §. We reach a contradiction with 37, |u(K;)| = co.

A

Theorem 53 A signed solid set function i : A, — R extends uniquely to
a signed quasi-measure in X. Conversely, the restriction of a signed quasi-
measure to the solid sets is a signed solid set function.

Proof. For an arbitrary set in A we define p by
L. @V =limgey pC, V € O
Celp

2. uC = puX — w(X\C), C € C.

Clearly this is consistent with the definition on A,. We start by proving
the regularity (Definition 2.3). Let ¢ > 0 and U € O be arbitrary. Then
by Lemma 52 there is a set C' € Cy; C C U such that for any set C' € Gy
with C C ' C U we have |uC — uC'| < §£. Now let K be any closed set
with €' C K C U. It suffices to show that {uC' — uK| < e. To this end
choose a set K’ € €y such that X\U C K' € X\K and |u(X\K) — pK'| =
|u(X\K') — pK| < £ (by Lemma 52). Again by Lemma 52 and Proposition
51 |u(X\K') — pC| < £. We have

C — pK| < |uC — p(X\K')| + |w(X\K') — pK| <,

which establishes 2.3.

For 2.2, it is clear from the definition of 4 on open sets that sup{|ul] :
U € O} < M. Notice that by complement we have for any set C' € C that
pC = Iimggg wU. Hence |uA] < M for any set A € A.

It remains to prove additivity (2.1). Let U; and U, be disjoint open
sets. For any pair of closed sets C1,Cy € Cy; C, C U5, Co C Uy, we have
C1UCy € Cy; C1UC; C Uy UU,. Conversely, for any C € Co; C CUUU, we
have CNU; € Cg and C N Uy € Cy. Hence by additivity of u on C; we have

p{UhUU,) = lim uC = ollc%l wC + &%2 puC = ply + ply

C'cl Uiy
Celo Cely CeCy

By induction p is finitely additive on open sets. Now let C1,Cy € C be
disjoint. Similarly as above we obtain

MO G = o ey #U = iU+ Jimy i = Gy 1C,
Veo Ve UeC
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Finally, let A3, Ag, ..., A, € A be a disjoint collection with | J[_; A: € A. Put
Ag = X\ UL, A;; by finite additivity on open and closed sets respectively,
and (2) we get

pX = plJA) = p(lJ 4)+u( | 4) = pdo+ Y _pA:

i=({} AeC A0 j=]

k(2 n
uX = p(|JA) + D pd,
i=1

i=]

i

and hence
n

Z(GENEDIZE

i=1

The uniqueness of the extension follows from Proposition 42.

Now assume instead p to be a signed quasi-measure, and consider its
restriction to A,. Definition 43.1 follows by Proposition 42.1 and Definition
9.1; 43.2 follows from finite additivity, and that it suffices to consider solid
sets in 43.3 follows from Proposition 7.3. &

9 Signed g-functions

The g-functions originated in [4] and have proven to be an efficient tool
for constructing quasi-measures (see e.g. [5]). It is natural to ask whether
a similar construction technique might apply to signed quasi-measures. It
turned out that this is possible.

Throughout this section we will let X denote a g-space. Let Q1(X) denote
the normalized quasi-measures (i.e. u(X) = 1). We say that p € Q:1(X) is
non-splitting if there is no disjoint pair Cy,Cy € C, such that u(Ci) > 0,
1(Co) > 0 and u(Cy) + p(Cs) = 1 (Lebesgue measure on the disk or sphere
are examples of non-splitting measures).

Definition 54 For f:[0,1] = R, p € Qi(X), C € C, ,define fu(1) : Cs — R
by
[f())(C) = f(u(C)) for all C € Cs

Then f is colled a signed g-function if f.(u) extends to o signed solid set
function (and hence to a signed quasi-measure) in X for any g-space X, and
any non-splitting p € Q1(X).
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Remark 55 If f is a signed g-function, then f.(u) is determined on O, by
(fe)(U) = (fsp)(X) ~ (fp)(X\U) = f(1) = (fu) (X\U). (1)

Since X ts a g-space it only ezhibils trivial partitions. Hence (1) assures
the additivity requirement (Definition 43.3) of fiu trivially. For any signed
g-function f we must also have f(0) = O since the empty set always has
- measure zero.

Proposition 56 If f is a signed ¢-funclion then
1 flz7) + f(l =z} = f(1) for all z € (0, 1].
2. f is continuous from the right.

3. f has bounded variation.

Proof. Let m be the Lebesgue measure on the unit interval. Then
f«m extends to a signed guasi-measure in R, and hence extends uniquely
to a regular signed Borel measure in R. The Proposition now follows from
elementary measure theory. m

Example 57 Let f:1{0,1] - R be given by

_ \/5 ) xe[O}%]
1@={ g =z | fepd

Then tim,_o+ f/(2) = 00, so0 for any M there is ane > 0 and n € N such
that ne < 1 and nf(e) > M. Let m be the normalized Lebesque measure in
the unit disk D. Choose disjoint sets {C;}._, < Cs such that m(C)) = - =
m(Cy,) = e. Assuming that f is a signed g-function we have (fom)({JC;) =
S(fem}(C:) > M, which is a contradiction. Apparently Proposition 56 does
not provide sufficient conditions for a signed g-function.

In [4] it was shown that a convex funtion on the interval [0,1] extends
uniquely to a g-function on the whole unit interval. This immediately provi-
des us with a large class of signed g-functions:

Proposition 58 If f : [0,1] — R with f(0) = 0 is differentiable, and f'
has bounded variation, then f extends to a continuous signed g-function on
[0,1].
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Proof. If f has bounded variation, then f' = g — h where g and h are
monotone functions. In particular, f is the difference of two convex functions,
say fi and fa, on the interval [0,%]. Since f(0) = f1(0) — f2(0) = 0 we may
assume that f1{0) = f2(0) = 0. Assuming continuity of f, Proposition 56
requires that f{z) -+ f(1—z) = f(1) ; (z € [0,1]). Accordingly we must have

_ | filz) = folz) ; 2 €(0,3]
f(m)_{ f(1)~f12(1_$)—f2(1—$) ; we[%j]

implying that f(1) = 2f1(3) — 2f2(3). Now f:[0,1] — R is the difference of
two g-functions k1, kg given by

R I ) ‘
ki(z) {zfi(%)_hfi(l_x) ;T €3

Example 59 Let f(z) = 22° — 32% + 2z : [0,1] — R, and again let m
denote the normalized Lebesque measure in the unit disk D. Then f is a
signed g-function by Proposition 58. It is strictly increasing and positive.
However, f splits into the difference 2z and 3z* — 2z where the latter is
knoun to be a g-function which maps even m to non-trivial quasi-measures
(i.e. quasi-measures which are not restrictions of reqular Borel measures).
Hence fym is a signed quasi-measure, but it is neither a quasi-measure nor o
signed Borel measure. Indeed, let C1,Cy € C(D) be disjoint with m(C1) = 3,
m(Cy) = 2, and choose C € C;(D) with CyUC, C C and m(C) = %. Then
(£,m)C) < (F:m)(Cy) + (fim)(Ce), and consequently fum is not a quasi-
MEASUTE,

Before we embark on a total classification of the signed g-functions, we
will need some notation for trees:

Notation 60 We will assume a rooted tree T = (V, E) to be finite and
directed, where V is the set of vertices and E i3 the set of edges. There is a
level function l: V — N where the root has level zero, vertices adjecent to the
root has level one and so forth. There are two maps s : B — V determined
by e = (s(e),r(e)) (;e € E). We callr and s the range and source map of T
respectively.
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Proposition 61 Let X be any g-space and let C € Cy. Then there is a
finite rooted tree T = (V,E) (not necessarily unique) representing C in the
following sense:

1. {A eV :U(A) is an odd number} C C, and {A €V : I(A) is even} C
0.

2. For each e € F we have Waerey A < s(e).

3. Let n = maxyey I'l—%—ﬂ , then

-l W [m Y v

=0 \ [(K)=2i+1 Ver(s—1(K))

Proof. Let X be the root of 7. Pick z ¢ X \C and for each i let j'
be determined by z € C,f'. Put K; = C; U (U#j, Cf), then for i # k we
have K; C Ky, K, C K; or K; N Ky, = 0. Let r(s"'(X)) be the sets K; :
i =1,2,... such that K;\ (Uk#i Kk) # 0. Now recursively for K; ¢ V NC,
let 7(s7(K;)) be the set {C7 } 2500 @nd recursively for C7 let

r(sHC)) = Ke: Ko CL KN\ | | Ki| #0

k#i )
Ky CCg

It is now straight forward to verify the requirements of the tree 7. m

Remark 62 The construction also works for sets in C, (which in general
gwe infinite trees), in spaces of general genus. There is an alternative in-
terpretation of the tree as unrooted, for which a verter V is relabeled with
the set V \ Whye (o wy W, while each edge e is labeled with the original r(e)
if r{e) is open, and with X\r(e) otherwise; in the second case the direction
of the edge is reversed. In this case the vertices are a partition of the space
X, with the source vertices corresponding to the components of C', and the
edges adjacent to o vertex correspond either to its co-complements or to their
complements.
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Definition 63 Let T = (V, E) be a rooted tree with root v, and a function
w:V — RY. We call T monotonic if w(vp) =1 and

w(v) > Z r(e) for allv € V.

ves{e)

where the inequality is strict if [(v) even.

Theorem 64 A function f : (0,1] — R is a signed g-function if and only if
the following hold

1. We have f(0) =0 and

fl@™)+ f(1—2) = f(1) for all z € (0,1].

2. There is an M € R* such that for any monotonic tree (V, E, w) with
root vy we have

S fwe)- Y ) ) <M

{veV:l(v) odd} {veVi{vo}:l(v) even}

Proof. Suppose f is a function satisfying the requirements of the the-
orem. For any q-space X define f. : @1(X) — Q(X) according to Definition
54. Let 4 € Q1(X) be arbitrary, we need to show that fp is a signed solid
set function.

Since g-spaces only exhibit trivial partitions, the additivity requirement
(43.3) is satisfyed by definition of fip on O, The regularity requirement
(43.2) of f.p follows from 64.1.

Let C € Cy, let M be as in 64.2, and let T' = (V,E) be a tree represen-
tation of € according to Proposition 61, with notation as in the proof of the
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proposition. Then (V, E, 1) is a monotonic tree. We obtain

> ((f*/_ﬂ)(X )= > (fu)(CE ))

i J

=Z((f(( )+ 1)) - Z F(u(C?) )’
= [ (st - Srtectn)

J#§
By Theorem 53 and Definition 43 it is now clear that f is a signed g-function.

For the converse, assume that f is a signed g-function. By Proposition
56 it is clear that f(z7)+ f(1—z) = f(1) for all z € (0,1]. Clearly, f(0) =0
since the empty set is a zero set.

1t remains to prove 64.2 for f. Let m denote the Lebesgue measure in
the unit square I? = [0,1] x [0,1]. Then fim : A, — R is assumed to be
a solid set function, and in particular satisfying 43.1 for some M. For any
monotonic tree (V, F, w) we may construct recursively a set C' & C(1?) such
that (V, E) represents C and w = m. The set of vertices V may even be
taken to be rectangles. By the calcuiatlons above we obtain

<M

> fw) - > f(w(v)™)

{veV:i{v) odd} {veV\{vo}:l(v) even}
=5 (f(m(m)) - f(m(cf)-))
i J#§

< M,

_ z(mmx )~ Y (am)(© ))

i J

and hence f satisfyes the requirements of the theorem. The proof is complete.
n

Corollary 65 Let m be Lebesgue measure on the unit square [0,1] x {0,1],
and let f : [0,1] — R. Then f is a signed g-function if and only if fom
extends to a signed gquasi-measure.

32



References

[1] J. F. Aarnes: ”Quasi-states and Quasi-measures,” Adv. in Math. 86
(1991), 41-67.

[2] J. F. Aarnes: "Pure quasi-states and extremal quasi-measures,” Math.
Ann. 295 (1993), 575-588.

[3] J. F. Aarnes: ” Construction of non-subadditive measures and discretiza-
tion of Borel measures,” Fund. Math. 147 (1995), 213-237.

[4] J. F. Aarnes and A. B. Rustad: "Probability and quasi-measures -a new
interpretation,” Math. Scand. 85 (1999), 278-284.

[5] S. Butler: "Q-functions and extreme quasi-measures,” Preprint.

[6] D. Grubb: ”Signed quasi-measures,” Trans. Amer. Math. Soc. 349 (1997),
no. 3, 1081-1089.

[7] D. Grubb: ”Signed quasi-measures and dimension theory,” Proc. Amer.
Soc. vol. 128 (2000), no. 4, 1105-1108.

(8] D. J. Grubb and T. LaBerge: ”Additivity of quasi-measures,” Proc.
Amer. Math. Soc. 126 (1998), no. 10, 3007-3012.

9] F. F. Knutsen: "Topology and the construction of extreme quasi-
measures,” Adv. in Math. 120 (1996}, 302-321.

33





