
Software Startup Engineering: A Systematic Mapping
Study

Vebjørn Berga, Jørgen Birkelanda, Anh Nguyen-Ducb, Ilias Pappasa, Letizia
Jaccheria

aDepartment of Computer Science, Norwegian University of Science and Technology
Sem Sælands vei 9, 7034 Trondheim, Norway

bDepartment of Business and IT, University of South-Eastern Norway
Lærerskoleveien 40, 3679 Notodden, Norway

Abstract

[Context] Software startups have long been a significant driver in economic
growth and innovation. The on-going failure of the major number of startups
calls for a better understanding of state-of-the-practice of startup activities.
[Objective] With a focus on engineering perspective, this study aims at iden-
tifying the change in focus of research area and thematic concepts operating
startup research. [Method] A systematic mapping study on 74 primary pa-
pers (in which 27 papers are newly selected) from 1994 to 2017 was conducted
with a comparison with findings from previous mapping studies. A classifica-
tion schema was developed, and the primary studies were ranked according to
their rigour. [Results] We discovered that most research has been conducted
within the SWEBOK knowledge areas software engineering process, manage-
ment, construction, design, and requirements, with the shift of focus towards
process and management areas. We also provide an alternative classification
for future startup research. We find that the rigour of the primary papers was
assessed to be higher between 2013-2017 than that of 1994-2013. We also find
an inconsistency of characterizing startups. [Conclusions] Future work can fo-
cus on certain research themes, such as startup evolution models and human
aspects, and consolidate the thematic concepts describing software startups.

Keywords: Software development, Systematic mapping study, Startup,
Software startup, Software engineering

Email addresses: vebjoern.berg@gmail.com (Vebjørn Berg),
jorgen.birkeland1@gmail.com (Jørgen Birkeland), anh.nguyen.duc@usn.no (Anh
Nguyen-Duc), ilpappas@ntnu.no (Ilias Pappas), letizia.jaccheri@ntnu.no (Letizia
Jaccheri), vebjorbe@stud.ntnu.no, jorgebi@stud.ntnu.no (Letizia Jaccheri)

Preprint submitted to Elsevier January 10, 2019

Ilias Pappas

Ilias Pappas
Cite as:
Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I., & Jaccheri, L. (2018). Software Startup Engineering: A Systematic Mapping Study. Journal of Systems and Software. Volume 144, October 2018, pages 255-274
DOI: 10.1016/j.jss.2018.06.043

Ilias Pappas
Journal of Systems and Software, Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

1. Introduction

Technology-based startups have long been an important driver for global
economic growth and competitiveness [1]. Software startups, newly created
companies producing cutting-edge software technology, have shown to be an
important source of software innovation. Despite stories of successful startups,5

90 percent of them fail, primarily due to self-destruction rather than competition
[2, 3]. The failures come from financial and market factors, for example, insuf-
ficient funding to operate startups activities, failure in finding product-market
fit, and building an entrepreneurial team [4]. However, there are also identified
unique challenges related to software development and innovation methods [4].10

Software startup engineering can be defined as ”the use of scientific, engineering,
managerial, and systematic approaches with the aim of successfully developing
software systems in startup companies” [5]. Startup researchers have called for
a further attention to engineering approaches to support startup activities in
all startup evolution stages [1]. Previously, most of the research in the field of15

software engineering has been conducted in relation to the needs and challenges
of established companies, first identified by Sutton [6].

Startups are at the forefront of applying new technologies in practice. From
an engineering perspective, developing technology products is challenging as the
startup context presents a dynamic and fast-changed environment, making it20

di�cult to adopt prescriptive engineering practices [5]. Despite the rapid growth
of the population of startups, the research on software engineering in startups
is still at an early stage [1].

One of the most extensive literature reviews in the field is the systematic
mapping study of Paternoster et al. [7], reviewing a total of 43 primary studies25

from 1994 until 2013. This review shows a lack of high quality studies in the
field. While a large amount of Software Engineering practices were extracted
from startups, the practices were chosen randomly and adopted under the con-
straints imposed by the startup context. Thus, an updated systematic mapping
is required as it will identify the current status in the area and pave the way for30

more empirical studies examining startups.
Since 2015, we observed an increased focus on software startup research (i.e.,

the organization of three International software startup workshops (ISSW) in
2016 and 2017, and software startups tracks at PROFES 2017 and XP 2017 con-
ferences). The previous systematic review has rapidly gained a large amount35

of citations [7]. While this implies the further growth in software startup re-
search, a revisit on the area can identify how engineering activities in software
startups have changed over time. The objective of this mapping study is to pro-
vide an updated view on software startup research in order to identify research
gaps. Di↵erent from the previous mapping studies [7, 8], we aim at synthe-40

sizing startup descriptions in research and its associated software engineering
knowledge areas. Beside market factors and financial factors, knowledge about
engineering factors and how they a↵ect the startup initiatives and development
would be helpful for entrepreneurs in understanding their startups’ challenges.

We assume that startups perform various types of software engineering ac-45

2

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

tivities, as described in SWEBOK [9]. We would like to observe how software
startup research has evolved and possibly matured in some Software Engineer-
ing knowledge areas. SWEBOK is previously used in Klotins et al. [8], which
allow for easy comparisons and make it possible to identify changes in terms of
research direction for the last five years.50

The research objective leads to the following research questions:

RQ1: How has software startup research changed over time in terms of focused
knowledge areas?

RQ2: What is the relative strength of the empirical evidence reported?
RQ3: In what context has software startup research been conducted?55

In this article, we present results from systematic mapping studies of software
startup research from 1994 to 2017. To do so, we expand previous literature
[7, 8] with the focus on papers published from 2013-2017. We found 27 relevant
articles during the last five years. The results were merged and compared to
the previous mapping studies. To address RQ1, the papers were structured60

according to the knowledge areas identified in SWEBOK [9]. With RQ2, we
evaluated the papers’ rigour to compare the quality of papers published before
and after 2013. Finally, with RQ3, we examined to what extent the retrieved
papers provided su�cient startup descriptions, and if there were similarities
in the use of terms describing the startup context between the papers. Our65

meta-analysis on Software Engineering knowledge area and startup case context
reveals important areas for investigation. We also come up with a classification
of future research on software startups.

The contribution of this mapping study is two-fold. Firstly, the study pro-
vides a comprehensive view of software startup for Software Engineering re-70

searchers. Possible research gap is derived for future study. Secondly, the study
provides a map of the contextual setting of investigated startups. Contextual
map infers the applicability area of empirical findings from the startups. This
would help to compare and to generalize future research in software startups.

The paper proceeds as follows: Section 2 introduces the background of the75

study and the related mapping studies. Section 3 presents the research method
undertaken and threats to the validity of the mapping study. Section 4 reports
the results and visualizes both our findings and the findings of the previous
mapping studies. Section 5 discusses the results in relation to the research
questions. Section 6 concludes the paper by answering the research questions80

and presents implications and future work.

2. Background

2.1. Software startups

A startup can be defined as “an organization that is challenged by youth and
immaturity, with extremely limited resources, multiple influences, and dynamic85

technologies and markets” [6]. More specifically, Coleman and O’Connor [10]
describe software startups as “unique companies that develop software through

3

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

various processes and without a prescriptive methodology”. Others have char-
acterized software startups as modern organizations with little or no operating
history, aiming at developing high-tech and innovative products, and rapidly90

scale their business in extremely dynamic markets [11].
Software startups develop innovative software products in environments of

time-pressure and a lack of resources, constantly searching for sustainable and
scalable business models. This is in contrast to established companies, that
have more resources and already command a mature market [1]. While estab-95

lished companies focus on optimizing an existing business model, startups focus
on finding one, which requires experimentation of various products in di↵er-
ent markets [12]. Instead of developing software for a specific client, software
startups develop systems which have market-driven requirements, meaning they
have no specific customers before their product is released [13, 14].100

There exist many processes to manage product development (i.e., processes
concerned with how to develop a product), like agile and waterfall methods.
(e.g., agile and waterfall). However, these processes do not focus on addressing
what product to develop, which is essential in the startup context where both
problems and solutions tend to be poorly understood [15]. The high failure105

rates of software startups are often caused by a lack of customers rather than
product development issues [2, 13].

2.2. Startup Development Methodology

Software startups generally develop products in high-potential target mar-
kets [16], without necessarily knowing what the customers want [14]. This re-110

lates to market-driven software development, which emphasizes the importance
of specific requirement elicitation techniques (e.g., prototyping), and time-to-
market as key strategic objectives [14, 17]. In a market-driven context, re-
quirements tend to be (1) invented by the software company, (2) rarely docu-
mented [18], and (3) validated only after the product is released in the mar-115

ket [14, 19, 20, 21]. As to this, products that don’t meet customer needs are
common, resulting in failure of new product releases [22]. Entrepreneurial and
customer focused development approaches like [23, 24, 25, 26] have received
attention from the research community. The customer development process in-
troduced by Blank [23] can be divided into four phases: (1) customer discovery,120

(2) customer validation, (3) customer creation, and (4) company building. A fre-
quently applied entrepreneurship theory among entrepreneurs is Lean Startup,
which builds on the principles from Blank. The method has been criticized by
researchers for being based on personal experience and opinions rather than
empirical evidence, however, concepts from the Lean Startup have attracted125

considerable attention among practitioners [15, 16].

2.2.1. Lean Startup
Ries [12] presented the Lean Startup method in 2008, based on lean principles

first introduced by Toyota [27]. The method aims at creating and managing
startups, to deliver products or services to customers as fast as possible. The130

4

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

method provides principles for how to run a new business, where the goal is
to grow the business with maximum acceleration. By iteratively turning ideas
into products, measure customers’ satisfiability, and learn from their feedback,
startups can accelerate their business. This process is referred to as the build-
measure-learn (BML) feedback loop, which is an iterative process, where the135

goal is to minimize the total time through the loop.
Key to the BML feedback loop is to do continuous experimentation on cus-

tomers to test hypotheses. The hypotheses can be tested by building a minimum
viable product (MVP), which is the simplest form of an idea, product, or ser-
vice that can answer the hypotheses. Any feature, process, or e↵ort not directly140

contributing to answering the hypotheses, is removed. The aim is to eliminate
any waste throughout the process. Empirical research has found three main
types of MVP usage, including (1) MVP as a design artifact, (2) MVP as a
boundary-spanning object, and (3) MVP as a reusable artifact [28]. MVPs can
be used to bridge knowledge gaps within organizations or to provide a mutual145

understanding between customer input and product design.
When the MVP has been built and the hypotheses tested, the next step

is to measure the customer feedback and learn from it. This is referred to as
validated learning, which is about learning which e↵orts are value-creating and
eliminate the e↵orts that aren’t necessary for learning customer needs. The final150

step of the loop is whether to pivot or persevere. A pivot is a structured course
correction designed to test a new fundamental hypothesis about the product,
strategy, and engine of growth [12]. Bajwa et al. [29] identified 10 pivot types
and 14 triggering factors, concluding that trying to solve the wrong problem
for the customer is the most common reason for pivoting (i.e., customer need155

pivot). If a pivot isn’t required, meaning the MVP was found to be fit to
market, the startup perseveres. The BML feedback loop then continues, where
new hypotheses are tested and measured.

The Lean Startup method is beneficial for business development and under-
standing what product to develop, emphasizing the importance of getting the160

product to customers as soon as possible. Startups tend to prefer time and
cost over product quality [30], neglecting traditional process activities like for-
mal project management, documentation, and testing [5]. Shortcuts taken in
product quality, design, or infrastructure can eventually inhibit learning and
customer satisfaction [12]. Software startups need their own development prac-165

tices to manage the challenges posed by customer development methods such
as Lean Startup.

2.3. Software Engineering in Startups

Software startup engineering can be defined as “the use of scientific, engi-
neering, managerial, and systematic approaches with the aim of successfully170

developing software systems in startup companies” [5]. The degree of process in
software development is dependent on system complexity, business risk, and the
number of people involved [31]. The impact of the inadequate use of software
engineering practices might be a significant factor leading to the high failure
rates [8]. As time and resources are extremely scarce in environments of high175

5

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

market and technology uncertainty, software startups need e↵ective practices to
face those unique challenges [11]. The need for process depends on the lifecycle
stage of the company, divided into four stages [3].

• Stage 1: The startup stage is defined as the time from idea conceptual-
ization to the first sale. A small executive team with necessary skills is180

required in order to build the product.

• Stage 2: The stabilization phase lasts until the product is stable enough
to be commissioned to a new customer without causing any overhead on
product development.

• Stage 3: The growth phase begins with a stable product development185

process and lasts until market size, share, and growth rate have been
established.

• Stage 4: The last stage is when the startup has evolved into a mature
organization. The product development is robust and easy to predict,
with proven processes for new product inventions.190

Startups are creative and flexible by nature, and so strict release processes
are often overshadowed by quick, inexpensive product releases, with focus on
customer acquisition [31]. This can often result in ine↵ective software engi-
neering practices [6]. Since startups have limited resources, the focus is often
directed towards product development, rather than focusing on the establish-195

ment of rigid processes [10].
It is important to notice that in terms of communication and cooperation

dynamics, startups and established companies have di↵erent software engineer-
ing experiences and needs [30]. While established companies have well-defined
processes for their business, startups usually have low-ceremony processes [32],200

which means that the amount of management overhead is low. Instead of uti-
lizing repeatable and controlled processes, startups take advantage of reactive
and low-precision engineering practices with a focus on the productivity and
freedom of their teams [33, 34, 35].

Reactive, low-ceremony processes are powerful in the early stages of software205

development since speed and learning are important [12]. However, as startups
enter new lifecycle stages, an increased usage of processes for addressing key
customer needs, delivering functional code early and often, and providing a
good user experience is required [32]. New business issues like hiring, sales, and
funding appear, and more users and complex code require an extended focus210

on robustness, scalability, performance, and power consumption [31]. The use
of methods like the Lean Startup is one of the reasons why software startups
need and sometimes apply their own software engineering practices, which pose
challenges when it comes to software engineering. Lean Startup is beneficial for
business and product development, but when it comes to software development,215

a more hybrid approach of agile and lean may provide the most benefits in terms
of cost, time, quality, and scope [30].

6

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

2.4. Existing literature reviews

Since the gap in research specific to software engineering in startups first
was identified [6], there have only been undertaken two mapping studies entirely220

dedicated to the research area [7, 8]. There also exist relevant work related to
SMEs (small and medium-sized enterprises) [36], and VSEs (very small entities),
which become more relevant as startups enter more mature lifecycle stages,
however, the early stages of startups pose some specific challenges and needs
(e.g., little working/operating history).225

The first systematic mapping by Paternoster et al. [7] covered studies up
to December 2013, aiming at structuring and analyzing state-of-the-art on soft-
ware startup research. The conclusion of the paper is that there existed few
high-quality studies contributing to the body of knowledge and that there is
a need for more studies supporting startups for all lifecycle stages. From a230

total of 43 primary studies, only 4 papers [10, 37, 38, 39] were considered as
strong contributions and entirely dedicated to software engineering activities in
startups. The results showed that startups choose their software engineering
practices opportunistically, and adapt them to their own context.

Klotins et al. [8] conducted a mapping study published in 2015, classifying235

14 primary studies on software startup engineering into 11 of 15 SWEBOK
knowledge areas. The paper concludes as Paternoster et al. [7], that research
did not provide support for any challenges or engineering practices in startups,
and that available research results were hard to transfer between startups due
to low rigour. This was explained by the lack of contextual information in the240

studies, and how the studies were performed.

3. Research Methodology

A systematic mapping study was undertaken to provide an overview of the
research available in the field of software engineering specific to startups, fol-
lowing guidelines from Kitchenham [40] and several steps of the standardized245

process for systematic mapping studies, as illustrated in figure 1 [41].
Systematic mapping studies can be used in research areas with few relevant

primary studies of high quality, as they provide a coarse-grained overview of the
publications within the topic area [41]. This systematic mapping study covers
74 primary papers, extending the two previous mapping studies [7, 8]. As these250

studies only cover three papers from 2013, the search strategy of this systematic
mapping study included papers from 2013 up to October 2017. This approach
allowed for merging and comparing the primary literature within the research
field for the period 1994-2017.

The main steps of our process are illustrated in figure 1, and include the255

search and study selection strategies, manual search, data extraction, quality
assessment, and the data synthesis method. The process led to a total number
of 27 new primary papers found in table A.7.

7

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Figure 1: The Systematic Mapping Study Process [41]

3.1. Mapping Procedure

Step 1: Pilot search. Pilot searches were performed in online databases to find260

an optimal search string and the most suitable databases. The searches helped
to define the criteria for inclusion and quality assessment and the classification
schema.

Step 2: Search strategy and study selection. Based on the search string, a total
number of 1012 unduplicated papers were retrieved. This was further limited to265

74 (titles), 28 (abstracts), and finally, 20 papers after a collaborate e↵ort from
the first and second author was conducted. The full-text of the remaining 20
papers was read.

Step 3: Additional manual search. A manual search was performed to find more
relevant papers. The publication lists of relevant authors were scanned, and270

the forward snowballing technique was used [42]. For the forward snowballing,
Google Scholar was used to examining the citations of the papers retrieved.
This resulted in seven more relevant papers. These were either not published in
the databases, or were overlooked in step 2.

Step 4: Quality assessment. To identify the rigour of the remaining papers, a275

quality assessment was performed on the papers that provided empirical evi-
dence. The complete assessment can be found in table B.10.

Step 5: Data extraction and synthesis. From the primary papers, relevant data
and information were extracted into a classification schema. A multi-step syn-
thesis was performed to answer the research questions.280

3.2. Data Sources and Search Strategy

The systematic search strategy consisted of searches in three online bibli-
ographic databases. The databases were selected from their ability to handle
complex search strings, their general use in similar literature reviews in the soft-
ware engineering community [7, 36], and the fact that they index the research285

articles from other databases. In addition, to ensure the best possible coverage
of the literature, we performed complementary searches and forward snowballing
(section 3.4 Manual Search). Following guidelines from Wohlin [42], systematic

8

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

literature studies should use a combination of approaches for identifying rele-
vant literature, where forward snowballing is found particularly useful. Forward290

snowballing can reduce systematic errors related to the selection of databases
and construction of the search string [42]. To obtain high-quality data, the
following databases were used:

Database Papers
Scopus 451
ISI Web of Science 121
Engineering Village Compendex 875
Total 1447

Table 1: The searched databases and number of retrievals

Initial searches in the databases were conducted to identify keywords related
to software engineering and startups, targeting title, abstract, and keywords.295

The most frequently used keywords for “startup” were chosen and combined in
the search string [7]. The final search string consisted of several search terms
combined using the Boolean operator “OR”:

“(startups OR start-up OR startup) AND software engineering OR
(startups OR start-up OR startup) AND software development OR300

(startups OR start-up OR startup) AND software AND agile OR
(startups OR start-up OR startup) AND software process OR (star-
tups OR start-up OR startup) AND software tools”.

3.3. Study Selection

The study selection process is illustrated in figure 2, along with the number305

of papers at each stage. Searching the databases Scopus, ISI Web of Science,
and Engineering Village using the search string returned 1447 papers, resulting
in 1012 unduplicated studies. The searches targeted the document types: book
chapters, journal article, conference article, conference proceedings, dissertation,
and report chapters.310

9

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Figure 2: The Study Selection Process

Papers were relevant for inclusion in the study if they met the following
criteria: (1) investigate concepts/problems/solutions of engineering in software
startups, (2) present contributions in the form of lessons learned, framework,
guidelines, theory, tool, model, or advice as applied in Paternoster et al. [7],
(3) are not included in any of the previous mapping studies, and (4) studies are315

written in English. The papers that were selected are scientific peer-reviewed
articles, which is independent of the role of authors. We did not find experience
reports from entrepreneurs, which might make the sample of papers lean towards
the researcher community. To decrease the number of papers into a manageable
amount, workshops, and papers based on expert opinion were excluded from320

the review process.
As common for systematic mapping studies [41], this study focuses on syn-

thesizing empirical research. Empirical studies are important for evidence-based
software engineering research and practice, and for generating a knowledge base
leading to accepted and well-formed theories [40, 43]. This study provides an325

overview of empirical research on software startup engineering to date, and how
research has evolved and possibly matured over the time period.

The retrieved papers were examined by the first and second author, where
each author separately reviewed the papers based on titles and abstracts. Dis-
agreements were resolved by discussing the full text of the relevant papers. This330

was necessary as some of the abstracts were incomplete or poor. At this stage

10

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

another 8 papers were excluded, making the total of newly selected papers 20,
before performing the additional manual search.

3.4. Manual Search

A manual search was conducted with the participation of the third author,335

using the forward snowballing technique [42], to identify additional papers not
discovered by the search string. Google Scholar was used to examine the cita-
tions to the paper being examined. The publication lists of frequently appearing
authors were also searched. This resulted in several papers as candidates for
inclusion. After assessing title, abstract, and finally the full text, 7 more papers340

were included as primary studies [17, 28, 29, 44, 45, 46, 47]. Among the papers,
21 were conference papers, five were journal papers, and one was a book chapter.

3.5. Quality Assessment

To build on previous work, a quality assessment of the new primary papers
providing empirical evidence was performed. The total number of eligible papers345

was 22 (table A.7). Although systematic mapping studies usually don’t evaluate
the quality of each paper in such depth as systematic literature reviews, the
quality assessment process was undertaken to assess how results were presented
in the primary studies. No paper was excluded based on the quality assessment.

To assess the rigour, credibility, and relevance of the papers, we adopted the350

quality assessment scheme from Nguyen-Duc et al. [48]. Quality assessment
has been identified as important for performing empirical research in software
engineering [40, 49]. Table 2 illustrates 10 quality evaluation criteria. For each
criterion the papers met, they got a score of 1, and otherwise 0. This means
that the maximum score a paper could get was 10. A score of 0-3 was regarded355

as low rigour, 4-6 medium rigour, and 7-10 high rigour. The complete quality
assessment can be found in table B.10.

11

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Problem Statement
Q1. Is research objective su�ciently explained and well-motivated?

Research Design
Q2. Is the context of study clearly stated?
Q3. Is the research design prepared su�ciently?

Data collection
Q4. Are the data collection & measures adequately described?
Q5. Are the measures and constructs used in the study the most
relevant for answering the research question?

Data analysis
Q6. Is the data analysis used in the study adequately described?
Q7a. Qualitative study: Are the interpretation of evidences clearly described?
Q7b. Quantitative study: Are the e↵ect size reported with assessed statistical
significance?
Q8. Are potential alternative explanations considered and discussed in the
analysis?

Conclusion
Q9. Are the findings of study clearly stated and supported by the results?
Q10. Does the paper discuss limitations or validity?

Table 2: Quality Assessment Checklist [48]

3.6. Data Extraction and Synthesis

After the quality assessment, we defined the classification schema (table A.7).
Data from each of the 27 newly selected primary studies were then systemat-360

ically extracted into the classification schema, according to the predetermined
attributes: (1) SWEBOK knowledge area, (2) Research method, (3) Contribu-
tion type, (4) Pertinence, (5) Term for “startup”, (6) Incubator context, (7)
Publisher. The chosen attributes were inspired by previous mapping studies
[7, 8, 36], and from the process of finding keywords in the abstracts of the365

retrieved papers [41]. Organizing the findings into tabular form enabled for
easy comparisons across studies and time periods. In addition to classifying the
papers, each paper was scanned for thematic concepts to identify researchers’
descriptions of investigated startups. The thematic concepts were adopted from
the recurring themes found in Paternoster et al. [7]. This made it possible to370

assess the agreement in the community to the definition of startups.
The software engineering book of knowledge (SWEBOK) was created to

provide a consistent view of software engineering, and to set the boundary of
software engineering with respect to other disciplines [9]. SWEBOK contains
15 knowledge areas that characterize the practice of software engineering. The375

focal point of the paper is to propose research directions based on the knowl-
edge areas following the work done by existing literature. Since the two major
mapping studies in the area follow di↵erent approaches, that is SWEBOK [8]
and focus facets [7], in the present study we focus on KAs, as this can allow the

12

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

reader to better comprehend how the two di↵erent approaches are connected,380

thus o↵ering a more holistic understanding of the current status in software
startup engineering research. Assigning each paper into the specific knowledge
areas was done by the first and second author. Two researchers read the titles,
keywords, abstracts, and the body of each paper, before evaluating the papers’
conformance with each specific knowledge area’s description or subareas.385

3.7. Threats to Validity

There are several threats to the validity of systematic mapping studies [50].
One threat is related to the data extraction from each paper, where results
can be biased from researchers personal judgment. To mitigate this threat,
and ensure correct classification of each paper into the SWEBOK knowledge390

areas, this process was performed jointly by the first and second author at one
computer, resolving any conflicts and regulating individual bias.

Threats to the retrieval of relevant papers must also be considered. The
inconsistent use of terms for “startup” made it di�cult to cover all used terms
in the search string. Hence, it appeared terms not considered when constructing395

the search string. Some of these were “founder teams”, “very small enterprise”,
“very small entity”, and “very small company”, which all were used in relation
to the startup context. Relevant papers might therefore have been overlooked.

The use of only three bibliographic databases might have a↵ected the number
of relevant papers retrieved. Compared to the number of databases used in400

similar studies, this seems to be at the low-end. The chosen databases are
however among the most used ones in the field of software engineering, and the
databases that contributed to the most retrieved papers in other studies [7].
The risk of missing papers published the last five years was mitigated by the
use of forward snowballing which lead to the retrieval of seven more papers.405

To make sure the study selection was not biased from personal opinions,
paper selection involved the first, second, and third author of the paper, which
allowed a collaborative resolution of conflicting views, following guidelines from
Kitchenham [40]. We defined clear inclusion and exclusion criteria, and a quality
assessment checklist to assess each paper’s quality. Disagreement to quality as-410

sessment was discussed between author one and two until consensus was reached.
This decreased the risk of miss-classifying any relevant papers.

For the quality assessment, we only used two points to collect answers, as the
first and second author were unfamiliar with the research field. The papers got
a score of 1 if they met the criteria, and otherwise 0. Prior studies have used a415

more fine-grained classification of quality criteria and even used di↵erent criteria
in some occasions. It is more likely that the papers in our study obtained higher
rigour than they would have received if another more fine-grained assessment
method had been used.

4. Results420

This section presents the extracted data of the primary studies. The section
is divided into the three research questions to allow for better visualization and

13

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

presentation of the most relevant findings. The final number of primary papers
ended up being 74, adding the 27 new papers to the existing 44.

4.1. RQ1: How has software startup research changed over time in terms of425

focused knowledge areas?

This section is divided into two sub-sections. Section 4.1.1 presents the pub-
lication frequency of primary studies from 1994-2017. Section 4.1.2 presents the
SWEBOK knowledge areas, contribution types, and empirical evidence between
1994-2017.430

4.1.1. Publication Frequency
Figure 3 shows the number of studies published in relation to software

startup engineering between 1994-2017, constituting a total of 74 published pa-
pers. We observe that the publication frequency of papers between 2013-2017
is higher than for any period before 2013. From 1994-2013, the highest number435

of primary papers within a single year was 7 (2008). In comparison, 2016 and
2017 constituted 9 and 11 papers respectively. The pertinence of the papers
published between 2013-2017 was generally higher than what was found for the
period 1994-2013. 85 percent of the papers from 2013-2017 had high pertinence,
meaning that they were entirely dedicated to software engineering activities in440

startups. The remaining four papers were focusing on activities of small soft-
ware companies, and so set to partial pertinence (table A.7). Although their
focus was not entirely dedicated to startups, some of them [51] performed em-
pirical studies on startups, referring to them as “very small entities” or “small
software companies”. In the period 1994-2013, 57 percent of the papers had445

high pertinence, while 20 percent had partial pertinence.
Klotins et al. [8] only includes 4 unique primary papers [52, 53, 54, 55], as the

remaining 10 papers were included among the 43 primary papers in Paternoster
et al. [7]. The 4 papers are from 1994, 2000, 2008, and 2013.

Figure 3: Publication Frequency, 1994-2017

14

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

4.1.2. Knowledge Areas450

The 27 new primary studies were classified into the knowledge areas of SWE-
BOK [9]. The categories were developed by the software community as a baseline
for the body of knowledge within software engineering. Figure 4 illustrates what
knowledge areas that have received most attention the last five years, and to
what extent empirical studies have been undertaken. The figure shows which455

research methods that have been used to address each of the knowledge areas.
Only the papers providing empirical evidence (22 papers) were included in the
figure, covering a total of 9 knowledge areas. Some of the papers covered one
or more knowledge areas (e.g., Nguyen-Duc et al. [56]).

The assessed research methods followed guidelines from Oates [57], and in-460

clude (1) survey, (2) design and creation, (3) experiment, (4) case study, (5)
action research, and (6) ethnography (table A.8). Case study was the most fre-
quently used empirical research method (81 percent), followed by experiments
(10 percent), surveys (6 percent), and design and creation (3 percent). Ac-
tion research and ethnography were not used as research methods in any of the465

primary studies.

Figure 4: Empirical Evidence, 2013-2017

Figure 5 illustrates contribution types (as applied in Paternoster et al. [7],
originally suggested by Shaw [58]) within each each knowledge area between
2013-2017. The 9 di↵erent knowledge areas are represented a total of 49 times
through 7 di↵erent contribution types. These include (1) model, (2) theory, (3)470

framework, (4) guidelines, (5) lessons learned, (6) advice, and (7) tools (table
A.9). Lessons learned is the most frequently used contribution type (43 per-
cent), followed by advice (25 percent), model (12 percent), theory (10 percent),
framework (5 percent), guidelines (5 percent), and tools (3 percent).

15

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Figure 5: Contribution Types, 2013-2017

Figure 6 presents the number of papers that cover the di↵erent knowledge475

areas in our study (red columns) and Klotins et al. [8] (blue columns). The
total number of primary papers in Klotins et al. [8] was 14. Both mapping
studies include papers that cover more than one knowledge area.

The newly selected primary papers from 2013-2017 cover 9 of 15 knowledge
areas. The ones missing are (1) software configuration management, (2) software480

engineering economics, (3) software maintenance, (4) computing foundations,
(5) mathematical foundations, and (6) engineering foundations.

Figure 6: Knowledge Area Coverage, 1994-2017

From figure 6, we see that there is a significant change in the research direc-
tion for the last five years. Between 1994-2013 “software design” and “software
requirements” are the most represented knowledge areas, whereas “software485

16

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

engineering process” and “software management” have received significant at-
tention from the community between 2013-2017. “Software configuration man-
agement” and “software maintenance” are only covered between 1994-2013.

Paternoster et al. [7] did not present any results in relation to the SWE-
BOK knowledge areas. However, they provided the contribution type of each490

primary study. Figure 7 shows the contribution types of primary papers between
1994-2017, separating the periods before and after 2013. The most frequently
provided contribution types between 1994-2013 were advice and model, while
lessons learned was most represented between 2013-2017. The least frequently
used ones combined from both studies were framework, guidelines, and tools.495

Figure 7: Contribution Types 1994-2017

4.2. RQ2: What is the relative strength of the empirical evidence reported?

To address this research question, we have made a bubble chart of each
knowledge area with the corresponding rigour-rating. Among the 27 new pri-
mary papers, only the papers that provided empirical evidence were evaluated
(22 of 27). The quality assessment will be compared to both of the previous500

mapping studies.

4.2.1. Rigour of Primary Studies 2013-2017
Publication venue can be interpreted as an initial indicator as to whether the

papers provide scientific quality. Among the newly selected primary studies, 21
were conference papers, 5 were journal papers, and 1 paper was a book chapter.505

However, it is necessary to perform a more comprehensive quality assessment
process in order to compare results across di↵erent studies.

Figure 8 shows the degree of rigour within each knowledge area between
2013-2017. The figure is based on the quality assessment (table B.10). The
x-axis represents the knowledge areas, while the y-axis represents the rigour.510

17

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Only one paper received low rigour score [59], as it didn’t provide enough details
about the data analysis and included no assessment of the validity of the results.
However, as only the papers providing empirical evidence were assessed, it is
possible that more papers would receive low rigour as well. In general, the
papers received high rigour score, indicating that the quality of research was515

high.

Figure 8: Rigour of each covered knowledge area, 2013-2017

4.2.2. Rigour of Primary Studies 1994-2013
Figure 9 shows the rigour of the primary studies from Klotins et al. [8],

and which research type each constituted. The paper did not specify how they
calculated the rigour of each paper. The x-axis represents the research types,520

and the y-axis represents the rigour. From 14 primary papers, only one provided
a contribution of high rigour. Most of the papers (86 percent) obtained low
rigour. As to this, the paper concludes that the low rigour of the papers,
due to poor contextual descriptions, makes it hard to transfer results from one
environment to another.525

18

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Figure 9: Rigour and Research Type [8]

Figure 10 illustrates the rigour of the contribution types provided by each
of the primary papers in Paternoster et al. [7]. The x-axis represents the
contribution types, and the y-axis represents the rigour. The division of rigour
score is based on table 7 in the study. Papers that got a total score above 7
received high rigour, between 4 and 7 received medium rigour, while less than530

4 received low rigour. 70 percent of the papers in figure 10 received a medium
score, while 21 got a high score.

Figure 10: Rigour and Contribution Type [7]

Comparing the tables it becomes evident that the rigour of primary pa-
pers has increased from the period 1994-2013 to 2013-2017. Recently software
process and management have received a significant amount of high-quality re-535

19

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

search. The other knowledge areas have received little attention, however of
high-quality. The quality assessments are subject to bias from several reasons:
(1) di↵erent quality assessment criteria, (2) di↵erent rating systems, (3) di↵er-
ent researchers providing various experience and knowledge to the assessment
process, (4) contributions from multiple authors from di↵erent time periods. To540

mitigate systematic errors, we defined clear inclusion criteria, and author one
and two collaboratively assessed the newly selected primary papers.

4.3. RQ3: In what context has software startup research been conducted?

This section is divided into three sub-sections identifying the contextual de-
scriptions provided in the period 1994-2017. Section 4.3.1 shows how papers545

characterize the startup context, and how they use the term for “startup com-
pany” di↵erently. Section 4.3.2 shows whether the papers from 2013-2017 focus
on startups in the context of incubators. Section 4.3.3 presents in detail the
contextual descriptions provided by papers between 2013-2017.

4.3.1. Thematic Concepts and Term Frequency550

To illustrate how researchers use di↵erent definitions and thematic concepts
in their characterizations of startups, we extracted the thematic concepts (i.e.,
referred to as recurring themes in Paternoster et al. [7]) between 1994-2017. Pa-
ternoster et al. [7] extracted 15 themes from 43 papers (explained in table B.11).
As to this, it is possible that other selections of papers would have provided a555

di↵erent set. The thematic concepts constitute a solid base for characterizing
startups, presenting what are the most common perceived characteristics when
talking about startups among research. A coherent use of thematic concepts to
characterize software engineering can help researchers and practitioners judge
whether research results can be generalized and transferred to other startup560

engineering contexts. To extract the frequency between 2013-2017, the first and
second author read the full text of the primary papers. In addition, searches
were performed in the pdf-version of each paper to find the frequency of thematic
concepts.

Table 3 presents a complete usage of thematic concepts operating startup re-565

search between 1994-2017. We observe that the characterizations have changed
over time (e.g., the most frequently used concept before 2013 was only the fourth
most used one after 2013). The di↵erences are significant since it is only four
years between the studies. The use of concepts between 2013-2017 is highly
inconsistent. There is no single concept that all the 22 empirical papers use for570

the startups they investigate. The low frequencies of the thematic concepts also
illustrate that many of the papers provide poor startup descriptions.

20

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Thematic Concepts Frequency 13’-17’ (#27) Frequency 94’-13’ (#47)
Innovation/Innovative 15 19
Uncertainty 14 15
Small team 11 12
Lack of resources 9 21
Little working/operating history 9 3
Time-pressure 7 17
Rapidly evolving 5 16
New company 5 8
Highly reactive 3 19
Highly risky 3 8
Third party dependency 2 12
One product 2 9
Not self-sustained 1 3
Low-experienced team 0 9
Flat organisation 0 5

Table 3: Thematic Concepts, 1994-2017

Table 4 shows the number of primary papers from 1994-2017 using the spec-
ified terms for “startup company”. In situations where the title did not use any
of the terms, the abstract was revised. Several papers [60, 61, 62, 63, 64] did575

not use any of the terms or was not found. From the table, it can be observed
that the use of terms for startup companies has changed. The most significant
finding is that the term “startup” is more frequently used now than before. 75
percent of the studies from 2013-2017 used the term “startup”, compared to
48 percent in 1994-2013. 15 percent used the term “start-up” in the period580

2013-2017, while 48 percent used the term “start-up” between 1994-2013. The
inconsistent use of terms is one of the main challenges for developing a coherent
body of knowledge within software startup engineering. Even though 40 studies
used the term “startup”, the context for which they were used was not the same,
or the study context was poorly described.585

Term Frequency 13’-17’ (#27) Frequency 94’-13’ (#42)
Startup 20 20
Start-up 4 20
Very small entity 1 0
Very small company 1 1
Very small enterprise 1 1

Table 4: Term Frequencies, 1994-2017

4.3.2. Incubated Companies
Figure 11 shows the percentage of the newly selected empirical papers that

have performed research in the context of incubators. That is, mentioning
incubators or presenting research on startups that are part of incubator envi-
ronments. As illustrated, 91 percent of the papers focused on startups outside590

21

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

of incubator context or did not mention this in their description. Two papers
focused on incubated startups [65, 66].

Figure 11: Percentage of Incubated Companies, 2013-2017

4.3.3. Contextual Descriptions
The primary studies from 2013-2017 that have provided empirical evidence

and su�cient contextual descriptions are presented in table 5. The relevant con-595

text information includes the attributes: (1) number of startups under investiga-
tion, (2) size of the company/team, (3) the product orientation of the startups,
and (4) other relevant contextual descriptions beyond these three (e.g., lifecycle
stage, age/year of establishment, location, software development methodology).

As illustrated in the figure, 14 of the 22 studies showed a su�cient amount600

of contextual description. The contextual descriptions in the remaining eight
papers were either absent or not su�ciently explained. The papers not providing
empirical evidence were not evaluated. The two last papers in the table are
subject to omission, as both have two fields of ”not specified”.

The following list presents some of the descriptions of companies that have605

participated in empirical research on startups, and explanation of non-trivial
information.

• The number of startups under investigation is in the range from 1-20
startups. The most frequently used number of startups was found to be
3-5.610

• The number of employees is usually in the range of 2-25, depending on the
lifecycle stage of the company. At early stages, the number of employees
tends to be equal to the number of founders, which seems to be in the
range of 2-6. At later stages, more employees are needed. For the scaling
phase, most companies have 10-20 employees.615

• It is usual that researchers specify the product orientation of the startups
(e.g., B2B/B2C).

22

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

• The age of the investigated companies is usually in the range 1 month to
3 years. Some papers investigated VSEs, one of them 18 years active [67].
Companies beyond three years of age tend to be past the scaling phase.620

• Startups use di↵erent software development methods. The most usual
methods found were agile, scrum, or ad-hoc.

• No more than two papers mentioned whether the investigated companies
had received any funding, and if so what kind of funding they had received.

• Even if some of the investigated startups develop products with mixed625

software and hardware parts, no paper focused on their specific challenges
or practices.

• A bootstrap startup is a company that started out without initial funding
and resources [46].

• “VSEs” and “high growth firms” can in the related studies be regarded as630

startup companies.

• In relation to the startup stages presented in section 2.3: (1) Concept and
pre startup stage are similar to stage 1. (2) Implementation, functional,
and startup stages are similar to stage 2. Commercial and scaling stages
are similar to stage 3. (4) Mature stage can be either stage 3 or 4.635

23

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

ID Nr of startups Company size Product orientation Other relevant info

[30] 1 startup 5 members
Social network
application

Roles: Designer, 1 web/iOS/android
dev. each, CEO
Approach: Lean Startup/Agile

[14] 3 startups
4 members
6 members
25 members

Health
E-commerce
E-commerce

Canada, mobile app, concept stage
Italy, mobile and web app, func.stage
Brazil, web app, mature stage

[66] 4 startups

12 members
10 members
8 members
10 members

Academic
business domain

3yrs old
1yrs old
1yrs old (still incubated)
4months old (still incubated)

[68] 1 startup Not specified
Db performance
& interoperability

High potential growth firm,
spin-out from a university

[44] 4 startups

2 founders
3 founders
2 founders
2 founders

Video service
SaaS
Event ticketing system
Game-based learning

Working prototype (14’)
Func. product, limited users (15’)
Func. product, high growth (11’)
Mature product (06’)

[28] 5 startups

6 members
3 members
4 members
18 members
3 members

Online photo marketplace
Marketplace for food hub
Collab.platform construction
Sale visualization
Under-water camera

Italy (lean startup/agile,12’,impl.phase)
Norway (ad-hoc,15’,concept.phase)
Norway (Scrum,11’,commercial.phase)
Norway (agile,11’,commercial.phase)
Finland (ad-hoc,11’,impl.phase)

[45] 5 startups

20 members
18 members
1 member
3 members
1 member

Learning game, B2C
Real-time sale management, B2B
Photo marketplace, B2C
Social platform,B2C
Collab.platform construction, B2B

2006, scaling phase
2011, scaling phase
2012, startup
2015, pre-startup
2011, startup

[46] 6 startups

6 members
9 members
3 members
5 members
12 members
5 members

Hyper-local news platform, P2P
Collab.platform construction, B2B
Ticket event system, B2B
Shipping platform, P2P
Game learning tool, P2P
Fish farm management, B2B

Norway (agile,2015,bootstrap)
Norway (scrum,2012,bootstrap)
Norway (agile,2012,bootstrap)
UK (agile,2013,early investor)
UK (dist.agile,2013,bootstrap)
Vietnam (ad-hoc,2016,bootstrap)

[69] 2 startups
4 members
2 members

Not specified
Peru (2012, VSE/start-up term)
Canada

[56] 3 startups
4 members
5 members
12 members

Photo market place, P2P
Under-water camera, B2B
Ticketing system, B2P

2011,paying customers
2009,paying customers
2011,paying customers

[67] 3 VSEs
17 members
10 members
7 members

Enterprise
Financial services
Enterprise

18yrs active (int.customers)
9yrs active (int.customers)
4.5yrs active (int.customers)

[5] 13 startups
3-20 members
2-6 founders

Not specified
Time-to-market:
1-12months

[65] 8 startups Not specified Not specified
Incubator-context
62 % used pseudo-agile for reqs.
100 % not documenting many reqs.

[13] 3 startups Not specified
Food-waste knowledge app
Online debt platform
Online investment platform

Not specified

Table 5: Contextual Descriptions, 2013-2017

Table 6 presents a summary of the main findings contributing to addressing
our research questions: (RQ1) How has software startup research changed over
time in terms of focused knowledge areas? (RQ2) What is the relative strength
of the empirical evidence reported? (RQ3) In what context has software startup
research been conducted?640

24

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Research Question Findings

RQ1

Most research has been conducted within the knowledge areas software
process, management, construction, design, and requirements, with the
shift of focus toward process and management areas. Researchers have
provided lessons learned and advice studies, paying less attention to
specific tools and frameworks.

RQ2
The rigour of primary papers was higher between 2013-2017 than that
of 1994-2013. Two reasons for this are increased importance of startups,
and increased focus on researchers providing high-quality research.

RQ3

Thematic concepts representing the software startup context include
innovation, lack of resources, uncertainty, time-pressure, small team,
highly reactive, and rapidly evolving. Startup literature provides an
inconsistent use of thematic concepts describing startups.

Table 6: Summary of results

5. Discussion

In this paper, we have applied a systematic mapping method to analyze
the 74 primary papers, to observe how software startup research has evolved
and possibly matured in some Software Engineering knowledge areas. This
makes it possible to identify changes in research direction for the last five years.645

This section presents our discussion of the newly selected papers along with
the SWEBOK knowledge areas, identifying state-of-the-practice and pointing
out existing research gaps. From the extracted context features, we provide a
synthesized description of the startup context.

5.1. RQ1: How has software startup research changed over time in terms of650

focused knowledge areas?

5.1.1. SWEBOK Knowledge Areas
Software Engineering Process. The need for the software development process
to be adapted to a project’s scope, magnitude, complexity, and changing re-
quirements is generally acknowledged, however, there exists a lack in guidance655

on how software startups can adapt their process to their situational context
[68]. The situational context consists of a large number of concerns and factors,
as found in the “reference framework” [70], indicating why software engineer-
ing is so hard [68]. The situational factors in the reference framework explain
the need for startups’ own software development processes, and why strictly660

following the agile methodology is often outside the scope of small startups
[30]. In early-stage software startups, research shows that systematic software
engineering processes often are replaced by light-weight ad-hoc processes [11].

Software startups need a model fitted to both the innovation, and engineering
processes in startups’ complex and chaotic situations. The Hunter-gatherer665

cycle is one model proposed to help startups in all phases of the company,

25

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

from their evolution from innovative ideas to commercial products. The model
di↵erentiates between the hunting cycle, and the gathering cycle, which covers
the innovation and engineering activities. The model is at a preliminary stage
and requires more empirical evidence in order to be generalized to all software670

startups [56].

Software Engineering Professional Practice. Software engineers need to possess
the required knowledge, skills, training, and experience to practice professional
and responsible software engineering [9]. Standards like ISO are meant to ensure
high quality and reliability of software products [71], and can thus help devel-675

opers to practice software engineering at a level in line with these objectives.
The paper by Laporte and O’Connor [51] presents results from early trials of the
ISO/IEC 29110 standard for very small entities and concludes that international
certifications can enhance small software companies’ chances for success.

Developers in software startups typically prioritize speed related agile prac-680

tices rather than quality related ones [72]. Standards like ISO, tailored to the
startup context, can help software developers combine quality and speed, which
in turn can increase the chances for success. However, as the ISO/IEC 29110
standard mainly is intended for very small companies, it is only partially rele-
vant for startups. Future work should be undertaken to develop an ISO standard685

tailored to the startup context, to support developers in practicing professional
software engineering. In general, there was a lack of research supporting pro-
fessional practice in software startups.

Engineering foundations is one of the 15 knowledge areas that was not cov-
ered in any paper. It is about the application of knowledge in the engineering690

discipline, allowing engineers to develop and to maintain software more e�-
ciently and e↵ectively, and help practitioners to adopt professional software
engineering principles. As to this, more work should be undertaken to identify
the engineering foundations of software developers in startups. Most prior re-
search has focused on the needs of established companies. A possible research695

area could be to investigate which engineering practices graduates and other
engineers should possess if they are to work in a software startup, and how
universities and other educational institutions can facilitate learning and other
services to support the specific needs of practitioners that are to work in software
startups.700

Software Engineering Management. Software engineering management concerns
about a wide range of di↵erent areas, including planning, measuring, coordinat-
ing, and reporting activities to support systematic software development and
maintenance [9]. For startups, software engineering management relates to,
among other things, business model experimentation and customer develop-705

ment.
Three primary studies that have identified software engineering management

are [73, 56, 74]. However, these papers primarily focus on software engineering
processes [73, 56] and software quality [74]. Although the Hunter-gatherer cy-
cle presented by Nguyen-Duc et al. [56] presents how startups can handle the710

26

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

dynamic evolution of product-market fit, which is part of both business experi-
mentation and customer development, it is primarily focused towards software
engineering processes in startups.

The managerial part of software engineering has been identified by Nguyen-
Duc and Abrahamsson [46], exploring the outsourcing relationship in software715

startups. They concluded that outsourcing is a feasible option for early-stage
startups. The authors are underway to provide a guideline with best practices
for outsourcing in startups.

Other papers have focused on principles from Lean Startup, especially the
role of pivoting in software startups. This includes why startups pivot [29], and720

which pivot types exist [44]. More work is required to address the consequences
and relationship among di↵erent pivot types, both from a business and technical
perspective. How pivoting should be performed at di↵erent lifecycle stages,
both in terms of system complexity and modifiability, may a↵ect the pivoting
decision.725

The research agenda [1] has addressed a need for more research to identify
how startups explicitly manage risks, and how startups can model and measure
risks. This further relates to which tools and techniques they should utilize to
preserve agility and speed in dynamic environments of high uncertainty. Lean
Startup o↵ers entrepreneurs a method to handle such environments, but more730

empirical evidence is needed to understand how software startups apply this the-
ory in practice so that researchers can develop tailored models and frameworks
to reduce business and technical risks.

Software Quality. A frequent issue in terms of software quality for startups is
technical debt. The development of minimum viable products, and releasing735

the product as fast as possible, often require the development team to take
shortcuts and workarounds. Steve McConnell showed that technical debt can
be divided into intentional and unintentional debt [75]. Shortcuts can lead to
the accumulation of intentional technical debt, while unintentional technical
debt can happen when business model experimentation is leaved out [74]. No740

matter how good the idea may seem, not validating the idea with customers
could lead to the development of unnecessary features.

Not focusing on technical debt will have consequences for the product quality,
while constantly changing and improving the business model will be necessary
to stay competitive [74]. Finding the correct balance is therefore essential. The745

same problem is referred to as the developer’s dilemma [76]. The developer’s
dilemma also emphasizes the need for managers to communicate the learning
goals of the product precisely so that developers can adjust the quality accord-
ingly. Not finding the correct match between learning goals and quality will
often lead to technical debt, waste, or missed learning.750

To help startups focus on technical debt, one estimation method is proposed
based on Visual Thinking [77]. The technique is based on “duck taping” each
part of the code that is developed or fixed in a messy way, to keep an overview of
what might cause quality issues in the future. Measuring technical debt is hard,
and as the author also concludes, the method needs more empirical evidence as755

27

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

to whether it actually is capable of solving issues related to technical debt.

Software Construction. There exists a wide range of various software tools to
speed up the development processes in software startups. However, as Edison et
al. [59] suggest, there does not exist a clear understanding of how entrepreneurs
can use the di↵erent tools e�ciently to meet their specific needs. As to this, the760

paper describes the outline of a system that provides a software tool portal that
supports and recommends which tools to use in the construction of software
products and services. The portal can be directly connected to the research
agenda [1], which addresses a need for how software tools can be recommended
and used by entrepreneurs.765

According to our findings, there is a general lack of research within the
field of software construction in startups. A software tool portal can indeed
be helpful to support software construction. However, such a portal is not
specifically addressing how to construct software. Software construction includes
the management and practicalities of construction and the use of technologies770

and tools to develop software [9]. As to this, it can be feasible to address software
construction through sub-categories, like design, testing, and verification.

Software Engineering Methods and Models. The models and methods knowledge
area aims at making software processes more success-oriented through system-
atic and repeatable activities at di↵erent lifecycle stages [9]. Topics include775

principles and properties of models, analysis of models, and various software
development methods.

Startups need software development methodologies and techniques tailored
to their specific contexts. These should be based on Lean Startup and agile
principles [7]. Researchers are encouraged to identify what engineering methods780

and models that are used today, and whether they work in a startup context
[1].

The Greenfield Startup Model (GSM) aims at explaining how development
strategies and practices are engineered and utilized in startups [5]. A similar
model, the academic startup model, was created by Souza et al. [66], which illus-785

trates how software startups structure and execute their engineering activities.
Both papers conclude that early-stage software startups do not adopt tradi-
tional development methodologies. Instead, rapid prototyping and continuous
experimentation are in focus, hence engineering practices are adapted to each
startup’s specific context. These models provide development objectives that790

software engineers in startups can use, as well as guidelines for future research
aiming at improving the current state-of-the-art.

We see an existing need to validate the software engineering models adapted
to the startup context. This includes areas like technical debt management for
particular contexts, and how new models from academia and industry can be795

applied in the startup context [5].

Software Testing. Software validation and testing are essential parts of all soft-
ware engineering processes. Software testing is both costly and time-consuming,

28

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

and without su�cient knowledge about customers and users, it can be di�cult
for startups to apply necessary testing practices in the development of high-800

quality software products and services.
Pompermaier et al. [65] found that testing is critical to startups’ success.

However, in the construction phase of the first version of the system, technical
teams did not use any software testing techniques. This changed in the following
phases, where 75 percent of the technical teams used software testing techniques.805

The most common testing techniques were unit tests (37 percent), pilot clients
(25 percent), functional tests (25 percent), and specialist testers (13 percent).

Due to the importance of testing, startups should apply testing techniques at
a more consistent and detailed level to enhance the quality and professionalism
of their development processes. Apart from the results presented by Pomper-810

maier et al. [65], more research is required to identify and develop methods for
how startups can enhance their current testing processes, even in contexts of
scarce resources and time-pressure. Research should look at how startups can
learn from established companies’ systematic testing processes, even if they have
significantly di↵erent needs for, and usage of such methods. Finding an opti-815

mal balance between cost/time spent on testing activities and how this evolves
over time in startups can help them in the introduction of good software testing
practices [1].

Software Requirements. Software requirements engineering activities include
elicitation, negotiation, analysis, specification, and validation of requirements820

[9]. As startups lack knowledge about their customers and users, it becomes
di�cult to identify and also verify all requirements. How much time should be
spent on requirements is challenging to estimate when you don’t know whether
the requirements actually will be implemented. This, in turn, makes it di�cult
to estimate time and cost of software development. To deal with these ambigui-825

ties, startups should apply techniques from the Lean Startup methodology [12].
Prototyping, continuous experimentation of minimum viable products, and piv-
oting are e↵ective tools and methods startups can utilize in their requirements
engineering processes [1].

Rafiq et al. [14] found that there was a lack of studies investigating how830

software startups perform requirements engineering processes. The study found
that requirements mainly were elicited through the founders’ assumptions and
interpretations of the market. These were based on several di↵erent require-
ments elicitation techniques, including prototyping, interviews, questionnaires,
feedback comments analyses, competitor analyses, similar product analyses, col-835

laborative team discussions, and model users. Although elicitation techniques
were used, the startups did not define the requirements explicitly. This resulted
in a lack of formal documentation, both before and after the elicitation process.

Future research should investigate a larger number of software startups to
identify a greater amount of elicitation techniques and to provide stronger evi-840

dence of the findings in Rafiq et al. [14]. More research should be undertaken
to identify negotiation, specification, and validation techniques. In addition,
research is necessary to identify requirements engineering for di↵erent lifecy-

29

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

cle stages to help startups in specific situational contexts identify appropriate
requirements engineering techniques.845

Software Design. The role of MVPs in software startups has been addressed
by Nguyen-Duc and Abrahamsson [28]. They suggest that MVPs are e↵ective
tools for requirements elicitation, and for bridging knowledge gaps between en-
trepreneurs, investors, and software developers - emphasizing that MVPs can
serve as a multiple facet product. A research topic requiring more work is how850

software prototype practices can be applied in an agile development context, and
how startups can benefit from adopting open source software in prototyping.

The speed of prototyping has been addressed by Nguyen-Duc et al. [17]. The
factors that influence the speed of prototyping can be grouped into artifacts,
team competence, collaboration, customer, and process dimensions. These fac-855

tors, along with the uncertainties of the startup context make it important to
define practices and processes to support decision-making in prototyping. While
throw-away prototypes are used mainly for specification and experiments, evo-
lutionary prototypes provide a basis for complete systems, usually developed
with extensive reuse. Customer feedback is an essential part of business ex-860

perimentation and is mainly done through prototyping. More work is required
to identify what kinds of learning di↵erent prototypes provide and to identify
e↵ective prototyping and development patterns among software startups.

5.1.2. Startup Research 1994-2017
Matching the primary papers with the right knowledge area can be challeng-865

ing, one reason being their relevance to the startup context. Another issue is
that di↵erent perceptions of knowledge areas can give di↵erent classifications.
Di↵erent authors’ biases in terms of knowledge and personal opinions will also
lead to di↵erent classifications.

Looking at the knowledge areas covered between 1994-2017, we see that soft-870

ware maintenance and software configuration management have received few
contributions. As one of the most important objectives for startups is to grow
and scale their business, both maintenance and configuration management be-
comes more important at more mature lifecycle stages. No papers between
2013-2017 focused on these knowledge areas, illustrating their irrelevance to the875

startup context.
Four knowledge areas were not covered at all (computing, mathematical, and

engineering foundations, and software engineering economics). They character-
ize the educational requirements of software engineering, hence not particularly
relevant for specific software startup research. However, we argue that more880

research should be provided within engineering foundations, as it can serve as
a prerequisite for software practitioners in startups. Apart from these findings,
we observe that the areas models and methods, testing, and quality have re-
ceived few contributions. In contrast to the educational requirements, these are
of greater importance in all startup lifecycle stages, and should thus be given885

more attention in future work.

30

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Areas with numerous contributions include software engineering process,
software engineering management, software construction, software design, and
software requirements. Management was suggested by Klotins et al. [8] as a
potential area for future work. Recently, several papers have contributed to890

important managerial aspects like pivoting, experimentation, and the role of
prototypes to define and assess business and development scope. It is clear that
the startup context requires fast and e↵ective decision-making, both at a man-
agerial and technical level. Software requirements engineering is important to
manage in order to minimize time and costs and avoid feature creeps related to895

prototyping and business experimentation.
Another area not su�ciently covered between 1994-2013 was software en-

gineering process. This is in contrast to the last five years, where process has
received most contributions. Klotins et al. [8] argue that software engineering
process becomes relevant for the maturity phase when product development is900

more robust and processes more predictable. As to this, the software process
knowledge area is more relevant for SMEs. In our study, however, we have re-
garded process as relevant for early-stage development as well, illustrating the
di↵erent interpretation among researchers.

The publication frequency of primary papers between 1994-2017 indicates905

that increasingly more papers are published. No other year is more represented
than 2017, which indicates that there is an increased focus on research within
the field. This can be seen as a direct response to the research agenda’s [1]
identified need for more research and the increased impact and importance of
startups in today’s technology innovation processes. The highly dynamic mar-910

kets and ever-increasing customer demands lead to a high failure rate among
startup companies. Empirical studies have found that although startups try to
adopt Lean Startup principles and agile methods, they generally find it hard to
apply them [5, 66]. More research is thus required to support entrepreneurs and
software developers to enhance their chances of success. With the increased pub-915

lication frequencies in mind, it seems that more work is undertaken to address
startups’ unique needs.

Software startups find it hard to apply theory in practice, a claim supported
by both empirical research and the high failure rates. Looking at the contribu-
tion types from 1994-2017, we observe that the most frequent ones are advice,920

lessons learned, and models, while the least frequent ones are tools, guidelines,
and frameworks. Between 2013-2017, lessons learned has been the most pop-
ular contribution type, while previously advice was more popular. What we
can make from these numbers is that researchers mainly have focused on pro-
viding advice and learnings to the startup community. As to this, we suggest925

that researchers should provide knowledge from state-of-the-practice to support
startups with specific tools and frameworks. This could allow for a broader
coverage of startups’ needs and unique requirements.

5.1.3. Identification of Research Gaps
By structuring literature within the field from 1994-2017, this study allows930

for identifying whether research from the last five years has addressed research

31

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

gaps suggested by the previous mapping studies. In addition, this section will
point out directions for future research.

Paternoster et al. [7] expected more studies to contribute to the adoption of
agile practices in startups. In particular, they recommended the need for future935

studies to provide techniques for aligning business goals of software startups
with the execution of specific development practices. Another area suggested
for future research was the development of customer collaboration processes
for requirement elicitation, allowing for testing the problem before releasing
the product to market. Lastly, they identified the need for improved verbal940

communication with the introduction of new tools and techniques to enhance
knowledge transfer in startups. These research gaps have only partly been ad-
dressed the last five years. Towards agile methodologies and techniques tailored
to the startup context Pantiuchina et al. [72] provide a better understanding of
the current adoption of agile practices in software startups. The study indicates945

that speed-related agile practices are more frequently used than quality-related
practices. Comparable findings have been presented by Yau and Murphy [30],
stating that a rigorous agile methodology intended for established companies
may not be applicable to the startup environment. In relation to customer
development Chanin et al. [13] present the results from applying a customer950

development process to three startups, indicating that the process can improve
the requirements process. Others have also contributed to addressing customer
development and requirements elicitation [14, 28, 44]. We could not identify
research directly related to team communication, documentation, or knowledge
transfer.955

Klotins et al. [8] stated that there is an insu�cient understanding of qual-
ity requirements role in software startups, and that maintenance of product
integrity in startups is yet to be explored. This is especially relevant due to the
evolutionary approach and restricted resources of startups. Similar to Pater-
noster et al. [7], Klotins et al. [8] highlight the need for addressing the relation960

between software technical decisions and organizational business goals, and a
better understanding for human capabilities in startups. Comparable to the
need for customer development processes presented by Paternoster et al. [7],
Klotins et al. [8] identified the need to further investigate the role of scope in
software startups. Discovering the right scope can greatly improve development965

speed, by identifying the necessary features and e↵ort. Since 2013 empirical re-
search has been undertaken to explore state-of-the-practice in testing activities
of software startups [65], and the accumulation of technical debt [74, 76, 77].

We suggest future work to compile a set of agile practices that provide enough
benefits to be adopted in the startup context, overcoming challenges related to970

cost and time of implementing a process model without compensating the de-
mand for speed in early-stage startups. A development methodology should
include specific practices related to communication in the growing number of
stakeholders. We also emphasize future studies dedicated to the role of hu-
man capital in startups, investigating capabilities and engineering foundations975

of startup practitioners. In addition, we highlight the need for studies explor-
ing challenges and engineering approaches of startups developing products with

32

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

mixed hardware and software parts. Finally, more work is needed to cover the
partly filled research gaps identified by the previous mapping studies.

5.1.4. Future Classification980

Unterkalmsteiner et al. [1] identified more than 70 research questions in
di↵erent areas supporting activities of software startups. The researchers con-
tributing to the paper are all part of a network (The Software Startup Research
Network) of researchers that have created eighteen research track descriptions
to ease the presentation and discussion of the research agenda. These eighteen985

research tracks were grouped into six themes based on similarities.
Classifying the newly selected primary studies according to the SWEBOK

knowledge areas resulted in 9 out of 15 of the areas being addressed. This
indicates that some of the knowledge areas might not be related to startups,
while some are of big interest. The same pattern was discovered in Klotins et al.990

[8], which used SWEBOK for lack of a better alternative. The low coverage is
most certainly because most of the research in the field of software engineering
is undertaken in relation to established companies, from which the SWEBOK
knowledge areas are developed.

For future mappings, it would be sensible to categorize the papers into the995

newly established research themes [1]. These are better suited for startup re-
search and can help guide researchers in providing knowledge to the specific
areas that are most important for the challenges faced by startups. Do notice
that number 7 and 8 require more evidence as to whether they can be related to
software startup engineering: (1) Supporting startup engineering activities, (2)1000

Startup evolution models and patterns, (3) Human aspects in software startups,
(4) Applying startup concepts in non-startup environments, (5) Startup ecosys-
tem and innovation hubs, (6) Methodologies and theories for startup research,
(7) Marketing, (8) Economics and business development.

5.2. RQ2: What is the relative strength of the empirical evidence reported?1005

Paternoster et al. [7] provided a mapping of the research within software
development in startups for the period 1994-2013, including 43 primary studies.
Each study provided empirical evidence as this was a quality criterion of the
mapping. Overall, only 4 of these papers were found to be (1) contributions
entirely dedicated to engineering activities in startups, (2) providing a strong1010

contribution type, and (3) conducted through an evidence-based research ap-
proach [10, 37, 38, 39].

The mapping study Klotins et al. [8] found that (1) most of their primary
studies did not compare and analyze data from more than one case, and (2) most
studies had low rigour, making it di�cult to compare results. As to this, they1015

emphasized the need for more empirical research to provide stronger evidence
and enable results to be generalized to all software startups. More specifically,
the paper identified a lack of studies related to requirements processes, the
“developer’s dilemma” (as discussed in section 5.1.1), software architecture, and
software engineering processes.1020

33

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Figure 4 shows the areas that have received most contributions in terms
of empirical research between 2013-2017. These are software engineering pro-
cess, software engineering management, and software engineering professional
practice. On the contrary, five knowledge areas received less than five scientific
contributions, arguing the need for more research, even within areas that have1025

gotten attention from the research community. This is also in line with the
research agenda’s addressed need for further empirical evidence [1].

Comparing the provided quality between papers published before and after
2013 we see that the quality of work is improving. As for the previous studies,
the reported rigour of the primary papers was at a generally lower level than1030

what was found in the newly selected papers, where only one paper obtained
low rigour. Possible explanations are the di↵erent quality assessment methods
used, and the increasing number of researchers contributing to the field. Another
reason may be the assessment bias of di↵erent researchers.

Several of the researchers who have contributed to the newly selected pri-1035

mary papers are members of The Software Startup Research Network, whose
aim is to provide entrepreneurs and the research community with novel research
findings within the area of software startups. Anh Nguyen-Duc, one of the mem-
bers of this network, has participated in six of the primary studies, in which
all received a high rigour score. Another researcher who has contributed to1040

three of the primary studies is Rory V. Connor, where all three papers received
a high rigour score. He participated in three primary studies in the previous
systematic mapping study as well, all of which obtained high rigour. As to this,
it seems that the quality of research is becoming increasingly high compared
to before, justifying the high rigour obtained by the quality assessment in this1045

mapping study. The quality of work was reported to be a problem area in both
of the previous mapping studies. However, as our findings suggest, there is an
increased focus on providing high-quality research with several researchers con-
tributing with multiple papers, as illustrated by specific initiatives that promote
scientific work.1050

5.3. RQ3: In what context has software startup research been conducted?

The most frequently used term for referring to startup companies is “startup”,
with 54 percent of the 74 primary papers using this term. Between 2013-2017,
the same percentage has increased to 75 percent. In order to create a coher-
ent definition for startups, ideally, only one term should be used. The research1055

community has moved towards a common use of “startup”, and this should
thus be used for future research when referring to companies in the startup con-
text. Inconsistent usage of the term, like “start-up”, “start up”, or “very small
entities” in startup context should be avoided, and makes it di�cult for both
practitioners and researchers to adopt relevant results.1060

Primary papers showed an inconsistent use of thematic concepts when de-
scribing startup companies, with no single factor being used by all papers. As
stated in the results, this also relates to the poor contextual descriptions found
in several of the papers. We observe that the usage has changed significantly
between 1994-2017, where only “Time-pressure” was used to the same extent1065

34

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

before and after 2013. Interestingly, the least used concept between 1994-2013
is the fifth most used concept by the papers between 2013-2017. As to this, it
seems that some of the thematic concepts found in the previous mapping study
are no longer the ones used by the community.

The many di↵erent descriptions of startups make it challenging to develop1070

a coherent definition and body of knowledge for the startup context. Based
on the frequency of concepts found in the primary papers between 1994-2017,
we argue that at least the concepts occurring in more than 25 percent or more
of the studies should be part of a unique definition of startups. The following
thematic concepts were: (1) Innovation/innovative, (2) Lack of resources, (3)1075

Uncertainty, (4) Time-pressure, (5) Small team, (6) Highly reactive, (7) Rapidly
evolving. Thematic concepts that were not very relevant for startups include
not (1) self-sustained, (2) low-experienced team, (3) one product, and (4) flat
organization. These concepts should be avoided as the primary definition by
researchers in the community.1080

Many of the newly selected primary studies did not explain the startups un-
der investigation su�ciently. From the 22 papers providing empirical evidence,
only 14 of these provided a su�cient amount of descriptions (table 5). Inter-
estingly, only two papers mentioned incubators as part of the startup context.
Without a unique definition in literature, the importance of precise descriptions1085

becomes even bigger, especially for transferring results from one environment
to another [8].

“Team size” received little focus. A startup with 5 employees have di↵erent
needs and challenges from a startup with more than 150 employees (e.g., com-
munication needs) [78]. Even though team size will a↵ect engineering practices1090

to a large degree, too few of the primary papers presented the team size of
the startups investigated. More research is needed to understand how software
engineering practices change according to team size, and to what extent team
size should be part of a unique definition of startups. We found that the usual
number of employees in investigated startups was 2-25. The number depends1095

on their respective lifecycle stage or the age of the company. A startup usually
starts with 2-6 founders, but as the business scales, more employees are required.
This will, in turn, a↵ect the startup’s need for software processes. As to this,
we emphasize that researchers must be aware of which describing concepts that
are relevant for the startups they are investigating, and that they specify this1100

in their work. More consistent focus on the situational context is a vital step
towards a more coherent body of knowledge.

The research track of Unterkalmsteiner et al. [1] aims at developing a soft-
ware startup context model that would allow a coherent characterization of
software startups. Since there is no agreement on a standard definition, it is1105

challenging to provide coherent contributions to the research area.

6. Conclusion

In this study, we have applied a systematic mapping method to analyze the
literature related to software startup engineering. A total number of 74 primary

35

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

papers (in which 27 papers are newly selected) were extracted and synthesized.1110

Our study, along with the previous mapping studies, constitute a merging of the
primary literature within the field for the period 1994-2017, including the focus
and relative strength of research, and the e↵ort that’s been made to characterize
the software startup context.

The contribution of this mapping study is two-fold. Firstly, the study pro-1115

vides a comprehensive view of software startups for Software Engineering re-
searchers. Possible research gaps are derived for future studies. Secondly, the
study provides a map of the contextual setting of investigated startups, inferring
the applicability area of empirical findings. This can help to compare and to
generalize future research in software startups.1120

Regards to RQ1, most found software startup research between 2013-2017,
are conducted within software engineering management and software engineer-
ing process, while software design and software requirements have received most
attention between 1994-2013. For the period 2013-2017, software design received
fewer contributions compared to that in 1994-2013, illustrating a change of re-1125

search direction. The knowledge areas software engineering models and meth-
ods, software quality, and software testing have received little attention from the
research community during the period 1994-2017. Apart from these findings,
we emphasize the need for more research within all knowledge areas. For the
period 2013-2017 software configuration management and software maintenance1130

were not covered at all. As to this, it seems that some of the knowledge areas
aren’t directly relevant to the startup context. Future mappings should instead
use the newly established research themes of Unterkalmsteiner et al. [1].

Regards to RQ2, we found an increased rigour of primary studies after 2013
in comparison with studies found in 1994-2013. While it is still not clear1135

about the transformation of research results to startup practitioners, startup
researchers seem to increase the focus on conducting high-quality research. The
increased importance of startups has been an important factor to highlight the
need for more research. As startups generally use ad-hoc or opportunistic de-
velopment methods, practices of startups can be di↵erent, meaning that more1140

evidence is needed to generalize work practices to all startups.
Regards to RQ3, we identify a coherent set of concepts that represent the

startup context, (1) Innovation/innovative, (2) Lack of resources, (3) Uncer-
tainty, (4) Time-pressure, (5) Small team, (6) Highly reactive, (7) Rapidly
evolving. Additionally, aspects like (1) team size, (2) product orientation, (3)1145

number of active years/life cycle stage, (4) number of investigated startups, (5)
location, and (6) development method are important to describe su�ciently to
be able to transfer results from one environment to another. As only 14 of the
primary papers between 2013-2017 provided adequate descriptions, and all pri-
mary papers showed an overall inconsistent use of describing thematic concepts,1150

we see a need for a more comprehensive endeavor to describe the engineering
context of startups.

Several threats to validity were considered, including the selection of papers,
the use of few online bibliographic databases, the selection of keywords, and
the coarse-grained classification used for the quality assessment. To ensure the1155

36

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

selection process was unbiased, the selection criteria were developed in advance,
also the first, second and third author were involved in the selection process.
Both the use of few online bibliographic databases and the identified keywords
and search terms might have lead to relevant papers being omitted. This risk
was mitigated by performing an additional manual search. For the quality1160

assessment, it is likely that the use of only two points have caused the papers to
obtain a higher rigour than they would have if a more fine-grained assessment
method had been used.

Future work can focus on certain research themes, such as startup evolution
models and human aspects, and consolidate the contextual factors of software1165

startups. More work should be conducted for specific business contexts, such
as startups that are part of incubators and bigger business ecosystems. As a
next step, we seek to address engineering practices in startups who deliver both
hardware and software, as no prior studies have been entirely dedicated towards
their specific challenges and demands.1170

Appendix A.

Appendix A presents the classification schema (A.7), which includes the
classification of each primary paper. Table A.8 and table A.9 explain some of
the attributes of the classification schema in more detail.

37

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

ID
Research
Method

Contribution
Type

Knowledge
Area

Pertinence
Term for
startup

Incubator
context

Publisher

[30] Case study
Lessons
learned

Process Full Startup No
Penn
University

[51] Experiment
Lessons
learned

Professional
Practice,
Management,
Quality

Partial Start-up No QUATIC

[79] Framework
Professional
Practice

Full Start-up No ACM

[69] Experiment Guidelines Process Full Start-up No ENASE

[74] Case study Theory
Process,
Management,
Quality

Partial Startup No Springer

[59] Survey Tool Construction Full Startup No Springer

[56] Case study Model
Process,
Management

Full Startup No ACM

[67] Case study
Lessons
learned

Process Full
Very Small
Company

No Springer

[31] Guidelines Process Partial Startup No Springer

[1] Advice

Process,
Management,
Professional Practice,
Construction,
Requirements,
Quality, Testing

Full Startup No EISEJ

[76] Advice
Quality,
Construction

Full Startup No Springer

[73] Case study
Lessons
learned

Process,
Management

Partial
Very Small
Enterprise

No IEEE

[5]
Design and
creation

Model
Models
and Methods

Full Startup No IEEE

[44] Case study
Lessons
learned

Management,
Requirements

Full Startup No Springer

[28] Case study
Lessons
learned

Management,
Design,
Construction

Full Startup No Springer

[45] Case study Model
Methods
and Models,
Management

Full Startup No IEEE

[46] Case study Advice
Management,
Process

Full Startup No EASE

[29] Case study
Lessons
learned

Management,
Testing

Full Startup No Springer

[47] Case study Theory
Management,
Process

Full Startup No Springer

[17] Case study
Lessons
learned

Management,
Design

Full Startup No Springer

[65] Case study
Lessons
learned

Process,
Testing

Full Startup Yes
KSI
Graduate
School

[72] Survey
Lessons
learned

Professional
Practice

Full Startup No Springer

[14] Case study
Lessons
learned

Requirements Full Startup No IEEE

[66] Case study Model
Professional
Practice

Full Startup Yes IEEE

[77] Framework Quality Full Startup No IEEE

[13] Case study
Lessons
learned

Requirements Full Startup No IEEE

[68] Case study Advice Process Full Start-up No Springer

Table A.7: Classification Schema

38

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Research Methods1175

Research Method Description

Survey
Obtain the same kinds of data from a large group
of people in a standardized, systematic way to find
patterns through statistics.

Design and creation
Development of new IT products or artifacts, or
even a model or method.

Experiment
Investigation of cause and e↵ect relationships
through hypotheses-testing and proofs. Typically
”before” and ”after” measurements.

Case study
Focusing on one instance of the ”thing” being
investigated to obtain a rich, detailed insight into
the case and its complex relationships and processes.

Action research
Plan to do something in real life, do it, and reflect
on the outcome and learnings.

Ethnography
Focusing on understanding the ways of seeing a
specific group of people through field research.

Table A.8: Research Methods [57]

Contribution Types

Contribution Type Description

Model
Representation of an observed reality by concepts
or related concepts after a conceptualization process

Theory
Construction of cause-e↵ect relationships from
determined results

Framework/methods
Models related to constructing software or
managing development processes

Guidelines
List of advices, synthesis of the obtained
research results

Lessons learned
Set of outcomes, directly analyzed from the
obtained research result

Advice/implications
Discursive, and generic recommendation,
deemed from personal opinions

Tool
Technology, program or application used to create,
debug, maintain or support development processes

Table A.9: Contribution Types [7]

39

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Appendix B.

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score
[30] 1 1 0 1 1 1 0 0 1 0 6
[51] 1 1 1 1 1 1 1 0 1 0 8
[69] 1 1 1 1 1 1 1 0 1 0 8
[74] 1 1 1 1 1 1 1 0 1 1 9
[59] 1 1 0 0 0 0 0 0 1 0 3
[56] 1 1 1 1 1 0 0 1 1 1 8
[67] 1 1 1 1 0 1 1 0 1 1 8
[73] 1 1 1 1 1 1 1 0 1 0 8
[5] 1 1 1 1 1 1 1 1 1 1 10
[65] 1 1 1 1 1 1 1 0 1 1 9
[72] 1 1 1 1 1 1 1 0 1 1 9
[14] 1 1 1 0 1 0 1 1 1 1 8
[66] 1 1 1 0 1 1 1 0 1 1 8
[68] 1 1 1 1 1 1 1 0 1 0 8
[44] 1 1 1 0 1 1 1 0 1 1 8
[28] 1 1 1 1 1 1 1 0 1 1 9
[45] 1 1 1 1 1 1 1 1 1 1 10
[46] 1 1 1 1 1 1 1 1 1 1 10
[29] 1 1 1 1 1 1 1 1 1 1 10
[47] 1 1 1 0 1 1 1 0 1 0 7
[17] 1 1 1 1 1 1 1 1 1 1 10
[13] 1 1 1 1 1 0 1 1 1 0 8

Table B.10: Quality assessment 2013-2017, based on table 3 in Nguyen-Duc et al. [48]

40

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

Recurring Themes Explanation

Lack of resources
Economical, human, and physical resources are
very scarce or limited.

Highly reactive
Startups can react very fast to changed market
conditions, technologies, or changed customer
demands.

Innovative
The startups focus on innovative market segments,
most likely where they can disrupt markets.

Uncertainty
The ecosystem in which the startups operate
within are very uncertain, wrt. customers,
competition, technologies.

Rapidly evolving Startups’ objective is to grow and scale rapidly.

Time-pressure
The market and environment demands fast
product releases and constant pressure.

Third party dependency
Startups need to rely on external entities and
technologies in their lack of time and resources.

Small team
The startup consist of a small number of
individuals.

One product
The startup is only concerned with the development
of one product.

Low-experienced team
Maximum five years of experience or newly
graduated students.

Highly risky The failure rate of startups is high.
New company The company is newly established.

Flat organization
All individuals in the company have shared
responsibility, no high-management.

Not self-sustained
External funding is required, especially in the
early-stages.

Little working/operating history
There is a lack of organizational culture as
the startup is young.

Table B.11: Explanation of recurring themes, based on table 6 in Paternoster et al. [7]

References

[1] M. Unterkalmsteiner, P. Abrahamsson, X. F. Wang, N. D. Anh, S. Shah,
S. S. Bajwa, G. H. Baltes, K. Conboy, E. Cullina, D. Dennehy, H. Edison,1180

C. Fernandez-Sanchez, J. Garbajosa, T. Gorschek, E. Klotins, L. Hokkanen,
F. Kon, I. Lunesu, M. Marchesi, L. Morgan, M. Oivo, C. Selig, P. Seppanen,
R. Sweetman, P. Tyrvainen, C. Ungerer, A. Yague, Software startups - a
research agenda, E-Informatica Software Engineering Journal 10 (1) (2016)
89–123. doi:10.5277/e-Inf160105.1185

URL <GotoISI>://WOS:000387014900006

[2] M. Marmer, B. L. Herrmann, E. Dogrultan, R. Berman, C. Eesley, S. Blank,
Startup genome report extra: Premature scaling, Vol. 10, 2011.

41

http://dx.doi.org/10.5277/e-Inf160105

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[3] M. Crowne, Why software product startups fail and what to do about it.
evolution of software product development in startup companies, in: Engi-1190

neering Management Conference, 2002. IEMC’02. 2002 IEEE International,
Vol. 1, IEEE, 2002, pp. 338–343.

[4] C. Giardino, S. S. Bajwa, X. Wang, P. Abrahamsson, Key challenges in
early-stage software startups, in: International Conference on Agile Soft-
ware Development, Springer, 2015, pp. 52–63.1195

[5] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, P. Abra-
hamsson, Software development in startup companies: The greenfield
startup model, IEEE Transactions on Software Engineering 42 (6) (2016)
585–604. doi:10.1109/TSE.2015.2509970.
URL http://dx.doi.org/10.1109/TSE.2015.25099701200

[6] S. M. Sutton Jr, Role of process in a software start-up, IEEE Software
17 (4) (2000) 33–39. doi:10.1109/52.854066.
URL http://dx.doi.org/10.1109/52.854066

[7] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, P. Abra-
hamsson, Software development in startup companies: A systematic map-1205

ping study, Information and Software Technology 56 (10) (2014) 1200–18.
doi:10.1016/j.infsof.2014.04.014.
URL http://dx.doi.org/10.1016/j.infsof.2014.04.014

[8] E. Klotins, M. Unterkalmsteiner, T. Gorschek, Software Engineering
Knowledge Areas in Startup Companies: A Mapping Study, Vol. 2101210

of Lecture Notes in Business Information Processing, 2015, pp. 245–257.
doi:10.1007/978-3-319-19593-3_22.
URL <GotoISI>://WOS:000365180900024

[9] P. Bourque, R. E. Fairley, Guide to the software engineering body of knowl-
edge (SWEBOK (R)): Version 3.0, IEEE Computer Society Press, 2014.1215

[10] G. Coleman, R. V. O’Connor, An investigation into software development
process formation in software start-ups, Journal of Enterprise Information
Management 21 (6) (2008) 633–648. doi:10.1108/17410390810911221.
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&1220

md5=9a7aca62e6f24c6416fd3034dbb66b0a

[11] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, P. Abra-
hamsson, What do we know about software development in startups?, IEEE
Software 31 (5) (2014) 28–32. doi:10.1109/MS.2014.129.
URL http://dx.doi.org/10.1109/MS.2014.1291225

[12] E. Ries, The lean startup: How today’s entrepreneurs use contstant inno-
vation to create radically successful businesses, Crown Books, 2011.

42

http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/TSE.2015.2509970
http://dx.doi.org/10.1109/52.854066
http://dx.doi.org/10.1109/52.854066
http://dx.doi.org/10.1109/52.854066
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1016/j.infsof.2014.04.014
http://dx.doi.org/10.1007/978-3-319-19593-3_22
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
http://dx.doi.org/10.1108/17410390810911221
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-55349133834&doi=10.1108%2f17410390810911221&partnerID=40&md5=9a7aca62e6f24c6416fd3034dbb66b0a
http://dx.doi.org/10.1109/MS.2014.129
http://dx.doi.org/10.1109/MS.2014.129
http://dx.doi.org/10.1109/MS.2014.129

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[13] R. Chanin, L. Pompermaier, K. Fraga, A. Sales, R. Prikladnicki, Applying
customer development for software requirements in a startup development
program, in: Proceedings of the 1st International Workshop on Software1230

Engineering for Startups, IEEE Press, 2017, pp. 2–5.

[14] U. Rafiq, S. S. Bajwa, W. Xiaofeng, I. Lunesu, Requirements elicitation
techniques applied in software startups, in: 2017 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA), 30
Aug.-1 Sept. 2017, 2017 43rd Euromicro Conference on Software Engineer-1235

ing and Advanced Applications (SEAA), IEEE Computer Society, 2017,
pp. 141–4. doi:10.1109/SEAA.2017.73.
URL http://dx.doi.org/10.1109/SEAA.2017.73

[15] J. Bosch, H. H. Olsson, J. Björk, J. Ljungblad, The early stage software
startup development model: a framework for operationalizing lean prin-1240

ciples in software startups, in: Lean Enterprise Software and Systems,
Springer, 2013, pp. 1–15.

[16] S. Blank, Why the lean start-up changes everything, Harvard business re-
view 91 (5) (2013) 63–72.

[17] A. Nguyen-Duc, X. Wang, P. Abrahamsson, What influences the speed of1245

prototyping? an empirical investigation of twenty software startups, in:
International Conference on Agile Software Development, Springer, 2017,
pp. 20–36.

[18] L. Karlsson, Dahlstedt, J. N. och Dag, B. Regnell, A. Persson, Challenges
in market-driven requirements engineering-an industrial interview study, in:1250

Eighth International Workshop on Requirements Engineering: Foundation
for Software Quality, 2002.

[19] E. Carmel, Time-to-completion in software package startups, in: 1994 Pro-
ceedings of the Twenty-Seventh Hawaii International Conference on System
Sciences, 1994.1255

[20] A. Dahlstedt, Study of current practices in market-driven requirements
engineering, in: Third Conference for the Promotion of Research in IT at
New Universities and University Colleges in Sweden, 2003.

[21] M. Keil, E. Carmel, Customer-developer links in software development,
Communications of the ACM 38 (5) (1995) 33–44.1260

[22] C. Alves, S. Pereira, J. Castro, A study in market-driven requirements
engineering.

[23] S. Blank, The four steps to the epiphany: successful strategies for products
that win, BookBaby, 2013.

43

http://dx.doi.org/10.1109/SEAA.2017.73
http://dx.doi.org/10.1109/SEAA.2017.73
http://dx.doi.org/10.1109/SEAA.2017.73
http://dx.doi.org/10.1109/SEAA.2017.73
http://dx.doi.org/10.1109/SEAA.2017.73

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[24] S. A. Alvarez, J. B. Barney, Discovery and creation: Alternative theories1265

of entrepreneurial action, Strategic entrepreneurship journal 1 (1-2) (2007)
11–26.

[25] S. D. Sarasvathy, Causation and e↵ectuation: Toward a theoretical shift
from economic inevitability to entrepreneurial contingency, Academy of
management Review 26 (2) (2001) 243–263.1270

[26] A. Maurya, Running lean: iterate from plan A to a plan that works, ”
O’Reilly Media, Inc.”, 2012.

[27] J. P. Womack, D. T. Jones, D. Roos, Machine that changed the world,
Simon and Schuster, 1990.

[28] A. Nguyen-Duc, P. Abrahamsson, Minimum viable product or multiple1275

facet product? the role of mvp in software startups, in: International
Conference on Agile Software Development, Springer, 2016, pp. 118–130.

[29] S. S. Bajwa, X. Wang, A. N. Duc, P. Abrahamsson, “failures” to be cele-
brated: an analysis of major pivots of software startups, Empirical Software
Engineering 22 (5) (2017) 2373–2408.1280

[30] A. Yau, C. Murphy, Is a rigorous agile methodology the best development
strategy for small scale tech startups?

[31] A. I. Wasserman, Low ceremony processes for short lifecycle projects, in:
Managing Software Process Evolution, Springer, 2016, pp. 1–13.

[32] M. Kuhrmann, J. Münch, I. Richardson, A. Rausch, H. Zhang, Managing1285

Software Process Evolution: Traditional, Agile and Beyond–How to Handle
Process Change, Springer, 2016.

[33] M. Tanabian, B. ZahirAzami, Building high-performance team through ef-
fective job design for an early stage software start-up, in: Engineering Man-
agement Conference, 2005. Proceedings. 2005 IEEE International, Vol. 2,1290

IEEE, 2005, pp. 789–792.

[34] S. Chorev, A. R. Anderson, Success in israeli high-tech start-ups; critical
factors and process, Technovation 26 (2) (2006) 162–174.

[35] M. Kakati, Success criteria in high-tech new ventures, Technovation 23 (5)
(2003) 447–457.1295

[36] N. Tripathi, E. Annanpera, M. Oivo, K. Liukkunen, Exploring Processes
in Small Software Companies: A Systematic Review, Vol. 609 of Com-
munications in Computer and Information Science, 2016, pp. 150–165.
doi:10.1007/978-3-319-38980-6_12.
URL <GotoISI>://WOS:0003826511000121300

44

http://dx.doi.org/10.1007/978-3-319-38980-6_12

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[37] G. Coleman, R. O’Connor, Investigating software process in practice: A
grounded theory perspective, Journal of Systems and Software 81 (5) (2008)
772–784.

[38] G. Coleman, R. O’Connor, Using grounded theory to understand software
process improvement: A study of irish software product companies, Infor-1305

mation and Software Technology 49 (6) (2007) 654–667.

[39] M. Kajko-Mattsson, N. Nikitina, From knowing nothing to knowing a little:
Experiences gained from process improvement in a start-up company, in:
International Conference on Computer Science and Software Engineering,
CSSE 2008, December 12, 2008 - December 14, 2008, Vol. 2 of Proceedings -1310

International Conference on Computer Science and Software Engineering,
CSSE 2008, IEEE Computer Society, 2008, pp. 617–621. doi:10.1109/

CSSE.2008.1370.
URL http://dx.doi.org/10.1109/CSSE.2008.1370

[40] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK,1315

Keele University 33 (2004) (2004) 1–26.

[41] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping stud-
ies in software engineering, in: EASE, Vol. 8, 2008, pp. 68–77.

[42] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th inter-1320

national conference on evaluation and assessment in software engineering,
ACM, 2014, p. 38.

[43] F. Shull, J. Singer, D. I. Sjøberg, Guide to advanced empirical software
engineering, Springer, 2007.

[44] S. S. Bajwa, X. Wang, A. N. Duc, P. Abrahamsson, How do software star-1325

tups pivot? empirical results from a multiple case study, in: International
Conference of Software Business, Springer, 2016, pp. 169–176.

[45] A. Nguyen-Duc, S. M. A. Shah, P. Ambrahamsson, Towards an early stage
software startups evolution model, in: Software Engineering and Advanced
Applications (SEAA), 2016 42th Euromicro Conference on, IEEE, 2016,1330

pp. 120–127.

[46] A. N. Duc, P. Abrahamsson, Exploring the outsourcing relationship in soft-
ware startups: A multiple case study, in: Proceedings of the 21st Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
ACM, 2017, pp. 134–143.1335

[47] A. Nguven-Duc, Y. Dahle, M. Steinert, P. Abrahamsson, Towards under-
standing startup product development as e↵ectual entrepreneurial behav-
iors, in: International Conference on Product-Focused Software Process
Improvement, Springer, 2017, pp. 265–279.

45

http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370
http://dx.doi.org/10.1109/CSSE.2008.1370

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[48] A. Nguyen-Duc, D. S. Cruzes, R. Conradi, The impact of global disper-1340

sion on coordination, team performance and software quality–a systematic
literature review, Information and Software Technology 57 (2015) 277–294.

[49] M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial
relevance of technology evaluations, Empirical Software Engineering 16 (3)
(2011) 365–395.1345

[50] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity
of systematic literature reviews in software engineering, in: Software En-
gineering Conference (APSEC), 2016 23rd Asia-Pacific, IEEE, 2016, pp.
153–160.

[51] C. Y. Laporte, R. V. O’Connor, Ieee, Systems and software engineering1350

standards for very small entities: Implementation and initial results, 2014
9th International Conference on the Quality of Information and Communi-
cations Technology (QUATIC) (2014) 38–47doi:10.1109/quatic.2014.
12.
URL <GotoISI>://WOS:0003642377000051355

[52] E. Klotins, M. Unterkalmsteiner, T. Gorschek, Software engineering in
start-up companies: An analysis of 88 experience reports, Empirical Soft-
ware Engineering (2018) 1–35.

[53] K. Kautz, Improvement in very small enterprisese: Does it pay o↵, Softw.
Process Improv. Pr 226 (1988) (2000) 209–226.1360

[54] S. Jansen, S. Brinkkemper, I. Hunink, C. Demir, Pragmatic and oppor-
tunistic reuse in innovative start-up companies, IEEE software 25 (6).

[55] S. Shakir, J. Nørbjerg, It project management in very small software com-
panies: A case of pakistan, in: Americas Conference on Information Sys-
tems, 2013, pp. 1–8.1365

[56] A. Nguyen-Duc, P. Seppanen, P. Abrahamsson, Hunter-gatherer cycle: A
conceptual model of the evolution of software startups, in: International
Conference on Software and Systems Process, ICSSP 2015, August 24, 2015
- August 26, 2015, Vol. 24-26-August-2015 of ACM International Confer-
ence Proceeding Series, Association for Computing Machinery, 2015, pp.1370

199–203. doi:10.1145/2785592.2795368.
URL http://dx.doi.org/10.1145/2785592.2795368

[57] B. J. Oates, Researching information systems and computing, Sage, 2005.

[58] M. Shaw, Writing good software engineering research papers, in: Software
Engineering, 2003. Proceedings. 25th International Conference on, IEEE,1375

2003, pp. 726–736.

46

http://dx.doi.org/10.1109/quatic.2014.12
http://dx.doi.org/10.1109/quatic.2014.12
http://dx.doi.org/10.1109/quatic.2014.12
http://dx.doi.org/10.1145/2785592.2795368
http://dx.doi.org/10.1145/2785592.2795368
http://dx.doi.org/10.1145/2785592.2795368
http://dx.doi.org/10.1145/2785592.2795368
http://dx.doi.org/10.1145/2785592.2795368

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[59] H. Edison, D. Khanna, S. S. Bajwa, V. Brancaleoni, L. U. Bellettati, To-
wards a software tool portal to support startup process, in: 16th Inter-
national Conference on Product-Focused Software Process Improvement,
PROFES 2015, December 2, 2015 - December 4, 2015, Vol. 9459 of Lecture1380

Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2015,
pp. 577–583. doi:10.1007/978-3-319-26844-6_43.
URL http://dx.doi.org/10.1007/978-3-319-26844-6_43

[60] M. Häsel, T. Kollmann, N. Breugst, It competence in internet founder1385

teams, Business & Information Systems Engineering 2 (4) (2010) 209–217.

[61] R. Stanfill, T. Astleford, Improving entrepreneurship team performance
through market feasibility analysis, early identification of technical require-
ments, and intellectual property support, in: Proceedings of the American
Society for Engineering Education Annual Conference & Exposition, 2007.1390

[62] K. Kuvinka, Scrum and the single writer, Proceedings of Technical Com-
munication Summit (2011) 18–19.

[63] S.-l. Lai, Chinese entrepreneurship in the internet age: Lessons from al-
ibaba. com, World Academy of Science, Engineering and Technology 72
(2010) 405–411.1395

[64] D. B. Yo�e, M. A. Cusumano, Building a company on internet time:
Lessons from netscape, California Management Review 41 (3) (1999) 8–
28.

[65] L. Pompermaier, R. Chanin, A. Sales, K. Fraga, R. Prikladnicki, An em-
pirical study on software engineering and software startups: Findings from1400

cases in an innovation ecosystem, in: 29th International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE 2017, July 5, 2017
- July 7, 2017, Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, Knowledge Systems In-
stitute Graduate School, 2017, pp. 48–51. doi:10.18293/SEKE2017-115.1405

URL http://dx.doi.org/10.18293/SEKE2017-115

[66] R. Souza, K. Malta, E. S. D. Almeida, Software engineering in startups:
A single embedded case study, in: 1st IEEE/ACM International Work-
shop on Software Engineering for Startups, SoftStart 2017, May 21, 2017,
Proceedings - 2017 IEEE/ACM 1st International Workshop on Software1410

Engineering for Startups, SoftStart 2017, Institute of Electrical and Elec-
tronics Engineers Inc., 2017, pp. 17–23. doi:10.1109/SoftStart.2017.2.
URL http://dx.doi.org/10.1109/SoftStart.2017.2

[67] M.-L. Sánchez-Gordón, R. V. O’Connor, Understanding the gap between
software process practices and actual practice in very small companies,1415

Software Quality Journal 24 (3) (2016) 549–570.

47

http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.1007/978-3-319-26844-6_43
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.18293/SEKE2017-115
http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1109/SoftStart.2017.2
http://dx.doi.org/10.1109/SoftStart.2017.2

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

[68] G. Marks, R. V. O’Connor, P. M. Clarke, The impact of situational con-
text on the software development process – a case study of a highly inno-
vative start-up organization, Vol. 770, 2017, pp. 455–466. doi:10.1007/

978-3-319-67383-7_33.1420

[69] C. Y. Laporte, R. V. O’Connor, L. H. G. Paucar, Software engineering
standards and guides for very small entities: Implementation in two
start-ups, 2015, pp. 5–15.
URL https://www.scopus.com/inward/record.

uri?eid=2-s2.0-84933558276&partnerID=40&md5=1425

02b5f237bb268c0133caa7c6cb17a44a

[70] P. Clarke, R. V. O’Connor, The situational factors that a↵ect the soft-
ware development process: Towards a comprehensive reference framework,
Information and Software Technology 54 (5) (2012) 433–447.

[71] ISO, https://www.iso.org/home.html, access date: 2017-11-12 (2017).1430

[link].
URL https://www.iso.org/home.html

[72] J. Pantiuchina, M. Mondini, D. Khanna, X. Wang, P. Abrahamsson, Are
software startups applying agile practices? the state of the practice from
a large survey, in: 18th International Conference on Agile Software Devel-1435

opment, XP 2017, May 22, 2017 - May 26, 2017, Vol. 283 of Lecture Notes
in Business Information Processing, Springer Verlag, 2017, pp. 167–183.
doi:10.1007/978-3-319-57633-6_11.
URL http://dx.doi.org/10.1007/978-3-319-57633-6_11

[73] C. Y. Laporte, R. V. O’Connor, Implementing process improvement in1440

very small enterprises with iso/iec 29110: A multiple case study analysis,
in: Quality of Information and Communications Technology (QUATIC),
2016 10th International Conference on the, IEEE, 2016, pp. 125–130.

[74] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, L.-M. Sainio,
The relationship between business model experimentation and techni-1445

cal debt, in: 6th International Conference on Software Business, IC-
SOB 2015, June 10, 2015 - June 12, 2015, Vol. 210 of Lecture Notes
in Business Information Processing, Springer Verlag, 2015, pp. 17–29.
doi:10.1007/978-3-319-19593-3_2.
URL http://dx.doi.org/10.1007/978-3-319-19593-3_21450

[75] S. McConnell.

[76] H. Terho, S. Suonsyrja, K. Systa, The developers dilemma: Perfect product
development or fast business validation?, in: 17th International Confer-
ence on Product-Focused Software Process Improvement, PROFES 2016,
November 24, 2016 - November 26, 2016, Vol. 10027 LNCS of Lecture Notes1455

in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), Springer Verlag, 2016, pp.

48

http://dx.doi.org/10.1007/978-3-319-67383-7_33
http://dx.doi.org/10.1007/978-3-319-67383-7_33
http://dx.doi.org/10.1007/978-3-319-67383-7_33
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84933558276&partnerID=40&md5=02b5f237bb268c0133caa7c6cb17a44a
https://www.iso.org/home.html
https://www.iso.org/home.html
https://www.iso.org/home.html
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1007/978-3-319-19593-3_2
http://dx.doi.org/10.1007/978-3-319-19593-3_2
http://dx.doi.org/10.1007/978-3-319-19593-3_2
http://dx.doi.org/10.1007/978-3-319-19593-3_2
http://dx.doi.org/10.1007/978-3-319-19593-3_2
http://dx.doi.org/10.1007/978-3-319-49094-6_42
http://dx.doi.org/10.1007/978-3-319-49094-6_42
http://dx.doi.org/10.1007/978-3-319-49094-6_42

Journal of Systems and Software Volume 144, Pages 255-274, October 2018,
https://doi.org/10.1016/j.jss.2018.06.043

571–579. doi:10.1007/978-3-319-49094-6_42.
URL http://dx.doi.org/10.1007/978-3-319-49094-6_42

[77] M. Chicote, Startups and technical debt: Managing technical debt with1460

visual thinking, in: 2017 IEEE/ACM 1st International Workshop on Soft-
ware Engineering for Startups (SoftStart), 21 May 2017, 2017 IEEE/ACM
1st International Workshop on Software Engineering for Startups (Soft-
Start). Proceedings, IEEE Computer Society, 2017, pp. 10–11. doi:

10.1109/SoftStart.2017.6.1465

URL http://dx.doi.org/10.1109/SoftStart.2017.6

[78] R. Deias, G. Mugheddu, O. Murru, Introducing xp in a start-up, in: Pro-
ceedings 3rd International Conference on eXtreme Programming and Agile
Processes in Software Engineering (XP), 2002, pp. 62–65.

[79] V.-P. Eloranta, Towards a pattern language for software start-ups, in: 19th1470

European Conference on Pattern Languages of Programs, EuroPLoP 2014,
July 9, 2014 - July 13, 2014, Vol. 09-13-July-2014 of ACM International
Conference Proceeding Series, Association for Computing Machinery, 2014.
doi:10.1145/2721956.2721965.
URL http://dx.doi.org/10.1145/2721956.27219651475

49

http://dx.doi.org/10.1007/978-3-319-49094-6_42
http://dx.doi.org/10.1007/978-3-319-49094-6_42
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1109/SoftStart.2017.6
http://dx.doi.org/10.1145/2721956.2721965
http://dx.doi.org/10.1145/2721956.2721965
http://dx.doi.org/10.1145/2721956.2721965

	Introduction
	Background
	Software startups
	Startup Development Methodology
	Software Engineering in Startups
	Existing literature reviews

	Research Methodology
	Mapping Procedure
	Data Sources and Search Strategy
	Study Selection
	Manual Search
	Quality Assessment
	Data Extraction and Synthesis
	Threats to Validity

	Results
	RQ1: How has software startup research changed over time in terms of focused knowledge areas?
	RQ2: What is the relative strength of the empirical evidence reported?
	RQ3: In what context has software startup research been conducted?

	Discussion
	RQ1: How has software startup research changed over time in terms of focused knowledge areas?
	RQ2: What is the relative strength of the empirical evidence reported?
	RQ3: In what context has software startup research been conducted?

	Conclusion
	
	

