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Abstract. The applications of Empirical Mode Decomposition (EMD)
in Biomedical Signal analysis have increased and is common now to
find publications that use EMD to identify behaviors in the brain or
heart. EMD has shown excellent results in the identification of behaviours
from the use of electroencephalogram (EEG) signals. In addition, some
advances in the computer area have made it possible to improve their
performance. In this paper, we presented a method that, using an entropy
analysis, can automatically choose the relevant Intrinsic Mode Functions
(IMFs) from EEG signals. The idea is to choose the minimum number of
IMFs to reconstruct the brain activity. The EEG signals were processed
by EMD and the IMFs were ordered according to the entropy cost
function. The IMFs with with more relevant information are selected
for the brain mapping. To validate the results, a relative error measure
was used.

Keywords: Brain mapping, Empirical Mode Decomposition, Epilepsy,
Signal Analysis.

1 Introduction

Richard Caton discovered electrical currents in the brain in 1875 and Hans Berger
recorded these currents and published the first human Electroencephalogram
(EEG) in 1924 [1]. The analysis of EEG signals has been very useful tool to
support the medical diagnosis by extracting those meaningful features that
can allow to identify some diseases (for example, Alzheimer or epilepsy) or
some disorders (for example, attention-deficit/hyperactivity disorder (ADHD)
or autistic spectrum) or some changes in the signals in depth of anesthesia.
Nevertheless, the EEG signals are very difficult to analyze in time and frequency
due to their non-linear and non-stationary nature [2], [3]. For this reason, EMD
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and Hilbert Huang Transform (HHT) have been used to analyze the EEG signals
and they have allowed to obtain a better signal representation and to detect
instantaneous frequencies (IF) that with other methods are difficult to observe
[4]. By this way, the use of linear filters and pre-processing is not necessary. In [5],
a method to quantify interaction between nonstationary cerebral blood velocity
(BFV) and blood pressure (BP) is proposed for the assessment of dynamic
cerebral autoregulation (CA) using HHT. In [6], the authors use Multivariate
Empirical Mode Decomposition (MEMD), which allows to analyze multichannel
signals directly; in that case, this method was used for a full data-driven analysis
to decompose resting-state fMRI (functional Magnetic Resonance Imaging)
data into different sub-bands looking for connectivity functions. Our paper
has a similar purpose, but instead we use EEG signals and another brain
reconstruction algorithm. The use of fMRI implies higher costs due to the
equipment required for acquisition and processing of information. Different
strategies have been used for the process of reconstruction of Neural Activity
from EEG data, but to the best knowledge of the authors, EMD has been used
for this purpose only recently. For neural activity reconstruction, an iterative
regularized method that explicitly includes space (grounded in a physiological
model) and time constraints within the dynamic solution of the EEG inverse
problem, is presented in [7].
When medications for focal epilepsy are not effective, it is necessary to use
invasive treatments how resective surgery where a part of the brain is removed.
First, the sources or brain zones, where the epileptic seizures start, are located
and second, the surgery is carefully performed. Sometimes, when the mapping
is not the best, it is necessary an additional estimation of the zone that
has to be removed. Therefore, intra-cranial electrodes are used and additional
surgery is performed [8]. In this work, an improved technique to brain activity
reconstruction is presented. This technique is based on data-driven and applies
pre-processing stage of the EEG using empirical mode decomposition. The
information is classified in frequency bands from IMFs and then a highly accurate
brain mapping is performed to locate the active sources. To this end, an entropy
cost function is proposed for the optimal selection of IMFs. The entropy is an
indicator of the amount of information stored in a more general probability
distribution and is a measure of the complexity of the time series [9]. Some
previous works have considered the use of entropy to detection of epileptic seizure
[10], [11]. This paper is organized as follows: Section 2 gives an introduction to
the essential concepts about EMD and EEG signals. The experimental setup is
presented in Section 3 and the results obtained with the EEG signals are shown
in Section 4. The discussion of the results is presented in Section 5. Finally, some
conclusions are given in Section 6.
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2 Methods

2.1 The inverse problem in EEG signals

The following is the forward model of EEG generation:

y(tk) = Mx(tk) + ε(tk) (1)

where y(tk) ∈ Rd is the EEG and the neural activity is x(tk) ∈ Rn, with tk = kh
the time at sample k being k = 1, . . . , T the number of samples, the sample time
is h and the lead-field matrix M ∈ Rd×n, which relates the neural activity
with the EEG. Different models can be used to simulated the evolution of x(tk)
in time. It is possible to formulate an iterative inverse problem [7] based on
regularized Tikhonov-Phillips functional, in order to estimate the neural activity
x̂(tk) for each measurement y(tk), as described in:

x̂(tk) = arg min
x(tk)
‖y(tk)−Mx(tk)‖22 + λk‖x(tk)− x̂(tk−1)‖22

+ αk‖x(tk)‖1
(2)

where the regularization parameters λk and αk are computed by generalized
cross validation [7].

2.2 Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is a data-driven time-frequency
(T-F) method that allows to analyze multivariate signals in an adaptive way.
A nonlinear and non-stationary signal y(tk) can be decompose into a sum
of intrinsic mode functions (IMFs) using EMD and these IMFs satisfies two
conditions [12]: first, Zero mean defined by the symmetry between upper/lower
envelopes and second, The amount of extrema and zero crossings must differ at
most by one or be the same.

y(tk) =

N∑
i=1

γi(tk) + r(tk) (3)

γi(tk) is obtained when EMD is applied over y(tk) and where i is the intrinsic
mode function (IMF). The residual is r(tk) and N is the number of IMFs. The
Hilbert transform can be applied to each IMFs and the instantaneous frequency
is computed according to equation (4).

fi(t) ,
1

2π
· dθi(t)

dt
, (4)

being θi(t) the function phase of each IMF calculated from the analytical signal
associated. Finally, the instantaneous frequency can be observed in the Hilbert
Spectrum.
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2.3 Entropy Function for automatic IMF selection

The proposed entropy function is the following:

ei = −
∑
k

‖γi(tk)‖22 log(‖γi(tk)‖22) (5)

It is applied over each IMF γi(tk) where ei is the entropy of each IMF, and
e = [e1 . . . eN ]. The estimated EEG signal ỹ(tk) from IMFs with highest entropy
(chosen automatically) is rebuilt according to the measured entropy ei.

ỹ(tk) =
∑
i∈O

γi(tk) (6)

being O the subset of of IMFs whose entropy ei is over a threshold τe computed
as follows

τe =
max e−min e

2
+ min e (7)

3 Experimental setup

The performance of the aforementioned method is evaluated by using simulated
and real EEG signals with epileptic activity. The experimental setup is divided
in the following tasks:

1. EEG acquisition or simulation (y(tk)) based on a nonlinear model.
2. Apply EMD on the EEG signal.
3. Optimal selection of IMFs using an entropy based cost function.
4. Reconstruction of a signal ỹ(tk) based on the optimal selected IMFs

according to (7).
5. Brain mapping of the neural activity based on the reconstructed signal.
6. Detection of focal origin of Epileptic seizures is performed by locating the

source where the seizure is generated.

Four methods are considered for brain mapping comparison to evaluate the
performance of the proposed algorithm:

1. Brain mapping (x̂(tk)) using the EEG database y(tk) without EMD.
2. Brain mapping (x̂EMD(tk)) using the reconstructed EEG ỹ(tk) obtained

from EMD standard decomposition and an entropy based IMF selection.
3. Brain mapping (x̂W (tk)) using the reconstructed EEG ỹW (tk) obtained

from Wavelet Transform using Daubechies wavelet and three decompositions
levels, where the level with highest energy is selected for reconstruction of
the EEG.

4. Brain mapping (x̂WP (tk)) using the reconstructed EEG ỹWP (tk) obtained
from Wavelet Packets decomposition using Daubechies wavelet and three
decompositions levels, where the level with highest entropy is selected for
reconstruction of the EEG.
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A common procedure to evaluate the performance of brain mapping
techniques is by using simulated EEG signals where the underlying brain activity
is known. In this case, a measure of the brain mapping quality can be evaluated
with the relative error measure [13] as follows:

es =
∑
k

‖x̂(tk)− x(tk)‖22
‖x(tk)‖22

(8)

eEMD =
∑
k

‖x̃EMD(tk)− x(tk)‖22
‖x(tk)‖22

(9)

eW =
∑
k

‖x̃W (tk)− x(tk)‖22
‖x(tk)‖22

(10)

eWP =
∑
k

‖x̃WP (tk)− x(tk)‖22
‖x(tk)‖22

(11)

being es the reconstruction error of the brain mapping estimation x̂(tk) resulting
from y(tk), eEMD the reconstruction error of the brain mapping estimation
x̃EMD(tk) resulting from y(tk), eW the reconstruction error of the brain
mapping estimation x̃W (tk) resulting from ỹW (tk) and eWP the reconstruction
error of the brain mapping estimation x̃WP (tk) resulting from ỹWP (tk).

3.1 Simulated EEG signals

For the simulated database (SD-1) a complex nonlinear model of neural activity
is used for EEG generation during an epileptic seizure based on [14] as follows

x(tk) = A1x(tk−1) +A2x(tk−2)

+A3x(tk−τ ) +A4x(tk−1)◦2 +A5x(tk−1)◦3 + η(tk)
(12)

being A1 = a1In, A2 = a2In, A3 = a3In, A4 = a4In and A5 = a5In, where
In ∈ Rn×n is an identity matrix and ai ∈ R are the model parameters which
describe the dynamics of the brain activity, where c◦2k−1 denotes the Hadamard
Power. The model parameter are set to τ = 20, a1 = 1.0628, a2 = −0.42857,
a3 = 0.008, a4 = 0.000143, a5 = −0.000286, and ‖η(tk)‖≤0.05. The epileptic
seizure is simulated at time tk = 0.5 s by modifying the values of a1 from 1.0628
to 1.3, while a2 from −0.428 to −1 over the entire diagonal. The simulated
EEG y(tk) is obtained from x(tk) using (1) where ε(tk) is set to achieve the
Signal-to-Noise Ratios (SNRs) of 0, 5, 10, 15 and 20 dB, the sample rate is 250Hz,
and a number of d = 128 electrodes and n = 8196 sources are considered.

4 Results

After analyzing the database with the EMD, we obtained 6 IMFs per channel.
In the IMF 2 in Fig. 1, it is possible to observe two areas in red that show how
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Fig. 1. IMF and IF of ys for SD-1 using standard EMD

different frequencies (different oscillations) appear in the same IMF. In these
IMFs the mode mixing problem is evident. An example of the retained energy
and entropy for each IMF is presented in Fig. 2. In this example, the threshold is
τe = 1930.9 and then the EEG is reconstructed by using the IMF1 and IMF2.
An example of the Hilbert spectrum is presented in Fig. 3, it is possible to
see how the instantaneous frequency is changing with time. As expected, it is
observed that the highest frequency is in IMF 1.
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Fig. 2. Retained energy and entropy of y(tk) for SD-1 using standard EMD
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Fig. 3. Hilbert spectrum of y(tk) for SD-1 using standard EMD

A comparison of the original y(tk) and reconstructed ỹ(tk) signals is
presented in Fig. 4. The resulting brain mapping for each method is presented
in Fig 5.

Fig. 4. Comparison of simulated y(tk) and optimally reconstructed ỹ(tk) signals for
SD-1 by using standard EMD for one channel

Relative error measure is used for evaluation and these results were obtained
based on (8) es = 1.3284, eEMD = 1.2942, eW = 1.3106 and eWP = 1.2007.
Showing that the best result is obtained for the brain mapping computed from
the reconstructed neural activity using entropy-based selection of IMFs. An
analysis based on 30 trials for each noise condition is shown in Fig. 6.

As shown in Fig. 6, the best results are achieved by the proposed method
of EMD decomposition with automatic selection of relevant IMFs based on the
entropy measure (EMD-entropy).
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Fig. 5. Comparison of brain mapping obtained for simulated x(tk), estimated without
EMD x̂(tk) and optimally reconstructed x̃(tk) neural activity for SD-1

Fig. 6. Relative error comparison for SD-1 under several noise conditions

From the above, it can be seen an improvement of the source localization in
terms of the relative error. That allows an improvement of epilepsy treatment
when a smaller part of the brain needs to be removed.

5 Discussion

First, it must be highlighted that this method allowed to reconstruct the brain
activity from IMFs with relevant information for thi application. The problem
of mode mixing was shown in [4] and therefore, the conclution was that the
EMD does not have a good performance in decomposing and reconstructing the
signals with low frequency. In Figures 1 is possible to observe this phenomena.
There are methodologies such as the masking signal [15] or Ensamble Empirical
Mode Decomposition (EEMD) that can avoid this problem. However, the mode
mixing does not disappear completely. When this technique is compared with
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strategies very common for this type of application such as Discrete Wavelet
Transform (DWT), some factors can affect the performance in epileptic focus
localization: the mother wavelet, the level of decomposition, frequency bands,
and features. The validation allowed us to calculate the relative error and to
affirm that the technique presented provides an accurate detection of sources
associated to epileptic seizures.

In Figure 5 is showed the brain activity reconstruction with raw data
(without pre-processing) compared with reconstruction using EMD-entropy,
wavelet-energy and WP-entropy. The reconstructions are not perfect, but they
are very close to the ground-truth. The estimated relative errors allow to
conclude that the estimated EEG from EMD-entropy was the lowest and the
second lowest error was for WP-entropy (Figure 6). The IMFs and levels for
WP are selected automatically, and depending of the EEG the number of IMFs
or levels for WP could change, but in either case the sources are located very
close to ground-truth. The epileptic seizure was simulated at time tk = 0.5s
and although time localization was not one of the purposes of this paper, in
the Hilbert spectrum is possible to observe that the instantaneous frequencies
associated with each IMF have a change in their behavior at exactly this time,
therefore in order to automatically detect the beginning of an epileptic activity,
an additional analysis of the instantaneous frequency could be performed.

6 Conclusions

An automatic detection of actives sources is presented. The method is based
on EMD and and entropy function for brain activity reconstruction. This
strategy can be used to support medical diagnosis when is necessary the visual
observations of EEG signals. The tests carried out with the simulated databases
and the calculation of the relative error measure show an excellent performance
of the proposed methodology.
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epileptogénicas basado en medidas de conectividad funcional usando registros
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